MCP2551I/P [MICROCHIP]

High-Speed CAN Transceiver; 高速CAN收发器
MCP2551I/P
型号: MCP2551I/P
厂家: MICROCHIP    MICROCHIP
描述:

High-Speed CAN Transceiver
高速CAN收发器

文件: 总20页 (文件大小:351K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP2551  
M
High-Speed CAN Transceiver  
Features  
Package Types  
• Supports 1 Mb/s operation  
• Implements ISO-11898 standard physical layer  
requirements  
PDIP/SOIC  
TXD  
VSS  
1
2
3
4
8
7
6
5
RS  
• Suitable for 12V and 24V systems  
• Externally-controlled slope for reduced RFI  
emissions  
• Detection of ground fault (permanent dominant)  
on TXD input  
• Power-on reset and voltage brown-out protection  
CANH  
VDD  
RXD  
CANL  
VREF  
• An unpowered node or brown-out event will not  
disturb the CAN bus  
• Low current standby operation  
• Protection against damage due to short-circuit  
conditions (positive or negative battery voltage)  
• Protection against high-voltage transients  
• Automatic thermal shutdown protection  
• Up to 112 nodes can be connected  
• High noise immunity due to differential bus  
implementation  
Temperature ranges:  
- Industrial (I): -40°C to +85°C  
- Extended (E): -40°C to +125°C  
Block Diagram  
VDD  
TXD  
Thermal  
Dominant  
Detect  
Shutdown  
VDD  
Driver  
TXD  
Control  
Slope  
Power-On  
Reset  
CANH  
RS  
RXD  
VREF  
Control  
0.5 VDD  
GND  
CANL  
Receiver  
Reference  
Voltage  
VSS  
2002 Microchip Technology Inc.  
Preliminary  
DS21667C-page 1  
MCP2551  
NOTES:  
DS21667C-page 2  
Preliminary  
2002 Microchip Technology Inc.  
MCP2551  
1.4  
Operating Modes  
1.0  
DEVICE OVERVIEW  
The RS pin allows three modes of operation to be  
selected:  
• High-Speed  
• Slope-Control  
• Standby  
The MCP2551 is a high-speed CAN, fault-tolerant  
device that serves as the interface between a CAN pro-  
tocol controller and the physical bus. The MCP2551  
provides differential transmit and receive capability for  
the CAN protocol controller and is fully compatible with  
the ISO-11898 standard, including 24V requirements. It  
will operate at speeds of up to 1 Mb/s.  
These modes are summarized in Table 1-1.  
Typically, each node in a CAN system must have a  
device to convert the digital signals generated by a CAN  
controller to signals suitable for transmission over the  
bus cabling (differential output). It also provides a buffer  
between the CAN controller and the high-voltage spikes  
that can be generated on the CAN bus by outside  
sources (EMI, ESD, electrical transients, etc.).  
When in High-Speed or Slope-Control mode, the driv-  
ers for the CANH and CANL signals are internally regu-  
lated to provide controlled symmetry in order to  
minimize EMI emissions.  
Additionally, the slope of the signal transitions on  
CANH and CANL can be controlled with a resistor con-  
nected from pin 8 (RS) to ground, with the slope propor-  
tional to the current output at RS, further reducing EMI  
emissions.  
1.1  
Transmitter Function  
The CAN bus has two states: Dominant and Reces-  
sive. A dominant state occurs when the differential volt-  
age between CANH and CANL is greater than a  
defined voltage (e.g.,1.2V). A recessive state occurs  
when the differential voltage is less than a defined volt-  
age (typically 0V). The dominant and recessive states  
correspond to the low and high state of the TXD input  
pin, respectively. However, a dominant state initiated  
by another CAN node will override a recessive state on  
the CAN bus.  
1.4.1  
HIGH-SPEED  
The High-Speed mode is selected by connecting the  
RS pin to VSS. In this mode, the transmitter output driv-  
ers have fast output rise and fall times to support high-  
speed CAN bus rates.  
1.4.2  
SLOPE-CONTROL  
Slope-Control mode further reduces EMI by limiting the  
rise and fall times of CANH and CANL. The slope, or  
slew rate (SR), is controlled by connecting an external  
resistor (REXT) between RS and VOL (usually ground).  
The slope is proportional to the current output at the RS  
pin. Since the current is primarily determined by the  
slope-control resistance value REXT, a certain slew rate  
is achieved by applying a respective resistance.  
Figure 1-1 illustrates typical slew rate values as a  
function of the slope-control resistance value.  
1.1.1  
MAXIMUM NUMBER OF NODES  
The MCP2551 CAN outputs will drive a minimum load  
of 45, allowing a maximum of 112 nodes to be con-  
nected (given a minimum differential input resistance of  
20 kand a nominal termination resistor value of  
120Ω).  
1.2  
Receiver Function  
1.4.3  
STANDBY MODE  
The RXD output pin reflects the differential bus voltage  
between CANH and CANL. The low and high states of  
the RXD output pin correspond to the Dominant and  
Recessive states of the CAN bus, respectively.  
The device may be placed in standby or “SLEEP” mode  
by applying a high-level to RS. In SLEEP mode, the  
transmitter is switched off and the receiver operates at  
a lower current. The receive pin on the controller side  
(RXD) is still functional but will operate at a slower rate.  
The attached microcontroller can monitor RXD for CAN  
bus activity and place the transceiver into normal oper-  
ation via the RS pin (at higher bus rates the first CAN  
message may be lost).  
1.3  
Internal Protection  
CANH and CANL are protected against battery short-  
circuits and electrical transients that can occur on the  
CAN bus. This feature prevents destruction of the  
transmitter output stage during such a fault condition.  
The device is further protected from excessive current  
loading by thermal shutdown circuitry that disables the  
output drivers when the junction temperature exceeds  
a nominal limit of 165°C. All other parts of the chip  
remain operational and the chip temperature is lowered  
due to the decreased power dissipation in the transmit-  
ter outputs. This protection is essential to protect  
against bus line short-circuit induced damage.  
2002 Microchip Technology Inc.  
Preliminary  
DS21667C-page 3  
MCP2551  
TABLE 1-1:  
MODES OF OPERATION  
Mode  
Current at R Pin  
Resulting Voltage at RS Pin  
s
Standby  
Slope-Control  
High-Speed  
-IRS < 10 µA  
10 µA < -IRS < 200 µA  
-IRS < 610 µA  
VRS > 0.75VDD  
0.4VDD < VRS < 0.6VDD  
0 < VRS < 0.3VDD  
TABLE 1-2:  
TRANSCEIVER TRUTH TABLE  
( 1)  
( 1)  
VDD  
VRS  
TXD  
CANH  
CANL  
Bus State  
RXD  
4.5V VDD 5.5V  
VRS < 0.75VDD  
0
HIGH  
LOW  
Dominant  
Recessive  
0
1
1
0
1
1
X
1 or floating  
Not Driven  
Not Driven  
HIGH  
Not Driven  
Not Driven  
LOW  
VRS > 0.75VDD  
VRS < 0.75VDD  
X
0
Recessive  
VPOR < VDD < 4.5V  
Dominant  
(See Note 3)  
1 or floating  
Not Driven  
Not Driven  
Not Driven/  
No Load  
Not Driven  
Not Driven  
Not Driven/  
No Load  
Recessive  
VRS > 0.75VDD  
X
X
X
Recessive  
0 < VDD < VPOR  
High Impedance  
Note 1: If another bus node is transmitting a dominant bit on the CAN bus, then RXD is a logic 0.  
2: X = “don’t care”.  
3: Device drivers will function, although outputs are not guaranteed to meet the ISO-11898 specification.  
FIGURE 1-1:  
SLEW RATE VS. SLOPE-CONTROL RESISTANCE VALUE  
25  
20  
15  
10  
5
0
10 20 30 40 49 60 70 76 90 100 110 120  
Resistance (k)  
DS21667C-page 4  
Preliminary  
2002 Microchip Technology Inc.  
MCP2551  
1.7.2  
GROUND SUPPLY (VSS)  
1.5  
TXD Permanent Dominant  
Detection  
Ground supply pin.  
If the MCP2551 detects an extended low state on the  
TXD input, it will disable the CANH and CANL output  
drivers in order to prevent the corruption of data on the  
CAN bus. The drivers are disabled if TXD is low for  
more than 1.25 ms (minimum). This implies a maxi-  
mum bit time of 62.5 µs (16 kb/s bus rate) allowing up  
to 20 consecutive transmitted dominant bits during a  
multiple bit error and error frame scenario. The drivers  
remain disabled as long as TXD remains low. A rising  
edge on TXD will reset the timer logic and enable the  
CANH and CANL output drivers.  
1.7.3  
SUPPLY VOLTAGE (VDD)  
Positive supply voltage pin.  
1.7.4  
RECEIVER DATA OUTPUT (RXD)  
RXD is a CMOS-compatible output that drives high or  
low depending upon the differential signals on the  
CANH and CANL pins and is usually connected to the  
receiver data input of the CAN controller device. RXD  
is high when the CAN bus is recessive and low in the  
dominant state.  
1.6  
Power-on Reset  
1.7.5  
REFERENCE VOLTAGE (VREF)  
When the device is powered on, CANH and CANL  
remain in a high-impedance state until VDD reaches the  
voltage level VPORH. In addition, CANH and CANL will  
remain in a high-impedance state if TXD is low when  
VDD reaches VPORH. CANH and CANL will become  
active only after TXD is asserted high. Once powered  
on, CANH and CANL will enter a high-impedance state  
if the voltage level at VDD falls below VPORL, providing  
voltage brown-out protection during normal operation.  
Reference Voltage Output (Defined as VDD/2).  
1.7.6  
CAN LOW (CANL)  
The CANL output drives the low side of the CAN differ-  
ential bus. This pin is also tied internally to the receive  
input comparator.  
1.7.7  
CAN HIGH (CANH)  
The CANH output drives the high side of the CAN dif-  
ferential bus. This pin is also tied internally to the  
receive input comparator.  
1.7  
Pin Descriptions  
The 8-pin pinout is listed in Table 1-3.  
1.7.8  
SLOPE RESISTOR INPUT (RS)  
TABLE 1-3:  
MCP2551 PINOUT  
The RS pin is used to select High-Speed, Slope-Control  
or Standby modes via an external biasing resistor.  
Pin  
Pin  
Pin Function  
Number  
Name  
1
2
3
4
5
6
7
8
TXD  
VSS  
VDD  
RXD  
VREF  
Transmit Data Input  
Ground  
Supply Voltage  
Receive Data Output  
Reference Output Voltage  
CANL CAN Low-Level Voltage I/O  
CANH CAN High-Level Voltage I/O  
RS  
Slope-Control Input  
1.7.1  
TRANSMITTER DATA INPUT (TXD)  
TXD is a TTL compatible input pin. The data on this pin  
is driven out on the CANH and CANL differential output  
pins. It is usually connected to the transmitter data out-  
put of the CAN controller device. When TXD is low,  
CANH and CANL are in the dominant state. When TXD  
is high, CANH and CANL are in the recessive state,  
provided that another CAN node is not driving the CAN  
bus with a dominant state. TXD has an internal pull-up  
resistor (nominal 25 kto VDD).  
2002 Microchip Technology Inc.  
Preliminary  
DS21667C-page 5  
MCP2551  
2.1.5  
DIFFERENTIAL VOLTAGE, VDIFF  
(OF CAN BUS)  
2.0  
ELECTRICAL  
CHARACTERISTICS  
Differential voltage of the two-wire CAN bus, value  
VDIFF = VCANH - VCANL.  
2.1  
Terms and Definitions  
A number of terms are defined in ISO-11898 that are  
used to describe the electrical characteristics of a CAN  
transceiver device. These terms and definitions are  
summarized in this section.  
2.1.6  
INTERNAL CAPACITANCE, CIN (OF  
A CAN NODE)  
Capacitance seen between CANL (or CANH) and  
ground during the recessive state when the CAN node  
is disconnected from the bus (see Figure 2-1).  
2.1.1  
BUS VOLTAGE  
VCANL and VCANH, denoting the voltages of the bus line  
wires, CANL and CANH, relative to ground of each  
individual CAN node.  
2.1.7  
INTERNAL RESISTANCE, RIN (OF A  
CAN NODE)  
Resistance seen between CANL (or CANH) and  
ground during the recessive state when the CAN node  
is disconnected from the bus (see Figure 2-1).  
2.1.2  
COMMON MODE BUS VOLTAGE  
RANGE  
Boundary voltage levels of VCANL and VCANH with  
respect to ground, for which proper operation will occur,  
if up to the maximum number of CAN nodes are  
connected to the bus.  
FIGURE 2-1:  
PHYSICAL LAYER  
DEFINITIONS  
ECU  
2.1.3  
DIFFERENTIAL INTERNAL  
CAPACITANCE, CDIFF (OF A CAN  
NODE)  
RIN  
RIN  
CANL  
Capacitance seen between CANL and CANH during  
the recessive state when the CAN node is  
disconnected from the bus (see Figure 2-1).  
CDIFF  
RDIFF  
CIN  
CANH  
CIN  
2.1.4  
DIFFERENTIAL INTERNAL  
RESISTANCE, RDIFF (OF A CAN  
NODE)  
GROUND  
Resistance seen between CANL and CANH during the  
recessive state when the CAN node is disconnected  
from the bus (see Figure 2-1).  
DS21667C-page 6  
Preliminary  
2002 Microchip Technology Inc.  
MCP2551  
Absolute Maximum Ratings†  
VDD.............................................................................................................................................................................7.0V  
DC Voltage at TXD, RXD, VREF and VS.............................................................................................-0.3V to VDD + 0.3V  
DC Voltage at CANH, CANL (Note 1).......................................................................................................... -42V to +42V  
Transient Voltage on Pins 6 and 7 (Note 2)............................................................................................. -250V to +250V  
Storage temperature ...............................................................................................................................-55°C to +150°C  
Operating ambient temperature ..............................................................................................................-40°C to +125°C  
Virtual Junction Temperature, TVJ (Note 3) ............................................................................................-40°C to +150°C  
Soldering temperature of leads (10 seconds) ....................................................................................................... +300°C  
ESD protection on CANH and CANL pins (Note 4) ................................................................................................... 6 kV  
ESD protection on all other pins (Note 4) .................................................................................................................. 4 kV  
Note 1: Short-circuit applied when TXD is high and low.  
2: In accordance with ISO-7637.  
3: In accordance with IEC 60747-1.  
4: Classification A: Human Body Model.  
† NOTICE: Stresses above those listed under “Maximum ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated in  
the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
2002 Microchip Technology Inc.  
Preliminary  
DS21667C-page 7  
MCP2551  
2.2  
DC Characteristics  
Electrical Characteristics:  
DC Specifications  
Industrial (I): TAMB = -40°C to +85°C VDD = 4.5V to 5.5V  
Extended (E): TAMB = -40°C to +125°C VDD = 4.5V to 5.5V  
Param  
No.  
Sym  
Characteristic  
Min  
Max  
Units  
Conditions  
Supply:  
D1  
IDD  
Supply Current  
75  
10  
mA Dominant; VTXD = 0.8V; VDD  
D2  
mA Recessive; VTXD = +2V;  
RS = 47 kΩ  
D3  
365  
465  
4.3  
4.0  
0.8  
µA -40°C TAMB +85°C,  
Standby; (Note 2)  
µA -40°C TAMB +125°C,  
Standby; (Note 2)  
D4  
D5  
D6  
VPORH  
VPORL  
VPORD  
High-level of the power-on reset  
comparator  
Low-level of the power-on reset  
comparator  
Hysteresis of power-on reset  
comparator  
3.8  
3.4  
0.3  
V
V
V
CANH, CANL outputs are  
active when VDD > VPORH  
CANH, CANL outputs are not  
active when VDD < VPORL  
Note 1  
Bus Line (CANH; CANL) Transmitter:  
D7  
D8  
D9  
VCANH(r);VCANL  
CANH, CANL Recessive bus  
2.0  
-2  
3.0  
+2  
V
VTXD = VDD; no load.  
(r)  
voltage  
IO(CANH)(reces) Recessive output current  
IO(CANL)(reces)  
mA -2V < V(CAHL,CANH) < +7V,  
0V <VDD < 5.5V  
mA -5V < V(CANL,CANH) < +40V,  
0V <VDD < 5.5V  
-10  
+10  
D10  
D11  
D12  
VO(CANH)  
VO(CANL)  
VDIFF(r)(o)  
CANH dominant output voltage  
CANL dominant output voltage  
Recessive differential output  
voltage  
2.75  
0.5  
-500  
4.5  
2.25  
+50  
V
V
VTXD = 0.8V  
VTXD = 0.8V  
mV VTXD = 2V; no load  
D13  
VDIFF(d)(o)  
Dominant differential output  
voltage  
1.5  
3.0  
V
VTXD = 0.8V; VDD = 5V  
40 < RL < 60 (Note 2)  
D14  
D15  
IO(SC)(CANH)  
CANH short-circuit output  
current  
-200  
-100  
(typical)  
mA VCANH = -5V  
mA VCANH = -40V, +40V. (Note 1)  
D16  
IO(SC)(CANL)l  
CANL short circuit output current  
200  
mA VCANL = -40V, +40V. (Note 1)  
Bus Line (CANH; CANL) Receiver: [TXD = 2V; pins 6 and 7 externally driven]  
D17  
VDIFF(r)(i)  
Recessive differential input  
-1.0  
-1.0  
0.9  
+0.5  
+0.4  
5.0  
V
V
V
V
-2V < V(CANL, CANH) < +7V  
voltage  
(Note 3)  
-12V < V(CANL, CANH) < +12V  
(Note 3)  
-2V < V(CANL, CANH) < +7V  
(Note 3)  
-12V < V(CANL, CANH) < +12V  
(Note 3)  
D18  
VDIFF(d)(i)  
Dominant differential input  
voltage  
1.0  
5.0  
D19  
D20  
VDIFF(h)(i)  
RIN  
Differential input hysteresis  
CANH, CANL common-mode  
input resistance  
100  
5
200  
50  
mV see Figure 2-4. (Note 1)  
kΩ  
D21  
RIN(d)  
Deviation between CANH and  
CANL common-mode input  
resistance  
-3  
+3  
%
VCANH = VCANL  
Note 1: This parameter is periodically sampled and not 100% tested.  
2: ITXD = IRXD = IVREF = 0 mA; 0V < VCANL < VDD; 0V < VCANH < VDD; VRS = VDD  
.
3: This is valid for the receiver in all modes, High-Speed, Slope-Control and standby.  
DS21667C-page 8  
Preliminary  
2002 Microchip Technology Inc.  
MCP2551  
2.2  
DC Characteristics (Continued)  
Electrical Characteristics:  
DC Specifications (Continued)  
Industrial (I): TAMB = -40°C to +85°C VDD = 4.5V to 5.5V  
Extended (E): TAMB = -40°C to +125°C VDD = 4.5V to 5.5V  
Param  
No.  
Sym  
Characteristic  
Min  
Max  
Units  
Conditions  
Bus Line (CANH; CANL) Receiver: [TXD = 2V; pins 6 and 7 externally driven]  
D22  
D24  
RDIFF  
ILI  
Differential input resistance  
CANH, CANL input leakage  
current  
20  
100  
150  
kΩ  
µA  
VDD < VPOR;  
VCANH = VCANL = +5V  
Transmitter Data Input (TXD):  
D25  
D26  
D27  
D28  
VIH  
VIL  
IIH  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
2.0  
-1  
+0.8  
+1  
V
V
µA  
µA  
Output recessive  
Output dominant  
VTXD = VDD  
IIL  
-100  
-400  
VTXD = 0V  
Receiver Data Output (RXD):  
D31  
D32  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
0.7  
0.8  
V
V
IOH = 8 mA  
IOL = 8 mA  
Voltage Reference Output (VREF):  
D33 Reference output voltage  
Standby/Slope-Control (RS pin):  
VREF  
0.45 VDD  
0.55 VDD  
V
-50 µA < IVREF < 50 µA  
D34  
D35  
D36  
VSTB  
ISLOPE  
VSLOPE  
Input voltage for standby mode  
Slope-control mode current  
Slope-control mode voltage  
0.75 VDD  
-10  
0.4 VDD  
-200  
0.6 VDD  
V
µA  
V
Thermal Shutdown:  
Note 1  
(sd)  
TJ  
oC  
oC  
D37  
TJ  
Shutdown junction temperature  
155  
20  
180  
30  
D38  
Shutdown temperature  
hysteresis  
-12V < V(CANL, CANH) < +12V  
(Note 3)  
(h)  
Note 1: This parameter is periodically sampled and not 100% tested.  
2: ITXD = IRXD = IVREF = 0 mA; 0V < VCANL < VDD; 0V < VCANH < VDD; VRS = VDD  
.
3: This is valid for the receiver in all modes, High-Speed, Slope-Control and standby.  
FIGURE 2-2:  
TEST CIRCUIT FOR ELECTRICAL CHARACTERISTICS  
0.1µF  
V
DD  
CANH  
TXD  
VREF  
CAN  
60 Ω  
100 pF  
Transceiver  
RXD  
CANL  
30 pF  
RS  
GND  
Rext  
Note:  
RS may be connected to VDD or GND via a load resistor depending on desired operating mode  
as described in Section 1.7.8, “Slope Resistor Input”.  
2002 Microchip Technology Inc.  
Preliminary  
DS21667C-page 9  
MCP2551  
FIGURE 2-3:  
TEST CIRCUIT FOR AUTOMOTIVE TRANSIENTS  
500 pF  
CANH  
TXD  
VREF  
RXD  
Schaffner  
Generator  
CAN  
60Ω  
Transceiver  
CANL  
RS  
Rext  
500 pF  
GND  
Note:  
RS may be connected to VDD or  
GND via a load resistor depending  
on desired operating mode as  
described in Section 1.7.8  
The wave forms of the applied transients shall be in accordance with “ISO-7637, Part 1”, test pulses 1, 2, 3a and 3b.  
FIGURE 2-4:  
HYSTERESIS OF THE RECEIVER  
RXD (receive data  
output voltage)  
VOH  
VOL  
VDIFF (r)(i)  
VDIFF (d)(i)  
hysteresis  
D19  
0.5  
0.9  
VDIFF (V)  
DS21667C-page 10  
Preliminary  
2002 Microchip Technology Inc.  
MCP2551  
2.3  
AC Characteristics  
Electrical Characteristics:  
AC Specifications  
Industrial (I): TAMB = -40°C to +85°CVDD = 4.5V to 5.5V  
Extended (E): TAMB = -40°C to +125°CVDD = 4.5V to 5.5V  
Param  
Sym  
No.  
Characteristic  
Bit time  
Min  
Max  
Units  
Conditions  
1
2
3
tBIT  
fBIT  
1
16  
62.5  
1000  
70  
µs  
kHz  
ns  
VRS = 0V  
VRS = 0V  
Bit frequency  
TtxL2bus(d) Delay TXD to bus active  
-40°C TAMB +125°C,  
VRS = 0V  
4
5
6
TtxH2bus(r) Delay TXD to bus inactive  
125  
170  
130  
250  
175  
225  
235  
400  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-40°C TAMB +85°C,  
VRS = 0V  
-40°C TAMB +125°C,  
VRS = 0V  
TtxL2rx(d)  
TtxH2rx(r)  
Delay TXD to receive active  
-40°C TAMB +125°C,  
VRS = 0V  
-40°C TAMB +125°C,  
RS = 47 kΩ  
Delay TXD to receiver  
inactive  
-40°C TAMB +85°C,  
VRS = 0V  
-40°C TAMB +85°C,  
RS = 47 kΩ  
-40°C TAMB +125°C,  
VRS = 0V  
-40°C TAMB +125°C,  
RS = 47 kΩ  
7
SR  
CANH, CANL slew rate  
5.5  
V/µs Refer to Figure 1-1;  
RS = 47 kΩ, (Note 1)  
see Figure 2-6  
10  
11  
12  
13  
14  
15  
tWAKE  
Wake-up time from standby  
(Rs pin)  
5
µs  
ns  
TbusD2rx(s) Bus dominant to RXD Low  
550  
VRS = +4V; (see Figure 2-7)  
(standby mode)  
CIN(CANH)  
CIN(CANL)  
CANH; CANL input  
capacitance  
20  
(typical)  
pF  
pF  
ms  
µs  
1 Mbit/s data rate;  
VTXD = VDD, (Note 1)  
CDIFF  
Differential input  
10  
1 Mbit/s data rate  
capacitance  
(typical)  
(Note 1)  
TtxL2busZ TX Permanent Dominant  
Timer Disable Time  
1.25  
4
TtxR2pdt(res) TX Permanent Dominant  
1
Rising edge on TXD while  
device is in permanent  
dominant state  
Timer Reset Time  
Note 1: This parameter is periodically sampled and not 100% tested.  
2002 Microchip Technology Inc.  
Preliminary  
DS21667C-page 11  
MCP2551  
2.4  
Timing Diagrams and Specifications  
FIGURE 2-5:  
TIMING DIAGRAM FOR AC CHARACTERISTICS  
VDD  
0V  
TXD (transmit data  
input voltage)  
VDIFF (CANH,  
CANL differential  
voltage)  
0.5V  
0.9V  
RXD (receive data  
output voltage)  
0.7 VDD  
0.3 VDD  
3
4
5
6
FIGURE 2-6:  
TIMING DIAGRAM FOR WAKEUP FROM STANDBY  
VRS Slope resistor  
VDD  
input voltage  
0.6 VDD  
0V  
VRXD Receive data  
output voltage  
0.3 VDD  
10  
VTXD = 0.8V  
FIGURE 2-7:  
TIMING DIAGRAM FOR BUS DOMINANT TO RXD LOW (STANDBY MODE)  
1.5V  
0.9V  
VDIFF, Differential  
voltage  
0V  
Receive data  
output voltage  
0.3 VDD  
11  
VRS = 4V; VTXD = 2V  
DS21667C-page 12  
Preliminary  
2002 Microchip Technology Inc.  
MCP2551  
3.0  
3.1  
PACKAGING INFORMATION  
Package Marking Information  
8-Lead PDIP (300 mil)  
Example:  
XXXXXXXX  
XXXXXNNN  
MCP2551  
I/P256  
0234  
YYWW  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP2551  
I/SN0234  
NNN  
256  
Legend: XX...X Customer specific information*  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line thus limiting the number of available characters  
for customer specific information.  
*
Standard marking consists of Microchip part number, year code, week code, traceability code (facility  
code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please  
check with your Microchip Sales Office.  
2002 Microchip Technology Inc.  
Preliminary  
DS21667C-page 13  
MCP2551  
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)  
E1  
D
2
n
1
α
E
A2  
A
L
c
A1  
β
B1  
B
p
eB  
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
A
A2  
A1  
E
E1  
D
L
c
B1  
B
Number of Pins  
Pitch  
Top to Seating Plane  
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
8
.100  
.155  
.130  
2.54  
3.94  
3.30  
.140  
.170  
.145  
3.56  
2.92  
4.32  
3.68  
.115  
.015  
.300  
.240  
.360  
.125  
.008  
.045  
.014  
.310  
5
0.38  
7.62  
6.10  
9.14  
3.18  
0.20  
1.14  
0.36  
7.87  
5
.313  
.250  
.373  
.130  
.012  
.058  
.018  
.370  
10  
.325  
.260  
.385  
.135  
.015  
.070  
.022  
.430  
15  
7.94  
6.35  
9.46  
3.30  
0.29  
1.46  
0.46  
9.40  
10  
8.26  
6.60  
9.78  
3.43  
0.38  
1.78  
0.56  
10.92  
15  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
Lower Lead Width  
Overall Row Spacing  
Mold Draft Angle Top  
Mold Draft Angle Bottom  
§
eB  
α
β
5
10  
15  
5
10  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-001  
Drawing No. C04-018  
DS21667C-page 14  
Preliminary  
2002 Microchip Technology Inc.  
MCP2551  
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)  
E
E1  
p
D
2
B
n
1
h
α
45°  
c
A2  
A
φ
β
L
A1  
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
8
MAX  
n
p
A
A2  
A1  
E
E1  
D
h
L
φ
Number of Pins  
Pitch  
Overall Height  
8
.050  
.061  
.056  
.007  
.237  
.154  
.193  
.015  
.025  
4
1.27  
.053  
.069  
1.35  
1.32  
1.55  
1.42  
0.18  
6.02  
3.91  
4.90  
0.38  
0.62  
4
1.75  
Molded Package Thickness  
.052  
.004  
.228  
.146  
.189  
.010  
.019  
0
.061  
.010  
.244  
.157  
.197  
.020  
.030  
8
1.55  
0.25  
6.20  
3.99  
5.00  
0.51  
0.76  
8
Standoff  
§
0.10  
5.79  
3.71  
4.80  
0.25  
0.48  
0
Overall Width  
Molded Package Width  
Overall Length  
Chamfer Distance  
Foot Length  
Foot Angle  
c
Lead Thickness  
Lead Width  
.008  
.013  
0
.009  
.017  
12  
.010  
.020  
15  
0.20  
0.33  
0
0.23  
0.42  
12  
0.25  
0.51  
15  
B
α
β
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
12  
15  
0
12  
15  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MS-012  
Drawing No. C04-057  
2002 Microchip Technology Inc.  
Preliminary  
DS21667C-page 15  
MCP2551  
NOTES:  
DS21667C-page 16  
Preliminary  
2002 Microchip Technology Inc.  
MCP2551  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
PART NO.  
Device  
X
/XX  
Examples:  
Temperature Package  
Range  
a)  
b)  
c)  
d)  
e)  
MCP2551-I/P: Industrial temperature,  
PDIP package.  
MCP2551-E/P: Extended temperature,  
PDIP package.  
MCP2551-I/SN: Industrial temperature,  
SOIC package.  
MCP2551T-I/SN: Tape and Reel, Industrial  
Temperature, SOIC package.  
MCP2551T-E/SN:  
Extended Temperature, SOIC package.  
Device:  
MCP2551= High-Speed CAN Transceiver  
Temperature  
Range:  
I
=
=
-40°C to +85°C  
-40°C to +125°C  
E
Tape  
and  
Reel,  
Package:  
P
=
=
Plastic DIP (300 mil Body) 8-lead  
Plastic SOIC (150 mil Body) 8-lead  
SN  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and  
recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2002 Microchip Technology Inc.  
Preliminary  
DS21667C-page 17  
MCP2551  
NOTES:  
DS21667C-page 18  
Preliminary  
2002 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-  
edge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
No representation or warranty is given and no liability is  
assumed by Microchip Technology Incorporated with respect  
to the accuracy or use of such information, or infringement of  
patents or other intellectual property rights arising from such  
use or otherwise. Use of Microchip’s products as critical com-  
ponents in life support systems is not authorized except with  
express written approval by Microchip. No licenses are con-  
veyed, implicitly or otherwise, under any intellectual property  
rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, KEELOQ,  
MPLAB, PIC, PICmicro, PICSTART and PRO MATE are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A. and other countries.  
FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL  
and The Embedded Control Solutions Company are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense,  
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,  
ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,  
MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rfPIC, Select  
Mode and Total Endurance are trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
Serialized Quick Turn Programming (SQTP) is a service mark  
of Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2002, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
®
PICmicro 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2002 Microchip Technology Inc.  
DS21667C - page 19  
M
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
China - Beijing  
Rocky Mountain  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-4338  
Bei Hai Wan Tai Bldg.  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Atlanta  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Singapore  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
Tel: 770-640-0034 Fax: 770-640-0307  
China - Chengdu  
#07-02 Prime Centre  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401-2402, 24th Floor,  
Singapore, 188980  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Ming Xing Financial Tower  
Microchip Technology (Barbados) Inc.,  
Taiwan Branch  
No. 88 TIDU Street  
Chicago  
Chengdu 610016, China  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
11F-3, No. 207  
Tel: 86-28-86766200 Fax: 86-28-86766599  
Tung Hua North Road  
Taipei, 105, Taiwan  
China - Fuzhou  
Tel: 630-285-0071 Fax: 630-285-0075  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
EUROPE  
Austria  
No. 71 Wusi Road  
Tel: 972-818-7423 Fax: 972-818-2924  
Fuzhou 350001, China  
Microchip Technology Austria GmbH  
Durisolstrasse 2  
Detroit  
Tel: 86-591-7503506 Fax: 86-591-7503521  
Tri-Atria Office Building  
China - Shanghai  
A-4600 Wels  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Room 701, Bldg. B  
Far East International Plaza  
No. 317 Xian Xia Road  
Kokomo  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Shanghai, 200051  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
China - Shenzhen  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Los Angeles  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
Rm. 15-16, 13/F, Shenzhen Kerry Centre,  
Renminnan Lu  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
France  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Tel: 949-263-1888 Fax: 949-263-1338  
San Jose  
Shenzhen 518001, China  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 86-755-82350361 Fax: 86-755-82366086  
Batiment A - ler Etage  
China - Hong Kong SAR  
91300 Massy, France  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Tel: 408-436-7950 Fax: 408-436-7955  
Germany  
Toronto  
Microchip Technology GmbH  
Steinheilstrasse 10  
Kwai Fong, N.T., Hong Kong  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
Tel: 852-2401-1200 Fax: 852-2401-3431  
D-85737 Ismaning, Germany  
India  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Microchip Technology Inc.  
India Liaison Office  
Italy  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Divyasree Chambers  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
United Kingdom  
Microchip Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
11/15/02  
DS21667C-page 20  
2002 Microchip Technology Inc.  

相关型号:

MCP2551I/SN

High-Speed CAN Transceiver
MICROCHIP

MCP2551T-E/SN

DATACOM, INTERFACE CIRCUIT, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOIC-8
MICROCHIP

MCP2551T-E/SNVAO

Interface Circuit, PDSO8
MICROCHIP

MCP2551T-I/SN

DATACOM, INTERFACE CIRCUIT, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOIC-8
MICROCHIP

MCP2551T-I/SNG

DATACOM, INTERFACE CIRCUIT, PDSO8, 0.150 INCH, LEAD FREE, PLASTIC, SOIC-8
MICROCHIP

MCP2551T-I/SNVAO

Interface Circuit, PDSO8
MICROCHIP

MCP2551_07

High-Speed CAN Transceiver
MICROCHIP

MCP2551_10

High-Speed CAN Transceiver
MICROCHIP

MCP2557FD-H/SN

DATACOM, INTERFACE CIRCUIT
MICROCHIP

MCP2557FDT-H/MF

DATACOM, INTERFACE CIRCUIT
MICROCHIP

MCP2557FDT-H/MNY

DATACOM, INTERFACE CIRCUIT
MICROCHIP

MCP2558FD-H/MNY

DATACOM, INTERFACE CIRCUIT
MICROCHIP