MCP3201T-CI/SNVAO [MICROCHIP]

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO8;
MCP3201T-CI/SNVAO
型号: MCP3201T-CI/SNVAO
厂家: MICROCHIP    MICROCHIP
描述:

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial Access, CMOS, PDSO8

转换器
文件: 总20页 (文件大小:367K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP3201  
2.7V 12-Bit A/D Converter with SPI® Serial Interface  
FEATURES  
PACKAGE TYPES  
• 12-bit resolution  
• ±1 LSB max DNL  
PDIP  
• ±1 LSB max INL (MCP3201-B)  
• ±2 LSB max INL (MCP3201-C)  
• On-chip sample and hold  
VREF  
1
8
VDD  
IN+  
IN–  
VSS  
2
3
4
7
6
5
CLK  
DOUT  
• SPI® serial interface (modes 0,0 and 1,1)  
• Single supply operation: 2.7V - 5.5V  
• 100ksps max. sampling rate at VDD = 5V  
• 50ksps max. sampling rate at VDD = 2.7V  
CS/SHDN  
SOIC, TSSOP  
• Low power CMOS technology  
- 500nA typical standby current, 2µA max.  
- 400µA max. active current at 5V  
• Industrial temp range: -40°C to +85°C  
8
1
2
3
4
VDD  
VREF  
7
6
5
CLK  
IN+  
IN–  
VSS  
DOUT  
• 8-pin PDIP, SOIC and TSSOP packages  
CS/SHDN  
APPLICATIONS  
• Sensor Interface  
• Process Control  
FUNCTIONAL BLOCK DIAGRAM  
• Data Acquisition  
VSS  
VDD  
• Battery Operated Systems  
VREF  
DESCRIPTION  
The Microchip Technology Inc. MCP3201 is a succes-  
sive approximation 12-bit Analog-to-Digital (A/D) Con-  
verter with on-board sample and hold circuitry. The  
device provides a single pseudo-differential input. Dif-  
ferential Nonlinearity (DNL) is specified at ±1 LSB, and  
Integral Nonlinearity (INL) is offered in ±1 LSB  
(MCP3201-B) and ±2 LSB (MCP3201-C) versions.  
Communication with the device is done using a simple  
serial interface compatible with the SPI protocol. The  
device is capable of sample rates of up to 100ksps at a  
clock rate of 1.6MHz. The MCP3201 operates over a  
broad voltage range (2.7V - 5.5V). Low current design  
permits operation with typical standby and active cur-  
rents of only 500nA and 300µA, respectively. The  
device is offered in 8-pin PDIP, TSSOP and 150mil  
SOIC packages.  
DAC  
Comparator  
12-Bit SAR  
IN+  
IN-  
Sample  
and  
Hold  
Shift  
Register  
Control Logic  
CS/SHDN CLK  
DOUT  
1999 Microchip Technology Inc.  
Preliminary  
DS21290B-page 1  
MCP3201  
1.0  
ELECTRICAL  
PIN FUNCTION TABLE  
CHARACTERISTICS  
NAME  
FUNCTION  
1.1  
Maximum Ratings*  
VDD  
VSS  
IN+  
IN-  
CLK  
DOUT  
CS/SHDN  
VREF  
+2.7V to 5.5V Power Supply  
Ground  
Positive Analog Input  
Negative Analog Input  
Serial Clock  
Serial Data Out  
Chip select/Shutdown Input  
Reference Voltage Input  
VDD.........................................................................7.0V  
All inputs and outputs w.r.t. VSS ...... -0.6V to VDD +0.6V  
Storage temperature ..........................-65°C to +150°C  
Ambient temp. with power applied......-65°C to +125°C  
Soldering temperature of leads (10 seconds) ..+300°C  
ESD protection on all pins...................................> 4kV  
*Notice: Stresses above those listed under “Maximum ratings” may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at those or any other conditions  
above those indicated in the operational listings of this specification is  
not implied. Exposure to maximum rating conditions for extended peri-  
ods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
All parameters apply at VDD = 5V, VSS = 0V, VREF = 5V, TAMB = -40°C to +85°C, fSAMPLE = 100ksps  
and fCLK = 16*fSAMPLE unless otherwise noted.  
PARAMETER  
Conversion Rate  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
Conversion Time  
tCONV  
12  
clock  
cycles  
Analog Input Sample Time  
Throughput Rate  
tSAMPLE  
fSAMPLE  
1.5  
clock  
cycles  
100  
50  
ksps VDD = VREF = 5V  
ksps VDD = VREF = 2.7V  
DC Accuracy  
Resolution  
12  
bits  
Integral Nonlinearity  
INL  
±0.75  
±1  
±1  
±2  
LSB  
LSB  
MCP3201-B  
MCP3201-C  
Differential Nonlinearity  
DNL  
±0.5  
±1  
LSB  
No missing codes over tem-  
perature  
Offset Error  
±1.25  
±1.25  
±3  
±5  
LSB  
LSB  
Gain Error  
Dynamic Performance  
Total Harmonic Distortion  
-82  
72  
dB  
dB  
VIN = 0.1V to 4.9V@1kHz  
VIN = 0.1V to 4.9V@1kHz  
Signal to Noise and Distortion  
(SINAD)  
Spurious Free Dynamic Range  
Reference Input  
86  
dB  
VIN = 0.1V to 4.9V@1kHz  
Voltage Range  
0.25  
VDD  
V
Note 2  
Current Drain  
100  
.001  
150  
3
µA  
µA  
CS = VDD = 5V  
Analog Inputs  
Input Voltage Range (IN+)  
IN-  
VREF+IN-  
V
Input Voltage Range (IN-)  
VSS-100  
VSS+100  
±1  
mV  
Leakage Current  
Switch Resistance  
0.001  
1K  
µA  
RSS  
See Figure 4-1  
See Figure 4-1  
Sample Capacitor  
CSAMPLE  
20  
pF  
DS21290B-page 2  
Preliminary  
1999 Microchip Technology Inc.  
MCP3201  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
All parameters apply at VDD = 5V, VSS = 0V, VREF = 5V, TAMB = -40°C to +85°C, fSAMPLE = 100ksps  
and fCLK = 16*fSAMPLE unless otherwise noted.  
PARAMETER  
SYMBOL  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
Digital Input/Output  
Data Coding Format  
High Level Input Voltage  
Straight Binary  
VIH  
VIL  
0.7 VDD  
V
V
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Output Leakage Current  
0.3 VDD  
VOH  
4.1  
V
IOH = -1mA, VDD = 4.5V  
IOL = 1mA, VDD = 4.5V  
VIN = VSS or VDD  
VOL  
0.4  
10  
10  
10  
V
ILI  
-10  
µA  
µA  
pF  
ILO  
-10  
VOUT = VSS or VDD  
Pin Capacitance (all  
inputs/outputs)  
CIN, COUT  
VDD = 5.0V (Note 1)  
TAMB = 25°C, f = 1 MHz  
Timing Parameters  
Clock Frequency  
fCLK  
1.6  
0.8  
MHz VDD = 5V (Note 3)  
MHz VDD = 2.7V (Note 3)  
Clock High Time  
Clock Low Time  
tHI  
tLO  
312  
312  
100  
ns  
ns  
ns  
CS Fall To First Rising CLK  
Edge  
tSUCS  
CLK Fall To Output Data Valid  
CLK Fall To Output Enable  
CS Rise To Output Disable  
tDO  
tEN  
tDIS  
200  
200  
100  
ns  
ns  
ns  
See Test Circuits, Figure 1-2  
See Test Circuits, Figure 1-2  
See Test Circuits, Figure 1-2  
(Note 1)  
CS Disable Time  
tCSH  
tR  
625  
2.7  
ns  
ns  
DOUT Rise Time  
100  
100  
See Test Circuits, Figure 1-2  
(Note 1)  
DOUT Fall Time  
tF  
ns  
See Test Circuits, Figure 1-2  
(Note 1)  
Power Requirements  
Operating Voltage  
VDD  
IDD  
5.5  
V
Operating Current  
300  
210  
400  
µA  
µA  
VDD = 5.0V, DOUT unloaded  
VDD = 2.7V, DOUT unloaded  
Standby Current  
IDDS  
0.5  
2
µA  
CS = VDD = 5.0V  
Note 1: This parameter is guaranteed by characterization and not 100% tested.  
2: See graph that relates linearity performance to VREF level.  
3: Because the sample cap will eventually lose charge, effective clock rates below 10kHz can affect linearity  
performance, especially at elevated temperatures. See Section 6.2 for more information.  
1999 Microchip Technology Inc.  
Preliminary  
DS21290B-page 3  
MCP3201  
tCSH  
CS  
tSUCS  
tHI  
tLO  
CLK  
tEN  
tDO  
tDIS  
tR  
tF  
HI-Z  
HI-Z  
DOUT  
LSB  
MSB OUT  
NULL BIT  
FIGURE 1-1: Serial Timing.  
Load circuit for tDIS and tEN  
Load circuit for tR, tF, tDO  
1.4V  
Test Point  
VDD  
t
DIS Waveform 2  
EN Waveform  
DIS Waveform 1  
3K  
Test Point  
VDD/2  
3K  
100pF  
t
DOUT  
DOUT  
t
CL = 100pF  
VSS  
Voltage Waveforms for tR, tF  
Voltage Waveforms for tEN  
VOH  
VOL  
DOUT  
CS  
tF  
tR  
1
2
3
4
CLK  
DOUT  
B11  
tEN  
Voltage Waveforms for tDO  
Voltage Waveforms for tDIS  
VIH  
CS  
DOUT  
CLK  
DOUT  
90%  
tDO  
Waveform 1*  
TDIS  
10%  
DOUT  
Waveform 2†  
*
Waveform 1 is for an output with internal condi-  
tions such that the output is high, unless dis-  
abled by the output control.  
Waveform 2 is for an output with internal condi-  
tions such that the output is low, unless disabled  
by the output control.  
FIGURE 1-2: Test Circuits.  
DS21290B-page 4  
Preliminary  
1999 Microchip Technology Inc.  
MCP3201  
2.0  
TYPICAL PERFORMANCE CHARACTERISTICS  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100ksps, fCLK = 16*fSAMPLE,TA = 25°C  
1.0  
0.8  
0.6  
0.4  
0.2  
2.0  
Positive INL  
VDD = VREF = 2.7V  
1.5  
1.0  
Positive INL  
0.5  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Negative INL  
-0.5  
-1.0  
-1.5  
-2.0  
Negative INL  
0
20  
40  
60  
80  
100  
0
25  
50  
75  
100  
125  
150  
Sample Rate (ksps)  
Sample Rate (ksps)  
FIGURE 2-1: Integral Nonlinearity (INL) vs. Sample  
FIGURE 2-4: Integral Nonlinearity (INL) vs. Sample  
Rate.  
Rate (VDD = 2.7V).  
2.0  
2.0  
1.5  
VDD = 2.7V  
1.5  
F
SAMPLE = 50ksps  
Positive INL  
1.0  
0.5  
1.0  
Positive INL  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
Negative INL  
Negative INL  
0
1
2
3
4
5
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
VREF (V)  
VREF (V)  
FIGURE 2-2: Integral Nonlinearity (INL) vs. VREF.  
FIGURE 2-5: Integral Nonlinearity (INL) vs. VREF  
(VDD = 2.7V).  
1.0  
0.8  
1.0  
VDD = VREF = 2.7V  
0.8  
FSAMPLE = 50ksps  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
Digital Code  
0
512 1024 1536 2048 2560 3072 3584 4096  
Digital Code  
FIGURE 2-3: Integral Nonlinearity (INL) vs. Code  
FIGURE 2-6: Integral Nonlinearity (INL) vs. Code  
(Representative Part).  
(Representative Part, VDD = 2.7V).  
1999 Microchip Technology Inc.  
Preliminary  
DS21290B-page 5  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100ksps, fCLK = 16*fSAMPLE,TA = 25°C  
1.0  
0.8  
1.0  
0.8  
VDD = VREF = 2.7V  
FSAMPLE = 50ksps  
Positive INL  
0.6  
0.6  
Positive INL  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
Negative INL  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Negative INL  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-10: Integral  
Nonlinearity  
(INL)  
vs.  
FIGURE 2-7: Integral  
Nonlinearity  
(INL)  
vs.  
Temperature (VDD = 2.7V).  
Temperature.  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.0  
VDD = VREF = 2.7V  
1.5  
1.0  
Positive DNL  
Positive DNL  
0.5  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
Negative DNL  
-0.5  
-1.0  
-1.5  
-2.0  
Negative DNL  
0
25  
50  
75  
100  
125  
150  
0
20  
40  
60  
80  
100  
Sample Rate (ksps)  
Sample Rate (ksps)  
FIGURE 2-11: Differential Nonlinearity (DNL) vs.  
Sample Rate (VDD = 2.7V).  
FIGURE 2-8: Differential Nonlinearity (DNL) vs.  
Sample Rate.  
3.0  
3.0  
2.0  
VDD = 2.7V  
2.0  
1.0  
FSAMPLE = 50ksps  
Positive DNL  
1.0  
Positive DNL  
0.0  
0.0  
Negative DNL  
-1.0  
-2.0  
-3.0  
Negative DNL  
-1.0  
-2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
1
2
3
4
5
VREF(V)  
VREF (V)  
FIGURE 2-12: Differential Nonlinearity (DNL) vs. VREF  
FIGURE 2-9: Differential Nonlinearity (DNL) vs.  
(VDD = 2.7V).  
VREF.  
DS21290B-page 6  
Preliminary  
1999 Microchip Technology Inc.  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100ksps, fCLK = 16*fSAMPLE,TA = 25°C  
1.0  
0.8  
1.0  
0.8  
VDD = VREF = 2.7V  
F
SAMPLE = 50ksps  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
Digital Code  
0
512 1024 1536 2048 2560 3072 3584 4096  
Digital Code  
FIGURE 2-13: Differential Nonlinearity (DNL) vs.  
FIGURE 2-16: Differential Nonlinearity (DNL) vs.  
Code (Representative Part).  
Code (Representative Part, VDD = 2.7V).  
1.0  
0.8  
0.6  
1.0  
VDD = VREF = 2.7V  
0.8  
F
SAMPLE = 50ksps  
0.6  
0.4  
Positive DNL  
Negative DNL  
0.4  
Positive DNL  
0.2  
0.0  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
Negative DNL  
-0.4  
-0.6  
-0.8  
-1.0  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-14: Differential Nonlinearity (DNL) vs.  
FIGURE 2-17: Differential Nonlinearity (DNL) vs.  
Temperature.  
Temperature (VDD = 2.7V).  
20  
18  
5
4
VDD = 5V  
16  
VDD = 2.7V  
SAMPLE = 50ksps  
F
SAMPLE = 100ksps  
3
14  
12  
10  
8
F
2
1
VDD = 2.7V  
SAMPLE = 50ksps  
6
0
F
VDD = 5V  
SAMPLE = 100ksps  
4
-1  
-2  
F
2
0
0
1
2
3
4
5
0
1
2
3
4
5
VREF(V)  
VREF (V)  
FIGURE 2-15: Gain Error vs. VREF.  
FIGURE 2-18: Offset Error vs. VREF.  
1999 Microchip Technology Inc.  
Preliminary  
DS21290B-page 7  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100ksps, fCLK = 16*fSAMPLE,TA = 25°C  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
VDD = VREF = 5V  
SAMPLE = 100ksps  
VDD = VREF = 2.7V  
FSAMPLE = 50ksps  
F
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
VDD = VREF = 2.7V  
SAMPLE = 50ksps  
F
VDD = VREF = 5V  
FSAMPLE = 100ksps  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-19: Gain Error vs. Temperature.  
FIGURE 2-22: Offset Error vs. Temperature.  
100  
100  
VDD = VREF = 5V  
FSAMPLE = 100ksps  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = VREF = 5V  
FSAMPLE = 100ksps  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = VREF = 2.7V  
FSAMPLE = 50ksps  
VDD = VREF = 2.7V  
FSAMPLE = 50ksps  
1
10  
100  
1
10  
100  
Input Frequency (kHz)  
Input Frequency (kHz)  
FIGURE 2-20: Signal to Noise Ratio (SNR) vs. Input  
FIGURE 2-23:  
Signal to Noise and Distortion  
Frequency.  
(SINAD) vs. Input Frequency.  
0
-10  
-20  
-30  
80  
VDD = 5V  
FSAMPLE = 100ksps  
70  
60  
50  
40  
30  
20  
10  
0
-40  
VDD = VREF = 2.7V  
VDD = 2.7V  
F
SAMPLE = 50ksps  
-50  
-60  
FSAMPLE = 50ksps  
-70  
-80  
VDD = VREF = 5V  
SAMPLE = 100ksps  
-90  
F
-100  
-40  
-35  
-30  
-25  
-20  
-15  
-10  
-5  
0
1
10  
100  
Input Signal Level (dB)  
Input Frequency (kHz)  
FIGURE 2-21: Total Harmonic Distortion (THD) vs.  
FIGURE 2-24:  
Signal to Noise and Distortion  
Input Frequency.  
(SINAD) vs. Input Signal Level.  
DS21290B-page 8  
Preliminary  
1999 Microchip Technology Inc.  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100ksps, fCLK = 16*fSAMPLE,TA = 25°C  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
12.00  
11.75  
11.50  
11.25  
11.00  
10.75  
10.50  
10.25  
10.00  
9.75  
VDD = 5V  
FSAMPLE = 100ksps  
VDD = VREF = 5V  
FSAMPLE =100ksps  
VDD = VREF = 2.7V  
FSAMPLE = 50ksps  
9.0  
VDD = 2.7V  
9.50  
9.25  
FSAMPLE = 50ksps  
8.5  
9.00  
8.0  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
VREF (V)  
1
10  
100  
Input Frequency (kHz)  
FIGURE 2-25: Effective Number of Bits (ENOB) vs.  
FIGURE 2-28: Effective Number of Bits (ENOB) vs.  
VREF.  
Input Frequency.  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
100  
VDD = VREF = 5V  
SAMPLE = 100ksps  
90  
F
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = VREF = 2.7V  
SAMPLE = 50ksps  
F
1
10  
100  
1
10  
100  
1000  
10000  
Input Frequency (kHz)  
Ripple Frequency (kHz)  
FIGURE 2-26: Spurious Free Dynamic Range  
FIGURE 2-29: Power Supply Rejection (PSR) vs.  
(SFDR) vs. Input Frequency.  
Ripple Frequency.  
0
0
-10  
-20  
-30  
-10  
-20  
-30  
VDD = VREF = 2.7V  
VDD = VREF = 5V  
F
F
SAMPLE = 50ksps  
INPUT = 998.76Hz  
FSAMPLE = 100ksps  
FINPUT = 9.985kHz  
4096 points  
-40  
-40  
4096 points  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
0
10000  
20000  
30000  
40000  
50000  
0
5000  
10000  
15000  
20000  
25000  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-27: Frequency Spectrum of 10kHz input  
FIGURE 2-30: Frequency Spectrum of 1kHz input  
(Representative Part).  
(Representative Part, VDD = 2.7V).  
1999 Microchip Technology Inc.  
Preliminary  
DS21290B-page 9  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100ksps, fCLK = 16*fSAMPLE,TA = 25°C  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VREF = VDD  
VREF = VDD  
All points at FCLK = 1.6MHz except  
at VREF = VDD = 2.5V, FCLK = 800kHz  
All points at FCLK = 1.6MHz except  
at VREF = VDD = 2.5V, FCLK = 800kHz  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
10000  
100  
VDD (V)  
VDD (V)  
FIGURE 2-31: IDD vs. VDD.  
FIGURE 2-34: IREF vs. VDD.  
100  
90  
400  
350  
VDD = VREF = 5V  
80  
70  
60  
50  
40  
30  
20  
10  
0
VDD = VREF = 5V  
300  
250  
200  
150  
100  
50  
VDD = VREF = 2.7V  
VDD = VREF = 2.7V  
0
10  
100  
1000  
10000  
10  
100  
1000  
Clock Frequency (kHz)  
Clock Frequency (kHz)  
FIGURE 2-35: IREF vs. Clock Frequency.  
FIGURE 2-32: IDD vs. Clock Frequency.  
100  
400  
VDD = VREF = 5V  
90  
350  
F
CLK = 1.6MHz  
VDD = VREF = 5V  
80  
70  
60  
50  
40  
30  
20  
10  
0
F
CLK = 1.6MHz  
300  
250  
200  
150  
100  
50  
VDD = VREF = 2.7V  
CLK = 800kHz  
VDD = VREF = 2.7V  
F
F
CLK = 800kHz  
0
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
Temperature (°C)  
Temperature (°C)  
FIGURE 2-36: IREF vs. Temperature.  
FIGURE 2-33: IDD vs. Temperature.  
DS21290B-page 10  
Preliminary  
1999 Microchip Technology Inc.  
MCP3201  
Note: Unless otherwise indicated, VDD = VREF = 5V, VSS = 0V, fSAMPLE = 100ksps, fCLK = 16*fSAMPLE,TA = 25°C  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
80  
70  
60  
50  
40  
30  
20  
10  
0
VREF = CS = VDD  
VDD = VREF = 5V  
CLK = 1.6Mhz  
F
-50  
-25  
0
25  
50  
75  
100  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
Temperature (°C)  
FIGURE 2-39: Analog Input Leakage Current vs.  
Temperature.  
FIGURE 2-37: IDDS vs. VDD.  
100.00  
VDD = VREF = CS = 5V  
10.00  
1.00  
0.10  
0.01  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
FIGURE 2-38: IDDS vs. Temperature.  
1999 Microchip Technology Inc.  
Preliminary  
DS21290B-page 11  
MCP3201  
In this diagram, it is shown that the source impedance  
(RS) adds to the internal sampling switch (RSS) imped-  
ance, directly affecting the time that is required to  
charge the capacitor (CSAMPLE). Consequently, a larger  
source impedance increases the offset, gain, and inte-  
gral linearity errors of the conversion.  
3.0  
PIN DESCRIPTIONS  
3.1  
IN+  
Positive analog input. This input can vary from IN- to  
VREF + IN-.  
Ideally, the impedance of the signal source should be  
near zero. This is achievable with an operational ampli-  
fier such as the MCP601, which has a closed loop out-  
put impedance of tens of ohms. The adverse affects of  
higher source impedances are shown in Figure 4-2.  
3.2  
IN-  
Negative analog input. This input can vary ±100mV  
from VSS.  
3.3  
CS/SHDN(Chip Select/Shutdown)  
If the voltage level of IN+ is equal to or less than IN-, the  
resultant code will be 000h. If the voltage at IN+ is equal  
to or greater than {[VREF + (IN-)] - 1 LSB}, then the out-  
put code will be FFFh. If the voltage level at IN- is more  
than 1 LSB below VSS, then the voltage level at the IN+  
input will have to go below VSS to see the 000h output  
code. Conversely, if IN- is more than 1 LSB above Vss,  
then the FFFh code will not be seen unless the IN+  
input level goes above VREF level.  
The CS/SHDN pin is used to initiate communication  
with the device when pulled low and will end a conver-  
sion and put the device in low power standby when  
pulled high. The CS/SHDN pin must be pulled high  
between conversions.  
3.4  
CLK (Serial Clock)  
The SPI clock pin is used to initiate a conversion and to  
clock out each bit of the conversion as it takes place.  
See Section 6.2 for constraints on clock speed.  
4.2  
Reference Input  
3.5  
DOUT (Serial Data output)  
The reference input (VREF) determines the analog input  
voltage range and the LSB size, as shown below.  
The SPI serial data output pin is used to shift out the  
results of the A/D conversion. Data will always change  
on the falling edge of each clock as the conversion  
takes place.  
LSB Size = VREF  
4096  
As the reference input is reduced, the LSB size is  
reduced accordingly. The theoretical digital output code  
produced by the A/D Converter is a function of the ana-  
log input signal and the reference input as shown  
below.  
4.0  
DEVICE OPERATION  
The MCP3201 A/D Converter employs a conventional  
SAR architecture. With this architecture, a sample is  
acquired on an internal sample/hold capacitor for  
1.5 clock cycles starting on the first rising edge of the  
serial clock after CS has been pulled low. Following this  
sample time, the input switch of the converter opens  
and the device uses the collected charge on the inter-  
nal sample and hold capacitor to produce a serial 12-bit  
digital output code. Conversion rates of 100ksps are  
possible on the MCP3201. See Section 6.2 for informa-  
tion on minimum clock rates. Communication with the  
device is done using a 3-wire SPI-compatible interface.  
Digital Output Code = 4096 * VIN  
VREF  
where:  
VIN = analog input voltage = V(IN+) - V(IN-)  
VREF = reference voltage  
When using an external voltage reference device, the  
system designer should always refer to the manufac-  
turer’s recommendations for circuit layout. Any instabil-  
ity in the operation of the reference device will have a  
direct effect on the operation of the A/D Converter.  
4.1  
Analog Inputs  
The MCP3201 provides a single pseudo-differential  
input. The IN+ input can range from IN- to VREF  
(VREF +IN-). The IN- input is limited to ±100mV from the  
VSS rail. The IN- input can be used to cancel small sig-  
nal common-mode noise which is present on both the  
IN+ and IN- inputs.  
For the A/D Converter to meet specification, the charge  
holding capacitor (CSAMPLE) must be given enough time  
to acquire a 12-bit accurate voltage level during the  
1.5 clock cycle sampling period. The analog input  
model is shown in Figure 4-1.  
DS21290B-page 12  
Preliminary  
1999 Microchip Technology Inc.  
MCP3201  
VDD  
Sampling  
Switch  
VT = 0.6V  
VT = 0.6V  
RSS = 1k  
CHx  
SS  
RS  
CSAMPLE  
= DAC capacitance  
= 20 pF  
CPIN  
7pF  
ILEAKAGE  
±1nA  
VA  
VSS  
Legend  
VA = Signal Source  
RS = Source Impedance  
CHx = Input Channel Pad  
CPIN = Input Capacitance  
VT = Threshold Voltage  
ILEAKAGE = Leakage Current at the pin  
due to various junctions  
SS = Sampling Switch  
RSS = Sampling Switch Resistor  
CSAMPLE = Sample/Hold Capacitance  
FIGURE 4-1: Analog Input Model.  
1.8  
VDD = VREF = 5V  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
VDD = VREF = 2.7V  
100  
1000  
Input Resistance (Ohms)  
10000  
FIGURE 4-2: Maximum Clock Frequency vs. Input  
Resistance (RS) to maintain less than a 0.1 LSB  
deviation in INL from nominal conditions.  
1999 Microchip Technology Inc.  
Preliminary  
DS21290B-page 13  
MCP3201  
sion with MSB first, as shown in Figure 5-1. Data is  
always output from the device on the falling edge of the  
clock. If all 12 data bits have been transmitted and the  
device continues to receive clocks while the CS is held  
low, the device will output the conversion result LSB  
first, as shown in Figure 5-2. If more clocks are pro-  
vided to the device while CS is still low (after the LSB  
first data has been transmitted), the device will clock  
out zeros indefinitely.  
5.0  
SERIAL COMMUNICATIONS  
Communication with the device is done using a stan-  
dard SPI-compatible serial interface. Initiating commu-  
nication with the MCP3201 begins with the CS going  
low. If the device was powered up with the CS pin low,  
it must be brought high and back low to initiate commu-  
nication. The device will begin to sample the analog  
input on the first rising edge after CS goes low. The  
sample period will end in the falling edge of the second  
clock, at which time the device will output a low null bit.  
The next 12 clocks will output the result of the conver-  
tCYC  
tCSH  
CS  
Power  
Down  
tSUCS  
CLK  
tDATA**  
tCONV  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0*  
tSAMPLE  
HI-Z  
HI-Z  
NULL  
BIT  
NULL  
BIT  
DOUT  
B11 B10 B9 B8  
* After completing the data transfer, if further clocks are applied with CS low, the A/D Converter will output LSB first data, followed  
by zeros indefinitely. See Figure below.  
** tDATA: during this time, the bias current and the comparator power down and the reference input becomes a high impedance  
node, leaving the CLK running to clock out the LSB-first data or zeros.  
FIGURE 5-1: Communication with MCP3201 using MSB first Format.  
tCYC  
tCSH  
CS  
tSUCS  
Power Down  
CLK  
tSAMPLE  
tDATA**  
tCONV  
HI-Z  
HI-Z  
NULL  
BIT  
DOUT  
B4 B5 B6 B7 B8 B9 B10 B11*  
B1 B2 B3  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
* After completing the data transfer, if further clocks are applied with CS low, the A/D Converter will output zeros indefinitely.  
** tDATA: during this time, the bias current and the comparator power down and the reference input becomes a high impedance  
node, leaving the CLK running to clock out the LSB-first data or zeros.  
FIGURE 5-2: Communication with MCP3201 using LSB first Format.  
DS21290B-page 14  
Preliminary  
1999 Microchip Technology Inc.  
MCP3201  
(the output is at high impedance for the first two clocks),  
the null bit and the highest order five bits of the conver-  
sion. After the second eight clocks have been sent to  
the device, the MCU receive register will contain the  
lowest order seven bits and the B1 bit repeated as the  
A/D Converter has begun to shift out LSB first data with  
the extra clock. Typical procedure would then call for  
the lower order byte of data to be shifted right by one bit  
to remove the extra B1 bit. The B7 bit is then trans-  
ferred from the high order byte to the lower order byte,  
and then the higher order byte is shifted one bit to the  
right as well. Easier manipulation of the converted data  
can be obtained by using this method.  
6.0  
APPLICATIONS INFORMATION  
6.1  
Using the MCP3201 with  
Microcontroller SPI Ports  
With most microcontroller SPI ports, it is required to  
clock out eight bits at a time. If this is the case, it will be  
necessary to provide more clocks than are required for  
the MCP3201. As an example, Figure 6-1 and  
Figure 6-2 show how the MCP3201 can be interfaced  
to a microcontroller with a standard SPI port. Since the  
MCP3201 always clocks data out on the falling edge of  
clock, the MCU SPI port must be configured to match  
this operation. SPI Mode 0,0 (clock idles low) and SPI  
Mode 1,1 (clock idles high) are both compatible with the  
MCP3201. Figure 6-1 depicts the operation shown in  
SPI Mode 0,0, which requires that the CLK from the  
microcontroller idles in the ‘low’ state. As shown in the  
diagram, the MSB is clocked out of the A/D Converter  
on the falling edge of the third clock pulse. After the first  
eight clocks have been sent to the device, the micro-  
controller’s receive buffer will contain two unknown bits  
Figure 6-2 shows the same thing in SPI Mode 1,1  
which requires that the clock idles in the high state. As  
with mode 0,0, the A/D Converter outputs data on the  
falling edge of the clock and the MCU latches data from  
the A/D Converter in on the rising edge of the clock.  
CS  
MCU latches data from A/D Converter  
on rising edges of SCLK  
1
2
3
4
5
6
7
8
CLK  
9
10  
11  
12  
13  
14  
15  
16  
Data is clocked out of  
A/D Converter on falling edges  
HI-Z  
HI-Z  
NULL  
BIT  
B2  
B6  
B5  
B5  
B4  
B4  
B3  
B3  
B2  
B2  
B1  
B1  
B0  
B0  
B1  
B1  
B11 B10 B9  
B8  
B8  
B7  
B7  
DOUT  
LSB first data begins  
to come out  
?
?
0
B11 B10 B9  
B6  
Data stored into MCU receive register  
after transmission of first 8 bits  
Data stored into MCU receive register  
after transmission of second 8 bits  
FIGURE 6-1: SPI Communication using 8-bit segments (Mode 0,0: SCLK idles low).  
CS  
MCU latches data from A/D Converter  
on rising edges of SCLK  
8
1
2
3
4
5
6
7
CLK  
9
10  
11  
B4  
12  
B3  
13  
14  
B1  
15  
16  
Data is clocked out of  
A/D Converter on falling edges  
HI-Z  
HI-Z  
NULL  
BIT  
B6  
B5  
B2  
B0  
B1  
B1  
B11 B10 B9  
B8  
B7  
DOUT  
LSB first data begins  
to come out  
?
?
0
B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Data stored into MCU receive register  
after transmission of first 8 bits  
Data stored into MCU receive register  
after transmission of second 8 bits  
FIGURE 6-2: SPI Communication using 8-bit segments (Mode 1,1: SCLK idles high).  
1999 Microchip Technology Inc.  
Preliminary  
DS21290B-page 15  
MCP3201  
6.2  
Maintaining Minimum Clock Speed  
6.4  
Layout Considerations  
When the MCP3201 initiates the sample period,  
charge is stored on the sample capacitor. When the  
sample period is complete, the device converts one bit  
for each clock that is received. It is important for the  
user to note that a slow clock rate will allow charge to  
bleed off the sample cap while the conversion is taking  
place. At 85°C (worst case condition), the part will  
maintain proper charge on the sample capacitor for at  
least 1.2ms after the sample period has ended. This  
means that the time between the end of the sample  
period and the time that all 12 data bits have been  
clocked out must not exceed 1.2ms (effective clock fre-  
quency of 10kHz). Failure to meet this criteria may  
induce linearity errors into the conversion outside the  
rated specifications. It should be noted that during the  
entire conversion cycle, the A/D Converter does not  
require a constant clock speed or duty cycle, as long as  
all timing specifications are met.  
When laying out a printed circuit board for use with ana-  
log components, care should be taken to reduce noise  
wherever possible. A bypass capacitor should always  
be used with this device and should be placed as close  
as possible to the device pin. A bypass capacitor value  
of 1µF is recommended.  
Digital and analog traces should be separated as much  
as possible on the board and no traces should run  
underneath the device or the bypass capacitor. Extra  
precautions should be taken to keep traces with high  
frequency signals (such as clock lines) as far as possi-  
ble from analog traces.  
Use of an analog ground plane is recommended in  
order to keep the ground potential the same for all  
devices on the board. Providing VDD connections to  
devices in a “star” configuration can also reduce noise  
by eliminating current return paths and associated  
errors. See Figure 6-4. For more information on layout  
tips when using A/D Converter, refer to AN688 “Layout  
Tips for 12-Bit A/D Converter Applications”.  
6.3  
Buffering/Filtering the Analog Inputs  
If the signal source for the A/D Converter is not a low  
impedance source, it will have to be buffered or inaccu-  
rate conversion results may occur. See Figure 4-2. It is  
also recommended that a filter be used to eliminate any  
signals that may be aliased back into the conversion  
results. This is illustrated in Figure 6-3 where an op  
amp is used to drive the analog input of the MCP3201.  
This amplifier provides a low impedance source for the  
converter input and a low pass filter, which eliminates  
unwanted high frequency noise.  
VDD  
Connection  
Device 4  
Device 1  
Low pass (anti-aliasing) filters can be designed using  
Microchip’s interactive FilterLabsoftware. FilterLab  
will calculate capacitor and resistor values, as well as  
determine the number of poles that are required for the  
application. For more information on filtering signals,  
see the application note AN699 “Anti-Aliasing Analog  
Filters for Data Acquisition Systems.”  
Device 3  
Device 2  
VDD  
FIGURE 6-4: VDD traces arranged in  
a
‘Star’  
10µF  
configuration in order to reduce errors caused by  
current return paths.  
4.096V  
Reference  
1µF  
Tant.  
0.1µF  
0.1µF  
ADI  
REF198  
1µF  
VREF  
IN+  
MCP3201  
IN-  
C
1
MCP601  
R
1
+
-
R
2
VIN  
C
2
R
4
R
3
FIGURE 6-3: The MCP601 Operational Amplifier is  
used to implement a 2nd order anti-aliasing filter for  
the signal being converted by the MCP3201.  
FilterLab is a trademark of Microchip Technology Inc. in  
the U.S.A and other countries. All rights reserved.  
DS21290B-page 16  
Preliminary  
1999 Microchip Technology Inc.  
MCP3201  
MCP3201 PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
MCP3201 - G /P  
T
Package:  
P = PDIP (8 lead)  
SN = SOIC (150 mil Body), 8 lead  
ST = TSSOP, 8 lead (C Grade only)  
Temperature  
Range:  
I = –40°C to +85°C  
Performance  
Grade:  
B = ±1 LSB INL (TSSOP not available in this grade)  
C = ±2 LSB INL  
Device:  
MCP3201  
MCP3201T  
12-Bit Serial A/D Converter  
12-Bit Serial A/D Converter on tape and reel  
(SOIC and TSSOP packages only)  
=
=
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277. After September 1, 1999, (480) 786-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
New Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
1999 Microchip Technology Inc.  
Preliminary  
DS21290B-page 17  
MCP3201  
NOTES:  
DS21290B-page 18  
Preliminary  
1999 Microchip Technology Inc.  
MCP3201  
NOTES:  
1999 Microchip Technology Inc.  
Preliminary  
DS21290B-page 19  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
AMERICAS (continued)  
ASIA/PACIFIC (continued)  
Corporate Office  
Toronto  
Singapore  
Microchip Technology Inc.  
Microchip Technology Inc.  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-786-7200 Fax: 480-786-7277  
Technical Support: 480-786-7627  
Web Address: http://www.microchip.com  
5925 Airport Road, Suite 200  
Mississauga, Ontario L4V 1W1, Canada  
Tel: 905-405-6279 Fax: 905-405-6253  
#07-02 Prime Centre  
Singapore 188980  
Tel: 65-334-8870 Fax: 65-334-8850  
Taiwan, R.O.C  
Microchip Technology Taiwan  
10F-1C 207  
Tung Hua North Road  
Taipei, Taiwan, ROC  
ASIA/PACIFIC  
Hong Kong  
Microchip Asia Pacific  
Unit 2101, Tower 2  
Atlanta  
Microchip Technology Inc.  
500 Sugar Mill Road, Suite 200B  
Atlanta, GA 30350  
Metroplaza  
223 Hing Fong Road  
Kwai Fong, N.T., Hong Kong  
Tel: 852-2-401-1200 Fax: 852-2-401-3431  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Tel: 770-640-0034 Fax: 770-640-0307  
Boston  
EUROPE  
Microchip Technology Inc.  
5 Mount Royal Avenue  
Marlborough, MA 01752  
Tel: 508-480-9990 Fax: 508-480-8575  
Beijing  
United Kingdom  
Microchip Technology, Beijing  
Unit 915, 6 Chaoyangmen Bei Dajie  
Dong Erhuan Road, Dongcheng District  
New China Hong Kong Manhattan Building  
Beijing 100027 PRC  
Arizona Microchip Technology Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5858 Fax: 44-118 921-5835  
Denmark  
Microchip Technology Denmark ApS  
Regus Business Centre  
Lautrup hoj 1-3  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Chicago  
Microchip Technology Inc.  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
Tel: 86-10-85282100 Fax: 86-10-85282104  
India  
Tel: 630-285-0071 Fax: 630-285-0075  
Dallas  
Microchip Technology Inc.  
4570 Westgrove Drive, Suite 160  
Addison, TX 75248  
Microchip Technology Inc.  
India Liaison Office  
No. 6, Legacy, Convent Road  
Bangalore 560 025, India  
Tel: 91-80-229-0061 Fax: 91-80-229-0062  
Tel: 972-818-7423 Fax: 972-818-2924  
Dayton  
Microchip Technology Inc.  
Two Prestige Place, Suite 150  
Miamisburg, OH 45342  
Tel: 937-291-1654 Fax: 937-291-9175  
Detroit  
Microchip Technology Inc.  
Tri-Atria Office Building  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Japan  
France  
Microchip Technology Intl. Inc.  
Benex S-1 6F  
Arizona Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa 222-0033 Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Batiment A - ler Etage  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Germany  
Arizona Microchip Technology GmbH  
Gustav-Heinemann-Ring 125  
D-81739 München, Germany  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Korea  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Shanghai  
Microchip Technology  
RM 406 Shanghai Golden Bridge Bldg.  
2077 Yan’an Road West, Hong Qiao District  
Shanghai, PRC 200335  
Italy  
Los Angeles  
Arizona Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Microchip Technology Inc.  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Tel: 949-263-1888 Fax: 949-263-1338  
New York  
Microchip Technology Inc.  
150 Motor Parkway, Suite 202  
Hauppauge, NY 11788  
Tel: 631-273-5305 Fax: 631-273-5335  
Milan, Italy  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060  
11/15/99  
San Jose  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999. The  
Company’s quality system processes and  
procedures are QS-9000 compliant for its  
PICmicro® 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs and microperipheral  
products. In addition, Microchips quality  
system for the design and manufacture of  
development systems is ISO 9001 certified.  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
Tel: 408-436-7950 Fax: 408-436-7955  
All rights reserved. © 1999 Microchip Technology Incorporated. Printed in the USA. 11/99  
Printed on recycled paper.  
Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchips products  
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip  
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.  
1999 Microchip Technology Inc.  

相关型号:

MCP3201T-CI/ST

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3201T-I/MS

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3201T-I/P

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3201T-I/SN

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3201T-I/ST

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3201_07

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3201_08

2.7V 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BI/MS

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BI/P

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BI/SN

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP

MCP3202-BI/ST

2.7V Dual Channel 12-Bit A/D Converter with SPI Serial Interface
MICROCHIP