MCP6406 [MICROCHIP]

The Microchip Technology Inc. MCP6406/7/9 family of operational amplifiers (op amps) has low quies;
MCP6406
型号: MCP6406
厂家: MICROCHIP    MICROCHIP
描述:

The Microchip Technology Inc. MCP6406/7/9 family of operational amplifiers (op amps) has low quies

放大器 运算放大器 放大器电路
文件: 总38页 (文件大小:999K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6401/1R/1U/2/4  
1 MHz, 45 µA Op Amps  
Description  
Features  
• Low Quiescent Current: 45 µA (typical)  
• Gain Bandwidth Product: 1 MHz (typical)  
• Rail-to-Rail Input and Output  
The Microchip Technology Inc. MCP6401/1R/1U/2/4  
family of operational amplifiers (op amps) has low  
quiescent current (45 µA, typical) and rail-to-rail input  
and output operation. This family is unity gain stable  
and has a gain bandwidth product of 1 MHz (typical).  
These devices operate with a single supply voltage as  
low as 1.8V. These features make the family of op  
amps well suited for single-supply, battery-powered  
applications.  
• Supply Voltage Range: 1.8V to 6.0V  
• Unity Gain Stable  
• Extended Temperature Range: -40°C to +125°C  
• No Phase Reversal  
Applications  
The MCP6401/1R/1U/2/4 family is designed with  
Microchip’s advanced CMOS process and offered in  
single packages. All devices are available in the  
extended temperature range, with a power supply  
range of 1.8V to 6.0V.  
• Portable Equipment  
• Battery Powered System  
• Medical Instrumentation  
• Data Acquisition Equipment  
• Sensor Conditioning  
Package Types  
• Supply Current Sensing  
• Analog Active Filters  
MCP6401  
MCP6401R  
SC70-5, SOT-23-5  
SOT-23-5  
Design Aids  
VOUT  
VSS  
1
2
3
5 VDD  
VOUT  
VDD  
1
2
3
5
4
VSS  
• SPICE Macro Models  
• FilterLab® Software  
4
VIN–  
VIN  
+
VIN+  
VIN–  
• MindiCircuit Designer and Simulator  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
MCP6402  
MCP6401U  
SOIC  
SOT-23-5  
VOUTA  
1
2
3
4
8
7
6
5
VDD  
VIN  
+
1
2
3
5 VDD  
Typical Application  
VINA  
+
VOUTB  
VSS  
VINA  
4
VINB  
VINB  
+
VOUT  
VIN  
R2  
VSS  
D2  
MCP6402  
MCP6404  
SOIC, TSSOP  
2x3 TDFN  
VIN  
R1  
VOUTA  
V
V
V
14  
13  
12  
11  
1
2
3
4
OUTD  
VOUT  
VOUTA  
1
8
7
VDD  
VINA  
+
MCP6401  
IND  
VOUTB  
VINA  
VINA  
VSS  
2
EP  
9
VINA  
+
D1  
IND  
+
VINB  
VINB  
+
3
4
6
5
VDD  
VSS  
VINB  
+
V
+
10  
9
5
6
7
INC  
VINB  
VINC  
Precision Half-Wave Rectifier  
V
VOUTC  
8
OUTB  
© 2010 Microchip Technology Inc.  
DS22229B-page 1  
MCP6401/1R/1U/2/4  
NOTES:  
DS22229B-page 2  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
1.0  
1.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
V
– V ........................................................................7.0V  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of  
the device at those or any other conditions above those  
indicated in the operational listings of this specification is not  
implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
DD  
SS  
Current at Input Pins.....................................................±2 mA  
Analog Inputs (V +, V -)†† .......... V – 1.0V to V + 1.0V  
IN  
IN  
SS  
DD  
All Other Inputs and Outputs ......... V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input Voltage ...................................... |V – V  
|
SS  
DD  
Output Short-Circuit Current ................................Continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature ....................................-65°C to +150°C  
†† See Section 4.1.2 “Input Voltage Limits”  
Maximum Junction Temperature (T )..........................+150°C  
J
ESD Protection on All Pins (HBM; MM)............... ≥ 4 kV; 300V  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, V = +1.8V to +6.0V, V = GND, T = +25°C, V  
= V /2,  
DD  
SS  
A
CM  
DD  
V
» V /2, V = V /2 and R = 100 kΩ to V . (Refer to Figure 1-1).  
OUT  
DD  
L
DD  
L
L
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
V
-4.5  
+4.5  
mV  
V
= V  
CM SS  
OS  
Input Offset Drift with Temperature  
ΔV /ΔT  
±2.0  
µV/°C T = -40°C to +125°C,  
OS  
A
A
V
= V  
= V  
CM  
SS  
SS  
Power Supply Rejection Ratio  
Input Bias Current and Impedance  
Input Bias Current  
PSRR  
63  
78  
dB  
V
CM  
I
±1.0  
30  
100  
pA  
pA  
B
T = +85°C  
A
800  
±1.0  
pA  
T = +125°C  
A
Input Offset Current  
I
pA  
OS  
13  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
Z
10 ||6  
Ω||pF  
Ω||pF  
CM  
13  
Z
10 ||6  
DIFF  
CMR  
Common Mode Input Voltage Range  
V
V
V
-0.2  
71  
V
V
+0.2  
V
V
V
V
= 1.8V, Note 1  
= 6.0V, Note 1  
SS  
DD  
DD  
DD  
DD  
-0.3  
+0.3  
SS  
Common Mode Rejection Ratio  
CMRR  
56  
dB  
V
V
= -0.2V to 2.0V,  
= 1.8V  
CM  
DD  
63  
90  
78  
110  
dB  
dB  
V
V
= -0.3V to 6.3V,  
= 6.0V  
CM  
DD  
Open-Loop Gain  
DC Open-Loop Gain  
(Large Signal)  
A
V
V
= 0.3V to V -0.3V  
OL  
OUT  
DD  
= V  
CM  
SS  
Output  
Maximum Output Voltage Swing  
V
V
V
+20  
V
–20  
mV  
V
= 6.0V, R = 10 kΩ  
OL, OH  
SS  
DD  
DD  
L
0.5V input overdrive  
Output Short-Circuit Current  
I
±5  
mA  
mA  
V
V
= 1.8V  
= 6.0V  
SC  
DD  
DD  
±15  
Power Supply  
Supply Voltage  
V
1.8  
20  
6.0  
70  
V
DD  
Quiescent Current per Amplifier  
I
45  
µA  
I = 0, V = 5.0V  
O DD  
Q
V
= 0.2V  
CM  
DD  
Note 1: Figure 2-11 shows how V  
© 2010 Microchip Technology Inc.  
changes across temperature.  
CMR  
DS22229B-page 3  
MCP6401/1R/1U/2/4  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8 to +6.0V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF. (Refer to Figure 1-1).  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
1
MHz  
°
65  
0.5  
G = +1 V/V  
Slew Rate  
SR  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
3.6  
28  
µVp-p f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
0.6  
fA/Hz f = 1 kHz  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +6.0V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Operating Temperature Range  
Storage Temperature Range  
TA  
TA  
-40  
-65  
+125  
+150  
°C  
°C  
Note 1  
Thermal Package Resistances  
Thermal Resistance, 5L-SC70  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-2x3 TDFN  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
331  
220.7  
149.5  
41  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
95.3  
100  
Note 1: The internal junction temperature (TJ) must not exceed the absolute maximum specification of +150°C.  
1.2  
Test Circuits  
CF  
6.8 pF  
The circuit used for most DC and AC tests is shown in  
Figure 1-1. This circuit can independently set VCM and  
VOUT; see Equation 1-1. Note that VCM is not the  
circuit’s Common Mode voltage ((VP + VM)/2), and that  
RG  
RF  
100 kΩ  
V
OST includes VOS plus the effects (on the input offset  
100 kΩ  
VDD/2  
VP  
error, VOST) of temperature, CMRR, PSRR and AOL  
.
VDD  
VIN+  
EQUATION 1-1:  
CB1  
100 nF  
CB2  
1 µF  
MCP640x  
GDM = RF RG  
VCM = (VP + VDD 2) 2  
VOST = VIN– VIN+  
VIN–  
VOUT = (VDD 2) + (VP VM) + VOST(1 + GDM  
)
VOUT  
VM  
RL  
CL  
RG  
100 kΩ  
RF  
100 kΩ  
Where:  
100 kΩ 60 pF  
GDM = Differential Mode Gain  
(V/V)  
(V)  
CF  
6.8 pF  
VCM = Op Amp’s Common Mode  
VL  
Input Voltage  
VOST = Op Amp’s Total Input Offset  
(mV)  
FIGURE 1-1:  
Most Specifications.  
AC and DC Test Circuit for  
Voltage  
DS22229B-page 4  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF.  
24%  
21%  
18%  
15%  
12%  
9%  
1200  
1000  
800  
600  
400  
VDD = 1.8V  
Representative Part  
1760 Samples  
VCM = VSS  
200  
0
TA = +125°C  
-200  
-400  
-600  
-800  
-1000  
T
T
A = +85°C  
A = +25°C  
6%  
TA = -40°C  
3%  
0%  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
Common Mode Input Voltage (V)  
Input Offset Voltage (mV)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage vs.  
Common Mode Input Voltage with VDD = 1.8V.  
45%  
1000  
750  
1760 Samples  
CM = VSS  
TA = -40°C to +125°C  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
V
500  
250  
VDD = 6.0V  
0
VDD = 1.8V  
-250  
-500  
Representative Part  
-750  
-1000  
0%  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
Input Offset Voltage Drift (µV/°C)  
Output Voltage (V)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Input Offset Voltage vs.  
Output Voltage.  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
800  
VDD = 6.0V  
Representative Part  
TA = +125°C  
Representative Part  
TA = +85°C  
600  
400  
200  
0
TA = +25°C  
TA = -40°C  
TA = +125°C  
TA = +85°C  
-200  
-400  
-600  
-800  
TA = +25°C  
A = -40°C  
T
-100  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5  
Power Supply Voltage (V)  
Common Mode Input Voltage (V)  
FIGURE 2-3:  
Common Mode Input Voltage with VDD = 6.0V.  
Input Offset Voltage vs.  
FIGURE 2-6:  
Power Supply Voltage.  
Input Offset Voltage vs.  
© 2010 Microchip Technology Inc.  
DS22229B-page 5  
MCP6401/1R/1U/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF.  
1,000  
90  
85  
80  
75  
70  
65  
60  
55  
50  
PSRR (VDD = 1.8V to 6.0V, VCM = VSS  
)
100  
10  
CMRR (VDD = 6.0V, VCM = -0.3V to 6.3V)  
CMRR (VDD = 1.8V, VCM = -0.2V to 2.0V)  
0.1  
1
10  
100
1k  
10k  
100k  
-50  
-25  
0
25  
50  
75  
100  
125  
Frequency (Hz)  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Noise Voltage Density  
FIGURE 2-10:  
CMRR, PSRR vs. Ambient  
vs. Frequency.  
Temperature.  
40  
35  
30  
25  
20  
15  
10  
0.35  
0.30  
0.25  
0.20  
0.15  
VCMR_H - VDD @ VDD = 6.0V  
VCMR_H - VDD @ VDD = 1.8V  
0.10  
0.05  
0.00  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
-0.35  
VCMR_L - VSS @ VDD = 1.8V  
VCMR_L - VSS @ VDD = 6.0V  
f = 1 kHz  
VDD = 6.0 V  
5
0
-50  
-25  
0
25  
50  
75  
100 125  
Common Mode Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-8:  
Input Noise Voltage Density  
FIGURE 2-11:  
Common Mode Input  
vs. Common Mode Input Voltage.  
Voltage Range Limits vs. Ambient Temperature.  
100  
10000  
Representative Part  
PSRR+  
VDD = 6.0V  
90  
80  
70  
60  
50  
40  
30  
20  
1000  
CMRR  
PSRR-  
Input Bias Current  
100  
10  
Input Offset Current  
1
10  
100  
1k  
10k  
100k  
1M  
25 35 45 55 65 75 85 95 105 115 125  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-9:  
CMRR, PSRR vs.  
FIGURE 2-12:  
Input Bias, Offset Current  
Frequency.  
vs. Ambient Temperature.  
DS22229B-page 6  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF.  
120  
100  
80  
60  
40  
20  
0
0
1000  
100  
10  
Open-Loop Gain  
-30  
TA = +125°C  
-60  
Open-Loop Phase  
-90  
-120  
-150  
-180  
-210  
TA = +85°C  
VDD = 6.0V  
VDD = 6.0V  
1
-20  
0.1110100 1k 10k 100k 1M10M  
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Common Mode Input Voltage (V)  
Frequency (Hz)  
FIGURE 2-13:  
Input Bias Current vs.  
FIGURE 2-16:  
Open-Loop Gain, Phase vs.  
Common Mode Input Voltage.  
Frequency.  
70  
65  
150  
145  
140  
135  
130  
125  
120  
115  
60  
55  
50  
45  
40  
35  
30  
25  
20  
VDD = 6.0V  
VDD = 5.0V  
VDD = 1.8V  
RL = 10 k  
VSS + 0.3V < VOUT < VDD - 0.3V  
VCM = 0.2VDD  
110  
105  
100  
-50  
-25  
0
25  
50  
75  
100 125  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-14:  
Quiescent Current vs.  
FIGURE 2-17:  
DC Open-Loop Gain vs.  
Ambient Temperature.  
Power Supply Voltage.  
150  
145  
70  
VCM = 0.2VDD  
60  
VDD = 6.0V  
140  
135  
130  
125  
120  
115  
110  
105  
100  
50  
40  
30  
20  
10  
0
VDD = 1.8V  
TA = +125°C  
TA = +85°C  
TA = +25°C  
Large Signal AOL  
T
A = -40°C  
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
Output Voltage Headroom  
VDD - VOH or VOL-VSS (V)  
Power Supply Voltage (V)  
FIGURE 2-15:  
Quiescent Current vs.  
FIGURE 2-18:  
DC Open-Loop Gain vs.  
Power Supply Voltage.  
Output Voltage Headroom.  
© 2010 Microchip Technology Inc.  
DS22229B-page 7  
MCP6401/1R/1U/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF.  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
10  
VDD = 6.0V  
Gain Bandwidth Product  
VDD = 1.8V  
1
Phase Margin  
VDD = 6.0V  
0.1  
100  
1k  
10k  
100k  
1M  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-19:  
Gain Bandwidth Product,  
FIGURE 2-22:  
Output Voltage Swing vs.  
Phase Margin vs. Ambient Temperature.  
Frequency.  
1000  
1.6  
1.5  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
Gain Bandwidth Product  
1.4  
VDD - VOH @ VDD = 1.8V  
OL - VSS @ VDD = 1.8V  
100  
10  
1
V
1.3  
1.2  
1.1  
1.0  
Phase Margin  
VDD - VOH @ VDD = 6.0V  
VOL - VSS @ VDD = 6.0V  
0.9  
VDD = 1.8V  
RL = 10 kΩ  
0.8  
0.7  
0.1  
0.01  
0.1  
1
10  
Output Current (mA)  
-50 -25  
0
25  
50  
75 100 125  
Ambient Temperature (°C)  
FIGURE 2-20:  
Gain Bandwidth Product,  
FIGURE 2-23:  
Output Voltage Headroom  
Phase Margin vs. Ambient Temperature.  
vs. Output Current.  
30  
24  
22  
VDD - VOH @ VDD = 6.0V  
VOL - VSS@ VDD = 6.0V  
25  
20  
18  
16  
14  
12  
10  
8
TA = -40°C  
T
A = +25°C  
20  
15  
10  
5
TA = +85°C  
TA = +125°C  
6
4
VDD - VOH @ VDD = 1.8V  
VOL - VSS @ VDD = 1.8V  
2
0
0
-50  
-25  
0
25  
50  
75  
100 125  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-21:  
Output Short Circuit Current  
FIGURE 2-24:  
Output Voltage Headroom  
vs. Power Supply Voltage.  
vs. Ambient Temperature.  
DS22229B-page 8  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF.  
0.9  
6.0  
Falling Edge, VDD = 6.0V  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
Rising Edge, VDD = 6.0V  
VDD = 6.0V  
G = +1 V/V  
Falling Edge, VDD = 1.8V  
Rising Edge, VDD = 1.8V  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Time (20 µs/div)  
FIGURE 2-25:  
Slew Rate vs. Ambient  
FIGURE 2-28:  
Large Signal Non-Inverting  
Temperature.  
Pulse Response.  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VDD = 6.0V  
G = -1 V/V  
VDD = 6.0V  
G = +1 V/V  
Time (2 µs/div)  
Time (20 µs/div)  
FIGURE 2-26:  
Small Signal Non-Inverting  
FIGURE 2-29:  
Large Signal Inverting Pulse  
Pulse Response.  
Response.  
7.0  
6.0  
VOUT  
5.0  
VDD = 6.0V  
G = -1 V/V  
VIN  
4.0  
3.0  
2.0  
1.0  
VDD = 6.0V  
G = +2 V/V  
0.0  
-1.0  
Time (2 µs/div)  
Time (0.1 ms/div)  
FIGURE 2-27:  
Small Signal Inverting Pulse  
FIGURE 2-30:  
The MCP6401/1R/1U/2/4  
Response.  
Shows No Phase Reversal.  
© 2010 Microchip Technology Inc.  
DS22229B-page 9  
MCP6401/1R/1U/2/4  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF.  
150  
140  
130  
120  
110  
100  
90  
10000  
1000  
100  
10  
GN:  
101 V/V  
11 V/V  
1 V/V  
Input Referred  
1
80  
10E0
1.E0
.0E4  
10E0
.E0
10  
100  
1.Ek+3  
10k  
100k  
1M  
100k  
1100  
1k  
10k  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-31:  
Closed Loop Output  
FIGURE 2-33:  
Channel-to-Channel  
Impedance vs. Frequency.  
Separation vs. Frequency (MCP6402/4 only).  
1m
1
100µ  
1
10µ  
11µ  
1
100n  
1
10n  
TA = -40°C  
A = +25°C  
T
1
1n  
TA = +85°C  
TA = +125°C  
100p  
10p  
1p  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
IN (V)  
V
FIGURE 2-32:  
Measured Input Current vs.  
Input Voltage (below VSS).  
DS22229B-page 10  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1: PIN FUNCTION TABLE  
MCP6401 MCP6401R MCP6401U  
MCP6402  
MCP6404  
Symbol  
Description  
SC70-5,  
SOT-23-5  
2x3  
TDFN  
SOIC,  
TSSOP  
SOT-23-5  
SOT-23-5  
SOIC  
1
4
1
4
4
3
1
2
3
8
5
6
1
2
3
8
5
6
1
2
3
4
5
6
VOUT, VOUTA Analog Output (op amp A)  
VIN–, VINA  
VIN+, VINA  
VDD  
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
3
3
1
+
5
2
5
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
VINB  
2
5
2
7
7
7
VOUTB  
VOUTC  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
4
4
8
9
VINC  
+
10  
11  
12  
13  
14  
VINC  
VSS  
9
VIND+  
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
VIND–  
VOUTD  
EP  
Exposed Thermal Pad (EP);  
must be connected to VSS.  
3.1  
Analog Output (V  
)
3.3  
Power Supply Pin (V , V  
)
SS  
OUT  
DD  
The output pin is low-impedance voltage source.  
The positive power supply (VDD) is 1.8V to 6.0V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are at voltages between VSS  
3.2  
Analog Inputs (V +, V -)  
IN IN  
and VDD  
.
The non-inverting and inverting inputs are high-  
impedance CMOS inputs with low bias currents.  
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
© 2010 Microchip Technology Inc.  
DS22229B-page 11  
MCP6401/1R/1U/2/4  
NOTES:  
DS22229B-page 12  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
4.0  
APPLICATION INFORMATION  
VDD  
The MCP6401/1R/1U/2/4 family of op amps is  
manufactured using Microchip’s state-of-the-art CMOS  
process and is specifically designed for low-power,  
high precision applications.  
D1 D2  
U1  
V1  
V2  
VOUT  
MCP640x  
4.1  
Rail-to-Rail Input  
4.1.1  
PHASE REVERSAL  
The MCP6401/1R/1U/2/4 op amps are designed to  
prevent phase reversal when the input pins exceed the  
supply voltages. Figure 2-30 shows the input voltage  
exceeding the supply voltage with no phase reversal.  
FIGURE 4-2:  
Inputs.  
Protecting the Analog  
A significant amount of current can flow out of the  
inputs when the Common Mode voltage (VCM) is below  
ground (VSS); See Figure 2-32.  
4.1.2  
INPUT VOLTAGE LIMITS  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the voltages at  
the input pins (see Section 1.1 “Absolute Maximum  
Ratings †”).  
4.1.3  
INPUT CURRENT LIMITS  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the currents  
into the input pins (see Section 1.1 “Absolute  
Maximum Ratings †”).  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to  
protect the input transistors against many (but not all)  
over-voltage conditions, and to minimize the input bias  
current (IB).  
Figure 4-3 shows one approach to protecting these  
inputs. The resistors R1 and R2 limit the possible  
currents in or out of the input pins (and the ESD diodes,  
D1 and D2). The diode currents will go through either  
VDD or VSS.  
Bond  
VDD  
VDD  
Pad  
D1 D2  
R1  
U1  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
V1  
V2  
VOUT  
MCP640x  
Bond  
Pad  
R2  
VSS  
VSS – min(V1, V2)  
2 mA  
min(R1,R2) >  
min(R1,R2) >  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
max(V1,V2) – VDD  
2 mA  
The input ESD diodes clamp the inputs when they try  
to go more than one diode drop below VSS. They also  
clamp any voltages that go well above VDD; their  
breakdown voltage is high enough to allow normal  
operation, but not low enough to protect against slow  
over-voltage (beyond VDD) events. Very fast ESD  
events (that meet the spec) are limited so that damage  
does not occur.  
FIGURE 4-3:  
Inputs.  
Protecting the Analog  
4.1.4  
NORMAL OPERATION  
The input stage of the MCP6401/1R/1U/2/4 op amps  
uses two differential input stages in parallel. One oper-  
ates at a low Common Mode input voltage (VCM), while  
the other operates at a high VCM. With this topology,  
the device operates with a VCM up to 300 mV above  
VDD and 300 mV below VSS. (See Figure 2-11). The  
input offset voltage is measured at VCM = VSS – 0.3V  
and VDD + 0.3V to ensure proper operation.  
In some applications, it may be necessary to prevent  
excessive voltages from reaching the op amp inputs;  
Figure 4-2 shows one approach to protecting these  
inputs.  
The transition between the input stages occurs when  
VCM is near VDD – 1.1V (See Figures 2-3 and 2-4). For  
the best distortion performance and gain linearity, with  
non-inverting gains, avoid this region of operation.  
© 2010 Microchip Technology Inc.  
DS22229B-page 13  
MCP6401/1R/1U/2/4  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and  
simulations with the MCP6401/1R/1U/2/4 SPICE  
macro model are very helpful.  
4.2  
Rail-to-Rail Output  
The output voltage range of the MCP6401/1R/1U/2/4  
op amps is VSS + 20 mV (minimum) and VDD – 20 mV  
(maximum) when RL = 10 kΩ is connected to VDD/2  
and VDD = 6.0V. Refer to Figures 2-23 and 2-24 for  
more information.  
4.4  
Supply Bypass  
4.3  
Capacitive Loads  
With this family of operational amplifiers, the power  
supply pin (VDD for single-supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high frequency performance. It can use a bulk  
capacitor (i.e., 1 µF or larger) within 100 mm to provide  
large, slow currents. This bulk capacitor can be shared  
with other analog parts.  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. While a unity-gain buffer (G = +1 V/V) is the  
most sensitive to capacitive loads, all gains show the  
same general behavior.  
4.5  
Unused Op Amps  
An unused op amp in a quad package (MCP6404)  
should be configured as shown in Figure 4-6. These  
circuits prevent the output from toggling and causing  
crosstalk. Circuits A sets the op amp at its minimum  
noise gain. The resistor divider produces any desired  
reference voltage within the output voltage range of the  
op amp; the op amp buffers that reference voltage.  
Circuit B uses the minimum number of components  
and operates as a comparator, but it may draw more  
current.  
When driving large capacitive loads with these op  
amps (e.g., > 100 pF when G = +1 V/V), a small series  
resistor at the output (RISO in Figure 4-4) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitance load.  
RISO  
MCP640x  
+
VOUT  
¼ MCP6404 (A)  
VDD  
¼ MCP6404 (B)  
VIN  
CL  
VDD  
VDD  
R1  
R2  
FIGURE 4-4:  
Output Resistor, RISO  
Stabilizes Large Capacitive Loads.  
VREF  
Figure 4-5 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit's noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
R2  
VREF = VDD ------------------  
R1 + R2  
FIGURE 4-6:  
Unused Op Amps.  
10000  
VDD = 6.0 V  
4.6 PCB Surface Leakage  
RL = 10 kΩ  
1000  
100  
10  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow; which is greater than the  
MCP6401/1R/1U/2/4 family’s bias current at +25°C  
(±1.0 pA, typical).  
GN:  
1 V/V  
2 V/V  
5 V/V  
1
10p  
100p  
1n  
10n  
0.1µ  
1µ  
Normalized Load Capacitance; CL/GN (F)  
FIGURE 4-5:  
Recommended RISO Values  
for Capacitive Loads.  
DS22229B-page 14  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-7.  
Figure 4-8 shows a precision half-wave rectifier and its  
transfer characteristic. The rectifier’s input impedance  
is determined by the input resistor R1. To avoid loading  
effect, it must be driven from a low impedance source.  
When VIN is greater than zero, D1 is OFF, D2 is ON, and  
VOUT is zero. When VIN is less than zero, D1 is ON, D2  
is OFF, and VOUT is the VIN with an amplification of -R2/  
R1.  
Guard Ring  
VIN– VIN+  
VSS  
The rectifier circuit shown in Figure 4-8 has the benefit  
that the op amp never goes in saturation, so the only  
thing affecting its frequency response is the  
amplification and the gain bandwidth product.  
.
R2  
FIGURE 4-7:  
for Inverting Gain.  
Example Guard Ring Layout  
D2  
1. Non-inverting Gain and Unity-Gain Buffer:  
VIN  
R1  
a) Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
VOUT  
MCP6401  
b) Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
Common Mode input voltage.  
D1  
2. Inverting Gain and Transimpedance Gain  
Amplifiers (convert current to voltage, such as  
photo detectors):  
Precision Half-Wave Rectifier  
VOUT  
a) Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
-R2/R1  
b) Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
VIN  
4.7  
Application Circuits  
Transfer Characteristic  
4.7.1  
PRECISION HALF-WAVE  
RECTIFIER  
FIGURE 4-8:  
Rectifier.  
Precision Half-Wave  
The precision half-wave rectifier, which is also known  
as a super diode, is a configuration obtained with an  
operational amplifier in order to have a circuit behaving  
like an ideal diode and rectifier. It effectively cancels the  
forward voltage drop of the diode so that very low level  
signals can still be rectified with minimal error. This can  
be useful for high-precision signal processing. The  
MCP6401/1R/1U/2/4 op amps have high input  
impedance, low input bias current and rail-to-rail input/  
output, which makes this device suitable for precision  
rectifier applications.  
© 2010 Microchip Technology Inc.  
DS22229B-page 15  
MCP6401/1R/1U/2/4  
4.7.2  
BATTERY CURRENT SENSING  
4.7.3  
INSTRUMENTATION AMPLIFIER  
The MCP6401/1R/1U/2/4 op amps’ Common Mode  
Input Range, which goes 0.3V beyond both supply  
rails, supports their use in high-side and low-side  
battery current sensing applications. The low quiescent  
current (45 µA, typical) helps prolong battery life, and  
the rail-to-rail output supports detection of low currents.  
The MCP6401/1R/1U/2/4 op amps are well suited for  
conditioning sensor signals in battery-powered  
applications. Figure 4-10 shows  
a two op amp  
instrumentation amplifier, using the MCP6402, that  
works well for applications requiring rejection of  
Common Mode noise at higher gains. The reference  
voltage (VREF) is supplied by a low impedance source.  
In single supply applications, VREF is typically VDD/2.  
Figure 4-9 shows a high side battery current sensor  
circuit. The 10Ω resistor is sized to minimize power  
losses. The battery current (IDD) through the 10Ω  
resistor causes its top terminal to be more negative  
than the bottom terminal. This keeps the Common  
Mode input voltage of the op amp below VDD, which is  
within its allowed range. The output of the op amp will  
also be below VDD, which is within its Maximum Output  
Voltage Swing specification.  
RG  
R1  
R2  
R2  
R1  
VREF  
VOUT  
V2  
V1  
1/2 MCP6402  
1/2 MCP6402  
IDD  
To load  
1.8V  
to  
VDD  
10Ω  
VOUT  
R1 2R1  
6.0V  
VOUT = (V1 V2) 1 + ----- + -------- + VREF  
MCP6401  
R2 RG  
100 kΩ  
FIGURE 4-10:  
Instrumentation Amplifier.  
Two Op Amp  
1 MΩ  
VDD VOUT  
IDD = -----------------------------------------  
(10 V/V) (10Ω)  
FIGURE 4-9:  
Supply Current Sensing.  
DS22229B-page 16  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
5.4  
Microchip Advanced Part Selector  
(MAPS)  
5.0  
DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP6401/1R/1U/2/4 family of op amps.  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement. Available at no cost  
from the Microchip website at www.microchip.com/  
maps, the MAPS is an overall selection tool for  
Microchip’s product portfolio that includes Analog,  
Memory, MCUs and DSCs. Using this tool you can  
define a filter to sort features for a parametric search of  
devices and export side-by-side technical comparison  
reports. Helpful links are also provided for Datasheets,  
Purchase, and Sampling of Microchip parts.  
5.1  
SPICE Macro Model  
The latest SPICE macro model for the MCP6401/1R/  
1U/2/4 op amp is available on the Microchip web site at  
www.microchip.com. The model was written and tested  
in official Orcad (Cadence) owned PSPICE. For the  
other simulators, it may require translation.  
The model covers a wide aspect of the op amp's  
electrical specifications. Not only does the model cover  
voltage, current, and resistance of the op amp, but it  
also covers the temperature and noise effects on the  
behavior of the op amp. The model has not been  
verified outside of the specification range listed in the  
op amp data sheet. The model behaviors under these  
conditions cannot be guaranteed that it will match the  
actual op amp performance.  
5.5  
Analog Demonstration and  
Evaluation Boards  
Microchip offers  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market. For  
a
broad spectrum of Analog  
a
complete listing of these boards and their  
Moreover, the model is intended to be an initial design  
tool. Bench testing is a very important part of any  
design and cannot be replaced with simulations. Also,  
simulation results using this macro model need to be  
validated by comparing them to the data sheet  
specifications and characteristic curves.  
corresponding user’s guides and technical information,  
visit the Microchip web site at www.microchip.com/  
analogtools.  
Some boards that are especially useful are:  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
• MCP6XXX Amplifier Evaluation Board 3  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
®
5.2  
FilterLab Software  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the  
Microchip web site at www.microchip.com/filterlab, the  
FilterLab design tool provides full schematic diagrams  
of the filter circuit with component values. It also  
outputs the filter circuit in SPICE format, which can be  
used with the macro model to simulate actual filter  
performance.  
• 5/6-Pin SOT-23 Evaluation Board, P/N VSUPEV2  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N SOIC8EV  
• 14-Pin SOIC/TSSOP/DIP Evaluation Board, P/N  
SOIC14EV  
5.3  
Mindi™ Circuit Designer and  
Simulator  
Microchip’s Mindi™ Circuit Designer and Simulator  
aids in the design of various circuits useful for active  
filter, amplifier and power-management applications. It  
is a free online circuit designer and simulator available  
from the Microchip web site at www.microchip.com/  
mindi. This interactive circuit designer and simulator  
enables designers to quickly generate circuit diagrams,  
and simulate circuits. Circuits developed using the  
Mindi Circuit Designer and Simulator can be down-  
loaded to a personal computer or workstation.  
© 2010 Microchip Technology Inc.  
DS22229B-page 17  
MCP6401/1R/1U/2/4  
5.6  
Application Notes  
The following Microchip Analog Design Note and  
Application Notes are available on the Microchip web  
site at www.microchip.com/appnotes and are  
recommended as supplemental reference resources.  
ADN003: “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications  
and Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op  
Amps”, DS00884  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
AN1177: “Op Amp Precision Design: DC Errors”,  
DS01177  
AN1228: “Op Amp Precision Design: Random  
Noise”, DS01228  
• AN1297: “Microchip’s Op Amp SPICE Macro  
Models”, DS01297  
These application notes and others are listed in the  
design guide:  
“Signal Chain Design Guide”, DS21825  
DS22229B-page 18  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC70 (MCP6401 only)  
Example:  
XXNN  
BL25  
5-Lead SOT-23  
Example:  
Part Number  
Code  
MCP6401T-E/OT  
MCP6401RT-E/OT  
MCP6401UT-E/OT  
NLNN  
XXNN  
NL25  
NMNN  
NPNN  
Example:  
8-Lead TDFN (2 x 3)  
XXX  
YWW  
NN  
AAW  
025  
25  
8-Lead SOIC (150 mil)  
Example:  
XXXXXXXX  
XXXXYYWW  
MCP6402E  
SN^^1025  
e
3
NNN  
256  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
*
)
3
e
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2010 Microchip Technology Inc.  
DS22229B-page 19  
MCP6401/1R/1U/2/4  
Package Marking Information (Continued)  
Example:  
14-Lead SOIC (150 mil) (MCP6404)  
MCP6404  
XXXXXXXXXX  
XXXXXXXXXX  
YYWWNNN  
E/SL^
e3  
1025256  
Example:  
14-Lead TSSOP (MCP6404)  
XXXXXX  
YYWW  
6404E/ST  
1025  
NNN  
256  
Legend: XX...X Customer-specific information  
Y
YY  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
WW  
NNN  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS22229B-page 20  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢂꢒꢖꢆꢗꢍꢘꢙꢚꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
b
1
3
2
E1  
E
4
5
e
e
A
A2  
c
A1  
L
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
(
ꢐꢁ9(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
ꢐꢁ;ꢐ  
ꢐꢁ;ꢐ  
ꢐꢁꢐꢐ  
ꢀꢁ;ꢐ  
ꢀꢁꢀ(  
ꢀꢁ;ꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢐ;  
ꢐꢁꢀ(  
M
M
M
ꢑꢁꢀꢐ  
ꢀꢁꢑ(  
ꢑꢁꢐꢐ  
ꢐꢁꢑꢐ  
M
ꢀꢁꢀꢐ  
ꢀꢁꢐꢐ  
ꢐꢁꢀꢐ  
ꢑꢁꢖꢐ  
ꢀꢁꢛ(  
ꢑꢁꢑ(  
ꢐꢁꢖ9  
ꢐꢁꢑ9  
ꢐꢁꢖꢐ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
8
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
M
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ9ꢀ)  
© 2010 Microchip Technology Inc.  
DS22229B-page 21  
MCP6401/1R/1U/2/4  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS22229B-page 22  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁ !ꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
5
(
ꢐꢁꢝ(ꢈ)ꢕ*  
6$# ꢃ!ꢅꢈ4ꢅꢉ!ꢈ1ꢃ#ꢊꢌ  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢅꢀ  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
4
ꢀꢁꢝꢐꢈ)ꢕ*  
ꢐꢁꢝꢐ  
ꢐꢁ;ꢝ  
ꢐꢁꢐꢐ  
ꢑꢁꢑꢐ  
ꢀꢁꢛꢐ  
ꢑꢁꢒꢐ  
ꢐꢁꢀꢐ  
ꢐꢁꢛ(  
ꢐꢞ  
M
M
M
M
M
M
M
M
M
M
M
ꢀꢁꢖ(  
ꢀꢁꢛꢐ  
ꢐꢁꢀ(  
ꢛꢁꢑꢐ  
ꢀꢁ;ꢐ  
ꢛꢁꢀꢐ  
ꢐꢁ9ꢐ  
ꢐꢁ;ꢐ  
ꢛꢐꢞ  
4ꢀ  
8
ꢐꢁꢐ;  
ꢐꢁꢑꢐ  
ꢐꢁꢑ9  
ꢐꢁ(ꢀ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀꢑꢒꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐꢝꢀ)  
© 2010 Microchip Technology Inc.  
DS22229B-page 23  
MCP6401/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢜꢖꢆMꢆꢜꢄꢓꢓꢔ$%ꢆ!&'ꢚꢆꢎꢎꢆ(ꢔꢅ)ꢆꢗꢍꢏ*ꢘꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
e
N
E
E1  
NOTE 1  
1
2
3
α
h
b
h
c
φ
A2  
A
L
A1  
L1  
β
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
;
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈ  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
9ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈ@ꢇꢎ#ꢃꢇꢆꢉꢋA  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢛꢁꢝꢐꢈ)ꢕ*  
ꢖꢁꢝꢐꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢞ  
ꢐꢁꢀꢒ  
ꢐꢁꢛꢀ  
(ꢞ  
M
M
M
M
M
;ꢞ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢞ  
(ꢞ  
ꢀ(ꢞ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ(ꢒ)  
DS22229B-page 24  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢜꢖꢆMꢆꢜꢄꢓꢓꢔ$%ꢆ!&'ꢚꢆꢎꢎꢆ(ꢔꢅ)ꢆꢗꢍꢏ*ꢘꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
© 2010 Microchip Technology Inc.  
DS22229B-page 25  
MCP6401/1R/1U/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22229B-page 26  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2010 Microchip Technology Inc.  
DS22229B-page 27  
MCP6401/1R/1U/2/4  
"ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆ+ꢐꢄꢈꢆ,ꢈꢄꢊ%ꢆꢜꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌ-ꢄ.ꢃꢆꢕ/ꢜꢖꢆMꢆ 0!0ꢚ&ꢙꢀꢆꢎꢎꢆ(ꢔꢅ)ꢆꢗꢒ+,ꢜꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS22229B-page 28  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
12ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢂꢖꢆMꢆꢜꢄꢓꢓꢔ$%ꢆ!&'ꢚꢆꢎꢎꢆ(ꢔꢅ)ꢆꢗꢍꢏ*ꢘꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
3
e
h
b
α
h
c
φ
A2  
A
L
A1  
β
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢀꢁꢑꢒꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈꢈꢟ  
M
ꢀꢁꢑ(  
ꢐꢁꢀꢐ  
M
M
M
ꢀꢁꢒ(  
M
ꢐꢁꢑ(  
ꢔꢑ  
ꢔꢀ  
"
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
9ꢁꢐꢐꢈ)ꢕ*  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
6,ꢅꢍꢉꢋꢋꢈ4ꢅꢆꢓ#ꢌ  
*ꢌꢉꢄ%ꢅꢍꢈ@ꢇꢎ#ꢃꢇꢆꢉꢋA  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
"ꢀ  
ꢛꢁꢝꢐꢈ)ꢕ*  
;ꢁ9(ꢈ)ꢕ*  
ꢐꢁꢑ(  
ꢐꢁꢖꢐ  
M
M
ꢐꢁ(ꢐ  
ꢀꢁꢑꢒ  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ  
ꢏꢇꢋ!ꢈꢂꢍꢉ%#ꢈꢔꢆꢓꢋꢅꢈ)ꢇ##ꢇꢄ  
4ꢀ  
ꢀꢁꢐꢖꢈꢚ".  
ꢐꢞ  
ꢐꢁꢀꢒ  
ꢐꢁꢛꢀ  
(ꢞ  
M
M
M
M
M
;ꢞ  
8
ꢐꢁꢑ(  
ꢐꢁ(ꢀ  
ꢀ(ꢞ  
(ꢞ  
ꢀ(ꢞ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢟꢈꢕꢃꢓꢆꢃ%ꢃꢊꢉꢆ#ꢈ*ꢌꢉꢍꢉꢊ#ꢅꢍꢃ #ꢃꢊꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢖꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ9()  
© 2010 Microchip Technology Inc.  
DS22229B-page 29  
MCP6401/1R/1U/2/4  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
DS22229B-page 30  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
12ꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢒ3ꢋꢑꢆꢍ3ꢓꢋꢑ-ꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢒꢖꢆMꢆ2&2ꢆꢎꢎꢆ(ꢔꢅ)ꢆꢗꢒꢍꢍꢏꢇꢛ  
ꢜꢔꢊꢃꢝ .ꢇꢍꢈ#ꢌꢅꢈꢄꢇ #ꢈꢊ$ꢍꢍꢅꢆ#ꢈꢎꢉꢊ/ꢉꢓꢅꢈ!ꢍꢉ-ꢃꢆꢓ 0ꢈꢎꢋꢅꢉ ꢅꢈ ꢅꢅꢈ#ꢌꢅꢈꢏꢃꢊꢍꢇꢊꢌꢃꢎꢈ1ꢉꢊ/ꢉꢓꢃꢆꢓꢈꢕꢎꢅꢊꢃ%ꢃꢊꢉ#ꢃꢇꢆꢈꢋꢇꢊꢉ#ꢅ!ꢈꢉ#ꢈ  
ꢌ##ꢎ+22---ꢁꢄꢃꢊꢍꢇꢊꢌꢃꢎꢁꢊꢇꢄ2ꢎꢉꢊ/ꢉꢓꢃꢆꢓ  
D
N
E
E1  
NOTE 1  
1
2
e
b
c
φ
A2  
A
A1  
L
L1  
3ꢆꢃ#  
ꢏꢙ44ꢙꢏ"ꢗ"ꢚꢕ  
ꢂꢃꢄꢅꢆ ꢃꢇꢆꢈ4ꢃꢄꢃ#  
ꢏꢙ5  
56ꢏ  
ꢏꢔ7  
5$ꢄ8ꢅꢍꢈꢇ%ꢈ1ꢃꢆ  
1ꢃ#ꢊꢌ  
5
ꢀꢖ  
ꢐꢁ9(ꢈ)ꢕ*  
6,ꢅꢍꢉꢋꢋꢈ:ꢅꢃꢓꢌ#  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈꢗꢌꢃꢊ/ꢆꢅ    
ꢕ#ꢉꢆ!ꢇ%%ꢈ  
6,ꢅꢍꢉꢋꢋꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ=ꢃ!#ꢌ  
ꢏꢇꢋ!ꢅ!ꢈ1ꢉꢊ/ꢉꢓꢅꢈ4ꢅꢆꢓ#ꢌ  
.ꢇꢇ#ꢈ4ꢅꢆꢓ#ꢌ  
M
ꢐꢁ;ꢐ  
ꢐꢁꢐ(  
M
ꢀꢁꢐꢐ  
M
9ꢁꢖꢐꢈ)ꢕ*  
ꢖꢁꢖꢐ  
(ꢁꢐꢐ  
ꢐꢁ9ꢐ  
ꢀꢁꢑꢐ  
ꢀꢁꢐ(  
ꢐꢁꢀ(  
ꢔꢑ  
ꢔꢀ  
"
"ꢀ  
ꢖꢁꢛꢐ  
ꢖꢁꢝꢐ  
ꢐꢁꢖ(  
ꢖꢁ(ꢐ  
(ꢁꢀꢐ  
ꢐꢁꢒ(  
4
.ꢇꢇ#ꢎꢍꢃꢆ#  
.ꢇꢇ#ꢈꢔꢆꢓꢋꢅ  
4ꢅꢉ!ꢈꢗꢌꢃꢊ/ꢆꢅ    
4ꢅꢉ!ꢈ=ꢃ!#ꢌ  
4ꢀ  
ꢀꢁꢐꢐꢈꢚ".  
ꢐꢞ  
ꢐꢁꢐꢝ  
ꢐꢁꢀꢝ  
M
M
M
;ꢞ  
8
ꢐꢁꢑꢐ  
ꢐꢁꢛꢐ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ 1ꢃꢆꢈꢀꢈ,ꢃ $ꢉꢋꢈꢃꢆ!ꢅ&ꢈ%ꢅꢉ#$ꢍꢅꢈꢄꢉꢘꢈ,ꢉꢍꢘ0ꢈ8$#ꢈꢄ$ #ꢈ8ꢅꢈꢋꢇꢊꢉ#ꢅ!ꢈ-ꢃ#ꢌꢃꢆꢈ#ꢌꢅꢈꢌꢉ#ꢊꢌꢅ!ꢈꢉꢍꢅꢉꢁ  
ꢑꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆ ꢈꢂꢈꢉꢆ!ꢈ"ꢀꢈ!ꢇꢈꢆꢇ#ꢈꢃꢆꢊꢋ$!ꢅꢈꢄꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢁꢈꢏꢇꢋ!ꢈ%ꢋꢉ ꢌꢈꢇꢍꢈꢎꢍꢇ#ꢍ$ ꢃꢇꢆ ꢈ ꢌꢉꢋꢋꢈꢆꢇ#ꢈꢅ&ꢊꢅꢅ!ꢈꢐꢁꢀ(ꢈꢄꢄꢈꢎꢅꢍꢈ ꢃ!ꢅꢁ  
ꢛꢁ ꢂꢃꢄꢅꢆ ꢃꢇꢆꢃꢆꢓꢈꢉꢆ!ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢃꢆꢓꢈꢎꢅꢍꢈꢔꢕꢏ"ꢈ'ꢀꢖꢁ(ꢏꢁ  
)ꢕ*+ )ꢉ ꢃꢊꢈꢂꢃꢄꢅꢆ ꢃꢇꢆꢁꢈꢗꢌꢅꢇꢍꢅ#ꢃꢊꢉꢋꢋꢘꢈꢅ&ꢉꢊ#ꢈ,ꢉꢋ$ꢅꢈ ꢌꢇ-ꢆꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ ꢁ  
ꢚ".+ ꢚꢅ%ꢅꢍꢅꢆꢊꢅꢈꢂꢃꢄꢅꢆ ꢃꢇꢆ0ꢈ$ $ꢉꢋꢋꢘꢈ-ꢃ#ꢌꢇ$#ꢈ#ꢇꢋꢅꢍꢉꢆꢊꢅ0ꢈ%ꢇꢍꢈꢃꢆ%ꢇꢍꢄꢉ#ꢃꢇꢆꢈꢎ$ꢍꢎꢇ ꢅ ꢈꢇꢆꢋꢘꢁ  
ꢏꢃꢊꢍꢇꢊꢌꢃꢎ ꢊꢌꢆꢇꢋꢇꢓꢘ ꢂꢍꢉ-ꢃꢆꢓ *ꢐꢖꢜꢐ;ꢒ)  
© 2010 Microchip Technology Inc.  
DS22229B-page 31  
MCP6401/1R/1U/2/4  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22229B-page 32  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
APPENDIX A: REVISION HISTORY  
Revision B (June 2010)  
The following is the list of modifications:  
1. Added the MCP6402 and MCP6404 package  
information.  
2. Updated the ESD protection value on all pins in  
Section 1.1 “Absolute Maximum Ratings †”.  
3. Added Figure 2-33.  
4. Updated Table 3-1.  
5. Updated Section 4.1.2 “Input Voltage Limits”.  
6. Added Section 4.1.3 “Input Current Limits”.  
7. Added Section 4.5 “Unused Op Amps”.  
8. Updated Section 5.5 “Analog Demonstration  
and Evaluation Boards”.  
9. Updated the package markings information and  
drawings.  
10. Updated the Product Identification System  
page.  
Revision A (December 2009)  
• Original Release of this Document.  
© 2010 Microchip Technology Inc.  
DS22229B-page 33  
MCP6401/1R/1U/2/4  
NOTES:  
DS22229B-page 34  
© 2010 Microchip Technology Inc.  
MCP6401/1R/1U/2/4  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
-X  
/XX  
a)  
b)  
c)  
d)  
MCP6401T-E/LT:  
Tape and Reel,  
5LD SC70 pkg  
Tape and Reel,  
5LD SOT-23 pkg  
Temperature  
Range  
Package  
MCP6401T-E/OT:  
MCP6401RT-E/OT: Tape and Reel,  
5LD SOT-23 pkg  
Device:  
MCP6401T:  
Single Op Amp (Tape and Reel)  
(SC70, SOT-23)  
MCP6401RT: Single Op Amp (Tape and Reel)  
MCP6401UT-E/OT: Tape and Reel,  
5LD SOT-23 pkg  
(SOT-23)  
MCP6401UT: Single Op Amp (Tape and Reel)  
(SOT-23)  
MCP6402:  
MCP6402T:  
e)  
f)  
MCP6402-E/SN:  
MCP6402T-E/SN:  
8LD SOIC pkg  
Tape and Reel,  
8LD SOIC pkg  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(SOIC, 2x3 TDFN)  
MCP6404:  
MCP6404T:  
Quad Op Amp  
Quad Op Amp (Tape and Reel)  
(SOIC, TSSOP)  
g)  
MCP6402T-E/MNY: Tape and Reel,  
8LD 2x3 TDFN pkg  
h)  
i)  
MCP6404-E/SL:  
MCP6404T-E/SL:  
14LD SOIC pkg  
Tape and Reel,  
14LD SOIC pkg  
14LD TSSOP pkg  
Tape and Reel,  
14LD TSSOP pkg.  
Temperature Range:  
Package:  
E
= -40°C to +125°C  
j)  
MCP6404-E/ST:  
MCP6404T-E/ST:  
LT  
= Plastic Package (SC70), 5-lead  
k)  
OT = Plastic Small Outline Transistor (SOT-23), 5-lead  
SN = Plastic SOIC, (3.90 mm body), 8-lead  
MNY* = Plastic Dual Flat, No Lead, (2x3 TDFN), 8-lead  
SL  
ST  
= Plastic SOIC (3.90 mm body), 14-lead  
= Plastic TSSOP (4.4mm body), 14-lead  
* Y  
= Nickel palladium gold manufacturing designator.  
Only available on the TDFN package.  
© 2010 Microchip Technology Inc.  
DS22229B-page 35  
MCP6401/1R/1U/2/4  
NOTES:  
DS22229B-page 36  
© 2010 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
rfPIC and UNI/O are registered trademarks of Microchip  
Technology Incorporated in the U.S.A. and other countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, CodeGuard,  
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,  
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial  
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified  
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code  
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,  
32  
PICtail, PIC logo, REAL ICE, rfLAB, Select Mode, Total  
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA  
are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2010, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-60932-338-7  
Microchip received ISO/TS-16949:2002 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2010 Microchip Technology Inc.  
DS22229B-page 37  
WORLDWIDE SALES AND SERVICE  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
China - Beijing  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
Boston  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Cleveland  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Detroit  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Hsin Chu  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370  
Kokomo  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-536-4803  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Santa Clara  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Toronto  
Mississauga, Ontario,  
Canada  
Tel: 905-673-0699  
Fax: 905-673-6509  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
01/05/10  
DS22229B-page 38  
© 2010 Microchip Technology Inc.  

相关型号:

MCP6406T-H/OT

OP-AMP, 4500 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDSO5, PLASTIC, SOT-23, 5 PIN
MICROCHIP

MCP6406T-H/OTVAO

Operational Amplifier, 1 Func, 4500uV Offset-Max, CMOS, PDSO5
MICROCHIP

MCP6407

The Microchip Technology Inc. MCP6406/7/9 family of operational amplifiers (op amps) has low quies
MICROCHIP

MCP6407-H/SN

DUAL OP-AMP, 4500 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDSO8, 3.90 MM, LEAD FREE, PLASTIC, SOIC-8
MICROCHIP

MCP6407-H/SNVAO

Operational Amplifier, 2 Func, 4500uV Offset-Max, CMOS, PDSO8
MICROCHIP

MCP6409

The Microchip Technology Inc. MCP6406/7/9 family of operational amplifiers (op amps) has low quies
MICROCHIP

MCP6409-H/SL

QUAD OP-AMP, 4500 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDSO14, 3.90 MM, LEAD FREE, PLASTIC, SOIC-14
MICROCHIP

MCP6409T-H/SL

QUAD OP-AMP, 4500 uV OFFSET-MAX, 1 MHz BAND WIDTH, PDSO14, 3.90 MM, LEAD FREE, PLASTIC, SOIC-14
MICROCHIP

MCP6409T-H/SLVAO

Operational Amplifier, 4 Func, 4500uV Offset-Max, CMOS, PDSO14
MICROCHIP

MCP6411

1 MHz Operational Amplifier with EMI Filtering
MICROCHIP

MCP6411T

1 MHz Operational Amplifier with EMI Filtering
MICROCHIP
MICROCHIP