MCP6411 [MICROCHIP]

1 MHz Operational Amplifier with EMI Filtering;
MCP6411
型号: MCP6411
厂家: MICROCHIP    MICROCHIP
描述:

1 MHz Operational Amplifier with EMI Filtering

文件: 总34页 (文件大小:1263K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6411  
1 MHz Operational Amplifier with EMI Filtering  
Features:  
Description:  
The Microchip Technology Inc. MCP6411 operational  
amplifier operates with a single supply voltage as low  
as 1.7V, while drawing low quiescent current (55 μA,  
maximum). This op amp also has low-input offset  
voltage (±1.0 mV, maximum) and rail-to-rail input and  
output operation. In addition, the MCP6411 is unity gain  
stable and has a gain bandwidth product of 1 MHz  
(typical). This combination of features supports  
battery-powered and portable applications. The  
MCP6411 has enhanced EMI protection to minimize  
any electromagnetic interference from external  
sources. This feature makes it well suited for EMI  
sensitive applications such as power lines, radio  
stations and mobile communications.  
• Low Quiescent Current: 47 μA (typical)  
• Low Input Offset Voltage:  
- ±1.0 mV (maximum)  
• Enhanced EMI Protection:  
- Electromagnetic Interference Rejection Ratio  
(EMIRR) at 1.8 GHz: 90 dB  
• Supply Voltage Range: 1.7V to 5.5V  
• Gain Bandwidth Product: 1 MHz (typical)  
• Rail-to-Rail Input/Output  
• Slew Rate: 0.5 V/μs (typical)  
• Unity Gain Stable  
• No Phase Reversal  
• Small Packages: SC70-5, SOT-23-5  
• Extended Temperature Range:  
- -40°C to +125°C  
The MCP6411 is offered in small SC70-5 and  
SOT-23-5 packages. All devices are designed using an  
advanced CMOS process and fully specified in  
extended temperature range from –40°C to +125°C.  
Applications:  
Typical Application  
• Portable Medical Instruments  
• Safety Monitoring  
• Battery-Powered Systems  
• Remote Sensing  
• Supply Current Sensing  
• Analog Active Filters  
VDD  
R
VDD  
3
R+¨R  
R-¨R  
100k  
MCP641  
-
R
1
VDD  
+
1kŸ  
VOUT  
MCP641  
V
b
-
V
a
+
VDD  
R
2
Design Aids:  
1kŸ  
R
5
-
• SPICE Macro Models  
• FilterLab® Software  
100k  
+
R-¨R R+¨R  
MCP641  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
100k  
V OUT = V a Vb  ----------------  
1k  
Strain Gauge  
Package Types  
MCP6411  
SC70-5, SOT-23-5  
VOUT  
VSS  
1
2
3
5
VDD  
4
VIN+  
VIN–  
2017 Microchip Technology Inc.  
DS20005791B-page 1  
MCP6411  
NOTES:  
DS20005791B-page 2  
2017 Microchip Technology Inc.  
MCP6411  
1.0  
1.1  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings †  
VDD – VSS ..................................................................................................................................................................6.5V  
Current at Analog Input Pins (VIN+, VIN-)................................................................................................................±2 mA  
Analog Inputs (VIN+, VIN-).................................................................................................... VSS – 1.0V to VDD + 1.0V  
All Other Inputs and Outputs ................................................................................................... VSS – 0.3V to VDD + 0.3V  
Difference Input Voltage ................................................................................................................................ |VDD – VSS  
|
Output Short-Circuit Current ..........................................................................................................................Continuous  
Current at Input Pins ...............................................................................................................................................±2 mA  
Current at Output and Supply Pins ......................................................................................................................±30 mA  
Storage Temperature .............................................................................................................................65°C to +150°C  
Maximum Junction Temperature (TJ)....................................................................................................................+150°C  
ESD Protection on All Pins (HBM; MM) 4 kV; 400V  
† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the device at those or any other conditions above those indicated  
in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
†† See Section 4.1.2 “Input Voltage Limits”.  
1.2  
Specifications  
TABLE 1-1:  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA= +25°C, VDD = +1.72V to +5.5V, VSS= GND,  
CM = VDD/3, VOUT = VDD/2, VL = VDD/2, RL = 25 kto VL and CL = 30 pF (refer to Figure 1-1).  
V
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Input Offset  
Input Offset Voltage  
VOS  
–1.0  
1.0  
mV  
VDD = 3.5V; VCM = VDD/4  
Input Offset Drift with  
Temperature  
VOS/TA  
±3.0  
μV/°C TA= –40°C to +125°C,  
CM = VSS  
V
Power Supply Rejection Ratio  
PSRR  
75  
90  
dB  
VCM = VDD/4  
Input Bias Current and Impedance  
Input Bias Current  
IB  
±1  
20  
pA  
pA  
TA = +85°C  
800  
pA  
TA = +125°C  
Input Offset Current  
IOS  
ZCM  
±1  
pA  
Common Mode Input Impedance  
Differential Input Impedance  
Common Mode  
1013||12  
1013||12  
||pF  
|pF  
ZDIFF  
Common Mode Input Voltage  
Range  
VCMR  
VSS – 0.3  
90  
85  
VDD + 0.3  
V
Common Mode Rejection Ratio  
CMRR  
75  
65  
dB  
dB  
VDD = 5.5V  
V
CM = –0.3V to 5.8V  
VDD = 1.72V  
CM = –0.3V to 2.02V  
V
2017 Microchip Technology Inc.  
DS20005791B-page 3  
MCP6411  
TABLE 1-1:  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA= +25°C, VDD = +1.72V to +5.5V, VSS= GND,  
VCM = VDD/3, VOUT = VDD/2, VL = VDD/2, RL = 25 kto VL and CL = 30 pF (refer to Figure 1-1).  
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Open-Loop Gain  
DC Open-Loop Gain  
(Large Signal)  
AOL  
95  
115  
dB  
0.2 < VOUT < (VDD –0.2V)  
VCM= VDD/4  
DD = 5.5V  
V
Output  
High-Level Output Voltage  
VOH  
VOL  
ISC  
VDD – 5.5 VDD – 2  
mV  
mV  
mV  
mV  
mA  
mA  
VDD = 1.72V  
VDD = 5.5V  
VDD = 1.72V  
VDD = 5.5V  
VDD = 1.72V  
VDD = 5.5V  
VDD – 7  
VDD – 3  
Low-Level Output Voltage  
Output Short-Circuit Current  
VSS + 2 VSS + 5.5  
VSS + 2.5 VSS + 6.5  
±6  
±22  
Power Supply  
Supply Voltage  
Quiescent Current  
VDD  
IQ  
1.72  
35  
5.5  
55  
V
47  
μA  
IO = 0, VCM = VDD/4  
TABLE 1-2:  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA= +25°C, VDD = +1.72V to +5.5V, VSS= GND,  
CM = VDD/3, VOUT = VDD/2, VL = VDD/2, RL = 25 kto VL and CL = 30 pF (refer to Figure 1-1).  
V
Parameters  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
AC Response  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
1
MHz  
°
68  
0.5  
G = +1 V/V  
Slew Rate  
SR  
V/μs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Eni  
eni  
10  
38  
32  
0.6  
79  
μVP-P  
f = 0.1 Hz to 10 Hz  
nV/Hz f = 1 kHz  
nV/Hz f = 10 kHz  
fA/Hz f = 1 kHz  
Input Noise Current Density  
ini  
Electromagnetic Interference  
Rejection Ratio  
EMIRR  
dB  
VIN = 100 mVPK  
,
,
,
,
400 MHz  
85  
90  
94  
VIN = 100 mVPK  
900 MHz  
VIN = 100 mVPK  
1800 MHz  
VIN = 100 mVPK  
2400 MHz  
DS20005791B-page 4  
2017 Microchip Technology Inc.  
MCP6411  
TABLE 1-3:  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.72V to +5.5V and VSS = GND.  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Operating Temperature Range  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SC70  
Thermal Resistance, 5L-SOT-23  
TA  
TA  
-40  
-65  
+125  
+150  
°C  
°C  
Note 1  
JA  
JA  
331  
221  
°C/W  
°C/W  
Note 1: The internal junction temperature (TJ) must not exceed the absolute maximum specification of +150°C.  
1.3  
Test Circuits  
CF  
The circuit used for most DC and AC tests is shown in  
Figure 1-1. This circuit can independently set VCM and  
VOUT (see Equation 1-1). Note that VCM is not the  
circuit’s Common mode voltage ((VP + VM)/2), and that  
VOST includes VOS plus the effects (on the input offset  
error, VOST) of the temperature, CMRR, PSRR and  
6.8 pF  
RG  
100 k  
RF  
100 k  
VDD/2  
VP  
VDD  
AOL  
.
VIN+  
CB1  
100 nF  
CB2  
1 μF  
EQUATION 1-1:  
MCP6411  
GDM = RF RG  
VIN–  
V CM = V P + V DD 2  2  
V OST = V IN – – V IN +  
VOUT  
VM  
RL  
CL  
RG  
100 k  
RF  
V OUT = V DD 2+ V P VM + V OST 1 + GDM  
Where:  
25 k  
30 pF  
100 k  
GDM = Differential Mode Gain  
(V/V)  
(V)  
CF  
VL  
6.8 pF  
VCM = Op Amp’s Common Mode  
Input Voltage  
FIGURE 1-1:  
AC and DC Test Circuit for  
Most Specifications.  
VOST = Op Amp’s Total Input Offset Voltage (mV)  
2017 Microchip Technology Inc.  
DS20005791B-page 5  
MCP6411  
NOTES:  
DS20005791B-page 6  
2017 Microchip Technology Inc.  
MCP6411  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.72V to +5.5V, VSS= GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 25 kto VL and CL = 30 pF.  
30  
1000  
800  
600  
400  
200  
0
-200  
-400  
-600  
-800  
-1000  
25  
20  
15  
10  
5
1455 Samples  
VDD = 3.5V  
TA = -40°C  
TA = +25°C  
V
CM = VDD/4  
TA = +85°C  
VDD = 5.5V  
TA = +125°C  
0
Representative Part  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Common Mode Input Voltage (V)  
Input Offset Voltage (μV)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage vs.  
Common Mode Input Voltage.  
18%  
1000  
800  
600  
400  
200  
0
-200  
-400  
-600  
1000 Samples  
A = -40°C to +125°C  
16%  
14%  
12%  
10%  
8%  
T
VDD = 5.5V  
VDD = 1.72V  
6%  
4%  
Representative  
Part  
2%  
-800  
-1000  
0%  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Output Voltage (V)  
Input Offset Voltage Drift (μV/°C)  
FIGURE 2-2:  
Input Offset Voltage Drift.  
FIGURE 2-5:  
Input Offset Voltage vs.  
Output Voltage.  
600  
400  
1000  
800  
600  
400  
200  
0
Representative Part  
TA = +85°C  
TA = +125°C  
TA = -40°C  
200  
0
TA = +25°C  
-200  
-400  
-600  
-800  
-1000  
TA = -40°C  
TA = +25°C  
-200  
-400  
-600  
TA = +85°C  
VDD = 1.72V  
TA = +125°C  
Representative Part  
-0.3  
0
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Common Mode Input Voltage (V)  
Power Supply Voltage (V)  
FIGURE 2-3:  
Input Offset Voltage vs.  
FIGURE 2-6:  
Input Offset Voltage vs.  
Common Mode Input Voltage.  
Power Supply Voltage.  
2017 Microchip Technology Inc.  
DS20005791B-page 7  
MCP6411  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.72V to +5.5V, VSS= GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 25 kto VL and CL = 30 pF.  
60  
50  
40  
30  
20  
10  
0
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
PSSR  
VDD = 1.72V  
VDD = 5.5V  
CMRR @ VDD = 5.5V  
@ VDD = 1.72V  
-50  
-25  
0
25  
50  
75  
100  
125  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Common Mode Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-7:  
Input Noise Voltage Density  
FIGURE 2-10:  
CMRR, PSRR vs. Ambient  
vs. Common Mode Input Voltage.  
Temperature.  
10
10μ  
1,000.00p  
VDD = 5.5V  
100.00p  
10.00p  
1.00p  
.10p  
101μ  
Input Bias Current  
100n  
10n  
Input Offset Current  
.01p  
1n  
25 35 45 55 65 75 85 95 105 115 125  
Ambient Temperature (°C)  
0.1  
1
10  
100  
1k  
10k 100k 1M  
11 1.+0 1.1 12 13 14 16  
Frequency (Hz)  
FIGURE 2-8:  
Input Noise Voltage Density  
FIGURE 2-11:  
Input Bias, Offset Current  
vs. Frequency.  
vs. Ambient Temperature.  
120  
1000  
800  
600  
400  
200  
Representative Part  
Representative Part  
100  
80  
60  
40  
20  
0
TA = +25°C  
CMRR  
0
PSRR-  
-200  
-400  
-600  
-800  
-1000  
TA = +85°C  
TA = +125°C  
PSRR+  
10,000  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
10  
100  
1,000  
100,000  
Common Mode Input Voltage (V)  
Frequency (Hz)  
FIGURE 2-9:  
CMRR, PSRR vs.  
FIGURE 2-12:  
Input Bias Current vs.  
Frequency.  
Common Mode Input Voltage.  
DS20005791B-page 8  
2017 Microchip Technology Inc.  
MCP6411  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.72V to +5.5V, VSS= GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 25 kto VL and CL = 30 pF.  
60  
55  
50  
45  
40  
35  
30  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
VDD = 1.72V  
VDD = 5.5V  
VDD = 5.5V  
G = +1 V/V  
0
-50  
-25  
0
25  
50  
75  
100  
125  
5.5  
2.5  
-0.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Ambient Temperature (°C)  
Common Mode Input Voltage (V)  
FIGURE 2-13:  
Quiescent Current vs.  
Ambient Temperature.  
FIGURE 2-16:  
Quiescent Current vs.  
Common Mode Input Voltage.  
120  
45  
60  
50  
40  
VDD = 5.5V  
VDD = 1.72V  
100  
80  
60  
40  
20  
0
0
-45  
Phase  
-90  
TA = +125°C  
30  
20  
10  
0
-135  
-180  
-225  
-270  
-315  
TA = +85°C  
TA = +25°C  
TA = -40°C  
Gain  
-20  
-40  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0.1  
1
10 100 1k 10k 100k 1M 10M  
111.+01112131161
Power Supply Voltage (V)  
Frequency (Hz)  
FIGURE 2-14:  
Quiescent Current vs.  
Power Supply Voltage.  
FIGURE 2-17:  
Frequency.  
Open-Loop Gain, Phase vs.  
60  
55  
50  
45  
40  
35  
30  
25  
20  
140  
130  
120  
110  
100  
90  
VDD = 5.5V  
VDD = 1.72V  
VDD = 1.72V  
15  
G = +1 V/V  
10  
5
80  
0
-0.5  
-50  
-25  
0
25  
50  
75  
100  
125  
0.5  
1.5  
Common Mode Input Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-15:  
Quiescent Current vs.  
FIGURE 2-18:  
DC Open-Loop Gain vs.  
Common Mode Input Voltage.  
Ambient Temperature.  
2017 Microchip Technology Inc.  
DS20005791B-page 9  
MCP6411  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.72V to +5.5V, VSS= GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 25 kto VL and CL = 30 pF.  
10  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
VDD = 5.5V  
VDD = 1.72V  
Gain Bandwidth Product  
1
Phase Margin  
VDD = 5.5V  
0.1  
10000  
100000  
10000000  
1100k0  
10k  
100k  
10100M000  
10M  
-50  
-25  
0
25  
50  
75  
100 125  
Ambient Temperature (°C)  
Frequency (Hz)  
FIGURE 2-22:  
Frequency.  
Output Voltage Swing vs.  
FIGURE 2-19:  
Phase Margin vs. Ambient Temperature.  
Gain Bandwidth Product,  
1000  
1.4  
1.2  
1.0  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
VDD = 1.72V  
100  
10  
VDD - VOH  
0.8  
0.6  
0.4  
0.2  
0.0  
Gain Bandwidth Product  
VOL - VSS  
1
Phase Margin  
VDD = 1.72V  
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
-50  
-25  
0
25  
50  
75  
100 125  
Output Current (mA)  
Ambient Temperature (°C)  
FIGURE 2-23:  
vs. Output Current.  
Output Voltage Headroom  
FIGURE 2-20:  
Phase Margin vs. Ambient Temperature.  
Gain Bandwidth Product,  
50  
40  
30  
20  
ISC+ @ TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
10  
0
-10  
-20  
-30  
-40  
-50  
ISC- @ TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
Power Supply Voltage (V)  
FIGURE 2-21:  
Output Short Circuit Current  
vs. Power Supply Voltage.  
DS20005791B-page 10  
2017 Microchip Technology Inc.  
MCP6411  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.72V to +5.5V, VSS= GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 25 kto VL and CL = 30 pF.  
1000  
100  
10  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
VDD = 5.5V  
Falling Edge, VDD = 1.72V  
Falling Edge, VDD = 5.5V  
VDD - VOH  
VOL - VSS  
1
Rising Edge, VDD = 1.72V  
Rising Edge, VDD = 5.5V  
0.1  
0.001  
0.01  
0.1  
1
10  
100  
-50  
-25  
0
25  
50  
75  
100  
125  
Output Current (mA)  
Ambient Temperature (C)  
FIGURE 2-24:  
Output Voltage Headroom  
FIGURE 2-27:  
Slew Rate vs. Ambient  
vs. Output Current.  
Temperature.  
3.0  
2.5  
VDD - VOH  
2.0  
1.5  
1.0  
0.5  
0.0  
VOL - VSS  
VDD = 5.5V  
G = +1 V/V  
VDD = 1.72V  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Time (10 μs/div)  
FIGURE 2-25:  
Output Voltage Headroom  
FIGURE 2-28:  
Small Signal Noninverting  
vs. Ambient Temperature.  
Pulse Response.  
5.0  
4.5  
4.0  
3.5  
VDD - VOH  
3.0  
2.5  
2.0  
1.5  
1.0  
VDD = 5.5V  
G = -1 V/V  
VOL - VSS  
0.5  
0.0  
VDD = 5.5V  
-50  
-25  
0
25  
50  
75  
100  
125  
Ambient Temperature (°C)  
Time (10 μs/div)  
FIGURE 2-26:  
Output Voltage Headroom  
FIGURE 2-29:  
Small Signal Inverting Pulse  
vs. Ambient Temperature.  
Response.  
2017 Microchip Technology Inc.  
DS20005791B-page 11  
MCP6411  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.72V to +5.5V, VSS= GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 25 kto VL and CL = 30 pF.  
10000  
6
VDD = 2.2V  
5
1000  
4
100  
3
2
1
0
GN:  
101 V/V  
11 V/V  
1 V/V  
10  
VDD = 5.5V  
G = +1 V/V  
1
1k  
10k
100k  
1M  
10M
Time (0.1 ms/div)  
Frequency (Hz)  
FIGURE 2-30:  
Large Signal Noninverting  
FIGURE 2-33:  
Closed Loop Output  
Pulse Response.  
Impedance vs. Frequency.  
0.1  
6
5
4
3
2
1
0
100m  
0.01  
10m  
0.001  
1m  
0.0001  
100μ  
0.00001  
10μ  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0.000001  
1μ  
0.0000001  
100n  
VDD = 5.5V  
G = +1 V/V  
1E-08  
10n  
1n  
1E-09  
-1  
-0.8  
-0.6  
-0.4  
VIN (V)  
-0.2  
0
Time (0.1 ms/div)  
FIGURE 2-31:  
Large Signal Inverting Pulse  
FIGURE 2-34:  
Measured Input Current vs.  
Response.  
Input Voltage (below V ).  
SS  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6
5
4
3
2
VOUT  
1
VDD = 5.5V  
G = +2 V/V  
VIN = 316 mVPK  
VDD = 5.5V  
0
VIN  
-1  
10  
100  
1000  
Frequency (MHz)  
10000  
Time (0.1 ms/div)  
FIGURE 2-32:  
Shows No Phase Reversal.  
The MCP6411 Device  
FIGURE 2-35:  
EMIRR vs. Frequency.  
DS20005791B-page 12  
2017 Microchip Technology Inc.  
MCP6411  
Note: Unless otherwise indicated, TA= +25°C, VDD = +1.72V to +5.5V, VSS= GND, VCM = VDD/3, VOUT = VDD/2,  
VL = VDD/2, RL = 25 kto VL and CL = 30 pF.  
120  
110  
100  
90  
80  
70  
EMIRR @ 2400 MHZ  
60  
EMIRR @ 1800 MHZ  
50  
EMIRR @ 900 MHZ  
40  
30  
20  
10  
0
EMIRR @ 400 MHZ  
0.01  
0.1  
RF Input Peak Voltage (VPK  
1
)
FIGURE 2-36:  
EMIRR vs. RF Input  
Peak-to-Peak Voltage.  
2017 Microchip Technology Inc.  
DS20005791B-page 13  
MCP6411  
NOTES:  
DS20005791B-page 14  
2017 Microchip Technology Inc.  
MCP6411  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
PIN FUNCTION TABLE  
Symbol  
MCP6411  
Description  
SC70-5,  
SOT-23-5  
1
2
3
4
5
VOUT  
VSS  
Analog Output  
Negative Power Supply  
Noninverting Input  
Inverting Input  
VIN+  
VIN–  
VDD  
Positive Power Supply  
3.1  
Analog Outputs  
The output pin is a low-impedance voltage source.  
3.2  
Analog Inputs  
The noninverting and inverting inputs are  
high-impedance CMOS inputs with low bias currents.  
3.3  
Power Supply Pins (V , V  
)
SS  
DD  
The positive power supply (VDD) is 1.72V to 5.5V  
higher than the negative power supply (VSS). For  
normal operation, the other pins are at voltages  
between VSS and VDD  
.
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
2017 Microchip Technology Inc.  
DS20005791B-page 15  
MCP6411  
NOTES:  
DS20005791B-page 16  
2017 Microchip Technology Inc.  
MCP6411  
In some applications, it may be necessary to prevent  
excessive voltages from reaching the op amp inputs;  
Figure 4-2 shows one approach to protecting these  
inputs.  
4.0  
APPLICATION INFORMATION  
The MCP6411 op amp is manufactured using  
Microchip’s state-of-the-art CMOS process. This op  
amp is unity gain stable and suitable for a wide range  
of general-purpose applications.  
VDD  
4.1  
Rail-to-Rail Input  
D1 D2  
4.1.1  
PHASE REVERSAL  
V1  
VOUT  
The MCP6411 op amp is designed to prevent phase  
reversal, when the input pins exceed the supply  
voltages. Figure 2-32 shows the input voltage  
exceeding the supply voltage with no phase reversal.  
MCP6411  
V2  
4.1.2  
INPUT VOLTAGE LIMITS  
FIGURE 4-2:  
Protecting the Analog  
Inputs.  
In order to prevent damage and/or improper operation  
of the amplifier, the circuit must limit the voltages at the  
input pins (see Section 1.1, Absolute Maximum  
Ratings †).  
A significant amount of current can flow out of the  
inputs when the Common mode voltage (VCM) is below  
ground (VSS); see Figure 2-34.  
The Electrostatic Discharge (ESD) protection on the  
inputs can be depicted as shown in Figure 4-1. This  
structure was chosen to protect the input transistors  
against many, but not all, overvoltage conditions, and  
to minimize the input bias current (IB).  
4.1.3  
INPUT CURRENT LIMITS  
In order to prevent damage and/or improper operation  
of the amplifier, the circuit must limit the currents into  
the input pins (see Section 1.1, Absolute Maximum  
Ratings †).  
Figure 4-3 shows one approach to protecting these  
inputs. The resistors R1 and R2 limit the possible  
currents in or out of the input pins (and the ESD diodes,  
D1 and D2). The diode currents will go through either  
Bond  
VDD  
Pad  
VDD or VSS.  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VIN+  
VIN–  
VDD  
Bond  
Pad  
D1 D2  
R1  
VSS  
V1  
V2  
VOUT  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
MCP6411  
R2  
The input ESD diodes clamp the inputs when they try  
to go more than one diode drop below VSS. They also  
clamp any voltages that go well above VDD; their  
breakdown voltage is high enough to allow normal  
operation, but not low enough to protect against slow  
overvoltage (beyond VDD) events. Very fast ESD  
events that meet the spec are limited so that damage  
does not occur.  
VSS – min(V1, V2)  
2 mA  
min(R1,R2) >  
min(R1,R2) >  
max(V1,V2) – VDD  
2 mA  
FIGURE 4-3:  
Protecting the Analog  
Inputs.  
2017 Microchip Technology Inc.  
DS20005791B-page 17  
MCP6411  
4.1.4  
NORMAL OPERATION  
100000  
10000  
1000  
100  
The input stage of the MCP6411 op amp uses two  
differential input stages in parallel. One operates at a  
low common mode input voltage (VCM), while the other  
operates at a high VCM. With this topology, the device  
operates with a VCM up to 300 mV above VDD and  
300 mV below VSS. The input offset voltage is  
measured at VCM = VSS – 0.3V and VDD + 0.3V to  
ensure proper operation.  
VDD = 5.5 V  
RL = 100 kȍ  
GN:  
1 V/V  
2 V/V  
5 V/V  
10  
The transition between the input stages occurs when  
1
VCM is near VDD – 0.6V (see Figures 2-3 and 2-4). For  
10p  
100p  
1n  
10n  
0.1μ  
Normalized Load Capacitance; CL/GN (F)  
the best distortion performance and gain linearity, with  
noninverting gains, avoid this region of operation.  
FIGURE 4-5:  
Recommended R  
Values  
ISO  
for Capacitive Loads.  
4.2  
Rail-to-Rail Output  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable.  
The output voltage range of the MCP6411 op amp is  
0.0025V (typical) and 5.497V (typical) when  
RL = 25 kis connected to VDD/2 and VDD = 5.5V.  
Refer to Figures 2-24 and 2-26 for more information.  
4.4  
Supply Bypass  
4.3  
Capacitive Loads  
The MCP6411 op amp’s power supply pin (VDD for  
single-supply) should have a local bypass capacitor  
(i.e., 0.01 μF to 0.1 μF) within 2 mm for good high  
frequency performance. It can use a bulk capacitor  
(i.e., 1 μF or larger) within 100 mm to provide large,  
slow currents. This bulk capacitor can be shared with  
other analog parts.  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases, and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. While a unity-gain buffer (G = +1 V/V) is the  
most sensitive to the capacitive loads, all gains show  
the same general behavior.  
4.5  
PCB Surface Leakage  
When driving large capacitive loads with the MCP6411  
op amp (e.g., > 60 pF when G = +1 V/V), a small series  
resistor at the output (RISO in Figure 4-5) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitance load.  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012. A 5V difference would  
cause 5 pA of current to flow, which is greater than the  
MCP6411’s bias current at +25°C (±1 pA, typical).  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-6.  
RISO  
VOUT  
MCP6411  
+
VIN  
CL  
Guard Ring  
VIN– VIN+  
VSS  
FIGURE 4-4:  
Output Resistor, R  
ISO  
Stabilizes Large Capacitive Loads.  
Figure 4-5 gives the recommended RISO values for the  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit's noise gain. For noninverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
FIGURE 4-6:  
for Inverting Gain.  
Example Guard Ring Layout  
DS20005791B-page 18  
2017 Microchip Technology Inc.  
MCP6411  
1. Noninverting Gain and Unity-Gain Buffer:  
4.6  
Electromagnetic Interference  
a) Connect the noninverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
Rejection Ratio (EMIRR)  
Definitions  
The electromagnetic interference (EMI) is the  
disturbance that affects an electrical circuit due to  
either electromagnetic induction or electromagnetic  
radiation emitted from an external source.  
b) Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
Common mode input voltage.  
2. Inverting Gain and Transimpedance Gain  
Amplifiers (convert current to voltage, such as  
photo detectors):  
The parameter which describes the EMI robustness of  
an op amp is the Electromagnetic Interference  
Rejection Ratio (EMIRR). It quantitatively describes the  
effect that an RF interfering signal has on op amp  
performance. Internal passive filters make EMIRR  
better compared with older parts. This means that, with  
good PCB layout techniques, your EMC performance  
should be better.  
a) Connect the guard ring to the noninverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
b) Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
EMIRR is defined as:  
EQUATION 4-1:  
V RF  
EMIRRdB= 20 log --------------  
VOS  
Where:  
VRF = Peak Amplitude of  
RF Interfering Signal (VPK  
)
VOS = Input Offset Voltage Shift (V)  
4.7  
Application Circuits  
4.7.1  
CARBON MONOXIDE GAS SENSOR  
A carbon monoxide (CO) gas detector is a device that  
detects the presence of carbon monoxide gas. Usually  
this is battery-powered and transmits audible and  
visible warnings.  
The sensor responds to CO gas by reducing its  
resistance proportionaly to the amount of CO present in  
the air exposed to the internal element. On the sensor  
module, this variable is part of a voltage divider formed  
by the internal element and potentiometer R1. The  
output of this voltage divider is fed into the noninverting  
inputs of the MCP6411 op amp. The device is  
configured as a buffer with unity gain and is used to  
provide a nonloaded test point for sensor sensitivity.  
Because this sensor can be corrupted by parasitic elec-  
tromagnetic signals, the MCP6411 op amp can be used  
for conditioning this sensor.  
2017 Microchip Technology Inc.  
DS20005791B-page 19  
MCP6411  
In Figure 4-7, the variable resistor is used to calibrate  
the sensor in different environments.  
4.7.3  
BATTERY CURRENT SENSING  
The MCP6411 op amp’s Common Mode Input Range,  
which goes 0.3V beyond both supply rails, supports its  
use in high-side and low-side battery current sensing  
applications. The low quiescent current helps prolong  
battery life, and the rail-to-rail output supports detection  
of low currents.  
.
VDD  
VREF  
VDD  
-
VOUT  
MCP641  
+
Figure 4-9 shows a high-side battery current sensor  
circuit. The 10resistor is sized to minimize power  
losses. The battery current (IDD) through the 10  
resistor causes its top terminal to be more negative  
than the bottom terminal. This keeps the Common  
mode input voltage of the op amp below VDD, which is  
within its allowed range. The output of the op amp will  
also be below VDD, within its Maximum Output Voltage  
Swing specification.  
R1  
FIGURE 4-7:  
CO Gas Sensor Circuit.  
4.7.2  
PRESSURE SENSOR AMPLIFIER  
The MCP6411 is well-suited for conditioning sensor  
signals in battery-powered applications. Many sensors  
are configured as Wheatstone bridges. Strain gauges  
and pressure sensors are two common examples.  
VDD  
VDD  
VOUT  
Figure 4-8 shows a strain gauge amplifier, using the  
MCP6411 Enhanced EMI protection device. The  
difference amplifier with EMI robustness op amp is  
used to amplify the signal from the Wheatstone bridge.  
The two op amps, configured as buffers and connected  
at outputs of pressure sensors, prevents resistive  
loading of the bridge by resistor R1 and R2. Resistors  
R1,R2 and R3,R5 need to be chosen with very low  
tolerance to match the CMRR.  
10  
IDD  
MCP6411  
VSS  
1.8V  
to  
5.5V  
100 k  
1 M  
OUT  
V
– V  
DD  
I
= -----------------------------------------  
DD  
10 V/V  10  
High-Side Battery Current Sensor  
VDD  
VDD  
R3  
FIGURE 4-9:  
Battery Current Sensing.  
R+∆R  
R-∆R  
10 k  
MCP641  
-
+
VDD  
R1  
100ꢀ  
Vb  
VOUT  
MCP6ꢁꢀꢀ  
-
Va  
+
R2  
VDD  
100ꢀ  
R5  
-
+
10 kꢀ  
R-∆R  
R+R  
MCP641  
100k  
V OUT = V a Vb  ----------------  
1k  
Strain Gauge  
FIGURE 4-8:  
Pressure Sensor Amplifier.  
DS20005791B-page 20  
2017 Microchip Technology Inc.  
MCP6411  
5.4  
Application Notes  
5.0  
DESIGN AIDS  
The following Microchip Analog Design Note and  
Application Notes are available on the Microchip web  
site at www.microchip.com/appnotes, and are  
recommended as supplemental reference resources.  
Microchip provides the basic design tools needed for  
the MCP6411 op amp.  
®
5.1  
FilterLab Software  
ADN003 – “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
Microchip’s FilterLab software is an innovative software  
tool that simplifies analog active filter design using op  
amps. Available at no cost from the Microchip web site  
at www.microchip.com/filterlab, the FilterLab design  
tool provides full schematic diagrams of the filter circuit  
with component values. It also outputs the filter circuit  
in SPICE format, which can be used with the macro  
model to simulate the actual filter performance.  
AN722 – “Operational Amplifier Topologies and  
DC Specifications”, DS00722  
AN723 – “Operational Amplifier AC Specifications  
and Applications”, DS00723  
AN884 – “Driving Capacitive Loads With Op  
Amps”, DS00884  
AN990 – “Analog Sensor Conditioning  
Circuits – An Overview”, DS00990  
5.2  
Microchip Advanced Part Selector  
(MAPS)  
AN1177 – “Op Amp Precision Design: DC Errors”,  
DS01177  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify the Microchip  
devices that fit a particular design requirement.  
Available at no cost from the Microchip website at  
www.microchip.com/ maps, MAPS is an overall  
selection tool for Microchip’s product portfolio that  
includes Analog, Memory, MCUs and DSCs. Using this  
tool, you can define a filter to sort features for a  
parametric search of devices and export side-by-side  
technical comparison reports. Helpful links are also  
provided for data sheets, purchase and sampling of  
Microchip parts.  
AN1228 – “Op Amp Precision Design: Random  
Noise”, DS01228  
• AN1297 “Microchip’s Op Amp SPICE Macro  
Models”, DS01297  
• AN1332: “Current Sensing Circuit Concepts and  
Fundamentals”’ DS01332  
AN1494: “Using MCP6491 Op Amps for Photode-  
tection Applications”’ DS01494  
These application notes and others are listed in the  
design guide:  
“Signal Chain Design Guide”, DS21825  
5.3  
Analog Demonstration and  
Evaluation Boards  
Microchip offers  
a broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market.  
For a complete listing of these boards and their  
corresponding user’s guides and technical  
information, visit the Microchip web site at  
www.microchipdirect.com.  
Some boards that are especially useful are:  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
• MCP6XXX Amplifier Evaluation Board 3  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
• 5/6-Pin SOT-23 Evaluation Board, P/N VSUPEV2  
2017 Microchip Technology Inc.  
DS20005791B-page 21  
MCP6411  
NOTES:  
DS20005791B-page 22  
2017 Microchip Technology Inc.  
MCP6411  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
Example:  
5-Lead SC70  
41125  
5-Lead SOT-23  
Example:  
64117  
22256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC designator for Matte Tin (Sn)  
e
3
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
Note: In the event the full Microchip part number cannot be marked on one line, it  
will be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2017 Microchip Technology Inc.  
DS20005791B-page 23  
MCP6411  
DS20005791B-page 24  
2017 Microchip Technology Inc.  
MCP6411  
2017 Microchip Technology Inc.  
DS20005791B-page 25  
MCP6411  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
0.20 C 2X  
D
e1  
A
D
N
E/2  
E1/2  
E1  
E
(DATUM D)  
(DATUM A-B)  
0.15 C D  
2X  
NOTE 1  
1
2
e
B
NX b  
0.20  
C A-B D  
TOP VIEW  
A
A2  
A1  
A
0.20 C  
SEATING PLANE  
A
SEE SHEET 2  
C
SIDE VIEW  
Microchip Technology Drawing C04-028D [OT] Sheet 1 ofꢀꢁ  
DS20005791B-page 26  
2017 Microchip Technology Inc.  
MCP6411  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
c
T
L
L1  
VIEW A-A  
SHEET 1  
Units  
MILLIMETERS  
Dimension Limits  
MIN  
NOM  
MAX  
Number of Pins  
Pitch  
N
e
6
0.95 BSC  
Outside lead pitch  
Overall Height  
Molded Package Thickness  
Standoff  
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
e1  
A
A2  
A1  
E
E1  
D
L
1.90 BSC  
0.90  
0.89  
-
-
-
-
1.45  
1.30  
0.15  
2.80 BSC  
1.60 BSC  
2.90 BSC  
0.30  
-
0.60  
Footprint  
Foot Angle  
Lead Thickness  
Lead Width  
L1  
0.60 REF  
I
0°  
0.08  
0.20  
-
-
-
10°  
0.26  
0.51  
c
b
Notes:  
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed 0.25mm per side.  
2. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-091D [OT] Sheet 2 ofꢀꢁ  
2017 Microchip Technology Inc.  
DS20005791B-page 27  
MCP6411  
5-Lead Plastic Small Outline Transistor (OT) [SOT23]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
X
SILK SCREEN  
5
Y
Z
C
G
1
2
E
GX  
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Contact Pitch  
E
C
X
0.95 BSC  
2.80  
Contact Pad Spacing  
Contact Pad Width (X5)  
Contact Pad Length (X5)  
Distance Between Pads  
Distance Between Pads  
Overall Width  
0.60  
1.10  
Y
G
GX  
Z
1.70  
0.35  
3.90  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-2091A [OT]  
DS20005791B-page 28  
2017 Microchip Technology Inc.  
MCP6411  
APPENDIX A: REVISION HISTORY  
Revision B (June 2017)  
• Minor editorial correction.  
Revision A (June 2017)  
• Original Release of this Document.  
2017 Microchip Technology Inc.  
DS20005791B-page 29  
MCP6411  
NOTES:  
DS20005791B-page 30  
2017 Microchip Technology Inc.  
MCP6411  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
(1)  
Examples:  
PART NO.  
Device  
[X]  
-X  
/XX  
a)  
b)  
MCP6411T-E/LTY:  
MCP6411T-E/OT:  
Tape and Reel,  
Tape and Reel Temperature Package  
Option  
Extended Temperature,  
5LD SC-70 package  
Tape and Reel,  
Range  
Extended Temperature,  
5LD SOT-23 package  
Device:  
MCP6411T:  
Single Op Amp (Tape and Reel)  
(SC70, SOT-23)  
Temperature  
Range:  
E
= -40°C to +125°C (Extended)  
Note 1:  
Tape and Reel identifier only appears in  
the catalog part number description. This  
identifier is used for ordering purposes  
and is not printed on the device package.  
Check with your Microchip Sales Office  
for package availability with the Tape and  
Reel option.  
Package:  
LTY* = Plastic Package (SC70), 5-lead  
OT = Plastic Small Outline Transistor (SOT-23), 5-lead  
* Y = Nickel palladium gold manufacturing designator. Only  
available on the TDFN package.  
2017 Microchip Technology Inc.  
DS20005791B-page 31  
MCP6411  
NOTES:  
DS20005791B-page 32  
2017 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, AnyRate, AVR,  
AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory,  
CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ,  
KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus,  
maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip  
Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST  
Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
ClockWorks, The Embedded Control Solutions Company,  
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,  
mTouch, Precision Edge, and Quiet-Wire are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, CryptoAuthentication, CryptoCompanion,  
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average  
Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial  
Programming, ICSP, Inter-Chip Connectivity, JitterBlocker,  
KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF,  
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach,  
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,  
PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple  
Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI,  
SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC,  
USBCheck, VariSense, ViewSpan, WiperLock, WirelessDNA, and  
ZENA are trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
Silicon Storage Technology is a registered trademark of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology  
Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2017, Microchip Technology Incorporated, All Rights Reserved.  
ISBN: 978-1-5224-1879-5  
2017 Microchip Technology Inc.  
DS20005791B-page 33  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Finland - Espoo  
Tel: 358-9-4520-820  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
France - Saint Cloud  
Tel: 33-1-30-60-70-00  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Garching  
Tel: 49-8931-9700  
Germany - Haan  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
Tel: 49-2129-3766400  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
Germany - Heilbronn  
Tel: 49-7131-67-3636  
China - Dongguan  
Tel: 86-769-8702-9880  
Germany - Karlsruhe  
Tel: 49-721-625370  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Guangzhou  
Tel: 86-20-8755-8029  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Korea - Seoul  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Israel - Ra’anana  
Tel: 972-9-744-7705  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Detroit  
Novi, MI  
Tel: 248-848-4000  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Houston, TX  
Tel: 281-894-5983  
Italy - Padova  
Tel: 39-049-7625286  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
China - Shanghai  
Tel: 86-21-3326-8000  
Fax: 86-21-3326-8021  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Norway - Trondheim  
Tel: 47-7289-7561  
Los Angeles  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Poland - Warsaw  
Tel: 48-22-3325737  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Romania - Bucharest  
Tel: 40-21-407-87-50  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Raleigh, NC  
Tel: 919-844-7510  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
DS20005791B-page 34  
2017 Microchip Technology Inc.  
11/07/16  

相关型号:

MCP6411T

1 MHz Operational Amplifier with EMI Filtering
MICROCHIP
MICROCHIP
MICROCHIP

MCP6421

4.4 μA, 90 kHz Op Amp
MICROCHIP
MICROCHIP

MCP6421T-E/OTVAO

Operational Amplifier, 1 Func, 1000uV Offset-Max, CMOS, PDSO5
MICROCHIP

MCP6421_V01

1 MHz Operational Amplifier with EMI Filtering
MICROCHIP

MCP6422

The Microchip’s MCP6421/2/4 operational amplifiers (op amps) has low input bias current (1 pA, typ
MICROCHIP
MICROCHIP
MICROCHIP
MICROCHIP

MCP6422T-E/MSVAO

Operational Amplifier, 2 Func, 1000uV Offset-Max, CMOS, PDSO8
MICROCHIP