MCP6409T-H/SLVAO [MICROCHIP]

Operational Amplifier, 4 Func, 4500uV Offset-Max, CMOS, PDSO14;
MCP6409T-H/SLVAO
型号: MCP6409T-H/SLVAO
厂家: MICROCHIP    MICROCHIP
描述:

Operational Amplifier, 4 Func, 4500uV Offset-Max, CMOS, PDSO14

光电二极管
文件: 总44页 (文件大小:2055K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MCP6401/1R/1U/2/4/6/7/9  
1 MHz, 45 µA Op Amps  
Description  
Features  
• Low Quiescent Current: 45 µA (typical)  
• Gain Bandwidth Product: 1 MHz (typical)  
• Rail-to-Rail Input and Output  
• Supply Voltage Range: 1.8V to 6.0V  
• Unity Gain Stable  
The  
Microchip  
Technology  
Inc.  
MCP6401/1R/1U/2/4/6/7/9 family of operational  
amplifiers (op amps) has low quiescent current  
(45 µA, typical) and rail-to-rail input and output  
operation. This family is unity gain stable and has a  
gain bandwidth product of 1 MHz (typical). These  
devices operate with a power supply voltage of 1.8V to  
6.0V. These features make the family of op amps well  
suited for single-supply, battery-powered applications.  
• Extended Temperature Ranges:  
- -40°C to +125°C (E temp)  
- -40°C to +150°C (H temp)  
• No Phase Reversal  
The MCP6401/1R/1U/2/4/6/7/9 family is designed with  
Microchip’s advanced CMOS process and offered in  
single, dual and quad packages. The devices are  
available in two extended temperature ranges (E temp  
and H temp) with different package types, which  
makes them well-suited for automotive and industrial  
applications.  
Applications  
• Portable Equipment  
• Battery Powered System  
• Medical Instrumentation  
• Automotive Electronics  
• Data Acquisition Equipment  
• Sensor Conditioning  
• Analog Active Filters  
Design Aids  
• SPICE Macro Models  
• FilterLab® Software  
• Microchip Advanced Part Selector (MAPS)  
• Analog Demonstration and Evaluation Boards  
• Application Notes  
Typical Application  
R2  
D2  
VIN  
R1  
VOUT  
MCP6401  
D1  
Precision Half-Wave Rectifier  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 1  
MCP6401/1R/1U/2/4/6/7/9  
E Temp Package Types  
H Temp Package Types  
MCP6402  
MCP6401  
MCP6401R  
MCP6401  
SC70-5, SOT-23-5  
SOT-23-5  
SOT-23-5  
SOIC  
V
1
2
3
5
4
V
V
OUT  
V
1
2
3
5
4
1
2
3
5
4
V
V
V
V
V
OUT  
DD  
8 V  
DD  
OUT  
1
2
3
4
DD  
SS  
OUTA  
V
V
V
SS  
DD  
SS  
V
+
7
6
V
V
INA  
OUTB  
V
+
V
IN  
V
+
IN  
V
+
V
IN  
IN  
IN  
IN  
INA  
INB  
V
5 V  
+
SS  
INB  
MCP6402  
MCP6401U  
MCP6404  
MCP6406  
SOIC  
SOT-23-5  
SOIC  
SOT-23-5  
V
8 V  
1
2
3
4
OUTA  
DD  
V
+
1
2
3
5
4
V
IN  
DD  
V
1
2
3
5 V  
DD  
V
V
V
V
V
14  
13  
12  
11  
OUT  
1
2
3
4
OUTA  
OUTD  
V
+
7
6
V
V
INA  
V
SS  
OUTB  
V
SS  
V
INA  
IND  
V
V
OUT  
V
INA  
INB  
IN  
4
V –  
IN  
V
+
V
+
+
IN  
INA  
IND  
V
5 V  
+
SS  
INB  
V
DD  
SS  
V
V
+
V
V
V
+
10  
9
5
6
7
INB  
INC  
MCP6402  
MCP6404  
INB  
INC  
SOIC, TSSOP  
2x3 TDFN  
VOUTB  
8
OUTC  
V
V
14  
1
2
3
4
OUTA  
OUTD  
V
1
8 V  
DD  
OUTA  
V
+
V
V
V
+
13  
12  
11  
INA  
IND  
IND  
SS  
V
V
2
7
OUTB  
EP  
9
INA  
MCP6409  
MCP6407  
V
INA  
V
+
V
3
4
6
5
INA  
INB  
SOIC  
SOIC  
V
DD  
V
V
+
SS  
INB  
V
V
V
V
V
14  
13  
12  
11  
1
2
3
4
OUTA  
OUTD  
V
8 V  
1
OUTA  
DD  
V
V
+
V
V
V
+
10  
9
5
6
7
INB  
INC  
V
INA  
IND  
V
+
2
3
4
7
6
V
V
INA  
OUTB  
INB  
INC  
V
+
+
INA  
IND  
V
INA  
INB  
VOUTB  
8
OUTC  
V
DD  
SS  
V
5 V  
+
SS  
INB  
V
V
+
V
V
V
+
10  
9
5
6
7
INB  
INC  
* Includes Exposed Thermal Pad (EP); see Table 3-1.  
E temp: -40°C to +125°C  
INB  
INC  
VOUTB  
8
OUTC  
H temp: -40°C to +150°C  
DS22229D-page 2  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
† Notice: Stresses above those listed under “Absolute  
Maximum Ratings” may cause permanent damage to  
the device. This is a stress rating only and functional  
operation of the device at those or any other conditions  
above those indicated in the operational listings of this  
specification is not implied. Exposure to maximum rat-  
ing conditions for extended periods may affect device  
reliability.  
1.0  
1.1  
ELECTRICAL  
CHARACTERISTICS  
Absolute Maximum Ratings †  
V
– V ........................................................................7.0V  
SS  
DD  
Current at Input Pins.....................................................±2 mA  
Analog Inputs (V +, V -)†† .......... V – 1.0V to V + 1.0V  
IN  
IN  
SS  
DD  
†† See Section 4.1.2 “Input Voltage Limits”.  
All Other Inputs and Outputs ......... V – 0.3V to V + 0.3V  
SS  
DD  
Difference Input Voltage ...................................... |V – V  
|
SS  
DD  
Output Short-Circuit Current ................................Continuous  
Current at Output and Supply Pins ............................±30 mA  
Storage Temperature ....................................-65°C to +150°C  
Maximum Junction Temperature (T )..........................+155°C  
J
ESD Protection on All Pins (HBM; MM; CDM)....≥ 4 kV; 300V,  
1500V  
1.2  
MCP6401/1R/1U/2/4 Electrical Specifications  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8v to +6.0v, VSS = GND,  
VCM = VDD/2, VOUT VDD/2, VL = VDDD/2 and RL = 100 kΩ to VL (Refer to Figure 1-1).  
Parts  
(Note 1)  
Parameters  
Sym  
Min  
Typ  
Max  
Units Temp  
Conditions  
Input Offset  
Input Offset Voltage  
VOS  
-4.5  
±0.8  
±1.0  
±1.5  
±2.0  
+4.5  
mV  
E, H  
E
VCM = VSS  
mV +125°C  
mV +150°C  
H
Input Offset Drift with ΔVOS/ΔTA  
µV/°C -40°C  
E
VCM = VSS  
Temperature  
to  
+125°C  
±2.5  
µV/°C -40°C  
to  
H
+150°C  
Power Supply  
Rejection Ratio  
PSRR  
63  
78  
75  
73  
dB  
E, H  
E
VCM = VSS  
dB +125°C  
dB +150°C  
H
Input Bias Current and Impedance  
Input Bias Current  
IB  
1
30  
800  
7
100  
pA  
E, H  
E, H  
E
pA  
+85°C  
pA +125°C  
nA +150°C  
pA  
H
Input Offset Current  
IOS  
1
E, H  
E, H  
E
5
pA  
+85°C  
20  
45  
pA +125°C  
pA +150°C  
H
Note 1: E part stands for the one whose operating temperature range is from -40°C to +125°C and H part stands  
for the one whose operating temperature range is from -40°C to +150°C.  
2: Figure 2-14 shows how VCMR changes across temperature.  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 3  
MCP6401/1R/1U/2/4/6/7/9  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8v to +6.0v, VSS = GND,  
VCM = VDD/2, VOUT VDD/2, VL = VDDD/2 and RL = 100 kΩ to VL (Refer to Figure 1-1).  
Parts  
(Note 1)  
Parameters  
Sym  
Min  
Typ  
Max  
Units Temp  
Conditions  
Common Mode Input  
Impedance  
ZCM  
1013||6  
Ω||pF  
E, H  
Differential Input  
Impedance  
ZDIFF  
1013||6  
Ω||pF  
E, H  
Common Mode  
Common Mode Input  
Voltage Range  
(Note 2)  
VCMR  
VSS-0.20  
71  
VDD+0.20  
VDD+0.05  
VDD  
V
E, H  
E
VDD = 1.8V  
VSS-0.05  
V
V
+125°C  
+150°C  
VSS  
H
VSS-0.30  
SS-0.15  
VDD+0.30  
VDD+0.15  
VDD+0.10  
V
E, H  
E
VDD = 6.0V  
V
V
+125°C  
+150°C  
VSS-0.10  
56  
V
H
Common Mode  
Rejection Ratio  
CMRR  
dB  
E, H  
VCM = -0.2V to 2.0V,  
VDD = 1.8V  
63  
68  
65  
78  
76  
75  
dB +125°C  
dB +150°C  
dB  
E
H
VCM = -0.05V to 1.85V,  
VDD = 1.8V  
VCM = 0V to 1.8V,  
VDD = 1.8V  
E, H  
E
VCM = -0.3V to 6.3V,  
VDD = 6.0V  
dB +125°C  
dB +150°C  
VCM = -0.15V to 6.15V,  
VDD = 6.0V  
H
VCM = -0.1V to 6.1V,  
VDD = 6.0V  
Open-Loop Gain  
DC Open-Loop Gain  
(Large Signal)  
AOL  
90  
110  
105  
100  
dB  
E, H  
E
VOUT = 0.3V to VDD  
0.3V,  
VCM = VSS  
-
dB +125°C  
dB +150°C  
H
Output  
High-Level Output  
Voltage  
VOH  
1.790  
1.792  
1.788  
1.785  
5.985  
5.980  
5.975  
0.008  
0.012  
0.015  
0.015  
0.020  
0.025  
V
E, H  
E
VDD = 1.8V  
RL = 10 kΩ  
0.5V input overdrive  
V
V
V
V
V
V
V
V
V
V
V
+125°C  
+150°C  
H
5.980  
E, H  
E
VDD = 6.0V  
RL = 10 kΩ  
0.5V input overdrive  
+125°C  
+150°C  
H
Low-Level Output  
Voltage  
VOL  
0.010  
E, H  
E
VDD = 1.8V  
RL = 10 kΩ  
0.5V input overdrive  
+125°C  
+150°C  
H
0.020  
E, H  
E
VDD = 6.0V  
RL = 10 kΩ  
0.5V input overdrive  
+125°C  
+150°C  
H
Note 1: E part stands for the one whose operating temperature range is from -40°C to +125°C and H part stands  
for the one whose operating temperature range is from -40°C to +150°C.  
2: Figure 2-14 shows how VCMR changes across temperature.  
DS22229D-page 4  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8v to +6.0v, VSS = GND,  
CM = VDD/2, VOUT VDD/2, VL = VDDD/2 and RL = 100 kΩ to VL (Refer to Figure 1-1).  
V
Parts  
(Note 1)  
Parameters  
Sym  
Min  
Typ  
Max  
Units Temp  
Conditions  
Output Short-Circuit  
Current  
ISC  
±5  
mA  
mA  
E, H  
E, H  
VDD = 1.8V  
±15  
VDD = 6.0V  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.8  
20  
45  
55  
60  
6.0  
70  
V
E, H  
E, H  
E
Quiescent Current  
per Amplifier  
µA  
IO = 0, VDD = 5.0V  
VCM = 0.2VDD  
µA +125°C  
µA +150°C  
H
Note 1: E part stands for the one whose operating temperature range is from -40°C to +125°C and H part stands  
for the one whose operating temperature range is from -40°C to +150°C.  
2: Figure 2-14 shows how VCMR changes across temperature.  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8 to +6.0V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF (Refer to Figure 1-1).  
Parameters  
AC Response  
Sym  
Min  
Typ  
Max  
Units  
Parts  
Conditions  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
1
MHz  
°
E, H  
E, H  
E, H  
65  
0.5  
G = +1 V/V  
Slew Rate  
SR  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
3.6  
28  
µVp-p  
nV/Hz  
fA/Hz  
E, H  
E, H  
E, H  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
0.6  
f = 1 kHz  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +6.0V and VSS = GND.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Operating Temperature Range  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+150  
+155  
°C  
°C  
°C  
E temp parts (Note 1)  
H temp parts (Note 1)  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SC70  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 8L-2x3 TDFN  
Thermal Resistance, 14L-SOIC  
Thermal Resistance, 14L-TSSOP  
θJA  
θJA  
θJA  
θJA  
θJA  
θJA  
331  
220.7  
149.5  
52.5  
95.3  
100  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Note 1: The internal junction temperature (TJ) must not exceed the absolute maximum specification of +155°C.  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 5  
MCP6401/1R/1U/2/4/6/7/9  
1.3  
MCP6406/7/9 Electrical Specifications  
DC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND,  
VCM = VDD/2, VOUT » VDD/2, VL = VDD/2 and RL = 100 kΩ to VL (Refer to Figure 1-1).  
Parts  
(Note 1)  
Parameters  
Sym  
Min  
Typ  
Max  
Units Temp  
Conditions  
Input Offset  
Input Offset Voltage  
VOS  
-4.5  
-5.0  
-5.5  
+4.5  
+5.0  
+5.5  
mV  
E, H  
E
VCM = VSS  
±1.0  
±1.5  
±2.0  
mV +125°C  
mV +150°C  
H
Input Offset Drift  
with Temperature  
ΔVOS/DTA  
µV/°C -40°C  
E
VCM = VSS  
to  
+125°C  
±2.5  
µV/°C -40°C  
H
to  
+150°C  
Power Supply  
Rejection Ratio  
PSRR  
63  
60  
58  
78  
75  
73  
dB  
E, H  
E
V
CM = VSS  
dB  
dB  
+125°C  
+150°C  
H
Input Bias Current and Impedance  
Input Bias Current  
IB  
±1  
30  
100  
pA  
pA  
E, H  
E, H  
E
+85°C  
+125°C  
+150°C  
800  
7
2000  
12  
pA  
nA  
H
Input Offset Current  
IOS  
1
pA  
E, H  
E, H  
E
5
pA  
+85°C  
+125°C  
+150°C  
20  
pA  
45  
1013||6  
pA  
H
Common Mode  
Input Impedance  
ZCM  
Ω||pF  
E, H  
Differential Input  
Impedance  
ZDIFF  
1013||6  
Ω||pF  
E, H  
Common Mode  
Common Mode  
Input Voltage Range  
(Note 2)  
VCMR  
VSS-0.20  
VSS-0.05  
VSS  
VDD+0.20  
VDD+0.05  
VDD  
V
V
V
V
V
V
E, H  
E
VDD = 1.8V  
VDD = 6.0V  
+125°C  
+150°C  
H
VSS-0.30  
VSS-0.15  
VDD+0.30  
VDD+0.15  
VDD+0.10  
E, H  
E
+125°C  
+150°C  
VSS-0.10  
H
Note 1: E part stands for the one whose operating temperature range is from -40°C to +125°C and H part stands  
for the one whose operating temperature range is from -40°C to +150°C.  
2: Figure 2-14 shows how VCMR changes across temperature.  
DS22229D-page 6  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
DC ELECTRICAL SPECIFICATIONS (CONTINUED)  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND,  
CM = VDD/2, VOUT » VDD/2, VL = VDD/2 and RL = 100 kΩ to VL (Refer to Figure 1-1).  
V
Parts  
(Note 1)  
Parameters  
Sym  
Min  
Typ  
Max  
Units Temp  
Conditions  
Common Mode  
Rejection Ratio  
CMRR  
56  
71  
dB  
E, H  
VCM = -0.2V to 2.0V,  
VDD = 1.8V  
53  
50  
63  
61  
60  
68  
65  
78  
76  
75  
dB  
dB  
dB  
dB  
dB  
+125°C  
+150°C  
E
VCM = -0.05V to 1.85V,  
VDD = 1.8V  
H
VCM = 0V to 1.8V,  
VDD = 1.8V  
E, H  
E
V
V
CM = -0.3V to 6.3V,  
DD = 6.0V  
+125°C  
+150°C  
VCM = -0.15V to 6.15V,  
VDD = 6.0V  
H
VCM = -0.1V to 6.1V,  
VDD = 6.0V  
Open-Loop Gain  
DC Open-Loop Gain  
(Large Signal)  
AOL  
90  
88  
85  
110  
105  
100  
dB  
dB  
dB  
E, H  
E
VOUT = 0.3V to  
VDD-0.3V, VCM = VSS  
+125°C  
+150°C  
H
Output  
High-Level Output  
Voltage  
VOH  
1.790  
1.785  
1.782  
5.980  
5.970  
5.965  
1.792  
1.788  
1.785  
5.985  
5.980  
5.975  
0.008  
0.012  
0.015  
0.015  
0.020  
0.025  
±5  
V
V
E, H  
E
VDD = 1.8V  
RL = 10 kΩ  
0.5V input overdrive  
+125°C  
+150°C  
V
H
V
E, H  
E
VDD = 6.0V  
RL = 10 kΩ  
0.5V input overdrive  
V
+125°C  
+150°C  
V
H
Low-Level Output  
Voltage  
VOL  
0.010  
0.015  
0.018  
0.020  
0.030  
0.035  
V
E, H  
E
VDD = 1.8V  
RL = 10 kΩ  
0.5V input overdrive  
V
+125°C  
+150°C  
V
H
V
E, H  
E
VDD = 6.0V  
RL = 10 kΩ  
0.5V input overdrive  
V
+125°C  
+150°C  
V
H
Output Short-Circuit  
Current  
ISC  
mA  
mA  
E, H  
E, H  
VDD = 1.8V  
±15  
VDD = 6.0V  
Power Supply  
Supply Voltage  
VDD  
IQ  
1.8  
20  
30  
35  
45  
55  
60  
6.0  
70  
80  
90  
V
E, H  
E, H  
E
Quiescent Current  
per Amplifier  
µA  
µA  
µA  
IO = 0, VDD = 5.0V  
CM = 0.2VDD  
V
+125°C  
+150°C  
H
Note 1: E part stands for the one whose operating temperature range is from -40°C to +125°C and H part stands  
for the one whose operating temperature range is from -40°C to +150°C.  
2: Figure 2-14 shows how VCMR changes across temperature.  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 7  
MCP6401/1R/1U/2/4/6/7/9  
AC ELECTRICAL SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, TA = +25°C, VDD = +1.8 to +6.0V, VSS = GND, VCM = VDD/2,  
VOUT VDD/2, VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF (Refer to Figure 1-1).  
Parameters  
AC Response  
Sym  
Min  
Typ  
Max  
Units  
Part  
Conditions  
Gain Bandwidth Product  
Phase Margin  
GBWP  
PM  
1
MHz  
°
E, H  
E, H  
E, H  
65  
0.5  
G = +1 V/V  
Slew Rate  
SR  
V/µs  
Noise  
Input Noise Voltage  
Input Noise Voltage Density  
Input Noise Current Density  
Eni  
eni  
ini  
3.6  
28  
µVp-p  
nV/Hz  
fA/Hz  
E, H  
E, H  
E, H  
f = 0.1 Hz to 10 Hz  
f = 1 kHz  
0.6  
f = 1 kHz  
TEMPERATURE SPECIFICATIONS  
Electrical Characteristics: Unless otherwise indicated, VDD = +1.8V to +6.0V and VSS = GND.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Temperature Ranges  
Operating Temperature Range  
TA  
TA  
TA  
-40  
-40  
-65  
+125  
+150  
+155  
°C  
°C  
°C  
E temp parts (Note 1)  
H temp parts (Note 1)  
Storage Temperature Range  
Thermal Package Resistances  
Thermal Resistance, 5L-SOT-23  
Thermal Resistance, 8L-SOIC  
Thermal Resistance, 14L-SOIC  
θJA  
θJA  
θJA  
220.7  
149.5  
95.3  
°C/W  
°C/W  
°C/W  
Note 1: The internal junction temperature (TJ) must not exceed the absolute maximum specification of +155°C.  
1.4  
Test Circuits  
CF  
6.8 pF  
The circuit used for most DC and AC tests is shown in  
Figure 1-1. This circuit can independently set VCM and  
VOUT; see Equation 1-1. Note that VCM is not the  
circuit’s Common Mode voltage ((VP + VM)/2), and that  
VOST includes VOS plus the effects (on the input offset  
RG  
100 kΩ  
RF  
100 kΩ  
VDD/2  
VP  
error, VOST) of temperature, CMRR, PSRR and AOL  
.
VDD  
VIN+  
EQUATION 1-1:  
CB1  
100 nF  
CB2  
1 µF  
MCP640x  
GDM = RF RG  
VCM = (VP + VDD 2) 2  
VOST = VIN– VIN+  
VIN–  
VOUT = (VDD 2) + (VP VM) + VOST(1 + GDM  
)
VOUT  
VM  
RL  
CL  
RG  
100 kΩ  
RF  
100 kΩ  
Where:  
100 kΩ 60 pF  
GDM = Differential Mode Gain  
(V/V)  
(V)  
CF  
6.8 pF  
VCM = Op Amp’s Common Mode  
VL  
Input Voltage  
VOST = Op Amp’s Total Input Offset  
(mV)  
FIGURE 1-1:  
Most Specifications.  
AC and DC Test Circuit for  
Voltage  
DS22229D-page 8  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
2.0  
TYPICAL PERFORMANCE CURVES  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF.  
45%  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
24%  
21%  
18%  
15%  
12%  
9%  
1760 Samples  
VCM = VSS  
TA = -40°C to +125°C  
1760 Samples  
VCM = VSS  
6%  
3%  
0%  
0%  
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
Input Offset Voltage Drift (μV/°C)  
Input Offset Voltage (mV)  
FIGURE 2-1:  
Input Offset Voltage.  
FIGURE 2-4:  
Input Offset Voltage Drift.  
50%  
45%  
24%  
21%  
1200 Samples  
1200 Samples  
VCM = VSS  
40%  
35%  
30%  
25%  
20%  
15%  
10%  
5%  
VCM = VSS  
18%  
15%  
12%  
9%  
TA = -40°C to +150°C  
TA = +125ºC  
6%  
3%  
0%  
0%  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
-10 -8 -6 -4 -2  
0
2
4
6
8
10  
Input Offset Voltage (mV)  
Input Offset Voltage Drift (μV/°C)  
FIGURE 2-5:  
Input Offset Voltage Drift.  
FIGURE 2-2:  
Input Offset Voltage.  
1000  
800  
600  
400  
200  
0
-200  
-400  
-600  
-800  
-1000  
24%  
VDD = 6.0V  
Representative  
Part  
TA = +25°C  
21%  
18%  
15%  
12%  
9%  
1200 Samples  
TA = -40°C  
VCM = VSS  
TA = +150ºC  
TA = +150°C  
TA = +125°C  
TA = +85°C  
6%  
3%  
0%  
-5 -4 -3 -2 -1  
0
1
2
3
4
5
Common Mode Input Voltage (V)  
Input Offset Voltage (mV)  
FIGURE 2-6:  
Common Mode Input Voltage with VDD = 6.0V.  
Input Offset Voltage vs.  
FIGURE 2-3:  
Input Offset Voltage.  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 9  
MCP6401/1R/1U/2/4/6/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF.  
1400  
1200  
1000  
800  
600  
400  
200  
0
-200  
-400  
-600  
-800  
1,000  
100  
10  
VDD = 1.8V  
Representative  
Part  
TA = +150°C  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
0.1  
1
10  
100
1k  
10k  
100k  
Common Mode Input Voltage (V)  
Frequency (Hz)  
FIGURE 2-7:  
Input Offset Voltage vs.  
FIGURE 2-10:  
Input Noise Voltage Density  
Common Mode Input Voltage with VDD = 1.8V.  
vs. Frequency.  
1000  
750  
40  
35  
30  
25  
20  
15  
10  
500  
250  
VDD = 6.0V  
0
VDD = 1.8V  
-250  
-500  
f = 1 kHz  
VDD = 6.0 V  
Representative Part  
5
0
-750  
-1000  
Common Mode Input Voltage (V)  
Output Voltage (V)  
FIGURE 2-8:  
Input Offset Voltage vs.  
FIGURE 2-11:  
Input Noise Voltage Density  
Output Voltage.  
vs. Common Mode Input Voltage.  
200  
100  
0
100  
Representative Part  
PSRR+  
TA = +150°C  
TA = +125°C  
90  
80  
70  
60  
50  
40  
30  
20  
Representative Part  
CMRR  
PSRR-  
-100  
-200  
-300  
-400  
-500  
TA = +85°C  
TA = +25°C  
TA = -40°C  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0  
Power Supply Voltage (V)  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
FIGURE 2-9:  
Input Offset Voltage vs.  
FIGURE 2-12:  
CMRR, PSRR vs.  
Power Supply Voltage.  
Frequency.  
DS22229D-page 10  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF.  
90  
85  
80  
75  
70  
65  
60  
55  
50  
10000  
1000  
100  
10  
PSRR (VDD = 1.8V to 6.0V)  
TA = +150°C  
TA = +125°C  
CMRR (VDD = 6.0V)  
CMRR (VDD = 1.8V)  
TA = +85°C  
VDD = 6.0V  
1
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature (°C)  
Common Mode Input Voltage (V)  
FIGURE 2-13:  
CMRR, PSRR vs. Ambient  
FIGURE 2-16:  
Input Bias Current vs.  
Temperature.  
Common Mode Input Voltage.  
65  
0.4  
0.3  
60  
VDD = 6.0V  
VDD = 5.0V  
VDD = 1.8V  
55  
50  
45  
40  
35  
30  
25  
0.2  
VCMR_H - VOH @ VDD = 6.0V  
@ VDD = 1.8V  
0.1  
0.0  
-0.1  
-0.2  
-0.3  
VCMR_L - VSS @ VDD = 1.8V  
VOL - VSS @ VDD = 6.0V  
VCM = 0.2VDD  
-0.4  
-50 -25  
0
25  
50  
75 100 125 150  
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature (°C)  
Ambient Temperature (°C)  
FIGURE 2-14:  
Common Mode Input  
FIGURE 2-17:  
Quiescent Current vs.  
Voltage Range Limits vs. Ambient Temperature.  
Ambient Temperature.  
80  
10000  
VCM = 0.2VDD  
TA = +150°C  
70  
VDD = 6.0V  
1000  
60  
50  
40  
30  
20  
10  
0
Input Bias Current  
100  
TA = +125°C  
TA = +85°C  
TA = +25°C  
TA = -40°C  
10  
Input Offset Current  
1
25  
50  
75  
100  
125  
150  
Power Supply Voltage (V)  
Ambient Temperature (°C)  
FIGURE 2-15:  
Input Bias, Offset Current  
FIGURE 2-18:  
Quiescent Current vs.  
vs. Ambient Temperature.  
Power Supply Voltage.  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 11  
MCP6401/1R/1U/2/4/6/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF.  
120  
100  
80  
60  
40  
20  
0
0
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
Open-Loop Gain  
-30  
Phase Margin  
-60  
Open-Loop Phase  
-90  
-120  
-150  
-180  
-210  
Gain Bandwidth Product  
VDD = 6.0V  
VDD = 6.0V  
-20  
0.1110100 1k 10k 100k 1M10M  
-50 -25  
0
25 50 75 100 125 150  
Temperature (°C)  
Frequency (Hz)  
FIGURE 2-19:  
Open-Loop Gain, Phase vs.  
FIGURE 2-22:  
Gain Bandwidth Product,  
Frequency.  
Phase Margin vs. Ambient Temperature.  
1.6  
1.5  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
150  
145  
140  
135  
130  
125  
120  
115  
1.4  
Phase Margin  
1.3  
1.2  
1.1  
1.0  
0.9  
RL = 10 k  
VSS + 0.3V < VOUT < VDD - 0.3V  
Gain Bandwidth Product  
110  
105  
100  
0.8  
0.7  
VDD = 1.8V  
-50 -25  
0
25 50 75 100 125 150  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
Power Supply Voltage (V)  
Temperature (°C)  
FIGURE 2-20:  
DC Open-Loop Gain vs.  
FIGURE 2-23:  
Gain Bandwidth Product,  
Power Supply Voltage.  
Phase Margin vs. Ambient Temperature.  
25  
150  
145  
VDD = 6.0V  
140  
20  
15  
10  
5
TA = -40°C  
TA = +25°C  
TA = +85°C  
TA = +125°C  
TA = +150°C  
135  
130  
125  
120  
VDD = 1.8V  
115  
110  
105  
100  
Large Signal AOL  
0
0.00  
0.05  
0.10  
0.15  
0.20  
0.25  
Output Voltage Headroom  
VDD - VOH or VOL-VSS (V)  
Power Supply Voltage (°V)  
FIGURE 2-21:  
DC Open-Loop Gain vs.  
FIGURE 2-24:  
Output Short Circuit Current  
Output Voltage Headroom.  
vs. Power Supply Voltage.  
DS22229D-page 12  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF.  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
10  
VDD = 6.0V  
Falling Edge, VDD = 6.0V  
Rising Edge, VDD = 6.0V  
VDD = 1.8V  
1
Falling Edge, VDD = 1.8V  
Rising Edge, VDD = 1.8V  
0.1  
100  
1k  
10k  
100k  
1M  
-50 -25  
0
25  
50  
75  
100 125 150  
Temperature (°C)  
Frequency (Hz)  
FIGURE 2-25:  
Output Voltage Swing vs.  
FIGURE 2-28:  
Slew Rate vs. Ambient  
Frequency.  
Temperature.  
1000  
VDD - VOH @ VDD = 1.8V  
VOL - VSS @ VDD = 1.8V  
100  
10  
1
VDD = 6.0V  
G = +1 V/V  
VDD - VOH @ VDD = 6.0V  
OL - VSS @ VDD = 6.0V  
V
RL = 10 k  
0.1  
0.01  
0.1  
1
10  
Output Current (mA)  
Time (2 µs/div)  
FIGURE 2-26:  
Output Voltage Headroom  
FIGURE 2-29:  
Small Signal Non-Inverting  
vs. Output Current.  
Pulse Response.  
24  
VDD - VOH @ VDD = 6.0V  
VOL - VSS@ VDD = 6.0V  
21  
18  
15  
12  
9
VDD = 6.0V  
G = -1 V/V  
6
VDD - VOH @ VDD = 1.8V  
VOL - VSS @ VDD = 1.8V  
3
0
-50 -25  
0
25  
50  
75 100 125 150  
Ambient Temperature (°C)  
Time (2 µs/div)  
FIGURE 2-27:  
Output Voltage Headroom  
FIGURE 2-30:  
Small Signal Inverting Pulse  
vs. Ambient Temperature.  
Response.  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 13  
MCP6401/1R/1U/2/4/6/7/9  
Note: Unless otherwise indicated, TA = +25°C, VDD = +1.8V to +6.0V, VSS = GND, VCM = VDD/2, VOUT VDD/2,  
VL = VDD/2, RL = 100 kΩ to VL and CL = 60 pF.  
10000  
1000  
100  
10  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
GN:  
VDD = 6.0V  
G = +1 V/V  
101 V/V  
11 V/V  
1 V/V  
1
10E1  
1.E0
.E+4  
10E5  
1.E0
10  
100  
1.Ek+3  
10k  
100k  
1M  
Frequency (Hz)  
Time (20 µs/div)  
FIGURE 2-31:  
Large Signal Non-Inverting  
FIGURE 2-34:  
Closed Loop Output  
Pulse Response.  
Impedance vs. Frequency.  
1
1m  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
100μ  
10μ  
VDD = 6.0V  
G = -1 V/V  
1μ  
TA = -40°C  
100n  
TA = +25°C  
TA = +85°C  
TA = +125°C  
TA = +150°C  
10n  
1
1n  
100p  
10p  
1
1p  
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0  
VIN (V)  
Time (20 µs/div)  
FIGURE 2-32:  
Large Signal Inverting Pulse  
FIGURE 2-35:  
Measured Input Current vs.  
Response.  
Input Voltage (below VSS).  
150  
140  
130  
120  
110  
100  
90  
7.0  
6.0  
VOUT  
5.0  
VIN  
4.0  
3.0  
2.0  
1.0  
VDD = 6.0V  
Input Referred  
G = +2 V/V  
0.0  
80  
-1.0  
100k  
1100  
1k  
10k  
Time (0.1 ms/div)  
Frequency (Hz)  
FIGURE 2-33:  
The  
FIGURE 2-36:  
Channel-to-Channel  
MCP6401/1R/1U/2/4/6/7/9 Shows No Phase  
Reversal.  
Separation vs. Frequency (MCP6402/4/7/9 only).  
DS22229D-page 14  
© 2009-2011 Microchip Technology Inc.  
3.0  
PIN DESCRIPTIONS  
Descriptions of the pins are listed in Table 3-1.  
TABLE 3-1: PIN FUNCTION TABLE 1  
MCP6401 MCP6401R MCP6401U  
MCP6402  
MCP6404 MCP6406 MCP6407 MCP6409  
Symbol  
Description  
SC70-5,  
SOT-23-5  
2x3  
TDFN  
SOIC,  
TSSOP  
SOT-23-5  
SOT-23-5  
SOIC  
SOT-23-5  
SOIC  
SOIC  
1
4
1
4
4
3
1
2
3
8
5
6
1
2
3
8
5
6
1
2
3
4
5
6
1
4
1
2
3
8
5
6
1
2
3
4
5
6
VOUT, VOUTA Analog Output (op amp A)  
VIN–, VINA  
Inverting Input (op amp A)  
Non-inverting Input (op amp A)  
Positive Power Supply  
3
3
1
3
VIN+, VINA  
VDD  
+
5
2
5
5
VINB  
+
Non-inverting Input (op amp B)  
Inverting Input (op amp B)  
VINB  
2
5
2
7
7
7
2
7
7
VOUTB  
VOUTC  
Analog Output (op amp B)  
Analog Output (op amp C)  
Inverting Input (op amp C)  
Non-inverting Input (op amp C)  
Negative Power Supply  
4
4
8
4
8
9
9
VINC  
+
10  
11  
12  
13  
14  
10  
11  
12  
13  
14  
VINC  
VSS  
9
VIND+  
Non-inverting Input (op amp D)  
Inverting Input (op amp D)  
Analog Output (op amp D)  
Exposed Thermal Pad (EP); must be  
VIND–  
VOUTD  
EP  
connected to VSS  
.
MCP6401/1R/1U/2/4/6/7/9  
3.1  
Analog Output (V  
)
OUT  
The output pin is low-impedance voltage source.  
3.2  
Analog Inputs (V +, V -)  
IN IN  
The non-inverting and inverting inputs are high-  
impedance CMOS inputs with low bias currents.  
3.3  
Power Supply Pin (V , V  
)
SS  
DD  
The positive power supply (VDD) is 1.8V to 6.0V higher  
than the negative power supply (VSS). For normal  
operation, the other pins are at voltages between VSS  
and VDD  
.
Typically, these parts are used in a single (positive)  
supply configuration. In this case, VSS is connected to  
ground and VDD is connected to the supply. VDD will  
need bypass capacitors.  
DS22229D-page 16  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
4.0  
APPLICATION INFORMATION  
VDD  
The MCP6401/1R/1U/2/4/6/7/9 family of op amps is  
manufactured using Microchip’s state-of-the-art CMOS  
process and is specifically designed for low-power,  
high-precision applications.  
D1 D2  
U1  
V1  
V2  
VOUT  
4.1  
Rail-to-Rail Input  
MCP640x  
4.1.1  
PHASE REVERSAL  
The MCP6401/1R/1U/2/4/6/7/9 op amps are designed  
to prevent phase reversal when the input pins exceed  
the supply voltages. Figure 2-33 shows the input  
voltage exceeding the supply voltage with no phase  
reversal.  
FIGURE 4-2:  
Inputs.  
Protecting the Analog  
A significant amount of current can flow out of the  
inputs when the Common Mode voltage (VCM) is below  
ground (VSS); See Figure 2-35.  
4.1.2  
INPUT VOLTAGE LIMITS  
4.1.3  
INPUT CURRENT LIMITS  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the voltages at  
the input pins (see Section 1.1 “Absolute Maximum  
Ratings †”).  
In order to prevent damage and/or improper operation  
of these amplifiers, the circuit must limit the currents  
into the input pins (see Section 1.1 “Absolute  
Maximum Ratings †”).  
The ESD protection on the inputs can be depicted as  
shown in Figure 4-1. This structure was chosen to  
protect the input transistors against many (but not all)  
over-voltage conditions, and to minimize the input bias  
current (IB).  
Figure 4-3 shows one approach to protecting these  
inputs. The resistors R1 and R2 limit the possible  
currents in or out of the input pins (and the ESD diodes,  
D1 and D2). The diode currents will go through either  
VDD or VSS  
.
VDD  
Bond  
VDD  
Pad  
D1 D2  
R1  
U1  
V1  
V2  
Bond  
Pad  
Bond  
Pad  
Input  
Stage  
VOUT  
VIN+  
VIN–  
MCP640x  
R2  
Bond  
Pad  
VSS  
VSS – min(V1, V2)  
2 mA  
min(R1,R2) >  
min(R1,R2) >  
max(V1,V2) – VDD  
2 mA  
FIGURE 4-1:  
Structures.  
Simplified Analog Input ESD  
FIGURE 4-3:  
Inputs.  
Protecting the Analog  
The input ESD diodes clamp the inputs when they try  
to go more than one diode drop below VSS. They also  
clamp any voltages that go well above VDD; their  
breakdown voltage is high enough to allow normal  
operation, but not low enough to protect against slow  
over-voltage (beyond VDD) events. Very fast ESD  
events (that meet the spec) are limited so that damage  
does not occur.  
4.1.4  
NORMAL OPERATION  
The input stage of the MCP6401/1R/1U/2/4/6/7/9 op  
amps use two differential input stages in parallel. One  
operates at a low Common Mode input voltage (VCM),  
while the other operates at a high VCM. With this  
topology, the device operates with a VCM up to 300 mV  
above VDD and 300 mV below VSS (see Figure 2-14).  
In some applications, it may be necessary to prevent  
excessive voltages from reaching the op amp inputs;  
Figure 4-2 shows one approach to protecting these  
inputs.  
The input offset voltage is measured at VCM = VSS  
0.3V and VDD + 0.3V to ensure proper operation.  
The transition between the input stages occurs when  
VCM is near VDD – 1.1V (see Figures 2-6 and 2-7). For  
the best distortion performance and gain linearity, with  
non-inverting gains, avoid this region of operation.  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 17  
MCP6401/1R/1U/2/4/6/7/9  
After selecting RISO for your circuit, double-check the  
resulting frequency response peaking and step  
response overshoot. Modify RISO’s value until the  
response is reasonable. Bench evaluation and  
simulations with the MCP6401/1R/1U/2/4/6/7/9 SPICE  
macro model are very helpful.  
4.2  
Rail-to-Rail Output  
The  
output  
voltage  
range  
of  
the  
MCP6401/1R/1U/2/4/6/7/9 op amps is VSS + 20 mV  
(minimum) and VDD – 20 mV (maximum) when  
RL = 10 kΩ is connected to VDD/2 and VDD = 6.0V.  
Refer to Figures 2-26 and 2-27 for more information.  
4.4  
Supply Bypass  
4.3  
Capacitive Loads  
With this family of operational amplifiers, the power  
supply pin (VDD for single-supply) should have a local  
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm  
for good high frequency performance. It can use a bulk  
capacitor (i.e., 1 µF or larger) within 100 mm to provide  
large, slow currents. This bulk capacitor can be shared  
with other analog parts.  
Driving large capacitive loads can cause stability  
problems for voltage feedback op amps. As the load  
capacitance increases, the feedback loop’s phase  
margin decreases and the closed-loop bandwidth is  
reduced. This produces gain peaking in the frequency  
response, with overshoot and ringing in the step  
response. While a unity-gain buffer (G = +1 V/V) is the  
most sensitive to capacitive loads, all gains show the  
same general behavior.  
4.5  
Unused Op Amps  
An unused op amp in quad packages (MCP6404 or  
MCP6409) should be configured as shown in Figure 4-  
6. These circuits prevent the output from toggling and  
causing crosstalk. Circuit A sets the op amp at its  
minimum noise gain. The resistor divider produces any  
desired reference voltage within the output voltage  
range of the op amp, which buffers that reference  
voltage. Circuit B uses the minimum number of  
components and operates as a comparator, but it may  
draw more current.  
When driving large capacitive loads with these op  
amps (e.g., > 100 pF when G = +1 V/V), a small series  
resistor at the output (RISO in Figure 4-4) improves the  
feedback loop’s phase margin (stability) by making the  
output load resistive at higher frequencies. The  
bandwidth will be generally lower than the bandwidth  
with no capacitance load.  
RISO  
VOUT  
MCP640x  
+
¼ MCP6404 (A)  
VDD  
¼ MCP6404 (B)  
VIN  
CL  
VDD  
VDD  
R1  
R2  
FIGURE 4-4:  
Stabilizes Large Capacitive Loads.  
Output Resistor, RISO  
VREF  
Figure 4-5 gives recommended RISO values for  
different capacitive loads and gains. The x-axis is the  
normalized load capacitance (CL/GN), where GN is the  
circuit's noise gain. For non-inverting gains, GN and the  
Signal Gain are equal. For inverting gains, GN is  
1+|Signal Gain| (e.g., -1 V/V gives GN = +2 V/V).  
R2  
VREF = VDD × ------------------  
R1 + R2  
FIGURE 4-6:  
Unused Op Amps.  
10000  
VDD = 6.0 V  
RL = 10 kΩ  
1000  
100  
10  
GN:  
1 V/V  
2 V/V  
5 V/V  
1
10p  
100p  
1n  
10n  
0.1µ  
1µ  
Normalized Load Capacitance; CL/GN (F)  
FIGURE 4-5:  
Recommended RISO Values  
for Capacitive Loads.  
DS22229D-page 18  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
4.6  
PCB Surface Leakage  
4.7  
Application Circuits  
In applications where low input bias current is critical,  
Printed Circuit Board (PCB) surface leakage effects  
need to be considered. Surface leakage is caused by  
humidity, dust or other contamination on the board.  
Under low humidity conditions, a typical resistance  
between nearby traces is 1012Ω. A 5V difference would  
cause 5 pA of current to flow; which is greater than the  
MCP6401/1R/1U/2/4/6/7/9 family’s bias current at  
+25°C (±1.0 pA, typical).  
4.7.1  
PRECISION HALF-WAVE  
RECTIFIER  
The precision half-wave rectifier, which is also known  
as a super diode, is a configuration obtained with an  
operational amplifier in order to have a circuit behave  
like an ideal diode and rectifier. It effectively cancels the  
forward voltage drop of the diode so that very low level  
signals can still be rectified with minimal error. This can  
be useful for high-precision signal processing. The  
MCP6401/1R/1U/2/4/6/7/9 op amps have high input  
impedance, low input bias current and rail-to-rail  
input/output, which makes this device suitable for  
precision rectifier applications.  
The easiest way to reduce surface leakage is to use a  
guard ring around sensitive pins (or traces). The guard  
ring is biased at the same voltage as the sensitive pin.  
An example of this type of layout is shown in  
Figure 4-7.  
Figure 4-8 shows a precision half-wave rectifier and its  
transfer characteristic. The rectifier’s input impedance  
is determined by the input resistor R1. To avoid loading  
effect, it must be driven from a low-impedance source.  
Guard Ring  
VIN– VIN+  
VSS  
When VIN is greater than zero, D1 is OFF, D2 is ON, and  
VOUT is zero. When VIN is less than zero, D1 is ON, D2  
is OFF, and VOUT is the VIN with an amplification of  
-R2/R1.  
The rectifier circuit shown in Figure 4-8 has the benefit  
that the op amp never goes in saturation, so the only  
thing affecting its frequency response is the  
amplification and the gain bandwidth product.  
.
FIGURE 4-7:  
for Inverting Gain.  
Example Guard Ring Layout  
1. Non-inverting Gain and Unity-Gain Buffer:  
R2  
a) Connect the non-inverting pin (VIN+) to the  
input with a wire that does not touch the  
PCB surface.  
D2  
b) Connect the guard ring to the inverting input  
pin (VIN–). This biases the guard ring to the  
Common Mode input voltage.  
VIN  
R1  
VOUT  
2. Inverting Gain and Transimpedance Gain  
Amplifiers (convert current to voltage, such as  
photo detectors):  
MCP6401  
D1  
a) Connect the guard ring to the non-inverting  
input pin (VIN+). This biases the guard ring  
to the same reference voltage as the op  
amp (e.g., VDD/2 or ground).  
Precision Half-Wave Rectifier  
b) Connect the inverting pin (VIN–) to the input  
with a wire that does not touch the PCB  
surface.  
VOUT  
-R2/R1  
VIN  
Transfer Characteristic  
FIGURE 4-8:  
Precision Half-Wave  
Rectifier.  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 19  
MCP6401/1R/1U/2/4/6/7/9  
4.7.2  
BATTERY CURRENT SENSING  
4.7.3  
INSTRUMENTATION AMPLIFIER  
The MCP6401/1R/1U/2/4/6/7/9 op amps’ Common  
Mode Input Range, which goes 0.3V beyond both  
supply rails, supports their use in high-side and low-  
side battery current sensing applications. The low  
quiescent current (45 µA, typical) helps prolong battery  
life, and the rail-to-rail output supports detection of low  
currents.  
The MCP6401/1R/1U/2/4/6/7/9 op amps are well  
suited for conditioning sensor signals in battery-  
powered applications. Figure 4-10 shows a two op amp  
instrumentation amplifier, using the MCP6402, that  
works well for applications requiring rejection of  
Common Mode noise at higher gains. The reference  
voltage (VREF) is supplied by a low impedance source.  
In single supply applications, VREF is typically VDD/2.  
Figure 4-9 shows a high-side battery current sensor  
circuit. The 10Ω resistor is sized to minimize power  
losses. The battery current (IDD) through the 10Ω  
resistor causes its top terminal to be more negative  
than the bottom terminal. This keeps the Common  
Mode input voltage of the op amp below VDD, which is  
within its allowed range. The output of the op amp will  
also be below VDD, which is within its Maximum Output  
Voltage Swing specification.  
RG  
R1  
R2  
R2  
R1  
VREF  
VOUT  
V2  
V1  
½ MCP6402  
½ MCP6402  
IDD  
To load  
1.8V  
to  
6.0V  
VDD  
MCP6401  
1 MΩ  
10Ω  
R1 2R1  
VOUT = (V1 V2) 1 + ----- + --------- + VREF  
VOUT  
R2 RG  
100 kΩ  
FIGURE 4-10:  
Instrumentation Amplifier.  
Two Op Amp  
VDD VOUT  
IDD = -----------------------------------------  
(10 V/V) (10Ω)  
FIGURE 4-9:  
Supply Current Sensing.  
DS22229D-page 20  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
5.4  
Analog Demonstration and  
Evaluation Boards  
5.0  
DESIGN AIDS  
Microchip provides the basic design tools needed for  
the MCP6401/1R/1U/2/4/6/7/9 family of op amps.  
Microchip offers  
a
broad spectrum of Analog  
Demonstration and Evaluation Boards that are  
designed to help you achieve faster time to market. For  
5.1  
SPICE Macro Model  
a
complete listing of these boards and their  
The latest SPICE macro model for the  
MCP6401/1R/1U/2/4/6/7/9 op amp is available on the  
Microchip web site at www.microchip.com. The model  
was written and tested in official Orcad (Cadence)  
owned PSPICE. For other simulators, translation may  
be required.  
corresponding user’s guides and technical information,  
visit www.microchip.com/analogtools, the Microchip  
web site.  
Some boards that are especially useful are:  
• MCP6XXX Amplifier Evaluation Board 1  
• MCP6XXX Amplifier Evaluation Board 2  
• MCP6XXX Amplifier Evaluation Board 3  
• MCP6XXX Amplifier Evaluation Board 4  
• Active Filter Demo Board Kit  
The model covers a wide aspect of the op amp's  
electrical specifications. Not only does the model cover  
voltage, current, and resistance of the op amp, but it  
also covers the temperature and noise effects on the  
behavior of the op amp. The model has not been  
verified outside of the specification range listed in the  
op amp data sheet. The model behaviors under these  
conditions cannot be guaranteed to match the actual  
op amp performance.  
• 5/6-Pin SOT-23 Evaluation Board, P/N VSUPEV2  
• 8-Pin SOIC/MSOP/TSSOP/DIP Evaluation Board,  
P/N SOIC8EV  
• 14-Pin SOIC/TSSOP/DIP Evaluation Board, P/N  
SOIC14EV  
Moreover, the model is intended to be an initial design  
tool. Bench testing is a very important part of any  
design and cannot be replaced with simulations. Also,  
simulation results using this macro model need to be  
validated by comparing them to the data sheet  
specifications and characteristic curves.  
5.5  
Application Notes  
The following Microchip Analog Design Note and  
Application Notes are available on the Microchip web  
site at www.microchip.com/appnotes and are  
recommended as supplemental reference resources.  
®
5.2  
FilterLab Software  
ADN003: “Select the Right Operational Amplifier  
for your Filtering Circuits”, DS21821  
Microchip’s FilterLab® software is an innovative  
software tool that simplifies analog active filter (using  
op amps) design. Available at no cost from the  
Microchip web site at www.microchip.com/filterlab, the  
FilterLab design tool provides full schematic diagrams  
of the filter circuit with component values. It also  
outputs the filter circuit in SPICE format, which can be  
used with the macro model to simulate actual filter  
performance.  
AN722: “Operational Amplifier Topologies and DC  
Specifications”, DS00722  
AN723: “Operational Amplifier AC Specifications  
and Applications”, DS00723  
AN884: “Driving Capacitive Loads With Op  
Amps”, DS00884  
AN990: “Analog Sensor Conditioning Circuits –  
An Overview”, DS00990  
AN1177: “Op Amp Precision Design: DC Errors”,  
DS01177  
5.3  
Microchip Advanced Part Selector  
(MAPS)  
AN1228: “Op Amp Precision Design: Random  
Noise”, DS01228  
MAPS is a software tool that helps semiconductor  
professionals efficiently identify Microchip devices that  
fit a particular design requirement. Available at no cost  
• AN1297: “Microchip’s Op Amp SPICE Macro  
Models”, DS01297  
from  
the  
Microchip  
website  
at  
AN1332: “Current Sensing Circuit Concepts and  
Fundamentals”, DS01332  
www.microchip.com/maps, the MAPS is an overall  
selection tool for Microchip’s product portfolio that  
includes Analog, Memory, MCUs and DSCs. Using this  
tool, you can define a filter to sort features for a  
parametric search of devices and export side-by-side  
technical comparison reports. Helpful links are also  
provided for Datasheets, Purchase, and Sampling of  
Microchip parts.  
These application notes and others are listed in the  
design guide:  
“Signal Chain Design Guide”, DS21825  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 21  
MCP6401/1R/1U/2/4/6/7/9  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
5-Lead SC70 (MCP6401 only)  
Example:  
BL25  
5-Lead SOT-23  
(MCP6401/1R/1U, MCP6406)  
Part Number  
Code  
Example:  
MCP6401T-E/OT  
MCP6401T-H/OT  
MCP6401RT-E/OT  
MCP6401RT-H/OT  
MCP6401UT-E/OT  
MCP6401UT-H/OT  
MCP6406T-E/OT  
MCP6406T-H/OT  
NLNN  
U8NN  
NMNN  
U9NN  
NPNN  
V8NN  
ZXNN  
ZYNN  
NL25  
Example:  
8-Lead TDFN (2 x 3)(MCP6402 only)  
AAW  
129  
25  
Part Number  
Code  
MCP6402T-E/MNY  
AAW  
8-Lead SOIC (150 mil)(MCP6401, MCP6402, MCP6407)  
Example:  
MCP6402E  
e
3
SN ^^1129  
256  
NNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
DS22229D-page 22  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
Package Marking Information (Continued)  
14-Lead SOIC (150 mil) (MCP6404, MCP6409)  
Example:  
MCP6404  
e
3
H/SL
1129256  
Example:  
14-Lead TSSOP (MCP6404 only)  
XXXXXXXX  
YYWW  
6404E/ST  
1129  
256  
NNN  
Legend: XX...X Customer-specific information  
Y
Year code (last digit of calendar year)  
YY  
WW  
NNN  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 23  
MCP6401/1R/1U/2/4/6/7/9  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢂꢒꢖꢆꢗꢍꢘꢙꢚꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
D
b
1
3
2
E1  
E
4
5
e
e
A
A2  
c
A1  
L
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢸꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢸꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢸꢃꢋꢍꢒ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢗꢁꢴꢟꢉꢠꢜꢡ  
ꢗꢁꢶꢗ  
ꢗꢁꢶꢗ  
ꢗꢁꢗꢗ  
ꢀꢁꢶꢗ  
ꢀꢁꢀꢟ  
ꢀꢁꢶꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢗꢶ  
ꢗꢁꢀꢟ  
ꢘꢁꢀꢗ  
ꢀꢁꢘꢟ  
ꢘꢁꢗꢗ  
ꢗꢁꢘꢗ  
ꢀꢁꢀꢗ  
ꢀꢁꢗꢗ  
ꢗꢁꢀꢗ  
ꢘꢁꢞꢗ  
ꢀꢁꢹꢟ  
ꢘꢁꢘꢟ  
ꢗꢁꢞꢴ  
ꢗꢁꢘꢴ  
ꢗꢁꢞꢗ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢺꢗꢴꢀꢠ  
DS22229D-page 24  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 25  
MCP6401/1R/1U/2/4/6/7/9  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢓꢄꢑꢉꢋꢉꢊꢔꢓꢆꢕꢏꢒꢖꢆꢗꢍꢏꢒꢁꢞꢟꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
b
N
E
E1  
3
2
1
e
e1  
D
A2  
c
A
φ
A1  
L
L1  
ꢬꢆꢃꢍꢇꢕꢭꢮꢮꢭꢕꢌꢣꢌꢯꢜ  
ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢉꢮꢃꢄꢃꢍꢇ  
ꢕꢭꢰ  
ꢰꢱꢕ  
ꢕꢛꢲ  
ꢰꢐꢄꢳꢅꢓꢉꢈꢑꢉꢪꢃꢆꢇꢰ  
ꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢗꢁꢻꢟꢉꢠꢜꢡ  
ꢱꢐꢍꢇꢃꢋꢅꢉꢮꢅꢊꢋꢉꢪꢃꢍꢎꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢵꢅꢃꢚꢒꢍ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢜꢍꢊꢆꢋꢈꢑꢑ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢸꢃꢋꢍꢒ  
ꢕꢈꢏꢋꢅꢋꢉꢪꢊꢎꢨꢊꢚꢅꢉꢸꢃꢋꢍꢒ  
ꢱꢥꢅꢓꢊꢏꢏꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢉꢮꢅꢆꢚꢍꢒ  
ꢧꢈꢈꢍꢔꢓꢃꢆꢍ  
ꢧꢈꢈꢍꢉꢛꢆꢚꢏꢅ  
ꢮꢅꢊꢋꢉꢣꢒꢃꢎꢨꢆꢅꢇꢇ  
ꢮꢅꢊꢋꢉꢸꢃꢋꢍꢒ  
ꢅꢀ  
ꢛꢘ  
ꢛꢀ  
ꢌꢀ  
ꢀꢁꢻꢗꢉꢠꢜꢡ  
ꢗꢁꢻꢗ  
ꢗꢁꢶꢻ  
ꢗꢁꢗꢗ  
ꢘꢁꢘꢗ  
ꢀꢁꢹꢗ  
ꢘꢁꢙꢗ  
ꢗꢁꢀꢗ  
ꢗꢁꢹꢟ  
ꢗꢼ  
ꢀꢁꢞꢟ  
ꢀꢁꢹꢗ  
ꢗꢁꢀꢟ  
ꢹꢁꢘꢗ  
ꢀꢁꢶꢗ  
ꢹꢁꢀꢗ  
ꢗꢁꢴꢗ  
ꢗꢁꢶꢗ  
ꢹꢗꢼ  
ꢮꢀ  
ꢗꢁꢗꢶ  
ꢗꢁꢘꢗ  
ꢗꢁꢘꢴ  
ꢗꢁꢟꢀ  
ꢜꢔꢊꢃꢉꢝ  
ꢀꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢇꢉꢂꢉꢊꢆꢋꢉꢌꢀꢉꢋꢈꢉꢆꢈꢍꢉꢃꢆꢎꢏꢐꢋꢅꢉꢄꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢁꢉꢕꢈꢏꢋꢉꢑꢏꢊꢇꢒꢉꢈꢓꢉꢔꢓꢈꢍꢓꢐꢇꢃꢈꢆꢇꢉꢇꢒꢊꢏꢏꢉꢆꢈꢍꢉꢅꢖꢎꢅꢅꢋꢉꢗꢁꢀꢘꢙꢉꢄꢄꢉꢔꢅꢓꢉꢇꢃꢋꢅꢁ  
ꢘꢁ ꢂꢃꢄꢅꢆꢇꢃꢈꢆꢃꢆꢚꢉꢊꢆꢋꢉꢍꢈꢏꢅꢓꢊꢆꢎꢃꢆꢚꢉꢔꢅꢓꢉꢛꢜꢕꢌꢉꢝꢀꢞꢁꢟꢕꢁ  
ꢠꢜꢡꢢ ꢠꢊꢇꢃꢎꢉꢂꢃꢄꢅꢆꢇꢃꢈꢆꢁꢉꢣꢒꢅꢈꢓꢅꢍꢃꢎꢊꢏꢏꢤꢉꢅꢖꢊꢎꢍꢉꢥꢊꢏꢐꢅꢉꢇꢒꢈꢦꢆꢉꢦꢃꢍꢒꢈꢐꢍꢉꢍꢈꢏꢅꢓꢊꢆꢎꢅꢇꢁ  
ꢕꢃꢎꢓꢈꢎꢒꢃꢔ ꢎꢒꢆꢈꢏꢈꢚꢤ ꢂꢓꢊꢦꢃꢆꢚ ꢡꢗꢞꢺꢗꢻꢀꢠ  
DS22229D-page 26  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 27  
MCP6401/1R/1U/2/4/6/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22229D-page 28  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 29  
MCP6401/1R/1U/2/4/6/7/9  
ꢠꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢕꢍꢜꢖꢆꢡꢆꢜꢄꢓꢓꢔꢢꢣꢆꢟꢤꢥꢚꢆꢎꢎꢆꢦꢔꢅꢧꢆꢗꢍꢏꢨꢘꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
DS22229D-page 30  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 31  
MCP6401/1R/1U/2/4/6/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22229D-page 32  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
ꢠꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢩꢐꢄꢈꢆꢪꢈꢄꢊꢣꢆꢜꢔꢆꢂꢃꢄꢅꢆꢇꢄꢌꢫꢄꢬꢃꢆꢕꢭꢜꢖꢆꢡꢆꢞꢮꢟꢮꢚꢤꢙꢀꢆꢎꢎꢆꢦꢔꢅꢧꢆꢗꢒꢩꢪꢜꢛ  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 33  
MCP6401/1R/1U/2/4/6/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22229D-page 34  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 35  
MCP6401/1R/1U/2/4/6/7/9  
ꢜꢔꢊꢃꢝ ꢧꢈꢓꢉꢍꢒꢅꢉꢄꢈꢇꢍꢉꢎꢐꢓꢓꢅꢆꢍꢉꢔꢊꢎꢨꢊꢚꢅꢉꢋꢓꢊꢦꢃꢆꢚꢇꢩꢉꢔꢏꢅꢊꢇꢅꢉꢇꢅꢅꢉꢍꢒꢅꢉꢕꢃꢎꢓꢈꢎꢒꢃꢔꢉꢪꢊꢎꢨꢊꢚꢃꢆꢚꢉꢜꢔꢅꢎꢃꢑꢃꢎꢊꢍꢃꢈꢆꢉꢏꢈꢎꢊꢍꢅꢋꢉꢊꢍꢉ  
ꢒꢍꢍꢔꢢꢫꢫꢦꢦꢦꢁꢄꢃꢎꢓꢈꢎꢒꢃꢔꢁꢎꢈꢄꢫꢔꢊꢎꢨꢊꢚꢃꢆꢚ  
DS22229D-page 36  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 37  
MCP6401/1R/1U/2/4/6/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS22229D-page 38  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 39  
MCP6401/1R/1U/2/4/6/7/9  
Revision B (June 2010)  
APPENDIX A: REVISION HISTORY  
The following is the list of modifications:  
Revision D (September 2011)  
1. Added the MCP6402 and MCP6404 package  
information.  
The following is the list of modifications:  
2. Updated the ESD protection value on all pins in  
1. Section 1.0 “Electrical Characteristics”:  
Updated minor typographical corrections in  
both “DC Electrical Specifications” tables to  
show the correct unit for RL (kΩ instead of kW).  
Section 1.1 “Absolute Maximum Ratings †”.  
3. Added Figure 2-36.  
4. Updated Table 3-1.  
5. Updated Section 4.1.2 “Input Voltage Limits”.  
6. Added Section 4.1.3 “Input Current Limits”.  
7. Added Section 4.5 “Unused Op Amps”.  
Revision C (August 2011)  
The following is the list of modifications:  
8. Updated Section 5.4 “Analog Demonstration  
and Evaluation Boards”.  
1. Added new MCP6406, MCP6407 and  
MCP6409 devices and the related information  
throughout the document.  
9. Updated the package markings information and  
drawings.  
2. Created two package type drawings based on  
the temperature characterization (see E Temp  
Package Types and H Temp Package Types).  
10. Updated the Product Identification System  
page.  
3. Added MCP6406/7/9 specification tables in  
Section 1.3 “MCP6406/7/9 Electrical Specifi-  
cations”.  
Revision A (December 2009)  
Original data sheet for the MCP6401/1R/1U/2/4/6/7/9  
family of devices.  
4. Updated  
characterization  
graphics  
in  
Section 2.0 “Typical Performance Curves”.  
5. Updated Table 3-1 in Section 3.0 “Pin  
Descriptions” to show all the devices.  
6. Updated markings examples in Section 6.1  
“Package Marking Information”.  
7. Updated the package markings information to  
show all drawings available for each type of  
package.  
8. Updated the Product Identification System  
page with the new devices and temperature  
specifications.  
DS22229D-page 40  
© 2009-2011 Microchip Technology Inc.  
MCP6401/1R/1U/2/4/6/7/9  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
-X  
/XX  
a)  
MCP6401T-E/LT:  
Tape and Reel,  
Extended Temperature,  
5LD SC70 pkg  
Temperature  
Range  
Package  
b)  
MCP6401T-E/OT:  
Tape and Reel,  
Extended Temperature,  
5LD SOT-23 pkg  
Tape and Reel,  
5LD SOT-23 pkg  
Tape and Reel,  
Device:  
MCP6401T:  
Single Op Amp (Tape and Reel)  
(SC70, SOT-23)  
c)  
d)  
MCP6401RT-E/OT:  
MCP6401UT-E/OT:  
MCP6401RT: Single Op Amp (Tape and Reel)  
(SOT-23)  
MCP6401UT: Single Op Amp (Tape and Reel)  
(SOT-23)  
MCP6402:  
MCP6402T:  
Extended Temperature,  
5LD SOT-23 pkg  
Dual Op Amp  
e)  
f)  
MCP6402-E/SN:  
MCP6402T-E/SN:  
Extended Temperature,  
8LD SOIC pkg  
Tape and Reel,  
Dual Op Amp (Tape and Reel)  
(SOIC, 2x3 TDFN)  
Quad Op Amp  
MCP6404:  
MCP6404T:  
Quad Op Amp (Tape and Reel)  
(SOIC, TSSOP)  
Extended Temperature,  
8LD SOIC pkg  
MCP6406T:  
Single Op Amp (Tape and Reel)  
(SOT-23)  
Dual Op Amp  
Dual Op Amp (Tape and Reel)  
(SOIC)  
Quad Op Amp  
g)  
MCP6402T-E/MNY:  
Tape and Reel,  
Extended Temperature,  
8LD 2x3 TDFN pkg  
MCP6407:  
MCP6407T:  
h)  
i)  
MCP6404-E/SL:  
MCP6404T-E/SL:  
Extended Temperature,  
14LD SOIC pkg  
Tape and Reel,  
Extended Temperature,  
14LD SOIC pkg  
MCP6409:  
MCP6409T:  
Quad Op Amp (Tape and Reel)  
(SOIC)  
j)  
MCP6404-E/ST:  
MCP6404T-E/ST:  
Extended Temperature,  
14LD TSSOP pkg  
Tape and Reel,  
Temperature Range:  
Package:  
E
H
= -40°C to +125°C (Extended Temperature)  
= -40°C to +150°C (High Temperature)  
k)  
Extended Temperature,  
14LD TSSOP pkg.  
LT  
= Plastic Package (SC70), 5-lead  
OT = Plastic Small Outline Transistor (SOT-23), 5-lead  
SN = Plastic SOIC, (3.90 mm body), 8-lead  
MNY* = Plastic Dual Flat, No Lead, (2x3 TDFN), 8-lead  
a)  
MCP6401T-H/OT:  
Tape and Reel,  
High Temperature,  
5LD SOT-23 pkg  
SL  
ST  
= Plastic SOIC (3.90 mm body), 14-lead  
= Plastic TSSOP (4.4mm body), 14-lead  
b)  
c)  
MCP6402-H/SN:  
MCP6402T-H/SN:  
High Temperature,  
8LD SOIC pkg  
Tape and Reel,  
High Temperature,  
8LD SOIC pkg  
* Y  
= Nickel palladium gold manufacturing designator.  
Only available on the TDFN package.  
d)  
e)  
MCP6404-H/SL:  
MCP6404T-H/SL:  
High Temperature,  
14LD SOIC pkg  
Tape and Reel,  
High Temperature,  
14LD SOIC pkg  
f)  
MCP6406T-H/OT:  
Tape and Reel,  
High Temperature,  
5LD SOT-23 pkg  
g)  
h)  
MCP6407-H/SN:  
MCP6407T-H/SN:  
High Temperature,  
8LD SOIC pkg  
Tape and Reel,  
High Temperature,  
8LD SOIC pkg  
i)  
j)  
MCP6409-H/SL:  
MCP6409T-H/SL:  
High Temperature,  
14LD SOIC pkg  
Tape and Reel,  
High Temperature,  
14LD SOIC pkg  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 41  
MCP6401/1R/1U/2/4/6/7/9  
NOTES:  
DS22229D-page 42  
© 2009-2011 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,  
32  
PIC logo, rfPIC and UNI/O are registered trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,  
MXDEV, MXLAB, SEEVAL and The Embedded Control  
Solutions Company are registered trademarks of Microchip  
Technology Incorporated in the U.S.A.  
Analog-for-the-Digital Age, Application Maestro, chipKIT,  
chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net,  
dsPICworks, dsSPEAK, ECAN, ECONOMONITOR,  
FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP,  
Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB,  
MPLINK, mTouch, Omniscient Code Generation, PICC,  
PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE,  
rfLAB, Select Mode, Total Endurance, TSHARC,  
UniWinDriver, WiperLock and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2009-2011, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
Printed on recycled paper.  
ISBN: 978-1-61341-616-7  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
© 2009-2011 Microchip Technology Inc.  
DS22229D-page 43  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
India - Pune  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Japan - Yokohama  
Tel: 81-45-471- 6166  
Fax: 81-45-471-6122  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Hangzhou  
Tel: 86-571-2819-3187  
Fax: 86-571-2819-3189  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
UK - Wokingham  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820  
Cleveland  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
China - Hong Kong SAR  
Tel: 852-2401-1200  
Fax: 852-2401-3431  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Detroit  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Taiwan - Kaohsiung  
Tel: 886-7-536-4818  
Fax: 886-7-330-9305  
Los Angeles  
China - Shenzhen  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760  
Taiwan - Taipei  
Tel: 886-2-2500-6610  
Fax: 886-2-2508-0102  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Santa Clara  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
Toronto  
Mississauga, Ontario,  
Canada  
China - Xiamen  
Tel: 905-673-0699  
Fax: 905-673-6509  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
08/02/11  
DS22229D-page 44  
© 2009-2011 Microchip Technology Inc.  

相关型号:

MCP6411

1 MHz Operational Amplifier with EMI Filtering
MICROCHIP

MCP6411T

1 MHz Operational Amplifier with EMI Filtering
MICROCHIP
MICROCHIP
MICROCHIP

MCP6421

4.4 μA, 90 kHz Op Amp
MICROCHIP
MICROCHIP

MCP6421T-E/OTVAO

Operational Amplifier, 1 Func, 1000uV Offset-Max, CMOS, PDSO5
MICROCHIP

MCP6421_V01

1 MHz Operational Amplifier with EMI Filtering
MICROCHIP

MCP6422

The Microchip’s MCP6421/2/4 operational amplifiers (op amps) has low input bias current (1 pA, typ
MICROCHIP
MICROCHIP
MICROCHIP
MICROCHIP