MIC2098-2YMT-TR [MICROCHIP]

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6;
MIC2098-2YMT-TR
型号: MIC2098-2YMT-TR
厂家: MICROCHIP    MICROCHIP
描述:

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6

光电二极管
文件: 总25页 (文件大小:1234K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC2095/MIC2097/MIC2098/MIC2099  
Current-Limiting Power Distribution Switches  
General Description  
Features  
The MIC2095/97/98/99 family of switches are self-  
contained, current-limiting, high-side power switches, ideal  
for power-control applications. These switches are useful  
for general purpose power distribution applications such as  
digital televisions (DTV), printers, set-top boxes (STB),  
PCs, PDAs, and other peripheral devices.  
MIC2095: 0.5A fixed current limit  
MIC2098: 0.9A fixed current limit  
MIC2097/99: Resistor programmable current limit  
– 0.1A to 1.1A  
MIC2097: Kickstart for high peak current loads  
Under voltage lock-out (UVLO)  
Soft start prevents large current inrush  
Automatic-on output after fault  
Thermal protection  
Enable active high or active low  
170mtypical on-resistance @ 5V  
2.5V – 5.5V operating range  
The current limiting switches feature either a fixed  
0.5A/0.9A or resistor programmable output current limit.  
The family also has fault blanking to eliminate false noise-  
induced, over current conditions. After an over-current  
condition, these devices automatically restart if the enable  
pin remains active. The MIC2097 switch offers a unique  
new patented Kickstart feature, which allows momentary  
high-current surges up to the secondary current limit  
(ILIMIT_2nd). This is useful for charging loads with high inrush  
currents, such as capacitors.  
Applications  
The MIC2095/97/98/99 family of switches provides under-  
voltage, over-temperature shutdown, and output fault  
status reporting. The family also provides either an active  
low or active high, logic level enable pin.  
Digital televisions (DTV)  
Set top boxes  
PDAs  
Printers  
The MIC2095/97/98/99 family is offered in a space saving  
1.6mm x 1.6mm Thin MLF® (TMLF) package.  
USB / IEEE 1394 power distribution  
Desktop and laptop PCs  
Game consoles  
Datasheets and support documentation can be found on  
Micrel’s web site at: www.micrel.com.  
USB keyboard  
Docking stations  
_________________________________________________________________________________________________________________________  
Typical Application  
MIC2095 USB Power Switch  
MLF and MicroLeadFrame are registered trademarks of Amkor Technology, Inc.  
Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
M9999-080211-C  
August 2011  
Micrel, Inc.  
MIC2095/97/98/99  
Ordering Information  
Junction  
Temperature  
Range(1)  
FAULT/  
Output  
ENABLE  
Logic  
Part Number  
Marking  
Kickstart()  
ILIMIT  
Package  
6-Pin 1.6mm x  
1.6mm TMLF  
MIC2095-1YMT  
MIC2095-2YMT  
MIC2097-1YMT  
MIC2097-2YMT  
MIC2098-1YMT  
MIC2098-2YMT  
MIC2099-1YMT  
MIC2099-2YMT  
J1K  
J2K  
Active High  
Active Low  
Active High  
Active Low  
Active High  
Active Low  
Active High  
Active Low  
No  
No  
0.5A  
0.5A  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
–40°C to +125°C  
6-Pin 1.6mm x  
1.6mm TMLF  
6-Pin 1.6mm x  
1.6mm TMLF  
K1K  
K2K  
H1K  
H2K  
G1K  
G2K  
Yes  
Yes  
No  
0.1 A – 1.1A  
0.1 A – 1.1A  
0.9A  
6-Pin 1.6mm x  
1.6mm TMLF  
6-Pin 1.6mm x  
1.6mm TMLF  
6-Pin 1.6mm x  
1.6mm TMLF  
No  
0.9A  
6-Pin 1.6mm x  
1.6mm TMLF  
No  
0.1 A – 1.1A  
0.1 A – 1.1A  
6-Pin 1.6mm x  
1.6mm TMLF  
No  
Pin Configuration  
6-Pin 1.6mm x 1.6mm TMLF (MT) (Top View)  
MIC2095-1YMT/MIC2098-1YMT  
6-Pin 1.6mm x 1.6mm TMLF (MT) (Top View)  
MIC2095-2YMT/MIC2098-2YMT  
6-Pin 1.6mm x 1.6mm TMLF (MT) (Top View)  
MIC2097-1YMT / MIC2099-1YMT  
6-Pin 1.6mm x 1.6mm TMLF (MT) (Top View)  
MIC2097-2YMT / MIC2099-2YMT  
M9999-080211-C  
August 2011  
2
Micrel, Inc.  
MIC2095/97/98/99  
Pin Description  
Pin Number  
Pin Name Pin Function  
1
VOUT  
Switch output (Output): The load being driven by the switch is connected to this pin.  
2
NC  
No Connect; Pin not used.  
(MIC2095/MIC2098)  
2
Current Limit (Input): A resistor from this pin to ground sets the current limit value. See  
the “setting ILMIIT” section for details on setting the resistor value.  
ILIMIT  
(MIC2097/MIC2099)  
Fault status (Output): A logic low on this pin indicates the switch is in current limiting, or  
has been shut down by the thermal protection circuit. This is an open-drain output  
allowing logical OR’ing of FAULT/ outputs from multiple devices.  
3
FAULT/  
4
(MIC2095-1/MIC2097-1/  
MIC2098-1/MIC2099-1)  
4
(MIC2095-2/MIC2097-2/  
MIC2098-2/MIC2099-2)  
ENABLE  
ENABLE/  
Switch Enable (Input): Logic high on this pin enables the switch.  
Switch Enable (Input): Logic low on this pin enables the switch.  
Ground.  
5
GND  
VIN  
Power input (Input): This pin provides power to both the output power switch and the  
internal control circuitry.  
6
Used to remove heat from die. Connect to ground. Use multiple vias to the ground  
plane to minimize thermal impedance. See Applications Section for additional  
information.  
EP  
EP  
M9999-080211-C  
August 2011  
3
Micrel, Inc.  
MIC2095/97/98/99  
Absolute Maximum Ratings(1)  
Operating Ratings(2)  
Supply Voltage (VIN)......................................... 2.5V to 5.5V  
ENABLE Pin Voltage (VENABLE) ..............................0V to VIN  
FAULT Pin Voltage (VFAULT)...................................0V to VIN  
Ambient Temperature Range (TA) ..............40°C to +85°C  
Package Thermal Resistance(6)  
Supply Voltage (VIN)....................................... 0.3V to 6.0V  
Output Voltage (VOUT) .......................................0.3V to VIN  
FAULT Pin Voltage (VFAULT) ..............................0.3V to VIN  
ENABLE Pin Voltage (VENABLE)..........................0.3V to VIN  
ILIMIT Pin Voltage (VILIMIT) ................................0.3V to VIN  
Power Dissipation (PD)..............................Internally Limited  
Maximum Junction Temperature (TJ)......................... 150°C  
Storage Temperature (Ts).........................65°C to +150°C  
Lead Temperature (soldering, 10sec.)....................... 260°C  
ESD HBM Rating (VOUT, GND)(3) .................................4kV  
ESD HBM Rating (FAULT, ENABLE, VIN)(3) .................2kV  
1.6mm × 1.6mm TMLF (θJA)..............................93ºC/W  
Electrical Characteristics(4)  
VIN = 5V; CIN = 1µF TA = 25°C unless noted, bold values indicate –40°CTA +85°C.  
Symbol  
Parameter  
Condition  
Min.  
2.5  
Typ.  
Max.  
Units  
Power Input Supply  
VIN  
Input Voltage Range  
5.5  
V
Switch = ON  
Active Low Enable, VEN = 0V  
Active High Enable, VEN = 1.5V  
Quiescent Supply Current(5)  
80  
8
300  
µA  
IIN  
Switch = OFF  
15  
5
µA  
Active Low Enable, VEN = 1.5V  
Shutdown Current  
Switch = OFF  
0.1  
µA  
V
Active High Enable, VEN = 0.5V  
VIN Rising  
2
2.25  
2.5  
2.4  
VIN UVLO Threshold  
VIN UVLO Hysteresis  
UVLOTHRESHOLD  
VIN Falling  
1.9  
2.15  
100  
V
mV  
Enable Control  
ENABLE Logic Level Low(5)  
ENABLE Logic Level High(5)  
ENABLE Bias Current  
VIL(MAX)  
0.5  
V
V
VEN  
VIH(MIN)  
1.5  
IEN  
0V VEN 5V  
0.1  
5
µA  
RL = 43, CL = 120µF  
tON_DLY  
Output Turn-on Delay  
Output Turn-off Delay  
Output Turn-on rise time  
1000  
1500  
µs  
µs  
µs  
V
EN = 50% to VOUT = 10%  
RL = 43, CL = 120µF  
tOFF_DLY  
tRISE  
Thermal Protection  
700  
V
EN = 50% to VOUT = 90%  
RL = 100, CLOAD = 1µF  
500  
1000  
1500  
V
OUT = 10% to 90%  
TJ Rising  
TJ Falling  
145  
135  
°C  
°C  
OTThreshold  
Over-temperature Shutdown  
M9999-080211-C  
August 2011  
4
Micrel, Inc.  
MIC2095/97/98/99  
Electrical Characteristics (Continued)  
VIN = 5V; CIN = 1µF TA = 25°C unless noted, bold values indicate –40°CTA +85°C.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Units  
Internal Switch  
170  
220  
mꢀ  
mꢀ  
RDS(ON)  
On Resistance  
VIN = 5V, IOUT = 100mA  
275  
Switch = OFF, VOUT = 0V  
ILEAK  
Output Leakage Current  
Active Low Enable, VEN = 1.5V  
Active High Enable, VEN = 0V  
0.1  
10  
µA  
Output Current Limit (MIC2095)  
ILIMIT Fixed Current Limit  
Output Current Limit (MIC2098)  
VOUT = 0.8 × VIN  
VOUT = 0.8 × VIN  
0.5  
0.9  
0.7  
1.1  
0.9  
1.5  
A
A
ILIMIT  
Fixed Current Limit  
Output Current Limit (MIC2097, MIC2099)  
IOUT = 1.1A, VOUT = 0.8 × VIN; VIN =2.5V  
IOUT = 0.5A, VOUT = 0.8 × VIN; VIN =2.5V  
IOUT = 0.2A, VOUT = 0.8 × VIN; VIN =2.5V  
IOUT = 0.1A, VOUT = 0.8 × VIN; VIN =2.5V  
175  
152  
138  
121  
215  
206  
200  
192  
263  
263  
263  
263  
V
V
V
V
Variable Current Limit  
Factors  
CLF  
KickstartTM Current Limit (MIC2097)  
ILIMIT_2nd  
tD_LIMIT  
Secondary Current Limit  
VIN = 2.5V; VOUT = 0V  
VIN = 2.5V  
1.5  
A
Duration of KickstartTM  
Current Limit  
77  
105  
192  
ms  
Fault Flag  
Fault Flag Output Voltage  
Fault Flag Off Current  
IOL = 10mA  
VFAULT/ =5V  
0.25  
0.01  
0.4  
1
V
VFAULT/  
µA  
Fault Delay (MIC2095, MIC2098, MIC2099)  
Delay before asserting or  
releasing FAULT/  
Time from current limiting (VOUT = 0.4 x  
VIN) to FAULT/ state change  
tD_FAULT  
20  
77  
32  
49  
ms  
ms  
Fault Delay (MIC2097)  
Delay before asserting or  
releasing FAULT/  
Time from current limiting (VOUT = 0.8 x  
VIN) to FAULT/ state change; VIN = 2.5V  
tD_FAULT  
105  
192  
Notes:  
1. Exceeding the absolute maximum rating may damage the device.  
2. The device is not guaranteed to function outside its operating rating.  
3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.  
4. Specifications for packaged product only.  
5. Check the Ordering Information section to determine which parts are Active High or Active Low.  
6. Requires proper thermal mounting to achieve this performance.  
M9999-080211-C  
August 2011  
5
Micrel, Inc.  
MIC2095/97/98/99  
Timing Diagrams  
tRISE  
tFALL  
90%  
90%  
10%  
10%  
Rise and Fall Times  
ENABLE  
50%  
50%  
tON_DLY  
tOFF_DLY  
90%  
VOUT  
10%  
Switching Delay Times  
M9999-080211-C  
August 2011  
6
Micrel, Inc.  
MIC2095/97/98/99  
Typical Characteristics  
VIN Shutdown Current  
VIN Shutdown Current  
vs. Input Voltage  
VIN Supply Current  
vs. Input Voltage  
vs. Input Voltage  
10  
6
4
100  
80  
60  
40  
20  
0
8
6
2
4
-2 Version  
0
2
0
-1 Version  
-2  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
5.5  
5.5  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
5.5  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Current Limit vs. Input Voltage  
MIC2098  
Current Limit vs. Input Voltage  
MIC2095  
Current Limit vs. Input Voltage  
MIC2097/MIC2099  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
ILIMIT  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
ILIMIT  
RSET = 200, ISET = 1.08A  
ISC  
ISC  
RSET = 298, ISET = 0.7A  
RSET = 508, ISET = 0.4A  
VOUT=0.8*VIN  
RSET = 1920, ISET=0.1A  
VOUT = 0.8*VIN  
VOUT = 0.8*VIN  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Current Limit vs. Input Voltage  
MIC2097/MIC2099  
Switch On Resistance  
vs. Input Voltage  
Fault Delay vs. Input Voltage  
MIC2095/MIC2098/MIC2099  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
240  
220  
200  
180  
160  
140  
120  
100  
40  
35  
30  
25  
20  
15  
10  
5
ILIMIT  
ISC  
RSET =195  
I
SET = 1.1A  
CLOAD = 1μF  
V
OUT = 0.8*VIN  
RLOAD = 100ꢀ  
IOUT = 100mA  
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Fault Delay vs. Input Voltage  
MIC2097  
Kickstart Current vs. Input Voltage  
MIC2097  
Kickstart Period vs. Input Voltage  
MIC2097  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
RSET = 195ꢀ  
40  
I
SET = 1.1A  
CLOAD = 1μF  
40  
V
OUT = 0.8*VIN  
RLOAD = 100ꢀ  
20  
20  
0
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
M9999-080211-C  
August 2011  
7
Micrel, Inc.  
MIC2095/97/98/99  
Typical Characteristics (Continued)  
VIN ShutdownCurrent  
vs. Temperature  
VIN Supply Current  
vs.Temperature  
VIN ShutdownCurrent  
vs. Temperature  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
100  
80  
60  
40  
20  
0
-2 Version  
-1 Version  
VIN = 5V  
VIN = 5V  
VIN = 3V  
VIN = 3V  
VIN = 3V  
VIN = 5V  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Current Limit vs.Temperature  
MIC2097/MIC2099  
Current Limit vs. Temperature  
MIC2095  
Current Limit vs. Temperature  
MIC2098  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
ILIMIT  
ITHRESHOLD  
ILIMIT  
ISC  
ISC  
VIN = 5.0V  
V
OUT = 4V  
SET =195ꢀ  
SET = 1.1A  
VIN = 5.0V  
R
ISC  
VIN = 5.0V  
OUT = 4V  
V
OUT = 4V  
I
V
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Output Fall Time  
vs. Temperature  
RDS(ON)  
Output Rise Time  
vs. Temperature  
vs. Temperature  
240  
220  
200  
180  
160  
140  
120  
100  
340  
300  
260  
220  
180  
140  
100  
1200  
VIN = 5.0V  
VIN = 5.0V  
VIN = 3.3V  
1000  
800  
600  
400  
200  
0
VIN = 3V  
VIN = 3V  
VIN = 5.0V  
CLOAD = 1μF  
CLOAD = 1μF  
RLOAD =100ꢀ  
RLOAD =100ꢀ  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Kickstart Current vs. Temperature  
MIC2097  
Fault Delay vs. Temperature  
MIC2095/MIC2099  
VIN UVLO Thresholds  
vs. Temperature  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
40  
35  
30  
25  
20  
15  
10  
5
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
VIN = 3V  
VIN = 5.0V  
VIN Rising  
VIN = 5.0V  
VIN = 3V  
VOUT = 4V  
SET =195ꢀ  
SET = 1.1A  
CLOAD = 1μF  
RLOAD =100ꢀ  
R
VIN Falling  
I
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
M9999-080211-C  
August 2011  
8
Micrel, Inc.  
MIC2095/97/98/99  
Typical Characteristics (Continued)  
ILIMIT & ISET vs. RSET  
MIC2097/MIC2099  
VIN - VOUT (VIN = 5.0V)  
vs. Output Current  
Kickstart Period vs. Temperature  
MIC2097  
160  
140  
120  
100  
80  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
250  
200  
150  
100  
50  
VIN = 5.0V  
85ºC  
25ºC  
-40ºC  
ISET  
VIN = 3V  
VIN = 5V  
60  
Vo=4V  
TA = 25°C  
40  
ILIMIT  
VIN = 5V  
20  
0
0
0
300 600 900 1200 1500 1800 2100  
-40  
-15  
10  
35  
60  
85  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
R
SET()  
TEMPERATURE (°C)  
OUTPUT CURRENT (A)  
VIN - VOUT (VIN = 3.0V)  
vs. Output Current  
250  
200  
150  
100  
50  
85ºC  
25ºC  
-40ºC  
VIN = 3V  
0
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
OUTPUT CURRENT (A)  
M9999-080211-C  
August 2011  
9
Micrel, Inc.  
MIC2095/97/98/99  
Functional Characteristics  
M9999-080211-C  
August 2011  
10  
Micrel, Inc.  
MIC2095/97/98/99  
Functional Characteristics (Continued)  
M9999-080211-C  
August 2011  
11  
Micrel, Inc.  
MIC2095/97/98/99  
Functional Characteristics (Continued)  
M9999-080211-C  
August 2011  
12  
Micrel, Inc.  
MIC2095/97/98/99  
Functional Characteristics (Continued)  
M9999-080211-C  
August 2011  
13  
Micrel, Inc.  
MIC2095/97/98/99  
Functional Characteristics (Continued)  
M9999-080211-C  
August 2011  
14  
Micrel, Inc.  
MIC2095/97/98/99  
Functional Diagram  
MIC2095/97/98/99 Functional Diagram  
M9999-080211-C  
August 2011  
15  
Micrel, Inc.  
MIC2095/97/98/99  
Functional Description and Application  
Information  
Limitations on COUT  
The part may enter current limit when turning on with a  
large output capacitance. This is an acceptable  
condition, however, if the part remains in current limit for  
a time greater than tD_FAULT, the FAULT pin will assert  
low. The maximum value of COUT may be approximated  
by the following equation:  
VIN and VOUT  
VIN is both the power supply connection for the internal  
circuitry driving the switch and the input (Source  
connection) of the power MOSFET switch. VOUT is the  
Drain connection of the power MOSFET and supplies  
power to the load. In a typical circuit, current flows from  
VIN to VOUT toward the load. Since the switch is bi-  
directional when enabled, if VOUT is greater than VIN,  
current will flow from VOUT to VIN.  
ILIMIT _MIN × tD_FAULT _MIN  
COUT _MAX  
=
Eq. 1  
VIN_MAX  
When the switch is disabled, current will not flow to the  
load, except for a small unavoidable leakage current of a  
few micro amps. However, should VOUT exceed VIN by  
more than a diode drop (~0.6V), while the switch is  
disabled, current will flow from output to input via the  
power MOSFET’s body diode. When the switch is  
enabled, current can flow both ways, from VIN to VOUT, or  
VOUT to VIN.  
Where: ILIMIT_MIN and tD_FAULT_MIN are the minimum  
specified values listed in the Electrical Characteristic  
table and VIN_MAX is the maximum input voltage to the  
switch.  
Current Sensing and Limiting  
The current limiting switches protect the system power  
supply and load from damage by continuously  
monitoring current through the on-chip power MOSFET.  
Load current is monitored by means of a current mirror  
in parallel with the power MOSFET switch. Current  
limiting is invoked when the load exceeds the over-  
current threshold. When current limiting is activated the  
output current is constrained to the limit value, and  
remains at this level until either the load/fault is removed,  
the load’s current requirement drops below the limiting  
value, or the switch goes into thermal shutdown.  
CIN  
A minimum 1μF bypass capacitor positioned as close as  
possible to the VIN and GND pins of the switch is both  
good design practice and required for proper operation  
of the switch. This will control supply transients and  
ringing. Without a sufficient bypass capacitor, large  
current surges or a short may cause sufficient ringing on  
VIN (from supply lead inductance) to cause erratic  
operation of the switch’s control circuitry. For best  
performance a good quality, low-ESR ceramic capacitor  
is recommended.  
Kickstart™  
The MIC2097 has a Kickstart feature that allows higher  
momentary current surges before the onset of current  
limiting. This permits dynamic loads, such as small disk  
drives or portable printers to draw the inrush current  
needed to overcome inertial loads without sacrificing  
system safety. The Kickstart parts differ from the non-  
Kickstart parts which more rapidly limit load current,  
potentially starving a motor and causing the appliance to  
stall or stutter.  
An additional 22μF (or greater) capacitor, positioned  
close to the VIN and GND pins of the switch is necessary  
if the distance between a larger bulk capacitor and the  
switch is greater than 3 inches. This additional capacitor  
limits input voltage transients at the switch caused by  
fast changing input currents that occur during a fault  
condition, such as current limit and thermal shutdown.  
When bypassing with capacitors of 10μF and up, it is  
good practice to place a smaller value capacitor in  
parallel with the larger to handle the high frequency  
components of any line transients. Values in the range of  
0.1μF to 1μF are recommended. Again, good quality,  
low-ESR capacitors, preferably ceramic, should be  
chosen.  
During the Kickstart delay period, (typically 105ms), a  
secondary current limit (nominally set at 1.5A), is in  
effect. If the load demands a current in excess the  
secondary limit, Kickstart parts act immediately to restrict  
output current to the secondary limit for the duration of  
the Kickstart period. After this time the Kickstart parts  
revert to their normal current limit. An example of  
Kickstart operation is in Figure 1.  
COUT  
An output capacitor is recommended to reduce ringing  
and voltage sag on the output during a transient  
Kickstart may be over-ridden by the thermal protection  
circuit and if sufficient internal heating occurs, Kickstart  
will be terminated and the output switch will be turned  
condition.  
A
value between 1µf and 10µf is  
recommended, however, larger values can be used.  
off. After the parts cools, if the load is still present IOUT  
ILIMIT, not ILIMIT_2nd  
Æ
.
M9999-080211-C  
August 2011  
16  
Micrel, Inc.  
MIC2095/97/98/99  
pull-up resistor. FAULT/ may be tied to a pull-up voltage  
source which is less than or equal to VIN.  
Soft-Start Control  
Large capacitive loads can create significant inrush  
current surges when charged through the current limiting  
switch. When the switch is enabled, the built-in soft-start  
limits the initial inrush current by slowly turning on the  
output.  
Power Dissipation and Thermal Shutdown  
Thermal shutdown is used to protect the current limiting  
switch from damage should the die temperature exceed  
a safe operating temperature. Thermal shutdown shuts  
off the output MOSFET and asserts the FAULT/ output if  
the die temperature reaches 145°C (typical).  
Figure 1. MIC2097 Kickstart Operation  
The switch will automatically resume operation when the  
die temperature cools down to 135°C. If resumed  
operation results in reheating of the die, another  
shutdown cycle will occur and the switch will continue  
cycling between ON and OFF states until the reason for  
the overcurrent condition has been resolved.  
Figure 1 Label Key:  
A. The MIC2097 is enabled into an excessive load  
(slew-rate limiting not visible at this time scale) The  
initial current surge is limited by either the overall  
circuit resistance and power-supply compliance, or  
the secondary current limit, whichever is less.  
Depending on PCB layout, package type, ambient  
temperature, etc., hundreds of milliseconds may elapse  
from the time a fault occurs to the time the output  
MOSFET will be shut off. This delay is caused because  
of the time it takes for the die to heat after the fault  
condition occurs.  
B. RON of the power FET increases due to internal  
heating.  
C. Kickstart period.  
D. Current limiting initiated. FAULT/ goes low.  
E. VOUT is non-zero (load is heavy, but not a dead short  
where VOUT = 0V. Limiting response will be the same  
for dead shorts).  
Power dissipation depends on several factors such as  
the load, PCB layout, ambient temperature, and supply  
voltage. Calculation of power dissipation can be  
accomplished by the following equation:  
F. Thermal shutdown followed by thermal cycling.  
G. Excessive load released, normal load remains.  
MIC2097 drops out of current limiting.  
2
PD = RDS(ON)  
×
(
IOUT  
)
Eq. 2  
H. FAULT/ delay period followed by FAULT/ going  
HIGH.  
To relate this to junction temperature, the following  
equation can be used:  
Enable Input  
The ENABLE pin is a logic level compatible input which  
turns on or off the main MOSFET switch. There are two  
versions of each device. The 1 version has an active  
high (ENABLE) and the 2 version has an active low  
(ENABLE/).  
TJ = PD ×Rθ(J-A) + TA  
Eq. 3  
Where TJ = junction temperature, TA = ambient  
temperature, and Rθ(J-A) is the thermal resistance of the  
package.  
Fault Output  
The FAULT/ is an N-channel open-drain output, which is  
asserted (LOW true) when the device either begins  
current limiting or enters thermal shutdown. The FAULT/  
signal asserts after a brief delay period in order to filter  
out very brief over current conditions. After an over-  
current or over-temperature fault clears, the FAULT/ pin  
remains asserted (low) for the delay period.  
In normal operation, excessive switch heating is most  
often caused by an output short circuit. If the output is  
shorted, when the switch is enabled, the switch limits the  
output current to the maximum value. The heat  
generated by the power dissipation of the switch  
continuously limiting the current may exceed the  
package and PCB’s ability to cool the device and the  
switch will shut down and signal a fault condition. Please  
see the Fault Output description in the previous page for  
more details on the FAULT/ output. After the switch  
The FAULT/output is open-drain and must be pulled  
HIGH with an external resistor. The FAULT/ signal may  
be wire-OR’d with other similar outputs, sharing a single  
M9999-080211-C  
August 2011  
17  
Micrel, Inc.  
MIC2095/97/98/99  
shuts down, and cools, it will re-start itself if the Enable  
signal retains true (high on the ENABLE parts, low on  
the ENABLE/ parts).  
For the sake of this example, the typical value of CLF at  
an IOUT of 1.1A is 215V. Applying Equation 5:  
In Figure 2, die temperature is plotted against IOUT  
assuming a constant ambient temperature of 85°C. The  
plot also assumes the maximum specified switch  
resistance at high temperature.  
215V  
RLIMIT (Ω) =  
= 195Ω  
Eq. 6  
1.1A  
Choose RLIMIT = 196(the closest standard 1% value)  
Die Temperature vs Output Current  
(Ambient Temperature = 85°C)  
Designers should be aware that variations in the  
measured ILIMIT for a given RLIMIT resistor, will occur  
because of small differences between individual ICs  
(inherent in silicon processing) resulting in a spread of  
ILIMIT values. In the example above we used the typical  
value of CLF to calculate RLIMIT. We can determine  
ILIMIT’s spread by using the minimum and maximum  
130  
120  
110  
100  
90  
values of CLF and the calculated value of RLIMIT  
:
Tamb=85°C  
80  
70  
175V  
ILIMIT_MIN  
=
= 0.89A  
= 1.34A  
Eq. 7  
Eq. 8  
0.0  
0.2  
0.4  
0.6  
OUT (A)  
0.8  
1.0  
1.2  
196Ω  
I
Figure 2. Die Temperature vs. IOUT  
263V  
ILIMIT _MAX  
=
196Ω  
Setting ILIMIT  
The current limit of the MIC2097 and MIC2099 parts are  
user programmable and controlled by resistor  
Giving us a maximum ILIMIT variation of:  
a
connected between the ILIMIT pin and Ground. The value  
of the current limit resistor is determined by the following  
equations:  
ILIMIT_MIN  
ILIMIT_TYP  
1.1A  
ILIMIT_MAX  
0.89A (-19%)  
1.34A (+22%)  
CurrentLimitFactor(CLF)  
For convenience, Table 2 lists the resistance values for  
the RSET pin, for various current limit values.  
ILIMIT  
=
Eq. 4  
Eq. 5  
RLIMIT  
or  
CurrentLimitFactor(CLF)  
ILIMIT  
Nominal  
RLIMIT  
=
RLIMIT  
ILIMIT_MIN  
ILIMIT_MAX  
ILIMIT  
0.1A  
0.2A  
0.3A  
0.4A  
0.5A  
0.6A  
0.7A  
0.8A  
0.9A  
1.0A  
1.1A  
1920  
1000  
672  
508  
412  
344  
298  
263  
235  
213  
195  
0.063  
0.138  
0.211  
0.288  
0.369  
0.448  
0.533  
0.620  
0.709  
0.801  
0.895  
0.137  
0.263  
0.391  
0.517  
0.638  
0.764  
0.884  
1.002  
1.118  
1.233  
1.346  
The Current-Limit Factor (CLF) is a number that is  
characteristic to the MIC2097/9 switches. The CLF is a  
product of the current-setting resistor value, and the  
desired current-limit value. Please note that the CLF  
varies with the current output current, so caution is  
necessary to use the correct CLF value for the current  
that you intend to use the part at. For example: If one  
wishes to set a ILIMIT = 1.1A, looking in the electrical  
specifications we will find CLF at ILIMIT = 1.1 A, as noted  
in Table 1.  
Min.  
Typ.  
Max.  
Units  
Table 2. MIC2097 and MIC2099 RLIMIT Table  
175  
215  
263  
V
Table 1. CLF at ILIMIT = 1.1A  
M9999-080211-C  
August 2011  
18  
Micrel, Inc.  
MIC2095/97/98/99  
When measuring IOUT it is important to remember voltage  
dependence, otherwise the measurement data may  
appear to indicate a problem when none really exists.  
This voltage dependence is illustrated in Figures 5 and  
6.  
ILIMIT vs. IOUT Measured  
When in current limit, the switches are designed to act  
as a constant-current source to the load. As the load  
tries to pull more than the maximum current, VOUT drops  
and the input-to-output voltage differential increases. As  
the (VIN VOUT) voltage differential increases, the IC  
internal temperature also increases. To limit the IC’s  
power dissipation, the current limit is reduced as a  
function of output voltage.  
In Figure 5, output current is measured as VOUT is pulled  
below VIN, with the test terminating when VOUT is 1V  
below VIN. Observe that once ILIMIT is reached IOUT  
remains constant throughout the remainder of the test. In  
Figure 6 this test is repeated but with (VIN VOUT) is 4V.  
This folding back of ILIMIT can be generalized by plotting  
ILIMIT as a function of VOUT, as shown in Figures 3 and 4.  
The slope of VOUT between IOUT = 0V and IOUT = ILIMIT  
(where ILIMIT is a normalized 1A) is determined by RON of  
the switch and ILIMIT  
.
Normalized Output Current  
vs. Output Voltage (5V)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
Figure 5. IOUT in Current Limiting for VOUT = 4V  
0
1
2
3
4
5
6
OUTPUT VOLTAGE (V)  
Figure 3. Normalized Output Current vs. Output Voltage  
Normalized Output Current  
vs. Output Voltage (2.5V)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
Figure 6. IOUT in Current Limiting for VOUT = 1V  
Under Voltage Lock Out (UVLO)  
The switches have an Under Voltage Lock Out (UVLO)  
feature that will shut down the switch in a reproducible  
manner when the input power supply voltage goes too  
low. The UVLO circuit disables the output until the  
supply voltage exceeds the UVLO threshold. Hysteresis  
in the UVLO circuit prevents noise and finite circuit  
impedance from causing chatter during turn-on and turn-  
off. While disable by the UVLO circuit, the output switch  
(power MOSFET) is OFF and no circuit functions, such  
as FAULT/ or ENABLE, are considered to be valid or  
operative.  
0
0.5 1.0 1.5 2.0 2.5 3.0  
OUTPUT VOLTAGE (V)  
Figure 4. Normalized Output Current vs. Output Voltage  
M9999-080211-C  
August 2011  
19  
Micrel, Inc.  
MIC2095/97/98/99  
Typical Application Schematics  
Figure 7. MIC2095-1 or MIC2098-1 Typical Schematic  
Note: MIC2095-1 and MIC2098-1; R5=NF; EN pin uses R4 (pull-up resistor to VIN) to enable the output without an external enable signal. MIC2095-2  
and MIC2098-2; R4=NF; EN/ pin uses R5 (pull-down resistor to GND) to enable the output without an external enable signal.  
Figure 8. MIC2097-1 Typical Schematic  
Note: MIC2097-1; R5=NF; EN pin uses R4 (pull-up resistor to VIN) to enable the output without an external enable signal. MIC2097-2; R4=NF; EN/  
pin uses R5 (pull-down resistor to GND) to enable the output without an external enable signal.  
Figure 9. MIC2099-1 Schematic  
Note: MIC2099-1; R5=NF; EN pin uses R4 (pull-up resistor to VIN) to enable the output without an external enable signal. MIC2099-2; R4=NF; EN/  
pin uses R5 (pull-down resistor to GND) to enable the output without an external enable signal.  
M9999-080211-C  
August 2011  
20  
Micrel, Inc.  
MIC2095/97/98/99  
Evaluation Board Schematic  
Figure 10. Schematic of MIC209X Evaluation Board  
Notes:  
1. Evaluation board is used for all parts.  
2. Part numbering scheme is 209X-Y where X is the place holder for the last number (i.e. MIC2095, MIC2097, MIC2098 or MIC2099) and Y is the  
polarity of the enable signal (-1 indicates active high logic and -2 indicates active low logic).  
3. MIC209X-1 EN pin only requires R4 (pull-up resistor to VIN) to enable the output without an external enable signal.  
4. MIC209X-2 EN/ pin only requires R3 (pull-down resistor-to-GND) to enable the output without an external enable signal.  
5. R1 is NF (no fill) with the MIC2095 (fixed current limit).  
M9999-080211-C  
August 2011  
21  
Micrel, Inc.  
MIC2095/97/98/99  
MIC209x Bill of Materials  
Item  
C1  
Part Number  
Manufacturer  
AVX(1)  
Description  
Qty.  
1
08056D106MAT2A  
06033D105MAT2A  
0805D226MAT2A  
Ceramic Capacitor, 10µF, 6.3V, X5R  
Ceramic Capacitor, 1µF, 25V, X5R  
Ceramic Capacitor, 22µF, 6.3V, X5R  
120µF (optional)  
C2  
AVX(1)  
AVX(1)  
1
C3  
1
C4  
0
R1(4)  
CRCW06032000FRT1  
CRCW06031002FRT1  
Vishay Dale(2)  
Vishay Dale(2)  
Resistor, 200 (0603 size), 1%  
Resistor, 10k (0603 size), 1%  
1
R2, R3, R4  
3
Current-Limiting Power Distribution Switch – 0.5A  
Fixed Current Limit – Active High Enable  
U1  
U1  
MIC2095-1YMT  
MIC2095-2YMT  
Micrel, Inc.(3)  
Micrel, Inc.(3)  
1
0
Current-Limiting Power Distribution Switch – 0.5A  
Fixed Current Limit – Active Low Enable  
Current-Limiting Power Distribution Switch –  
Adjustable Current Limit with Kickstart – Active High  
Enable  
U1  
U1  
MIC2097-1YMT  
MIC2097-2YMT  
Micrel, Inc.(3)  
Micrel, Inc.(3)  
0
0
Current-Limiting Power Distribution Switch –  
Adjustable Current Limit with Kickstart – Active Low  
Enable  
Current-Limiting Power Distribution Switch – 0.9A  
Fixed Current Limit – Active High Enable  
U1  
U1  
U1  
MIC2098-1YMT  
MIC2098-2YMT  
MIC2099-1YMT  
MIC2099-2YMT  
Micrel, Inc.(3)  
Micrel, Inc.(3)  
Micrel, Inc.(3)  
Micrel, Inc.(3)  
0
0
0
0
Current-Limiting Power Distribution Switch – 0.9A  
Fixed Current Limit – Active Low Enable  
Current-Limiting Power Distribution Switch –  
Adjustable Current Limit – Active High Enable  
Current-Limiting Power Distribution Switch –  
Adjustable Current Limit – Active Low Enable  
U1  
Notes:  
1. AVX: www.avx.com.  
2. Vishay: www.vishay.com.  
3. Micrel, Inc.: www.micrel.com.  
4. May be omitted when used with the MIC2095 or MIC2098 (fixed current limit).  
M9999-080211-C  
August 2011  
22  
Micrel, Inc.  
MIC2095/97/98/99  
PCB Layout Recommendations  
Figure 11. MIC209X Evaluation Board Top Layer  
Figure 12. MIC209X Evaluation Board Bottom Layer  
M9999-080211-C  
August 2011  
23  
Micrel, Inc.  
MIC2095/97/98/99  
Package Information  
6-Pin 1.6mm x 1.6mm TMLF (MT)  
M9999-080211-C  
August 2011  
24  
Micrel, Inc.  
MIC2095/97/98/99  
Recommended Landing Pattern  
6-Pin 1.6mm x 1.6mm TMLF (MT)  
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com  
Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This  
information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry,  
specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual  
property rights is granted by this document. Except as provided in Micrel’s terms and conditions of sale for such products, Micrel assumes no liability  
whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties  
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.  
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product  
can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant  
into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A  
Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully  
indemnify Micrel for any damages resulting from such use or sale.  
© 2010 Micrel, Incorporated.  
M9999-080211-C  
August 2011  
25  

相关型号:

MIC2099

Current-Limiting Power Distribution Switches
MICREL

MIC2099-1YMT

Current-Limiting Power Distribution Switches
MICREL

MIC2099-1YMT-TR

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6
MICROCHIP

MIC2099-1YMTTR

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6, 1.60 X 1.60 MM, TMLF-6
MICROCHIP

MIC2099-2YMT

Current-Limiting Power Distribution Switches
MICREL

MIC2099-2YMT-TR

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6
MICROCHIP

MIC2099-2YMTTR

1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO6, 1.60 X 1.60 MM, TMLF-6
MICREL

MIC20XX

Fixed and Adjustable Current Limiting Power Distribution Switches
MICREL

MIC20XX_1108

Fixed and Adjustable Current Limiting Power Distribution Switches
MICREL

MIC2101

38V, Synchronous Buck Controllers Featuring Adaptive On-Time Control
MICREL

MIC2101YML

38V, Synchronous Buck Controllers Featuring Adaptive On-Time Control
MICREL

MIC2101_13

38V, Synchronous Buck Controllers Featuring Adaptive On-Time Control
MICREL