MIC33M350YMP-TRVAO [MICROCHIP]

3A, Pin Strapping Power Module with HyperLight Load® Mode and Output Voltage Select;
MIC33M350YMP-TRVAO
型号: MIC33M350YMP-TRVAO
厂家: MICROCHIP    MICROCHIP
描述:

3A, Pin Strapping Power Module with HyperLight Load® Mode and Output Voltage Select

文件: 总32页 (文件大小:1107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC33M350  
3A, Pin Strapping Power Module  
with HyperLight Load® Mode and Output Voltage Select  
Features  
General Description  
The MIC33M350 device is a pin-selectable output  
voltage, high-efficiency, low-voltage input, 3A current,  
synchronous step-down regulator power module with  
integrated inductor. The Constant On-Time (COT)  
control architecture with HyperLight Load provides very  
high efficiency at light loads, while maintaining an  
ultra-fast transient response.  
• 2.4V to 5.5V Input Voltage Range  
• 3A Output Current  
• Pin Strapping Voltage Selection:  
- Three-state pins (nine voltage combinations)  
- 0.6V, 0.8V, 0.9V, 1.0V, 1.2V, 1.5V, 1.8V, 2.5V  
or 3.3V output voltage  
• Passes Automotive AEC-Q104 Reliability Testing  
The MIC33M350 output voltage is set by two VSEL  
(Voltage Selection) pins, between nine different values.  
This method eliminates the need for an external  
feedback resistor divider and improves the output  
voltage setting accuracy.  
• Reduced Component Count (no feedback  
resistors)  
• High Efficiency (up to 95%)  
• Output Discharge when Disabled  
• Constant On-Time Control with High Switching  
Frequency:  
The 2.4V to 5.5V input voltage range, low shutdown  
and quiescent currents make the MIC33M350 device  
ideal for single cell Li-Ion battery-powered applications.  
The 100% duty cycle capability provides Low Dropout  
operation, extending operating range in portable  
systems.  
- 1.2 MHz typical at 1.0V output voltage  
• ±1.5% Output Voltage Accuracy Over  
Line/Load/Temperature Range  
• 0.8 ms/V Soft Start Speed  
• Supports Safe Start-up with Pre-Biased Output  
• Typical 1.5 µA Shutdown Supply Current  
• Low Dropout Operation (100% duty cycle)  
• Ultra Fast Transient Response  
The MIC33M350 pinout is compatible with the  
MIC33M356 I2C-based programmable regulator  
version, such that applications can be easily converted.  
An open-drain Power Good output is provided to  
indicate when the output voltage is within 9% of  
regulation and facilitates the interface with an MCU. If  
set in shutdown (EN = GND), the MIC33M350 typically  
draws 1.5 µA, while the output is discharged through  
10pull-down.  
• Latch-Off Thermal Shutdown Protection  
• Latch-Off Current Limit Protection  
• Power Good (PG) Open-Drain Output  
• Meets CISPR32 Class B Radiated EMI  
• Meets CISPR 25 Class 5 Radiated EMI  
MIC33M350 is available in a thermally efficient  
package: 24-Lead 3.0 mm x 4.5 mm x 1.8 mm QFN  
package, with an operating junction temperature range  
from -40°C to +125°C.  
• Package: 3.0 mm × 4.5 mm × 1.8 mm,  
24-Lead QFN  
Applications  
MIC33M350 passes Automotive AEC-Q104 Reliability  
Testing.  
• Solid State Drives (SSD)  
Tablets, Netbooks and Ultrabooks  
• FPGAs, DSP and Low-Voltage ASIC Power  
Horizontal Polarization  
Vertical Polarization  
FIGURE 1:  
CISPR32, Class B (V = 5V, V  
Radiated Emissions,  
= 1V,  
IN  
OUT  
I
= 3A).  
OUT  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 1  
MIC33M350  
FIGURE 2:  
Horizontal Polarization Average,CISPR25,  
Radiated Emissions,  
FIGURE 3:  
Radiated Emissions,  
Vertical Polarization Average, CISPR25, Class 5  
Class 5 (V = 5V, V  
= 1V, I  
= 3A).  
IN  
OUT  
OUT  
(V = 5V, V  
= 1V, I = 3A).  
OUT  
IN  
OUT  
Package Type  
MIC33M350  
24-Lead QFN, 3.0 mm x 4.5 mm x 1.8 mm  
(Top View)  
EP_SW  
SW  
A
9
24  
GND  
P
10  
23 V  
22  
GND  
OUT  
EP2_P  
GND  
P
11  
12  
GND  
PG  
OUT  
EP_OUT  
21  
EN  
Typical Application  
VOUT  
SVIN  
OUT  
VOUT  
C1  
1 µF  
C3  
47 µF  
C4  
0.1 µF  
VIN  
2.4V TO 5.5V  
PVIN  
EN  
C2  
22 µF  
MIC33M350  
PGND  
AGND  
Enable  
VSEL1  
VSEL2  
VSEL1  
VSEL2  
Program  
VOUT  
PG  
DS20006348B-page 2  
2020-2021 Microchip Technology Inc.  
MIC33M350  
Functional Block Diagram  
MIC33M350  
SVIN  
1 µF  
TON  
ADJUST  
10Ω  
VIN  
2.4V to 5.5V  
MINIMUM  
TOFF  
22µF  
UVLO  
OT  
HSD  
2.225V/  
2.072V  
VOUT/3A  
0.6V  
0.8V  
0.9V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
L1  
0.47 µH  
Control  
Logic  
SW  
EN  
165°C/143°C  
0.1  
µF  
47  
µF  
PD  
ZC  
PVIN  
LSD  
RIPPLE  
INJECTION  
PGND  
COMP  
EA  
VSEL1  
VSEL1  
VREF  
VSEL1/VSEL2  
DECODE LOGIC  
VREF  
DAC  
PD  
VSEL2  
VIN  
100k  
AGND  
PG  
PG  
VREF -9%  
DELAY  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 3  
MIC33M350  
NOTES:  
DS20006348B-page 4  
2020-2021 Microchip Technology Inc.  
MIC33M350  
1.0  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings†  
SVIN, PVIN to AGND ...................................................................................................................................... -0.3V to +6V  
VSW to AGND ................................................................................................................................................ -0.3V to +6V  
VEN to AGND ................................................................................................................................................ -0.3V to PVIN  
VPG to AGND................................................................................................................................................ -0.3V to PVIN  
VVSEL1, VVSEL2 to AGND ............................................................................................................................. -0.3V to PVIN  
PVIN to SVIN.............................................................................................................................................. -0.3V to +0.3V  
AGND to PGND ........................................................................................................................................... -0.3V to +0.3V  
Junction Temperature........................................................................................................................................... +150°C  
Storage Temperature (TS)...................................................................................................................... -65°C to +150°C  
Lead Temperature (soldering, 10s) ...................................................................................................................... +260°C  
ESD Rating(1)  
HBM....................................................................................................................................................................... 2000V  
CDM....................................................................................................................................................................... 1500V  
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This  
is a stress rating only and functional operation of the device at those or any other conditions above those indicated in  
the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended peri-  
ods may affect device reliability.  
Note 1: Devices are ESD-sensitive. Handling precautions recommended. Human body model, 1.5 kin series with  
100 pF.  
Operating Ratings(1)  
Supply Voltage (PVIN).................................................................................................................................. 2.4V to 5.5V  
Enable Voltage (VEN)...................................................................................................................................... 0V to PVIN  
Power Good (PG) Pull-up Voltage (VPU_PG)................................................................................................... 0V to 5.5V  
Maximum Output Current............................................................................................................................................. 3A  
Junction Temperature (TJ)...................................................................................................................... -40°C to +125°C  
Note 1: The device is not ensured to function outside the operating range.  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 5  
MIC33M350  
(1)  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, PVIN = 5V; VOUT = 1.0V, COUT = 47 µF, TA = +25°C.  
Boldface values indicate -40°C TJ +125°C.  
Parameter  
VIN Supply  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
Input Range  
PVIN  
2.4  
5.5  
V
V
Undervoltage Lockout  
Threshold  
UVLO  
2.15  
2.225  
2.35  
SVIN rising  
Undervoltage Lockout  
Hysteresis  
UVLO_H  
IIN0  
153  
60  
V
SVIN falling (Note 3)  
Operating Supply Current  
100  
µA  
µA  
VFB =1.2V, non-switching  
10  
VEN = 0V, PVIN = SVIN = 5.5V,  
-40°C TJ +105°C  
Shutdown Current  
ISHDN  
1.5  
20  
µA  
VEN = 0V, PVIN = SVIN = 5.5V,  
-40°C TJ +125°C  
Output Voltage  
Output Accuracy  
VOUT_ACC 0.5910  
0.7880  
0.6  
0.8  
0.9  
1
0.6090  
0.8120  
0.9135  
1.0150  
1.2180  
1.5225  
1.8270  
2.5375  
3.3495  
V
V
V
V
V
V
V
V
V
%
VSEL2 = 0; VSEL1 = 0  
V
SEL2 = 0; VSEL1 = Z  
SEL2 = 0; VSEL1 = 1  
0.8865  
V
0.9850  
VSEL2 = Z; VSEL1 = 0  
1.1820  
1.2  
1.5  
1.8  
2.5  
3.3  
0.03  
V
SEL2 = Z; VSEL1 = Z  
SEL2 = Z; VSEL1 = 1  
1.4775  
V
1.7730  
VSEL2 = 1; VSEL1 = 0  
2.4625  
V
SEL2 = 1; VSEL1 = Z  
SEL2 = 1; VSEL1 = 1  
3.2505  
V
Line Regulation  
Load Regulation  
VOUT = 1.0V, VIN = 2.5V to 5.5V,  
IOUT = 300 mA (Note 3)  
0.1  
%
VOUT = 1.0V, IOUT = 0A to 3A  
(Note 3)  
Enable Control  
EN Logic Level High  
EN Logic Level Low  
VEN_H  
VEN_L  
1.2  
V
V
VEN rising, regulator enabled  
0.4  
VEN falling,  
regulator shutdown  
EN Low Input Current  
EN High Input Current  
Enable Lockout Delay  
VSEL Logic Level Control  
VSEL1,2 Logic Level High  
IEN_L  
IEN_H  
0.01  
0.01  
0.25  
500  
500  
0.4  
nA  
nA  
ms  
VEN = 0V  
VEN = 5.5V  
0.15  
VSEL_H  
VSEL_L  
VSEL_O  
1.2  
0.4  
V
V
V
VSEL1,2 rising,  
regulator enabled  
VSEL1,2 Logic Level Low  
VSEL1,2 falling,  
regulator shutdown  
VSEL1,2 Logic Level Open  
VSEL1,2 Low Input Current  
0.8  
VSEL1,2 falling,  
regulator shutdown (Note 3)  
IVSEL_L  
IVSEL_H  
-1  
-1  
0.01  
0.01  
1
1
µA  
µA  
VSEL1,2 = 0V  
VSEL1,2 High Input Current  
VSEL1,2 = 5.5V  
Note 1: Specification for packaged product only.  
2: Tested in open loop. The closed-loop current limit is affected by the inductance value.  
3: Not production tested, data from bench characterization only  
DS20006348B-page 6  
2020-2021 Microchip Technology Inc.  
MIC33M350  
(1)  
ELECTRICAL CHARACTERISTICS  
(CONTINUED)  
Electrical Specifications: Unless otherwise specified, PVIN = 5V; VOUT = 1.0V, COUT = 47 µF, TA = +25°C.  
Boldface values indicate -40°C TJ +125°C.  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Units  
Test Conditions  
TON Control/Switching Frequency  
Switching ON Time  
Switching Frequency  
TON  
180  
1.2  
ns  
VIN = 5V, VOUT = 1V  
VOUT = 1.0V, IOUT = 3A  
(Note 3)  
FREQ  
MHz  
%
1.1  
VOUT = 3.3V, IOUT = 3A  
Maximum Duty Cycle  
DCMAX  
100  
Note 3  
Short Circuit Protection  
High-Side MOSFET Forward  
Current Limit  
ILIM_HS  
ILIM_LS  
ILIM_NEG  
IZC_TH  
HICCUP  
4
5
4.2  
-3  
0.9  
8
6.5  
-4  
A
A
A
A
Note 2  
Low-Side MOSFET Forward  
Current Limit  
-2  
Note 2, Note 3  
Note 2  
Low-Side MOSFET Negative  
Current Limit  
N-Channel Zero-Crossing  
Threshold  
Note 3  
Current Limit Pulses Before  
Hiccup  
Cycles Note 3  
Hiccup Period Before Restart  
Internal MOSFETs  
1
ms  
Note 3  
High-Side On Resistance  
Low-Side On Resistance  
RDS-ON-HS  
RDS-ON-LS  
30  
16  
10  
60  
40  
50  
m  
mΩ  
ISW = 1A  
ISW = -1A  
Output Discharge Resistance RDS-ON-DSC  
VEN = 0V, VSW = 5.5V, from  
VOUT to PGND  
SW Leakage Current  
ILEAK_SW  
1
10  
µA  
PVIN = 5.5V, VSW = 0V,  
VEN = 0V,  
current flowing out of SW pin  
Power-Good (PG)  
Power Good Threshold  
Power Good Hysteresis  
Power Good Blanking Time  
PG Output Leakage Current  
PG_TH  
PG_HYS  
87  
91  
4
95  
%VOUT VOUT rising (good)  
%VOUT VOUT falling (Note 3)  
PG_BLANK  
PG_LEAK  
65  
30  
µs  
Note 3  
OUT = VOUT (NOM),  
VPG = 5.5V  
VOUT = 0V; IPG = 10 mA  
300  
nA  
V
Power Good Sink Low  
Voltage  
PG_SINKV  
200  
mV  
Thermal Shutdown  
Thermal Shutdown  
TSHDN  
165  
22  
4
°C  
°C  
TJ rising (Note 3)  
TJ falling (Note 3)  
Note 3  
Thermal Shutdown Hysteresis TSHDN_HYST  
Thermal Latch-Off Soft Start  
Cycles  
TH_LATCH  
Note 1: Specification for packaged product only.  
2: Tested in open loop. The closed-loop current limit is affected by the inductance value.  
3: Not production tested, data from bench characterization only  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 7  
MIC33M350  
TEMPERATURE SPECIFICATIONS  
Electrical Specifications: unless otherwise specified, SVIN = PVIN = 5V; VOUT = 1.0V, COUT = 47 µF, TA = +25°C.  
Boldface values indicate -40°C TJ +125°C.  
Parameters  
Temperature Ranges  
Sym.  
Min.  
Typ.  
Max.  
Units  
Conditions  
Junction Temperature  
TJ  
-40  
-65  
125  
150  
°C  
°C  
Storage Temperature Range  
Package Thermal Resistances  
TA  
Thermal Resistance, 24-Lead,  
3 mm x 4.5 mm QFN  
JA  
+36  
°C/W  
DS20006348B-page 8  
2020-2021 Microchip Technology Inc.  
MIC33M350  
2.0  
TYPICAL CHARACTERISTIC CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note:  
Unless otherwise indicated, PVIN = 5V, VOUT = 1V, COUT = 47 µF, TA = +25°C.  
ꢃꢈ  
ꢃꢇ  
ꢀꢆ  
ꢀꢅ  
ꢀꢄ  
ꢀꢃ  
ꢀꢀ  
ꢀꢂ  
ꢀꢁ  
ꢂꢇ  
9287  ꢋꢈꢊꢇ9  
287  
+//ꢋPRGH  
ꢁꢀ  
ꢁꢇ  
ꢉꢀ  
ꢉꢇ  
ꢈꢀ  
ꢈꢇ  
,
 ꢋꢇꢋP$  
+LJKꢋ6LGHꢋ21ꢎ5HVLVWDQFH  
/RZꢋ6LGHꢋ21ꢎ5HVLVWDQFH  
ꢎꢂꢇ ꢎꢉꢀ ꢎꢈꢇ  
ꢉꢇ ꢁꢀ ꢀꢇ ꢃꢀ ꢅꢇ ꢆꢀ ꢈꢈꢇ ꢈꢉꢀ  
ꢉꢊꢀ  
ꢁꢊꢀ  
9,1 ꢌ9ꢍ  
ꢂꢊꢀ  
$PELHQWꢋ7HPSHUDWXUHꢋꢌƒ&ꢍ  
FIGURE 2-1:  
Operating Supply Current  
FIGURE 2-4:  
R
vs. Temperature.  
DS(on)  
vs. Input Voltage, Switching.  
7
ꢈꢇꢇ  
ꢆꢇ  
ꢅꢇ  
ꢄꢇ  
ꢃꢇ  
ꢀꢇ  
ꢂꢇ  
ꢁꢇ  
ꢉꢇ  
ꢈꢇ  
VIN = 5.0V  
6.5  
6
VOUT = 1V  
5.5  
5
9,1  ꢋꢀꢊꢇ9  
9,1  ꢋꢁꢊꢁ9  
9,1  ꢋꢉꢊꢀ9  
VOUT = 3.3V  
4.5  
9287ꢋ ꢋꢇꢊꢃ9  
4
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
ꢇꢊꢇꢇꢈ  
ꢇꢊꢇꢈ  
ꢇꢊꢈ  
,
287 ꢌ$ꢍ  
Ambient Temperature (°C)  
FIGURE 2-5:  
Efficiency vs. Load Current  
FIGURE 2-2:  
High-Side Current Limits vs.  
(V  
= 0.6V).  
Temperature.  
OUT  
7
ꢈꢇꢇ  
ꢆꢇ  
ꢅꢇ  
ꢄꢇ  
ꢃꢇ  
ꢀꢇ  
ꢂꢇ  
ꢁꢇ  
ꢉꢇ  
ꢈꢇ  
VIN = 5.0V  
6.5  
6
VOUT = 1V  
9,1  ꢋꢀꢊꢇ9  
5.5  
9,1  ꢋꢁꢊꢁ9  
9,1  ꢋꢉꢊꢀ9  
VOUT = 3.3V  
5
4.5  
4
9287ꢋ ꢋꢈ9  
ꢇꢊꢇꢇꢈ  
ꢇꢊꢇꢈ  
ꢇꢊꢈ  
287 ꢌ$ꢍ  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
,
Ambient Temperature (°C)  
FIGURE 2-6:  
(V = 1V).  
Efficiency vs. Load Current  
FIGURE 2-3:  
vs. Temperature, Switching.  
Operating Supply Current  
OUT  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 9  
MIC33M350  
Note:  
Unless otherwise indicated, PVIN = 5V, VOUT = 1V, COUT = 47 µF, TA = +25°C.  
ꢇꢊꢇꢅ  
ꢇꢊꢇꢃ  
ꢇꢊꢇꢂ  
ꢇꢊꢇꢉ  
ꢈꢇꢇ  
ꢆꢇ  
ꢅꢇ  
ꢄꢇ  
ꢃꢇ  
ꢀꢇ  
ꢂꢇ  
ꢁꢇ  
ꢉꢇ  
ꢈꢇ  
,
 ꢋꢁꢇꢇꢋP$  
287ꢋ  
9287ꢋ ꢋꢇꢊꢃ9  
9287ꢋ ꢋꢈꢊꢇ9  
9287ꢋ ꢋꢈꢊꢉꢅ9  
9,1   ꢀꢊꢇ9  
9,1  ꢋꢁꢊꢁ9  
9287ꢋ ꢋꢉꢊꢀ9  
ꢉꢊꢂ  
ꢉꢊꢆ  
ꢁꢊꢂ  
ꢁꢊꢆ  
ꢂꢊꢂ  
ꢂꢊꢆ  
ꢇꢊꢇꢇꢈ  
ꢇꢊꢇꢈ  
ꢇꢊꢈ  
9,1 ꢌ9ꢍ  
,
287 ꢌ$ꢍ  
FIGURE 2-7:  
Efficiency vs. Load Current  
FIGURE 2-10:  
Output Voltage Variation vs.  
(V  
= 2.5V).  
Input Voltage.  
OUT  
ꢇꢊꢁ  
ꢈꢇꢇ  
ꢆꢇ  
ꢅꢇ  
ꢄꢇ  
ꢃꢇ  
ꢀꢇ  
ꢂꢇ  
ꢁꢇ  
ꢉꢇ  
ꢈꢇ  
9,1  ꢋꢀ9  
9,1  ꢋꢀꢊꢇ9  
9287ꢋ ꢋꢇꢊꢃ9  
9287ꢋ ꢋꢈꢊꢇ9  
9287ꢋ ꢋꢈꢊꢉꢅ9  
ꢇꢊꢉꢀ  
ꢇꢊꢉ  
ꢇꢊꢈꢀ  
ꢇꢊꢈ  
ꢇꢊꢇꢀ  
9287ꢋ ꢋꢁꢊꢁ9  
ꢇꢊꢇꢇꢈ  
ꢇꢊꢇꢈ  
ꢇꢊꢈ  
,
287 ꢌ$ꢍ  
,
287 ꢌ$ꢍ  
FIGURE 2-8:  
Efficiency vs. Load Current  
FIGURE 2-11:  
V
Voltage vs. I  
.
OUT  
OUT  
(V  
= 3.3V).  
OUT  
ꢈꢊꢅꢇ  
ꢈꢊꢃꢇ  
ꢈꢊꢂꢇ  
ꢈꢊꢉꢇ  
VOUT = 1V  
2
1.5  
1
9287  ꢋꢇꢊꢃ9  
ꢈꢊꢇꢇ  
ꢇꢊꢅꢇ  
ꢇꢊꢃꢇ  
9287  ꢋꢈꢊꢇ9  
9287  ꢋꢁꢊꢁ9  
0.5  
0
,
 ꢋꢈꢊꢇ$  
287ꢋ  
ꢉꢊꢀ  
ꢁꢊꢀ  
9,1 ꢌ9ꢍ  
ꢂꢊꢀ  
ꢀꢊꢀ  
2.5  
3.5  
4.5  
5.5  
VIN (V)  
FIGURE 2-12:  
Input Voltage.  
Switching Frequency vs.  
FIGURE 2-9:  
vs. V .  
DCM/FPWM I  
Threshold  
OUT  
IN  
DS20006348B-page 10  
2020-2021 Microchip Technology Inc.  
MIC33M350  
Note:  
Unless otherwise indicated, PVIN = 5V, VOUT = 1V, COUT = 47 µF, TA = +25°C  
ꢈꢊꢃ  
9,1ꢋꢋꢋ ꢋꢀꢊꢇ9  
EN  
5V/div  
sKhdꢀсꢀϭ͘Ϯϴs  
ꢈꢊꢂ  
ꢈꢊꢉ  
sKhdꢀсꢀϭs  
V
OUT  
sKhdꢀсꢀϬ͘ϲs  
500 mV/div  
PG  
5V/div  
I
OUT  
2A/div  
,
287 ꢌ$ꢍ  
2 ms/div  
FIGURE 2-13:  
Switching Frequency vs.  
FIGURE 2-16:  
EN Turn-On, R  
= 0.3.  
LOAD  
Output Current.  
V
IN  
5V/div  
EN  
5V/div  
V
OUT  
500 mV/div  
V
PG  
OUT  
500 mV/div  
5V/div  
PG  
5V/div  
I
OUT  
I
OUT  
2A/div  
2A/div  
80 µs/div  
4 ms/div  
FIGURE 2-17:  
EN Turn-Off, R  
= 0.3.  
FIGURE 2-14:  
V
Turn-On (EN = PV ).  
IN IN  
LOAD  
V
IN  
5V/div  
EN  
5V/div  
V
OUT  
V
OUT  
500 mV/div  
500 mV/div  
PG  
5V/div  
PG  
5V/div  
I
OUT  
2A/div  
SW  
5V/div  
400 µs/div  
400 µs/div  
FIGURE 2-18:  
EN Turn-On Into Pre-Biased  
= 0.8V).  
FIGURE 2-15:  
V
Turn-Off (EN = PV ),  
IN IN  
Output (V  
R
= 0.3.  
pre-bias  
LOAD  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 11  
MIC33M350  
Note:  
Unless otherwise indicated, PVIN = 5V, VOUT = 1V, COUT = 47 µF, TA = +25°C.  
V
V
IN  
IN  
5V/div  
5V/div  
V
V
OUT  
OUT  
50 mV/div  
AC coupled  
500 mV/div  
SW  
5V/div  
PG  
5V/div  
I
OUT  
SW  
50 mA/div  
5V/div  
2 ms/div  
1 µs/div  
FIGURE 2-19:  
Power-Up Into Short Circuit.  
FIGURE 2-22:  
Switching Waveforms -  
I
= 50 mA, HLL Mode.  
OUT  
V
IN  
5V/div  
V
OUT  
V
OUT  
1V/div  
50 mV/div  
AC coupled  
I
OUT  
5A/div  
PG  
5V/div  
SW  
5V/div  
I
OUT  
SW  
5V/div  
5A/div  
1 µs/div  
2 ms/div  
FIGURE 2-20:  
Output Current Limit  
FIGURE 2-23:  
Switching Waveforms -  
Threshold.  
I
= 3A.  
OUT  
Step from 0.5A to 3A  
PG  
5V/div  
V
OUT  
V
OUT  
1V/div  
100 mV/div  
AC coupled  
I
OUT  
5A/div  
SW  
5V/div  
SW  
5V/div  
I
OUT  
5A/div  
PG  
5V/div  
1 ms/div  
80 µs/div  
FIGURE 2-21:  
Hiccup Mode Short Circuit  
FIGURE 2-24:  
Load Transient Response.  
Current Limit Response.  
DS20006348B-page 12  
2020-2021 Microchip Technology Inc.  
MIC33M350  
Note:  
Unless otherwise indicated, PVIN = 5V, VOUT = 1V, COUT = 47 µF, TA = +25°C.  
Step from 4.5V to 5.5V  
PG  
5V/div  
V
IN  
2V/div  
V
OUT  
10 mV/div  
AC coupled  
I
OUT  
2A/div  
1 ms/div  
FIGURE 2-25:  
Line Transient Response.  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 13  
MIC33M350  
NOTES:  
DS20006348B-page 14  
2020-2021 Microchip Technology Inc.  
MIC33M350  
3.0  
PIN DESCRIPTION  
The descriptions of the pins are listed in Table 3-1.  
TABLE 3-1:  
MIC33M350  
PIN FUNCTION TABLE  
Symbol  
Pin Function  
1, 2, 3, 10, 11  
PGND  
Power Ground Pin: PGND is the ground path for the MIC33M350 buck  
converter power stage.  
4, 5, 6, 7, 8, 9  
SW  
PVIN  
SVIN  
Switch Node Pin  
17  
18  
Power Supply Voltage Pin  
Analog Voltage Input Pin. The power to the internal reference and  
control sections of the MIC33M350 device. A 1.0 µF ceramic  
capacitor from SVIN to GND must be used. Internally connected to  
PVIN through a 10resistor.  
19  
20  
VSEL2  
Output Voltage Selection Control Pin 2 (Input): The Logic state of the  
VSEL1 and VSEL2 selects the register that sets the output voltage. This  
input has three Digital states: High, Low and Floating.  
VSEL1  
Output Voltage Selection Control Pin 1 (Input): The Logic state of the  
VSEL1 and VSEL2 selects the register that sets the output voltage. This  
input has three Digital states: High, Low and Floating.  
21  
22  
23  
EN  
PG  
Enable Pin (Input): Logic high enables operation of the regulator. The  
EN pin should not be left open.  
Power Good Pin (Output): This is an open-drain output that indicates  
when the output voltage is lower than the 91% limit.  
VOUT  
Output Voltage Sense Pin (Input): This pin is used to remote sense  
the output voltage. Connect VOUT as close to the output capacitor as  
possible to sense output voltage. Also provides the path to discharge  
the output through an internal 10resistor when disabled.  
12, 13, 14, 15, 16  
OUT  
Power Output Side Connection Pins  
24  
25  
26  
27  
28  
AGND  
Analog Ground: Internal signal ground for all low-power circuits  
Exposed Thermal Pad Pin: Internally connected to PGND  
Exposed Thermal Pad Pin: Internally connected to PGND  
Exposed Thermal Pad Pin: Internally connected to SW Node  
Exposed Thermal Pad Pin: Internally connected to Output side  
EP1_PGND  
EP2_PGND  
EP_SW  
EP_OUT  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 15  
MIC33M350  
3.1  
Power Ground Pin (PGND  
)
3.7  
Enable Pin (EN)  
PGND is the ground path for the MIC33M350 buck  
converter power stage. The PGND pin connects to the  
sources of the low-side N-Channel MOSFETs, the  
negative terminals of input capacitors and the negative  
terminals of output capacitors. The loop for the Power  
Ground should be as small as possible and separate  
from the Analog Ground (AGND) loop.  
Logic high enables operation of the regulator. Logic low  
shuts down the device. In the OFF state, the supply  
current to the device is greatly reduced (typically  
1.5 µA). The EN pin should not be left open.  
3.8  
Power Good Pin (PG)  
This is an open-drain output that indicates when the  
output voltage is higher than the 91% limit. There is a  
4% hysteresis, therefore, PG will return to low when the  
falling output voltage falls below 87% of the target  
regulation voltage.  
3.2  
Switch Node Pin (SW)  
The SW pin connects directly to the switch node. The  
Switching Node output pin is connected to the internal  
MOSFETs and inductor. Due to the high-speed  
switching on this pin, the SW pin should be routed  
away from sensitive nodes. The SW pin also senses  
the current by monitoring the voltage across the  
low-side MOSFET during off-time.  
3.9  
Output Voltage Sense Pin (VOUT)  
This pin is used to remotely sense the output voltage.  
Connect it to VOUT as close to the output capacitor as  
possible to sense output voltage. This pin also provides  
the path to discharge the output through an internal  
10resistor when it is disabled.  
3.3  
Input Voltage Pin (PVIN)  
This is an input supply to the source of the internal  
high-side P-channel MOSFET. The PVIN operating  
voltage range is from 2.4V to 5.5V. An input capacitor  
between PVIN and the Power Ground (PGND) pin is  
required and placed as close as possible to the IC.  
3.10 Analog Ground Pin (AGND  
)
This is an internal signal ground for all low-power  
circuits. Connect it to ground plane. For the best load  
regulation, the connection path from AGND to the output  
capacitor ground terminal should be free from parasitic  
voltage drops.  
3.4  
Analog Voltage Input Pin (SVIN)  
The power to the internal reference and control  
sections of the MIC33M350. A 1.0 µF ceramic  
capacitor from SVIN to ground must be used. Internally  
connected to PVIN through a 10resistor.  
3.11 EP1_PGND, EP2_PGND  
These pins electrically connected to the PGND pins.  
They must be connected with thermal vias to the  
ground plane to ensure adequate heat sinking.  
3.5  
Output Voltage Selection Control  
Pin 2 (VSEL2  
)
3.12 EP_SW Exposed Pad (SW)  
The Logic state of the VSEL1 and VSEL2 selects the  
output voltage. This input has three Digital states: High,  
Low and Floating. See Table 4-1.  
This pin is electrically connected to the SW node.  
3.13 OUT Exposed Pad (OUT)  
This pin is electrically connected to the OUT pins. It  
must be externally connected to the output power  
connection.  
3.6  
Output Voltage Selection Control  
Pin 1 (VSEL1  
)
The Logic state of the VSEL1 and VSEL2 selects the  
output voltage. This input has three Digital states: High,  
Low and Floating. See Table 4-1.  
DS20006348B-page 16  
2020-2021 Microchip Technology Inc.  
MIC33M350  
4.3  
Enable (EN)  
4.0  
4.1  
DETAILED DESCRIPTION  
Device Overview  
When the EN pin is pulled low, the IC is in a Shutdown  
state, with all internal circuits disabled and with the  
Power Good output low. During shutdown, the  
MIC33M350 part typically consumes 1.5 µA. When the  
EN pin is pulled high, the start-up sequence is initiated.  
The MIC33M350 device is a high-efficiency, 3A current,  
synchronous buck regulator power module with inte-  
grated inductor. The COT control architecture with  
automatic HyperLight Load mode provides very high  
efficiency at light loads and ultra-fast transient  
response.  
4.4  
Power Good (PG)  
The Power Good output is generally used for power  
sequencing, where the PG output is tied to the Enable  
output of another regulator. This technique avoids all  
the regulators powering up at the same time, which  
causes large inrush current.  
The MIC33M350 output voltage is set by two VSEL  
three-state logic pins that can set the output voltage to  
nine different values (see Table 4-1).  
The 2.4V to 5.5V input voltage operating range makes  
the device ideal for single cell Li-ion battery-powered  
applications. The 100% duty cycle capability provides  
Low Dropout operation, extending battery life in  
portable systems. The automatic HyperLight Load  
mode provides very high efficiency at light loads.  
PG is an open-drain output that indicates that the  
output is above 87% of its voltage set value. During  
start-up, when the output voltage is rising, the Power  
Good output goes high when the output voltage  
reaches 91% of its set value. The Power Good  
threshold has 4% hysteresis, so the Power Good  
output stays high until the output voltage falls below  
87% of the set value. A built-in 65 µs blanking time is  
incorporated to prevent nuisance tripping.  
These devices focus on high output voltage accuracy.  
Total output error is less than 1.5% over line, load and  
temperature.  
MIC33M350 focuses on high output voltage accuracy.  
A pull-up resistor can be connected to VIN, VOUT, or an  
external source that is less than or equal to VIN. The  
PG pin can be connected to another regulator’s enable  
pin for sequencing of the outputs. The PG output is  
deasserted as soon as the Enable pin is pulled low or  
an input undervoltage condition, or any other Fault is  
detected.  
The MIC33M350 buck regulator uses an adaptive  
Constant On-Time control method. The adaptive  
on-time control scheme is employed to obtain a nearly  
constant switching frequency and to simplify the control  
compensation. Overcurrent protection is implemented  
without the use of an external sense resistor. The  
MIC33M350 device includes an internal soft start  
function which reduces the power supply input surge  
current at start-up by controlling the output voltage rise  
time.  
4.5  
Resistive Discharge (Soft  
Discharge)  
To ensure a known output condition when the output is  
turned off, then back on again (i.e. in a brown output  
condition), the output is actively discharged to ground  
by means of an internal 10resistor if the output is  
disabled.  
4.2  
HyperLight Load® Mode (HLL)  
HLL is a power-saving mode. In HLL, the switching  
frequency is not constant over the operation current  
range. At light loads, the minimum duty cycle is limited,  
which causes the switching frequency to decrease at  
light loads, this reduces switching and drive losses, and  
increases efficiency.  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 17  
MIC33M350  
4.6  
Output Voltage Setting  
4.8  
Soft Start  
The MIC33M350 device has two pins, VSEL1 and  
VSEL2, which are used for choosing between nine  
predefined voltage settings: 0.6V, 0.8V, 0.9V, 1.0V,  
1.2V, 1.5V, 1.8V, 2.5V, 3.3V. These pins can be tied to  
VIN, GND or left floating. The relationship between  
VSEL1/VSEL2 and the output voltage is shown in  
Table 4-1.  
Excess bulk capacitance on the output can cause  
excessive input inrush current. The MIC33M350 soft  
start feature forces the output voltage to rise gradually,  
keeping the inrush current at reasonable levels. This is  
particularly important in battery-powered applications.  
When the Enable pin goes high, the output voltage  
starts to rise. Once the soft start period has finished,  
the Power Good comparator is enabled and the Power  
Good output goes high.  
TABLE 4-1:  
VSEL2  
OUTPUT VOLTAGE SETTINGS  
VSEL1  
VOUT  
The output voltage soft start time is determined by the  
soft start equation below. The Soft Start Time, tSS can  
be calculated by Equation 4-2.  
GND  
GND  
GND  
OPEN  
OPEN  
OPEN  
VIN  
GND  
OPEN  
VIN  
0.6V  
0.8V  
0.9V  
1.0V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
EQUATION 4-2:  
.
GND  
OPEN  
VIN  
tSS = VOUT tRAMP  
tSS = 1.0V 800 sV  
tss = 800 s = 0.8 ms  
GND  
OPEN  
VIN  
VIN  
VIN  
Where:  
VOUT should be connected exactly to the desired  
Point-of-Load (POL) regulation, avoiding parasitic  
resistive drops. It is possible to fine-tune the desired  
output voltage by adding a series resistor on the VOUT  
pin. This allows slightly higher output value  
programming, but should not exceed 5% deviation from  
the VSEL selected value.  
VOUT = 1.0V  
tRAMP = 800 µs/V  
4.9  
Dropout Operation  
As the input voltage approaches the output voltage, the  
minimum on-time limits the maximum duty cycle. To  
achieve 100% duty cycle, the high-side switch is  
latched when the duty cycle reaches around 92% and  
stays latched until the output voltage falls 4% below its  
regulated value. In dropout, the output voltage is  
determined by the input voltage minus the voltage drop  
across the high-side MOSFET.  
EQUATION 4-1:  
R
= 8.2 k  TRIM  
VOUT  
Where:  
RVOUT = VOUT series resistance needed for a  
TRIM% output voltage increase  
4.7  
Converter Stability/Output  
Capacitor  
The MIC33M350 device utilizes an internal  
compensation network and is designed to provide  
stable operation with output capacitors, from 47 µF to  
1000 µF. This greatly simplifies the design, where you  
can add supplementary output capacitance without  
having to worry about stability.  
DS20006348B-page 18  
2020-2021 Microchip Technology Inc.  
MIC33M350  
During recovery from a thermal shutdown event, if the  
regulator hits another thermal shutdown event or a  
current limit event causing hiccup before Power Good  
can be achieved, the controller resets again. If this  
happens more than four times in a row, then the part  
enters the Latch-Off state, which turns off both  
MOSFETs permanently. The MIC33M350 part does not  
restart again unless the input power is cycled. This  
Latch-Off feature eliminates the thermal stress on the  
MIC33M350 during a persistent Fault event.  
4.10 Switching Frequency  
The switching frequency of the MIC33M350 is  
determined by the internal On-Time (TON) calculation.  
For an input voltage of 5V and an output voltage of 1V,  
the typical value of TON is 180 ns. The resulting  
switching frequency can be estimated by Equation 4-3.  
EQUATION 4-3:  
fSW = VOUT VIN TON  
4.13 Safe Start-up Into a Pre-Biased  
Output  
Equation 4-3 is only valid in continuous conduction  
mode and for a lossless converter. In practice, losses  
cause an increase of the switching frequency  
compared to the ideal case. As the load current  
increases, losses increase too and so does the  
switching frequency.  
The MIC33M350 is designed for safe start-up into a  
pre-biased output in forced PWM. This feature  
prevents high negative inductor current flow in a  
pre-bias condition, which can damage the IC. This is  
achieved by not allowing forced PWM until the control  
loop commands eight switching cycles. After eight  
cycles, the low-side negative current limit is switched  
from 0A to -3A. The cycle counter is reset to zero if the  
enable pin is pulled low, or an input undervoltage  
condition or any other Fault is detected.  
The on-time calculation is adaptive, in that the TON  
value is modulated based on the input voltage and on  
the target output voltage to stabilize the switching  
frequency against their variations. Losses are not  
accounted for.  
4.14 Current Limiting  
VIN (V)  
VOUT (V)  
TON  
The MIC33M350 regulator uses both high-side and  
low-side current sense for current limiting. When the  
high-side current sense threshold is reached, the  
high-side MOSFET is turned off and the low-side  
MOSFET is turned on. The low-side MOSFET stays on  
until the current falls to 80% of the high-side current  
threshold value, then the high side can be turned on  
again. If the overload condition lasts for more than four  
cycles, the MIC33M350 enters hiccup current limiting  
and both MOSFETs are turned off. There is a 1 ms  
cool-off period before the MOSFETs are allowed to be  
turned on. If the regulator has another hiccup event  
before it reaches the Power Good threshold on restart,  
turn both MOSFETs off again and wait for 1 ms. If this  
happens more than three times in a row, then the part  
enters the Latch-Off state, which turns off both  
MOSFETs permanently, unless the part is reset by  
cycling the input power.  
5
0.6  
1
110  
180  
340  
490  
610  
270  
1.8  
2.5  
3.3  
1
3.3  
4.11 Undervoltage Protection (UVLO)  
Undervoltage protection ensures that the IC has  
enough voltage to bias the internal circuitry properly  
and provide sufficient gate drive for the power  
MOSFETs. When the input voltage starts to rise, both  
power MOSFETs are off and the power good output is  
pulled low. The IC starts at approximately 2.225V and  
has a nominal 153 mV of hysteresis to prevent  
chattering between the UVLO high and low states.  
4.15 Thermal Considerations  
4.12 Overtemperature Fault  
Although the MIC33M350 is capable of delivering up to  
3A under load, the package thermal resistance and the  
device internal power dissipation may dictate some  
limitations to the continuous output current.  
The MIC33M350 monitors the die junction temperature  
to keep the IC operating properly. If the IC junction  
temperature exceeds +165°C, both power MOSFETs  
are immediately turned off. The IC is allowed to restart  
when the die temperature falls below +143°C.  
If operated above the rated junction temperature,  
electrical parameters may drift beyond characterized  
specifications. The MIC33M350 is protected under all  
circumstances by thermal shutdown.  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 19  
MIC33M350  
NOTES:  
DS20006348B-page 20  
2020-2021 Microchip Technology Inc.  
MIC33M350  
EQUATION 5-3:  
5.0  
5.1  
APPLICATION INFORMATION  
Output Voltage Sensing  
2
I  
2
LPP  
------------------------------------------  
V  
=
+
I  
ESR  
C
OUTPP  
LPP  
C
f 8  
OUT SW  
OUT  
To achieve accurate output voltage regulation, the  
VOUT pin (internal feedback divider top terminal) should  
be Kelvin-connected as close as possible to the point  
of regulation top terminal. Since both the internal  
reference and the internal feedback divider’s bottom  
terminal refer to AGND, it is important to minimize  
voltage drops between the AGND and the point of  
regulation return terminal (typically the ground terminal  
of the output capacitor which is closest to the load).  
Where:  
COUT  
fSW  
Output Capacitance Value  
Switching Frequency  
The output capacitor RMS current is calculated in  
Equation 5-4.  
EQUATION 5-4:  
I  
LPP  
5.2  
Output Capacitor Selection  
I
= ---------------------  
12  
C
OUTRMS  
The type of the output capacitor is usually determined  
by its Equivalent Series Resistance (ESR). Voltage and  
RMS current capability are two other important factors  
for selecting the output capacitor. Recommended  
capacitor types are ceramic, low-ESR aluminum  
electrolytic, OS-CON, and POSCAP. The output  
capacitor’s ESR is usually the main cause of the output  
ripple. The output capacitor ESR also affects the  
control loop from a stability point of view. The maximum  
value of ESR is calculated using Equation 5-1.  
The power dissipated in the output capacitor is:  
EQUATION 5-5:  
2
P
= I  
ESR  
DISSCOUT  
COUTRMS  
COUT  
5.3  
Input Capacitor Selection  
The input capacitor for the power stage input VIN  
should be selected for ripple current rating and voltage  
rating. Tantalum input capacitors can fail when  
subjected to high inrush currents, caused by turning on  
the input supply. A tantalum input capacitor’s voltage  
rating should be at least two times the maximum input  
voltage, to maximize reliability. Aluminum electrolytic,  
OS–CON, and multilayer polymer film capacitors can  
handle the higher inrush currents without voltage  
derating. The input voltage ripple depends on the input  
capacitor’s ESR. The peak input current is equal to the  
peak inductor current, as shown in Equation 5-6.  
EQUATION 5-1:  
V  
OUTPP  
--------------------------------  
ESR  
C
I  
OUT  
LPP  
Where:  
VOUT(PP)  
IL(PP)  
Peak-to-peak output voltage ripple  
Peak-to-peak inductor current ripple  
The peak-to-peak inductor current ripple can be  
calculated with the formula in Equation 5-2.  
EQUATION 5-6:  
EQUATION 5-2:  
V  
= I  
C  
IN  
LPK  
ESR  
V
V  
V  
OUT  
IN(MAX)  
f  
OUT  
L  
I  
= ----------------------------------------------------------------------------  
The input capacitor must be rated for the input current  
ripple. The RMS value of input capacitor current is  
determined at the maximum output current. Assuming  
the peak-to-peak inductor current ripple is low:  
L(PP)  
V
IN(MAX) SW  
Where:  
L
=
0.47 µH  
EQUATION 5-7:  
The total output ripple is a combination of the ESR and  
output capacitance.The total ripple is calculated in  
Equation 5-3.  
I
I  
CINRMSOUTMAX  
D 1 D  
The power dissipated in the input capacitor is  
calculated in Equation 5-8.  
EQUATION 5-8:  
2
P
= I  
C  
DISSCIN  
CINRMS  
ESR  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 21  
MIC33M350  
NOTES:  
DS20006348B-page 22  
2020-2021 Microchip Technology Inc.  
MIC33M350  
6.0  
PACKAGE MARKING INFORMATION  
MIC33M350  
Example  
24-Lead QFN, 3.0 mm x 4.5 mm x 1.8 mm  
350  
2110  
256  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
e
3
Pb-free JEDEC designator for Matte Tin (Sn)  
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 23  
MIC33M350  
24-Lead Plastic Quad Flat, No Lead Package (N6A) - 3x4.5 mm Body [QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
24X  
A1  
0.05 C  
0.08 C  
NOTE 1  
D
A
B
E
N
E
4
1
2
(DATUM B)  
(DATUM A)  
2X  
0.05 C  
2X  
(A3)  
TOP VIEW  
0.05 C  
A
SEATING  
PLANE  
C
D2  
2X b2  
SIDE VIEW  
6X L2  
K2 0.20  
24X b  
0.10  
0.05  
C A B  
C
E2  
2
1
E3  
e
N
11X L  
NOTE 1  
K1 0.20  
D3  
BOTTOM VIEW  
Microchip Technology Drawing C04-1220A Sheet 1 of 2  
DS20006348B-page 24  
2020-2021 Microchip Technology Inc.  
MIC33M350  
24-Lead Plastic Quad Flat, No Lead Package (N6A) - 3x4.5 mm Body [QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Terminals  
Pitch  
Overall Height  
N
24  
0.50 BSC  
1.85  
e
A
A1  
A3  
D
D2  
D3  
E
E2  
E3  
b
b2  
L
1.80  
0.00  
1.90  
0.05  
Standoff  
0.02  
Terminal Thickness  
Overall Length  
Exposed Pad Length  
Exposed Pad Length  
Overall Width  
Exposed Pad Width  
Exposed Pad Width  
Terminal Width  
Terminal Width  
Terminal Length  
Terminal Length  
0.203 REF  
3.00 BSC  
0.388  
1.394  
4.50 BSC  
2.40  
0.376  
0.25  
0.13  
0.338  
1.344  
0.438  
1.444  
2.35  
0.326  
0.20  
0.08  
0.35  
0.20  
0.20  
0.20  
2.45  
0.426  
0.30  
0.18  
0.45  
0.30  
-
0.40  
0.25  
-
-
L2  
K1  
K2  
Terminal to Exposed Pad  
Terminal to Exposed Pad  
-
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-1220A Sheet 2 of 2  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 25  
MIC33M350  
24-Lead Plastic Quad Flat, No Lead Package (N6A) - 3x4.5 mm Body [QFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
X4  
C1  
X6  
X1  
EV  
24  
Y6  
Y1  
Y4  
EV  
1
2
C2  
Y5  
Y7  
EV  
EV  
8X ØV  
Y2  
X3  
X5  
SILK SCREEN  
E
Outer Features  
Inner Features  
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
MILLIMETERS  
MIN  
NOM  
MAX  
Contact Pitch  
E
0.50 BSC  
Contact Pad Spacing  
Contact Pad Spacing  
Contact Pad Width (X24)  
Contact Pad Length (X24)  
Contact Pad Length (X7)  
Contact Pad Width  
Exposed Pad Length  
Exposed Pad Width  
Exposed Pad Width  
Exposed Pad Length  
Terminal to Exposed Pad  
Terminal to Exposed Pad  
Terminal to Exposed Pad  
Thermal Via Diameter  
Thermal Via Pitch  
C1  
C2  
X1  
3.00  
4.50  
0.30  
0.80  
0.65  
0.20  
Y1  
Y2  
X3  
X4  
Y4  
X5  
Y5  
X6  
Y6  
Y7  
V
1.41  
0.40  
0.43  
2.40  
0.20  
0.50  
0.20  
0.30  
1.00  
EV  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during  
reflow process  
Microchip Technology Drawing C04-3220 Rev A  
DS20006348B-page 26  
2020-2021 Microchip Technology Inc.  
MIC33M350  
APPENDIX A: REVISION HISTORY  
Revision B (March 2021)  
The following is the list of modifications:  
1. Added edits to incorporate the AEC-Q104  
qualification.  
Revision A (May 2020)  
• Initial release of this document.  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 27  
MIC33M350  
NOTES:  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 28  
MIC33M350  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
X
XXX  
XX  
XX  
a) MIC33M350YMP-TR:  
Extended Temperature,  
24-Lead QFN package,  
Tape and Reel  
Junction  
Temperature  
Range  
Package  
Qualification  
Tape and Reel  
Option(1)  
b) MIC33M350YMP-VAO:  
Extended Temperature  
24-Lead QFN package,  
Tape and Reel,  
Device:  
MIC33M350  
Automotive Qualified  
c) MIC33M350YMP-TRVAO:  
Extended Temperature,  
24-Lead QFN package,  
Tape and Reel,  
Junction  
Temperature  
Range:  
Y
= -40C to +125C (Extended)  
Automotive Qualified  
Package:  
MP = QFN (Plastic Quad Flat, No Lead Package)  
Blank = Tube  
Tape and  
Reel Option: TR = Tape and Reel  
Note 1:  
Tape and Reel identifier only appears in the  
catalog part number description. This identifier  
is used for ordering purposes and is not printed  
on the device package. Check with your  
Microchip Sales Office for package availability  
with the Tape and Reel option.  
Qualification: Blank = Tube  
VAO = AEC-Q104 Automotive Qualification  
Vxx = AEC-Q104 Automotive Qualification; custom device,  
additional terms or conditions may apply.  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 29  
MIC33M350  
NOTES:  
DS20006348B-page 30  
2020-2021 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specifications contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is secure when used in the intended manner and under normal conditions.  
There are dishonest and possibly illegal methods being used in attempts to breach the code protection features of the Microchip  
devices. We believe that these methods require using the Microchip products in a manner outside the operating specifications  
contained in Microchip's Data Sheets. Attempts to breach these code protection features, most likely, cannot be accomplished  
without violating Microchip's intellectual property rights.  
Microchip is willing to work with any customer who is concerned about the integrity of its code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not  
mean that we are guaranteeing the product is "unbreakable." Code protection is constantly evolving. We at Microchip are  
committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection  
feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or  
other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication is provided for the sole  
purpose of designing with and using Microchip products. Infor-  
mation regarding device applications and the like is provided  
only for your convenience and may be superseded by updates.  
It is your responsibility to ensure that your application meets  
with your specifications.  
Trademarks  
The Microchip name and logo, the Microchip logo, Adaptec,  
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT,  
chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex,  
flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,  
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi,  
Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,  
PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire,  
Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST,  
SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon,  
TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered  
trademarks of Microchip Technology Incorporated in the U.S.A. and  
other countries.  
THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".  
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-  
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,  
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,  
RELATED TO THE INFORMATION INCLUDING BUT NOT  
LIMITED TO ANY IMPLIED WARRANTIES OF NON-  
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A  
PARTICULAR PURPOSE OR WARRANTIES RELATED TO  
ITS CONDITION, QUALITY, OR PERFORMANCE.  
AgileSwitch, APT, ClockWorks, The Embedded Control Solutions  
Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight  
Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3,  
Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-  
Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,  
TimePictra, TimeProvider, WinPath, and ZL are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-  
RECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUEN-  
TIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND  
WHATSOEVER RELATED TO THE INFORMATION OR ITS  
USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS  
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES  
ARE FORESEEABLE. TO THE FULLEST EXTENT  
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON  
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION  
OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF  
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP  
FOR THE INFORMATION. Use of Microchip devices in life sup-  
port and/or safety applications is entirely at the buyer's risk, and  
the buyer agrees to defend, indemnify and hold harmless  
Microchip from any and all damages, claims, suits, or expenses  
resulting from such use. No licenses are conveyed, implicitly or  
otherwise, under any Microchip intellectual property rights  
unless otherwise stated.  
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any  
Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky,  
BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive,  
CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,  
Dynamic Average Matching, DAM, ECAN, Espresso T1S,  
EtherGREEN, IdealBridge, In-Circuit Serial Programming, ICSP,  
INICnet, Intelligent Paralleling, Inter-Chip Connectivity,  
JitterBlocker, maxCrypto, maxView, memBrain, Mindi, MiWi,  
MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK,  
NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net,  
PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE,  
Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O,  
simpleMAP, SimpliPHY, SmartBuffer, SMART-I.S., storClad, SQI,  
SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total  
Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,  
ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks  
of Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated in  
the U.S.A.  
The Adaptec logo, Frequency on Demand, Silicon Storage  
Technology, and Symmcom are registered trademarks of Microchip  
Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology Germany  
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in  
other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2020-2021, Microchip Technology Incorporated, All Rights  
Reserved.  
For information regarding Microchip’s Quality Management Systems,  
please visit www.microchip.com/quality.  
ISBN: 978-1-5224-7800-3  
2020-2021 Microchip Technology Inc.  
DS20006348B-page 31  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Australia - Sydney  
Tel: 61-2-9868-6733  
India - Bangalore  
Tel: 91-80-3090-4444  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
China - Beijing  
Tel: 86-10-8569-7000  
India - New Delhi  
Tel: 91-11-4160-8631  
Denmark - Copenhagen  
Tel: 45-4485-5910  
Fax: 45-4485-2829  
China - Chengdu  
Tel: 86-28-8665-5511  
India - Pune  
Tel: 91-20-4121-0141  
Finland - Espoo  
Tel: 358-9-4520-820  
China - Chongqing  
Tel: 86-23-8980-9588  
Japan - Osaka  
Tel: 81-6-6152-7160  
Web Address:  
www.microchip.com  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
China - Dongguan  
Tel: 86-769-8702-9880  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Guangzhou  
Tel: 86-20-8755-8029  
Korea - Daegu  
Tel: 82-53-744-4301  
Germany - Garching  
Tel: 49-8931-9700  
China - Hangzhou  
Tel: 86-571-8792-8115  
Korea - Seoul  
Tel: 82-2-554-7200  
Germany - Haan  
Tel: 49-2129-3766400  
Austin, TX  
Tel: 512-257-3370  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Malaysia - Kuala Lumpur  
Tel: 60-3-7651-7906  
Germany - Heilbronn  
Tel: 49-7131-72400  
Boston  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
China - Nanjing  
Tel: 86-25-8473-2460  
Malaysia - Penang  
Tel: 60-4-227-8870  
Germany - Karlsruhe  
Tel: 49-721-625370  
China - Qingdao  
Philippines - Manila  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Tel: 86-532-8502-7355  
Tel: 63-2-634-9065  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
China - Shanghai  
Tel: 86-21-3326-8000  
Singapore  
Tel: 65-6334-8870  
Germany - Rosenheim  
Tel: 49-8031-354-560  
China - Shenyang  
Tel: 86-24-2334-2829  
Taiwan - Hsin Chu  
Tel: 886-3-577-8366  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Israel - Ra’anana  
Tel: 972-9-744-7705  
China - Shenzhen  
Tel: 86-755-8864-2200  
Taiwan - Kaohsiung  
Tel: 886-7-213-7830  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
China - Suzhou  
Tel: 86-186-6233-1526  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Detroit  
Novi, MI  
Tel: 248-848-4000  
China - Wuhan  
Tel: 86-27-5980-5300  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Italy - Padova  
Tel: 39-049-7625286  
Houston, TX  
Tel: 281-894-5983  
China - Xian  
Tel: 86-29-8833-7252  
Vietnam - Ho Chi Minh  
Tel: 84-28-5448-2100  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
Tel: 317-536-2380  
China - Xiamen  
Tel: 86-592-2388138  
Norway - Trondheim  
Tel: 47-7288-4388  
China - Zhuhai  
Tel: 86-756-3210040  
Poland - Warsaw  
Tel: 48-22-3325737  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
Tel: 951-273-7800  
Romania - Bucharest  
Tel: 40-21-407-87-50  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
Raleigh, NC  
Tel: 919-844-7510  
Sweden - Gothenberg  
Tel: 46-31-704-60-40  
New York, NY  
Tel: 631-435-6000  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
San Jose, CA  
Tel: 408-735-9110  
Tel: 408-436-4270  
UK - Wokingham  
Tel: 44-118-921-5800  
Fax: 44-118-921-5820  
Canada - Toronto  
Tel: 905-695-1980  
Fax: 905-695-2078  
DS20006348B-page 32  
2020-2021 Microchip Technology Inc.  
02/28/20  

相关型号:

MIC33M350YMP-VAO

3A, Pin Strapping Power Module with HyperLight Load® Mode and Output Voltage Select
MICROCHIP

MIC33M656-FAYMP-TR

Switching Regulator
MICROCHIP

MIC33M656-HAYMP-TR

Switching Regulator
MICROCHIP

MIC33M656-SAYMP-TR

Switching Regulator
MICROCHIP

MIC3490-1.8YM5

Fixed Positive LDO Regulator
MICROCHIP

MIC3490-1.8YM5-TR

Fixed Positive LDO Regulator, 1.8V, 0.45V Dropout, PDSO5
MICROCHIP

MIC3490-2.5YM5

Fixed Positive LDO Regulator
MICROCHIP

MIC3490-2.5YM5-TR

Fixed Positive LDO Regulator, 2.5V, 0.45V Dropout, PDSO5
MICROCHIP

MIC3490-3.0YM5

Fixed Positive LDO Regulator
MICROCHIP

MIC3490-3.0YM5-TR

Fixed Positive LDO Regulator, 3V, 0.45V Dropout, PDSO5
MICROCHIP

MIC3490-3.3YM5

Fixed Positive LDO Regulator
MICROCHIP

MIC3490-3.3YM5-TR

Fixed Positive LDO Regulator, 3.3V, 0.45V Dropout, PDSO5
MICROCHIP