MIC7300YMM-TR [MICROCHIP]

OP-AMP, 9000uV OFFSET-MAX, 0.45MHz BAND WIDTH, PDSO8;
MIC7300YMM-TR
型号: MIC7300YMM-TR
厂家: MICROCHIP    MICROCHIP
描述:

OP-AMP, 9000uV OFFSET-MAX, 0.45MHz BAND WIDTH, PDSO8

放大器 光电二极管
文件: 总12页 (文件大小:68K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MIC7300  
High-Output Drive Rail-to-Rail Op Amp  
General Description  
Features  
The MIC7300 is a high-performance CMOS operational  
amplifier featuring rail-to-rail input and output with strong  
output drive capability. It is able to source and sink in excess  
of 80mA into large capacitive loads.  
Small footprint SOT-23-5 and power MSOP-8 packages  
>80mA peak output sink and source with 5V supply  
Drives large capacitive loads (6000pF with 10V supply)  
Guaranteed 2.2V, 3V, 5V, and 10V performance  
500kHz gain-bandwidth product  
The input common-mode range extends beyond the rails by  
300mV, and the output voltage typically swings to within  
150µV of both rails when driving a 100kload.  
0.01% total harmonic distortion at 1kHz (10V, 2k)  
1mA typical power supply current at 5V  
Applications  
Battery-powered instrumentation  
PCMCIA, USB peripherals  
The amplifier operates from 2.2V to 10V and is fully specified  
at 2.2V, 3V, 5V, and 10V. Gain bandwidth and slew rate are  
500kHz and 0.5V/µs, respectively.  
The MIC7300 is available in Micrel’s IttyBitty™ SOT-23-5  
package for space-conscious circuits and in high-power  
MM8™ 8-lead MSOP for improved heat dissipation in higher  
power applications.  
Portable computers and PDAs  
Ordering Information  
Pin Configurations  
Part Number  
Standard  
Pb-free  
Temp. Range  
40°C to +85°C  
40°C to +85°C  
Package  
SOT-23-5  
MSOP-8  
IN+ VOUT  
MIC7300BM5  
MIC7300BMM  
MIC7300YM5  
MIC7300YMM  
3
2
1
Part  
Identification  
A17  
4
5
IN–  
V+  
SOT-23-5 (M5)  
Functional Configuration  
IN+ VOUT  
3
2
1
V+  
IN–  
V–  
V–  
V–  
V–  
1
2
3
4
8
7
6
5
IN+  
4
5
IN–  
V+  
OUT  
SOT-23-5 (M5)  
MSOP-8 (MM)  
Pin Description  
Pin Number  
SOT-23-5  
Pin Number  
MSOP-8  
Pin Name  
Pin Function  
1
2
4
OUT  
V–  
Amplifier Output  
5–8  
Negative Supply: Negative supply for split supply application or ground for  
single supply application.  
3
4
5
3
2
1
IN+  
IN–  
V+  
Noninverting Input  
Inverting Input  
Positive Supply  
IttyBitty and MM8 are trademarks of Micrel, Inc.  
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com  
June 2005  
1
MIC7300  
MIC7300  
Micrel  
Absolute Maximum Ratings (Note 1)  
Operating Ratings (Note 2)  
Supply Voltage (V V )...........................................12V  
Supply Voltage (V V ).............................. 2.2V to 10V  
V+  
V–  
V+ V–  
Differential Input Voltage (V  
V ) .......................±12V  
Junction Temperature (T ) ......................... 40°C to +85°C  
IN+  
IN–  
J
I/O Pin Voltage (V , V  
), Note 3  
Package Thermal Resistance, Note 5  
IN  
OUT  
.............................................V + 0.3V to V 0.3V  
SOT-23-5 (θ ) ..................................................260°C/W  
V+  
V–  
JA  
MSOP-8 (θ ) ......................................................85°C/W  
Junction Temperature (T ) ...................................... +150°C  
JA  
J
Max. Power Dissipation............................................ Note 4  
Storage Temperature ............................... 65°C to +150°C  
Lead Temperature (soldering, 10 sec.) ..................... 260°C  
ESD, Note 6  
DC Electrical Characteristics (2.2V)  
VV+ = +2.2V, VV= 0V, VCM = VOUT = VV+/2; RL = 1M; TJ = 25°C, bold values indicate 40°C TJ +85°C; Note 7; unless noted  
Symbol  
VOS  
Parameter  
Condition  
Min  
Typ  
1.0  
1.0  
0.5  
0.25  
>1  
Max  
Units  
mV  
µV/°C  
pA  
Input Offset Voltage  
9
TCVOS  
IB  
Input Offset Voltage Average Drift  
Input Bias Current  
IOS  
Input Offset Current  
pA  
RIN  
Input Resistance  
TΩ  
dB  
CMRR  
VCM  
Common-Mode Rejection Ratio  
Input Common-Mode Voltage  
0V VCM 2.2V, Note 9  
input low, CMRR 45dB  
input high, CMRR 45dB  
45  
65  
0.3  
2.5  
75  
0.0  
V
2.2  
55  
V
±PSRR  
CIN  
Power Supply Rejection Ratio  
Common-Mode Input Capacitance  
Output Swing  
VV+  
=
VV= 1.1V to 2.5V, VCM = 0  
dB  
3
pF  
VO  
output high, RL = 100k,  
specified as VV+ VOUT  
0.15  
1
1
mV  
mV  
output low, RL = 100k  
0.15  
10  
1
1
mV  
mV  
output high, RL = 2k  
specified as VV+ VOUT  
33  
50  
mV  
mV  
output low, RL = 2k  
10  
33  
50  
mV  
mV  
output high, RL = 600Ω  
specified as VV+ VOUT  
33  
110  
165  
mV  
mV  
output low, RL = 600Ω  
33  
110  
165  
mV  
mV  
ISC  
IS  
Output Short Circuit Current  
Supply Current  
sinking or sourcing, Note 8  
20  
40  
mA  
mA  
VOUT = V+/2  
0.7  
2.0  
AC Electrical Characteristics (2.2V)  
VV+ = 2.2V, VV= 0V, VCM = VOUT = VV+/2; RL = 1M; TJ = 25°C, bold values indicate 40°C TJ +85°C; Note 7; unless noted  
Symbol  
SR  
Parameter  
Condition  
Min  
Typ  
0.5  
0.55  
80  
Max  
Units  
V/µs  
MHz  
°
Slew Rate  
GBW  
φm  
Gain-Bandwidth Product  
Phase Margin  
CL = 0pF  
CL = 2500pF  
40  
°
Gm  
Gain Margin  
10  
dB  
MIC7300  
2
June 2005  
MIC7300  
Micrel  
DC Electrical Characteristics (3.0V)  
VV+ = +3.0V, VV= 0V, VCM = VOUT = VV+/2; RL = 1M; TJ = 25°C, bold values indicate 40°C TJ +85°C; Note 7; unless noted  
Symbol  
VOS  
Parameter  
Condition  
Min  
Typ  
1.0  
1.0  
0.5  
0.25  
>1  
Max  
Units  
mV  
µV/°C  
pA  
Input Offset Voltage  
9
TCVOS  
IB  
Input Offset Voltage Average Drift  
Input Bias Current  
IOS  
Input Offset Current  
pA  
RIN  
Input Resistance  
TΩ  
dB  
CMRR  
VCM  
Common-Mode Rejection Ratio  
Input Common-Mode Voltage  
0V VCM 3.0V, Note 9  
input low, CMRR 50dB  
input high, CMRR 50dB  
50  
70  
0.3  
3.3  
75  
0
V
3.0  
55  
V
±PSRR  
CIN  
Power Supply Rejection Ratio  
Common-Mode Input Capacitance  
Output Swing  
VV+  
=
VV= 1.5V to 5.0V, VCM = 0  
dB  
3
pF  
VOUT  
output high, RL = 100k  
specified as VV+ VOUT  
0.2  
1
1
mV  
mV  
output low, RL = 100k  
0.2  
10  
10  
33  
33  
1
1
mV  
mV  
output high, RL = 2k  
specified as VV+ VOUT  
33  
50  
mV  
mV  
output low, RL = 2k  
33  
50  
mV  
mV  
output high, RL = 600Ω  
specified as VV+ VOUT  
110  
165  
mV  
mV  
output low, RL = 600Ω  
110  
165  
mV  
mV  
ISC  
IS  
Output Short Circuit Current  
Supply Current  
sinking or sourcing, Note 8  
60  
95  
mA  
mA  
0.8  
2.2  
AC Electrical Characteristics (3V)  
VV+ = 3V, VV= 0V, VCM = 1.5V, VOUT = VV+/2; RL = 1M; TJ = 25°C, bold values indicate 40°C TJ +85°C; Note 7; unless noted  
Symbol  
SR  
Parameter  
Condition  
Min  
Typ  
0.5  
0.45  
85  
Max  
Units  
V/µs  
MHz  
°
Slew Rate  
GBW  
φm  
Gain-Bandwidth Product  
Phase Margin  
CL = 0pF  
CL = 3500pF  
40  
°
Gm  
Gain Margin  
10  
dB  
June 2005  
3
MIC7300  
MIC7300  
Micrel  
DC Electrical Characteristics (5V)  
V
= +5.0V, V = 0V, V  
= 1.5V, V  
= V /2; R = 1M; T = 25°C, bold values indicate 40°C T +85°C; Note 7; unless noted  
V+  
V–  
CM  
OUT  
V+  
L
J
J
Symbol  
VOS  
Parameter  
Input Offset Voltage  
Condition  
Min  
Typ  
1.0  
1.0  
0.5  
0.25  
>1  
Max  
Units  
mV  
µV/°C  
pA  
9
TCVOS  
IB  
Input Offset Voltage Average Drift  
Input Bias Current  
IOS  
Input Offset Current  
pA  
RIN  
Input Resistance  
TΩ  
dB  
CMRR  
VCM  
Common-Mode Rejection Ratio  
Input Common-Mode Voltage  
0V VCM 5V, Note 9  
input low, CMRR 55dB  
input high, CMRR 55dB  
55  
80  
0.3  
5.3  
75  
0.0  
V
5.0  
55  
V
±PSRR  
CIN  
Power Supply Rejection Ratio  
Common-Mode Input Capacitance  
Output Swing  
VV+  
=
VV= 2.5V to 5.0V, VCM = 0  
dB  
3
pF  
VOUT  
output high, RL = 100k  
specified as VV+ VOUT  
0.3  
1.0  
1.5  
mV  
mV  
output low, RL = 100k  
0.3  
15  
15  
50  
50  
1.0  
1.5  
mV  
mV  
output high, RL = 2k  
specified as VV+ VOUT  
50  
75  
mV  
mV  
output low, RL = 2k  
50  
75  
mV  
mV  
output high, RL = 600Ω  
specified as VV+ VOUT  
165  
250  
mV  
mV  
output low, RL = 600Ω  
165  
250  
mV  
mV  
ISC  
IS  
Output Short Circuit Current  
Supply Current  
sinking or sourcing, Note 8  
85  
105  
1.0  
mA  
mA  
VOUT = V+/2  
2.8  
AC Electrical Characteristics (5V)  
VV+ = 5V, VV= 0V, VCM = 1.5V, VOUT = VV+/2; RL = 1M; TJ = 25°C, bold values indicate 40°C TJ +85°C; Note 7; unless noted  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
THD  
Total Harmonic Distortion  
f = 1kHz, AV = 2,  
0.05  
%
RL = 2k, VOUT = 4.0 VPP  
SR  
Slew Rate  
0.5  
0.4  
85  
40  
10  
V/µs  
MHz  
°
GBW  
φm  
Gain-Bandwidth Product  
Phase Margin  
CL = 0pF  
CL = 4500pF  
°
Gm  
Gain Margin  
dB  
MIC7300  
4
June 2005  
MIC7300  
Micrel  
DC Electrical Characteristics (10V)  
V
= +10V, V = 0V, V  
= 1.5V, V  
= V /2; R = 1M; T = 25°C, bold values indicate 40°C T +85°C; Note 7; unless noted  
V+  
V–  
CM  
OUT  
V+  
L
J
J
Symbol  
VOS  
Parameter  
Input Offset Voltage  
Condition  
Min  
Typ  
1.0  
Max  
Units  
mV  
µV/°C  
pA  
9
TCVOS  
IB  
Input Offset Voltage Average Drift  
Input Bias Current  
1.0  
0.5  
IOS  
Input Offset Current  
0.25  
>1  
pA  
RIN  
Input Resistance  
TΩ  
CMRR  
VCM  
Common-Mode Rejection Ratio  
Input Common-Mode Voltage  
0V VCM 10V, Note 9  
60  
85  
dB  
input low, V+ = 10V, CMRR 60dB  
input high, V+ = 10V, CMRR 60dB  
0.3  
10.3  
75  
0.0  
V
10.0  
55  
V
±PSRR  
Power Supply Rejection Ratio  
Large Signal Voltage Gain  
VV+  
=
VV= 2.5V to 5.0V, VCM = 0  
dB  
AV  
sourcing or sinking,  
80  
340  
V/mV  
RL = 2k, Note 10  
sourcing or sinking,  
RL = 600, Note 10  
15  
300  
V/mV  
pF  
CIN  
Common-Mode Input Capacitance  
Output Swing  
3
VOUT  
output high, RL = 100k  
specified as VV+ VOUT  
0.5  
1.5  
2.5  
mV  
mV  
output low, RL = 100k  
0.5  
24  
24  
80  
80  
1.5  
2.5  
mV  
mV  
output high, RL = 2k  
specified as VV+ VOUT  
80  
120  
mV  
mV  
output low, RL = 2k  
80  
120  
mV  
mV  
output high, RL = 600Ω  
specified as VV+ VOUT  
270  
400  
mV  
mV  
output low, RL = 600Ω  
270  
400  
mV  
mV  
ISC  
IS  
Output Short Circuit Current  
Supply Current  
sinking or sourcing, Notes 8  
90  
115  
1.5  
mA  
mA  
VOUT = V+/2  
4.0  
AC Electrical Characteristics (10V)  
VV+ = 10V, VV= 0V, VCM = 1.5V, VOUT = VV+/2; RL = 1M; TJ = 25°C, bold values indicate 40°C TJ +85°C; Note 7; unless noted  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
THD  
Total Harmonic Distortion  
f = 1kHz, AV = 2,  
0.01  
%
RL = 2k, VOUT = 8.5 VPP  
SR  
Slew Rate  
V+ = 10V, Note 11  
0.5  
V/µs  
V/µs  
GBW  
Gain-Bandwidth Product  
Phase Margin  
0.37  
85  
MHz  
φm  
CL = 0pF  
°
°
CL = 6000pF  
40  
Gm  
en  
Gain Margin  
10  
dB  
Input-Referred Voltage Noise  
f = 1kHz, VCM = 1V  
f = 1kHz  
37  
nV/ Hz  
in  
Input-Referred Current Noise  
1.5  
fA/ Hz  
June 2005  
5
MIC7300  
MIC7300  
Micrel  
Note 1. Exceeding the absolute maximum rating may damage the device.  
Note 2. The device is not guaranteed to function outside its operating rating.  
Note 3. I/O Pin Voltage is any external voltage to which an input or output is referenced.  
Note 4. The maximum allowable power dissipation is a function of the maximum junction temperature, T  
; the junction-to-ambient thermal  
J(max)  
resistance, θ ; and the ambient temperature, T . The maximum allowable power dissipation at any ambient temperature is calculated using:  
JA  
A
P
= (T  
T ) ÷ θ . Exceeding the maximum allowable power dissipation will result in excessive die temperature.  
D
J(max) A JA  
Note 5. Thermal resistance, θ , applies to a part soldered on a printed-circuit board.  
JA  
Note 6. Devices are ESD protected; however, handling precautions are recommended.  
Note 7. All limits guaranteed by testing or statistical analysis.  
Note 8. Continuous short circuit may exceed absolute maximum T under some conditions.  
J
Note 9. CMRR is determined as follows: The maximum V over the V  
range is divided by the magnitude of the V  
range. The measurement  
OS  
CM  
CM  
points are: V , (V V )/2, and V  
.
V–  
V+  
V–  
V+  
Note 10. R connected to 5V. Sourcing: 5V V  
10V. Sinking: 2.5V V  
5V.  
OUT  
L
OUT  
Note 11. Device connected as a voltage follower with a 10V step input. The value is the positive or negative slew rate, whichever is slower.  
MIC7300  
6
June 2005  
MIC7300  
Micrel  
Typical Characteristics  
Input Current vs.  
Junction Temperature  
10000  
1000  
100  
10  
TA = 25°C  
1
-40  
0
40  
80  
120 160  
JUNCTION TEMPERATURE (°C)  
Sink / Source Currents  
vs. Output Voltage  
1000  
100  
10  
TA = 25°C  
1
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
OUTPUT VOLTAGE (V)  
Capacitive Load Capability  
vs. Supply Voltage  
7000  
6000  
5000  
4000  
3000  
2000  
1000  
TA = 25°C  
2
4
6
8
10  
SUPPLY VOLTAGE (V)  
June 2005  
7
MIC7300  
MIC7300  
Micrel  
Output stage power (P ) is the product of the output stage  
Application Information  
Input Common-Mode Voltage  
O
voltage drop (V  
) and the output (load) current (I  
).  
DROP  
OUT  
Total on-chip power dissipation is:  
The MIC7300 tolerates input overdrive by at least 300mV  
beyond either rail without producing phase inversion.  
P = P + P  
D
S
O
P = V I + V I  
DROP OUT  
D
S S  
If the absolute maximum input voltage is exceeded, the input  
current should be limited to ±5mA maximum to prevent  
reducing reliability. A 10kseries input resistor, used as a  
currentlimiter,willprotecttheinputstructurefromvoltagesas  
large as 50V above the supply or below ground. See Figure  
1.  
where:  
P = total on-chip power  
D
P = supply power dissipation  
S
P = output power dissipation  
O
V = V V  
V–  
S
V+  
I = power supply current  
S
V
V
= V V  
(sourcing current)  
(sinking current)  
DROP  
V+  
OUT  
VOUT  
RIN  
= V  
V  
V–  
VIN  
DROP  
OUT  
10k  
The above addresses only steady state (dc) conditions. For  
non-dc conditions the user must estimate power dissipation  
based on rms value of the signal.  
Figure 1. Input Current-Limit Protection  
Output Voltage Swing  
Sink and source output resistances of the MIC7300 are  
equal. Maximum output voltage swing is determined by the  
load and the approximate output resistance. The output  
resistance is:  
The task is one of determining the allowable on-chip power  
dissipation for operation at a given ambient temperature and  
power supply voltage. From this determination, one may  
calculate the maximum allowable power dissipation and,  
after subtracting P , determine the maximum allowable load  
S
V
DROP  
current,whichinturncanbeusedtodeterminetheminiumum  
load impedance that may safely be driven. The calculation is  
summarized below.  
R
=
OUT  
I
LOAD  
V
is the voltage dropped within the amplifier output  
DROP  
stage. V  
and I  
can be determined from the V  
T
T  
DROP  
LOAD  
O
J(max) A  
P
=
(outputswing)portionoftheappropriateElectricalCharacter-  
istics table. I is equal to the typical output high voltage  
D(max)  
θ
JA  
LOAD  
minus V+/2 and divided by R  
Electrical Characteristics DC (5V) table, the typical output  
high voltage using a 2kload (connected to V+/2) is 4.985V,  
. For example, using the  
θ
θ
= 260°C/W  
= 85°C/W  
LOAD  
JA(SOT-23-5)  
JA(MSOP-8)  
which produces an I  
of:  
LOAD  
Driving Capacitive Loads  
4.985V 2.5V  
2kΩ  
Drivingacapacitiveloadintroducesphase-lagintotheoutput  
signal,andthisinturnreducesop-ampsystemphasemargin.  
The application that is least forgiving of reduced phase  
margin is a unity gain amplifier. The MIC7300 can typically  
drive a 2500pF capacitive load connected directly to the  
output when configured as a unity-gain amplifier and pow-  
ered with a 2.2V supply. At 10V operation the circuit typically  
drives 6000pF. Phase margin is typically 40°.  
.
= 1.243mA  
Voltage drop in the amplifier output stage is:  
V
V
= 5.0V 4.985V  
DROP  
= 0.015V  
DROP  
Becauseofoutputstagesymmetry,thecorrespondingtypical  
output low voltage (0.015V) also equals V  
. Then:  
DROP  
Using Large-Value Feedback Resistors  
0.015V  
R
=
= 12Ω  
OUT  
A large-value feedback resistor (> 500k) can reduce the  
phase margin of a system. This occurs when the feedback  
resistor acts in conjunction with input capacitance to create  
phase lag in the feedback signal. Input capacitance is usually  
a combination of input circuit components and other parasitic  
capacitance, such as amplifier input capacitance and stray  
printed circuit board capacitance.  
0.001243A  
Power Dissipation  
The MIC7300 output drive capability requires considering  
power dissipation. If the load impedance is low, it is possible  
to damage the device by exceeding the 125°C junction  
temperature rating.  
On-chip power consists of two components: supply power  
and output stage power. Supply power (P ) is the product of  
Figure 2 illustrates a method of compensating phase lag  
caused by using a large-value feedback resistor. Feedback  
S
the supply voltage (V = V V ) and supply current (I ).  
S
V+  
V–  
S
capacitor C introduces sufficient phase lead to overcome  
FB  
MIC7300  
8
June 2005  
MIC7300  
Micrel  
V+  
the phase lag caused by feedback resistor R and input  
FB  
2.2V to 10V  
capacitance C . The value of C is determined by first  
IN  
FB  
3
4
5
MIC7300  
estimating C and then applying the following formula:  
VIN  
0V to V+  
IN  
1
VOUT  
0V to V+  
RIN × CIN RFB × CFB  
2
CFB  
RFB  
VOUT = VIN  
Figure 4. Voltage Follower/Buffer  
RIN  
VIN  
VOUT  
VS  
CIN  
0.5V to Q1 VCEO(sus)  
VOUT  
0V to V+  
V+  
2.2V to 10V  
Figure 2. Cancelling Feedback Phase Lag  
3
4
5
MIC7300  
VIN  
0V to 2V  
IOUT  
1
SinceasignificantpercentageofC maybecausedbyboard  
IN  
Q1  
2N3904  
layout, it is important to note that the correct value of C may  
change when changing from a breadboard to the final circuit  
layout.  
VCEO = 40V  
IC(max) = 200mA  
FB  
2
{
RS  
10  
2W  
Change Q1 and RS  
for higher current  
and/or different gain.  
1
Typical Circuits  
Some single-supply, rail-to-rail applications for which the  
MIC7300 is well suited are shown in the circuit diagrams of  
Figures 3 through 7.  
V
IN  
I
=
= 100mA/V as shown  
OUT  
R
S
V+  
Figure 5. Voltage-Controlled Current Sink  
2.2V to 10V  
R4  
3
4
5
2
MIC7300  
VIN  
V +  
100k  
C1  
1
VOUT  
0V to V+  
V+  
0.001µF  
0V to  
AV  
4
3
5
MIC7300  
1
VOUT  
R2  
V+  
0V  
2
910k  
R1  
100k  
R4  
R2  
V+  
100k  
100k  
R3  
100k  
Figure 3a. Noninverting Amplifier  
Figure 6. Square Wave Oscillator  
100  
V+  
CIN  
R1  
R2  
33k  
330k  
V+  
R2  
R1  
AV = 1+  
10  
4
3
5
MIC7300  
COUT  
VOUT  
1
0V  
0
RL  
2
0
100  
V
(V)  
IN  
R3  
V+  
R2 330k  
= = 10  
Figure 3b. Noninverting Amplifier Behavior  
330k  
AV = −  
R4  
330k  
C1  
1µF  
R1 33k  
Figure 7. AC-Coupled Inverting Amplifier  
June 2005  
9
MIC7300  
MIC7300  
Micrel  
Package Information  
1.90 (0.075) REF  
0.95 (0.037) REF  
1.75 (0.069) 3.00 (0.118)  
1.50 (0.059) 2.60 (0.102)  
DIMENSIONS:  
MM (INCH)  
1.30 (0.051)  
0.90 (0.035)  
3.02 (0.119)  
2.80 (0.110)  
0.20 (0.008)  
0.09 (0.004)  
10°  
0°  
0.15 (0.006)  
0.00 (0.000)  
0.50 (0.020)  
0.35 (0.014)  
0.60 (0.024)  
0.10 (0.004)  
SOT-23-5 (M5)  
0.122 (3.10)  
0.112 (2.84)  
0.199 (5.05)  
0.187 (4.74)  
DIMENSIONS:  
INCH (MM)  
0.120 (3.05)  
0.116 (2.95)  
0.036 (0.90)  
0.032 (0.81)  
0.043 (1.09)  
0.038 (0.97)  
0.012 (0.30) R  
0.007 (0.18)  
0.005 (0.13)  
0.008 (0.20)  
0.004 (0.10)  
5° MAX  
0° MIN  
0.012 (0.03)  
0.012 (0.03) R  
0.0256 (0.65) TYP  
0.039 (0.99)  
0.035 (0.89)  
0.021 (0.53)  
8-Pin MSOP (MM)  
MIC7300  
10  
June 2005  
MIC7300  
Micrel  
June 2005  
11  
MIC7300  
MIC7300  
Micrel  
MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA  
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com  
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or  
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.  
© 2005 Micrel Incorporated  
MIC7300  
12  
June 2005  

相关型号:

MIC7300YMMTR

OP-AMP, 9000uV OFFSET-MAX, 0.45MHz BAND WIDTH, PDSO8, LEAD FREE, MSOP-8
MICROCHIP

MIC7300_05

High-Output Drive Rail-to-Rail Op Amp
MICREL

MIC74

2-Wire Serial I/O Expander and Fan Controller Advance Information
MICREL

MIC7400

Five-Channel Buck Regulator
MICREL

MIC7400-XXXXYFL

Configurable PMIC, Five-Channel Buck Regulator Plus One-Boost with HyperLight Load® and I2C Control
MICREL

MIC7400XXX

Five-Channel Buck Regulator
MICREL

MIC7400YFL

Configurable PMIC, Five-Channel Buck Regulator Plus One-Boost with HyperLight Load® and I2C Control
MICREL

MIC7400YFL-T5

IC REG BUCK BOOST PROG SYNC
MICROCHIP

MIC7400YFL-TR

IC REG BUCK BOOST PROG SYNC
MICROCHIP

MIC7400_15

Configurable PMIC, Five-Channel Buck Regulator Plus One-Boost with HyperLight Load® and I2C Control
MICREL

MIC7401

Configurable PMIC, Five-Channel Buck Regulator plus One-Boost with HyperLight Load®, I2C Control, and Enable
MICROCHIP

MIC7401YFL

Power Supply Support Circuit
MICROCHIP