PIC12LF1571-I/MS [MICROCHIP]

RISC MICROCONTROLLER;
PIC12LF1571-I/MS
型号: PIC12LF1571-I/MS
厂家: MICROCHIP    MICROCHIP
描述:

RISC MICROCONTROLLER

时钟 微控制器 光电二极管 外围集成电路
文件: 总334页 (文件大小:2990K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIC12(L)F1571/2  
8-Pin MCU with High-Precision 16-Bit PWMs  
Description:  
PIC12(L)F1571/2 microcontrollers combine the capabilities of 16-bit PWMs with Analog to suit a variety of applications.  
These devices deliver three 16-bit PWMs with independent timers for applications where high resolution is needed, such  
as LED lighting, stepper motors, power supplies and other general purpose applications. The core independent  
peripherals (16-bit PWMs, Complementary Waveform Generator), Enhanced Universal Synchronous Asynchronous  
Receiver Transceiver (EUSART) and Analog (ADCs, Comparator and DAC) enable closed-loop feedback and  
communication for use in multiple market segments. The EUSART peripheral enables the communication for  
applications such as LIN.  
Core Features:  
eXtreme Low-Power (XLP) Features:  
• C Compiler Optimized RISC Architecture  
• Only 49 Instructions  
• Sleep mode: 20 nA @ 1.8V, Typical  
• Watchdog Timer: 260 nA @ 1.8V, Typical  
• Operating Current:  
• Operating Speed:  
- DC – 32 MHz clock input  
- 125 ns minimum instruction cycle  
• Interrupt Capability  
- 30 A/MHz @ 1.8V, typical  
Digital Peripherals:  
• 16-Level Deep Hardware Stack  
• Two 8-Bit Timers  
• 16-Bit PWM:  
- Three 16-bit PWMs with independent timers  
• One 16-Bit Timer  
- Multiple Output modes (Edge-Aligned,  
Center-Aligned, Set and Toggle on  
Register Match)  
• Three Additional 16-Bit Timers available using the  
16-Bit PWMs  
- User settings for phase, duty cycle, period,  
offset and polarity  
• Power-on Reset (POR)  
• Power-up Timer (PWRT)  
- 16-bit timer capability  
• Low-Power Brown-out Reset (LPBOR)  
• Programmable Watchdog Timer (WDT) up to 256s  
• Programmable Code Protection  
- Interrupts generated based on timer matches  
with Offset, Duty Cycle, Period and Phase  
registers  
• Complementary Waveform Generator (CWG):  
- Rising and falling edge dead-band control  
- Multiple signal sources  
Memory:  
• Up to 3.5 Kbytes Flash Program Memory  
• Up to 256 Bytes Data SRAM Memory  
• Direct, Indirect and Relative Addressing modes  
• High-Endurance Flash Data Memory (HEF)  
- 128 bytes if nonvolatile data storage  
- 100k erase/write cycles  
• Enhanced Universal Synchronous Asynchronous  
Receiver Transceiver (EUSART):  
- Supports LIN applications  
Device I/O Port Features:  
• Six I/Os  
Operating Characteristics:  
• Individually Selectable Weak Pull-ups  
• Operating Voltage Range:  
- 1.8V to 3.6V (PIC12LF1571/2)  
- 2.3V to 5.5V (PIC12F1571/2)  
Temperature Range:  
• Interrupt-On-Change Pins Option with  
Edge-Selectable Option  
- Industrial: -40°C to +85°C  
- Extended: -40°C to +125°C  
• Internal Voltage Reference module  
• In-Circuit Serial Programming™ (ICSP™) via  
Two Pins  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 1  
PIC12(L)F1571/2  
Analog Peripherals:  
Clocking Structure:  
• 10-Bit Analog-to-Digital Converter (ADC):  
- Up to four external channels  
- Conversion available during Sleep  
• Comparator:  
• Precision Internal Oscillator:  
- Factory calibrated ±1%, typical  
- Software-selectable clock speeds from  
31 kHz to 32 MHz  
• External Oscillator Block with:  
- Resonator modes up to 20 MHz  
- Two External Clock modes up to 32 MHz  
• Fail-Safe Clock Monitor  
- Low-Power/High-Speed modes  
- Fixed Voltage Reference at (non)inverting  
input(s)  
- Comparator outputs externally accessible  
- Synchronization with Timer1 clock source  
- Software hysteresis enable  
• Digital Oscillator Input Available  
• 5-Bit Digital-to-Analog Converter (DAC):  
- 5-bit resolution, rail-to-rail  
- Positive reference selection  
- Unbuffered I/O pin output  
- Internal connections to ADCs and  
comparators  
• Voltage Reference:  
- Fixed voltage reference with 1.024V, 2.048V  
and 4.096V output levels  
PIC12(L)F1571/2 FAMILY TYPES  
Device  
PIC12(L)F1571  
PIC12(L)F1572  
A
A
1
2
128  
256  
128  
128  
6
6
2/4(2)  
2/4(2)  
1
1
3
3
4
4
1
1
1
1
0
1
I
I
Y
Y
Note 1: I – Debugging integrated on chip.  
2: Three additional 16-bit timers available when not using the 16-bit PWM outputs.  
Data Sheet Index: (Unshaded devices are described in this document.)  
A
DS40001723 PIC12(L)F1571/2 Data Sheet, 8-Pin Flash, 8-Bit MCU with High-Precision 16-Bit PWM.  
DS40001723D-page 2  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
PIN DIAGRAMS  
Pin Diagram – 8-Pin PDIP, SOIC, DFN, MSOP, UDFN  
8
VDD  
RA5  
RA4  
VSS  
1
2
3
7
6
5
RA0/ICSPDAT  
RA1/ICSPCLK  
RA2  
RA3/MCLR/VPP  
4
Note: See Table 1 for location of all peripheral functions.  
TABLE 1:  
8-PIN ALLOCATION TABLE (PIC12(L)F1571/2)  
RA0  
RA1  
RA2  
7
6
5
AN0 DAC1OUT  
C1IN+  
C1IN0-  
C1OUT  
PWM2  
PWM1  
PWM3  
TX(2)  
CWG1B  
IOC  
IOC  
Y
Y
Y
ICSPDAT  
ICDDAT  
CK(2)  
AN1  
AN2  
VREF+  
RX(2)  
DT(2)  
ICSPCLK  
ICDCLK  
T0CKI  
CWG1FLT  
CWG1A  
IOC  
INT  
RA3  
RA4  
RA5  
4
3
2
AN3  
C1IN1-  
T1G(1)  
T1G  
IOC  
IOC  
IOC  
Y
Y
Y
MCLR  
VPP  
PWM2(1)  
PWM1(1)  
TX(1,2)  
CK(1,2)  
RX(1,2)  
DT(1,2)  
CWG1B(1)  
CWG1A(1)  
CLKOUT  
T1CKI  
CLKIN  
VDD  
Vss  
1
8
VDD  
VSS  
Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.  
2: PIC12(L)F1572 only.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 3  
 
PIC12(L)F1571/2  
Table of Contents  
1.0 Device Overview .......................................................................................................................................................................... 7  
2.0 Enhanced Mid-Range CPU ........................................................................................................................................................ 13  
3.0 Memory Organization................................................................................................................................................................. 15  
4.0 Device Configuration .................................................................................................................................................................. 41  
5.0 Oscillator Module........................................................................................................................................................................ 47  
6.0 Resets ........................................................................................................................................................................................ 59  
7.0 Interrupts .................................................................................................................................................................................... 69  
8.0 Power-Down Mode (Sleep) ........................................................................................................................................................ 83  
9.0 Watchdog Timer (WDT) ............................................................................................................................................................. 87  
10.0 Flash Program Memory Control ................................................................................................................................................. 91  
11.0 I/O Ports ................................................................................................................................................................................... 109  
12.0 Interrupt-On-Change ................................................................................................................................................................ 119  
13.0 Fixed Voltage Reference (FVR) ............................................................................................................................................... 123  
14.0 Temperature Indicator Module ................................................................................................................................................. 127  
15.0 Analog-to-Digital Converter (ADC) Module .............................................................................................................................. 129  
16.0 5-Bit Digital-to-Analog Converter (DAC) Module...................................................................................................................... 143  
17.0 Comparator Module.................................................................................................................................................................. 147  
18.0 Timer0 Module ......................................................................................................................................................................... 155  
19.0 Timer1 Module with Gate Control............................................................................................................................................. 159  
20.0 Timer2 Module ......................................................................................................................................................................... 171  
21.0 Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)............................................................... 175  
22.0 16-Bit Pulse-Width Modulation (PWM) Module ........................................................................................................................ 203  
23.0 Complementary Waveform Generator (CWG) Module ............................................................................................................ 231  
24.0 In-Circuit Serial Programming™ (ICSP™) ............................................................................................................................... 243  
25.0 Instruction Set Summary.......................................................................................................................................................... 245  
26.0 Electrical Specifications............................................................................................................................................................ 259  
27.0 DC and AC Characteristics Graphs and Charts....................................................................................................................... 283  
28.0 Development Support............................................................................................................................................................... 305  
29.0 Packaging Information.............................................................................................................................................................. 309  
Appendix A: Data Sheet Revision History.......................................................................................................................................... 327  
The Microchip Web Site..................................................................................................................................................................... 329  
Customer Change Notification Service .............................................................................................................................................. 329  
Customer Support.............................................................................................................................................................................. 329  
Product Identification System............................................................................................................................................................. 331  
DS40001723D-page 4  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TO OUR VALUED CUSTOMERS  
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip  
products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and  
enhanced as new volumes and updates are introduced.  
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via  
E-mail at docerrors@microchip.com. We welcome your feedback.  
Most Current Data Sheet  
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:  
http://www.microchip.com  
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.  
The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).  
Errata  
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current  
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision  
of silicon and revision of document to which it applies.  
To determine if an errata sheet exists for a particular device, please check with one of the following:  
Microchip’s Worldwide Web site; http://www.microchip.com  
Your local Microchip sales office (see last page)  
When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are  
using.  
Customer Notification System  
Register on our web site at www.microchip.com to receive the most current information on all of our products.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 5  
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 6  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
1.1  
Register and Bit Naming  
Conventions  
1.0  
DEVICE OVERVIEW  
The PIC12(L)F1571/2 devices are described within this  
data sheet. The block diagram of these devices is shown  
in Figure 1-1, the available peripherals are shown in  
Table 1-1 and the pinout descriptions are shown in  
Table 1-2.  
1.1.1  
REGISTER NAMES  
When there are multiple instances of the same  
peripheral in a device, the peripheral control registers  
will be depicted as the concatenation of a peripheral  
identifier, peripheral instance and control identifier. The  
control registers section will show just one instance of  
all the register names with an ‘x’ in the place of the  
peripheral instance number. This naming convention  
may also be applied to peripherals when there is only  
one instance of that peripheral in the device to maintain  
compatibility with other devices in the family that  
contain more than one.  
TABLE 1-1:  
DEVICE PERIPHERAL  
SUMMARY  
Peripheral  
1.1.2  
BIT NAMES  
Analog-to-Digital Converter (ADC)  
There are two variants for bit names:  
Complementary Wave Generator  
(CWG)  
• Short name: Bit function abbreviation  
• Long name: Peripheral abbreviation + short name  
Digital-to-Analog Converter (DAC)  
Enhanced Universal  
Synchronous/Asynchronous  
Receiver/Transmitter (EUSART)  
1.1.2.1  
Short Bit Names  
Short bit names are an abbreviation for the bit function.  
For example, some peripherals are enabled with the  
EN bit. The bit names shown in the registers are the  
short name variant.  
Fixed Voltage Reference (FVR)  
Temperature Indicator  
Comparators  
Short bit names are useful when accessing bits in C  
programs. The general format for accessing bits by the  
short name is RegisterNamebits.ShortName. For  
example, the enable bit, EN, in the COG1CON0 regis-  
ter can be set in C programs with the instruction,  
COG1CON0bits.EN = 1.  
C1  
PWM Modules  
PWM1  
PWM2  
PWM3  
Short names are generally not useful in assembly  
programs because the same name may be used by  
different peripherals in different bit positions. When this  
occurs, during the include file generation, all instances  
of that short bit name are appended with an  
underscore, plus the name of the register in which the  
bit resides, to avoid naming contentions.  
Timers  
Timer0  
Timer1  
Timer2  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 7  
 
 
PIC12(L)F1571/2  
1.1.2.2  
Long Bit Names  
1.1.3  
REGISTER AND BIT NAMING  
EXCEPTIONS  
Long bit names are constructed by adding a peripheral  
abbreviation prefix to the short name. The prefix is  
unique to the peripheral, thereby making every long bit  
name unique. The long bit name for the COG1 enable bit  
is the COG1 prefix, G1, appended with the enable bit  
short name, EN, resulting in the unique bit name G1EN.  
1.1.3.1  
Status, Interrupt and Mirror Bits  
Status, interrupt enables, interrupt flags and mirror bits  
are contained in registers that span more than one  
peripheral. In these cases, the bit name shown is  
unique so there is no prefix or short name variant.  
Long bit names are useful in both C and assembly pro-  
grams. For example, in C, the COG1CON0 enable bit  
can be set with the G1EN = 1instruction. In assembly,  
this bit can be set with the BSF COG1CON0,G1EN  
instruction.  
1.1.3.2  
Legacy Peripherals  
There are some peripherals that do not strictly adhere  
to these naming conventions. Peripherals that have  
existed for many years and are present in almost every  
device are the exceptions. These exceptions were  
necessary to limit the adverse impact of the new  
conventions on legacy code. Peripherals that do  
adhere to the new convention will include a table in the  
registers section indicating the long name prefix for  
each peripheral instance. Peripherals that fall into the  
exception category will not have this table. These  
peripherals include, but are not limited to, the following:  
1.1.2.3  
Bit Fields  
Bit fields are two or more adjacent bits in the same  
register. Bit fields adhere only to the short bit naming  
convention. For example, the three Least Significant  
bits of the COG1CON0 register contain the mode  
control bits. The short name for this field is MD. There  
is no long bit name variant. Bit field access is only  
possible in C programs. The following example  
demonstrates a C program instruction for setting the  
COG1 to the Push-Pull mode:  
• EUSART  
• MSSP  
COG1CON0bits.MD = 0x5;  
Individual bits in a bit field can also be accessed with  
long and short bit names. Each bit is the field name  
appended with the number of the bit position within the  
field. For example, the Most Significant mode bit has  
the short bit name, MD2, and the long bit name is  
G1MD2. The following two examples demonstrate  
assembly program sequences for setting the COG1 to  
Push-Pull mode:  
Example 1:  
MOVLW ~(1<<G1MD1)  
ANDWF COG1CON0,F  
MOVLW 1<<G1MD2 | 1<<G1MD0  
IORWF COG1CON0,F  
Example 2:  
BSF  
BCF  
BSF  
COG1CON0,G1MD2  
COG1CON0,G1MD1  
COG1CON0,G1MD0  
DS40001723D-page 8  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 1-1:  
PIC12(L)F1571/2 BLOCK DIAGRAM  
Rev. 10-000039E  
9/12/2013  
Program  
Flash Memory  
RAM  
PORTA  
CLKOUT  
Timing  
Generation  
CPU  
CLKIN  
INTRC  
Oscillator  
(Note 3)  
MCLR  
ADC  
10-bit  
Temp  
Indicator  
TMR2  
TMR1  
TMR0  
C1  
DAC  
FVR  
CWG1  
PWM3  
PWM2  
PWM1 EUSART(4)  
2: See Table 1-1 for peripherals available on specific devices.  
3: See Figure 2-1.  
4: PIC12(L)F1572 only.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 9  
PIC12(L)F1571/2  
TABLE 1-2:  
PIC12(L)F1571/2 PINOUT DESCRIPTION  
Input Output  
Name  
Function  
Description  
Type  
Type  
RA0/AN0/C1IN+/DACOUT/  
TX /CK /CWG1B/PWM2/  
ICSPDAT/ICDDAT  
RA0  
AN0  
General purpose I/O.  
ADC channel input.  
(2)  
(2)  
C1IN+  
DACOUT  
TX  
Comparator positive input.  
Digital-to-Analog Converter output.  
USART asynchronous transmit.  
USART synchronous clock.  
CWG complementary output.  
PWM output.  
(3)  
(4)  
CK  
CWG1B  
PWM2  
ICSPDAT  
ICDDAT  
RA1  
ICSP™ data I/O.  
In-circuit debug data.  
(2)  
RA1/AN1/VREF+/C1IN0-/RX  
/
General purpose I/O.  
(2)  
DT /PWM1/ICSPCLK/ICDCLK  
AN1  
ADC channel input.  
VREF+  
C1IN0-  
RX  
ADC Voltage Reference input.  
Comparator negative input.  
USART asynchronous input.  
USART synchronous data.  
PWM output.  
(3)  
(4)  
DT  
PWM1  
ICSPCLK  
ICDCLK  
RA2  
ICSP programming clock.  
In-circuit debug clock.  
RA2/AN2/C1OUT/T0CKI/  
General purpose I/O.  
CWG1FLT/CWG1A/PWM3/INT  
AN2  
ADC channel input.  
C1OUT  
T0CKI  
CWG1FLT  
CWG1A  
PWM3  
INT  
Comparator output.  
Timer0 clock input.  
(3)  
(4)  
Complementary Waveform Generator Fault input.  
CWG complementary output.  
PWM output.  
External interrupt.  
(1)  
RA3/VPP/T1G /MCLR  
RA3  
General purpose input with IOC and WPU.  
Programming voltage.  
Timer1 gate input.  
VPP  
(3)  
(4)  
T1G  
MCLR  
RA4  
Master Clear with internal pull-up.  
General purpose I/O.  
(1,2)  
RA4/AN3/C1IN1-/T1G/TX  
/
(1,2)  
(1)  
(1)  
CK  
/CWG1B /PWM2  
/
AN3  
ADC channel input.  
CLKOUT  
C1IN1-  
T1G  
Comparator negative input.  
Timer1 gate input.  
(3)  
(4)  
TX  
USART asynchronous transmit.  
USART synchronous clock.  
CWG complementary output.  
PWM output.  
CK  
CWG1B  
PWM2  
CLKOUT  
FOSC/4 output.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open-Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.  
2: PIC12(L)F1572 only.  
3: Input type is selected by the port.  
4: Output type is selected by the port.  
DS40001723D-page 10  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 1-2:  
PIC12(L)F1571/2 PINOUT DESCRIPTION (CONTINUED)  
Input Output  
Name  
Function  
Description  
Type  
Type  
(1,2)  
(1,2)  
RA5/T1CKI/RX  
/DT  
/
RA5  
T1CKI  
RX  
General purpose I/O.  
Timer1 clock input.  
(1)  
(1)  
CWG1A /PWM1 /CLKIN  
USART asynchronous input.  
USART synchronous data.  
CWG complementary output.  
PWM output.  
(3)  
(4)  
DT  
CWG1A  
PWM1  
CLKIN  
VDD  
External Clock input (EC mode).  
Positive supply.  
VDD  
VSS  
Power  
Power  
VSS  
Ground reference.  
Legend: AN = Analog input or output CMOS= CMOS compatible input or output  
OD = Open-Drain  
2
2
TTL = TTL compatible input ST  
HV = High Voltage  
= Schmitt Trigger input with CMOS levels I C = Schmitt Trigger input with I C  
levels  
XTAL = Crystal  
Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.  
2: PIC12(L)F1572 only.  
3: Input type is selected by the port.  
4: Output type is selected by the port.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 11  
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 12  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
• Automatic Interrupt Context Saving  
2.0  
ENHANCED MID-RANGE CPU  
• 16-Level Stack with Overflow and Underflow  
• File Select Registers  
This family of devices contains an enhanced mid-range  
8-bit CPU core. The CPU has 49 instructions. Interrupt  
capability includes automatic context saving. The  
hardware stack is 16 levels deep and has Overflow and  
Underflow Reset capability. Direct, Indirect and  
Relative Addressing modes are available. Two File  
Select Registers (FSRs) provide the ability to read  
program and data memory.  
• Instruction Set  
FIGURE 2-1:  
CORE BLOCK DIAGRAM  
Rev. 10-000055A  
7/30/2013  
15  
Configuration  
Data Bus  
8
15  
Program Counter  
Flash  
Program  
Memory  
16-Level Stack  
(15-bit)  
RAM  
14  
Program  
Bus  
12  
Program Memory  
Read (PMR)  
RAM Addr  
Addr MUX  
Instruction Reg  
Indirect  
Addr  
Direct Addr  
7
12  
5
12  
BSR Reg  
15  
FSR0 Reg  
STATUS Reg  
MUX  
15  
FSR1 Reg  
8
3
Power-up  
Timer  
Power-on  
Reset  
Watchdog  
Timer  
Brown-out  
Reset  
Instruction  
Decode and  
Control  
ALU  
8
CLKIN  
Timing  
Generation  
CLKOUT  
W Reg  
Internal  
Oscillator  
Block  
VDD  
VSS  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 13  
PIC12(L)F1571/2  
2.1  
Automatic Interrupt Context  
Saving  
2.3  
File Select Registers  
There are two 16-bit File Select Registers (FSR). FSRs  
can access all file registers and program memory,  
which allows one Data Pointer for all memory. When an  
FSR points to program memory, there is one additional  
instruction cycle in instructions using INDF to allow the  
data to be fetched. General purpose memory can now  
also be addressed linearly, providing the ability to  
access contiguous data larger than 80 bytes. There  
are also new instructions to support the FSRs. See  
Section 3.6 “Indirect Addressing” for more details.  
During interrupts, certain registers are automatically  
saved in shadow registers and restored when returning  
from the interrupt. This saves stack space and user  
code. See Section 7.5 “Automatic Context Saving”,  
for more information.  
2.2  
16-Level Stack with Overflow and  
Underflow  
These devices have a hardware stack memory, 15 bits  
wide and 16 words deep. A Stack Overflow or Underflow  
will set the appropriate bit (STKOVF or STKUNF) in the  
PCON register, and if enabled, will cause a Software  
Reset. See Section 3.5 “Stack” for more details.  
2.4  
Instruction Set  
There are 49 instructions for the enhanced mid-  
range CPU to support the features of the CPU. See  
Section 25.0 “Instruction Set Summary” for more  
details.  
DS40001723D-page 14  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
3.1  
Program Memory Organization  
3.0  
MEMORY ORGANIZATION  
The enhanced mid-range core has a 15-bit Program  
Counter (PC) capable of addressing a 32K x 14 program  
memory space. Table 3-1 shows the memory sizes  
implemented. Accessing a location above these bound-  
aries will cause a wraparound within the implemented  
memory space. The Reset vector is at 0000h and the  
interrupt vector is at 0004h (see Figure 3-1).  
These devices contain the following types of memory:  
• Program Memory:  
- Configuration Words  
- Device ID  
- User ID  
- Flash Program Memory  
• Data Memory:  
3.2  
High-Endurance Flash  
- Core Registers  
- Special Function Registers  
- General Purpose RAM  
- Common RAM  
This device has a 128-byte section of high-endurance  
Program Flash Memory (PFM) in lieu of data  
EEPROM. This area is especially well-suited for non-  
volatile data storage that is expected to be updated  
frequently over the life of the end product. See  
Section 10.2 “Flash Program Memory Overview”  
for more information on writing data to PFM. See  
Section 3.2.1.2 “Indirect Read with FSR” for more  
information about using the FSR registers to read byte  
data stored in PFM.  
The following features are associated with access and  
control of program memory and data memory:  
• PCL and PCLATH  
• Stack  
• Indirect Addressing  
TABLE 3-1:  
Device  
DEVICE SIZES AND ADDRESSES  
Program Memory  
Space (Words)  
Last Program Memory  
Address  
High-Endurance Flash  
Memory Address Range(1)  
PIC12(L)F1571  
PIC12(L)F1572  
1,024  
2,048  
03FFh  
07FFh  
0380h-03FFh  
0780h-07FFh  
Note 1: High-endurance Flash applies to the low byte of each address in the range.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 15  
 
 
PIC12(L)F1571/2  
FIGURE 3-1:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC12(L)F1571  
FIGURE 3-2:  
PROGRAM MEMORY MAP  
AND STACK FOR  
PIC12(L)F1572  
Rev. 10-000040C  
7/30/2013  
Rev. 10-000040D  
7/30/2013  
PC<14:0>  
PC<14:0>  
15  
CALL, CALLW  
15  
CALL, CALLW  
RETURN, RETLW  
RETURN, RETLW  
Interrupt, RETFIE  
Interrupt, RETFIE  
Stack Level 0  
Stack Level 1  
Stack Level 0  
Stack Level 1  
Stack Level 15  
Reset Vector  
Stack Level 15  
0000h  
0000h  
Reset Vector  
Interrupt Vector  
Page 0  
0004h  
0005h  
Interrupt Vector  
Page 0  
0004h  
0005h  
On-chip  
Program  
Memory  
On-chip  
Program  
Memory  
03FFh  
0400h  
07FFh  
0800h  
Rollover to Page 0  
Rollover to Page 0  
Rollover to Page 0  
7FFFh  
Rollover to Page 0  
7FFFh  
DS40001723D-page 16  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
3.2.1  
READING PROGRAM MEMORY AS  
DATA  
3.2.1.2  
Indirect Read with FSR  
The program memory can be accessed as data by  
setting bit 7 of the FSRnH register and reading the  
matching INDFn register. The MOVIW instruction will  
place the lower eight bits of the addressed word in the  
W register. Writes to the program memory cannot be  
performed via the INDFn registers. Instructions that  
access the program memory via the FSR require one  
extra instruction cycle to complete. Example 3-2  
demonstrates accessing the program memory via an  
FSR.  
There are two methods of accessing constants in pro-  
gram memory. The first method is to use tables of  
RETLW instructions. The second method is to set an  
FSR to point to the program memory.  
3.2.1.1  
RETLWInstruction  
The RETLWinstruction can be used to provide access  
to tables of constants. The recommended way to create  
such a table is shown in Example 3-1.  
The HIGHoperator will set bit<7> if a label points to a  
location in program memory.  
EXAMPLE 3-1:  
RETLW INSTRUCTION  
constants  
BRW  
EXAMPLE 3-2:  
ACCESSING PROGRAM  
MEMORY VIA FSR  
;Add Index in W to  
;program counter to  
;select data  
;Index0 data  
;Index1 data  
constants  
RETLW DATA0  
RETLW DATA1  
RETLW DATA2  
RETLW DATA3  
DW  
DW  
DW  
DW  
DATA0  
DATA1  
DATA2  
DATA3  
;First constant  
;Second constant  
my_function  
;… LOTS OF CODE…  
my_function  
MOVLW DATA_INDEX  
ADDLW LOW constants  
MOVWF FSR1L  
MOVLW HIGH constants ;MSb is set  
automatically  
;… LOTS OF CODE…  
MOVLW DATA_INDEX  
call constants  
;… THE CONSTANT IS IN W  
MOVWF FSR1H  
The BRW instruction makes this type of table very  
simple to implement. If your code must remain portable  
with previous generations of microcontrollers, then the  
BRWinstruction is not available, so the older table read  
method must be used.  
BTFSC STATUS,C  
INCF FSR1H,f  
MOVIW 0[FSR1]  
;THE PROGRAM MEMORY IS IN W  
;carry from ADDLW?  
;yes  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 17  
 
 
PIC12(L)F1571/2  
3.3.1  
CORE REGISTERS  
3.3  
Data Memory Organization  
The core registers contain the registers that directly  
affect the basic operation. The core registers occupy  
the first 12 addresses of every data memory bank  
(addresses: x00h/x08h through x0Bh/x8Bh). These  
registers are listed below in Table 3-2. For detailed  
information, see Table 3-9.  
The data memory is partitioned in 32 memory banks  
with 128 bytes in a bank. Each bank consists of  
(Figure 3-3):  
• 12 Core Registers  
• 20 Special Function Registers (SFR)  
• Up to 80 bytes of General Purpose RAM (GPR)  
• 16 bytes of Common RAM  
TABLE 3-2:  
CORE REGISTERS  
The active bank is selected by writing the bank number  
into the Bank Select Register (BSR). Unimplemented  
memory will read as ‘0’. All data memory can be  
accessed either directly (via instructions that use the file  
registers) or indirectly via the two File Select Registers  
(FSR). See Section 3.6 “Indirect Addressing” for  
more information.  
Addresses  
x00h or x80h  
BANKx  
INDF0  
INDF1  
PCL  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
x01h or x81h  
x02h or x82h  
x03h or x83h  
x04h or x84h  
x05h or x85h  
x06h or x86h  
x07h or x87h  
x08h or x88h  
x09h or x89h  
x0Ah or x8Ah  
x0Bh or x8Bh  
Data memory uses a 12-bit address. The upper five bits  
of the address define the bank address and the lower  
seven bits select the registers/RAM in that bank.  
WREG  
PCLATH  
INTCON  
DS40001723D-page 18  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
For example, CLRF STATUSwill clear the upper three  
bits and set the Z bit. This leaves the STATUS register  
as ‘000u u1uu’ (where u= unchanged).  
3.3.1.1  
STATUS Register  
The STATUS register, shown in Register 3-1, contains:  
• The arithmetic status of the ALU  
• The Reset status  
It is recommended, therefore, that only BCF, BSF,  
SWAPF and MOVWF instructions are used to alter the  
STATUS register, because these instructions do not  
affect any Status bits. For other instructions not affecting  
any Status bits, refer to Section 25.0 “Instruction Set  
Summary”).  
The STATUS register can be the destination for any  
instruction, like any other register. If the STATUS  
register is the destination for an instruction that affects  
the Z, DC or C bits, then the write to these three bits is  
disabled. These bits are set or cleared according to the  
device logic. Furthermore, the TO and PD bits are not  
writable. Therefore, the result of an instruction with the  
STATUS register as destination may be different than  
intended.  
Note 1: The C and DC bits operate as Borrow  
and Digit Borrow out bits, respectively, in  
subtraction.  
REGISTER 3-1:  
STATUS: STATUS REGISTER  
U-0  
U-0  
U-0  
R-1/q  
TO  
R-1/q  
PD  
R/W-0/u  
Z
R/W-0/u  
DC(1)  
R/W-0/u  
C(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
TO: Time-out bit  
1= After power-up, CLRWDTinstruction or SLEEPinstruction  
0= A WDT time-out occurred  
bit 3  
bit 2  
bit 1  
bit 0  
PD: Power-Down bit  
1= After power-down or by the CLRWDTinstruction  
0= By execution of the SLEEPinstruction  
Z: Zero bit  
1= The result of an arithmetic or logic operation is zero  
0= The result of an arithmetic or logic operation is not zero  
DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWFinstructions)(1)  
1= A carry-out from the 4th low-order bit of the result occurred  
0= No carry-out from the 4th low-order bit of the result  
C: Carry/Borrow bit(1) (ADDWF, ADDLW, SUBLW, SUBWF instructions)(1)  
1= A carry-out from the Most Significant bit of the result occurred  
0= No carry-out from the Most Significant bit of the result occurred  
Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two’s complement of the  
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order  
bit of the source register.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 19  
 
 
PIC12(L)F1571/2  
3.3.2  
SPECIAL FUNCTION REGISTER  
FIGURE 3-3:  
BANKED MEMORY  
PARTITIONING  
The Special Function Registers are registers used by  
the application to control the desired operation of  
peripheral functions in the device. The Special Function  
Registers occupy the 20 bytes after the core registers of  
every data memory bank (addresses: x0Ch/x8Ch  
through x1Fh/x9Fh). The registers associated with the  
operation of the peripherals are described in the  
appropriate peripheral chapter of this data sheet.  
Rev. 10-000041A  
7/30/2013  
7-bit Bank Offset  
Memory Region  
00h  
Core Registers  
(12 bytes)  
0Bh  
0Ch  
3.3.3  
GENERAL PURPOSE RAM  
There are up to 80 bytes of GPR in each data memory  
bank. The Special Function Registers occupy the  
20 bytes after the core registers of every data memory  
bank (addresses: x0Ch/x8Ch through x1Fh/x9Fh).  
Special Function Registers  
(20 bytes maximum)  
1Fh  
20h  
3.3.3.1  
Linear Access to GPR  
The general purpose RAM can be accessed in  
a non-banked method via the FSRs. This can  
simplify access to large memory structures. See  
Section 3.6.2 “Linear Data Memory” for more  
information.  
General Purpose RAM  
(80 bytes maximum)  
3.3.4  
COMMON RAM  
There are 16 bytes of common RAM accessible from all  
banks.  
3.3.5  
DEVICE MEMORY MAPS  
6Fh  
70h  
The memory maps for PIC12(L)F1571/2 are as shown  
in Table 3-3 through Table 3-8.  
Common RAM  
(16 bytes)  
7Fh  
DS40001723D-page 20  
2013-2015 Microchip Technology Inc.  
TABLE 3-3:  
PIC12(L)F1571 MEMORY MAP, BANK 0-7  
BANK 0  
BANK 1  
BANK 2  
BANK 3  
BANK 4  
BANK 5  
BANK 6  
BANK 7  
000h  
080h  
100h  
180h  
200h  
280h  
300h  
380h  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
00Bh  
00Ch  
00Dh  
00Eh  
00Fh  
010h  
011h  
012h  
013h  
014h  
015h  
016h  
017h  
018h  
019h  
01Ah  
01Bh  
01Ch  
01Dh  
01Eh  
01Fh  
020h  
08Bh  
08Ch  
08Dh  
08Eh  
08Fh  
090h  
091h  
092h  
093h  
094h  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
20Bh  
20Ch  
20Dh  
20Eh  
20Fh  
210h  
211h  
212h  
213h  
214h  
215h  
216h  
217h  
218h  
219h  
21Ah  
21Bh  
21Ch  
21Dh  
21Eh  
21Fh  
220h  
28Bh  
28Ch  
28Dh  
28Eh  
28Fh  
290h  
291h  
292h  
293h  
294h  
295h  
296h  
297h  
298h  
299h  
29Ah  
29Bh  
29Ch  
29Dh  
29Eh  
29Fh  
2A0h  
30Bh  
30Ch  
30Dh  
30Eh  
30Fh  
310h  
311h  
312h  
313h  
314h  
315h  
316h  
317h  
318h  
319h  
31Ah  
31Bh  
31Ch  
31Dh  
31Eh  
31Fh  
320h  
38Bh  
38Ch  
38Dh  
38Eh  
38Fh  
390h  
391h  
392h  
393h  
394h  
395h  
396h  
397h  
398h  
399h  
39Ah  
39Bh  
39Ch  
39Dh  
39Eh  
39Fh  
3A0h  
PORTA  
TRISA  
LATA  
ANSELA  
WPUA  
ODCONA  
SLRCONA  
INLVLA  
PIR1  
PIR2  
PIR3  
PIE1  
PIE2  
PIE3  
CM1CON0  
CM1CON1  
PMADRL  
IOCAP  
IOCAN  
IOCAF  
PMADRH  
PMDATL  
PMDATH  
TMR0  
TMR1L  
TMR1H  
T1CON  
T1GCON  
TMR2  
PR2  
095h OPTION_REG 115h  
CMOUT  
BORCON  
FVRCON  
DACxCON0  
DACxCON1  
PMCON1  
096h  
097h  
098h  
099h  
09Ah  
09Bh  
09Ch  
09Dh  
09Eh  
09Fh  
0A0h  
PCON  
WDTCON  
OSCTUN E  
OSCCON  
OSCSTAT  
ADRESL  
ADRESH  
ADCON0  
ADCON1  
ADCON2  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
PMCON2  
VREGCON(1)  
T2CON  
APFCON  
General Purpose  
Register  
General  
Purpose  
Register  
80 Bytes  
48 Bytes  
0BFh  
0C0h  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
0EFh  
0F0h  
36Fh  
370h  
3EFh  
3F0h  
06Fh  
070h  
16Fh  
170h  
1EFh  
1F0h  
26Fh  
270h  
2EFh  
2F0h  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
(Accesses  
Common RAM  
70h-7Fh)  
70h-7Fh)  
70h-7Fh)  
70h-7Fh)  
70h-7Fh)  
70h-7Fh)  
70h-7Fh)  
0FFh  
17Fh  
1FFh  
27Fh  
2FFh  
37Fh  
3FFh  
07Fh  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
Note 1: PIC12F1571 only.  
TABLE 3-4:  
PIC12(L)F1572 MEMORY MAP, BANK 0-7  
BANK 0  
BANK 1  
BANK 2  
BANK 3  
BANK 4  
BANK 5  
BANK 6  
BANK 7  
000h  
080h  
100h  
180h  
200h  
280h  
300h  
380h  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
00Bh  
00Ch  
00Dh  
00Eh  
00Fh  
010h  
011h  
012h  
013h  
014h  
015h  
016h  
017h  
018h  
019h  
01Ah  
01Bh  
01Ch  
01Dh  
01Eh  
01Fh  
020h  
08Bh  
08Ch  
08Dh  
08Eh  
08Fh  
090h  
091h  
092h  
093h  
094h  
10Bh  
10Ch  
10Dh  
10Eh  
10Fh  
110h  
111h  
112h  
113h  
114h  
18Bh  
18Ch  
18Dh  
18Eh  
18Fh  
190h  
191h  
192h  
193h  
194h  
195h  
196h  
197h  
198h  
199h  
19Ah  
19Bh  
19Ch  
19Dh  
19Eh  
19Fh  
1A0h  
20Bh  
20Ch  
20Dh  
20Eh  
20Fh  
210h  
211h  
212h  
213h  
214h  
215h  
216h  
217h  
218h  
219h  
21Ah  
21Bh  
21Ch  
21Dh  
21Eh  
21Fh  
220h  
28Bh  
28Ch  
28Dh  
28Eh  
28Fh  
290h  
291h  
292h  
293h  
294h  
295h  
296h  
297h  
298h  
299h  
29Ah  
29Bh  
29Ch  
29Dh  
29Eh  
29Fh  
2A0h  
30Bh  
30Ch  
30Dh  
30Eh  
30Fh  
310h  
311h  
312h  
313h  
314h  
315h  
316h  
317h  
318h  
319h  
31Ah  
31Bh  
31Ch  
31Dh  
31Eh  
31Fh  
320h  
38Bh  
38Ch  
38Dh  
38Eh  
38Fh  
390h  
391h  
392h  
393h  
394h  
395h  
396h  
397h  
398h  
399h  
39Ah  
39Bh  
39Ch  
39Dh  
39Eh  
39Fh  
3A0h  
PORTA  
TRISA  
LATA  
ANSELA  
WPUA  
ODCONA  
SLRCONA  
INLVLA  
PIR1  
PIR2  
PIR3  
PIE1  
PIE2  
PIE3  
CM1CON0  
CM1CON1  
PMADRL  
PMADRH  
PMDATL  
PMDATH  
PMCON1  
PMCON2  
VREGCON(1)  
IOCAP  
IOCAN  
IOCAF  
TMR0  
TMR1L  
TMR1H  
T1CON  
T1GCON  
TMR2  
PR2  
095h OPTION_REG 115h  
CMOUT  
BORCON  
FVRCON  
DAC1CON0  
DAC1CON1  
096h  
097h  
098h  
099h  
09Ah  
09Bh  
09Ch  
09Dh  
09Eh  
09Fh  
0A0h  
PCON  
116h  
117h  
118h  
119h  
11Ah  
11Bh  
11Ch  
11Dh  
11Eh  
11Fh  
120h  
WDTCON  
OSCTUNE  
OSCCON  
OSCSTAT  
ADRESL  
ADRESH  
ADCON0  
ADCON1  
ADCON2  
RCREG  
TXREG  
SPBRG  
SPBRGH  
RCSTA  
TXSTA  
BAUDCON  
T2CON  
APFCON  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
General  
Purpose  
Register  
80 Bytes  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
Unimplemented  
Read as ‘0’  
36Fh  
370h  
3EFh  
3F0h  
06Fh  
070h  
0EFh  
0F0h  
16Fh  
170h  
1EFh  
1F0h  
26Fh  
270h  
2EFh  
2F0h  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Common RAM  
0FFh  
17Fh  
1FFh  
27Fh  
2FFh  
37Fh  
3FFh  
07Fh  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
Note 1: PIC12F1572 only.  
TABLE 3-5:  
PIC12(L)F1571/2 MEMORY MAP, BANK 8-23  
BANK 8  
BANK 9  
BANK 10  
BANK 11  
BANK 12  
BANK 13  
BANK 14  
BANK 15  
400h  
480h  
500h  
580h  
600h  
680h  
700h  
780h  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
40Bh  
40Ch  
40Dh  
40Eh  
40Fh  
410h  
411h  
412h  
413h  
414h  
415h  
416h  
417h  
418h  
419h  
41Ah  
41Bh  
41Ch  
41Dh  
41Eh  
41Fh  
420h  
48Bh  
48Ch  
48Dh  
48Eh  
48Fh  
490h  
491h  
492h  
493h  
494h  
495h  
496h  
497h  
498h  
499h  
49Ah  
49Bh  
49Ch  
49Dh  
49Eh  
49Fh  
4A0h  
50Bh  
50Ch  
50Dh  
50Eh  
50Fh  
510h  
511h  
512h  
513h  
514h  
515h  
516h  
517h  
518h  
519h  
51Ah  
51Bh  
51Ch  
51Dh  
51Eh  
51Fh  
520h  
58Bh  
58Ch  
58Dh  
58Eh  
58Fh  
590h  
591h  
592h  
593h  
594h  
595h  
596h  
597h  
598h  
599h  
59Ah  
59Bh  
59Ch  
59Dh  
59Eh  
59Fh  
5A0h  
60Bh  
60Ch  
60Dh  
60Eh  
60Fh  
610h  
611h  
612h  
613h  
614h  
615h  
616h  
617h  
618h  
619h  
61Ah  
61Bh  
61Ch  
61Dh  
61Eh  
61Fh  
620h  
68Bh  
68Ch  
68Dh  
68Eh  
68Fh  
690h  
691h  
692h  
693h  
694h  
695h  
696h  
697h  
698h  
699h  
69Ah  
69Bh  
69Ch  
69Dh  
69Eh  
69Fh  
6A0h  
70Bh  
70Ch  
70Dh  
70Eh  
70Fh  
710h  
711h  
712h  
713h  
714h  
715h  
716h  
717h  
718h  
719h  
71Ah  
71Bh  
71Ch  
71Dh  
71Eh  
71Fh  
720h  
78Bh  
78Ch  
78Dh  
78Eh  
78Fh  
790h  
791h  
792h  
793h  
794h  
795h  
796h  
797h  
798h  
799h  
79Ah  
79Bh  
79Ch  
79Dh  
79Eh  
79Fh  
7A0h  
CWG1DBR  
CWG1DBF  
CWG1CON0  
CWG1CON1  
CWG1CON2  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
46Fh  
470h  
4EFh  
4F0h  
56Fh  
570h  
5EFh  
5F0h  
66Fh  
670h  
6EFh  
6F0h  
76Fh  
770h  
7EFh  
7F0h  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
47Fh  
800h  
4FFh  
880h  
57Fh  
900h  
5FFh  
980h  
67Fh  
A00h  
6FFh  
A80h  
77Fh  
B00h  
7FFh  
B80h  
BANK 16  
BANK 17  
BANK 18  
BANK 19  
BANK 20  
BANK 21  
BANK 22  
BANK 23  
Core Registers  
(Table 3-2 )  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
80Bh  
80Ch  
88Bh  
88Ch  
90Bh  
90Ch  
98Bh  
98Ch  
A0Bh  
A0Ch  
A8Bh  
A8Ch  
B0Bh  
B0Ch  
B8Bh  
B8Ch  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Read as 0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
86Fh  
870h  
8EFh  
8F0h  
96Fh  
970h  
9EFh  
9F0h  
A6Fh  
A70h  
AEFh  
AF0h  
B6Fh  
B70h  
BEFh  
BF0h  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
87Fh  
8FFh  
97Fh  
9FFh  
A7Fh  
AFFh  
B7Fh  
BFFh  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
TABLE 3-6:  
PIC12(L)F1571/2 MEMORY MAP, BANK 24-31  
BANK 24  
BANK 25  
BANK 26  
BANK 27  
BANK 28  
BANK 29  
BANK 30  
BANK 31  
C00h  
C80h  
D00h  
D80h  
E00h  
E80h  
F00h  
F80h  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
Core Registers  
(Table 3-2)  
C0Bh  
C0Ch  
C0Dh  
C0Eh  
C0Fh  
C10h  
C11h  
C12h  
C13h  
C14h  
C15h  
C16h  
C17h  
C18h  
C19h  
C1Ah  
C1Bh  
C1Ch  
C1Dh  
C1Eh  
C1Fh  
C20h  
C8Bh  
C8Ch  
C8Dh  
C8Eh  
C8Fh  
C90h  
C91h  
C92h  
C93h  
C94h  
C95h  
C96h  
C97h  
C98h  
C99h  
C9Ah  
C9Bh  
C9Ch  
C9Dh  
C9Eh  
C9Fh  
CA0h  
D0Bh  
D0Ch  
D0Dh  
D0Eh  
D0Fh  
D10h  
D11h  
D12h  
D13h  
D14h  
D15h  
D16h  
D17h  
D18h  
D19h  
D1Ah  
D1Bh  
D1Ch  
D1Dh  
D1Eh  
D1Fh  
D20h  
D8Bh  
D8Ch  
E0Bh  
E0Ch  
E0Dh  
E0Eh  
E0Fh  
E10h  
E11h  
E12h  
E13h  
E14h  
E15h  
E16h  
E17h  
E18h  
E19h  
E1Ah  
E1Bh  
E1Ch  
E1Dh  
E1Eh  
E1Fh  
E20h  
E8Bh  
E8Ch  
E8Dh  
E8Eh  
E8Fh  
E90h  
E91h  
E92h  
E93h  
E94h  
E95h  
E96h  
E97h  
E98h  
E99h  
E9Ah  
E9Bh  
E9Ch  
E9Dh  
E9Eh  
E9Fh  
EA0h  
F0Bh  
F0Ch  
F0Dh  
F0Eh  
F0Fh  
F10h  
F11h  
F12h  
F13h  
F14h  
F15h  
F16h  
F17h  
F18h  
F19h  
F1Ah  
F1Bh  
F1Ch  
F1Dh  
F1Eh  
F1Fh  
F20h  
F8Bh  
F8Ch  
See Table 3-7 for  
Register Mapping  
Details  
See Table 3-7 for  
Register Mapping  
Details  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
Read as ‘0’  
C6Fh  
C70h  
CEFh  
CF0h  
D6Fh  
D70h  
DEFh  
DF0h  
E6Fh  
E70h  
EEFh  
EF0h  
F6Fh  
F70h  
FEFh  
FF0h  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
Accesses  
70h-7Fh  
CFFh  
CFFh  
D7Fh  
DFFh  
E7Fh  
EFFh  
F7Fh  
FFFh  
Legend:  
= Unimplemented data memory locations, read as ‘0’.  
PIC12(L)F1571/2  
TABLE 3-7:  
PIC12(L)F1571/2 MEMORY  
MAP, BANK 27  
TABLE 3-8:  
PIC12(L)F1571/2 MEMORY  
MAP, BANK 31  
Bank 31  
Bank 31  
D8Ch  
D8Dh  
D8Eh  
D8Fh  
D90h  
D91h  
D92h  
D93h  
D94h  
D95h  
D96h  
D97h  
D98h  
D99h  
D9Ah  
D9Bh  
D9Ch  
D9Dh  
D9Eh  
D9Fh  
DA0h  
DA1h  
DA2h  
DA3h  
DA4h  
DA5h  
DA6h  
DA7h  
DA8h  
DA9h  
DAAh  
DABh  
DACh  
DADh  
DAEh  
DAFh  
DB0h  
DB1h  
DB2h  
DB3h  
DB4h  
DB5h  
DB6h  
DB7h  
DB8h  
DB9h  
DBAh  
DBBh  
DBCh  
DBDh  
DBEh  
DBFh  
DC0h  
DC1h  
F8Ch  
PWMEN  
Unimplemented  
Read as ‘0’  
PWMLD  
PWMOUT  
FE3h  
FE4h  
FE5h  
FE6h  
FE7h  
FE8h  
FE9h  
FEAh  
FEBh  
FECh  
FEDh  
FEEh  
FEFh  
PWM1PHL  
PWM1PHH  
PWM1DCL  
PWM1DCH  
PWM1PRL  
PWM1PRH  
PWM1OFL  
PWM1OFH  
PWM1TMRL  
PWM1TMRH  
PWM1CON  
PWM1INTE  
PWM1INTF  
PWM1CLKCON  
PWM1LDCON  
PWM1OFCON  
PWM2PHL  
PWM2PHH  
PWM2DCL  
PWM2DCH  
PWM2PRL  
PWM2PRH  
PWM2OFL  
PWM2OFH  
PWM2TMRL  
PWM2TMRH  
PWM2CON  
PWM2INTE  
PWM2INTF  
PWM2CLKCON  
PWM2LDCON  
PWM2OFCON  
PWM3PHL  
PWM3PHH  
PWM3DCL  
PWM3DCH  
PWM2PRL  
PWM3PRH  
PWM3OFL  
PWM3OFH  
PWM3TMRL  
PWM3TMRH  
PWM3CON  
PWM3INTE  
PWM3INTF  
PWM3CLKCON  
PWM3LDCON  
PWM3OFCON  
STATUS_SHAD  
WREG_SHAD  
BSR_SHAD  
PCLATH_SHAD  
FSR0L_SHAD  
FSR0H_SHAD  
FSR1L_SHAD  
FSR1H_SHAD  
STKPTR  
TOSL  
TOSH  
Legend:  
= Unimplemented data memory locations,  
read as ‘0’.  
DEFh  
Legend:  
= Unimplemented data memory locations,  
read as ‘0’.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 25  
PIC12(L)F1571/2  
3.3.6  
CORE FUNCTION REGISTERS  
SUMMARY  
The Core Function registers listed in Table 3-9 can be  
addressed from any bank.  
TABLE 3-9:  
CORE FUNCTION REGISTERS SUMMARY  
Value on  
POR, BOR Other Resets  
Value on All  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 0-31  
x00h or  
x80h  
Addressing this location uses contents of FSR0H/FSR0L to address data memory  
(not a physical register)  
INDF0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 0000 0000 0000  
---1 1000 ---q quuu  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
0000 0000 uuuu uuuu  
0000 0000 0000 0000  
---0 0000 ---0 0000  
0000 0000 uuuu uuuu  
-000 0000 -000 0000  
0000 0000 0000 0000  
x01h or  
x81h  
Addressing this location uses contents of FSR1H/FSR1L to address data memory  
(not a physical register)  
INDF1  
PCL  
x02h or  
x82h  
Program Counter (PC) Least Significant Byte  
x03h or  
x83h  
STATUS  
FSR0L  
FSR0H  
FSR1L  
FSR1H  
BSR  
TO  
PD  
Z
DC  
C
x04h or  
x84h  
Indirect Data Memory Address 0 Low Pointer  
Indirect Data Memory Address 0 High Pointer  
Indirect Data Memory Address 1 Low Pointer  
Indirect Data Memory Address 1 High Pointer  
x05h or  
x85h  
x06h or  
x86h  
x07h or  
x87h  
x08h or  
x88h  
BSR<4:0>  
x09h or  
x89h  
WREG  
PCLATH  
INTCON  
Working Register  
x0Ahor  
x8Ah  
Write Buffer for the Upper 7 bits of the Program Counter  
PEIE TMR0IE INTE IOCIE TMR0IF  
x0Bhor  
x8Bh  
GIE  
INTF  
IOCIF  
Legend: x= unknown; u= unchanged; q= value depends on condition; — = unimplemented, read as ‘0’; r= reserved.  
Shaded locations are unimplemented, read as ‘0’.  
DS40001723D-page 26  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY  
Value on  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
All Other  
Resets  
Bank 0  
00Ch PORTA  
RA<5:0>  
--xx xxxx --xx xxxx  
00Dh  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
TMR1GIF  
00Eh  
00Fh  
010h  
011h PIR1  
012h PIR2  
013h PIR3  
014h  
ADIF  
RCIF(2)  
C1IF  
TXIF(2)  
TMR2IF  
TMR1IF  
0000 --00 0000 --00  
--0- ---- --0- ----  
-000 ---- -000 ----  
PWM3IF  
Unimplemented  
Holding Register for the 8-Bit Timer0 Count  
PWM2IF  
PWM1IF  
015h TMR0  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
016h TMR1L  
017h TMR1H  
Holding Register for the Least Significant Byte of the 16-Bit TMR1 Count  
Holding Register for the Most Significant Byte of the 16-Bit TMR1 Count  
018h T1CON  
TMR1CS<1:0>  
T1CKPS<1:0>  
T1GTM T1GSPM  
T1SYNC  
T1GVAL  
TMR1ON  
0000 -0-0 uuuu -u-u  
0000 0x00 uuuu uxuu  
019h T1GCON  
TMR1GE T1GPOL  
T1GGO/  
DONE  
T1GSS<1:0>  
01Ah TMR2  
01Bh PR2  
Timer2 Module Register  
Timer2 Period Register  
0000 0000 0000 0000  
1111 1111 1111 1111  
-000 0000 -000 0000  
01Ch T2CON  
T2OUTPS<3:0>  
TRISA<5:4>  
TMR2ON  
T2CKPS<1:0>  
01Dh  
Unimplemented  
Unimplemented  
Unimplemented  
01Eh  
01Fh  
Bank 1  
08Ch TRISA  
08Dh  
(2)  
TRISA<2:0>  
--11 1111 --11 1111  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
08Eh  
08Fh  
090h  
091h PIE1  
092h PIE2  
093h PIE3  
094h  
TMR1GIE  
ADIE  
RCIE(2)  
TXIE(2)  
TMR2IE  
TMR1IE  
0000 --00 0000 --00  
--0- ---- --0- ----  
-000 ---- -000 ----  
C1IE  
PWM3IE  
PWM2IE  
PWM1IE  
Unimplemented  
095h OPTION_REG  
096h PCON  
WPUEN  
INTEDG  
TMR0CS  
TMR0SE  
RWDT  
PSA  
PS<2:0>  
POR  
1111 1111 1111 1111  
00-1 11qq qq-q qquu  
STKOVF STKUNF  
RMCLR  
RI  
BOR  
097h WDTCON  
098h OSCTUNE  
099h OSCCON  
09Ah OSCSTAT  
09Bh ADRESL  
09Ch ADRESH  
WDTPS<4:0>  
SWDTEN --01 0110 --01 0110  
TUN<5:0>  
--00 0000 --00 0000  
SPLLEN  
IRCF<3:0>  
SCS<1:0>  
0011 1-00 0011 1-00  
-0q0 0q00 -qqq qqqq  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
PLLR  
OSTS  
HFIOFR  
HFIOFL  
MFIOFR  
LFIOFR  
HFIOFS  
ADC Result Register Low  
ADC Result Register High  
09Dh ADCON0  
09Eh ADCON1  
09Fh ADCON2  
CHS<4:0>  
GO/DONE  
ADON  
-000 0000 -000 0000  
0000 --00 0000 --00  
0000 ---- 0000 ----  
ADFM  
ADCS<2:0>  
ADPREF<1:0>  
TRIGSEL<3:0>  
Legend:  
x= unknown; u= unchanged; q= value depends on condition; — = unimplemented; r= reserved. Shaded locations are unimplemented, read as ‘0’.  
Note 1: PIC12F1571/2 only.  
2: PIC12(L)F1572 only.  
3: Unimplemented, read as ‘1’.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 27  
PIC12(L)F1571/2  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on  
All Other  
Resets  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 2  
10Ch LATA  
10Dh  
LATA<5:4>  
LATA<2:0>  
--xx -xxx --uu -uuu  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
10Eh  
10Fh  
110h  
111h  
112h CM1CON1  
CM1CON0  
C1ON  
C1OUT  
C1INTN  
C1OE  
C1POL  
C1SP  
C1HYS  
C1SYNC  
0000 -100 0000 -100  
0000 -000 0000 -000  
C1INTP  
C1PCH<1:0>  
C1NCH<2:0>  
113h  
114h  
Unimplemented  
Unimplemented  
115h CMOUT  
116h BORCON  
117h FVRCON  
118h DAC1CON0  
119h DAC1CON1  
11Ah  
MC1OUT  
BORRDY  
---- ---0 ---- ---0  
10-- ---q uu-- ---u  
0q00 0000 0q00 0000  
0-0- 00-- 0-0- 00--  
---0 0000 ---0 0000  
SBOREN  
FVREN  
DACEN  
BORFS  
FVRRDY  
TSEN  
DACOE  
TSRNG  
CDAFVR<1:0>  
DACPSS<1:0>  
DACR<4:0>  
ADFVR<1:0>  
to  
Unimplemented  
11Ch  
11Dh APFCON  
RXDTSEL CWGASEL CWGBSEL  
Unimplemented  
T1GSEL  
TXCKSEL  
P2SEL  
P1SEL  
000- 0000 000- 0000  
11Eh  
11Fh  
Unimplemented  
Bank 3  
18Ch ANSELA  
ANSA4  
ANSA<2:0>  
---1 -111 ---1 -111  
18Dh  
18Eh  
18Fh  
190h  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
191h PMADRL  
192h PMADRH  
193h PMDATL  
194h PMDATH  
195h PMCON1  
196h PMCON2  
197h VREGCON(1)  
Flash Program Memory Address Register Low Byte  
0000 0000 0000 0000  
1000 0000 1000 0000  
xxxx xxxx uuuu uuuu  
--xx xxxx --uu uuuu  
1000 x000 1000 q000  
0000 0000 0000 0000  
---- --01 ---- --01  
(3)  
Flash Program Memory Address Register High Byte  
Flash Program Memory Read Data Register Low Byte  
Flash Program Memory Read Data Register High Byte  
(3)  
CFGS  
LWLO  
FREE  
WRERR  
WREN  
WR  
RD  
Flash Program Memory Control Register 2  
VREGPM  
Reserved  
198h  
Unimplemented  
199h RCREG  
19Ah TXREG  
19Bh SPBRGL  
19Ch SPBRGH  
19Dh RCSTA  
19Eh TXSTA  
USART Receive Data Register  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 0000 0000 0000  
0000 000x 0000 000x  
0000 0010 0000 0010  
01-0 0-00 01-0 0-00  
USART Transmit Data Register  
Baud Rate Generator Data Register Low  
Baud Rate Generator Data Register High  
SPEN  
CSRC  
RX9  
TX9  
SREN  
TXEN  
CREN  
SYNC  
SCKP  
ADDEN  
SENDB  
BRG16  
FERR  
BRGH  
OERR  
TRMT  
WUE  
RX9D  
TX9D  
19Fh BAUDCON  
ABDOVF  
RCIDL  
ABDEN  
Legend:  
x= unknown; u= unchanged; q= value depends on condition; — = unimplemented; r= reserved. Shaded locations are unimplemented, read as ‘0’.  
Note 1: PIC12F1571/2 only.  
2: PIC12(L)F1572 only.  
3: Unimplemented, read as ‘1’.  
DS40001723D-page 28  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on  
All Other  
Resets  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 4  
20Ch WPUA  
20Dh  
WPUA<5:0>  
--11 1111 --11 1111  
Unimplemented  
20Eh  
to  
Unimplemented  
21Fh  
Bank 5  
28Ch ODCONA  
28Dh  
ODA<5:4>  
ODA<2:0>  
SLRA<2:0>  
--11 -111 --11 -111  
to  
Unimplemented  
29Fh  
Bank 6  
30Ch SLRCONA  
30Dh  
SLRA<5:4>  
--11 -111 --11 -111  
to  
Unimplemented  
31Fh  
Bank 7  
38Ch INLVLA  
38Dh  
INLVLA<5:0>  
--11 1111 --11 1111  
to  
Unimplemented  
390h  
391h IOCAP  
392h IOCAN  
393h IOCAF  
394h  
IOCAP<5:0>  
IOCAN<5:0>  
IOCAF<5:0>  
--00 0000 --00 0000  
--00 0000 --00 0000  
--00 0000 --00 0000  
to  
39Fh  
Unimplemented  
Unimplemented  
Unimplemented  
Bank 8  
40Ch  
to  
41Fh  
Bank 9  
48Ch  
to  
49Fh  
Legend:  
x
= unknown; u= unchanged; q= value depends on condition; — = unimplemented; r= reserved. Shaded locations are unimplemented, read as ‘0’.  
Note 1: PIC12F1571/2 only.  
2: PIC12(L)F1572 only.  
3: Unimplemented, read as ‘1’.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 29  
PIC12(L)F1571/2  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on  
All Other  
Resets  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 10  
50Ch  
to  
51Fh  
Unimplemented  
Unimplemented  
Unimplemented  
Unimplemented  
Bank 11  
58Ch  
to  
59Fh  
Bank 12  
60Ch  
to  
61Fh  
Bank 13  
68Ch  
to  
690h  
691h CWG1DBR  
692h CWG1DBF  
693h CWG1CON0  
694h CWG1CON1  
695h CWG1CON2  
696h  
CWG1DBR<5:0>  
CWG1DBF<5:0>  
--00 0000 --00 0000  
--xx xxxx --xx xxxx  
0000 0--0 0000 0--0  
0000 -000 0000 -000  
00-- -00- 00-- -00-  
G1EN  
G1OEB  
G1OEA  
G1POLB  
G1POLA  
G1CS0  
G1ASDLB<1:0>  
G1ASDLA<1:0>  
G1IS<2:0>  
G1ASE G1ARSEN  
G1ASDSC1 G1ASDSFLT  
to  
69Fh  
Unimplemented  
Unimplemented  
Banks 14-26  
x0Ch/  
x8Ch  
x1Fh/  
x9Fh  
Legend:  
x= unknown; u= unchanged; q= value depends on condition; — = unimplemented; r= reserved. Shaded locations are unimplemented, read as ‘0’.  
Note 1: PIC12F1571/2 only.  
2: PIC12(L)F1572 only.  
3: Unimplemented, read as ‘1’.  
DS40001723D-page 30  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on  
All Other  
Resets  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 27  
D8Ch  
Unimplemented  
D8Dh  
Unimplemented  
D8Eh PWMEN  
PWM3EN_A PWM2EN_A PWM1EN_A ---- -000 ---- -000  
PWM3LDA_A PWM2LDA_A PWM1LDA_A ---- -000 ---- -000  
PWM3OUT_A PWM2OUT_A PWM1OUT_A ---- -000 ---- -000  
xxxx xxxx uuuu uuuu  
D8Fh PWMLD  
D90h PWMOUT  
D91h PWM1PHL  
D92h PWM1PHH  
D93h PWM1DCL  
D94h PWM1DCH  
D95h PWM1PRL  
D96h PWM1PRH  
D97h PWM1OFL  
D98h PWM1OFH  
D99h PWM1TMRL  
D9Ah PWM1TMRH  
D9Bh PWM1CON  
D9Ch PWM1INTE  
D9Dh PWM1INTF  
D9Eh PWM1CLKCON  
PH<7:0>  
PH<15:8>  
DC<7:0>  
DC<15:8>  
PR<7:0>  
PR<15:8>  
OF<7:0>  
OF<15:8>  
TMR<7:0>  
TMR<15:8>  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
PWM1EN PWM1OE PWM1OUT PWM1POL  
PWM1MODE<1:0>  
PWM1OFIE PWM1PHIE  
PWM1OFIF PWM1PHIF  
0000 00-- 0000 00--  
PWM1DCIE  
PWM1DCIF  
PWM1PRIE ---- 000 ---- 000  
PWM1PRIF ---- 000 ---- 000  
PWM1PS<2:0>  
PWM1CS<1:0>  
PWM1LDS<1:0>  
PWM1OFS<1:0>  
-000 -000 -000 --00  
00-- -000 00-- --00  
-000 -000 -000 --00  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 00-- 0000 00--  
D9Fh PWM1LDCON PWM1LDA PWM1LDT  
DA0h PWM1OFCON  
DA1h PWM2PHL  
DA2h PWM2PHH  
DA3h PWM2DCL  
DA4h PWM2DCH  
DA5h PWM2PRL  
DA6h PWM2PRH  
DA7h PWM2OFL  
DA8h PWM2OFH  
DA9h PWM2TMRL  
DAAh PWM2TMRH  
DABh PWM2CON  
DACh PWM2INTE  
DADh PWM2INTF  
DAEh PWM2CLKCON  
PWM1OFM<1:0>  
PWM1OFO  
PH<7:0>  
PH<15:8>  
DC<7:0>  
DC<15:8>  
PR<7:0>  
PR<15:8>  
OF<7:0>  
OF<15:8>  
TMR<7:0>  
TMR<15:8>  
PWM2EN PWM2OE PWM2OUT PWM2POL  
PWM2MODE<1:0>  
PWM2OFIE PWM2PHIE  
PWM2OFIF PWM2PHIF  
PWM2DCIE  
PWM2DCIF  
PWM2PRIE ---- 000 ---- 000  
PWM2PRIF ---- 000 ---- 000  
PWM2PS<2:0>  
PWM2CS<1:0>  
PWM2LDS<1:0>  
-000 -000 -000 --00  
00-- -000 00-- --00  
DAFh PWM2LDCON PWM2LDA PWM2LDT  
Legend: = unknown; = unchanged;  
x
u
q
= value depends on condition; — = unimplemented;  
r
= reserved. Shaded locations are unimplemented, read as ‘  
0’.  
Note 1: PIC12F1571/2 only.  
2: PIC12(L)F1572 only.  
3: Unimplemented, read as ‘1’.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 31  
PIC12(L)F1571/2  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on  
All Other  
Resets  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 27 (Continued)  
DB0h PWM2OFCON  
DB1h PWM3PHL  
DB2h PWM3PHH  
DB3h PWM3DCL  
DB4h PWM3DCH  
DB5h PWM3PRL  
DB6h PWM3PRH  
DB7h PWM3OFL  
DA8h PWM3OFH  
DA9h PWM3TMRL  
DBAh PWM3TMRH  
DBBh PWM3CON  
DBCh PWM3INTE  
DBDh PWM3INTF  
DBEh PWM3CLKCON  
PWM2OFM<1:0>  
PWM2OFO  
PH<7:0>  
PH<15:8>  
DC<7:0>  
DC<15:8>  
PR<7:0>  
PR<15:8>  
OF<7:0>  
OF<15:8>  
TMR<7:0>  
PWM2OFS<1:0>  
-000 -000 -000 --00  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
0000 00-- 0000 00--  
TMR<15:8>  
PWM3EN PWM3OE PWM3OUT PWM3POL  
PWM3MODE<1:0>  
PWM3OFIE PWM3PHIE  
PWM3OFIF PWM3PHIF  
PWM3DCIE  
PWM3DCIF  
PWM3PRIE ---- 000 ---- 000  
PWM3PRIF ---- 000 ---- 000  
PWM3PS<2:0>  
PWM3CS<1:0>  
PWM3LDS<1:0>  
PWM3OFS<1:0>  
-000 -000 -000 --00  
00-- -000 00-- --00  
-000 -000 -000 --00  
DBFh PWM3LDCON PWM3LDA PWM3LDT  
DC0h PWM3OFCON  
PWM3OFM<1:0>  
PWM3OFO  
Bank 28-30  
58Ch  
to  
Unimplemented  
59Fh  
Legend:  
x
= unknown; u= unchanged; q= value depends on condition; — = unimplemented; r= reserved. Shaded locations are unimplemented, read as ‘0’.  
Note 1: PIC12F1571/2 only.  
2: PIC12(L)F1572 only.  
3: Unimplemented, read as ‘1’.  
DS40001723D-page 32  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)  
Value on  
All Other  
Resets  
Value on  
POR, BOR  
Addr  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Bank 31  
F8Ch  
FE3h  
Unimplemented  
FE4h STATUS_  
SHAD  
Z_SHAD  
DC_SHAD  
C_SHAD  
---- -xxx ---- -uuu  
xxxx xxxx uuuu uuuu  
---x xxxx ---u uuuu  
-xxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
xxxx xxxx uuuu uuuu  
FE5h WREG_  
SHAD  
Working Register Shadow  
FE6h BSR_  
SHAD  
Bank Select Register Shadow  
FE7h PCLATH_  
SHAD  
Program Counter Latch High Register Shadow  
FE8h FSR0L_  
SHAD  
Indirect Data Memory Address 0 Low Pointer Shadow  
Indirect Data Memory Address 0 High Pointer Shadow  
Indirect Data Memory Address 1 Low Pointer Shadow  
FE9h FSR0H_  
SHAD  
FEAh FSR1L_  
SHAD  
FEBh FSR1H_  
SHAD  
Indirect Data Memory Address 1 High Pointer Shadow  
Unimplemented  
FECh  
FEDh STKPTR  
FEEh TOSL  
FEFh TOSH  
Current Stack Pointer  
---1 1111 ---1 1111  
xxxx xxxx uuuu uuuu  
-xxx xxxx -uuu uuuu  
Top-of-Stack Low Byte  
Top-of-Stack High Byte  
Legend:  
x
= unknown;  
u
= unchanged; q= value depends on condition; — = unimplemented; r= reserved. Shaded locations are unimplemented, read as ‘0’.  
Note 1: PIC12F1571/2 only.  
2: PIC12(L)F1572 only.  
3: Unimplemented, read as ‘1’.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 33  
PIC12(L)F1571/2  
3.4.2  
COMPUTED GOTO  
3.4  
PCL and PCLATH  
A computed GOTOis accomplished by adding an offset to  
the Program Counter (ADDWF PCL). When performing a  
table read using a computed GOTOmethod, care should  
be exercised if the table location crosses a PCL memory  
boundary (each 256-byte block). Refer to Application  
Note AN556, “Implementing a Table Read” (DS00556).  
The Program Counter (PC) is 15 bits wide. The low byte  
comes from the PCL register, which is a readable and  
writable register. The high byte (PC<14:8>) is not directly  
readable or writable and comes from PCLATH. On any  
Reset, the PC is cleared. Figure 3-4 shows the five  
situations for the loading of the PC.  
3.4.3  
COMPUTED FUNCTION CALLs  
FIGURE 3-4:  
LOADING OF PC IN  
A computed function CALLallows programs to maintain  
tables of functions and provides another way to  
execute state machines or look-up tables. When per-  
forming a table read using a computed function CALL,  
care should be exercised if the table location crosses a  
PCL memory boundary (each 256-byte block).  
DIFFERENT SITUATIONS  
Rev. 10-000042A  
7/30/2013  
PCH  
7
14  
PCL  
0
Instruction  
with PCL as  
Destination  
PC  
If using the CALLinstruction, the PCH<2:0> and PCL  
registers are loaded with the operand of the CALL  
instruction. PCH<6:3> is loaded with PCLATH<6:3>.  
8
6
0
0
0
PCLATH  
ALU result  
The CALLW instruction enables computed CALLs by  
combining PCLATH and W to form the destination  
address. A computed CALLW is accomplished by  
loading the W register with the desired address and  
executing CALLW. The PCL register is loaded with the  
value of W and PCH is loaded with PCLATH.  
PCH  
14  
PCL  
0
GOTO,  
CALL  
PC  
4
11  
OPCODE <10:0>  
6
PCLATH  
PCH  
7
14  
6
PCL  
0
CALLW  
PC  
3.4.4  
BRANCHING  
The branching instructions add an offset to the PC.  
This allows relocatable code and code that crosses  
page boundaries. There are two forms of branching,  
BRW and BRA. The PC will have incremented to fetch  
the next instruction in both cases. When using either  
branching instruction, a PCL memory boundary may be  
crossed.  
8
W
PCLATH  
14  
14  
PCL  
PCL  
0
0
PCH  
PCH  
BRW  
BRA  
PC  
15  
PC + W  
If using BRW, load the W register with the desired  
unsigned address and execute BRW. The entire PC will  
be loaded with the address, PC + 1 + W.  
PC  
15  
If using BRA, the entire PC will be loaded with PC + 1 +,  
the signed value of the operand of the BRAinstruction.  
PC + OPCODE <8:0>  
3.4.1  
MODIFYING PCL  
Executing any instruction with the PCL register as the  
destination simultaneously causes the Program  
Counter PC<14:8> bits (PCH) to be replaced by the  
contents of the PCLATH register. This allows the entire  
contents of the Program Counter to be changed by  
writing the desired upper seven bits to the PCLATH  
register. When the lower eight bits are written to the  
PCL register, all 15 bits of the Program Counter will  
change to the values contained in the PCLATH register  
and those being written to the PCL register.  
DS40001723D-page 34  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
3.5.1  
ACCESSING THE STACK  
3.5  
Stack  
The stack is available through the TOSH, TOSL and  
STKPTR registers. STKPTR is the current value of the  
Stack Pointer. The TOSH:TOSL register pair points to  
the top of the stack. Both registers are read/writable.  
TOS is split into TOSH and TOSL due to the 15-bit size  
of the PC. To access the stack, adjust the value of  
STKPTR, which will position TOSH:TOSL, then  
read/write to TOSH:TOSL. The STKPTR is 5 bits to  
allow detection of overflow and underflow.  
All devices have a 16-level x 15-bit wide hardware  
stack (refer to Figures 3-5 through 3-8). The stack  
space is not part of either program or data space. The  
PC is PUSHed onto the stack when CALL or CALLW  
instructions are executed, or an interrupt causes a  
branch. The stack is POPed in the event of a RETURN,  
RETLW or RETFIE instruction execution. PCLATH is  
not affected by a PUSH or POP operation.  
The stack operates as a circular buffer if the STVREN  
bit is programmed to ‘0’ (Configuration Words). This  
means that after the stack has been PUSHed sixteen  
times, the seventeenth PUSH overwrites the value that  
was stored from the first PUSH. The eighteenth PUSH  
overwrites the second PUSH (and so on). The  
STKOVF and STKUNF flag bits will be set on an  
overflow/underflow, regardless of whether the Reset is  
enabled.  
Note:  
Care should be taken when modifying the  
STKPTR while interrupts are enabled.  
During normal program operation, CALL, CALLW and  
interrupts will increment STKPTR while RETLW,  
RETURNand RETFIEwill decrement STKPTR. At any  
time, the STKPTR can be inspected to see how much  
stack is left. The STKPTR always points at the currently  
used place on the stack. Therefore, a CALLor CALLW  
will increment the STKPTR and then write the PC, and  
a return will unload the PC and then decrement the  
STKPTR.  
Note 1: There are no instructions/mnemonics  
called PUSH or POP. These are actions  
that occur from the execution of the  
CALL, CALLW, RETURN, RETLW and  
RETFIE instructions or the vectoring to  
an interrupt address.  
Reference Figure 3-5 through Figure 3-8 for examples  
of accessing the stack.  
FIGURE 3-5:  
ACCESSING THE STACK EXAMPLE 1  
Rev. 10-000043A  
7/30/2013  
Stack Reset Disabled  
STKPTR = 0x1F  
TOSH:TOSL  
0x0F  
0x0E  
0x0D  
0x0C  
0x0B  
0x0A  
0x09  
0x08  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
0x1F  
(STVREN = 0)  
Initial Stack Configuration:  
After Reset, the stack is empty. The  
empty stack is initialized so the Stack  
Pointer is pointing at 0x1F. If the Stack  
Overflow/Underflow Reset is enabled, the  
TOSH/TOSL register will return ‘0. If the  
Stack Overflow/Underflow Reset is  
disabled, the TOSH/TOSL register will  
return the contents of stack address  
0x0F.  
Stack Reset Enabled  
(STVREN = 1)  
STKPTR = 0x1F  
TOSH:TOSL  
0x0000  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 35  
 
PIC12(L)F1571/2  
FIGURE 3-6:  
ACCESSING THE STACK EXAMPLE 2  
Rev. 10-000043B  
7/30/2013  
0x0F  
0x0E  
0x0D  
0x0C  
0x0B  
0x0A  
0x09  
0x08  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
This figure shows the stack configuration  
after the first CALL or a single interrupt.  
If a RETURNinstruction is executed, the  
return address will be placed in the  
Program Counter and the Stack Pointer  
decremented to the empty state (0x1F).  
STKPTR = 0x00  
TOSH:TOSL  
Return Address  
FIGURE 3-7:  
ACCESSING THE STACK EXAMPLE 3  
Rev. 10-000043C  
7/30/2013  
0x0F  
0x0E  
0x0D  
0x0C  
0x0B  
0x0A  
0x09  
0x08  
0x07  
After seven CALLs or six CALLs and an  
interrupt, the stack looks like the figure on  
the left. A series of RETURNinstructions will  
repeatedly place the return addresses into  
the Program Counter and pop the stack.  
STKPTR = 0x06  
TOSH:TOSL  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
DS40001723D-page 36  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 3-8:  
ACCESSING THE STACK EXAMPLE 4  
Rev. 10-000043D  
7/30/2013  
0x0F  
0x0E  
0x0D  
0x0C  
0x0B  
0x0A  
0x09  
0x08  
0x07  
0x06  
0x05  
0x04  
0x03  
0x02  
0x01  
0x00  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
Return Address  
When the stack is full, the next CALLor  
an interrupt will set the Stack Pointer to  
0x10. This is identical to address 0x00 so  
the stack will wrap and overwrite the  
return address at 0x00. If the Stack  
Overflow/Underflow Reset is enabled, a  
Reset will occur and location 0x00 will  
not be overwritten.  
STKPTR = 0x10  
TOSH:TOSL  
3.5.2  
OVERFLOW/UNDERFLOW RESET  
3.6  
Indirect Addressing  
If the STVREN bit in the Configuration Words is  
programmed to ‘1’, the device will be reset if the stack  
is PUSHed beyond the sixteenth level or POPed  
beyond the first level, setting the appropriate bits  
(STKOVF or STKUNF, respectively) in the PCON  
register.  
The INDFn registers are not physical registers. Any  
instruction that accesses an INDFn register actually  
accesses the register at the address specified by the  
File Select Registers (FSR). If the FSRn address  
specifies one of the two INDFn registers, the read will  
return ‘0’ and the write will not occur (though Status bits  
may be affected). The FSRn register value is created  
by the pair, FSRnH and FSRnL.  
The FSR registers form a 16-bit address that allows an  
addressing space with 65536 locations. These locations  
are divided into three memory regions:  
• Traditional Data Memory  
• Linear Data Memory  
• Program Flash Memory  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 37  
 
PIC12(L)F1571/2  
FIGURE 3-9:  
INDIRECT ADDRESSING  
Rev. 10-000044A  
7/30/2013  
0x0000  
0x0000  
Traditional  
Data Memory  
0x0FFF  
0x1000  
0x0FFF  
Reserved  
0x1FFF  
0x2000  
Linear  
Data Memory  
0x29AF  
0x29B0  
Reserved  
0x0000  
0x7FFF  
0x8000  
FSR  
Address  
Range  
Program  
Flash Memory  
0xFFFF  
0x7FFF  
Note:  
Not all memory regions are completely implemented. Consult device memory tables for memory limits.  
DS40001723D-page 38  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
3.6.1  
TRADITIONAL DATA MEMORY  
The traditional data memory is a region from FSR  
address, 0x000, to FSR address, 0xFFF. The  
addresses correspond to the absolute addresses of all  
SFR, GPR and common registers.  
FIGURE 3-10:  
TRADITIONAL DATA MEMORY MAP  
Rev. 10-000056A  
7/31/2013  
Direct Addressing  
From Opcode  
Indirect Addressing  
4
BSR  
0
6
0
7
FSRxH  
0
7
FSRxL  
0
0 0 0 0  
Bank Select  
11111  
Bank Select Location Select  
00000 00001 00010  
Location Select  
0x00  
0x7F  
Bank 31  
Bank 0 Bank 1 Bank 2  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 39  
PIC12(L)F1571/2  
3.6.2  
LINEAR DATA MEMORY  
3.6.3  
PROGRAM FLASH MEMORY  
The linear data memory is the region from FSR  
address, 0x2000, to FSR address, 0x29AF. This region  
is a virtual region that points back to the 80-byte blocks  
of GPR memory in all the banks.  
To make constant data access easier, the entire  
Program Flash Memory is mapped to the upper half of  
the FSR address space. When the MSb of FSRnH is  
set, the lower 15 bits are the address in program  
memory which will be accessed through INDF. Only the  
lower eight bits of each memory location are accessible  
via INDF. Writing to the Program Flash Memory cannot  
be accomplished via the FSR/INDF interface. All  
instructions that access Program Flash Memory via the  
FSR/INDF interface will require one additional  
instruction cycle to complete.  
Unimplemented memory reads as 0x00. Use of the  
linear data memory region allows buffers to be larger  
than 80 bytes because incrementing the FSR beyond  
one bank will go directly to the GPR memory of the next  
bank.  
The 16 bytes of common memory are not included in  
the linear data memory region.  
FIGURE 3-12:  
PROGRAM FLASH  
MEMORY MAP  
FIGURE 3-11:  
LINEAR DATA MEMORY  
MAP  
Rev. 10-000057A  
7/31/2013  
Rev. 10-000058A  
7/31/2013  
7
FSRnH  
0
7
FSRnL  
0
7
FSRnH  
0
7
FSRnL  
0
1
0 0 1  
Location Select  
0x8000  
Location Select  
0x2000  
0x0000  
0x020  
Bank 0  
0x06F  
0x0A0  
Bank 1  
0x0EF  
Program  
Flash  
Memory  
(low 8 bits)  
0x120  
Bank 2  
0x16F  
0xF20  
Bank 30  
0xF6F  
0x7FFF  
0xFFFF  
0x29AF  
DS40001723D-page 40  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
4.0  
DEVICE CONFIGURATION  
Note:  
The DEBUG bit in the Configuration Words  
is managed automatically by device  
development tools, including debuggers  
and programmers. For normal device  
operation, this bit should be maintained as  
a ‘1’.  
Device configuration consists of Configuration Words,  
code protection and Device ID.  
4.1  
Configuration Words  
There are several Configuration Word bits that allow  
different oscillator and memory protection options.  
These are implemented as Configuration Word 1 at  
8007h and Configuration Word 2 at 8008h.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 41  
PIC12(L)F1571/2  
4.2  
Register Definitions: Configuration Words  
CONFIG1: CONFIGURATION WORD 1  
REGISTER 4-1:  
U-1  
U-1  
R/P-1  
R/P-1  
R/P-1  
R/P-1  
U-1  
CLKOUTEN  
BOREN<1:0>(1)  
bit 13  
bit 8  
R/P-1  
CP(2)  
R/P-1  
MCLRE  
R/P-1  
PWRTE(1)  
R/P-1  
R/P-1  
U-1  
R/P-1  
FOSC<1:0>  
WDTE<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
‘0’ = Bit is cleared  
P = Programmable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘1’  
n = Value when blank or after bulk erase  
bit 13-12 Unimplemented: Read as ‘1’  
bit 11  
CLKOUTEN: Clock Out Enable bit  
1= Off – CLKOUT function is disabled; I/O or oscillator function on CLKOUT pin  
0= On – CLKOUT function is enabled on CLKOUT pin  
bit 10-9  
BOREN<1:0>: Brown-out Reset Enable bits(1)  
11= On  
10= Sleep  
– Brown-out Reset is enabled; the SBOREN bit is ignored  
– Brown-out Reset is enabled while running and disabled in Sleep; the SBOREN bit is ignored  
01= SBODEN – Brown-out Reset is controlled by the SBOREN bit in the BORCON register  
00= Off – Brown-out Reset is disabled; the SBOREN bit is ignored  
bit 8  
bit 7  
Unimplemented: Read as ‘1’  
CP: Flash Program Memory Code Protection bit(2)  
1= Off – Code protection is off; program memory can be read and written  
0= On – Code protection is on; program memory cannot be read or written externally  
bit 6  
MCLRE: MCLR/VPP Pin Function Select bit  
If LVP bit = 1(On):  
This bit is ignored. MCLR/VPP pin function is MCLR; weak pull-up is enabled.  
If LVP bit = 0(Off):  
1= On – MCLR/VPP pin function is MCLR; weak pull-up is enabled  
0= Off – MCLR/VPP pin function is a digital input, MCLR is internally disabled; weak pull-up is under control  
of pin’s WPU control bit  
bit 5  
PWRTE: Power-up Timer Enable bit(1)  
1= Off – PWRT is disabled  
0= On – PWRT is enabled  
bit 4-3  
WDTE<1:0>: Watchdog Timer Enable bits  
11= On  
– WDT is enabled; SWDTEN is ignored  
10= Sleep  
– WDT is enabled while running and disabled in Sleep; SWDTEN is ignored  
01= SWDTEN – WDT is controlled by the SWDTEN bit in the WDTCON register  
00= Off – WDT is disabled; SWDTEN is ignored  
bit 2  
Unimplemented: Read as ‘1’  
bit 1-0  
FOSC<1:0>: Oscillator Selection bits  
11= ECH  
10= ECM  
01= ECL  
– External Clock, High-Power mode: CLKI on CLKI  
– External Clock, Medium Power mode: CLKI on CLKI  
– External Clock, Low-Power mode: CLKI on CLKI  
00= INTOSC – I/O function on CLKI  
Note 1: Enabling Brown-out Reset does not automatically enable the Power-up Timer.  
2: Once enabled, code-protect can only be disabled by bulk erasing the device.  
DS40001723D-page 42  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
REGISTER 4-2:  
CONFIG2: CONFIGURATION WORD 2  
R/P-1  
LVP(1)  
R/P-1  
DEBUG(2)  
R/P-1  
R/P-1  
BORV(3)  
R/P-1  
R/P-1  
LPBOREN  
STVREN  
PLLEN  
bit 13  
bit 8  
U-1  
U-1  
U-1  
U-1  
U-1  
U-1  
R/P-1  
R/P-1  
WRT<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
‘0’ = Bit is cleared  
P = Programmable bit  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘1’  
n = Value when blank or after bulk erase  
bit 13  
LVP: Low-Voltage Programming Enable bit(1)  
1= On – Low-voltage programming is enabled, MCLR/VPP pin function is MCLR; MCLRE  
Configuration bit is ignored  
0= Off – High voltage on MCLR/VPP must be used for programming  
bit 12  
bit 11  
bit 10  
bit 9  
DEBUG: Debugger Mode bit(2)  
1= Off – In-Circuit Debugger is disabled; ICSPCLK and ICSPDAT are general purpose I/O pins  
0= On – In-Circuit Debugger is enabled; ICSPCLK and ICSPDAT are dedicated to the debugger  
LPBOREN: Low-Power Brown-out Reset Enable bit  
1= Off – Low-power Brown-out Reset is disabled  
0= On – Low-power Brown-out Reset is enabled  
BORV: Brown-out Reset Voltage Selection bit(3)  
1= Low – Brown-out Reset voltage (VBOR), low trip point selected  
0= High – Brown-out Reset voltage (VBOR), high trip point selected  
STVREN: Stack Overflow/Underflow Reset Enable bit  
1= On – Stack overflow or underflow will cause a Reset  
0= Off – Stack overflow or underflow will not cause a Reset  
bit 8  
PLLEN: PLL Enable bit  
1= On – 4xPLL is enabled  
0= Off – 4xPLL is disabled  
bit 7-2  
bit 1-0  
Unimplemented: Read as ‘1’  
WRT<1:0>: Flash Memory Self-Write Protection bits  
2 kW Flash Memory (PIC12F1572):  
11= Off – Write protection is off  
10= Boot – 000h to 1FFh is write-protected, 200h to 7FFh may be modified by PMCON control  
01= Half – 000h to 3FFh is write-protected, 400h to 7FFh may be modified by PMCON control  
00= All – 000h to 7FFh is write-protected, no addresses may be modified by PMCON control  
1 kW Flash Memory (PIC12(L)F1571):  
11= Off – Write protection is off  
10= Boot – 000h to 0FFh is write-protected, 100h to 3FFh may be modified by PMCON control  
01= Half – 000h to 1FFh is write-protected, 200h to 3FFh may be modified by PMCON control  
00= All – 000h to 3FFh is write-protected, no addresses may be modified by PMCON control  
Note 1: This bit cannot be programmed to ‘0’ when programming mode is entered via LVP.  
2: The DEBUG bit in Configuration Words is managed automatically by device development tools, including  
debuggers and programmers. For normal device operation, this bit should be maintained as a ‘1’.  
3: See VBOR parameter for specific trip point voltages.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 43  
 
PIC12(L)F1571/2  
4.3  
Code Protection  
4.5  
User ID  
Code protection allows the device to be protected from  
unauthorized access. Internal access to the program  
memory is unaffected by any code protection setting.  
Four memory locations (8000h-8003h) are designated as  
ID locations where the user can store checksum or other  
code identification numbers. These locations are  
readable and writable during normal execution. See  
Section 10.4 “User ID, Device ID and Configuration  
Word Access” for more information on accessing  
these memory locations. For more information on  
checksum calculation, see the “PIC12(L)F1571/2  
Memory Programming Specification” (DS40001713).  
4.3.1  
PROGRAM MEMORY PROTECTION  
The entire program memory space is protected from  
external reads and writes by the CP bit in the  
Configuration Words. When CP = 0, external reads and  
writes of program memory are inhibited and a read will  
return all ‘0’s. The CPU can continue to read program  
memory, regardless of the protection bit settings.  
Writing the program memory is dependent upon the  
write protection setting. See Section 4.4 “Write  
Protection” for more information.  
4.6  
Device ID and Revision ID  
The 14-bit Device ID word is located at 8006h and the  
14-bit Revision ID is located at 8005h. These locations  
are read-only and cannot be erased or modified. See  
Section 10.4 “User ID, Device ID and Configuration  
Word Access” for more information on accessing  
these memory locations.  
4.4  
Write Protection  
Write protection allows the device to be protected from  
unintended self-writes. Applications, such as boot-  
loader software, can be protected while allowing other  
regions of the program memory to be modified.  
Development tools, such as device programmers and  
debuggers, may be used to read the Device ID and  
Revision ID.  
The WRT<1:0> bits in the Configuration Words define  
the size of the program memory block that is protected.  
DS40001723D-page 44  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
4.7  
Register Definitions: Device ID  
REGISTER 4-3:  
DEVICEID: DEVICE ID REGISTER(1)  
R
R
R
R
R
R
R
R
R
R
DEV<13:8>  
bit 13  
bit 8  
bit 0  
R
R
R
R
DEV<7:0>  
bit 7  
Legend:  
R = Readable bit  
‘0’ = Bit is cleared  
x = Bit is unknown  
‘1’ = Bit is set  
bit 13-0  
DEV<13:0>: Device ID bits  
Refer to Table 4-1 to determine what these bits will read on which device. A value of 3FFFh is invalid.  
Note 1: This location cannot be written.  
REGISTER 4-4:  
REVISIONID: REVISION ID REGISTER(1)  
R
R
R
R
R
R
R
R
R
R
REV<13:8>  
bit 13  
bit 8  
bit 0  
R
R
R
R
REV<7:0>  
bit 7  
Legend:  
R = Readable bit  
‘0’ = Bit is cleared  
x = Bit is unknown  
‘1’ = Bit is set  
bit 13-0  
REV<13:0>: Revision ID bits  
These bits are used to identify the device revision.  
Note 1: This location cannot be written.  
TABLE 4-1:  
DEVICE ID VALUES  
DEVICE  
Device ID  
Revision ID  
PIC12F1571  
PIC12LF1571  
PIC12F1572  
PIC12LF1572  
3051h  
3053h  
3050h  
3052h  
2xxxh  
2xxxh  
2xxxh  
2xxxh  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 45  
 
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 46  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
The oscillator module can be configured in one of the  
following clock modes:  
5.0  
5.1  
OSCILLATOR MODULE  
Overview  
1. ECL – External Clock Low-Power mode  
(0 MHz to 0.5 MHz)  
The oscillator module has a wide variety of clock  
sources and selection features that allow it to be used in  
a wide range of applications, while maximizing perfor-  
mance and minimizing power consumption. Figure 5-1  
illustrates a block diagram of the oscillator module.  
2. ECM – External Clock Medium Power mode  
(0.5 MHz to 4 MHz)  
3. ECH – External Clock High-Power mode  
(4 MHz to 32 MHz)  
4. INTOSC – Internal Oscillator (31 kHz to 32 MHz)  
Clock sources can be supplied from external oscillators,  
quartz crystal resonators, ceramic resonators and  
Resistor-Capacitor (RC) circuits. In addition, the system  
clock source can be supplied from one of two internal  
oscillators and PLL circuits, with a choice of speeds  
selectable via software. Additional clock features  
include:  
Clock Source modes are selected by the FOSC<1:0>  
bits in the Configuration Words. The FOSC bits deter-  
mine the type of oscillator that will be used when the  
device is first powered.  
The ECH, ECM, and ECL Clock modes rely on an  
external logic level signal as the device clock source.  
• Selectable system clock source between external  
or internal sources via software  
The INTOSC internal oscillator block produces low,  
medium and high-frequency clock sources, designated  
as LFINTOSC, MFINTOSC and HFINTOSC (see  
Internal Oscillator Block, Figure 5-1). A wide selection  
of device clock frequencies may be derived from these  
three clock sources.  
• Oscillator Start-up Timer (OST) ensures stability  
of crystal oscillator sources  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 47  
 
PIC12(L)F1571/2  
FIGURE 5-1:  
SIMPLIFIED PIC® MCU CLOCK SOURCE BLOCK DIAGRAM  
Rev. 10-000155A  
10/11/2013  
FOSC<1:0>  
Sleep  
Reserved  
INTOSC  
01  
00  
1x  
2
CLKIN  
(1)  
F
OSC  
0
1
4x PLL(2)  
to CPU and  
Peripherals  
PLLEN  
SPLLEN  
2
16 MHz  
SCS<1:0>  
8 MHz  
4 MHz  
HFINTOSC(1)  
MFINTOSC(1)  
2 MHz  
HFPLL  
1 MHz  
16 MHz  
*500 kHz  
*250 kHz  
*125 kHz  
62.5 kHz  
*31.25 kHz  
*31 kHz  
500 kHz  
Oscillator  
Internal Oscillator  
Block  
4
IRCF<3:0>  
LFINTOSC(1)  
FRC(1)  
31 kHz  
to WDT, PWRT, and  
other Peripherals  
Oscillator  
to Peripherals  
600 kHz  
Oscillator  
to ADC and  
other Peripherals  
* Available with more than one IRCF selection  
Note 1: See Section 5.2 “Clock Source Types”.  
2: ST Buffer is high-speed type when using T1CKI.  
3: If FOSC<1:0> = 00, 4x PLL can only be used if IRCF<3:0> = 1110.  
DS40001723D-page 48  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
5.2.1.1  
EC Mode  
5.2  
Clock Source Types  
The External Clock (EC) mode allows an externally  
generated logic level signal to be the system clock  
source. When operating in this mode, an external clock  
source is connected to the CLKIN input. CLKOUT is  
available for general purpose I/Os or CLKOUT.  
Figure 5-2 shows the pin connections for EC mode.  
Clock sources can be classified as external or internal.  
External clock sources rely on external circuitry for the  
clock source to function.  
Internal clock sources are contained within the  
oscillator module. The internal oscillator block has two  
internal oscillators and a dedicated Phase-Locked  
Loop (HFPLL) that are used to generate three internal  
system clock sources: the 16 MHz High-Frequency  
Internal Oscillator (HFINTOSC), 500 kHz Medium  
Frequency Internal Oscillator (MFINTOSC) and the  
31 kHz Low-Frequency Internal Oscillator (LFINTOSC).  
EC mode has three power modes to select from through  
the FOSCx bits in the Configuration Words:  
• ECH – High power, 4-20 MHz  
• ECM – Medium power, 0.5-4 MHz  
• ECL – Low power, 0-0.5 MHz  
The system clock can be selected between external or  
internal clock sources via the System Clock Select  
(SCS<1:0>) bits in the OSCCON register. See  
Section 5.3 “Clock Switching” for additional  
information.  
The Oscillator Start-up Timer (OST) is disabled when  
EC mode is selected. Therefore, there is no delay in  
operation after a Power-on Reset (POR) or wake-up  
from Sleep. Because the PIC® MCU design is fully  
static, stopping the external clock input will have the  
effect of halting the device while leaving all data intact.  
Upon restarting the external clock, the device will  
resume operation as if no time had elapsed.  
5.2.1  
EXTERNAL CLOCK SOURCES  
An external clock source can be used as the device  
system clock by performing one of the following  
actions:  
FIGURE 5-2:  
EXTERNAL CLOCK (EC)  
MODE OPERATION  
• Program the FOSC<1:0> bits in the Configuration  
Words to select an external clock source that will  
be used as the default system clock upon a  
device Reset.  
Clock from  
Ext. System  
CLKIN  
PIC® MCU  
• Write the SCS<1:0> bits in the OSCCON register  
to switch the system clock source to:  
FOSC/4 or  
I/O  
CLKOUT  
(1)  
- Timer1 oscillator during run time, or  
- An external clock source determined by the  
value of the FOSCx bits.  
Note 1: Output depends upon CLKOUTEN bit of  
the Configuration Words.  
See Section 5.3 “Clock Switching” for more  
information.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 49  
 
PIC12(L)F1571/2  
5.2.2  
INTERNAL CLOCK SOURCES  
5.2.2.1  
HFINTOSC  
The device may be configured to use the internal oscil-  
lator block as the system clock by performing one of the  
following actions:  
The High-Frequency Internal Oscillator (HFINTOSC) is  
a factory calibrated 16 MHz internal clock source. The  
frequency of the HFINTOSC can be altered via  
software using the OSCTUNE register (Register 5-3).  
• Program the FOSC<1:0> bits in the Configuration  
Words to select the INTOSC clock source, which  
will be used as the default system clock upon a  
device Reset.  
The output of the HFINTOSC connects to a postscaler  
and multiplexer (see Figure 5-1). One of multiple  
frequencies derived from the HFINTOSC can be  
selected via software using the IRCF<3:0> bits of the  
OSCCON register. See Section 5.2.2.8 “Internal  
Oscillator Clock Switch Timing” for more information.  
• Write the SCS<1:0> bits in the OSCCON register  
to switch the system clock source to the internal  
oscillator during run time. See  
Section 5.3 “Clock Switching”for more  
information.  
The HFINTOSC is enabled by:  
• Configuring the IRCF<3:0> bits of the OSCCON  
register for the desired HF frequency, and  
In INTOSC mode, CLKIN is available for general  
purpose I/O. CLKOUT is available for general purpose  
I/O or CLKOUT.  
• Setting FOSC<1:0> = 00, or  
• Setting the System Clock Source x (SCSx) bits of  
The function of the OSC2/CLKOUT pin is determined  
by the CLKOUTEN bit in the Configuration Words.  
the OSCCON register to ‘1x’.  
A fast start-up oscillator allows internal circuits to power  
up and stabilize before switching to HFINTOSC.  
The internal oscillator block has two independent  
oscillators and a dedicated Phase-Locked Loop,  
HFPLL, that can produce one of three internal system  
clock sources.  
The High-Frequency Internal Oscillator Ready bit  
(HFIOFR) of the OSCSTAT register indicates when the  
HFINTOSC is running.  
1. The HFINTOSC (High-Frequency Internal  
Oscillator) is factory calibrated and operates at  
16 MHz. The HFINTOSC source is generated  
from the 500 kHz MFINTOSC source and the  
dedicated Phase-Locked Loop, HFPLL. The  
frequency of the HFINTOSC can be  
user-adjusted via software using the OSCTUNE  
register (Register 5-3).  
The High-Frequency Internal Oscillator Status Locked  
bit (HFIOFL) of the OSCSTAT register indicates when  
the HFINTOSC is running within 2% of its final value.  
The High-Frequency Internal Oscillator Stable bit  
(HFIOFS) of the OSCSTAT register indicates when the  
HFINTOSC is running within 0.5% of its final value.  
5.2.2.2  
MFINTOSC  
2. The MFINTOSC (Medium Frequency Internal  
Oscillator) is factory calibrated and operates at  
500 kHz. The frequency of the MFINTOSC can  
be user-adjusted via software using the  
OSCTUNE register (Register 5-3).  
The Medium Frequency Internal Oscillator (MFINTOSC)  
is a factory calibrated 500 kHz internal clock source.  
The frequency of the MFINTOSC can be altered via  
software using the OSCTUNE register (Register 5-3).  
3. The LFINTOSC (Low-Frequency Internal  
Oscillator) is uncalibrated and operates at  
31 kHz.  
The output of the MFINTOSC connects to a postscaler  
and multiplexer (see Figure 5-1). One of nine  
frequencies derived from the MFINTOSC can be  
selected via software using the IRCF<3:0> bits of the  
OSCCON register. See Section 5.2.2.8 “Internal  
Oscillator Clock Switch Timing” for more information.  
The MFINTOSC is enabled by:  
• Configuring the IRCF<3:0> bits of the OSCCON  
register for the desired HF frequency, and  
• Setting FOSC<1:0> = 00, or  
• Setting the System Clock Source x (SCSx) bits of  
the OSCCON register to ‘1x’  
The Medium Frequency Internal Oscillator Ready bit  
(MFIOFR) of the OSCSTAT register indicates when the  
MFINTOSC is running.  
DS40001723D-page 50  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
5.2.2.3  
Internal Oscillator Frequency  
Adjustment  
5.2.2.5  
FRC  
The FRC clock is an uncalibrated, nominal 600 kHz  
peripheral clock source.  
The 500 kHz internal oscillator is factory calibrated.  
This internal oscillator can be adjusted in software by  
writing to the OSCTUNE register (Register 5-3). Since  
the HFINTOSC and MFINTOSC clock sources are  
derived from the 500 kHz internal oscillator, a change  
in the OSCTUNE register value will apply to both.  
The FRC is automatically turned on by the peripherals  
requesting the FRC clock.  
The FRC clock will continue to run during Sleep.  
5.2.2.6  
Internal Oscillator Frequency  
Selection  
The default value of the OSCTUNE register is ‘0’. The  
value is a 6-bit two’s complement number. A value of  
1Fh will provide an adjustment to the maximum  
frequency. A value of 20h will provide an adjustment to  
the minimum frequency.  
The system clock speed can be selected via software  
using the Internal Oscillator Frequency Select bits  
IRCF<3:0> of the OSCCON register.  
The postscaler outputs of the 16 MHz HFINTOSC,  
500 kHz MFINTOSC and 31 kHz LFINTOSC output  
connect to a multiplexer (see Figure 5-1). The Internal  
Oscillator Frequency Select bits, IRCF<3:0> of the  
OSCCON register, select the frequency output of the  
internal oscillators. One of the following frequencies  
can be selected via software:  
When the OSCTUNE register is modified, the oscillator  
frequency will begin shifting to the new frequency. Code  
execution continues during this shift. There is no  
indication that the shift has occurred.  
OSCTUNE does not affect the LFINTOSC frequency.  
Operation of features that depends on the LFINTOSC  
clock source frequency, such as the Power-up Timer  
(PWRT), Watchdog Timer (WDT) and peripherals, are  
not affected by the change in frequency.  
• 32 MHz (requires 4x PLL)  
• 16 MHz  
• 8 MHz  
5.2.2.4  
LFINTOSC  
• 4 MHz  
The Low-Frequency Internal Oscillator (LFINTOSC) is  
an uncalibrated 31 kHz internal clock source.  
• 2 MHz  
• 1 MHz  
The output of the LFINTOSC connects to a multiplexer  
(see Figure 5-1). Select 31 kHz, via software, using  
the IRCF<3:0> bits of the OSCCON register. See  
Section 5.2.2.8 “Internal Oscillator Clock Switch  
Timing” for more information. The LFINTOSC is also  
the frequency for the Power-up Timer (PWRT),  
Watchdog Timer (WDT) and Fail-Safe Clock Monitor  
(FSCM).  
• 500 kHz (default after Reset)  
• 250 kHz  
• 125 kHz  
• 62.5 kHz  
• 31.25 kHz  
• 31 kHz (LFINTOSC)  
Note:  
Following any Reset, the IRCF<3:0> bits  
of the OSCCON register are set to ‘0111’  
and the frequency selection is set to  
500 kHz. The user can modify the IRCFx  
bits to select a different frequency.  
The LFINTOSC is enabled by selecting 31 kHz  
(IRCF<3:0> (OSCCON<6:3>) = 0000) as the system  
clock source (SCS<1:0> (OSCCON<1:0>) = 1x) or  
when any of the following are enabled:  
• Configure the IRCF<3:0> bits of the OSCCON  
register for the desired LF frequency, and  
The IRCF<3:0> bits of the OSCCON register allow  
duplicate selections for some frequencies. These dupli-  
cate choices can offer system design trade-offs. Lower  
power consumption can be obtained when changing  
oscillator sources for a given frequency. Faster transi-  
tion times can be obtained between frequency changes  
that use the same oscillator source.  
• Set FOSC<1:0> = 00, or  
• Set the System Clock Source x (SCSx) bits of the  
OSCCON register to ‘1x’  
Peripherals that use the LFINTOSC are:  
• Power-up Timer (PWRT)  
• Watchdog Timer (WDT)  
The Low-Frequency Internal Oscillator Ready bit  
(LFIOFR) of the OSCSTAT register indicates when the  
LFINTOSC is running.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 51  
PIC12(L)F1571/2  
5.2.2.7  
32 MHz Internal Oscillator  
Frequency Selection  
5.2.2.8  
Internal Oscillator Clock Switch  
Timing  
The internal oscillator block can be used with the  
4x PLL associated with the external oscillator block to  
produce a 32 MHz internal system clock source. The  
following settings are required to use the 32 MHz  
internal clock source:  
When switching between the HFINTOSC, MFINTOSC  
and the LFINTOSC, the new oscillator may already be  
shut down to save power (see Figure 5-3). If this is the  
case, there is a delay after the IRCF<3:0> bits of the  
OSCCON register are modified before the frequency  
selection takes place. The OSCSTAT register will  
reflect the current active status of the HFINTOSC,  
MFINTOSC and LFINTOSC oscillators. The sequence  
of a frequency selection is as follows:  
• The FOSCx bits in the Configuration Words must  
be set to use the INTOSC source as the device  
system clock (FOSC<1:0> = 00).  
• The SCSx bits in the OSCCON register must be  
cleared to use the clock determined by  
FOSC<1:0> in the Configuration Words  
(SCS<1:0> = 00).  
1. IRCF<3:0> bits of the OSCCON register are  
modified.  
2. If the new clock is shut down, a clock start-up  
delay is started.  
• The IRCFx bits in the OSCCON register must be  
set to the 8 MHz HFINTOSC to use  
(IRCF<3:0> = 1110).  
3. Clock switch circuitry waits for a falling edge of  
the current clock.  
• The SPLLEN bit in the OSCCON register must be  
set to enable the 4x PLL or the PLLEN bit of the  
Configuration Words must be programmed to a  
1’.  
4. The current clock is held low and the clock  
switch circuitry waits for a rising edge in the new  
clock.  
5. The new clock is now active.  
Note:  
When using the PLLEN bit of the  
Configuration Words, the 4x PLL cannot  
be disabled by software and the 8 MHz  
HFINTOSC option will no longer be  
available.  
6. The OSCSTAT register is updated as required.  
7. Clock switch is complete.  
See Figure 5-3 for more details.  
If the internal oscillator speed is switched between two  
clocks of the same source, there is no start-up delay  
before the new frequency is selected. Clock switching  
time delays are shown in Table 5-1.  
The 4x PLL is not available for use with the internal  
oscillator when the SCSx bits of the OSCCON register  
are set to ‘1x’. The SCSx bits must be set to ‘00’ to use  
the 4x PLL with the internal oscillator.  
Start-up delay specifications are located in the  
oscillator tables of Section 26.0 “Electrical  
Specifications”.  
DS40001723D-page 52  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 5-3:  
INTERNAL OSCILLATOR SWITCH TIMING  
HFINTOSC/  
MFINTOSC  
LFINTOSC (WDT disabled)  
HFINTOSC/  
MFINTOSC  
(1)  
Oscillator Delay  
2-Cycle Sync  
Running  
LFINTOSC  
IRCF<3:0>  
0  
= 0  
System Clock  
HFINTOSC/  
MFINTOSC  
LFINTOSC (WDT enabled)  
HFINTOSC/  
MFINTOSC  
2-Cycle Sync  
Running  
LFINTOSC  
0  
= 0  
IRCF <3:0>  
System Clock  
LFINTOSC  
HFINTOSC/MFINTOSC  
LFINTOSC Turns Off unless WDT is Enabled  
Running  
LFINTOSC  
Oscillator  
Delay(1)  
2-Cycle Sync  
HFINTOSC/  
MFINTOSC  
= 0  
0  
IRCF <3:0>  
System Clock  
Note 1: See Table 5-1 (Oscillator Switching Delays) for more information.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 53  
PIC12(L)F1571/2  
5.3  
Clock Switching  
5.4  
Clock Switching Before Sleep  
The system clock source can be switched between  
external and internal clock sources via software using  
the System Clock Select (SCSx) bits of the OSCCON  
register. The following clock sources can be selected  
using the SCSx bits:  
When clock switching from an old clock to a new clock  
is requested, just prior to entering Sleep mode, it is  
necessary to confirm that the switch is complete before  
the SLEEPinstruction is executed. Failure to do so may  
result in an incomplete switch and consequential loss of  
the system clock altogether. Clock switching is  
confirmed by monitoring the clock status bits in the  
OSCSTAT register. Switch confirmation can be accom-  
plished by sensing that the ready bit for the new clock is  
set or the ready bit for the old clock is cleared. For  
example, when switching between the internal oscillator  
with the PLL and the internal oscillator without the PLL,  
monitor the PLLR bit. When PLLR is set, the switch to  
32 MHz operation is complete. Conversely, when PLLR  
is cleared, the switch from 32 MHz operation to the  
selected internal clock is complete.  
• Default system oscillator determined by FOSCx  
bits in the Configuration Words  
• Timer1 32 kHz crystal oscillator  
• Internal Oscillator Block (INTOSC)  
5.3.1  
SYSTEM CLOCK SELECT (SCSx)  
BITS  
The System Clock Select (SCSx) bits of the OSCCON  
register select the system clock source that is used for  
the CPU and peripherals.  
• When the SCSx bits of the OSCCON register = 00,  
the system clock source is determined by the value  
of the FOSC<1:0> bits in the Configuration Words.  
• When the SCSx bits of the OSCCON register = 01,  
the system clock source is the Timer1 oscillator.  
• When the SCSx bits of the OSCCON register = 1x,  
the system clock source is chosen by the internal  
oscillator frequency selected by the IRCF<3:0> bits  
of the OSCCON register. After a Reset, the SCSx  
bits of the OSCCON register are always cleared.  
Note:  
Any automatic clock switch does not  
update the SCSx bits of the OSCCON  
register. The user can monitor the OSTS  
bit of the OSCSTAT register to determine  
the current system clock source.  
When switching between clock sources, a delay is  
required to allow the new clock to stabilize. These  
oscillator delays are shown in Table 5-1.  
TABLE 5-1:  
OSCILLATOR SWITCHING DELAYS  
Switch From  
Switch To  
Frequency  
Oscillator Delay  
LFINTOSC(1)  
MFINTOSC(1)  
HFINTOSC(1)  
31 kHz  
31.25 kHz-500 kHz  
31.25 kHz-16 MHz  
Sleep/POR  
Oscillator Warm-up Delay (TWARM)(2)  
Sleep/POR  
LFINTOSC  
EC(1)  
EC(1)  
DC – 32 MHz  
DC – 32 MHz  
2 cycles  
1 cycle of each  
MFINTOSC(1)  
31.25 kHz-500 kHz  
31.25 kHz-16 MHz  
Any Clock Source  
2 s (approx.)  
HFINTOSC(1)  
Any Clock Source  
PLL Inactive  
LFINTOSC(1)  
PLL Active  
31 kHz  
1 cycle of each  
2 ms (approx.)  
16-32 MHz  
Note 1: PLL inactive.  
2: See Section 26.0 “Electrical Specifications”.  
DS40001723D-page 54  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
5.5  
Register Definitions: Oscillator Control  
REGISTER 5-1:  
OSCCON: OSCILLATOR CONTROL REGISTER  
R/W-0/0 R/W-1/1 R/W-1/1 R/W-1/1  
IRCF<3:0>  
R/W-0/0  
SPLLEN  
bit 7  
U-0  
R/W-0/0  
R/W-0/0  
SCS<1:0>  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
SPLLEN: Software PLL Enable bit  
If PLLEN in Configuration Words = 1:  
SPLLEN bit is ignored. 4x PLL is always enabled (subject to oscillator requirements).  
If PLLEN in Configuration Words = 0:  
1= 4x PLL Is enabled  
0= 4x PLL is disabled  
bit 6-3  
IRCF<3:0>: Internal Oscillator Frequency Select bits  
1111= 16 MHz HF  
1110= 8 MHz or 32 MHz HF (see Section 5.2.2.1 “HFINTOSC”)  
1101= 4 MHz HF  
1100= 2 MHz HF  
1011= 1 MHz HF  
1010= 500 kHz HF(1)  
1001= 250 kHz HF(1)  
1000= 125 kHz HF(1)  
0111= 500 kHz MF (default upon Reset)  
0110= 250 kHz MF  
0101= 125 kHz MF  
0100= 62.5 kHz MF  
0011= 31.25 kHz HF(1)  
0010= 31.25 kHz MF  
000x= 31 kHz LF  
bit 2  
Unimplemented: Read as ‘0’  
bit 1-0  
SCS<1:0>: System Clock Select bits  
1x= Internal oscillator block  
01= Timer1 oscillator  
00= Clock determined by FOSC<1:0> in Configuration Words  
Note 1: Duplicate frequency derived from HFINTOSC.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 55  
 
 
PIC12(L)F1571/2  
REGISTER 5-2:  
OSCSTAT: OSCILLATOR STATUS REGISTER  
U-0  
R-0/q  
PLLR  
R-q/q  
R-0/q  
R-0/q  
R-q/q  
R-0/q  
R-0/q  
OSTS  
HFIOFR  
HFIOFL  
MFIOFR  
LFIOFR  
HFIOFS  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
q = Conditional bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
PLLR 4x PLL Ready bit  
1= 4x PLL is ready  
0= 4x PLL is not ready  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
OSTS: Oscillator Start-up Timer Status bit  
1= Running from the clock defined by the FOSC<1:0> bits of the Configuration Words  
0= Running from an internal oscillator (FOSC<1:0> = 00)  
HFIOFR: High-Frequency Internal Oscillator Ready bit  
1= HFINTOSC is ready  
0= HFINTOSC is not ready  
HFIOFL: High-Frequency Internal Oscillator Locked bit  
1= HFINTOSC is at least 2% accurate  
0= HFINTOSC is not 2% accurate  
MFIOFR: Medium Frequency Internal Oscillator Ready bit  
1= MFINTOSC is ready  
0= MFINTOSC is not ready  
LFIOFR: Low-Frequency Internal Oscillator Ready bit  
1= LFINTOSC is ready  
0= LFINTOSC is not ready  
HFIOFS: High-Frequency Internal Oscillator Stable bit  
1= HFINTOSC is at least 0.5% accurate  
0= HFINTOSC is not 0.5% accurate  
DS40001723D-page 56  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
REGISTER 5-3:  
OSCTUNE: OSCILLATOR TUNING REGISTER  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
bit 0  
TUN<5:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
TUN<5:0>: Frequency Tuning bits  
100000= Minimum frequency  
111111=  
000000= Oscillator module is running at the factory-calibrated frequency  
000001=  
011110=  
011111= Maximum frequency  
TABLE 5-2:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OSCCON  
OSCSTAT  
OSCTUNE  
T1CON  
SPLLEN  
IRCF<3:0>  
SCS<1:0>  
55  
56  
PLLR  
OSTS  
HFIOFR  
HFIOFL  
MFIOFR LFIOFR HFIOFS  
TUN<5:0>  
T1SYNC  
57  
TMR1CS<1:0>  
T1CKPS<1:0>  
TMR1ON  
167  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources.  
TABLE 5-3:  
SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES  
Register  
on Page  
Name  
Bits Bit -/7  
Bit -/6  
Bit 13/5  
Bit 12/4  
Bit 11/3  
Bit 10/2  
Bit 9/1  
Bit 8/0  
13:8  
7:0  
CLKOUTEN  
BOREN<1:0>  
CONFIG1  
42  
CP  
MCLRE PWRTE  
WDTE<1:0>  
FOSC<1:0>  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 57  
 
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 58  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
To allow VDD to stabilize, an optional Power-up Timer  
can be enabled to extend the Reset time after a BOR  
or POR event.  
6.0  
RESETS  
There are multiple ways to reset this device:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• Low-Power Brown-out Reset (LPBOR)  
• MCLR Reset  
A simplified block diagram of the On-Chip Reset Circuit  
is shown in Figure 6-1.  
• WDT Reset  
RESETinstruction  
• Stack Overflow  
• Stack Underflow  
• Programming mode exit  
FIGURE 6-1:  
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT  
Rev. 10-000006A  
8/14/2013  
ICSP™ Programming Mode Exit  
RESET Instruction  
Stack Underflow  
Stack Overlfow  
MCLRE  
Sleep  
VPP/MCLR  
WDT  
Time-out  
Device  
Reset  
Power-on  
Reset  
VDD  
BOR  
Active(1)  
Brown-out  
Reset  
R
Power-up  
Timer  
LFINTOSC  
PWRTE  
LPBOR  
Reset  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 59  
 
PIC12(L)F1571/2  
6.1  
Power-on Reset (POR)  
6.2  
Brown-out Reset (BOR)  
The POR circuit holds the device in Reset until VDD has  
reached an acceptable level for minimum operation.  
Slow rising VDD, fast operating speeds or analog  
performance may require greater than minimum VDD.  
The PWRT, BOR or MCLR features can be used to  
extend the start-up period until all device operation  
conditions have been met.  
The BOR circuit holds the device in Reset when VDD  
reaches a selectable minimum level. Between the  
POR and BOR, complete voltage range coverage for  
execution protection can be implemented.  
The Brown-out Reset module has four operating  
modes controlled by the BOREN<1:0> bits in the  
Configuration Words. The four operating modes are:  
• BOR is always on  
6.1.1  
POWER-UP TIMER (PWRT)  
• BOR is off when in Sleep  
• BOR is controlled by software  
• BOR is always off  
The Power-up Timer provides a nominal 64 ms  
time-out on a POR or Brown-out Reset.  
The device is held in Reset as long as PWRT is active.  
The PWRT delay allows additional time for the VDD to  
rise to an acceptable level. The Power-up Timer is  
enabled by clearing the PWRTE bit in the Configuration  
Words.  
Refer to Table 6-1 for more information.  
The Brown-out Reset voltage level is selectable by  
configuring the BORV bit in the Configuration Words.  
A VDD noise rejection filter prevents the BOR from trig-  
gering on small events. If VDD falls below VBOR for a  
duration greater than parameter, TBORDC, the device  
will reset. See Figure 6-2 for more information.  
The Power-up Timer starts after the release of the POR  
and BOR.  
For additional information, refer to Application Note  
AN607, “Power-up Trouble Shooting” (DS00000607).  
TABLE 6-1:  
BOREN<1:0>  
BOR OPERATING MODES  
Instruction Execution upon:  
Release of POR or Wake-up from Sleep  
SBOREN  
Device Mode  
BOR Mode  
Waits for BOR ready(1)  
11  
10  
X
X
1
X
Active  
(BORRDY = 1)  
Awake  
Sleep  
Active  
Waits for BOR ready  
(BORRDY = 1)  
Disabled  
Waits for BOR ready(1)  
X
Active  
(BORRDY = 1)  
01  
00  
0
X
X
X
Disabled  
Disabled  
Begins immediately  
(BORRDY = x)  
Note 1: In these specific cases, “release of POR” and “wake-up from Sleep”, there is no delay in start-up. The BOR  
ready flag (BORRDY = 1) will be set before the CPU is ready to execute instructions because the BOR  
circuit is forced on by the BOREN<1:0> bits.  
DS40001723D-page 60  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
BOR protection is not active during Sleep. The device  
wake-up will be delayed until the BOR is ready.  
6.2.1  
BOR IS ALWAYS ON  
When the BORENx bits of the Configuration Words are  
programmed to ‘11’, the BOR is always on. The device  
start-up will be delayed until the BOR is ready and VDD  
is higher than the BOR threshold.  
6.2.3  
BOR CONTROLLED BY SOFTWARE  
When the BORENx bits of the Configuration Words  
are programmed to ‘01’, the BOR is controlled by the  
SBOREN bit of the BORCON register. The device  
start-up is not delayed by the BOR ready condition or  
the VDD level.  
BOR protection is active during Sleep. The BOR does  
not delay wake-up from Sleep.  
6.2.2  
BOR IS OFF IN SLEEP  
BOR protection begins as soon as the BOR circuit is  
ready. The status of the BOR circuit is reflected in the  
BORRDY bit of the BORCON register.  
When the BORENx bits of the Configuration Words are  
programmed to ‘10’, the BOR is on, except in Sleep.  
The device start-up will be delayed until the BOR is  
ready and VDD is higher than the BOR threshold.  
BOR protection is unchanged by Sleep.  
FIGURE 6-2:  
BROWN-OUT SITUATIONS  
VDD  
VBOR  
Internal  
Reset  
(1)  
TPWRT  
VDD  
VBOR  
Internal  
Reset  
< TPWRT  
(1)  
TPWRT  
VDD  
VBOR  
Internal  
Reset  
(1)  
TPWRT  
Note 1: TPWRT delay only if PWRTE bit is programmed to ‘0’.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 61  
 
PIC12(L)F1571/2  
6.3  
Register Definitions: BOR Control  
REGISTER 6-1:  
BORCON: BROWN-OUT RESET CONTROL REGISTER  
R/W-1/u  
SBOREN  
bit 7  
R/W-0/u  
BORFS(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
R-q/u  
BORRDY  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7  
bit 6  
SBOREN: Software Brown-out Reset Enable bit  
If BOREN<1:0> in Configuration Words = 01:  
1= BOR is enabled  
0= BOR is disabled  
If BOREN <1:0> in Configuration Words 01:  
SBOREN is read/write, but has no effect on the BOR.  
BORFS: Brown-out Reset Fast Start bit(1)  
If BOREN <1:0> = 10(Disabled in Sleep) or BOREN<1:0> = 01(Under software control):  
1= Band gap is forced on always (covers Sleep/wake-up/operating cases)  
0= Band gap operates normally and may turn off  
If BOREN<1:0> = 11(Always On) or BOREN<1:0> = 00(Always Off):  
BORFS is read/write, but has no effect on the BOR.  
bit 5-1  
bit 0  
Unimplemented: Read as ‘0’  
BORRDY: Brown-out Reset Circuit Ready Status bit  
1= The Brown-out Reset circuit is active  
0= The Brown-out Reset circuit is inactive  
Note 1: BOREN<1:0> bits are located in the Configuration Words.  
DS40001723D-page 62  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
6.4  
Low-Power Brown-out Reset  
(LPBOR)  
6.6  
Watchdog Timer (WDT) Reset  
The Watchdog Timer generates a Reset if the firmware  
does not issue a CLRWDT instruction within the  
time-out period. The TO and PD bits in the STATUS  
register are changed to indicate the WDT Reset. See  
Section 9.0 “Watchdog Timer (WDT)” for more  
information.  
The Low-Power Brown-out Reset (LPBOR) operates  
like the BOR to detect low-voltage conditions on the  
VDD pin. When too low of a voltage is detected, the  
device is held in Reset. When this occurs, a register bit  
(BOR) is changed to indicate that a BOR Reset has  
occurred. The BOR bit in PCON is used for both BOR  
and the LPBOR. Refer to Register 6-2.  
6.7  
RESET Instruction  
The LPBOR Voltage Threshold (VLPBOR) has a wider  
tolerance than the BOR (VBOR), but requires much  
less current (LPBOR current) to operate. The LPBOR  
is intended for use when the BOR is configured as dis-  
abled (BOREN<1:0> = 00) or disabled in Sleep mode  
(BOREN<1:0> = 10).  
A RESETinstruction will cause a device Reset. The RI  
bit in the PCON register will be set to ‘0’. See Table 6-4  
for default conditions after a RESET instruction has  
occurred.  
6.8  
Stack Overflow/Underflow Reset  
Refer to Figure 6-1 to see how the LPBOR interacts  
with other modules.  
The device can reset when the Stack overflows or  
underflows. The STKOVF or STKUNF bits of the PCON  
register indicate the Reset condition. These Resets are  
enabled by setting the STVREN bit in the Configuration  
Words. See Section 3.5.2 “Overflow/Underflow  
Reset” for more information.  
6.4.1  
ENABLING LPBOR  
The LPBOR is controlled by the LPBOR bit of the  
Configuration Words. When the device is erased, the  
LPBOR module defaults to disabled.  
6.9  
Programming Mode Exit  
6.5  
MCLR  
Upon exit of Programming mode, the device will  
behave as if a POR had just occurred.  
The MCLR is an optional external input that can reset  
the device. The MCLR function is controlled by the  
MCLRE and LVP bits of the Configuration Words  
(Table 6-2).  
6.10 Power-up Timer  
The Power-up Timer optionally delays device execution  
after a BOR or POR event. This timer is typically used to  
allow VDD to stabilize before allowing the device to start  
running.  
TABLE 6-2:  
MCLRE  
MCLR CONFIGURATION  
LVP  
MCLR  
0
1
x
0
0
1
Disabled  
Enabled  
Enabled  
The Power-up Timer is controlled by the PWRTE bit of  
the Configuration Words.  
6.11 Start-up Sequence  
6.5.1  
MCLR ENABLED  
Upon the release of a POR or BOR, the following must  
occur before the device will begin executing:  
When MCLR is enabled and the pin is held low, the  
device is held in Reset. The MCLR pin is connected to  
VDD through an internal weak pull-up.  
1. Power-up Timer runs to completion (if enabled).  
2. MCLR must be released (if enabled).  
The device has a noise filter in the MCLR Reset path.  
The filter will detect and ignore small pulses.  
The total time-out will vary based on oscillator  
configuration and Power-up Timer configuration. See  
Section 5.0 “Oscillator Module” for more information.  
Note:  
A Reset does not drive the MCLR pin low.  
The Power-up Timer runs independently of a MCLR  
Reset. If MCLR is kept low long enough, the Power-up  
Timer will expire. Upon bringing MCLR high, the device  
will begin execution after 10 FOSC cycles (see  
Figure 6-3). This is useful for testing purposes or to  
synchronize more than one device operating in parallel.  
6.5.2  
MCLR DISABLED  
When MCLR is disabled, the pin functions as a general  
purpose input and the internal weak pull-up is under soft-  
ware control. See Section 11.3 “PORTA Registers” for  
more information.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 63  
 
PIC12(L)F1571/2  
FIGURE 6-3:  
RESET START-UP SEQUENCE  
Rev. 10-000032A  
7/30/2013  
VDD  
Internal POR  
Power-up Timer  
MCLR  
TPWRT  
Internal RESET  
Int. Oscillator  
FOSC  
Begin Execution  
code execution (1)  
code execution (1)  
Internal Oscillator, PWRTEN = 0  
Internal Oscillator, PWRTEN = 1  
VDD  
Internal POR  
Power-up Timer  
MCLR  
TPWRT  
Internal RESET  
Ext. Clock (EC)  
FOSC  
Begin Execution  
code execution (1)  
code execution (1)  
External Clock (EC modes), PWRTEN = 0  
External Clock (EC modes), PWRTEN = 1  
VDD  
Internal POR  
Power-up Timer  
MCLR  
TPWRT  
Internal RESET  
Osc Start-Up Timer  
Ext. Oscillator  
FOSC  
TOST  
TOST  
Begin Execution  
code  
code  
execution (1)  
execution (1)  
External Oscillators , PWRTEN = 0, IESO = 0  
External Oscillators , PWRTEN = 1, IESO = 0  
VDD  
Internal POR  
Power-up Timer  
MCLR  
TPWRT  
Internal RESET  
Osc Start-Up Timer  
Ext. Oscillator  
Int. Oscillator  
TOST  
TOST  
FOSC  
code execution (1)  
code execution (1)  
Begin Execution  
External Oscillators , PWRTEN = 0, IESO = 1  
External Oscillators , PWRTEN = 1, IESO = 1  
Note 1: Code execution begins 10 FOSC cycles after the FOSC clock is released.  
DS40001723D-page 64  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
6.12 Determining the Cause of a Reset  
Upon any Reset, multiple bits in the STATUS and  
PCON registers are updated to indicate the cause of  
the Reset. Table 6-3 and Table 6-4 show the Reset  
conditions of these registers.  
TABLE 6-3:  
RESET STATUS BITS AND THEIR SIGNIFICANCE  
STKOVF STKUNF RWDT RMCLR  
RI  
POR BOR  
TO  
PD  
Condition  
0
0
0
0
u
u
u
u
u
u
1
u
0
0
0
0
u
u
u
u
u
u
u
1
1
1
1
u
0
u
u
u
u
u
u
u
1
1
1
1
u
u
u
0
0
u
u
u
1
1
1
1
u
u
u
u
u
0
u
u
0
0
0
u
u
u
u
u
u
u
u
u
x
x
x
0
u
u
u
u
u
u
u
u
1
0
x
1
0
0
1
u
1
u
u
u
1
x
0
1
u
0
0
u
0
u
u
u
Power-on Reset  
Illegal, TO is Set on POR  
Illegal, PD is Set on POR  
Brown-out Reset  
WDT Reset  
WDT Wake-up from Sleep  
Interrupt Wake-up from Sleep  
MCLR Reset during Normal Operation  
MCLR Reset during Sleep  
RESETInstruction Executed  
Stack Overflow Reset (STVREN = 1)  
Stack Underflow Reset (STVREN = 1)  
TABLE 6-4:  
RESET CONDITION FOR SPECIAL REGISTERS  
Program  
STATUS  
Register  
PCON  
Register  
Condition  
Counter  
Power-on Reset  
0000h  
---1 1000  
---u uuuu  
---1 0uuu  
---0 uuuu  
---0 0uuu  
---1 1uuu  
---1 0uuu  
---u uuuu  
---u uuuu  
---u uuuu  
00-- 110x  
uu-- 0uuu  
uu-- 0uuu  
uu-- uuuu  
uu-- uuuu  
00-- 11u0  
uu-- uuuu  
uu-- u0uu  
1u-- uuuu  
u1-- uuuu  
MCLR Reset during normal operation  
MCLR Reset during Sleep  
WDT Reset  
0000h  
0000h  
0000h  
PC + 1  
0000h  
PC + 1(1)  
0000h  
0000h  
0000h  
WDT Wake-up from Sleep  
Brown-out Reset  
Interrupt Wake-up from Sleep  
RESETInstruction Executed  
Stack Overflow Reset (STVREN = 1)  
Stack Underflow Reset (STVREN = 1)  
Legend: u= unchanged; x= unknown; -= unimplemented bit, reads as ‘0’.  
Note 1: When the wake-up is due to an interrupt and the Global Interrupt Enable bit (GIE) is set, the return address  
is pushed on the stack and the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 65  
 
 
 
PIC12(L)F1571/2  
6.13 Power Control (PCON) Register  
The Power Control (PCON) register contains flag bits  
to differentiate between a:  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
RESETInstruction Reset (RI)  
• MCLR Reset (RMCLR)  
• Watchdog Timer Reset (RWDT)  
• Stack Underflow Reset (STKUNF)  
• Stack Overflow Reset (STKOVF)  
The PCON register bits are shown in Register 6-2.  
6.14 Register Definitions: Power Control  
REGISTER 6-2:  
PCON: POWER CONTROL REGISTER  
R/W/HS-0/q R/W/HS-0/q  
U-0  
R/W/HC-1/q R/W/HC-1/q R/W/HC-1/q R/W/HC-q/u R/W/HC-q/u  
RWDT RMCLR RI POR BOR  
bit 0  
STKOVF  
bit 7  
STKUNF  
Legend:  
HC = Hardware Clearable bit HS = Hardware Settable bit  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7  
bit 6  
STKOVF: Stack Overflow Reset Flag bit  
1= A Stack Overflow Reset occurred  
0= A Stack Overflow Reset has not occurred or is cleared by firmware  
STKUNF: Stack Underflow Reset Flag bit  
1= A Stack Underflow Reset occurred  
0= A Stack Underflow Reset has not occurred or is cleared by firmware  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
RWDT: Watchdog Timer Reset Flag bit  
1= A Watchdog Timer Reset has not occurred or is set by firmware  
0= A Watchdog Timer Reset has occurred (cleared by hardware)  
bit 3  
bit 2  
bit 1  
bit 0  
RMCLR: MCLR Reset Flag bit  
1= A MCLR Reset has not occurred or is set by firmware  
0= A MCLR Reset has occurred (cleared by hardware)  
RI: RESETInstruction Flag bit  
1= A RESETinstruction has not been executed or set by firmware  
0= A RESETinstruction has been executed (cleared by hardware)  
POR: Power-on Reset Status bit  
1= No Power-on Reset occurred  
0= A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)  
BOR: Brown-out Reset Status bit  
1= No Brown-out Reset occurred  
0= A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset occurs)  
DS40001723D-page 66  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
TABLE 6-5:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH RESETS  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BORCON SBOREN BORFS  
RWDT  
TO  
RMCLR  
PD  
RI  
Z
POR  
DC  
BORRDY  
BOR  
62  
66  
19  
89  
PCON  
STKOVF STKUNF  
STATUS  
WDTCON  
C
WDTPS<4:0>  
SWDTEN  
Legend: — = unimplemented bit, reads as ‘0’. Shaded cells are not used by Resets.  
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.  
TABLE 6-6:  
SUMMARY OF CONFIGURATION WORD WITH RESETS  
Register  
on Page  
Name  
Bits Bit -/7  
Bit -/6 Bit 13/5 Bit 12/4  
Bit 11/3  
Bit 10/2  
Bit 9/1  
Bit 8/0  
13:8  
7:0  
CP  
CLKOUTEN  
BOREN<1:0>  
CONFIG1  
CONFIG2  
42  
43  
MCLRE PWRTE  
WDTE<1:0>  
FOSC<1:0>  
BORV STVREN PLLEN  
WRT<1:0>  
13:8  
7:0  
LVP  
DEBUG  
LPBOR  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by Resets.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 67  
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 68  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
Many peripherals produce interrupts. Refer to the  
corresponding chapters for details.  
7.0  
INTERRUPTS  
The interrupt feature allows certain events to preempt  
normal program flow. Firmware is used to determine  
the source of the interrupt and act accordingly. Some  
interrupts can be configured to wake the MCU from  
Sleep mode.  
A block diagram of the interrupt logic is shown in  
Figure 7-1.  
This chapter contains the following information for  
interrupts:  
• Operation  
• Interrupt Latency  
• Interrupts during Sleep  
• INT Pin  
• Automatic Context Saving  
FIGURE 7-1:  
INTERRUPT LOGIC  
Rev. 10-000010A  
1/13/2014  
TMR0IF  
TMR0IE  
Wake-up  
(If in Sleep mode)  
INTF  
INTE  
Peripheral Interrupts  
(TMR1IF) PIR1<0>  
(TMR1IE) PIE1<0>  
IOCIF  
IOCIE  
Interrupt  
to CPU  
PEIE  
GIE  
PIRn<7>  
PIEn<7>  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 69  
 
PIC12(L)F1571/2  
The RETFIE instruction exits the ISR by popping the  
previous address from the stack, restoring the saved  
context from the shadow registers and setting the GIE  
bit.  
7.1  
Operation  
Interrupts are disabled upon any device Reset. They  
are enabled by setting the following bits:  
• GIE bit of the INTCON register  
For additional information on a specific interrupt’s  
operation, refer to its peripheral chapter.  
• Interrupt enable bit(s) for the specific interrupt  
event(s)  
Note 1: Individual interrupt flag bits are set,  
regardless of the state of any other  
enable bits.  
• PEIE bit of the INTCON register (if the interrupt  
enable bit of the interrupt event is contained in the  
PIE1, PIE2 and PIE3 registers)  
2: All interrupts will be ignored while the GIE  
bit is cleared. Any interrupt occurring  
while the GIE bit is clear will be serviced  
when the GIE bit is set again.  
The INTCON, PIR1, PIR2 and PIR3 registers record  
individual interrupts via interrupt flag bits. Interrupt flag  
bits will be set, regardless of the status of the GIE, PEIE  
and individual interrupt enable bits.  
The following events happen when an interrupt event  
occurs while the GIE bit is set:  
7.2  
Interrupt Latency  
Interrupt latency is defined as the time from when the  
interrupt event occurs to the time code execution at the  
interrupt vector begins. The latency for synchronous  
interrupts is three or four instruction cycles. For  
asynchronous interrupts, the latency is three to five  
instruction cycles, depending on when the interrupt  
occurs. See Figure 7-2 and Figure 7-3 for more details.  
• Current prefetched instruction is flushed  
• GIE bit is cleared  
• Current Program Counter (PC) is pushed onto the  
stack  
• Critical registers are automatically saved to the  
shadow registers (See Section 7.5 “Automatic  
Context Saving”.”)  
• PC is loaded with the interrupt vector, 0004h  
The firmware within the Interrupt Service Routine (ISR)  
should determine the source of the interrupt by polling  
the interrupt flag bits. The interrupt flag bits must be  
cleared before exiting the ISR to avoid repeated  
interrupts. Because the GIE bit is cleared, any interrupt  
that occurs while executing the ISR will be recorded  
through its interrupt flag, but will not cause the  
processor to redirect to the interrupt vector.  
DS40001723D-page 70  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 7-2:  
INTERRUPT LATENCY  
Fosc  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
CLKR  
Interrupt Sampled  
during Q1  
Interrupt  
GIE  
PC-1  
PC  
PC+1  
0004h  
0005h  
PC  
1-Cycle Instruction at PC  
Execute  
Inst(PC)  
NOP  
NOP  
Inst(0004h)  
Interrupt  
GIE  
PC+1/FSR  
ADDR  
New PC/  
PC+1  
PC-1  
PC  
0004h  
0005h  
PC  
Execute  
2-Cycle Instruction at PC  
Inst(PC)  
NOP  
NOP  
Inst(0004h)  
Interrupt  
GIE  
PC-1  
PC  
FSR ADDR  
INST(PC)  
PC+1  
PC+2  
0004h  
0005h  
PC  
Execute  
3-Cycle Instruction at PC  
NOP  
NOP  
NOP  
Inst(0004h)  
Inst(0005h)  
Interrupt  
GIE  
PC-1  
PC  
FSR ADDR  
INST(PC)  
PC+1  
PC+2  
0004h  
0005h  
PC  
NOP  
Execute  
3-Cycle Instruction at PC  
NOP  
NOP  
NOP  
Inst(0004h)  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 71  
PIC12(L)F1571/2  
FIGURE 7-3:  
INT PIN INTERRUPT TIMING  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
FOSC  
CLKOUT  
(3)  
INT Pin  
INTF  
(1)  
(1)  
(2)  
(4)  
Interrupt Latency  
GIE  
INSTRUCTION FLOW  
PC  
PC + 1  
PC + 1  
0004h  
0005h  
PC  
Instruction  
Fetched  
Inst (PC + 1)  
Inst (0004h)  
Inst (PC)  
Inst (0005h)  
Inst (0004h)  
Instruction  
Executed  
Forced NOP  
Forced NOP  
Inst (PC)  
Inst (PC – 1)  
Note 1: INTF flag is sampled here (every Q1).  
2: Asynchronous interrupt latency = 3-5 TCY. Synchronous latency = 3-4 TCY, where TCY = instruction cycle time.  
Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.  
3: For minimum width of INT pulse, refer to AC specifications in Section 26.0 “Electrical Specifications”.  
4: INTF is enabled to be set any time during the Q4-Q1 cycles.  
DS40001723D-page 72  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
7.3  
Interrupts During Sleep  
7.5  
Automatic Context Saving  
Some interrupts can be used to wake from Sleep. To  
wake from Sleep, the peripheral must be able to  
operate without the system clock. The interrupt source  
must have the appropriate Interrupt Enable bit(s) set  
prior to entering Sleep.  
Upon entering an interrupt, the return PC address is  
saved on the stack. Additionally, the following registers  
are automatically saved in the shadow registers:  
• W register  
• STATUS register (except for TO and PD)  
• BSR register  
On waking from Sleep, if the GIE bit is also set, the  
processor will branch to the interrupt vector. Otherwise,  
the processor will continue executing instructions after the  
SLEEPinstruction. The instruction directly after the SLEEP  
instruction will always be executed before branching to  
the ISR. Refer to Section 8.0 “Power-Down Mode  
(Sleep)” for more details.  
• FSR registers  
• PCLATH register  
Upon exiting the Interrupt Service Routine, these  
registers are automatically restored. Any modifications  
to these registers during the ISR will be lost. If modifi-  
cations to any of these registers are desired, the  
corresponding shadow register should be modified and  
the value will be restored when exiting the ISR. The  
shadow registers are available in Bank 31 and are  
readable and writable. Depending on the user’s  
application, other registers may also need to be saved.  
7.4  
INT Pin  
The INT pin can be used to generate an asynchronous  
edge-triggered interrupt. This interrupt is enabled by  
setting the INTE bit of the INTCON register. The  
INTEDG bit of the OPTION_REG register determines on  
which edge the interrupt will occur. When the INTEDG  
bit is set, the rising edge will cause the interrupt. When  
the INTEDG bit is clear, the falling edge will cause the  
interrupt. The INTF bit of the INTCON register will be set  
when a valid edge appears on the INT pin. If the GIE and  
INTE bits are also set, the processor will redirect  
program execution to the interrupt vector.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 73  
PIC12(L)F1571/2  
7.6  
Register Definitions: Interrupt Control  
REGISTER 7-1:  
INTCON: INTERRUPT CONTROL REGISTER  
R/W-0/0  
GIE(1)  
R/W-0/0  
PEIE(2)  
R/W-0/0  
TMR0IE  
R/W-0/0  
INTE  
R/W-0/0  
IOCIE  
R/W-0/0  
TMR0IF  
R/W-0/0  
INTF  
R-0/0  
IOCIF(3)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GIE: Global Interrupt Enable bit(1)  
1= Enables all active interrupts  
0= Disables all interrupts  
PEIE: Peripheral Interrupt Enable bit(2)  
1= Enables all active peripheral interrupts  
0= Disables all peripheral interrupts  
TMR0IE: Timer0 Overflow Interrupt Enable bit  
1= Enables the Timer0 interrupt  
0= Disables the Timer0 interrupt  
INTE: INT External Interrupt Enable bit  
1= Enables the INT external interrupt  
0= Disables the INT external interrupt  
IOCIE: Interrupt-On-Change Enable bit  
1= Enables the Interrupt-On-Change  
0= Disables the Interrupt-On-Change  
TMR0IF: Timer0 Overflow Interrupt Flag bit  
1= TMR0 register has overflowed  
0= TMR0 register has not overflow  
INTF: INT External Interrupt Flag bit  
1= The INT external interrupt occurred  
0= The INT external interrupt did not occur  
IOCIF: Interrupt-On-Change Interrupt Flag bit(3)  
1= When at least one of the Interrupt-On-Change pins changed state  
0= None of the Interrupt-On-Change pins have changed state  
Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding  
enable bit or the Global Interrupt Enable bit, GIE, of the INTCON register. User software should ensure the  
appropriate interrupt flag bits are clear prior to enabling an interrupt.  
2: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.  
3: The IOCIF Flag bit is read-only and cleared when all the Interrupt-On-Change flags in the IOCxF registers  
have been cleared by software.  
DS40001723D-page 74  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
REGISTER 7-2:  
PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1  
R/W-0/0  
TMR1GIE  
bit 7  
R/W-0/0  
ADIE  
R/W-0/0  
RCIE(1)  
R/W-0/0  
TXIE(1)  
U-0  
U-0  
R/W-0/0  
TMR2IE  
R/W-0/0  
TMR1IE  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
bit 5  
bit 4  
TMR1GIE: Timer1 Gate Interrupt Enable bit  
1= Enables the Timer1 gate acquisition interrupt  
0= Disables the Timer1 gate acquisition interrupt  
ADIE: Analog-to-Digital Converter (ADC) Interrupt Enable bit  
1= Enables the ADC interrupt  
0= Disables the ADC interrupt  
RCIE: USART Receive Interrupt Enable bit(1)  
1= Enables the USART receive interrupt  
0= Disables the USART receive interrupt  
TXIE: USART Transmit Interrupt Enable bit(1)  
1= Enables the USART transmit interrupt  
0= Disables the USART transmit interrupt  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TMR2IE: TMR2 to PR2 Match Interrupt Enable bit  
1= Enables the Timer2 to PR2 match interrupt  
0= Disables the Timer2 to PR2 match interrupt  
bit 0  
TMR1IE: Timer1 Overflow Interrupt Enable bit  
1= Enables the Timer1 overflow interrupt  
0= Disables the Timer1 overflow interrupt  
Note 1: PIC12(L)F1572 only.  
2: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 75  
 
 
PIC12(L)F1571/2  
REGISTER 7-3:  
PIE2: PERIPHERAL INTERRUPT ENABLE REGISTER 2  
U-0  
U-0  
R/W-0/0  
C1IE  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
C1IE: Comparator C1 Interrupt Enable bit  
1= Enables the Comparator C1 interrupt  
0= Disables the Comparator C1 interrupt  
bit 4-0  
Unimplemented: Read as ‘0’  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
DS40001723D-page 76  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
REGISTER 7-4:  
PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3  
U-0  
R/W-0/0  
PWM3IE  
R/W-0/0  
PWM2IE  
R/W-0/0  
PWM1IE  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
PWM3IE: PWM3 Interrupt Enable bit  
1= Enables the PWM3 interrupt  
0= Disables the PWM3 interrupt  
bit 5  
bit 4  
PWM2IE: PWM2 Interrupt Enable bit  
1= Enables the PWM2 interrupt  
0= Disables the PWM2 interrupt  
PWM1IE: PWM1 Interrupt Enable bit  
1= Enables the PWM1 interrupt  
0= Disables the PWM1 interrupt  
bit 3-0  
Unimplemented: Read as ‘0’  
Note:  
Bit PEIE of the INTCON register must be  
set to enable any peripheral interrupt.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 77  
 
 
PIC12(L)F1571/2  
REGISTER 7-5:  
PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1  
R/W-0/0  
TMR1GIF  
bit 7  
R/W-0/0  
ADIF  
R-0/0  
RCIF(1)  
R/W-0/0  
TXIF(1)  
U-0  
U-0  
R/W-0/0  
TMR2IF  
R/W-0/0  
TMR1IF  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
bit 5  
bit 4  
TMR1GIF: Timer1 Gate Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
ADIF: ADC Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
RCIF: USART Receive Interrupt Flag bit(1)  
1= Interrupt is pending  
0= Interrupt is not pending  
TXIF: USART Transmit Interrupt Flag bit(1)  
1= Interrupt is pending  
0= Interrupt is not pending  
bit 3-2  
bit 1  
Unimplemented: Read as ‘0’  
TMR2IF: Timer2 to PR2 Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
bit 0  
TMR1IF: Timer1 Overflow Interrupt Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
Note 1: PIC12(L)F1572 only.  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE, of the INTCON  
register. User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
DS40001723D-page 78  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
REGISTER 7-6:  
PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2  
U-0  
U-0  
R/W-0/0  
C1IF  
U-0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5  
Unimplemented: Read as ‘0’  
C1IF: Numerically Controlled Oscillator Flag bit  
1= Interrupt is pending  
0= Interrupt is not pending  
bit 4-0  
Unimplemented: Read as ‘0’  
Note:  
Interrupt flag bits are set when an interrupt  
condition occurs, regardless of the state of  
its corresponding enable bit or the Global  
Interrupt Enable bit, GIE, of the INTCON  
register. User software should ensure the  
appropriate interrupt flag bits are clear prior  
to enabling an interrupt.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 79  
 
 
PIC12(L)F1571/2  
REGISTER 7-7:  
PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3  
U-0  
R-0/0  
PWM3IF(1)  
R-0/0  
R-0/0  
U-0  
U-0  
U-0  
U-0  
PWM2IF(1) PWM1IF(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
u = Bit is unchanged  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
Unimplemented: Read as ‘0’  
PWM3IF: PWM3 Interrupt Flag bit(1)  
1= Interrupt is pending  
0= Interrupt is not pending  
bit 5  
PWM2IF: PWM2 Interrupt Flag bit(1)  
1= Interrupt is pending  
0= Interrupt is not pending  
bit 4  
PWM1IF: PWM1 Interrupt Flag bit(1)  
1= Interrupt is pending  
0= Interrupt is not pending  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: These bits are read-only. They must be cleared by addressing the Flag registers inside the module.  
2: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding  
enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the  
appropriate interrupt flag bits are clear prior to enabling an interrupt.  
DS40001723D-page 80  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
TABLE 7-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
PSA  
TMR0IF  
INTF  
IOCIF  
74  
157  
75  
76  
77  
78  
79  
80  
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE  
PS<2:0>  
PIE1  
PIE2  
PIE3  
PIR1  
PIR2  
PIR3  
TMR1GIE  
ADIE  
RCIE(1)  
TXIE(1)  
TMR2IE TMR1IE  
C1IE  
TMR1GIF  
PWM3IE PWM2IE PWM1IE  
ADIF  
RCIF(1)  
TXIF(1)  
TMR2IF TMR1IF  
C1IF  
PWM3IF PWM2IF PWM1IF  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by interrupts.  
Note 1: PIC12(L)F1572 only.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 81  
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 82  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
The first three events will cause a device Reset. The last  
three events are considered a continuation of program  
execution. To determine whether a device Reset or wake-  
up event occurred, refer to Section 6.12 “Determining  
the Cause of a Reset”.  
8.0  
POWER-DOWN MODE (SLEEP)  
The Power-Down mode is entered by executing a  
SLEEPinstruction.  
Upon entering Sleep mode, the following conditions exist:  
When the SLEEPinstruction is being executed, the next  
instruction (PC + 1) is prefetched. For the device to  
wake-up through an interrupt event, the corresponding  
interrupt enable bit must be enabled. Wake-up will  
occur regardless of the state of the GIE bit. If the GIE  
bit is disabled, the device continues execution at the  
instruction after the SLEEPinstruction. If the GIE bit is  
enabled, the device executes the instruction after the  
SLEEPinstruction, the device will then call the Interrupt  
Service Routine. In cases where the execution of the  
instruction following SLEEP is not desirable, the user  
should have a NOPafter the SLEEPinstruction.  
1. WDT will be cleared but keeps running if  
enabled for operation during Sleep.  
2. PD bit of the STATUS register is cleared.  
3. TO bit of the STATUS register is set.  
4. CPU clock is disabled.  
5. 31 kHz LFINTOSC is unaffected and peripherals  
that operate from it may continue operation in  
Sleep.  
6. Timer1 and peripherals that operate from  
Timer1 continue operation in Sleep when the  
Timer1 clock source selected is:  
LFINTOSC  
T1CKI  
Timer1 oscillator  
The WDT is cleared when the device wakes up from  
Sleep, regardless of the source of wake-up.  
7. ADC is unaffected if the dedicated FRC oscillator  
is selected.  
8.1.1  
WAKE-UP USING INTERRUPTS  
When global interrupts are disabled (GIE cleared) and  
any interrupt source has both its interrupt enable bit  
and interrupt flag bit set, one of the following will occur:  
8. I/O ports maintain the status they had before  
SLEEP was executed (driving high, low or  
high-impedance).  
• If the interrupt occurs before the execution of a  
SLEEPinstruction:  
9. Resets other than WDT are not affected by  
Sleep mode.  
- SLEEPinstruction will execute as a NOP.  
- WDT and WDT prescaler will not be cleared  
- TO bit of the STATUS register will not be set  
Refer to individual chapters for more details on  
peripheral operation during Sleep.  
To minimize current consumption, the following  
conditions should be considered:  
- PD bit of the STATUS register will not be  
cleared.  
• I/O pins should not be floating  
• If the interrupt occurs during or after the  
execution of a SLEEPinstruction:  
• External circuitry sinking current from I/O pins  
• Internal circuitry sourcing current from I/O pins  
• Current draw from pins with internal weak pull-ups  
• Modules using 31 kHz LFINTOSC  
- SLEEPinstruction will be completely  
executed  
• CWG module using HFINTOSC  
- Device will immediately wake-up from Sleep  
- WDT and WDT prescaler will be cleared  
- TO bit of the STATUS register will be set  
- PD bit of the STATUS register will be cleared  
I/O pins that are high-impedance inputs should be  
pulled to VDD or VSS externally to avoid switching  
currents caused by floating inputs.  
Examples of internal circuitry that might be  
sourcing current include the FVR module. See  
Section 13.0 “Fixed Voltage Reference (FVR)”  
for more information on this module.  
Even if the flag bits were checked before executing a  
SLEEP instruction, it may be possible for flag bits to  
become set before the SLEEPinstruction completes. To  
determine whether a SLEEPinstruction executed, test  
the PD bit. If the PD bit is set, the SLEEP instruction  
was executed as a NOP.  
8.1  
Wake-up from Sleep  
The device can wake-up from Sleep through one of the  
following events:  
1. External Reset input on MCLR pin if enabled.  
2. BOR Reset if enabled.  
3. POR Reset.  
4. Watchdog Timer if enabled.  
5. Any external interrupt.  
6. Interrupts by peripherals capable of running  
during Sleep (see individual peripheral for more  
information)  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 83  
PIC12(L)F1571/2  
FIGURE 8-1:  
WAKE-UP FROM SLEEP THROUGH INTERRUPT  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
CLKIN(1)  
(3)  
TOST  
CLKOUT(2)  
Interrupt Latency(4)  
Interrupt Flag  
GIE bit  
(INTCON reg.)  
Processor in  
Sleep  
Instruction Flow  
PC  
PC  
PC + 1  
PC + 2  
PC + 2  
PC + 2  
0004h  
0005h  
Instruction  
Fetched  
Inst(0004h)  
Inst(PC + 1)  
Inst(PC + 2)  
Inst(0005h)  
Inst(PC) = Sleep  
Instruction  
Executed  
Forced NOP  
Forced NOP  
Sleep  
Inst(PC + 1)  
Inst(PC – 1)  
Inst(0004h)  
Note 1: External Clock. High, Medium, Low mode assumed.  
2: CLKOUT is shown here for timing reference.  
3: TOST = 1024 TOSC. This delay does not apply to EC, RC and INTOSC Oscillator modes or Two-Speed Start-up (if available).  
4: GIE = 1assumed. In this case, after wake-up, the processor calls the ISR at 0004h. If GIE = 0, execution will continue in-line.  
8.2.2  
PERIPHERAL USAGE IN SLEEP  
8.2  
Low-Power Sleep Mode  
Some peripherals that can operate in Sleep mode will  
not operate properly with the Low-Power Sleep mode  
selected. The LDO will remain in the normal power  
mode when those peripherals are enabled. The Low-  
Power Sleep mode is intended for use with these  
peripherals:  
This device contains an internal Low Dropout (LDO)  
voltage regulator, which allows the device I/O pins to  
operate at voltages up to 5.5V while the internal device  
logic operates at a lower voltage. The LDO and its  
associated reference circuitry must remain active when  
the device is in Sleep mode.  
• Brown-out Reset (BOR)  
• Watchdog Timer (WDT)  
• External interrupt pin/Interrupt-On-Change pins  
• Timer1 (with external clock source)  
Low-Power Sleep mode allows the user to optimize the  
operating current in Sleep. Low-Power Sleep mode can  
be selected by setting the VREGPM bit of the  
VREGCON register, which puts the LDO and reference  
circuitry in a low-power state whenever the device is in  
Sleep.  
The Complementary Waveform Generator (CWG)  
module can utilize the HFINTOSC oscillator as either  
a clock source or as an input source. Under certain  
conditions, when the HFINTOSC is selected for use  
with the CWG module, the HFINTOSC will remain  
active during Sleep. This will have a direct effect on  
the Sleep mode current.  
8.2.1  
SLEEP CURRENT VS. WAKE-UP  
TIME  
In the default operating mode, the LDO and reference  
circuitry remain in the normal configuration while in  
Sleep. The device is able to exit Sleep mode quickly  
since all circuits remain active. In Low-Power Sleep  
mode, when waking up from Sleep, an extra delay time  
is required for these circuits to return to the normal  
configuration and stabilize.  
Please refer to section Section 23.10 “Operation  
During Sleep” for more information.  
Note:  
The PIC12LF1571/2 does not have a  
configurable Low-Power Sleep mode.  
PIC12LF1571/2 is an unregulated device  
and is always in the lowest power state  
when in Sleep with no wake-up time penalty.  
This device has a lower maximum VDD and  
I/O voltage than the PIC12F1571/2. See  
Section 26.0 “Electrical Specifications”  
for more information.  
The Low-Power Sleep mode is beneficial for applica-  
tions that stay in Sleep mode for long periods of time.  
The normal mode is beneficial for applications that  
need to wake from Sleep quickly and frequently.  
DS40001723D-page 84  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
8.3  
Register Definitions: Voltage Regulator Control  
REGISTER 8-1:  
VREGCON: VOLTAGE REGULATOR CONTROL REGISTER(1)  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-1/1  
VREGPM  
Reserved  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-2  
bit 1  
Unimplemented: Read as ‘0’  
VREGPM: Voltage Regulator Power Mode Selection bit  
1= Low-Power Sleep mode enabled in Sleep(2)  
Draws lowest current in Sleep, slower wake-up.  
0= Normal power mode enabled in Sleep(2)  
Draws higher current in Sleep, faster wake-up.  
bit 0  
Reserved: Read as ‘1’, maintain this bit set  
Note 1: PIC12F1571/2 only.  
2: See Section 26.0 “Electrical Specifications”  
TABLE 8-1:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE  
Register on  
Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
IOCAF  
IOCAN  
IOCAP  
GIE  
PEIE  
TMR0IE  
INTE  
IOCIE  
TMR0IF  
INTF  
IOCIF  
74  
122  
121  
121  
75  
IOCAF5 IOCAF4 IOCAF3 IOCAF2 IOCAF1 IOCAF0  
IOCAN5 IOCAN4 IOCAN3 IOCAN2 IOCAN1 IOCAN0  
IOCAP5 IOCAP4 IOCAP3 IOCAP2 IOCAP1 IOCAP0  
PIE1  
TMR1GIE  
ADIE  
RCIE(1)  
TXIE(1)  
Z
TMR2IE TMR1IE  
PIE2  
C1IE  
76  
PIE3  
PWM3IE PWM2IE PWM1IE  
77  
PIR1  
TMR1GIF  
ADIF  
RCIF(1)  
TXIF(1)  
TMR2IF TMR1IF  
78  
PIR2  
C1IF  
79  
PIR3  
PWM3IF PWM2IF PWM1IF  
PD  
C
80  
STATUS  
WDTCON  
TO  
DC  
19  
WDTPS<4:0>  
SWDTEN  
89  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used in Power-Down mode.  
Note 1: PIC12(L)F1572 only.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 85  
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 86  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
The WDT has the following features:  
9.0  
WATCHDOG TIMER (WDT)  
• Independent clock source  
• Multiple operating modes:  
- WDT is always on  
- WDT is off when in Sleep  
- WDT is controlled by software  
- WDT is always off  
The Watchdog Timer is a system timer that generates  
a Reset if the firmware does not issue a CLRWDT  
instruction within the time-out period. The Watchdog  
Timer is typically used to recover the system from  
unexpected events.  
• Configurable time-out period is from 1 ms to  
256 seconds (nominal)  
• Multiple Reset conditions  
• Operation during Sleep  
FIGURE 9-1:  
WATCHDOG TIMER BLOCK DIAGRAM  
Rev. 10-000141A  
7/30/2013  
WDTE<1:0> = 01  
SWDTEN  
WDT  
Time-out  
23-%it Programmable  
WDTE<1:0> = 11  
LFINTOSC  
Prescaler WDT  
WDTE<1:0> = 10  
Sleep  
WDTPS<4:0>  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 87  
PIC12(L)F1571/2  
9.1  
Independent Clock Source  
9.3  
Time-out Period  
The WDT derives its time base from the 31 kHz  
LFINTOSC internal oscillator. Time intervals in this  
chapter are based on a nominal interval of 1 ms. See  
Section 26.0 “Electrical Specifications” for the  
LFINTOSC tolerances.  
The WDTPS<4:0> bits of the WDTCON register set the  
time-out period from 1 ms to 256 seconds (nominal).  
After a Reset, the default time-out period is two  
seconds.  
9.4  
Clearing the WDT  
9.2  
WDT Operating Modes  
The WDT is cleared when any of the following conditions  
occur:  
The Watchdog Timer module has four operating modes  
controlled by the WDTE<1:0> bits in the Configuration  
Words. See Table 9-1.  
• Any Reset  
CLRWDTinstruction is executed  
• Device enters Sleep  
9.2.1  
WDT IS ALWAYS ON  
• Device wakes up from Sleep  
• Oscillator fails  
When the WDTEx bits of the Configuration Words are  
set to ‘11’, the WDT is always on. WDT protection is  
active during Sleep.  
• WDT is disabled  
• Oscillator Start-up Timer (OST) is running  
9.2.2  
WDT IS OFF IN SLEEP  
See Table 9-2 for more information.  
When the WDTEx bits of the Configuration Words are  
set to ‘10’, the WDT is on, except in Sleep. WDT  
protection is not active during Sleep.  
9.5  
Operation During Sleep  
When the device enters Sleep, the WDT is cleared. If  
the WDT is enabled during Sleep, the WDT resumes  
counting. When the device exits Sleep, the WDT is  
cleared again.  
9.2.3  
WDT CONTROLLED BY SOFTWARE  
When the WDTEx bits of the Configuration Words are  
set to ‘01’, the WDT is controlled by the SWDTEN bit of  
the WDTCON register.  
The WDT remains clear until the OST, if enabled, com-  
pletes. See Section 5.0 “Oscillator Module” for more  
information on the OST.  
WDT protection is unchanged by Sleep. See Table 9-1  
for more details.  
When a WDT time-out occurs while the device is in  
Sleep, no Reset is generated. Instead, the device  
wakes up and resumes operation. The TO and PD bits  
in the STATUS register are changed to indicate the  
event. The RWDT bit in the PCON register can also be  
used. See Section 3.0 “Memory Organization” for  
more information.  
TABLE 9-1:  
WDTE<1:0>  
WDT OPERATING MODES  
Device  
Mode  
WDT  
Mode  
SWDTEN  
11  
10  
X
X
X
Active  
Active  
Awake  
Sleep Disabled  
1
0
X
X
X
X
Active  
01  
00  
Disabled  
Disabled  
TABLE 9-2:  
WDT CLEARING CONDITIONS  
Conditions  
WDT  
WDTE<1:0> = 00  
WDTE<1:0> = 01and SWDTEN = 0  
WDTE<1:0> = 10and enter Sleep  
CLRWDTCommand  
Cleared  
Oscillator Fail Detected  
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK  
Exit Sleep + System Clock = XT, HS, LP  
Cleared until the end of OST  
Unaffected  
Change INTOSC divider (IRCF<3:0> bits)  
DS40001723D-page 88  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
9.6  
Register Definitions: Watchdog Control  
REGISTER 9-1:  
WDTCON: WATCHDOG TIMER CONTROL REGISTER  
U-0  
U-0  
R/W-0/0  
R/W-1/1  
R/W-0/0  
R/W-1/1  
R/W-1/1  
R/W-0/0  
WDTPS<4:0>  
SWDTEN  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-1  
Unimplemented: Read as ‘0’  
WDTPS<4:0>: Watchdog Timer Period Select bits(1)  
Bit Value = Prescale Rate  
11111 = Reserved; results in minimum interval (1:32)  
10011 = Reserved; results in minimum interval (1:32)  
10010 = 1:8388608 (223) (Interval 256s nominal)  
10001 = 1:4194304 (222) (Interval 128s nominal)  
10000 = 1:2097152 (221) (Interval 64s nominal)  
01111 = 1:1048576 (220) (Interval 32s nominal)  
01110 = 1:524288 (219) (Interval 16s nominal)  
01101 = 1:262144 (218) (Interval 8s nominal)  
01100 = 1:131072 (217) (Interval 4s nominal)  
01011 = 1:65536 (Interval 2s nominal) (Reset value)  
01010 = 1:32768 (Interval 1s nominal)  
01001 = 1:16384 (Interval 512 ms nominal)  
01000 = 1:8192 (Interval 256 ms nominal)  
00111 = 1:4096 (Interval 128 ms nominal)  
00110 = 1:2048 (Interval 64 ms nominal)  
00101 = 1:1024 (Interval 32 ms nominal)  
00100 = 1:512 (Interval 16 ms nominal)  
00011 = 1:256 (Interval 8 ms nominal)  
00010 = 1:128 (Interval 4 ms nominal)  
00001 = 1:64 (Interval 2 ms nominal)  
00000 = 1:32 (Interval 1 ms nominal)  
bit 0  
SWDTEN: Software Enable/Disable for Watchdog Timer bit  
If WDTE<1:0> = 1x:  
This bit is ignored.  
If WDTE<1:0> = 01:  
1= WDT is turned on  
0= WDT is turned off  
If WDTE<1:0> = 00:  
This bit is ignored.  
Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 89  
 
PIC12(L)F1571/2  
TABLE 9-3:  
Name  
SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER  
Register  
on Page  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OSCCON  
PCON  
SPLLEN  
IRCF<3:0>  
RI  
Z
SCS<1:0>  
55  
66  
19  
89  
STKOVF STKUNF  
RWDT  
TO  
RMCLR  
PD  
POR  
DC  
BOR  
C
STATUS  
WDTCON  
WDTPS<4:0>  
SWDTEN  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by the Watchdog Timer.  
TABLE 9-4:  
SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER  
Register  
on Page  
Name  
Bits Bit -/7  
Bit -/6  
Bit 13/5  
Bit 12/4  
Bit 11/3  
Bit 10/2  
Bit 9/1  
Bit 8/0  
CONFIG1 13:8  
7:0  
CLKOUTEN  
BOREN<1:0>  
42  
CP  
MCLRE PWRTE  
WDTE<1:0>  
FOSC<1:0>  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by the Watchdog Timer.  
DS40001723D-page 90  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
10.1 PMADRL and PMADRH Registers  
10.0 FLASH PROGRAM MEMORY  
CONTROL  
The PMADRH:PMADRL register pair can address up  
to a maximum of 16K words of program memory. When  
selecting a program address value, the MSB of the  
address is written to the PMADRH register and the LSB  
is written to the PMADRL register.  
The Flash program memory is readable and writable  
during normal operation over the full VDD range.  
Program memory is indirectly addressed using Special  
Function Registers (SFRs). The SFRs used to access  
program memory are:  
10.1.1  
PMCON1 AND PMCON2  
REGISTERS  
• PMCON1  
• PMCON2  
• PMDATL  
• PMDATH  
• PMADRL  
• PMADRH  
PMCON1 is the control register for Flash program  
memory accesses.  
Control bits, RD and WR, initiate read and write,  
respectively. These bits cannot be cleared, only set, in  
software. They are cleared by hardware at completion  
of the read or write operation. The inability to clear the  
WR bit in software prevents the accidental, premature  
termination of a write operation.  
When accessing the program memory, the  
PMDATH:PMDATL register pair forms a 2-byte word  
that holds the 14-bit data for read/write, and the  
PMADRH:PMADRL register pair forms a 2-byte word  
that holds the 15-bit address of the program memory  
location being read.  
The WREN bit, when set, will allow a write operation to  
occur. On power-up, the WREN bit is clear. The  
WRERR bit is set when a write operation is interrupted  
by a Reset during normal operation. In these situations,  
following Reset, the user can check the WRERR bit  
and execute the appropriate error handling routine.  
The write time is controlled by an on-chip timer. The  
write/erase voltages are generated by an on-chip charge  
pump.  
The PMCON2 register is a write-only register. Attempting  
to read the PMCON2 register will return all ‘0’s.  
The Flash program memory can be protected in two  
ways; by code protection (CP bit in the Configuration  
Words) and write protection (WRT<1:0> bits in the  
Configuration Words).  
To enable writes to the program memory, a specific  
pattern (the unlock sequence), must be written to the  
PMCON2 register. The required unlock sequence  
prevents inadvertent writes to the program memory  
write latches and Flash program memory.  
Code protection (CP = 0) disables access, reading and  
writing, to the Flash program memory via external  
device programmers. Code protection does not affect  
the self-write and erase functionality. Code protection  
can only be reset by a device programmer performing  
a bulk erase to the device, clearing all Flash program  
memory, Configuration bits and User IDs.(1)  
10.2 Flash Program Memory Overview  
It is important to understand the Flash program memory  
structure for erase and programming operations. Flash  
program memory is arranged in rows. A row consists of  
a fixed number of 14-bit program memory words. A row  
is the minimum size that can be erased by user software.  
Write protection prohibits self-write and erase to a  
portion or all of the Flash program memory as defined  
by the bits WRT<1:0>. Write protection does not affect  
a device programmers ability to read, write or erase the  
device.  
After a row has been erased, the user can reprogram  
all or a portion of this row. Data to be written into the  
program memory row is written to 14-bit wide data write  
latches. These write latches are not directly accessible  
to the user, but may be loaded via sequential writes to  
the PMDATH:PMDATL register pair.  
Note 1: Code protection of the entire Flash  
program memory array is enabled by  
clearing the CP bit of the Configuration  
Words.  
Note:  
If the user wants to modify only a portion of  
a previously programmed row, then the  
contents of the entire row must be read and  
saved in RAM prior to the erase. Then, new  
data and retained data can be written into  
the write latches to reprogram the row of  
Flash program memory. However, any  
unprogrammed locations can be written  
without first erasing the row. In this case, it  
is not necessary to save and rewrite the  
other previously programmed locations.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 91  
PIC12(L)F1571/2  
See Table 10-1 for erase row size and the number of  
write latches for Flash program memory.  
FIGURE 10-1:  
FLASH PROGRAM  
MEMORY READ  
FLOWCHART  
TABLE 10-1: FLASH MEMORY  
ORGANIZATION BY DEVICE  
Rev. 10-000046A  
7/30/2013  
Write  
Latches  
(words)  
Start  
Read Operation  
Row Erase  
(words)  
Device  
PIC12(L)F1571  
PIC12(L)F1572  
16  
16  
Select  
Program or Configuration Memory  
(CFGS)  
10.2.1  
READING THE FLASH PROGRAM  
MEMORY  
Select  
To read a program memory location, the user must:  
Word Address  
(PMADRH:PMADRL)  
1. Write the desired address to the  
PMADRH:PMADRL register pair.  
2. Clear the CFGS bit of the PMCON1 register.  
3. Then, set control bit, RD, of the PMCON1 register.  
Initiate Read operation  
(RD = 1)  
Once the read control bit is set, the program memory  
Flash controller will use the second instruction cycle to  
read the data. This causes the second instruction  
immediately following the “BSF PMCON1,RD” instruction  
to be ignored. The data is available in the very next cycle  
in the PMDATH:PMDATL register pair; therefore, it can  
be read as two bytes in the following instructions.  
Instruction fetched ignored  
NOP execution forced  
The PMDATH:PMDATL register pair will hold this value  
until another read or until it is written to by the user.  
Instruction fetched ignored  
NOPexecution forced  
Note:  
The two instructions following a program  
memory read are required to be NOPs.  
This prevents the user from executing a  
2-cycle instruction on the next instruction  
after the RD bit is set.  
Data read now in  
PMDATH:PMDATL  
End  
Read Operation  
DS40001723D-page 92  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
FIGURE 10-2:  
FLASH PROGRAM MEMORY READ CYCLE EXECUTION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
PC  
PC + 1  
PMADRH,PMADRL  
PC + 3  
PC + 4  
PC + 5  
Flash ADDR  
Flash Data  
INSTR (PC)  
INSTR (PC + 1)  
PMDATH,PMDATL  
INSTR (PC + 3)  
INSTR (PC + 4)  
INSTR(PC + 1)  
INSTR(PC + 2)  
Instruction Ignored, Instruction Ignored,  
BSF PMCON1,RD  
Executed Here  
INSTR(PC – 1)  
Executed Here  
INSTR(PC + 3)  
Executed Here  
INSTR(PC + 4)  
Executed Here  
Forced NOP  
Forced NOP  
Executed Here  
Executed Here  
RD bit  
PMDATH  
PMDATL  
Register  
EXAMPLE 10-1:  
FLASH PROGRAM MEMORY READ  
* This code block will read 1 word of program  
* memory at the memory address:  
PROG_ADDR_HI : PROG_ADDR_LO  
*
*
data will be returned in the variables;  
PROG_DATA_HI, PROG_DATA_LO  
BANKSEL PMADRL  
; Select Bank for PMCON registers  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
PROG_ADDR_LO  
PMADRL  
PROG_ADDR_HI  
PMADRH  
;
; Store LSB of address  
;
; Store MSB of address  
BCF  
BSF  
NOP  
NOP  
PMCON1,CFGS  
PMCON1,RD  
; Do not select Configuration Space  
; Initiate read  
; Ignored (Figure 10-2)  
; Ignored (Figure 10-2)  
MOVF  
PMDATL,W  
; Get LSB of word  
MOVWF  
MOVF  
PROG_DATA_LO  
PMDATH,W  
; Store in user location  
; Get MSB of word  
MOVWF  
PROG_DATA_HI  
; Store in user location  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 93  
 
PIC12(L)F1571/2  
10.2.2  
FLASH MEMORY UNLOCK  
SEQUENCE  
FIGURE 10-3:  
FLASH PROGRAM  
MEMORY UNLOCK  
SEQUENCE FLOWCHART  
The unlock sequence is a mechanism that protects the  
Flash program memory from unintended self-write  
programming or erasing. The sequence must be exe-  
cuted and completed without interruption to successfully  
complete any of the following operations:  
Rev. 10-000047A  
7/30/2013  
Start  
Unlock Sequence  
• Row erase  
• Load program memory write latches  
• Write of program memory write latches to  
program memory  
Write 0x55 to  
PMCON2  
• Write of program memory write latches to User  
IDs  
The unlock sequence consists of the following steps:  
1. Write 55h to PMCON2  
Write 0xAA to  
PMCON2  
2. Write AAh to PMCON2  
3. Set the WR bit in PMCON1  
4. NOPinstruction  
Initiate  
Write or Erase operation  
(WR = 1)  
5. NOPinstruction  
Once the WR bit is set, the processor will always force  
two NOPinstructions. When an erase row or program row  
operation is being performed, the processor will stall  
internal operations (typical 2 ms), until the operation is  
complete and then resume with the next instruction.  
When the operation is loading the program memory write  
latches, the processor will always force the two NOP  
instructions and continue uninterrupted with the next  
instruction.  
Instruction fetched ignored  
NOPexecution forced  
Instruction fetched ignored  
NOP execution forced  
Since the unlock sequence must not be interrupted,  
global interrupts should be disabled prior to the unlock  
sequence and re-enabled after the unlock sequence is  
completed.  
End  
Unlock Sequence  
DS40001723D-page 94  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
10.2.3  
ERASING FLASH PROGRAM  
MEMORY  
FIGURE 10-4:  
FLASH PROGRAM  
MEMORY ERASE  
FLOWCHART  
While executing code, program memory can only be  
erased by rows. To erase a row:  
Rev. 10-000048A  
7/30/2013  
1. Load the PMADRH:PMADRL register pair with  
any address within the row to be erased.  
2. Clear the CFGS bit of the PMCON1 register.  
Start  
Erase Operation  
3. Set the FREE and WREN bits of the PMCON1  
register.  
4. Write 55h, then AAh, to PMCON2 (Flash  
programming unlock sequence).  
Disable Interrupts  
(GIE = 0)  
5. Set control bit, WR, of the PMCON1 register to  
begin the erase operation.  
See Example 10-2.  
Select  
After the “BSF PMCON1,WR” instruction, the processor  
requires two cycles to set up the erase operation. The  
user must place two NOPinstructions after the WR bit is  
set. The processor will halt internal operations for the  
typical 2 ms erase time. This is not Sleep mode as the  
clocks and peripherals will continue to run. After the  
erase cycle, the processor will resume operation with  
the third instruction after the PMCON1 write instruction.  
Program or Configuration Memory  
(CFGS)  
Select Row Address  
(PMADRH:PMADRL)  
Select Erase Operation  
(FREE = 1)  
Enable Write/Erase Operation  
(WREN = 1)  
Unlock Sequence  
(See Note 1)  
CPU stalls while  
Erase operation completes  
(2 ms typical)  
Disable Write/Erase Operation  
(WREN = 0)  
Re-enable Interrupts  
(GIE = 1)  
End  
Erase Operation  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 95  
 
PIC12(L)F1571/2  
EXAMPLE 10-2:  
ERASING ONE ROW OF PROGRAM MEMORY  
; This row erase routine assumes the following:  
; 1. A valid address within the erase row is loaded in ADDRH:ADDRL  
; 2. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)  
BCF  
INTCON,GIE  
PMADRL  
ADDRL,W  
PMADRL  
ADDRH,W  
; Disable ints so required sequences will execute properly  
; Load lower 8 bits of erase address boundary  
; Load upper 6 bits of erase address boundary  
BANKSEL  
MOVF  
MOVWF  
MOVF  
MOVWF  
BCF  
PMADRH  
PMCON1,CFGS  
PMCON1,FREE  
PMCON1,WREN  
; Not configuration space  
; Specify an erase operation  
; Enable writes  
BSF  
BSF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
55h  
PMCON2  
0AAh  
PMCON2  
PMCON1,WR  
; Start of required sequence to initiate erase  
; Write 55h  
;
; Write AAh  
; Set WR bit to begin erase  
NOP  
NOP  
; NOP instructions are forced as processor starts  
; row erase of program memory.  
;
; The processor stalls until the erase process is complete  
; after erase processor continues with 3rd instruction  
BCF  
BSF  
PMCON1,WREN  
INTCON,GIE  
; Disable writes  
; Enable interrupts  
DS40001723D-page 96  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
1. Set the WREN bit of the PMCON1 register.  
2. Clear the CFGS bit of the PMCON1 register.  
10.2.4  
WRITING TO FLASH PROGRAM  
MEMORY  
3. Set the LWLO bit of the PMCON1 register.  
When the LWLO bit of the PMCON1 register is  
1’, the write sequence will only load the write  
latches and will not initiate the write to Flash  
program memory.  
Program memory is programmed using the following  
steps:  
1. Load the address in PMADRH:PMADRL of the  
row to be programmed.  
2. Load each write latch with data.  
4. Load the PMADRH:PMADRL register pair with  
the address of the location to be written.  
3. Initiate a programming operation.  
4. Repeat Steps 1 through 3 until all data is written.  
5. Load the PMDATH:PMDATL register pair with  
the program memory data to be written.  
Before writing to program memory, the word(s) to be  
written must be erased or previously unwritten. Pro-  
gram memory can only be erased one row at a time. No  
automatic erase occurs upon the initiation of the write.  
6. Execute  
the  
unlock  
sequence  
(Section 10.2.2 “Flash Memory Unlock  
Sequence”). The write latch is now loaded.  
7. Increment the PMADRH:PMADRL register pair  
to point to the next location.  
Program memory can be written one or more words at  
a time. The maximum number of words written at one  
time is equal to the number of write latches. See  
Figure 10-5 (row writes to program memory with  
16 write latches) for more details.  
8. Repeat Steps 5 through 7 until all but the last  
write latch has been loaded.  
9. Clear the LWLO bit of the PMCON1 register.  
When the LWLO bit of the PMCON1 register is  
0’, the write sequence will initiate the write to  
Flash program memory.  
The write latches are aligned to the Flash row  
address boundary defined by the upper 11 bits of  
PMADRH:PMADRL (PMADRH<6:0>:PMADRL<7:4>),  
with the lower 4 bits of PMADRL (PMADRL<3:0>)  
determining the write latch being loaded. Write opera-  
tions do not cross these boundaries. At the completion  
of a program memory write operation, the data in the  
write latches is reset to contain 0x3FFF.  
10. Load the PMDATH:PMDATL register pair with  
the program memory data to be written.  
11. Execute  
the  
unlock  
sequence  
(Section 10.2.2 “Flash Memory Unlock  
Sequence”). The entire program memory latch  
content is now written to Flash program  
memory.  
The following steps should be completed to load the  
write latches and program a row of program memory.  
These steps are divided into two parts. First, each write  
latch is loaded with data from the PMDATH:PMDATL  
using the unlock sequence with LWLO = 1. When the  
last word to be loaded into the write latch is ready, the  
LWLO bit is cleared and the unlock sequence  
executed. This initiates the programming operation,  
writing all the latches into Flash program memory.  
Note:  
The program memory write latches are  
reset to the blank state (0x3FFF) at the  
completion of every write or erase  
operation. As a result, it is not necessary  
to load all the program memory write  
latches. Unloaded latches will remain in  
the blank state.  
Note:  
The special unlock sequence is required  
to load a write latch with data or initiate a  
Flash programming operation. If the  
unlock sequence is interrupted, writing to  
the latches or program memory will not be  
initiated.  
An example of the complete write sequence is shown in  
Example 10-3. The initial address is loaded into the  
PMADRH:PMADRL register pair; the data is loaded  
using Indirect Addressing.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 97  
FIGURE 10-5:  
BLOCK WRITES TO FLASH PROGRAM MEMORY WITH 16 WRITE LATCHES  
Rev. 10-000004B  
7/25/2013  
7
6
0 7  
4
3
0
7
5
0
7
0
-
-
PMADRH  
PMADRL  
PMDATH  
PMDATL  
-
rA  
r9  
r8  
r7  
r6  
r5  
r4  
r3  
r2  
r1  
r0  
c3  
c2  
c1  
c0  
6
8
14  
Program Memory Write Latches  
14 14  
11  
4
14  
14  
Write Latch #0 Write Latch #1  
00h 01h  
Write Latch #14  
0Eh  
Write Latch #15  
0Fh  
PMADRL<3:0>  
14  
14  
14  
14  
Addr  
Addr  
Row  
Addr  
Addr  
000h  
001h  
002h  
0000h  
0010h  
0020h  
0001h  
0011h  
0021h  
000Fh  
001Fh  
002Fh  
000Eh  
001Eh  
002Eh  
CFGS = 0  
7FEh  
7FFh  
7FE0h  
7FF0h  
7FE1h  
7FF1h  
7FEEh  
7FFEh  
7FEFh  
7FFFh  
Row  
Address  
Decode  
PMADRH<6:0>:  
PMADRL<7:4>  
Flash Program Memory  
800h 8000h - 8003h  
USER ID 0 - 3  
8004h 8005h  
8006h  
8007h 8008h  
8009h - 801Fh  
reserved  
DEVICE ID  
Dev / Rev  
Configuration  
Words  
reserved  
CFGS = 1  
Configuration Memory  
PIC12(L)F1571/2  
FIGURE 10-6:  
FLASH PROGRAM MEMORY WRITE FLOWCHART  
Start  
Write Operation  
Determine number of words  
to be written into Program or  
Configuration Memory.  
The number of words cannot  
exceed the number of words  
per row.  
Enable Write/Erase  
Operation (WREN = 1)  
Load the value to write  
(PMDATH:PMDATL)  
(word_cnt)  
Update the word counter  
(word_cnt--)  
Write Latches to Flash  
Disable Interrupts  
(LWLO = 0)  
(GIE = 0)  
Unlock Sequence  
Figure 10-3  
Select  
Program or Config. Memory  
(CFGS)  
Yes  
Last word to  
write ?  
CPU stalls while Write  
operation completes  
(2ms typical)  
No  
Select Row Address  
(PMADRH:PMADRL)  
Unlock Sequence  
Figure 10-3  
Select Write Operation  
(FREE = 0)  
Disable  
Write/Erase Operation  
(WREN = 0)  
No delay when writing to  
Program Memory Latches  
Load Write Latches Only  
(LWLO = 1)  
Re-enable Interrupts  
(GIE = 1)  
Increment Address  
(PMADRH:PMADRL++)  
End  
Write Operation  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 99  
 
PIC12(L)F1571/2  
EXAMPLE 10-3:  
WRITING TO FLASH PROGRAM MEMORY  
; This write routine assumes the following:  
; 1. 32 bytes of data are loaded, starting at the address in DATA_ADDR  
; 2. Each word of data to be written is made up of two adjacent bytes in DATA_ADDR,  
; stored in little endian format  
; 3. A valid starting address (the Least Significant bits = 00000) is loaded in ADDRH:ADDRL  
; 4. ADDRH and ADDRL are located in shared data memory 0x70 - 0x7F (common RAM)  
;
BCF  
INTCON,GIE  
PMADRH  
ADDRH,W  
PMADRH  
ADDRL,W  
PMADRL  
; Disable ints so required sequences will execute properly  
; Bank 3  
; Load initial address  
;
;
;
BANKSEL  
MOVF  
MOVWF  
MOVF  
MOVWF  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BCF  
LOW DATA_ADDR ; Load initial data address  
FSR0L  
HIGH DATA_ADDR ; Load initial data address  
;
FSR0H  
;
PMCON1,CFGS  
PMCON1,WREN  
PMCON1,LWLO  
; Not configuration space  
; Enable writes  
; Only Load Write Latches  
BSF  
BSF  
LOOP  
MOVIW  
MOVWF  
MOVIW  
MOVWF  
FSR0++  
PMDATL  
FSR0++  
PMDATH  
; Load first data byte into lower  
;
; Load second data byte into upper  
;
MOVF  
PMADRL,W  
0x1F  
0x1F  
STATUS,Z  
START_WRITE  
; Check if lower bits of address are '00000'  
; Check if we're on the last of 16 addresses  
;
; Exit if last of 16 words,  
;
XORLW  
ANDLW  
BTFSC  
GOTO  
MOVLW  
MOVWF  
MOVLW  
MOVWF  
BSF  
55h  
PMCON2  
0AAh  
PMCON2  
PMCON1,WR  
; Start of required write sequence:  
; Write 55h  
;
; Write AAh  
; Set WR bit to begin write  
; NOP instructions are forced as processor  
; loads program memory write latches  
;
NOP  
NOP  
INCF  
GOTO  
PMADRL,F  
LOOP  
; Still loading latches Increment address  
; Write next latches  
START_WRITE  
BCF  
PMCON1,LWLO  
; No more loading latches - Actually start Flash program  
; memory write  
MOVLW  
55h  
PMCON2  
0AAh  
PMCON2  
PMCON1,WR  
; Start of required write sequence:  
; Write 55h  
;
MOVWF  
MOVLW  
MOVWF  
BSF  
; Write AAh  
; Set WR bit to begin write  
; NOP instructions are forced as processor writes  
; all the program memory write latches simultaneously  
; to program memory.  
NOP  
NOP  
; After NOPs, the processor  
; stalls until the self-write process in complete  
; after write processor continues with 3rd instruction  
; Disable writes  
BCF  
BSF  
PMCON1,WREN  
INTCON,GIE  
; Enable interrupts  
DS40001723D-page 100  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 10-7:  
FLASH PROGRAM  
MEMORY MODIFY  
FLOWCHART  
10.3 Modifying Flash Program Memory  
When modifying existing data in a program memory  
row, and data within that row must be preserved, it must  
first be read and saved in a RAM image. Program  
memory is modified using the following steps:  
Rev. 10-000050A  
7/30/2013  
1. Load the starting address of the row to be  
modified.  
Start  
Modify Operation  
2. Read the existing data from the row into a RAM  
image.  
3. Modify the RAM image to contain the new data  
to be written into program memory.  
Read Operation  
(See Note 1)  
4. Load the starting address of the row to be  
rewritten.  
5. Erase the program memory row.  
6. Load the write latches with data from the RAM  
image.  
An image of the entire row  
read must be stored in RAM  
7. Initiate a programming operation.  
Modify Image  
The words to be modified are  
changed in the RAM image  
Erase Operation  
(See Note 2)  
Write Operation  
Use RAM image  
(See Note 3)  
End  
Modify Operation  
Note 1: See Figure 10-2.  
2: See Figure 10-4.  
3: See Figure 10-6.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 101  
PIC12(L)F1571/2  
When read access is initiated on an address outside the  
parameters listed in Table 10-2, the PMDATH:PMDATL  
register pair is cleared, reading back ‘0’s.  
10.4 User ID, Device ID and  
Configuration Word Access  
Instead of accessing program memory, the User IDs,  
Device ID/Revision ID and Configuration Words can be  
accessed when CFGS = 1 in the PMCON1 register.  
This is the region that would be pointed to by  
PC<15> = 1, but not all addresses are accessible.  
Different access may exist for reads and writes. Refer  
to Table 10-2.  
TABLE 10-2: USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS (CFGS = 1)  
Address  
8000h-8003h  
Function  
Read Access  
Write Access  
User IDs  
Yes  
Yes  
Yes  
Yes  
No  
No  
8006h/8005h  
8007h-8008h  
Device ID/Revision ID  
Configuration Words 1 and 2  
EXAMPLE 10-4:  
CONFIGURATION WORD AND DEVICE ID ACCESS  
* This code block will read 1 word of program memory at the memory address:  
*
*
PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables;  
PROG_DATA_HI, PROG_DATA_LO  
BANKSEL PMADRL  
; Select correct Bank  
;
; Store LSB of address  
; Clear MSB of address  
MOVLW  
MOVWF  
CLRF  
PROG_ADDR_LO  
PMADRL  
PMADRH  
BSF  
BCF  
BSF  
NOP  
NOP  
BSF  
PMCON1,CFGS  
INTCON,GIE  
PMCON1,RD  
; Select Configuration Space  
; Disable interrupts  
; Initiate read  
; Executed (See Figure 10-2)  
; Ignored (See Figure 10-2)  
; Restore interrupts  
INTCON,GIE  
MOVF  
PMDATL,W  
; Get LSB of word  
MOVWF  
MOVF  
PROG_DATA_LO  
PMDATH,W  
; Store in user location  
; Get MSB of word  
MOVWF  
PROG_DATA_HI  
; Store in user location  
DS40001723D-page 102  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
10.5 Write Verify  
It is considered good programming practice to verify that  
program memory writes agree with the intended value.  
Since program memory is stored as a full page then the  
stored program memory contents are compared with the  
intended data stored in RAM after the last write is  
complete.  
FIGURE 10-8:  
FLASH PROGRAM  
MEMORY VERIFY  
FLOWCHART  
Rev. 10-000051A  
7/30/2013  
Start  
Verify Operation  
This routine assumes that the last  
row of data written was from an  
image saved on RAM. This image  
will be used to verify the data  
currently stored in Flash Program  
Memory  
Read Operation  
(See Note 1)  
PMDAT =  
RAM image ?  
No  
Yes  
Fail  
Verify Operation  
No  
Last word ?  
Yes  
End  
Verify Operation  
Note 1: See Figure 10-1.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 103  
PIC12(L)F1571/2  
10.6 Register Definitions: Flash Program Memory Control  
REGISTER 10-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
PMDAT<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
PMDAT<7:0>: Read/Write Value for Least Significant bits of Program Memory bits  
REGISTER 10-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER  
U-0  
U-0  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 0  
PMDAT<13:8>  
bit 7  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
PMDAT<13:8>: Read/Write Value for Most Significant bits of Program Memory bits  
DS40001723D-page 104  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
REGISTER 10-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
PMADR<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
PMADR<7:0>: Specifies Least Significant bits for Program Memory Address bits  
REGISTER 10-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER  
U-1  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
(1)  
PMADR<14:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
Unimplemented: Read as ‘1(1)  
PMADR<14:8>: Specifies the Most Significant bits for Program Memory Address bits  
bit 6-0  
Note 1: Unimplemented, read as ‘1’.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 105  
 
 
PIC12(L)F1571/2  
REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER  
U-1  
R/W-0/0  
CFGS  
R/W-0/0  
LWLO(3)  
R/W/HC-0/0 R/W/HC-x/q(2)  
FREE WRERR  
R/W-0/0  
WREN  
R/S/HC-0/0 R/S/HC-0/0  
WR RD  
(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
S = Bit can only be set  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
HC = Hardware Clearable bit  
bit 7  
bit 6  
Unimplemented: Read as ‘1(1)  
CFGS: Configuration Select bit  
1= Accesses Configuration, User ID and Device ID registers  
0= Accesses Flash program memory  
bit 5  
LWLO: Load Write Latches Only bit(3)  
1= Only the addressed program memory write latch is loaded/updated on the next WR command  
0= The addressed program memory write latch is loaded/updated and a write of all program memory  
write latches will be initiated on the next WR command  
bit 4  
bit 3  
FREE: Program Flash Erase Enable bit  
1= Performs an erase operation on the next WR command (hardware cleared upon completion)  
0= Performs a write operation on the next WR command  
WRERR: Program/Erase Error Flag bit(2)  
1= Condition indicates an improper program or erase sequence attempt or termination (bit is set  
automatically on any set attempt (writes ‘1’) of the WR bit)  
0= The program or erase operation completed normally  
bit 2  
bit 1  
WREN: Program/Erase Enable bit  
1= Allows program/erase cycles  
0= Inhibits programming/erasing of program Flash  
WR: Write Control bit  
1= Initiates a program Flash program/erase operation  
The operation is self-timed and the bit is cleared by hardware once operation is complete. The WR  
bit can only be set (not cleared) in software.  
0= Program/erase operation to the Flash is complete and inactive  
bit 0  
RD: Read Control bit  
1= Initiates a program Flash read  
Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in  
software.  
0= Does not initiate a program Flash read  
Note 1: Unimplemented bit, read as ‘1’.  
2: The WRERR bit is automatically set by hardware when a program memory write or erase operation is  
started (WR = 1).  
3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).  
DS40001723D-page 106  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
REGISTER 10-6: PMCON2: PROGRAM MEMORY CONTROL 2 REGISTER  
W-0/0 W-0/0 W-0/0 W-0/0 W-0/0 W-0/0  
Program Memory Control Register 2  
W-0/0  
W-0/0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
S = Bit can only be set  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
Flash Memory Unlock Pattern bits  
To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the  
PMCON1 register. The value written to this register is used to unlock the writes. There are specific  
timing requirements on these writes.  
TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PMCON1  
PMCON2  
PMADRL  
PMADRH  
PMDATL  
PMDATH  
GIE  
PEIE  
TMR0IE  
LWLO  
INTE  
IOCIE  
TMR0IF  
WREN  
INTF  
WR  
IOCIF  
RD  
74  
(1)  
CFGS  
FREE  
WRERR  
106  
107  
105  
105  
104  
104  
Program Memory Control Register 2  
PMADRL<7:0>  
(1)  
PMADRH<6:0>  
PMDATL<7:0>  
PMDATH<5:0>  
Legend: = unimplemented location, read as ‘0’. Shaded cells are not used by Flash program memory.  
Note 1: Unimplemented, read as ‘1’.  
TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY  
Register  
on Page  
Name  
Bits Bit -/7  
Bit -/6  
Bit 13/5 Bit 12/4  
Bit 11/3  
Bit 10/2  
Bit 9/1  
Bit 8/0  
13:8  
7:0  
CP  
CLKOUTEN  
BOREN<1:0>  
CONFIG1  
CONFIG2  
42  
43  
MCLRE PWRTE  
WDTE<1:0>  
FOSC<1:0>  
BORV STVREN PLLEN  
WRT<1:0>  
13:8  
7:0  
LVP  
DEBUG  
LPBOR  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by Flash program memory.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 107  
 
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 108  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
Ports that support analog inputs have an associated  
ANSELx register. When an ANSELx bit is set, the  
digital input buffer associated with that bit is disabled.  
Disabling the input buffer prevents analog signal levels  
on the pin between a logic high and low from causing  
excessive current in the logic input circuitry. A  
simplified model of a generic I/O port, without the  
interfaces to other peripherals, is shown in Figure 11-1.  
11.0 I/O PORTS  
Each port has three standard registers for its operation.  
These registers are:  
• TRISx registers (Data Direction)  
• PORTx registers (reads the levels on the pins of  
the device)  
• LATx registers (Output Latch)  
• INLVLx (Input Level Control)  
FIGURE 11-1:  
GENERIC I/O PORT  
OPERATION  
• ODCONx registers (Open-Drain Control)  
• SLRCONx registers (Slew Rate Control)  
Rev. 10-000052A  
7/30/2013  
Some ports may have one or more of the following  
additional registers. These registers are:  
Read LATx  
• ANSELx (Analog Select)  
• WPUx (Weak Pull-up)  
TRISx  
In general, when a peripheral is enabled on a port pin,  
that pin cannot be used as a general purpose output.  
However, the pin can still be read.  
D
Q
Write LATx  
Write PORTx  
VDD  
CK  
TABLE 11-1: PORT AVAILABILITY PER  
DEVICE  
Data Register  
Data bus  
I/O pin  
Read PORTx  
Device  
To digital peripherals  
ANSELx  
PIC12(L)F1571  
PIC12(L)F1572  
To analog peripherals  
VSS  
The Data Latch (LATx registers) is useful for  
Read-Modify-Write operations on the value that the I/O  
pins are driving.  
A write operation to the LATx register has the same  
effect as a write to the corresponding PORTx register.  
A read of the LATx register reads the values held in the  
I/O port latches, while a read of the PORTx register  
reads the actual I/O pin value.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 109  
 
 
PIC12(L)F1571/2  
These bits have no effect on the values of any TRISx  
register. PORTx and TRISx overrides will be routed to  
the correct pin. The unselected pin will be unaffected.  
11.1 Alternate Pin Function  
The Alternate Pin Function Control (APFCON) register  
is used to steer specific peripheral input and output  
functions between different pins. The APFCON register  
is shown in Register 11-1. For this device family, the  
following functions can be moved between different  
pins.  
• RX/DT  
• TX/CK  
• CWGOUTA  
• CWGOUTB  
• PWM2  
• PWM1  
11.2 Register Definitions: Alternate Pin Function Control  
REGISTER 11-1: APFCON: ALTERNATE PIN FUNCTION CONTROL REGISTER  
R/W-0/0  
R/W-0/0  
R/W-0/0  
U-0  
R/W-0/0  
T1GSEL  
R/W-0/0  
R/W-0/0  
P2SEL  
R/W-0/0  
P1SEL  
RXDTSEL  
CWGASEL CWGBSEL  
TXCKSEL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
bit 5  
RXDTSEL: Pin Selection bit  
1= RX/DT function is on RA5  
0= RX/DT function is on RA1  
CWGASEL: Pin Selection bit  
1= CWGOUTA function is on RA5  
0= CWGOUTA function is on RA2  
CWGBSEL: Pin Selection bit  
1= CWGOUTB function is on RA4  
0= CWGOUTB function is on RA0  
bit 4  
bit 3  
Unimplemented: Read as ‘0’  
T1GSEL: Pin Selection bit  
1= T1G function is on RA3  
0= T1G function is on RA4  
bit 2  
bit 1  
bit 0  
TXCKSEL: Pin Selection bit  
1= TX/CK function is on RA4  
0= TX/CK function is on RA0  
P2SEL: Pin Selection bit  
1= PWM2 function is on RA4  
0= PWM2 function is on RA0  
P1SEL: Pin Selection bit  
1= PWM1 function is on RA5  
0= PWM1 function is on RA1  
DS40001723D-page 110  
2013-2015 Microchip Technology Inc.  
 
 
 
PIC12(L)F1571/2  
11.3.5  
INPUT THRESHOLD CONTROL  
11.3 PORTA Registers  
11.3.1 DATA REGISTER  
The INLVLA register (Register 11-9) controls the input  
voltage threshold for each of the available PORTA input  
pins. A selection between the Schmitt Trigger CMOS or  
the TTL compatible thresholds is available. The input  
threshold is important in determining the value of a  
read of the PORTA register and also the level at which  
an Interrupt-On-Change occurs, if that feature is  
enabled. See Section 26.3 “DC Characteristics” for  
more information on threshold levels.  
PORTA is a 6-bit wide, bidirectional port. The  
corresponding Data Direction register is TRISA  
(Register 11-3). Setting a TRISA bit (= 1) will make the  
corresponding PORTA pin an input (i.e., disable the  
output driver). Clearing a TRISA bit (= 0) will make the  
corresponding PORTA pin an output (i.e., enables  
output driver and puts the contents of the output latch  
on the selected pin). The exception is RA3, which is  
input-only and its TRISA bit will always read as ‘1’.  
Example 11-1 shows how to initialize an I/O port.  
Note:  
Changing the input threshold selection  
should be performed while all peripheral  
modules are disabled. Changing the  
threshold level during the time a module is  
active may inadvertently generate a transi-  
tion associated with an input pin, regardless  
of the actual voltage level on that pin.  
Reading the PORTA register (Register 11-2) reads the  
status of the pins, whereas writing to it will write to the  
PORT latch. All write operations are Read-Modify-Write  
operations. Therefore, a write to a port implies that the  
port pins are read, this value is modified and then  
written to the Port Data Latch (LATA).  
11.3.6  
ANALOG CONTROL  
11.3.2  
DIRECTION CONTROL  
The ANSELA register (Register 11-5) is used to  
configure the Input mode of an I/O pin to analog.  
Setting the appropriate ANSELA bit high will cause all  
digital reads on the pin to be read as ‘0’ and allow  
analog functions on the pin to operate correctly.  
The TRISA register (Register 11-3) controls the  
PORTA pin output drivers, even when they are being  
used as analog inputs. The user should ensure the bits  
in the TRISA register are maintained set when using  
them as analog inputs. I/O pins configured as analog  
input always read ‘0’.  
The state of the ANSELA bits has no effect on digital out-  
put functions. A pin with TRIS clear and ANSELA set will  
still operate as a digital output, but the Input mode will be  
analog. This can cause unexpected behavior when  
executing Read-Modify-Write instructions on the  
affected port.  
11.3.3  
OPEN-DRAIN CONTROL  
The ODCONA register (Register 11-7) controls the  
open-drain feature of the port. Open-drain operation is  
independently selected for each pin. When an  
ODCONA bit is set, the corresponding port output  
becomes an open-drain driver capable of sinking  
current only. When an ODCONA bit is cleared, the  
corresponding port output pin is the standard push-pull  
drive capable of sourcing and sinking current.  
Note:  
The ANSELA bits default to the Analog  
mode after Reset. To use any pins as  
digital general purpose or peripheral  
inputs, the corresponding ANSELA bits  
must be initialized to ‘0’ by user software.  
EXAMPLE 11-1:  
INITIALIZING PORTA  
11.3.4  
SLEW RATE CONTROL  
BANKSEL PORTA  
;
The SLRCONA register (Register 11-8) controls the  
slew rate option for each port pin. Slew rate control is  
independently selectable for each port pin. When an  
SLRCONA bit is set, the corresponding port pin drive is  
slew rate limited. When an SLRCONA bit is cleared,  
the corresponding port pin drive slews at the maximum  
rate possible.  
CLRF  
BANKSEL LATA  
CLRF LATA  
BANKSEL ANSELA  
CLRF ANSELA  
BANKSEL TRISA  
PORTA  
;Init PORTA  
;Data Latch  
;
;
;digital I/O  
;
MOVLW  
MOVWF  
B'00111000' ;Set RA<5:3> as inputs  
TRISA  
;and set RA<2:0> as  
;outputs  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 111  
 
PIC12(L)F1571/2  
11.3.7  
PORTA FUNCTIONS AND OUTPUT  
PRIORITIES  
TABLE 11-2: PORTA OUTPUT PRIORITY  
Pin Name  
Function Priority(1)  
Each PORTA pin is multiplexed with other functions. The  
pins, their combined functions and their output priorities  
are shown in Table 11-2.  
RA0  
ICSPDAT  
CWG1B(3)  
DAC1OUT  
TX(2,3)  
When multiple outputs are enabled, the actual pin  
control goes to the peripheral with the highest priority.  
PWM2(3)  
RA0  
Analog input functions, such as ADC and comparator  
inputs, are not shown in the priority lists. These inputs  
are active when the I/O pin is set for Analog mode using  
the ANSELx registers. Digital output functions may  
control the pin when it is in Analog mode with the  
priority shown below in Table 11-2.  
RA1  
RA2  
PWM1(3)  
RA1  
CWG1A  
CWG1FLT  
C1OUT  
PWM3  
RA2  
RA3  
RA4  
None  
CLKOUT  
CWG1B  
TX(2)  
PWM2  
RA4  
RA5  
CWG1A  
PWM1  
RA5  
Note 1: Priority listed from highest to lowest.  
2: PIC12(L)F1572 only.  
3: Default pin (see APFCON register).  
DS40001723D-page 112  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
11.4 Register Definitions: PORTA  
REGISTER 11-2: PORTA: PORTA REGISTER  
U-0  
U-0  
R/W-x/x  
R/W-x/x  
R-x/x  
R/W-x/x  
RA<5:0>  
R/W-x/x  
R/W-x/x  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
RA<5:0>: PORTA I/O Value bits(1)  
1= Port pin is > VIH  
0= Port pin is < VIL  
Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from the PORTA register are  
the return of actual I/O pin values.  
REGISTER 11-3: TRISA: PORTA TRI-STATE REGISTER  
U-0  
U-0  
R/W-1/1  
R/W-1/1  
U-1  
R/W-1/1  
R/W-1/1  
R/W-1/1  
bit 0  
(1)  
TRISA<5:4>  
TRISA<2:0>  
bit 7  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
TRISA<5:4>: PORTA Tri-State Control bits  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
bit 3  
Unimplemented: Read as ‘1(1)  
bit 2-0  
TRISA<2:0>: PORTA Tri-State Control bits  
1= PORTA pin configured as an input (tri-stated)  
0= PORTA pin configured as an output  
Note 1: Unimplemented, read as ‘1’.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 113  
 
 
 
 
PIC12(L)F1571/2  
REGISTER 11-4: LATA: PORTA DATA LATCH REGISTER  
U-0  
U-0  
R/W-x/u  
R/W-x/u  
U-0  
R/W-x/u  
R/W-x/u  
LATA<2:0>(1)  
R/W-x/u  
bit 0  
LATA<5:4>(1)  
bit 7  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-4  
bit 3  
Unimplemented: Read as ‘0’  
LATA<5:4>: RA<5:4> Output Latch Value bits(1)  
Unimplemented: Read as ‘0’  
bit 2-0  
LATA<2:0>: RA<2:0> Output Latch Value bits(1)  
Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from the PORTA register are  
the return of actual I/O pin values.  
REGISTER 11-5: ANSELA: PORTA ANALOG SELECT REGISTER  
U-0  
U-0  
U-0  
R/W-1/1  
ANSA4  
U-0  
R/W-1/1  
R/W-1/1  
R/W-1/1  
bit 0  
ANSA<2:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-5  
bit 4  
Unimplemented: Read as ‘0’  
ANSA4: Analog Select Between Analog or Digital Function on RA4 Pins (respectively) bit  
1= Analog input; pin is assigned as analog input, digital input buffer is disabled(1)  
0= Digital I/O; pin is assigned to port or digital special function  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
ANSA<2:0>: Analog Select Between Analog or Digital Function on RA<2:0> pins (respectively) bits  
1= Analog input; pin is assigned as analog input, digital input buffer is disabled(1)  
0= Digital I/O; pin is assigned to port or digital special function  
Note 1: When setting a pin to an analog input, the corresponding TRISx bit must be set to Input mode in order to  
allow external control of the voltage on the pin.  
DS40001723D-page 114  
2013-2015 Microchip Technology Inc.  
 
 
 
 
PIC12(L)F1571/2  
REGISTER 11-6: WPUA: WEAK PULL-UP PORTA REGISTER  
U-0  
U-0  
R/W-1/1  
R/W-1/1  
R/W-1/1  
R/W-1/1  
R/W-1/1  
R/W-1/1  
bit 0  
WPUA<5:0>(1,2,3)  
bit 7  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
WPUA<5:0>: Weak Pull-up Register bits(1,2,3)  
1= Pull-up is enabled  
0= Pull-up is disabled  
Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.  
2: The weak pull-up device is automatically disabled if the pin is configured as an output.  
3: For the WPUA3 bit, when MCLRE = 1, the weak pull-up is internally enabled, but not reported here.  
REGISTER 11-7: ODCONA: PORTA OPEN-DRAIN CONTROL REGISTER  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
bit 0  
ODA<5:4>  
ODA<2:0>  
bit 7  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
ODA<5:4>: PORTA Open-Drain Enable bits  
For RA<5:4> Pins, Respectively:  
1= Port pin operates as open-drain drive (sink current only)  
0= Port pin operates as standard push-pull drive (source and sink current)  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
ODA<2:0>: PORTA Open-Drain Enable bits  
For RA<2:0> Pins, Respectively:  
1= Port pin operates as open-drain drive (sink current only)  
0= Port pin operates as standard push-pull drive (source and sink current)  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 115  
 
 
PIC12(L)F1571/2  
REGISTER 11-8: SLRCONA: PORTA SLEW RATE CONTROL REGISTER  
U-0  
U-0  
R/W-1/1  
R/W-1/1  
U-0  
R/W-1/1  
R/W-1/1  
R/W-1/1  
bit 0  
SLRA<5:4>  
SLRA<2:0>  
bit 7  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-4  
Unimplemented: Read as ‘0’  
SLRA<5:4>: PORTA Slew Rate Enable bits  
For RA<5:4> Pins, Respectively:  
1= Port pin slew rate is limited  
0= Port pin slews at maximum rate  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
SLRA<2:0>: PORTA Slew Rate Enable bits  
For RA<2:0> Pins, Respectively:  
1= Port pin slew rate is limited  
0= Port pin slews at maximum rate  
REGISTER 11-9: INLVLA: PORTA INPUT LEVEL CONTROL REGISTER  
U-0  
U-0  
R/W-0/0  
INLVLA5  
R/W-0/0  
INLVLA4  
R/W-0/0  
INLVLA3  
R/W-0/0  
INLVLA2  
R/W-0/0  
INLVLA1  
R/W-0/0  
INLVLA0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
INLVLA<5:0>: PORTA Input Level Select bits  
For RA<5:0> Pins, Respectively:  
1= ST input is used for PORT reads and Interrupt-On-Change  
0= TTL input is used for PORT reads and Interrupt-On-Change  
DS40001723D-page 116  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELA  
APFCON  
INLVLA  
LATA  
ANSA4  
ANSA<2:0>  
114  
110  
116  
114  
115  
157  
113  
116  
113  
115  
RXDTSEL CWGASEL CWGBSEL  
T1GSEL TXCKSEL P2SEL  
INLVLA<5:0>  
P1SEL  
LATA<5:4>  
LATA<2:0>  
ODA<2:0>  
PS<2:0>  
ODCONA  
ODA<5:4>  
OPTION_REG WPUEN  
INTEDG  
TMR0CS TMR0SE  
PSA  
PORTA  
SLRCONA  
TRISA  
RA<5:0>  
SLRA<5:4>  
TRISA<5:4>  
SLRA<2:0>  
TRISA<2:0>  
(1)  
WPUA  
WPUA<5:0>  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by PORTA.  
Note 1: Unimplemented, read as ‘1’.  
TABLE 11-4: SUMMARY OF CONFIGURATION WORD WITH PORTA  
Register  
on Page  
Name  
Bits Bit -/7  
Bit -/6  
Bit 13/5  
Bit 12/4  
Bit 11/3  
Bit 10/2 Bit 9/1  
Bit 8/0  
13:8  
7:0  
FCMEN  
IESO  
CLKOUTEN  
BOREN<1:0>  
FOSC<2:0>  
CONFIG1  
42  
CP  
MCLRE PWRTE  
WDTE<1:0>  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by PORTA.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 117  
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 118  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
12.3 Interrupt Flags  
12.0 INTERRUPT-ON-CHANGE  
The IOCAFx and IOCBFx bits located in the IOCAF and  
IOCBF registers, respectively, are status flags that  
correspond to the Interrupt-On-Change pins of the  
associated port. If an expected edge is detected on an  
appropriately enabled pin, then the status flag for that pin  
will be set, and an interrupt will be generated if the IOCIE  
bit is set. The IOCIF bit of the INTCON register reflects  
the status of all IOCAFx and IOCBFx bits.  
The PORTA and PORTB pins can be configured to  
operate as Interrupt-On-Change (IOC) pins. An interrupt  
can be generated by detecting a signal that has either a  
rising edge or a falling edge. Any individual port pin, or  
combination of port pins, can be configured to generate  
an interrupt. The Interrupt-On-Change module has the  
following features:  
• Interrupt-On-Change enable (Master Switch)  
• Individual pin configuration  
12.4 Clearing Interrupt Flags  
• Rising and falling edge detection  
• Individual pin interrupt flags  
The individual status flags, (IOCAFx and IOCBFx bits),  
can be cleared by resetting them to zero. If another edge  
is detected during this clearing operation, the associated  
status flag will be set at the end of the sequence,  
regardless of the value actually being written.  
Figure 12-1 is a block diagram of the IOC module.  
12.1 Enabling the Module  
To allow individual port pins to generate an interrupt, the  
IOCIE bit of the INTCON register must be set. If the  
IOCIE bit is disabled, the edge detection on the pin will  
still occur, but an interrupt will not be generated.  
In order to ensure that no detected edge is lost while  
clearing flags, only AND operations masking out known  
changed bits should be performed. The following  
sequence is an example of what should be performed.  
EXAMPLE 12-1:  
CLEARING INTERRUPT  
FLAGS (PORTA EXAMPLE)  
12.2 Individual Pin Configuration  
For each port pin, a rising edge detector and a falling  
edge detector are present. To enable a pin to detect a  
rising edge, the associated bit of the IOCxP register is  
set. To enable a pin to detect a falling edge, the  
associated bit of the IOCxN register is set.  
MOVLW 0xff  
XORWF IOCAF, W  
ANDWF IOCAF, F  
A pin can be configured to detect rising and falling  
edges simultaneously by setting both associated bits of  
the IOCxP and IOCxN registers, respectively.  
12.5 Operation in Sleep  
The Interrupt-On-Change interrupt sequence will wake  
the device from Sleep mode, if the IOCIE bit is set.  
If an edge is detected while in Sleep mode, the IOCxF  
register will be updated prior to the first instruction  
executed out of Sleep.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 119  
PIC12(L)F1571/2  
FIGURE 12-1:  
INTERRUPT-ON-CHANGE BLOCK DIAGRAM (PORTA EXAMPLE)  
Rev. 10-000 037A  
6/2/201 4  
D
Q
IOCANx  
R
Q4Q1  
edge  
detect  
RAx  
to data bus  
IOCAFx  
S
data bus =  
0 or 1  
D
Q
D
Q
IOCAPx  
write IOCAFx  
R
IOCIE  
Q2  
IOC interrupt  
to CPU core  
from all other  
IOCnFx individual  
pin detectors  
FOSC  
Q1  
Q1  
Q1  
Q2  
Q2  
Q2  
Q3  
Q3  
Q3  
Q4  
Q4  
Q4  
Q4Q1  
Q4Q1  
Q4Q1  
Q4Q1  
DS40001723D-page 120  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
12.6 Register Definitions: Interrupt-On-Change Control  
REGISTER 12-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
IOCAP<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IOCAP<5:0>: Interrupt-On-Change PORTA Positive Edge Enable bits  
1= Interrupt-On-Change is enabled on the pin for a positive going edge; IOCAFx bit and IOCIF flag  
will be set upon detecting an edge  
0= Interrupt-On-Change is disabled for the associated pin  
REGISTER 12-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
IOCAN<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IOCAN<5:0>: Interrupt-On-Change PORTA Negative Edge Enable bits  
1= Interrupt-On-Change is enabled on the pin for a negative going edge; IOCAFx bit and IOCIF flag  
will be set upon detecting an edge.  
0= Interrupt-On-Change is disabled for the associated pin  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 121  
 
 
PIC12(L)F1571/2  
REGISTER 12-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER  
U-0  
U-0  
R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0  
IOCAF<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
HS - Bit is set in hardware  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
IOCAF<5:0>: Interrupt-On-Change PORTA Flag bits  
1= An enabled change was detected on the associated pin  
Set when IOCAPx = 1and a rising edge was detected on RAx, or when IOCANx = 1and a falling  
edge was detected on RAx.  
0= No change was detected or the user cleared the detected change  
TABLE 12-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELA  
INTCON  
IOCAF  
IOCAN  
IOCAP  
TRISA  
GIE  
PEIE  
ANSA4  
INTE  
ANSA<2:0>  
INTF  
114  
74  
TMR0IE  
IOCIE  
TMR0IF  
IOCIF  
IOCAF<5:0>  
122  
121  
121  
113  
IOCAN<5:0>  
IOCAP<5:0>  
(1)  
TRISA<5:4>  
TRISA<2:0>  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by Interrupt-On-Change.  
Note 1: Unimplemented, read as ‘1’.  
DS40001723D-page 122  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
The ADFVR<1:0> bits of the FVRCON register are  
used to enable and configure the gain amplifier settings  
for the reference supplied to the ADC module. Refer-  
ence Section 15.0 “Analog-to-Digital Converter  
(ADC) Module” for additional information.  
13.0 FIXED VOLTAGE REFERENCE  
(FVR)  
The Fixed Voltage Reference (FVR) is a stable voltage  
reference, independent of VDD, with a nominal output  
level (VFVR) of 1.024V. The output of the FVR can be  
configured to supply a reference voltage to the  
following:  
The CDAFVR<1:0> bits of the FVRCON register are  
used to enable and configure the gain amplifier settings  
for the reference supplied to the comparator modules.  
Reference Section 17.0 “Comparator Module” for  
additional information.  
• ADC input channel  
• Comparator positive input  
• Comparator negative input  
To minimize current consumption when the FVR is  
disabled, the FVR buffers should be turned off by  
clearing the Buffer Gain Selection bits.  
The FVR can be enabled by setting the FVREN bit of  
the FVRCON register.  
13.2 FVR Stabilization Period  
13.1 Independent Gain Amplifier  
The FVR can be enabled by setting the FVREN bit of  
the FVRCON register.  
The output of the FVR supplied to the peripherals,  
(listed above), is routed through a programmable gain  
amplifier. Each amplifier can be programmed for a gain  
of 1x, 2x or 4x, to produce the three possible voltage  
levels.  
When the Fixed Voltage Reference module is enabled, it  
requires time for the reference and amplifier circuits to  
stabilize. Once the circuits stabilize and are ready for use,  
the FVRRDY bit of the FVRCON register will be set. See  
the FVR Stabilization Period characterization graph,  
Figure 27-21.  
FIGURE 13-1:  
VOLTAGE REFERENCE BLOCK DIAGRAM  
Rev. 10-000053A  
8/6/2013  
2
2
ADFVR<1:0>  
1x  
2x  
4x  
FVR_buffer1  
(To ADC Module)  
CDAFVR<1:0>  
1x  
2x  
4x  
FVR_buffer2  
(To Comparators)  
FVREN  
Note 1  
+
FVRRDY  
_
Note 1: Any peripheral requiring the Fixed Voltage Reference (see Table 13-1).  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 123  
 
PIC12(L)F1571/2  
TABLE 13-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)  
Peripheral  
Conditions  
Description  
HFINTOSC  
FOSC<2:0> = 010and  
IRCF<3:0> = 000x  
INTOSC is active and device is not in Sleep.  
BOREN<1:0> = 11  
BOR is always enabled.  
BOR  
LDO  
BOREN<1:0> = 10and BORFS = 1  
BOREN<1:0> = 01and BORFS = 1  
BOR is disabled in Sleep mode, BOR Fast Start is enabled.  
BOR under software control, BOR Fast Start is enabled.  
All PIC12F1571/2 devices, when  
VREGPM = 1and not in Sleep  
The device runs off of the Low-Power Regulator when in  
Sleep mode.  
DS40001723D-page 124  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
13.3 Register Definitions: FVR Control  
REGISTER 13-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER  
R/W-0/0  
FVREN(1)  
R-q/q  
FVRRDY(2)  
R/W-0/0  
TSEN(3)  
R/W-0/0  
TSRNG(3)  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
CDAFVR<1:0>(1)  
ADFVR<1:0>(1)  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3-2  
FVREN: Fixed Voltage Reference Enable bit(1)  
1= Fixed Voltage Reference is enabled  
0= Fixed Voltage Reference is disabled  
FVRRDY: Fixed Voltage Reference Ready Flag bit(2)  
1= Fixed Voltage Reference output is ready for use  
0= Fixed Voltage Reference output is not ready or not enabled  
TSEN: Temperature Indicator Enable bit(3)  
1= Temperature indicator is enabled  
0= Temperature indicator is disabled  
TSRNG: Temperature Indicator Range Selection bit(3)  
1= VOUT = VDD – 4VT (High Range)  
0= VOUT = VDD – 2VT (Low Range)  
CDAFVR<1:0>: Comparator FVR Buffer Gain Selection bits(1)  
(4)  
(4)  
11= Comparator FVR Buffer Gain is 4x, with output VCDAFVR = 4x VFVR  
10= Comparator FVR Buffer Gain is 2x, with output VCDAFVR = 2x VFVR  
01= Comparator FVR Buffer Gain is 1x, with output VCDAFVR = 1x VFVR  
00= Comparator FVR Buffer is off  
bit 1-0  
ADFVR<1:0>: ADC FVR Buffer Gain Selection bit(1)  
(4)  
11= ADC FVR Buffer Gain is 4x, with output VADFVR = 4x VFVR  
10= ADC FVR Buffer Gain is 2x, with output VADFVR = 2x VFVR  
(4)  
01= ADC FVR Buffer Gain is 1x, with output VADFVR = 1x VFVR  
00= ADC FVR Buffer is off  
Note 1: To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by  
clearing the Buffer Gain Selection bits.  
2: FVRRDY is always ‘1’ for the PIC12F1571/2 devices.  
3: See Section 14.0 “Temperature Indicator Module” for additional information.  
4: Fixed Voltage Reference output cannot exceed VDD.  
TABLE 13-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE  
Register  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page  
FVRCON  
FVREN FVRRDY  
TSEN  
TSRNG  
CDAFVR>1:0>  
ADFVR<1:0>  
125  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 125  
 
 
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 126  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 14-1:  
TEMPERATURE CIRCUIT  
DIAGRAM  
14.0 TEMPERATURE INDICATOR  
MODULE  
This family of devices is equipped with a temperature  
circuit designed to measure the operating temperature  
of the silicon die. The circuit’s range of operating  
temperature falls between -40°C and +85°C. The  
output is a voltage that is proportional to the device  
temperature. The output of the temperature indicator is  
internally connected to the device ADC.  
Rev. 10-000069A  
7/31/2013  
VDD  
TSEN  
The circuit may be used as a temperature threshold  
detector or a more accurate temperature indicator,  
depending on the level of calibration performed. A one-  
point calibration allows the circuit to indicate a  
temperature closely surrounding that point. A two-point  
calibration allows the circuit to sense the entire range  
of temperature more accurately. Reference Application  
Note AN1333, “Use and Calibration of the Internal  
Temperature Indicator” (DS00001333) for more details  
regarding the calibration process.  
TSRNG  
VOUT  
To ADC  
Temp. Indicator  
14.1 Circuit Operation  
Figure 14-1 shows a simplified block diagram of the  
temperature circuit. The proportional voltage output is  
achieved by measuring the forward voltage drop across  
multiple silicon junctions.  
14.2 Minimum Operating VDD  
When the temperature circuit is operated in low range,  
the device may be operated at any operating voltage  
that is within specifications.  
Equation 14-1 describes the output characteristics of  
the temperature indicator.  
When the temperature circuit is operated in high range,  
the device operating voltage, VDD, must be high  
enough to ensure that the temperature circuit is  
correctly biased.  
EQUATION 14-1: VOUT RANGES  
High Range: VOUT = VDD – 4 VT  
Low Range: VOUT = VDD – 2 VT  
Table 14-1 shows the recommended minimum VDD vs.  
range setting.  
TABLE 14-1: RECOMMENDED VDD VS.  
RANGE  
The temperature sense circuit is integrated with the  
Fixed Voltage Reference (FVR) module. See  
Section 13.0 “Fixed Voltage Reference (FVR)” for  
more information.  
Min. VDD, TSRNG = 1  
Min. VDD, TSRNG = 0  
3.6V  
1.8V  
The circuit is enabled by setting the TSEN bit of the  
FVRCON register. When disabled, the circuit draws no  
current.  
14.3 Temperature Output  
The output of the circuit is measured using the  
internal Analog-to-Digital Converter. A channel is  
reserved for the temperature circuit output. Refer to  
Section 15.0 “Analog-to-Digital Converter (ADC)  
Module” for detailed information.  
The circuit operates in either high or low range. The high  
range, selected by setting the TSRNG bit of the  
FVRCON register, provides a wider output voltage. This  
provides more resolution over the temperature range,  
but may be less consistent from part to part. This range  
requires a higher bias voltage to operate and thus, a  
higher VDD is needed.  
14.4 ADC Acquisition Time  
The low range is selected by clearing the TSRNG bit of  
the FVRCON register. The low range generates a lower  
voltage drop and thus, a lower bias voltage is needed  
to operate the circuit. The low range is provided for  
low-voltage operation.  
To ensure accurate temperature measurements, the  
user must wait at least 200 s after the ADC input  
multiplexer is connected to the temperature indicator  
output before the conversion is performed. In addition,  
the user must wait 200 s between sequential  
conversions of the temperature indicator output.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 127  
 
 
 
 
PIC12(L)F1571/2  
TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
FVRCON  
FVREN FVRRDY  
TSEN  
TSRNG  
CDAFVR<1:0>  
ADFVR<1:0>  
118  
Legend: Shaded cells are unused by the temperature indicator module.  
DS40001723D-page 128  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
The ADC voltage reference is software selectable to be  
either internally generated or externally supplied.  
15.0 ANALOG-TO-DIGITAL  
CONVERTER (ADC) MODULE  
The ADC can generate an interrupt upon completion of  
a conversion. This interrupt can be used to wake-up the  
device from Sleep.  
The Analog-to-Digital Converter (ADC) allows  
conversion of an analog input signal to a 10-bit binary  
representation of that signal. This device uses analog  
inputs, which are multiplexed into a single sample and  
hold circuit. The output of the sample and hold is  
connected to the input of the converter. The converter  
generates a 10-bit binary result via successive  
approximation and stores the conversion result into the  
ADC result registers (ADRESH:ADRESL register pair).  
Figure 15-1 shows the block diagram of the ADC.  
FIGURE 15-1:  
ADC BLOCK DIAGRAM  
Rev. 10-000033A  
V
DD  
ADPREF  
7/30/2013  
Positive  
Reference  
Select  
V
DD  
VREF+ pin  
ADCS<2:0>  
F
V
SS  
AN0  
ANa  
VRNEG VRPOS  
External  
Channel  
Inputs  
.
.
.
Fosc  
OSC/n  
F
OSC  
Divider  
ADC  
Clock  
Select  
ADC_clk  
sampled  
input  
F
RC  
ANz  
F
RC  
Temp Indicator  
DACx_output  
FVR_buffer1  
Internal  
Channel  
Inputs  
ADC CLOCK SOURCE  
ADFM  
ADC  
Sample Circuit  
CHS<4:0>  
set bit ADIF  
10  
complete  
start  
10-bit Result  
16  
Write to bit  
GO/DONE  
GO/DONE  
Q1  
Q4  
ADRESH  
ADRESL  
Q2  
Enable  
Trigger Select  
TRIGSEL<3:0>  
ADON  
. . .  
V
SS  
Trigger Sources  
AUTO CONVERSION  
TRIGGER  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 129  
 
PIC12(L)F1571/2  
15.1.4  
CONVERSION CLOCK  
15.1 ADC Configuration  
The source of the conversion clock is software-selectable  
via the ADCSx bits of the ADCON1 register. There are  
seven possible clock options:  
When configuring and using the ADC the following  
functions must be considered:  
• Port configuration  
• FOSC/2  
• Channel selection  
• FOSC/4  
• ADC voltage reference selection  
• ADC conversion clock source  
• Interrupt control  
• FOSC/8  
• FOSC/16  
• FOSC/32  
• Result formatting  
• FOSC/64  
15.1.1  
PORT CONFIGURATION  
• FRC (internal Fast RC oscillator)  
The ADC can be used to convert both analog and  
digital signals. When converting analog signals, the I/O  
pin should be configured for analog by setting the  
associated TRISx and ANSELx bits. Refer to  
Section 11.0 “I/O Ports” for more information.  
The time to complete one bit conversion is defined as  
TAD. One full 10-bit conversion requires 11.5 TAD  
periods, as shown in Figure 15-2.  
For correct conversion, the appropriate TAD specification  
must be met. Refer to the ADC conversion requirements  
in Section 26.0 “Electrical Specifications” for more  
information. Table 15-1 gives examples of appropriate  
ADC clock selections.  
Note:  
Analog voltages on any pin that is defined  
as a digital input may cause the input  
buffer to conduct excess current.  
Note:  
Unless using the FRC, any changes in the  
system clock frequency will change the  
ADC clock frequency, which may  
adversely affect the ADC result.  
15.1.2  
CHANNEL SELECTION  
There are 7 channel selections available:  
• AN<3:0> pins  
Temperature Indicator  
• DAC1_output  
• FVR_buffer1  
The CHS bits of the ADCON0 register determine which  
channel is connected to the sample and hold circuit.  
When changing channels, a delay (TACQ) is required  
before starting the next conversion. Refer to  
Section 15.2.6 “ADC Conversion Procedure” for  
more information.  
15.1.3  
ADC VOLTAGE REFERENCE  
The ADC module uses a positive and a negative  
voltage reference. The positive reference is labeled  
ref+ and the negative reference is labeled ref-.  
The positive voltage reference (ref+) is selected by the  
ADPREFx bits in the ADCON1 register. The positive  
voltage reference source can be:  
• VREF+ pin  
• VDD  
The negative voltage reference (ref-) source is:  
• VSS  
DS40001723D-page 130  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 15-1: ADC CLOCK PERIOD (TAD) VS. DEVICE OPERATING FREQUENCIES  
ADC Clock Period (TAD)  
Device Frequency (FOSC)  
ADC  
Clock  
ADCS<2:0>  
20 MHz  
16 MHz  
8 MHz  
4 MHz  
1 MHz  
Source  
Fosc/2  
000  
100  
001  
101  
010  
110  
x11  
100 ns  
200 ns  
400 ns  
800 ns  
1.6 s  
125 ns  
250 ns  
500 ns  
1.0 s  
250 ns  
500 ns  
1.0 s  
500 ns  
1.0 s  
2.0 s  
4.0 s  
Fosc/4  
Fosc/8  
Fosc/16  
Fosc/32  
Fosc/64  
FRC  
2.0 s  
8.0 s  
2.0 s  
4.0 s  
16.0 s  
32.0 s  
64.0 s  
1.0-6.0 s  
2.0 s  
4.0 s  
8.0 s  
3.2 s  
4.0 s  
8.0 s  
16.0 s  
1.0-6.0 s  
1.0-6.0 s  
1.0-6.0 s  
1.0-6.0 s  
Legend: Shaded cells are outside of recommended range.  
Note:  
The TAD period when using the FRC clock source can fall within a specified range (see TAD parameter).  
The TAD period when using the FOSC-based clock source can be configured for a more precise TAD period.  
However, the FRC clock source must be used when conversions are to be performed with the device in  
Sleep mode.  
FIGURE 15-2:  
ANALOG-TO-DIGITAL CONVERSION TAD CYCLES  
Rev. 10-000035A  
7/30/2013  
TAD1  
TAD2  
b9  
TAD3  
b8  
TAD4  
b7  
TAD5  
b6  
TAD6  
b5  
TAD7  
b4  
TAD8  
b3  
TAD9  
b2  
TAD10  
b1  
TAD11  
b0  
THCD  
Conversion Starts  
TACQ  
On the following cycle:  
Holding capacitor disconnected  
from analog input (THCD).  
ADRESH:ADRESL is loaded,  
GO bit is cleared,  
Set GO bit  
ADIF bit is set,  
holding capacitor is reconnected to analog input.  
Enable ADC (ADON bit)  
and  
Select channel (ACS bits)  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 131  
PIC12(L)F1571/2  
15.1.5  
INTERRUPTS  
15.1.6  
RESULT FORMATTING  
The ADC module allows for the ability to generate an  
interrupt upon completion of an Analog-to-Digital  
conversion. The ADC Interrupt Flag is the ADIF bit in  
the PIR1 register. The ADC Interrupt Enable is the  
ADIE bit in the PIE1 register. The ADIF bit must be  
cleared in software.  
The 10-bit ADC conversion result can be supplied in  
two formats, left justified or right justified. The ADFM bit  
of the ADCON1 register controls the output format.  
Figure 15-3 shows the two output formats.  
Note 1: The ADIF bit is set at the completion of  
every conversion, regardless of whether  
or not the ADC interrupt is enabled.  
2: The ADC operates during Sleep only  
when the FRC oscillator is selected.  
This interrupt can be generated while the device is  
operating or while in Sleep. If the device is in Sleep, the  
interrupt will wake-up the device. Upon waking from  
Sleep, the next instruction following the SLEEPinstruc-  
tion is always executed. If the user is attempting to  
wake-up from Sleep and resume in-line code execu-  
tion, the ADIE bit of the PIE1 register and the PEIE bit  
of the INTCON register must both be set, and the GIE  
bit of the INTCON register must be cleared. If all three  
of these bits are set, the execution will switch to the  
Interrupt Service Routine.  
FIGURE 15-3:  
10-BIT ADC CONVERSION RESULT FORMAT  
Rev. 10-000054A  
7/30/2013  
ADRESH  
ADRESL  
LSB  
(ADFM = 0) MSB  
bit 7  
bit 0  
bit 0  
bit 7  
bit 7  
bit 0  
10-bit ADC Result  
Unimplemented: Read as ‘0’  
(ADFM = 1)  
MSB  
LSB  
bit 0  
bit 7  
Unimplemented: Read as ‘0’  
10-bit ADC Result  
DS40001723D-page 132  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
15.2.5  
AUTO-CONVERSION TRIGGER  
15.2 ADC Operation  
The auto-conversion trigger allows periodic ADC  
measurements without software intervention. When a  
rising edge of the selected source occurs, the  
GO/DONE bit is set by hardware.  
15.2.1  
STARTING A CONVERSION  
To enable the ADC module, the ADON bit of the  
ADCON0 register must be set to a ‘1’. Setting the  
GO/DONE bit of the ADCON0 register to a ‘1’ will start  
the Analog-to-Digital conversion.  
The auto-conversion trigger source is selected with the  
TRIGSEL<3:0> bits of the ADCON2 register.  
Note:  
The GO/DONE bit should not be set in the  
same instruction that turns on the ADC.  
Refer to Section 15.2.6 “ADC Conversion  
Procedure”.  
Using the auto-conversion trigger does not assure  
proper ADC timing. It is the user’s responsibility to  
ensure that the ADC timing requirements are met.  
The PWM module can trigger the ADC in two ways,  
directly through the PWMx_OFx_match or through the  
interrupts generated by all four match signals. See  
Section 22.0 “16-Bit Pulse-Width Modulation (PWM)  
Module”. If the interrupts are chosen, each enabled  
interrupt in PWMxINTE will trigger a conversion. Refer  
to Figure 15-4 for more information.  
15.2.2  
COMPLETION OF A CONVERSION  
When the conversion is complete, the ADC module will:  
• Clear the GO/DONE bit  
• Set the ADIF Interrupt Flag bit  
• Update the ADRESH and ADRESL registers with  
new conversion result  
See Table 15-2 for auto-conversion sources.  
FIGURE 15-4:  
16-BIT PWM INTERRUPT  
BLOCK DIAGRAM  
15.2.3  
TERMINATING A CONVERSION  
If a conversion must be terminated before completion,  
the GO/DONE bit can be cleared in software. The  
ADRESH and ADRESL registers will be updated with  
the partially complete Analog-to-Digital conversion  
sample. Incomplete bits will match the last bit  
converted.  
Rev. 10-000154A  
10/24/2013  
OFx_match  
PWMxOFIE  
PHx_match  
PWMxPHIE  
PWMx_interrupt  
DCx_match  
PWMxDCIE  
Note:  
A device Reset forces all registers to their  
Reset state. Thus, the ADC module is  
turned off and any pending conversion is  
terminated.  
PRx_match  
PWMxPRIE  
15.2.4  
ADC OPERATION DURING SLEEP  
TABLE 15-2: AUTO-CONVERSION  
SOURCES  
The ADC module can operate during Sleep. This  
requires the ADC clock source to be set to the FRC  
option. Performing the ADC conversion during Sleep  
can reduce system noise. If the ADC interrupt is  
enabled, the device will wake-up from Sleep when the  
conversion completes. If the ADC interrupt is disabled,  
the ADC module is turned off after the conversion  
completes, although the ADON bit remains set.  
Source Peripheral  
Timer0  
Signal Name  
T0_overflow  
Timer1  
T1_overflow  
Timer2  
T2_match  
Comparator C1  
PWM1  
C1OUT_sync  
When the ADC clock source is something other than  
FRC, a SLEEPinstruction causes the present conver-  
sion to be aborted and the ADC module is turned off,  
although the ADON bit remains set.  
PWM1_OF_match  
PWM1_interrupt  
PWM2_OF_match  
PWM2_interrupt  
PWM3_OF_match  
PWM3_interrupt  
PWM1  
PWM2  
PWM2  
PWM3  
PWM3  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 133  
 
 
PIC12(L)F1571/2  
15.2.6  
ADC CONVERSION PROCEDURE  
EXAMPLE 15-1:  
ADC CONVERSION  
;This code block configures the ADC  
;for polling, Vdd and Vss references, FRC  
;oscillator and AN0 input.  
;
This is an example procedure for using the ADC to  
perform an Analog-to-Digital conversion:  
1. Configure port:  
;Conversion start & polling for completion  
; are included.  
;
• Disable pin output driver (refer to the  
TRISx register)  
• Configure pin as analog (refer to the  
ANSELx register)  
BANKSEL  
MOVLW  
ADCON1  
;
B’11110000’ ;Right justify, FRC  
;oscillator  
• Disable weak pull-ups either globally (refer to  
the OPTION_REG register) or individually  
(refer to the appropriate WPUx register)  
MOVWF  
BANKSEL  
BSF  
BANKSEL  
BSF  
ADCON1  
TRISA  
TRISA,0  
ANSEL  
ANSEL,0  
WPUA  
WPUA,0  
;Vdd and Vss Vref+  
;
;Set RA0 to input  
;
;Set RA0 to analog  
2. Configure the ADC module:  
• Select ADC conversion clock  
• Configure voltage reference  
• Select ADC input channel  
BANKSEL  
BCF  
;Disable weak  
;pull-up on RA0  
;
• Turn on ADC module  
BANKSEL  
MOVLW  
MOVWF  
CALL  
ADCON0  
3. Configure ADC interrupt (optional):  
• Clear ADC interrupt flag  
B’00000001’ ;Select channel AN0  
ADCON0  
SampleTime  
;Turn ADC On  
;Acquisiton delay  
• Enable ADC interrupt  
BSF  
ADCON0,ADGO ;Start conversion  
• Enable peripheral interrupt  
• Enable global interrupt(1)  
4. Wait the required acquisition time.(2)  
BTFSC  
GOTO  
BANKSEL  
MOVF  
MOVWF  
BANKSEL  
MOVF  
ADCON0,ADGO ;Is conversion done?  
$-1  
ADRESH  
;No, test again  
;
ADRESH,W  
RESULTHI  
ADRESL  
;Read upper 2 bits  
;store in GPR space  
;
5. Start conversion by setting the GO/DONE bit.  
6. Wait for ADC conversion to complete by one of  
the following:  
ADRESL,W  
RESULTLO  
;Read lower 8 bits  
;Store in GPR space  
MOVWF  
• Polling the GO/DONE bit  
• Waiting for the ADC interrupt (interrupts  
enabled)  
7. Read ADC result.  
8. Clear the ADC interrupt flag (required if interrupt  
is enabled).  
Note 1: The global interrupt can be disabled if the  
user is attempting to wake-up from Sleep  
and resume in-line code execution.  
2: Refer to Section 15.4 “ADC Acquisition  
Requirements”.  
DS40001723D-page 134  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
15.3 Register Definitions: ADC Control  
REGISTER 15-1: ADCON0: ADC CONTROL REGISTER 0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
ADON  
CHS<4:0>  
GO/DONE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-2  
CHS<4:0>: Analog Channel Select bits  
00000= AN0  
00001= AN1  
00010= AN2  
00011= AN3  
00100= Reserved; no channel connected  
11100= Reserved; no channel connected  
11101= Temperature indicator(1)  
11110= DAC (Digital-to-Analog Converter)(2)  
11111= FVR (Fixed Voltage Reference) Buffer 1 output(3)  
GO/DONE: ADC Conversion Status bit  
bit 1  
bit 0  
1= ADC conversion cycle is in progress  
Setting this bit starts an ADC conversion cycle. This bit is automatically cleared by hardware when  
the ADC conversion has completed.  
0= ADC conversion completed/not in progress  
ADON: ADC Enable bit  
1= ADC is enabled  
0= ADC is disabled and consumes no operating current  
Note 1: See Section 14.0 “Temperature Indicator Module” for more information.  
2: See Section 16.0 “5-Bit Digital-to-Analog Converter (DAC) Module” for more information.  
3: See Section 13.0 “Fixed Voltage Reference (FVR)” for more information.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 135  
 
PIC12(L)F1571/2  
REGISTER 15-2: ADCON1: ADC CONTROL REGISTER 1  
R/W-0/0  
ADFM  
R/W-0/0  
R/W-0/0  
R/W-0/0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
ADCS<2:0>  
ADPREF<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
ADFM: ADC Result Format Select bit  
1= Right justified; six Most Significant bits of ADRESH are set to ‘0’ when the conversion result is loaded  
0= Left justified; six Least Significant bits of ADRESL are set to ‘0’ when the conversion result is loaded  
bit 6-4  
ADCS<2:0>: ADC Conversion Clock Select bits  
000= FOSC/2  
001= FOSC/8  
010= FOSC/32  
011= FRC (clock supplied from an internal RC oscillator)  
100= FOSC/4  
101= FOSC/16  
110= FOSC/64  
111= FRC (clock supplied from an internal RC oscillator)  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
ADPREF<1:0>: ADC Positive Voltage Reference Configuration bits  
00= VRPOS is connected to VDD  
01= Reserved  
10= VRPOS is connected to external VREF+ pin(1)  
11= VRPOS is connected to internal Fixed Voltage Reference (FVR)  
Note 1: When selecting the VREF+ pin as the source of the positive reference, be aware that a minimum voltage  
specification exists. See Section 26.0 “Electrical Specifications” for details.  
DS40001723D-page 136  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
REGISTER 15-3: ADCON2: ADC CONTROL REGISTER 2  
R/W-0/0  
R/W-0/0  
TRIGSEL<3:0>(1)  
R/W-0/0  
R/W-0/0  
U-0  
U-0  
U-0  
U-0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-4  
TRIGSEL<3:0>: Auto-Conversion Trigger Selection bits(1)  
0000= No auto-conversion trigger selected  
0001= PWM1 – PWM1_interrupt  
0010= PWM2 – PWM2_interrupt  
0011= Timer0 – T0_overflow(2)  
0100= Timer1 – T1_overflow(2)  
0101= Timer2 – T2_match  
0110= Comparator C1 – C1OUT_sync  
0111= PWM3 – PWM3_interrupt  
1000= PWM1 – PWM1_OF1_match  
1001= PWM2 – PWM2_OF2_match  
1010= PWM3 – PWM3_OF3_match  
1011= Reserved  
1100= Reserved  
1101= Reserved  
1110= Reserved  
1111= Reserved  
bit 3-0  
Unimplemented: Read as ‘0’  
Note 1: This is a rising edge sensitive input for all sources.  
2: Signal also sets its corresponding interrupt flag.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 137  
 
 
PIC12(L)F1571/2  
REGISTER 15-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 0  
ADRES<9:2>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
ADRES<9:2>: ADC Result Register bits  
Upper eight bits of 10-bit conversion result.  
REGISTER 15-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
ADRES<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-0  
ADRES<1:0>: ADC Result Register bits  
Lower two bits of 10-bit conversion result.  
Reserved: Do not use  
DS40001723D-page 138  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
REGISTER 15-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
ADRES<9:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-2  
bit 1-0  
Reserved: Do not use  
ADRES<9:8>: ADC Result Register bits  
Upper two bits of 10-bit conversion result.  
REGISTER 15-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 0  
ADRES<7:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
ADRES<7:0>: ADC Result Register bits  
Lower eight bits of 10-bit conversion result.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 139  
 
 
PIC12(L)F1571/2  
Source Impedance is decreased, the acquisition time  
may be decreased. After the analog input channel is  
selected (or changed), an ADC acquisition must be  
done before the conversion can be started. To calculate  
the minimum acquisition time, Equation 15-1 may be  
used. This equation assumes that 1/2 LSb error is used  
(1,024 steps for the ADC). The 1/2 LSb error is the  
maximum error allowed for the ADC to meet its  
specified resolution.  
15.4 ADC Acquisition Requirements  
For the ADC to meet its specified accuracy, the Charge  
Holding Capacitor (CHOLD) must be allowed to fully  
charge to the input channel voltage level. The Analog  
Input model is shown in Figure 15-5. The Source  
Impedance (RS) and the internal Sampling Switch  
Impedance (RSS) directly affect the time required to  
charge the capacitor, CHOLD. The Sampling Switch  
Impedance (RSS) varies over the device voltage (VDD);  
refer to Figure 15-5. The maximum recommended  
impedance for analog sources is 10 k. As the  
EQUATION 15-1: ACQUISITION TIME EXAMPLE  
Temperature = 50°C and external impedance of 10k5.0V VDD  
Assumptions:  
TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient  
= TAMP + TC + TCOFF  
= 2µs + TC + Temperature - 25°C0.05µs/°C  
The value for TC can be approximated with the following equations:  
1
;[1] VCHOLD charged to within 1/2 lsb  
VAPPLIED1 -------------------------- = VCHOLD  
2n + 11  
TC  
---------  
RC  
VAPPLIED 1 e  
= VCHOLD  
;[2] VCHOLD charge response to VAPPLIED  
;combining [1] and [2]  
Tc  
--------  
RC  
1
= VAPPLIED1 --------------------------  
2n + 11  
VAPPLIED 1 e  
Note: Where n = number of bits of the ADC.  
Solving for TC:  
TC = CHOLDRIC + RSS + RSln(1/2047)  
= 12.5pF1k+ 7k+ 10kln(0.0004885)  
= 1.715µs  
Therefore:  
TACQ = 2µs + 1.715µs + 50°C- 25°C0.05µs/°C  
= 4.96µs  
Note 1: The Reference Voltage (VRPOS) has no effect on the equation, since it cancels itself out.  
2: The Charge Holding Capacitor (CHOLD) is not discharged after each conversion.  
3: The maximum recommended impedance for analog sources is 10 k. This is required to meet the pin  
leakage specification.  
DS40001723D-page 140  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
FIGURE 15-5:  
ANALOG INPUT MODEL  
Rev. 10-000070B  
8/5/2014  
VDD  
Sampling  
switch  
Analog  
VT § 0.6V  
VT § 0.6V  
SS  
Input pin  
RS  
RIC ” 1K  
RSS  
(1)  
ILEAKAGE  
CHOLD = 12.5 pF  
Ref-  
CPIN  
5pF  
VA  
6V  
5V  
Legend: CHOLD  
CPIN  
= Sample/Hold Capacitance  
= Input Capacitance  
VDD 4V  
3V  
RSS  
ILEAKAGE = Leakage Current at the pin due to varies injunctions  
2V  
RIC  
RSS  
SS  
VT  
= Interconnect Resistance  
= Resistance of Sampling switch  
= Sampling Switch  
5 6 7 8 91011  
Sampling Switch  
(kŸ )  
= Threshold Voltage  
Note 1: Refer to Section 26.0 “Electrical Specifications”.  
FIGURE 15-6:  
ADC TRANSFER FUNCTION  
Full-Scale Range  
3FFh  
3FEh  
3FDh  
3FCh  
3FBh  
03h  
02h  
01h  
00h  
Analog Input Voltage  
1.5 LSB  
0.5 LSB  
Zero-Scale  
Transition  
Ref-  
Full-Scale  
Transition  
Ref+  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 141  
PIC12(L)F1571/2  
TABLE 15-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON0  
ADCON1  
ADCON2  
ADRESH  
ADRESL  
ANSELA  
INTCON  
PIE1  
CHS<4:0>  
GO/DONE ADON  
ADPREF<1:0>  
135  
136  
ADFM  
ADCS<2:0>  
TRIGSEL<3:0>  
137  
ADC Result Register High  
ADC Result Register Low  
138, 139  
138, 139  
114  
GIE  
ANSA4  
INTE  
TXIE(2)  
TXIF(2)  
TRISA4  
TSRNG  
IOCIE  
ANSA<2:0>  
INTF  
PEIE  
ADIE  
ADIF  
TMR0IE  
RCIE(2)  
RCIF(2)  
TRISA5  
TSEN  
TMR0IF  
IOCIF  
74  
TMR1GIE  
TMR1GIF  
TMR2IE TMR1IE  
75  
PIR1  
TMR2IF  
TMR1IF  
78  
(1)  
TRISA  
TRISA<2:0>  
113  
FVRCON  
FVREN FVRRDY  
CDAFVR<1:0>  
ADFVR<1:0>  
125  
Legend: — = unimplemented, read as ‘0’. Shaded cells are not used for the ADC module.  
Note 1: Unimplemented, read as ‘1’.  
2: PIC12(L)F1572 only.  
DS40001723D-page 142  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
The output of the DAC (DACx_output) can be selected  
as a reference voltage to the following:  
16.0 5-BIT DIGITAL-TO-ANALOG  
CONVERTER (DAC) MODULE  
• Comparator positive input  
• ADC input channel  
• DACxOUT1 pin  
The Digital-to-Analog Converter supplies a variable  
voltage reference, ratiometric with the input source,  
with 32 selectable output levels.  
The Digital-to-Analog Converter (DAC) can be enabled  
by setting the DACEN bit of the DACxCON0 register.  
The positive input source (VSOURCE+) of the DAC can  
be connected to the:  
• External VREF+ pin  
• VDD supply voltage  
• FVR buffered output  
The negative input source (VSOURCE-) of the DAC can  
be connected to the:  
• Vss  
FIGURE 16-1:  
DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM  
Rev. 10-000026B  
9/6/2013  
VDD  
00  
01  
10  
11  
VREF+  
FVR_buffer2  
VSOURCE+  
DACR<4:0>  
5
Reserved  
DACPSS  
DACEN  
R
R
R
R
DACx_output  
To Peripherals  
32  
Steps  
R
R
R
DACxOUT1 (1)  
DACOE1  
VSOURCE-  
VSS  
Note 1: The unbuffered DACx_output is provided on the DACxOUT pin(s).  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 143  
 
PIC12(L)F1571/2  
Reading the DACxOUTn pin when it has been  
configured for DAC reference voltage output will  
always return a ‘0’.  
16.1 Output Voltage Selection  
The DAC has 32 voltage level ranges. The 32 levels  
are set with the DACR<4:0> bits of the DACxCON1  
register.  
Note:  
The unbuffered DAC output (DACxOUTn)  
is not intended to drive an external load.  
The DAC output voltage can be determined by using  
Equation 16-1.  
16.4 Operation During Sleep  
16.2 Ratiometric Output Level  
When the device wakes up from Sleep through an  
interrupt or a Watchdog Timer time-out, the contents of  
the DACxCON0 register are not affected. To minimize  
current consumption in Sleep mode, the voltage  
reference should be disabled.  
The DAC output value is derived using a resistor ladder  
with each end of the ladder tied to a positive and  
negative voltage reference input source. If the voltage  
of either input source fluctuates, a similar fluctuation will  
result in the DAC output value.  
16.5 Effects of a Reset  
The value of the individual resistors within the ladder  
can be found in Table 26-16.  
A device Reset affects the following:  
• DACx is disabled.  
16.3 DAC Voltage Reference Output  
• DACX output voltage is removed from the  
DACxOUTn pin(s).  
The unbuffered DAC voltage can be output to the  
DACxOUTn pin(s) by setting the respective DACOEn  
bit(s) of the DACxCON0 register. Selecting the DAC  
reference voltage for output on either DACxOUTn pin  
automatically overrides the digital output buffer, the  
weak pull-up and digital input threshold detector  
functions of that pin.  
• The DACR<4:0> range select bits are cleared.  
EQUATION 16-1: DAC OUTPUT VOLTAGE  
IF DACEN = 1  
DACR4:0  
DACx_output = VSOURCE+ – VSOURCE-  ----------------------------- + VSOURCE-  
25  
Note:  
See the DACxCON0 register for the available VSOURCE+ and VSOURCE- selections.  
DS40001723D-page 144  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
16.6 Register Definitions: DAC Control  
REGISTER 16-1: DACxCON0: DACx VOLTAGE REFERENCE CONTROL REGISTER 0  
R/W-0/0  
DACEN  
U-0  
R/W-0/0  
DACOE  
U-0  
R/W-0/0  
R/W-0/0  
U-0  
U-0  
DACPSS<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
DACEN: DAC Enable bit  
1= DACx is enabled  
0= DACx is disabled  
bit 6  
bit 5  
Unimplemented: Read as ‘0’  
DACOE: DAC Voltage Output Enable bit  
1= DACx voltage level is output on the DACxOUT1 pin  
0= DACx voltage level is disconnected from the DACxOUT1 pin  
bit 4  
Unimplemented: Read as ‘0’  
bit 3-2  
DACPSS<1:0>: DAC Positive Source Select bits  
11= Reserved  
10= FVR_buffer2  
01= VREF+ pin  
00= VDD  
bit 1-0  
Unimplemented: Read as ‘0’  
REGISTER 16-2: DACxCON1: DACx VOLTAGE REFERENCE CONTROL REGISTER 1  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
bit 0  
DACR<4:0>  
bit 7  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-5  
bit 4-0  
Unimplemented: Read as ‘0’  
DACR<4:0>: DAC Voltage Output Select bits  
TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
DACxCON0 DACEN  
DACxCON1  
DACOE  
DACPSS<1:0>  
DACR<4:0>  
145  
145  
Legend: — = Unimplemented location, read as ‘0’.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 145  
 
 
 
 
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 146  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
17.1  
Comparator Overview  
17.0 COMPARATOR MODULE  
A single comparator is shown in Figure 17-2 along with  
the relationship between the analog input levels and  
the digital output. When the analog voltage at VIN+ is  
less than the analog voltage at VIN-, the output of the  
comparator is a digital low level. When the analog volt-  
age at VIN+ is greater than the analog voltage at VIN-,  
the output of the comparator is a digital high level.  
Comparators are used to interface analog circuits to a  
digital circuit by comparing two analog voltages and  
providing a digital indication of their relative magnitudes.  
Comparators are very useful mixed signal building  
blocks because they provide analog functionality inde-  
pendent of program execution. The analog comparator  
module includes the following features:  
The comparators available for this device are listed in  
Table 17-1.  
• Independent comparator control  
• Programmable input selection  
• Comparator output is available internally/externally  
• Programmable output polarity  
• Interrupt-On-Change  
TABLE 17-1: AVAILABLE COMPARATORS  
Device  
C1  
• Wake-up from Sleep  
PIC12(L)F1571  
PIC12(L)F1572  
• Programmable speed/power optimization  
• PWM shutdown  
• Programmable and Fixed Voltage Reference  
FIGURE 17-1:  
COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM  
Rev. 10-000027C  
9/6/2013  
3
CxNCH<2:0>  
CxON(1)  
CxINTP  
CxINTN  
Interrupt  
Rising  
Edge  
set bit  
CxIF  
CxIN0-  
CxIN1-  
000  
001  
010  
011  
100  
101  
110  
111  
Interrupt  
Falling  
Edge  
CxON(1)  
Cx  
Reserved  
Reserved  
Reserved  
Reserved  
FVR_buffer2  
CxVN  
CxVP  
CxOUT  
-
D
Q
MCxOUT  
+
Q1  
CxOUT_async  
CxSP CxHYS  
CxPOL  
to  
peripherals  
CxOUT_sync  
CxOE  
to  
peripherals  
CxSYNC  
CxIN+  
00  
01  
10  
11  
TRIS bit  
DAC_out  
0
1
CxOUT  
FVR_buffer2  
D
Q
(From Timer1 Module) T1CLK  
CxPCH<1:0>  
CxON(1)  
2
Note 1:  
When CxON = 0, all multiplexer inputs are disconnected and the Comparator will produce a ‘0’ at the output.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 147  
 
PIC12(L)F1571/2  
FIGURE 17-2:  
SINGLE COMPARATOR  
17.2.2  
COMPARATOR POSITIVE INPUT  
SELECTION  
Configuring the CxPCH<1:0> bits of the CMxCON1  
register directs an internal voltage reference or an  
analog pin to the non-inverting input of the comparator:  
VIN+  
VIN-  
+
Output  
• CxIN+ analog pin  
• DAC1_output  
• FVR_buffer2  
• VSS  
VIN-  
VIN+  
See Section 13.0 “Fixed Voltage Reference (FVR)”  
for more information on the Fixed Voltage Reference  
module.  
See Section 16.0 “5-Bit Digital-to-Analog Converter  
(DAC) Module” for more information on the DAC input  
signal.  
Output  
Any time the comparator is disabled (CxON = 0), all  
comparator inputs are disabled.  
Note:  
The black areas of the output of the  
comparator represents the uncertainty  
due to input offsets and response time.  
17.2.3  
COMPARATOR NEGATIVE INPUT  
SELECTION  
The CxNCH<2:0> bits of the CMxCON0 register direct  
one of the input sources to the comparator inverting input.  
17.2 Comparator Control  
Note:  
To use CxIN+ and CxIN- pins as analog  
input, the appropriate bits must be set in  
the ANSELx register and the correspond-  
ing TRISx bits must also be set to disable  
the output drivers.  
The comparator has two control registers: CMxCON0  
and CMxCON1.  
The CMxCON0 register (see Register 17-1) contains  
control and status bits for the following:  
• Enable  
• Output selection  
• Output polarity  
17.2.4  
COMPARATOR OUTPUT SELECTION  
The output of the comparator can be monitored by  
reading either the CxOUT bit of the CMxCON0 register  
or the MCxOUT bit of the CMOUT register. In order to  
make the output available for an external connection,  
the following conditions must be true:  
• Speed/power selection  
• Hysteresis enable  
• Output synchronization  
The CMxCON1 register (see Register 17-2) contains  
control bits for the following:  
• CxOE bit of the CMxCON0 register must be set  
• Corresponding TRISx bit must be cleared  
• CxON bit of the CMxCON0 register must be set  
• Interrupt enable  
• Interrupt edge polarity  
The synchronous comparator output signal  
(CxOUT_sync) is available to the following peripheral(s):  
• Positive input channel selection  
• Negative input channel selection  
• Analog-to-Digital Converter (ADC)  
• Timer1  
17.2.1  
COMPARATOR ENABLE  
The asynchronous comparator output signal  
(CxOUT_async) is available to the following peripheral(s):  
Setting the CxON bit of the CMxCON0 register enables  
the comparator for operation. Clearing the CxON bit  
disables the comparator resulting in minimum current  
consumption.  
Complementary Waveform Generator (CWG)  
Note 1: The CxOE bit of the CMxCON0 register  
overrides the port data latch. Setting the  
CxON bit of the CMxCON0 register has  
no impact on the port override.  
2: The internal output of the comparator is  
latched with each instruction cycle.  
Unless otherwise specified, external  
outputs are not latched.  
DS40001723D-page 148  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
17.2.5  
COMPARATOR OUTPUT POLARITY  
17.3 Analog Input Connection  
Considerations  
Inverting the output of the comparator is functionally  
equivalent to swapping the comparator inputs. The  
polarity of the comparator output can be inverted by  
setting the CxPOL bit of the CMxCON0 register.  
Clearing the CxPOL bit results in a non-inverted output.  
A simplified circuit for an analog input is shown in  
Figure 17-3. Since the analog input pins share their  
connection with a digital input, they have reverse  
biased ESD protection diodes to VDD and VSS. The  
analog input, therefore, must be between VSS and VDD.  
If the input voltage deviates from this range by more  
than 0.6V in either direction, one of the diodes is  
forward-biased and a latch-up may occur.  
Table 17-2 shows the output state versus input  
conditions, including polarity control.  
TABLE 17-2:  
COMPARATOR OUTPUT  
STATE VS. INPUT CONDITIONS  
A maximum source impedance of 10 kis recommended  
for the analog sources. Also, any external component  
connected to an analog input pin, such as a capacitor or  
a Zener diode, should have very little leakage current to  
minimize inaccuracies introduced.  
Input Condition  
CxPOL  
CxOUT  
CxVN > CxVP  
CxVN < CxVP  
CxVN > CxVP  
CxVN < CxVP  
0
0
1
1
0
1
1
0
Note 1: When reading a PORT register, all pins  
configured as analog inputs will read as a  
0’. Pins configured as digital inputs will  
convert as an analog input, according to  
the input specification.  
17.2.6  
COMPARATOR SPEED/POWER  
SELECTION  
The trade-off between speed or power can be opti-  
mized during program execution with the CxSP control  
bit. The default state for this bit is ‘1’, which selects the  
Normal Speed mode. Device power consumption can  
be optimized at the cost of slower comparator  
propagation delay by clearing the CxSP bit to ‘0’.  
2: Analog levels on any pin defined as a  
digital input, may cause the input buffer to  
consume more current than is specified.  
FIGURE 17-3:  
ANALOG INPUT MODEL  
Rev. 10-000071A  
8/2/2013  
VDD  
Analog  
VT § 0.6V  
VT § 0.6V  
Input pin  
RS < 10K  
RIC  
To Comparator  
(1)  
ILEAKAGE  
CPIN  
5pF  
VA  
VSS  
Legend: CPIN  
= Input Capacitance  
ILEAKAGE = Leakage Current at the pin due to various junctions  
RIC  
RS  
VA  
VT  
= Interconnect Resistance  
= Source Impedance  
= Analog Voltage  
= Threshold Voltage  
Note 1: See Section 26.0 “Electrical Specifications”.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 149  
 
 
PIC12(L)F1571/2  
17.4 Comparator Hysteresis  
17.6 Comparator Interrupt  
A selectable amount of separation voltage can be  
added to the input pins of each comparator to provide a  
hysteresis function to the overall operation. Hysteresis  
is enabled by setting the CxHYS bit of the CMxCON0  
register.  
An interrupt can be generated upon a change in the out-  
put value of the comparator for each comparator, a rising  
edge detector and a falling edge detector are present.  
When either edge detector is triggered and its associ-  
ated enable bit is set (CxINTP and/or CxINTN bits of  
the CMxCON1 register), the corresponding interrupt  
flag bit (CxIF bit of the PIR2 register) will be set.  
See Section 26.0 “Electrical Specifications” for  
more information.  
To enable the interrupt, you must set the following bits:  
17.5 Timer1 Gate Operation  
• CxON and CxPOL bits of the CMxCON0 register  
• CxIE bit of the PIE2 register  
The output resulting from a comparator operation can  
be used as a source for gate control of Timer1. See  
Section 19.5 “Timer1 Gate” for more information.  
This feature is useful for timing the duration or interval  
of an analog event.  
• CxINTP bit of the CMxCON1 register (for a rising  
edge detection)  
• CxINTN bit of the CMxCON1 register (for a falling  
edge detection)  
It is recommended that the comparator output be  
synchronized to Timer1. This ensures that Timer1 does  
not increment while a change in the comparator is  
occurring.  
• PEIE and GIE bits of the INTCON register  
The associated interrupt flag bit, CxIF bit of the PIR2  
register, must be cleared in software. If another edge is  
detected while this flag is being cleared, the flag will still  
be set at the end of the sequence.  
17.5.1  
COMPARATOR OUTPUT  
SYNCHRONIZATION  
Note:  
Although a comparator is disabled, an  
interrupt can be generated by changing  
the output polarity with the CxPOL bit of  
the CMxCON0 register, or by switching  
the comparator on or off with the CxON bit  
of the CMxCON0 register.  
The output from the Cx comparator can be  
synchronized with Timer1 by setting the CxSYNC bit of  
the CMxCON0 register.  
Once enabled, the comparator output is latched on the  
falling edge of the Timer1 source clock. If a prescaler is  
used with Timer1, the comparator output is latched after  
the prescaling function. To prevent a race condition, the  
comparator output is latched on the falling edge of the  
Timer1 clock source and Timer1 increments on the  
rising edge of its clock source. See the Comparator  
Block Diagram (Figure 17-2) and the Timer1 Block  
Diagram (Figure 19-1) for more information.  
17.7 Comparator Response Time  
The comparator output is indeterminate for a period of  
time after the change of an input source or the selection  
of a new reference voltage. This period is referred to as  
the response time. The response time of the comparator  
differs from the settling time of the voltage reference.  
Therefore, both of these times must be considered when  
determining the total response time to a comparator  
input change. See the Comparator and Voltage  
Reference Specifications in Section 26.0 “Electrical  
Specifications” for more details.  
DS40001723D-page 150  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
17.8 Register Definitions: Comparator Control  
REGISTER 17-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0  
R/W-0/0  
CxON  
R-0/0  
R/W-0/0  
CxOE  
R/W-0/0  
CxPOL  
U-0  
R/W-0/0  
CxSP  
R/W-0/0  
CxHYS  
R/W-0/0  
CxSYNC  
CxOUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
CxON: Comparator Enable bit  
1= Comparator is enabled  
0= Comparator is disabled and consumes no active power  
CxOUT: Comparator Output bit  
If CxPOL = 1(inverted polarity):  
1= CxVP < CxVN  
0= CxVP > CxVN  
If CxPOL = 0(non-inverted polarity):  
1= CxVP > CxVN  
0= CxVP < CxVN  
bit 5  
bit 4  
CxOE: Comparator Output Enable bit  
1= CxOUT is present on the CxOUT pin; requires that the associated TRISx bit be cleared to actually  
drive the pin, not affected by CxON  
0= CxOUT is internal only  
CxPOL: Comparator Output Polarity Select bit  
1= Comparator output is inverted  
0= Comparator output is not inverted  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
CxSP: Comparator Speed/Power Select bit  
1= Comparator mode is in Normal Power, Higher Speed mode  
0= Comparator mode is in Low-Power, Low-Speed mode  
bit 1  
bit 0  
CxHYS: Comparator Hysteresis Enable bit  
1= Comparator hysteresis is enabled  
0= Comparator hysteresis is disabled  
CxSYNC: Comparator Output Synchronous Mode bit  
1= Comparator output to Timer1 and I/O pin is synchronous to changes on Timer1 clock source;  
output updated on the falling edge of Timer1 clock source  
0= Comparator output to Timer1 and I/O pin is asynchronous  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 151  
 
PIC12(L)F1571/2  
REGISTER 17-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1  
R/W-0/0  
CxINTP  
R/W-0/0  
CxINTN  
R/W-0/0  
R/W-0/0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
CxPCH<1:0>  
CxNCH<2:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
CxINTP: Comparator Interrupt on Positive Going Edge Enable bit  
1= The CxIF interrupt flag will be set upon a positive going edge of the CxOUT bit  
0= No interrupt flag will be set on a positive going edge of the CxOUT bit  
bit 6  
CxINTN: Comparator Interrupt on Negative Going Edge Enable bit  
1= The CxIF interrupt flag will be set upon a negative going edge of the CxOUT bit  
0= No interrupt flag will be set on a negative going edge of the CxOUT bit  
bit 5-4  
CxPCH<1:0>: Comparator Positive Input Channel Select bits  
11= CxVP connects to VSS  
10= CxVP connects to FVR Voltage Reference  
01= CxVP connects to DAC Voltage Reference  
00= CxVP connects to CxIN+ pin  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
CxNCH<1:0>: Comparator Negative Input Channel Select bits  
111= CxVN connects to GND  
110= CxVN connects to FVR Voltage Reference  
101= Reserved  
100= Reserved  
011= Reserved  
010= Reserved  
001= CxVN connects to CxIN1- pin  
000= CxVN connects to CxIN0- pin  
REGISTER 17-3: CMOUT: COMPARATOR OUTPUT REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
U-0  
R-0/0  
MC1OUT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
u = Bit is unchanged  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-1  
bit 0  
Unimplemented: Read as ‘0’  
MC1OUT: Mirror Copy of C1OUT bit  
DS40001723D-page 152  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELA  
CM1CON0  
CM1CON1  
CMOUT  
DAC1CON0  
DAC1CON1  
FVRCON  
INTCON  
PIE2  
C1ON  
C1NTP  
C1OUT  
C1INTN  
ANSA4  
C1POL  
ANSA<2:0>  
114  
151  
152  
152  
145  
145  
125  
74  
C1OE  
C1SP  
C1HYS C1SYNC  
C1NCH<2:0>  
C1PCH<1:0>  
MC1OUT  
DACEN  
DACOE  
DACPSS<1:0>  
DACR<4:0>  
CDAFVR<1:0>  
FVREN  
GIE  
FVRRDY  
PEIE  
TSEN  
TMR0IE  
C1IE  
TSRNG  
INTE  
ADFVR<1:0>  
INTF IOCIF  
IOCIE  
TMR0IF  
76  
PIR2  
C1IF  
79  
PORTA  
RA5  
RA4  
RA3  
RA<2:0>  
113  
114  
113  
LATA  
LATA5  
TRISA5  
LATA4  
TRISA4  
LATA<2:0>  
TRISA<2:0>  
(1)  
TRISA  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are unused by the comparator module.  
Note 1: Unimplemented, read as ‘1’.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 153  
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 154  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
18.1.2  
8-BIT COUNTER MODE  
18.0 TIMER0 MODULE  
In 8-Bit Counter mode, the Timer0 module will increment  
on every rising or falling edge of the T0CKI pin.  
The Timer0 module is an 8-bit timer/counter with the  
following features:  
In 8-Bit Counter mode, the T0CKI pin is selected by  
setting the TMR0CS bit in the OPTION_REG register  
to ‘1’.  
• 8-Bit Timer/Counter register (TMR0)  
• 3-bit prescaler (independent of Watchdog Timer)  
• Programmable internal or external clock source  
• Programmable external clock edge selection  
• Interrupt on overflow  
The rising or falling transition of the incrementing edge  
for either input source is determined by the TMR0SE bit  
in the OPTION_REG register.  
• TMR0 can be used to gate Timer1  
Figure 18-1 is a block diagram of the Timer0 module.  
18.1 Timer0 Operation  
The Timer0 module can be used as either an 8-bit timer  
or an 8-bit counter.  
18.1.1  
8-BIT TIMER MODE  
The Timer0 module will increment every instruction  
cycle if used without a prescaler. The 8-Bit Timer mode  
is selected by clearing the TMR0CS bit of the  
OPTION_REG register.  
When TMR0 is written, the increment is inhibited for  
two instruction cycles immediately following the write.  
Note:  
The value written to the TMR0 register  
can be adjusted in order to account for the  
two instruction cycle delay when TMR0 is  
written.  
FIGURE 18-1:  
TIMER0 BLOCK DIAGRAM  
Rev. 10-000017A  
8/5/2013  
TMR0CS  
Fosc/4  
PSA  
T0CKI(1)  
T0_overflow  
0
1
T0CKI  
TMR0  
1
0
Sync Circuit  
Prescaler  
FOSC/2  
Q1  
write  
to  
TMR0  
R
TMR0SE  
set bit  
TMR0IF  
PS<2:0>  
Note 1: The T0CKI prescale output frequency should not exceed FOSC/8.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 155  
 
 
PIC12(L)F1571/2  
18.1.3  
SOFTWARE PROGRAMMABLE  
PRESCALER  
18.1.5  
8-BIT COUNTER MODE  
SYNCHRONIZATION  
A software programmable prescaler is available for  
exclusive use with Timer0. The prescaler is enabled by  
clearing the PSA bit of the OPTION_REG register.  
When in 8-Bit Counter mode, the incrementing edge on  
the T0CKI pin must be synchronized to the instruction  
clock. Synchronization can be accomplished by  
sampling the prescaler output on the Q2 and Q4 cycles  
of the instruction clock. The high and low periods of the  
external clocking source must meet the timing  
requirements as shown in Section 26.0 “Electrical  
Specifications”.  
Note:  
The Watchdog Timer (WDT) uses its own  
independent prescaler.  
There are eight prescaler options for the Timer0 module,  
ranging from 1:2 to 1:256. The prescale values are  
selectable via the PS<2:0> bits of the OPTION_REG  
register. In order to have a 1:1 prescaler value for the  
Timer0 module, the prescaler must be disabled by  
setting the PSA bit of the OPTION_REG register.  
18.1.6  
OPERATION DURING SLEEP  
Timer0 cannot operate while the processor is in Sleep  
mode. The contents of the TMR0 register will remain  
unchanged while the processor is in Sleep mode.  
The prescaler is not readable or writable. All instructions  
writing to the TMR0 register will clear the prescaler.  
18.1.4  
TIMER0 INTERRUPT  
Timer0 will generate an interrupt when the TMR0 register  
overflows from FFh to 00h. The TMR0IF interrupt flag bit  
of the INTCON register is set every time the TMR0  
register overflows, regardless of whether or not the  
Timer0 interrupt is enabled. The TMR0IF bit can only be  
cleared in software. The Timer0 interrupt enable is the  
TMR0IE bit of the INTCON register.  
Note:  
The Timer0 interrupt cannot wake the  
processor from Sleep since the timer is  
frozen during Sleep.  
DS40001723D-page 156  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
18.2 Register Definitions: Option Register  
REGISTER 18-1: OPTION_REG: OPTION REGISTER  
R/W-1/1  
WPUEN  
R/W-1/1  
INTEDG  
R/W-1/1  
R/W-1/1  
R/W-1/1  
PSA  
R/W-1/1  
R/W-1/1  
PS<2:0>  
R/W-1/1  
TMR0CS  
TMR0SE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2-0  
WPUEN: Weak Pull-Up Enable bit  
1= All weak pull-ups are disabled (except MCLR if it is enabled)  
0= Weak pull-ups are enabled by individual WPUx latch values  
INTEDG: Interrupt Edge Select bit  
1= Interrupt on rising edge of INT pin  
0= Interrupt on falling edge of INT pin  
TMR0CS: Timer0 Clock Source Select bit  
1= Transition on T0CKI pin  
0= Internal instruction cycle clock (FOSC/4)  
TMR0SE: Timer0 Source Edge Select bit  
1= Increment on high-to-low transition on T0CKI pin  
0= Increment on low-to-high transition on T0CKI pin  
PSA: Prescaler Assignment bit  
1= Prescaler is not assigned to the Timer0 module  
0= Prescaler is assigned to the Timer0 module  
PS<2:0>: Prescaler Rate Select bits  
Bit Value  
Timer0 Rate  
000  
001  
010  
011  
100  
101  
110  
111  
1 : 2  
1 : 4  
1 : 8  
1 : 16  
1 : 32  
1 : 64  
1 : 128  
1 : 256  
TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ADCON2  
INTCON  
TRIGSEL<3:0>  
PEIE TMR0IE  
INTF  
137  
74  
GIE  
INTE  
IOCIE  
PSA  
TMR0IF  
IOCIF  
OPTION_REG WPUEN INTEDG TMR0CS TMR0SE  
PS<2:0>  
157  
155*  
113  
TMR0  
TRISA  
Holding Register for the 8-bit Timer0 Count  
TRISA5 TRISA4  
(1)  
TRISA2  
TRISA1 TRISA0  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by the Timer0 module.  
Page provides register information.  
*
Note 1: Unimplemented, read as ‘1’.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 157  
 
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 158  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
• Wake-up on overflow (external clock,  
19.0 TIMER1 MODULE WITH GATE  
CONTROL  
Asynchronous mode only)  
• ADC auto-conversion trigger(s)  
• Selectable gate source polarity  
• Gate Toggle mode  
The Timer1 module is a 16-bit timer/counter with the  
following features:  
• 16-bit Timer/Counter register pair (TMR1H:TMR1L)  
• Programmable internal or external clock source  
• 2-bit prescaler  
• Gate Single-Pulse mode  
• Gate value status  
• Gate event interrupt  
• Optionally synchronized comparator out  
• Multiple Timer1 gate (count enable) sources  
• Interrupt on overflow  
Figure 19-1 is a block diagram of the Timer1 module.  
FIGURE 19-1:  
TIMER1 BLOCK DIAGRAM  
Rev. 10-000018D  
8/5/2013  
T1GSS<1:0>  
T1GSPM  
T1G  
00  
01  
10  
11  
T0_overflow  
C1OUT_sync  
Reserved  
1
0
D
Q
T1GVAL  
0
1
Single Pulse  
Acq. Control  
Q1  
D
Q
T1GGO/DONE  
T1GPOL  
CK  
R
Q
Interrupt  
det  
TMR1ON  
T1GTM  
set bit  
TMR1GIF  
TMR1GE  
set flag bit  
TMR1IF  
TMR1ON  
EN  
D
TMR1(2)  
TMR1H TMR1L  
T1_overflow  
Synchronized Clock Input  
Q
0
1
T1CLK  
T1SYNC  
TMR1CS<1:0>  
LFINTOSC  
Fosc  
11  
(1)  
T1CKI  
10  
01  
00  
Prescaler  
Synchronize(3)  
1,2,4,8  
Internal Clock  
det  
2
Fosc/4  
Internal Clock  
Fosc/2  
Internal  
Clock  
T1CKPS<1:0>  
Sleep  
Input  
Note 1: ST Buffer is high speed type when using T1CKI.  
2: Timer1 register increments on rising edge.  
3: Synchronize does not operate while in Sleep.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 159  
 
PIC12(L)F1571/2  
19.1 Timer1 Operation  
19.2 Clock Source Selection  
The Timer1 module is a 16-bit incrementing counter  
which is accessed through the TMR1H:TMR1L register  
pair. Writes to TMR1H or TMR1L directly update the  
counter.  
The TMR1CS<1:0> bits of the T1CON register are used  
to select the clock source for Timer1. Table 19-2  
displays the clock source selections.  
19.2.1  
INTERNAL CLOCK SOURCE  
When used with an internal clock source, the module is  
a timer and increments on every instruction cycle.  
When used with an external clock source, the module  
can be used as either a timer or counter and  
increments on every selected edge of the external  
source.  
When the internal clock source is selected, the  
TMR1H:TMR1L register pair will increment on multiples  
of FOSC, as determined by the Timer1 prescaler.  
When the FOSC internal clock source is selected, the  
Timer1 register value will increment by four counts every  
instruction clock cycle. Due to this condition, a 2 LSB  
error in resolution will occur when reading the Timer1  
value. To utilize the full resolution of Timer1, an  
asynchronous input signal must be used to gate the  
Timer1 clock input.  
Timer1 is enabled by configuring the TMR1ON and  
TMR1GE bits in the T1CON and T1GCON registers,  
respectively. Table 19-1 displays the Timer1 enable  
selections.  
TABLE 19-1: TIMER1 ENABLE  
SELECTIONS  
The following asynchronous sources may be used:  
• Asynchronous event on the T1G pin to Timer1 gate  
• C1 or C2 comparator input to Timer1 gate  
Timer1  
Operation  
TMR1ON  
TMR1GE  
19.2.2  
EXTERNAL CLOCK SOURCE  
0
0
1
1
0
1
0
1
Off  
Off  
When the external clock source is selected, the Timer1  
module may work as a timer or a counter.  
Always On  
When enabled to count, Timer1 is incremented on the ris-  
ing edge of the external clock input T1CKI. The external  
clock source can be synchronized to the microcontroller  
system clock or it can run asynchronously.  
Count Enabled  
Note:  
In Counter mode, a falling edge must be  
registered by the counter prior to the first  
incrementing rising edge after any one or  
more of the following conditions:  
• Timer1 enabled after POR  
• Write to TMR1H or TMR1L  
• Timer1 is disabled  
• Timer1 is disabled (TMR1ON = 0)  
when T1CKI is high, then Timer1 is  
enabled (TMR1ON = 1) when T1CKI  
is low  
TABLE 19-2: CLOCK SOURCE SELECTIONS  
TMR1CS<1:0>  
T1OSCEN(1)  
Clock Source  
11  
10  
01  
00  
x
x
x
x
LFINTOSC  
External Clocking on T1CKI Pin  
System Clock (FOSC)  
Instruction Clock (FOSC/4)  
Note 1: T1OSCEN is not available for these devices.  
DS40001723D-page 160  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
19.3 Timer1 Prescaler  
19.5 Timer1 Gate  
Timer1 has four prescaler options, allowing 1, 2, 4 or 8  
divisions of the clock input. The T1CKPSx bits of the  
T1CON register control the prescale counter. The  
prescale counter is not directly readable or writable;  
however, the prescaler counter is cleared upon a write to  
TMR1H or TMR1L.  
Timer1 can be configured to count freely or the count  
can be enabled and disabled using Timer1 gate  
circuitry. This is also referred to as Timer1 Gate Enable.  
Timer1 gate can also be driven by multiple selectable  
sources.  
19.5.1  
TIMER1 GATE ENABLE  
19.4 Timer1 Operation in  
The Timer1 Gate Enable mode is enabled by setting  
the TMR1GE bit of the T1GCON register. The polarity  
of the Timer1 Gate Enable mode is configured using  
the T1GPOL bit of the T1GCON register.  
Asynchronous Counter Mode  
If control bit, T1SYNC, of the T1CON register is set,  
the external clock input is not synchronized. The timer  
increments asynchronously to the internal phase  
clocks. If the external clock source is selected then the  
timer will continue to run during Sleep and can  
generate an interrupt on overflow, which will wake-up  
the processor. However, special precautions in  
software are needed to read/write the timer (see  
Section 19.4.1 “Reading and Writing Timer1 in  
Asynchronous Counter Mode”).  
When Timer1 Gate Enable mode is enabled, Timer1  
will increment on the rising edge of the Timer1 clock  
source. When Timer1 Gate Enable mode is disabled,  
no incrementing will occur and Timer1 will hold the  
current count. See Figure 19-3 for timing details.  
TABLE 19-3: TIMER1 GATE ENABLE  
SELECTIONS  
Note:  
When switching from synchronous to  
asynchronous operation, it is possible to  
skip an increment. When switching from  
asynchronous to synchronous operation,  
it is possible to produce an additional  
increment.  
T1CLK T1GPOL  
T1G  
Timer1 Operation  
0
0
1
1
0
1
0
1
Counts  
Holds Count  
Holds Count  
Counts  
19.4.1  
READING AND WRITING TIMER1 IN  
ASYNCHRONOUS COUNTER  
MODE  
19.5.2  
TIMER1 GATE SOURCE  
SELECTION  
Timer1 gate source selections are shown in Table 19-4.  
Source selection is controlled by the T1GSS<1:0> bits  
of the T1GCON register. The polarity for each available  
source is also selectable. Polarity selection is controlled  
by the T1GPOL bit of the T1GCON register.  
Reading TMR1H or TMR1L while the timer is running  
from an external asynchronous clock will ensure a valid  
read (taken care of in hardware). However, the user  
should keep in mind that reading the 16-bit timer in two  
8-bit values itself, poses certain problems, since the  
timer may overflow between the reads.  
TABLE 19-4: TIMER1 GATE SOURCES  
For writes, it is recommended that the user simply stop  
the timer and write the desired values. A write  
contention may occur by writing to the timer registers,  
while the register is incrementing. This may produce an  
unpredictable value in the TMR1H:TMR1L register pair.  
T1GSS<1:0>  
Timer1 Gate Source  
Timer1 Gate Pin (T1G)  
00  
01  
Overflow of Timer0 (T0_overflow)  
(TMR0 increments from FFh to 00h)  
10  
11  
Comparator 1 Output (C1OUT_sync)(1)  
Reserved  
Note 1: Optionally synchronized comparator output.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 161  
 
 
PIC12(L)F1571/2  
If the Single-Pulse Gate mode is disabled by clearing the  
T1GSPM bit in the T1GCON register, the T1GGO/DONE  
bit should also be cleared.  
19.5.2.1  
T1G Pin Gate Operation  
The T1G pin is one source for Timer1 gate control. It  
can be used to supply an external source to the Timer1  
gate circuitry.  
Enabling the Toggle mode and the Single-Pulse mode  
simultaneously will permit both sections to work  
together. This allows the cycle times on the Timer1 gate  
source to be measured. See Figure 19-6 for timing  
details.  
19.5.2.2  
Timer0 Overflow Gate Operation  
When Timer0 increments from FFh to 00h, a low-to-  
high pulse will automatically be generated and  
internally supplied to the Timer1 gate circuitry.  
19.5.5  
TIMER1 GATE VALUE STATUS  
19.5.3  
TIMER1 GATE TOGGLE MODE  
When Timer1 gate value status is utilized, it is possible  
to read the most current level of the gate control value.  
The value is stored in the T1GVAL bit in the T1GCON  
register. The T1GVAL bit is valid even when the Timer1  
gate is not enabled (TMR1GE bit is cleared).  
When Timer1 Gate Toggle mode is enabled, it is  
possible to measure the full cycle length of a Timer1 gate  
signal, as opposed to the duration of a single level pulse.  
The Timer1 gate source is routed through a flip-flop that  
changes state on every incrementing edge of the  
signal. See Figure 19-4 for timing details.  
19.5.6  
TIMER1 GATE EVENT INTERRUPT  
When Timer1 gate event interrupt is enabled, it is pos-  
sible to generate an interrupt upon the completion of a  
gate event. When the falling edge of T1GVAL occurs,  
the TMR1GIF flag bit in the PIR1 register will be set. If  
the TMR1GIE bit in the PIE1 register is set, then an  
interrupt will be recognized.  
Timer1 Gate Toggle mode is enabled by setting the  
T1GTM bit of the T1GCON register. When the T1GTM  
bit is cleared, the flip-flop is cleared and held clear. This  
is necessary in order to control which edge is measured.  
Note:  
Enabling Toggle mode at the same time  
as changing the gate polarity may result in  
indeterminate operation.  
The TMR1GIF flag bit operates even when the Timer1  
gate is not enabled (TMR1GE bit is cleared).  
19.5.4  
TIMER1 GATE SINGLE-PULSE MODE  
When Timer1 Gate Single-Pulse mode is enabled, it is  
possible to capture a single-pulse gate event. Timer1  
Gate Single-Pulse mode is first enabled by setting the  
T1GSPM bit in the T1GCON register. Next, the T1GGO/  
DONE bit in the T1GCON register must be set. The  
Timer1 will be fully enabled on the next incrementing  
edge. On the next trailing edge of the pulse, the T1GGO/  
DONE bit will automatically be cleared. No other gate  
events will be allowed to increment Timer1 until the  
T1GGO/DONE bit is once again set in software. See  
Figure 19-5 for timing details.  
DS40001723D-page 162  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
The device will wake-up on an overflow and execute  
the next instructions. If the GIE bit of the INTCON  
register is set, the device will call the Interrupt Service  
Routine.  
19.6 Timer1 Interrupt  
The Timer1 register pair (TMR1H:TMR1L) increments  
to FFFFh and rolls over to 0000h. When Timer1 rolls  
over, the Timer1 interrupt flag bit of the PIR1 register is  
set. To enable the interrupt on rollover, you must set  
these bits:  
Timer1 oscillator will continue to operate in Sleep  
regardless of the T1SYNC bit setting.  
• TMR1ON bit of the T1CON register  
• TMR1IE bit of the PIE1 register  
• PEIE bit of the INTCON register  
• GIE bit of the INTCON register  
19.7.1  
ALTERNATE PIN LOCATIONS  
This module incorporates I/O pins that can be moved to  
other locations with the use of the Alternate Pin Func-  
tion register, APFCON. To determine which pins can be  
moved and what their default locations are upon a  
Reset, see Section 11.1 “Alternate Pin Function” for  
more information.  
The interrupt is cleared by clearing the TMR1IF bit in  
the Interrupt Service Routine.  
Note:  
The TMR1H:TMR1L register pair and the  
TMR1IF bit should be cleared before  
enabling interrupts.  
19.7 Timer1 Operation During Sleep  
Timer1 can only operate during Sleep when set up in  
Asynchronous Counter mode. In this mode, an external  
crystal or clock source can be used to increment the  
counter. To set up the timer to wake the device:  
• TMR1ON bit of the T1CON register must be set  
• TMR1IE bit of the PIE1 register must be set  
• PEIE bit of the INTCON register must be set  
• T1SYNC bit of the T1CON register must be set  
• TMR1CS bits of the T1CON register must be  
configured  
FIGURE 19-2:  
TIMER1 INCREMENTING EDGE  
T1CKI = 1  
when TMR1  
is Enabled  
T1CKI = 0  
when TMR1  
is Enabled  
Note 1: Arrows indicate counter increments.  
2: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising  
edge of the clock.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 163  
 
PIC12(L)F1571/2  
FIGURE 19-3:  
TIMER1 GATE ENABLE MODE  
TMR1GE  
T1GPOL  
t1g_in  
T1CKI  
T1GVAL  
Timer1  
N
N + 1  
N + 2  
N + 3  
N + 4  
FIGURE 19-4:  
TIMER1 GATE TOGGLE MODE  
TMR1GE  
T1GPOL  
T1GTM  
t1g_in  
T1CKI  
T1GVAL  
Timer1  
N
N + 1 N + 2 N + 3  
N + 4  
N + 5 N + 6 N + 7  
N + 8  
DS40001723D-page 164  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 19-5:  
TIMER1 GATE SINGLE-PULSE MODE  
TMR1GE  
T1GPOL  
T1GSPM  
T1GGO/  
DONE  
Cleared by Hardware on  
Falling Edge of T1GVAL  
Set by Software  
Counting Enabled on  
Rising Edge of T1G  
t1g_in  
T1CKI  
T1GVAL  
N
N + 1  
N + 2  
Timer1  
Cleared by  
Software  
TMR1GIF  
Set by Hardware on  
Falling Edge of T1GVAL  
Cleared by Software  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 165  
PIC12(L)F1571/2  
FIGURE 19-6:  
TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE  
TMR1GE  
T1GPOL  
T1GSPM  
T1GTM  
T1GGO/  
DONE  
Cleared by Hardware on  
Falling Edge of T1GVAL  
Set by Software  
Counting Enabled on  
Rising Edge of T1G  
t1g_in  
T1CKI  
T1GVAL  
Timer1  
N
N + 1 N + 2 N + 3  
N + 4  
Set by Hardware on  
Falling Edge of T1GVAL  
Cleared by  
Software  
TMR1GIF  
Cleared by Software  
DS40001723D-page 166  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
19.8 Register Definitions: Timer1 Control  
REGISTER 19-1: T1CON: TIMER1 CONTROL REGISTER  
R/W-0/u  
R/W-0/u  
R/W-0/u  
R/W-0/u  
U-0  
R/W-0/u  
T1SYNC  
U-0  
R/W-0/u  
TMR1CS<1:0>  
T1CKPS<1:0>  
TMR1ON  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
bit 5-4  
TMR1CS<1:0>: Timer1 Clock Source Select bits  
11= Timer1 clock source is the LFINTOSC  
10= Timer1 clock source is the T1CKI pin (on the rising edge)  
01= Timer1 clock source is the system clock (FOSC)  
00= Timer1 clock source is the instruction clock (FOSC/4)  
T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits  
11= 1:8 Prescale value  
10= 1:4 Prescale value  
01= 1:2 Prescale value  
00= 1:1 Prescale value  
bit 3  
bit 2  
Unimplemented: Read as ‘0’  
T1SYNC: Timer1 Synchronization Control bit  
1= Does not synchronize the asynchronous clock input  
0= Synchronizes the asynchronous clock input with the system clock (FOSC)  
bit 1  
bit 0  
Unimplemented: Read as ‘0’  
TMR1ON: Timer1 On bit  
1= Enables Timer1  
0= Stops Timer1 and clears Timer1 gate flip-flop  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 167  
 
PIC12(L)F1571/2  
REGISTER 19-2: T1GCON: TIMER1 GATE CONTROL REGISTER  
R/W-0/u  
R/W-0/u  
T1GPOL  
R/W-0/u  
T1GTM  
R/W-0/u  
R/W/HC-0/u  
R-x/x  
R/W-0/u  
R/W-0/u  
TMR1GE  
T1GSPM  
T1GGO/  
DONE  
T1GVAL  
T1GSS<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
HC = Hardware Clearable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
bit 7  
TMR1GE: Timer1 Gate Enable bit  
If TMR1ON = 0:  
This bit is ignored.  
If TMR1ON = 1:  
1= Timer1 counting is controlled by the Timer1 gate function  
0= Timer1 counts regardless of Timer1 gate function  
bit 6  
bit 5  
T1GPOL: Timer1 Gate Polarity bit  
1= Timer1 gate is active-high (Timer1 counts when gate is high)  
0= Timer1 gate is active-low (Timer1 counts when gate is low)  
T1GTM: Timer1 Gate Toggle Mode bit  
1= Timer1 Gate Toggle mode is enabled  
0= Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared  
Timer1 gate flip-flop toggles on every rising edge.  
bit 4  
T1GSPM: Timer1 Gate Single-Pulse Mode bit  
1= Timer1 Gate Single-Pulse mode is enabled and is controlling Timer1 gate  
0= Timer1 Gate Single-Pulse mode is disabled  
bit 3  
T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit  
1= Timer1 gate single-pulse acquisition is ready, waiting for an edge  
0= Timer1 gate single-pulse acquisition has completed or has not been started  
bit 2  
T1GVAL: Timer1 Gate Value Status bit  
Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L. Unaffected  
by Timer1 Gate Enable bit (TMR1GE).  
bit 1-0  
T1GSS<1:0>: Timer1 Gate Source Select bits  
11= Reserved  
10= Comparator 1 optionally synchronized output (C1OUT_sync)  
01= Timer0 overflow output (T0_overflow)  
00= Timer1 gate pin (T1G)  
DS40001723D-page 168  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
TABLE 19-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELA  
ANSA4  
ANSA<2:0>  
114  
110  
74  
APFCON RXDTSEL CWGASEL CWGBSEL  
T1GSEL TXCKSEL P2SEL  
P1SEL  
IOCIF  
INTCON  
OSCSTAT  
PIE1  
GIE  
PEIE  
PLLR  
ADIE  
ADIF  
TMR0IE  
INTE  
IOCIE  
HFIOFL  
TMR0IF  
INTF  
OSTS  
HFIOFR  
TXIE(2)  
TXIF(2)  
MFIOFR LFIOFR HFIOFS  
56  
TMR1GIE  
TMR1GIF  
RCIE(2)  
RCIF(2)  
TMR2IE TMR1IE  
TMR2IF TMR1IF  
75  
PIR1  
79  
TMR1H  
TMR1L  
TRISA  
T1CON  
Holding Register for the Most Significant Byte of the 16-bit TMR1 Count  
163*  
163*  
113  
167  
168  
Holding Register for the Least Significant Byte of the 16-bit TMR1 Count  
(1)  
TRISA<5:4>  
TRISA<2:0>  
TMR1CS<1:0>  
T1CKPS<1:0>  
T1SYNC  
T1GVAL  
TMR1ON  
T1GCON TMR1GE T1GPOL  
T1GTM  
T1GSPM T1GGO/  
DONE  
T1GSS<1:0>  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by the Timer1 module.  
Page provides register information.  
*
Note 1: Unimplemented, read as ‘1’.  
2: PIC12(L)F1572 only.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 169  
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 170  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
20.0 TIMER2 MODULE  
The Timer2 module incorporates the following features:  
• 8-Bit Timer and Period registers (TMR2 and PR2,  
respectively)  
• Readable and writable (both registers)  
• Software programmable prescaler (1:1, 1:4, 1:16  
and 1:64)  
• Software programmable postscaler (1:1 to 1:16)  
• Interrupt on TMR2 match with PR2  
See Figure 20-1 for a block diagram of Timer2.  
FIGURE 20-1:  
TIMER2 BLOCK DIAGRAM  
Rev. 10-000019A  
7/30/2013  
T2_match  
To Peripherals  
Prescaler  
1:1, 1:4, 1:16, 1:64  
R
TMR2  
Fosc/4  
2
Postscaler  
1:1 to 1:16  
set bit  
TMR2IF  
Comparator  
PR2  
T2CKPS<1:0>  
4
T2OUTPS<3:0>  
FIGURE 20-2:  
TIMER2 TIMING DIAGRAM  
Rev. 10-000020A  
7/30/2013  
FOSC/4  
Prescale  
PR2  
1:4  
0x03  
0x03  
0x00  
0x01  
0x02  
0x00  
0x01  
0x02  
TMR2  
Pulse Width(1)  
T2_match  
Note 1: The Pulse Width of T2_match is equal to the scaled input of TMR2.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 171  
 
 
PIC12(L)F1571/2  
20.1 Timer2 Operation  
20.3 Timer2 Output  
The clock input to the Timer2 module is the system  
instruction clock (FOSC/4).  
The output of TMR2 is T2_match.  
The T2_match signal is synchronous with the system  
clock. Figure 20-3 shows two examples of the timing of  
the T2_match signal relative to FOSC and prescale  
value, T2CKPS<1:0>. The upper diagram illustrates 1:1  
prescale timing and the lower diagram, 1:X prescale  
timing.  
TMR2 increments from 00h on each clock edge.  
A 4-bit counter/prescaler on the clock input allows direct  
input, divide-by-4 and divide-by-16 prescale options.  
These options are selected by the prescaler control bits,  
T2CKPS<1:0> of the T2CON register. The value of  
TMR2 is compared to that of the Period register, PR2, on  
each clock cycle. When the two values match, the  
comparator generates a match signal as the timer  
output. This signal also resets the value of TMR2 to 00h  
on the next cycle and drives the output counter/  
postscaler (see Section 20.2 “Timer2 Interrupt”).  
FIGURE 20-3:  
T2_MATCH TIMING  
DIAGRAM  
Rev. 10-000021A  
7/30/2013  
Q1  
Q2  
Q3  
Q4  
Q1  
The TMR2 and PR2 registers are both directly readable  
and writable. The TMR2 register is cleared on any  
device Reset, whereas the PR2 register initializes to  
FFh. Both the prescaler and postscaler counters are  
cleared on the following events:  
FOSC  
TCY1  
FOSC/4  
TMR2 = PR2  
match  
TMR2 = 0  
• A write to the TMR2 register  
• A write to the T2CON register  
• Power-on Reset (POR)  
• Brown-out Reset (BOR)  
• MCLR Reset  
T2_match  
PRESCALE = 1:1  
(T2CKPS<1:0> = 00)  
...  
TCY1  
TCY2  
TCYX  
• Watchdog Timer (WDT) Reset  
• Stack Overflow Reset  
• Stack Underflow Reset  
RESETInstruction  
...  
...  
FOSC/4  
T2_match  
TMR2 = PR2  
match  
TMR2 = 0  
Note:  
TMR2 is not cleared when T2CON is  
written.  
PRESCALE = 1:X  
(T2CKPS<1:0> = 01,10,11)  
20.2 Timer2 Interrupt  
20.4 Timer2 Operation During Sleep  
Timer2 can also generate an optional device interrupt.  
The Timer2 output signal (T2_match) provides the input  
for the 4-bit counter/postscaler. This counter generates  
the TMR2 match interrupt flag which is latched in  
TMR2IF of the PIR1 register. The interrupt is enabled by  
setting the TMR2 Match Interrupt Enable bit, TMR2IE of  
the PIE1 register.  
Timer2 cannot be operated while the processor is in  
Sleep mode. The contents of the TMR2 and PR2  
registers will remain unchanged while the processor is  
in Sleep mode.  
A range of 16 postscale options (from 1:1 through 1:16  
inclusive) can be selected with the postscaler control  
bits, T2OUTPS<3:0>, of the T2CON register.  
DS40001723D-page 172  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
20.5 Register Definitions: Timer2 Control  
REGISTER 20-1: T2CON: TIMER2 CONTROL REGISTER  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
T2OUTPS<3:0>  
TMR2ON  
T2CKPS<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-3  
T2OUTPS<3:0>: Timer2 Output Postscaler Select bits  
0000= 1:1 Postscaler  
0001= 1:2 Postscaler  
0010= 1:3 Postscaler  
0011= 1:4 Postscaler  
0100= 1:5 Postscaler  
0101= 1:6 Postscaler  
0110= 1:7 Postscaler  
0111= 1:8 Postscaler  
1000= 1:9 Postscaler  
1001= 1:10 Postscaler  
1010= 1:11 Postscaler  
1011= 1:12 Postscaler  
1100= 1:13 Postscaler  
1101= 1:14 Postscaler  
1110= 1:15 Postscaler  
1111= 1:16 Postscaler  
bit 2  
TMR2ON: Timer2 On bit  
1= Timer2 is on  
0= Timer2 is off  
bit 1-0  
T2CKPS<1:0>: Timer2 Clock Prescale Select bits  
00= Prescaler is 1  
01= Prescaler is 4  
10= Prescaler is 16  
11= Prescaler is 64  
TABLE 20-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
INTCON  
PIE1  
GIE  
PEIE  
ADIE  
ADIF  
TMR0IE  
RCIE(1)  
RCIF(1)  
INTE  
IOCIE  
TMR0IF  
INTF  
IOCIF  
TMR1IE  
TMR1IF  
74  
75  
TMR1GIE  
TMR1GIF  
TXIE(1)  
TXIF(1)  
TMR2IE  
TMR2IF  
PIR1  
78  
PR2  
Timer2 Module Period Register  
T2OUTPS<3:0>  
Holding Register for the 8-bit TMR2 Count  
171*  
173  
171*  
T2CON  
TMR2  
TMR2ON  
T2CKPS<1:0>  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for Timer2 module.  
Page provides register information.  
*
Note 1: PIC12(L)F1572 only.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 173  
 
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 174  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
The EUSART module includes the following capabilities:  
21.0 ENHANCED UNIVERSAL  
SYNCHRONOUS  
• Full-duplex asynchronous transmit and receive  
• Two-character input buffer  
ASYNCHRONOUS RECEIVER  
TRANSMITTER (EUSART)  
• One-character output buffer  
• Programmable 8-bit or 9-bit character length  
• Address detection in 9-bit mode  
The Enhanced Universal Synchronous Asynchronous  
Receiver Transmitter (EUSART) module is a serial I/O  
communications peripheral. It contains all the clock  
generators, shift registers and data buffers necessary  
to perform an input or output serial data transfer, inde-  
pendent of device program execution. The EUSART,  
also known as a Serial Communications Interface  
(SCI), can be configured as a full-duplex asynchronous  
system or half-duplex synchronous system.  
Full-Duplex mode is useful for communications with  
peripheral systems, such as CRT terminals and per-  
sonal computers. Half-Duplex Synchronous mode is  
intended for communications with peripheral devices,  
such as A/D or D/A integrated circuits, serial EEPROMs  
or other microcontrollers. These devices typically do not  
have internal clocks for baud rate generation and require  
the external clock signal provided by a master  
synchronous device.  
• Input buffer overrun error detection  
• Received character framing error detection  
• Half-duplex synchronous master  
• Half-duplex synchronous slave  
• Programmable clock polarity in synchronous  
modes  
• Sleep operation  
The EUSART module implements the following  
additional features, making it ideally suited for use in  
Local Interconnect Network (LIN) bus systems:  
• Automatic detection and calibration of the baud rate  
• Wake-up on Break reception  
• 13-bit Break character transmit  
Block diagrams of the EUSART transmitter and  
receiver are shown in Figure 21-1 and Figure 21-2.  
FIGURE 21-1:  
EUSART TRANSMIT BLOCK DIAGRAM  
Rev. 10-000113B  
7/14/2015  
Data bus  
TXIE  
TXIF  
8
Interrupt  
TXREG register  
8
MSb  
(8)  
LSb  
0
TX/CK  
Pin Buffer  
and Control  
Transmit Shift Register (TSR)  
TXEN  
TRMT  
Baud Rate Generator  
FOSC  
÷ n  
TX9  
n
BRG16  
TX9D  
+ 1  
Multiplier  
SYNC  
x4  
x16 x64  
1
x
1
1
0
1
0
0
0
1
0
0
0
BRGH  
x
x
SPBRGH SPBRGL  
BRG16  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 175  
 
PIC12(L)F1571/2  
FIGURE 21-2:  
EUSART RECEIVE BLOCK DIAGRAM  
Rev. 10-000114A  
7/30/2013  
CREN  
OERR  
RCIDL  
SPEN  
RSR Register  
MSb  
LSb  
RX/DT pin  
Pin Buffer  
and Control  
Data  
Recovery  
Stop (8)  
7
1
0
Start  
Baud Rate Generator  
FOSC  
÷ n  
RX9  
BRG16  
n
+ 1  
Multiplier  
SYNC  
x4  
x16 x64  
1
x
1
1
0
1
0
0
0
1
0
0
0
BRGH  
x
x
SPBRGH SPBRGL  
FIFO  
BRG16  
FERR  
RX9D  
RCREG Register  
8
Data Bus  
RCIF  
RCIE  
Interrupt  
The operation of the EUSART module is controlled  
through three registers:  
These registers are detailed in Register 21-1,  
Register 21-2 and Register 21-3, respectively.  
• Transmit Status and Control (TXSTA)  
• Receive Status and Control (RCSTA)  
• Baud Rate Control (BAUDCON)  
When the receiver or transmitter section is not enabled,  
then the corresponding RX or TX pin may be used for  
general purpose input and output.  
DS40001723D-page 176  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
21.1.1.2  
Transmitting Data  
21.1 EUSART Asynchronous Mode  
A transmission is initiated by writing a character to the  
TXREG register. If this is the first character, or the previ-  
ous character has been completely flushed from the  
TSR, the data in the TXREG is immediately transferred  
to the TSR register. If the TSR still contains all or part of  
a previous character, the new character data is held in  
the TXREG until the Stop bit of the previous character  
has been transmitted. The pending character in the  
TXREG is then transferred to the TSR in one TCY  
immediately following the Stop bit transmission. The  
transmission of the Start bit, data bits and Stop bit  
sequence commences immediately following the  
transfer of the data to the TSR from the TXREG.  
The EUSART transmits and receives data using the  
standard Non-Return-to-Zero (NRZ) format. NRZ is  
implemented with two levels: a VOH mark state which  
represents a ‘1’ data bit, and a VOL space state which  
represents a ‘0’ data bit. NRZ refers to the fact that con-  
secutively transmitted data bits of the same value stay  
at the output level of that bit without returning to a neutral  
level between each bit transmission. An NRZ transmis-  
sion port Idles in the mark state. Each character  
transmission consists of one Start bit, followed by eight  
or nine data bits and is always terminated by one or  
more Stop bits. The Start bit is always a space and the  
Stop bits are always marks. The most common data for-  
mat is eight bits. Each transmitted bit persists for a  
period of 1/(Baud Rate). An on-chip dedicated  
8-bit/16-bit Baud Rate Generator is used to derive  
standard baud rate frequencies from the system  
oscillator. See Table 21-5 for examples of baud rate  
configurations.  
21.1.1.3  
Transmit Data Polarity  
The polarity of the transmit data can be controlled with  
the SCKP bit of the BAUDCON register. The default  
state of this bit is ‘0’ which selects high true transmit Idle  
and data bits. Setting the SCKP bit to ‘1’ will invert the  
transmit data resulting in low true Idle and data bits. The  
SCKP bit controls transmit data polarity in Asynchro-  
nous mode only. In Synchronous mode, the SCKP bit  
has a different function. See Section 21.5.1.2 “Clock  
Polarity”.  
The EUSART transmits and receives the LSb first. The  
EUSART’s transmitter and receiver are functionally  
independent, but share the same data format and baud  
rate. Parity is not supported by the hardware, but can be  
implemented in software and stored as the ninth data bit.  
21.1.1.4  
Transmit Interrupt Flag  
21.1.1  
EUSART ASYNCHRONOUS  
TRANSMITTER  
The TXIF interrupt flag bit of the PIR1 register is set  
whenever the EUSART transmitter is enabled and no  
character is being held for transmission in the TXREG.  
In other words, the TXIF bit is only clear when the TSR  
is busy with a character and a new character has been  
queued for transmission in the TXREG. The TXIF flag bit  
is not cleared immediately upon writing TXREG. TXIF  
becomes valid in the second instruction cycle following  
the write execution. Polling TXIF immediately following  
the TXREG write will return invalid results. The TXIF bit  
is read-only, it cannot be set or cleared by software.  
The EUSART transmitter block diagram is shown in  
Figure 21-1. The heart of the transmitter is the serial  
Transmit Shift Register (TSR), which is not directly  
accessible by software. The TSR obtains its data from  
the transmit buffer, which is the TXREG register.  
21.1.1.1  
Enabling the Transmitter  
The EUSART transmitter is enabled for asynchronous  
operations by configuring the following three control bits:  
• TXEN = 1  
• SYNC = 0  
• SPEN = 1  
The TXIF interrupt can be enabled by setting the TXIE  
interrupt enable bit of the PIE1 register. However, the  
TXIF flag bit will be set whenever the TXREG is empty,  
regardless of the state of the TXIE enable bit.  
All other EUSART control bits are assumed to be in  
their default state.  
To use interrupts when transmitting data, set the TXIE  
bit only when there is more data to send. Clear the  
TXIE interrupt enable bit upon writing the last character  
of the transmission to the TXREG.  
Setting the TXEN bit of the TXSTA register enables the  
transmitter circuitry of the EUSART. Clearing the SYNC  
bit of the TXSTA register configures the EUSART for  
asynchronous operation. Setting the SPEN bit of the  
RCSTA register enables the EUSART and automatically  
configures the TX/CK I/O pin as an output. If the TX/CK  
pin is shared with an analog peripheral, the analog I/O  
function must be disabled by clearing the corresponding  
ANSELx bit.  
Note:  
The TXIF transmitter interrupt flag is set  
when the TXEN enable bit is set.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 177  
 
PIC12(L)F1571/2  
21.1.1.5  
TSR Status  
21.1.1.7  
Asynchronous Transmission Setup  
The TRMT bit of the TXSTA register indicates the  
status of the TSR register. This is a read-only bit. The  
TRMT bit is set when the TSR register is empty and is  
cleared when a character is transferred to the TSR  
register from the TXREG. The TRMT bit remains clear  
until all bits have been shifted out of the TSR register.  
No interrupt logic is tied to this bit, so the user has to  
poll this bit to determine the TSR status.  
1. Initialize the SPBRGH/SPBRGL register pair,  
and the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 21.4 “EUSART  
Baud Rate Generator (BRG)”).  
2. Enable the asynchronous serial port by clearing  
the SYNC bit and setting the SPEN bit.  
3. If 9-bit transmission is desired, set the TX9 con-  
trol bit. A set ninth data bit will indicate that the  
eight Least Significant data bits are an address  
when the receiver is set for address detection.  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
4. Set the SCKP bit if inverted transmit is desired.  
21.1.1.6  
Transmitting 9-Bit Characters  
5. Enable the transmission by setting the TXEN  
control bit. This will cause the TXIF interrupt bit  
to be set.  
The EUSART supports 9-bit character transmissions.  
When the TX9 bit of the TXSTA register is set, the  
EUSART will shift nine bits out for each character trans-  
mitted. The TX9D bit of the TXSTA register is the ninth  
and Most Significant data bit. When transmitting 9-bit  
data, the TX9D data bit must be written before writing  
the eight Least Significant bits into the TXREG. All nine  
bits of data will be transferred to the TSR register  
immediately after the TXREG is written.  
6. If interrupts are desired, set the TXIE interrupt  
enable bit of the PIE1 register. An interrupt will  
occur immediately provided that the GIE and  
PEIE bits of the INTCON register are also set.  
7. If 9-bit transmission is selected, the ninth bit  
should be loaded into the TX9D data bit.  
8. Load 8-bit data into the TXREG register. This  
will start the transmission.  
A special 9-Bit Address mode is available for use with  
multiple receivers. See Section 21.1.2.7 “Address  
Detection” for more information on this mode.  
FIGURE 21-3:  
ASYNCHRONOUS TRANSMISSION  
Write to TXREG  
Word 1  
BRG Output  
(Shift Clock)  
Start bit  
bit 0  
bit 1  
Word 1  
bit 7/8  
TX/CK Pin  
Stop bit  
1 TCY  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
Word 1  
Transmit Shift Reg.  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
FIGURE 21-4:  
ASYNCHRONOUS TRANSMISSION (BACK-TO-BACK)  
Write to TXREG  
BRG Output  
(Shift Clock)  
Word 2  
Start bit  
Word 1  
Start bit  
Word 2  
TX/CK Pin  
bit 0  
bit 1  
bit 7/8  
bit 0  
Stop bit  
1 TCY  
Word 1  
TXIF bit  
(Transmit Buffer  
Reg. Empty Flag)  
1 TCY  
Word 1  
Transmit Shift Reg.  
Word 2  
Transmit Shift Reg.  
TRMT bit  
(Transmit Shift  
Reg. Empty Flag)  
Note: This timing diagram shows two consecutive transmissions.  
DS40001723D-page 178  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 21-1: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION  
Register  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page  
BAUDCON  
INTCON  
PIE1  
ABDOVF  
GIE  
RCIDL  
PEIE  
ADIE  
ADIF  
RX9  
SCKP  
INTE  
TXIE(1)  
TXIF(1)  
CREN  
BRG16  
IOCIE  
TMR0IF  
WUE  
INTF  
ABDEN  
IOCIF  
186  
74  
TMR0IE  
RCIE(1)  
RCIF(1)  
SREN  
TMR1GIE  
TMR1GIF  
SPEN  
TMR2IE TMR1IE  
TMR2IF TMR1IF  
75  
PIR1  
78  
RCSTA  
SPBRGL  
SPBRGH  
TXREG  
TXSTA  
ADDEN  
FERR  
OERR  
RX9D  
185*  
187*  
187*  
177  
184  
BRG<7:0>  
BRG<15:8>  
EUSART Transmit Data Register  
CSRC TX9 TXEN  
SYNC  
SENDB  
BRGH  
TRMT  
TX9D  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for asynchronous transmission.  
Page provides register information.  
*
Note 1: PIC12(L)F1572 only.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 179  
PIC12(L)F1571/2  
21.1.2  
EUSART ASYNCHRONOUS  
RECEIVER  
21.1.2.2  
Receiving Data  
The receiver data recovery circuit initiates character  
reception on the falling edge of the first bit. The first bit,  
also known as the Start bit, is always a zero. The data  
recovery circuit counts one-half bit time to the center of  
the Start bit and verifies that the bit is still a zero. If it is  
not a zero then the data recovery circuit aborts charac-  
ter reception, without generating an error, and resumes  
looking for the falling edge of the Start bit. If the Start bit  
zero verification succeeds, then the data recovery  
circuit counts a full bit time to the center of the next bit.  
The bit is then sampled by a majority detect circuit and  
the resulting ‘0’ or ‘1’ is shifted into the RSR. This  
repeats until all data bits have been sampled and  
shifted into the RSR. One final bit time is measured and  
the level sampled. This is the Stop bit, which is always  
a ‘1’. If the data recovery circuit samples a ‘0’ in the  
Stop bit position then a framing error is set for this char-  
acter; otherwise, the framing error is cleared for this  
character. See Section 21.1.2.4 “Receive Framing  
Error” for more information on framing errors.  
The Asynchronous mode is typically used in RS-232  
systems. The receiver block diagram is shown in  
Figure 21-2. The data is received on the RX/DT pin and  
drives the data recovery block. The data recovery block  
is actually a high-speed shifter operating at 16 times  
the baud rate, whereas the serial Receive Shift  
Register (RSR) operates at the bit rate. When all eight  
or nine bits of the character have been shifted in, they  
are immediately transferred to  
a two character  
First-In-First-Out (FIFO) memory. The FIFO buffering  
allows reception of two complete characters and the  
start of a third character before software must start ser-  
vicing the EUSART receiver. The FIFO and RSR regis-  
ters are not directly accessible by software. Access to  
the received data is via the RCREG register.  
21.1.2.1  
Enabling the Receiver  
The EUSART receiver is enabled for asynchronous  
operation by configuring the following three control bits:  
Immediately after all data bits and the Stop bit have  
been received, the character in the RSR is transferred  
to the EUSART receive FIFO and the RCIF interrupt  
flag bit of the PIR1 register is set. The top character in  
the FIFO is transferred out of the FIFO by reading the  
RCREG register.  
• CREN = 1  
• SYNC = 0  
• SPEN = 1  
All other EUSART control bits are assumed to be in  
their default state.  
Setting the CREN bit of the RCSTA register enables the  
receiver circuitry of the EUSART. Clearing the SYNC bit  
of the TXSTA register configures the EUSART for asyn-  
chronous operation. Setting the SPEN bit of the RCSTA  
register enables the EUSART. The programmer must  
set the corresponding TRIS bit to configure the RX/DT  
I/O pin as an input.  
Note:  
If the receive FIFO is overrun, no  
additional characters will be received  
until the overrun condition is cleared. See  
Section 21.1.2.5 “Receive Overrun  
Error” for more information on overrun  
errors.  
21.1.2.3  
Receive Interrupts  
Note:  
If the RX/DT function is on an analog pin,  
the corresponding ANSELx bit must be  
cleared for the receiver to function.  
The RCIF interrupt flag bit of the PIR1 register is set  
whenever the EUSART receiver is enabled and there is  
an unread character in the receive FIFO. The RCIF  
interrupt flag bit is read-only, it cannot be set or cleared  
by software.  
RCIF interrupts are enabled by setting all of the  
following bits:  
• RCIE, Interrupt Enable bit of the PIE1 register  
• PEIE, Peripheral Interrupt Enable bit of the  
INTCON register  
• GIE, Global Interrupt Enable bit of the INTCON  
register  
The RCIF interrupt flag bit will be set when there is an  
unread character in the FIFO, regardless of the state of  
interrupt enable bits.  
DS40001723D-page 180  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
21.1.2.4  
Receive Framing Error  
21.1.2.6  
Receiving 9-Bit Characters  
Each character in the receive FIFO buffer has a  
corresponding framing error status bit. A framing error  
indicates that a Stop bit was not seen at the expected  
time. The framing error status is accessed via the  
FERR bit of the RCSTA register. The FERR bit rep-  
resents the status of the top unread character in the  
receive FIFO. Therefore, the FERR bit must be read  
before reading the RCREG.  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set, the EUSART  
will shift nine bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth and Most Significant data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the eight Least Significant bits  
from the RCREG.  
The FERR bit is read-only and only applies to the top  
unread character in the receive FIFO. A framing error  
(FERR = 1) does not preclude reception of additional  
characters. It is not necessary to clear the FERR bit.  
Reading the next character from the FIFO buffer will  
advance the FIFO to the next character and the next  
corresponding framing error.  
21.1.2.7  
Address Detection  
A special Address Detection mode is available for use  
when multiple receivers share the same transmission  
line, such as in RS-485 systems. Address detection is  
enabled by setting the ADDEN bit of the RCSTA  
register.  
The FERR bit can be forced clear by clearing the SPEN  
bit of the RCSTA register which resets the EUSART.  
Clearing the CREN bit of the RCSTA register does not  
affect the FERR bit. A framing error by itself does not  
generate an interrupt.  
Address detection requires 9-bit character reception.  
When address detection is enabled, only characters  
with the ninth data bit set will be transferred to the  
receive FIFO buffer, thereby setting the RCIF interrupt  
bit. All other characters will be ignored.  
Note:  
If all receive characters in the receive  
FIFO have framing errors, repeated reads  
of the RCREG will not clear the FERR bit.  
Upon receiving an address character, user software  
determines if the address matches its own. Upon  
address match, user software must disable address  
detection by clearing the ADDEN bit before the next  
Stop bit occurs. When user software detects the end of  
the message, determined by the message protocol  
used, software places the receiver back into the  
Address Detection mode by setting the ADDEN bit.  
21.1.2.5  
Receive Overrun Error  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before the FIFO is accessed. When  
this happens the OERR bit of the RCSTA register is set.  
The characters already in the FIFO buffer can be read,  
but no additional characters will be received until the  
error is cleared. The error must be cleared by either  
clearing the CREN bit of the RCSTA register or by  
resetting the EUSART by clearing the SPEN bit of the  
RCSTA register.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 181  
PIC12(L)F1571/2  
21.1.2.8  
Asynchronous Reception Setup  
21.1.2.9  
9-Bit Address Detection Mode Setup  
1. Initialize the SPBRGH, SPBRGL register pair  
and the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 21.4 “EUSART  
Baud Rate Generator (BRG)”).  
This mode would typically be used in RS-485 systems.  
To set up an Asynchronous Reception with Address  
Detect Enable:  
1. Initialize the SPBRGH/SPBRGL register pair,  
and the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 21.4 “EUSART  
Baud Rate Generator (BRG)”).  
2. Clear the ANSELx bit for the RX pin (if applicable).  
3. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
2. Clear the ANSELx bit for the RX pin (if applicable).  
4. If interrupts are desired, set the RCIE bit of the  
PIE1 register, and the GIE and PEIE bits of the  
INTCON register.  
3. Enable the serial port by setting the SPEN bit.  
The SYNC bit must be clear for asynchronous  
operation.  
5. If 9-bit reception is desired, set the RX9 bit.  
6. Enable reception by setting the CREN bit.  
4. If interrupts are desired, set the RCIE bit of the  
PIE1 register, and the GIE and PEIE bits of the  
INTCON register.  
7. The RCIF interrupt flag bit will be set when a  
character is transferred from the RSR to the  
receive buffer. An interrupt will be generated if  
the RCIE interrupt enable bit was also set.  
5. Enable 9-bit reception by setting the RX9 bit.  
6. Enable address detection by setting the ADDEN  
bit.  
8. Read the RCSTA register to get the error flags  
and, if 9-bit data reception is enabled, the ninth  
data bit.  
7. Enable reception by setting the CREN bit.  
8. The RCIF interrupt flag bit will be set when a  
character with the ninth bit set is transferred  
from the RSR to the receive buffer. An interrupt  
will be generated if the RCIE interrupt enable bit  
was also set.  
9. Get the received eight Least Significant data bits  
from the receive buffer by reading the RCREG  
register.  
10. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
9. Read the RCSTA register to get the error flags.  
The ninth data bit will always be set.  
10. Get the received eight Least Significant data bits  
from the receive buffer by reading the RCREG  
register. Software determines if this is the  
device’s address.  
11. If an overrun occurred, clear the OERR flag by  
clearing the CREN receiver enable bit.  
12. If the device has been addressed, clear the  
ADDEN bit to allow all received data into the  
receive buffer and generate interrupts.  
FIGURE 21-5:  
ASYNCHRONOUS RECEPTION  
Start  
bit  
Start  
bit  
Start  
bit  
RX/DT Pin  
bit 7/8  
bit 7/8  
bit 0 bit 1  
Stop  
bit  
Stop  
bit  
Stop  
bit  
bit 0  
bit 7/8  
Rcv Shift Reg.  
Rcv Buffer Reg.  
Word 2  
RCREG  
Word 1  
RCREG  
RCIDL  
Read Rcv  
Buffer Reg. (RCREG)  
RCIF  
(Interrupt Flag)  
OERR bit  
CREN  
Note:  
This timing diagram shows three words appearing on the RX input. The RCREG (receive buffer) is read after the third word,  
causing the OERR (overrun) bit to be set.  
DS40001723D-page 182  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 21-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION  
Register  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
on Page  
BAUDCON  
INTCON  
PIE1  
ABDOVF  
GIE  
RCIDL  
PEIE  
ADIE  
ADIF  
SCKP  
INTE  
TXIE(1)  
TXIF(1)  
BRG16  
IOCIE  
TMR0IF  
WUE  
INTF  
ABDEN  
IOCIF  
186  
74  
TMR0IE  
RCIE(1)  
RCIF(1)  
TMR1GIE  
TMR1GIF  
TMR2IE TMR1IE  
TMR2IF TMR1IF  
75  
PIR1  
78  
RCREG  
RCSTA  
SPBRGL  
SPBRGH  
TXSTA  
EUSART Receive Data Register  
180*  
185*  
187*  
187*  
184  
SPEN  
CSRC  
RX9  
TX9  
SREN  
CREN  
BRG<7:0>  
BRG<15:8>  
SYNC SENDB  
ADDEN  
FERR  
OERR  
RX9D  
TXEN  
BRGH  
TRMT  
TX9D  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for asynchronous reception.  
Page provides register information.  
*
Note 1: PIC12(L)F1572 only.  
The Auto-Baud Detect feature (see Section 21.4.1  
“Auto-Baud Detect”) can be used to compensate for  
changes in the INTOSC frequency.  
21.2 Clock Accuracy with  
Asynchronous Operation  
The factory calibrates the Internal Oscillator Block  
(INTOSC) output. However, the INTOSC frequency  
may drift as VDD or temperature changes, and this  
directly affects the asynchronous baud rate.  
There may not be fine enough resolution when  
adjusting the Baud Rate Generator to compensate for  
a gradual change in the peripheral clock frequency.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 183  
PIC12(L)F1571/2  
21.3 Register Definitions: EUSART Control  
REGISTER 21-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER  
R/W-/0  
CSRC  
R/W-0/0  
TX9  
R/W-0/0  
TXEN(1)  
R/W-0/0  
SYNC  
R/W-0/0  
SENDB  
R/W-0/0  
BRGH  
R-1/1  
R/W-0/0  
TX9D  
TRMT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
CSRC: Clock Source Select bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode:  
1= Master mode (clock generated internally from BRG)  
0= Slave mode (clock from external source)  
bit 6  
bit 5  
bit 4  
bit 3  
TX9: 9-Bit Transmit Enable bit  
1= Selects 9-bit transmission  
0= Selects 8-bit transmission  
TXEN: Transmit Enable bit(1)  
1= Transmit is enabled  
0= Transmit is disabled  
SYNC: EUSART Mode Select bit  
1= Synchronous mode  
0= Asynchronous mode  
SENDB: Send Break Character bit  
Asynchronous mode:  
1= Sends Sync Break on next transmission (cleared by hardware upon completion)  
0= Sync Break transmission completed  
Synchronous mode:  
Don’t care.  
bit 2  
BRGH: High Baud Rate Select bit  
Asynchronous mode:  
1= High speed  
0= Low speed  
Synchronous mode:  
Unused in this mode.  
bit 1  
bit 0  
TRMT: Transmit Shift Register Status bit  
1= TSR is empty  
0= TSR is full  
TX9D: Ninth bit of Transmit Data  
Can be address/data bit or a parity bit.  
Note 1: SREN/CREN overrides TXEN in Sync mode.  
DS40001723D-page 184  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
REGISTER 21-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER  
R/W-0/0  
SPEN  
R/W-0/0  
RX9  
R/W-0/0  
SREN  
R/W-0/0  
CREN  
R/W-0/0  
ADDEN  
R-0/0  
R-0/0  
R-0/0  
RX9D  
FERR  
OERR  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
bit 5  
SPEN: Serial Port Enable bit  
1= Serial port is enabled (configures RX/DT and TX/CK pins as serial port pins)  
0= Serial port is disabled (held in Reset)  
RX9: 9-Bit Receive Enable bit  
1= Selects 9-bit reception  
0= Selects 8-bit reception  
SREN: Single Receive Enable bit  
Asynchronous mode:  
Don’t care.  
Synchronous mode – Master:  
1= Enables single receive  
0= Disables single receive  
This bit is cleared after reception is complete.  
Synchronous mode – Slave:  
Don’t care.  
bit 4  
CREN: Continuous Receive Enable bit  
Asynchronous mode:  
1= Enables receiver  
0= Disables receiver  
Synchronous mode:  
1= Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)  
0= Disables continuous receive  
bit 3  
ADDEN: Address Detect Enable bit  
Asynchronous mode 9-bit (RX9 = 1):  
1= Enables address detection, enables interrupt and loads the receive buffer when RSR<8> is set  
0= Disables address detection, all bytes are received and ninth bit can be used as parity bit  
Asynchronous mode 8-bit (RX9 = 0):  
Don’t care.  
bit 2  
bit 1  
bit 0  
FERR: Framing Error bit  
1= Framing error (can be updated by reading RCREG register and receiving next valid byte)  
0= No framing error  
OERR: Overrun Error bit  
1= Overrun error (can be cleared by clearing bit, CREN)  
0= No overrun error  
RX9D: Ninth Bit of Received Data bit  
This can be address/data bit or a parity bit and must be calculated by user firmware.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 185  
 
PIC12(L)F1571/2  
REGISTER 21-3: BAUDCON: BAUD RATE CONTROL REGISTER  
R-0/0  
R-1/1  
U-0  
R/W-0/0  
SCKP  
R/W-0/0  
BRG16  
U-0  
R/W-0/0  
WUE  
R/W-0/0  
ABDEN  
ABDOVF  
RCIDL  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
ABDOVF: Auto-Baud Detect Overflow bit  
Asynchronous mode:  
1= Auto-baud timer overflowed  
0= Auto-baud timer did not overflow  
Synchronous mode:  
Don’t care.  
RCIDL: Receive Idle Flag bit  
Asynchronous mode:  
1= Receiver is Idle  
0= Start bit has been received and the receiver is receiving  
Synchronous mode:  
Don’t care.  
bit 5  
bit 4  
Unimplemented: Read as ‘0’  
SCKP: Synchronous Clock Polarity Select bit  
Asynchronous mode:  
1= Transmits inverted data to the TX/CK pin  
0= Transmits non-inverted data to the TX/CK pin  
Synchronous mode:  
1= Data is clocked on rising edge of the clock  
0= Data is clocked on falling edge of the clock  
bit 3  
BRG16: 16-Bit Baud Rate Generator bit  
1= 16-bit Baud Rate Generator is used  
0= 8-bit Baud Rate Generator is used  
bit 2  
bit 1  
Unimplemented: Read as ‘0’  
WUE: Wake-up Enable bit  
Asynchronous mode:  
1= Receiver is waiting for a falling edge; no character will be received, RCIF bit will be set, WUE will  
automatically clear after RCIF is set  
0= Receiver is operating normally  
Synchronous mode:  
Don’t care  
bit 0  
ABDEN: A.uto-Baud Detect Enable bit  
Asynchronous mode:  
1= Auto-Baud Detect mode is enabled (clears when auto-baud is complete)  
0= Auto-Baud Detect mode is disabled  
Synchronous mode:  
Don’t care.  
DS40001723D-page 186  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
EXAMPLE 21-1:  
CALCULATING BAUD  
RATE ERROR  
21.4 EUSART Baud Rate Generator  
(BRG)  
For a device with FOSC of 16 MHz, desired baud rate  
of 9600, Asynchronous mode, 8-bit BRG:  
The Baud Rate Generator (BRG) is an 8-bit or 16-bit  
timer that is dedicated to the support of both the asyn-  
chronous and synchronous EUSART operation. By  
default, the BRG operates in 8-bit mode. Setting the  
BRG16 bit of the BAUDCON register selects 16-bit  
mode.  
FOSC  
Desired Baud Rate = -----------------------------------------------------------------------  
64[SPBRGH:SPBRGL] + 1  
Solving for SPBRGH:SPBRGL:  
FOSC  
---------------------------------------------  
Desired Baud Rate  
X = --------------------------------------------- 1  
64  
The SPBRGH/SPBRGL register pair determines the  
period of the free-running baud rate timer. In Asynchro-  
nous mode, the multiplier of the baud rate period is  
determined by both the BRGH bit of the TXSTA register  
and the BRG16 bit of the BAUDCON register. In  
Synchronous mode, the BRGH bit is ignored.  
16000000  
-----------------------  
9600  
= ----------------------- 1  
64  
= 25.042= 25  
Table 21-3 contains the formulas for determining the  
baud rate. Example 21-1 provides a sample calculation  
for determining the baud rate and baud rate error.  
16000000  
Calculated Baud Rate = --------------------------  
6425 + 1  
Typical baud rates and error values for various  
Asynchronous modes have been computed for your  
convenience and are shown in Table 21-3. It may be  
advantageous to use the high baud rate (BRGH = 1) or  
the 16-bit BRG (BRG16 = 1) to reduce the baud rate  
error. The 16-bit BRG mode is used to achieve slow  
baud rates for fast oscillator frequencies.  
= 9615  
Calc. Baud Rate Desired Baud Rate  
Error = --------------------------------------------------------------------------------------------  
Desired Baud Rate  
9615 9600  
= ---------------------------------- = 0 . 1 6 %  
9600  
Writing a new value to the SPBRGH/SPBRGL register  
pair causes the BRG timer to be reset (or cleared). This  
ensures that the BRG does not wait for a timer overflow  
before outputting the new baud rate.  
If the system clock is changed during an active receive  
operation, a receive error or data loss may result. To  
avoid this problem, check the status of the RCIDL bit to  
make sure that the receive operation is Idle before  
changing the system clock.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 187  
 
 
 
PIC12(L)F1571/2  
TABLE 21-3: BAUD RATE FORMULAS  
Configuration Bits  
Baud Rate Formula  
BRG/EUSART Mode  
SYNC  
BRG16  
BRGH  
0
0
0
0
1
1
0
0
1
1
0
1
0
1
0
1
x
x
8-bit/Asynchronous  
8-bit/Asynchronous  
16-bit/Asynchronous  
16-bit/Asynchronous  
8-bit/Synchronous  
16-bit/Synchronous  
FOSC/[64 (n+1)]  
FOSC/[16 (n+1)]  
FOSC/[4 (n+1)]  
Legend: x= Don’t care; n = value of SPBRGH/SPBRGL register pair.  
TABLE 21-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCON  
RCSTA  
ABDOVF RCIDL  
SCKP  
CREN  
BRG16  
ADDEN  
WUE  
ABDEN  
RX9D  
186  
185  
SPEN  
CSRC  
RX9  
SREN  
FERR  
OERR  
SPBRGL  
SPBRGH  
TXSTA  
BRG<7:0>  
BRG<15:8>  
SYNC SENDB  
187*  
187*  
184  
TX9  
TXEN  
BRGH  
TRMT  
TX9D  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for the Baud Rate Generator.  
Page provides register information.  
*
DS40001723D-page 188  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 21-5: BAUD RATES FOR ASYNCHRONOUS MODES  
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 20.000 MHz  
FOSC = 18.432 MHz  
FOSC = 16.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
Value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Value  
(decimal)  
Value  
(decimal)  
Value  
(decimal)  
Error  
Error  
Error  
(decimal)  
300  
1200  
1221  
2404  
9470  
10417  
19.53k  
1.73  
0.16  
-1.36  
0.00  
1.73  
255  
129  
32  
239  
119  
29  
27  
14  
7
1202  
2404  
9615  
10417  
19.23k  
207  
103  
25  
143  
71  
17  
16  
8
1200  
2400  
9600  
10286  
19.20k  
57.60k  
0.00  
0.00  
0.00  
-1.26  
0.00  
0.00  
0.16  
0.16  
0.16  
0.00  
0.16  
1200  
2400  
9600  
10165  
19.20k  
57.60k  
0.00  
0.00  
0.00  
-2.42  
0.00  
0.00  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
29  
23  
15  
12  
2
SYNC = 0, BRGH = 0, BRG16 = 0  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
Value  
SPBRG  
Value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Value  
(decimal)  
Value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
1202  
2404  
9615  
10417  
0.16  
0.16  
0.16  
0.00  
103  
51  
12  
11  
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
300  
1200  
2400  
9600  
0.00  
0.00  
0.00  
0.00  
191  
47  
23  
5
300  
1202  
0.16  
0.16  
51  
12  
2400  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
0.00  
2
19.20k  
57.60k  
0.00  
0.00  
0
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 18.432 MHz FOSC = 16.000 MHz  
FOSC = 20.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
Value  
SPBRG  
Value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Value  
(decimal)  
Value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
71  
65  
35  
11  
5
9615  
10417  
19.23k  
56.82k  
0.16  
0.00  
0.16  
-1.36  
129  
119  
64  
9600  
10378  
19.20k  
57.60k  
115.2k  
0.00  
-0.37  
0.00  
0.00  
0.00  
119  
110  
59  
19  
9
9615  
10417  
19.23k  
58.82k  
111.1k  
0.16  
0.00  
0.16  
2.12  
-3.55  
103  
95  
51  
16  
8
9600  
10473  
19.20k  
57.60k  
115.2k  
0.00  
0.53  
0.00  
0.00  
0.00  
21  
115.2k 113.64k -1.36  
10  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 189  
PIC12(L)F1571/2  
TABLE 21-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 0  
FOSC = 8.000 MHz  
FOSC = 4.000 MHz  
FOSC = 3.6864 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Value  
(decimal)  
Value  
(decimal)  
Value  
(decimal)  
Value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
1202  
2404  
9615  
10417  
19.23k  
207  
103  
25  
191  
95  
23  
21  
11  
3
300  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
0.16  
0.16  
0.16  
0.00  
0.16  
1200  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2400  
2404  
9615  
10417  
19231  
55556  
0.16  
0.16  
0.00  
0.16  
-3.55  
207  
51  
47  
25  
8
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
23  
10473  
19.2k  
57.60k  
115.2k  
10417  
0.00  
12  
1
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 18.432 MHz FOSC = 16.000 MHz  
FOSC = 20.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
Value  
SPBRG  
Value  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Value  
(decimal)  
Value  
(decimal)  
Error  
Error  
(decimal)  
(decimal)  
300  
1200  
2400  
9600  
10417  
19.2k  
57.6k  
300.0  
1200  
-0.01  
-0.03  
-0.03  
0.16  
0.00  
0.16  
-1.36  
4166  
1041  
520  
129  
119  
64  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
-0.37  
0.00  
0.00  
0.00  
3839  
959  
479  
119  
110  
59  
300.03  
1200.5  
2398  
0.01  
0.04  
-0.08  
0.16  
0.00  
0.16  
2.12  
3332  
832  
416  
103  
95  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
2303  
575  
287  
71  
2399  
2400  
2400  
9615  
9600  
9615  
9600  
10417  
19.23k  
56.818  
10378  
19.20k  
57.60k  
115.2k  
10417  
19.23k  
58.82k  
10473  
19.20k  
57.60k  
115.2k  
65  
51  
35  
21  
19  
16  
11  
115.2k 113.636 -1.36  
10  
9
111.11k -3.55  
8
5
SYNC = 0, BRGH = 0, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
Value  
SPBRG  
Value  
SPBRG  
Value  
SPBRG  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Error  
Actual  
Rate  
%
Value  
(decimal)  
Error  
(decimal)  
(decimal)  
(decimal)  
300  
1200  
299.9  
1199  
-0.02  
-0.08  
0.16  
0.16  
0.00  
0.16  
-3.55  
1666  
416  
207  
51  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
767  
191  
95  
23  
21  
11  
3
300.5  
1202  
2404  
0.16  
0.16  
0.16  
207  
51  
25  
5
2400  
2404  
9615  
10417  
19.23k  
55556  
2400  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
47  
23  
10473  
19.20k  
57.60k  
115.2k  
10417  
0.00  
25  
12  
8
1
DS40001723D-page 190  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 21-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 20.000 MHz  
FOSC = 18.432 MHz FOSC = 16.000 MHz  
FOSC = 11.0592 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Value  
(decimal)  
Value  
(decimal)  
Value  
(decimal)  
Value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
300.0  
1200  
0.00  
-0.01  
0.02  
-0.03  
0.00  
0.16  
-0.22  
0.94  
16665  
4166  
2082  
520  
479  
259  
86  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.08  
0.00  
0.00  
0.00  
15359  
3839  
1919  
479  
441  
239  
79  
300.0  
1200.1  
2399.5  
9592  
0.00  
0.01  
-0.02  
-0.08  
0.00  
0.16  
0.64  
13332  
3332  
1666  
416  
383  
207  
68  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.16  
0.00  
0.00  
0.00  
9215  
2303  
1151  
287  
264  
143  
47  
2400  
2400  
2400  
2400  
9600  
9597  
9600  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
19.23k  
57.47k  
116.3k  
10425  
19.20k  
57.60k  
115.2k  
10417  
19.23k  
57.97k  
10433  
19.20k  
57.60k  
115.2k  
42  
39  
114.29k -0.79  
34  
23  
SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1  
FOSC = 4.000 MHz FOSC = 3.6864 MHz  
FOSC = 8.000 MHz  
FOSC = 1.000 MHz  
BAUD  
RATE  
SPBRG  
SPBRG  
SPBRG  
SPBRG  
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Actual  
Rate  
%
Value  
(decimal)  
Value  
(decimal)  
Value  
(decimal)  
Value  
(decimal)  
Error  
Error  
Error  
Error  
300  
1200  
300.0  
1200  
0.00  
-0.02  
0.04  
0.16  
0
6666  
1666  
832  
207  
191  
103  
34  
300.0  
1200  
0.01  
0.04  
0.08  
0.16  
0.00  
0.16  
2.12  
-3.55  
3332  
832  
416  
103  
95  
300.0  
1200  
0.00  
0.00  
0.00  
0.00  
0.53  
0.00  
0.00  
0.00  
3071  
767  
383  
95  
300.1  
1202  
2404  
9615  
10417  
19.23k  
0.04  
0.16  
0.16  
0.16  
0.00  
0.16  
832  
207  
103  
25  
2400  
2401  
2398  
2400  
9600  
9615  
9615  
9600  
10417  
19.2k  
57.6k  
115.2k  
10417  
19.23k  
57.14k  
117.6k  
10417  
19.23k  
58.82k  
111.1k  
10473  
19.20k  
57.60k  
115.2k  
87  
23  
0.16  
-0.79  
2.12  
51  
47  
12  
16  
15  
16  
8
7
2013-2015 Microchip Technology Inc.  
DS40001723D-page 191  
PIC12(L)F1571/2  
and SPBRGL registers are clocked at 1/8th the BRG  
base clock rate. The resulting byte measurement is the  
average bit time when clocked at full speed.  
21.4.1  
AUTO-BAUD DETECT  
The EUSART module supports automatic detection  
and calibration of the baud rate.  
Note 1: If the WUE bit is set with the ABDEN bit,  
Auto-Baud Detection will occur on the  
byte following the Break character  
(see Section 21.4.3 “Auto-Wake-up on  
Break”).  
In the Auto-Baud Detect (ABD) mode, the clock to the  
BRG is reversed. Rather than the BRG clocking the  
incoming RX signal, the RX signal is timing the BRG.  
The Baud Rate Generator is used to time the period of  
a received 55h (ASCII “U”), which is the Sync character  
for the LIN bus. The unique feature of this character is  
that it has five rising edges, including the Stop bit edge.  
2: It is up to the user to determine that the  
incoming character baud rate is within the  
range of the selected BRG clock source.  
Some combinations of oscillator frequency  
and EUSART baud rates are not possible.  
Setting the ABDEN bit of the BAUDCON register starts  
the auto-baud calibration sequence (Figure 21-6).  
While the ABD sequence takes place, the EUSART  
state machine is held in Idle. On the first rising edge of  
the receive line, after the Start bit, the SPBRG begins  
counting up using the BRG counter clock as shown in  
Table 21-6. The fifth rising edge will occur on the RX pin  
at the end of the eighth bit period. At that time, an  
accumulated value totaling the proper BRG period is  
left in the SPBRGH/SPBRGL register pair, the ABDEN  
bit is automatically cleared and the RCIF interrupt flag  
is set. The value in the RCREG needs to be read to  
clear the RCIF interrupt. RCREG content should be  
discarded. When calibrating for modes that do not use  
the SPBRGH register, the user can verify that the  
SPBRGL register did not overflow by checking for 00h  
in the SPBRGH register.  
3: During the auto-baud process, the  
auto-baud counter starts counting at 1.  
Upon completion of the auto-baud  
sequence, to achieve maximum accuracy,  
subtract 1 from the SPBRGH:SPBRGL  
register pair.  
TABLE 21-6:  
BRG COUNTER CLOCK RATES  
BRG Base  
Clock  
BRG ABD  
Clock  
BRG16 BRGH  
0
0
1
0
1
FOSC/64  
FOSC/16  
FOSC/16  
FOSC/4  
FOSC/512  
FOSC/128  
FOSC/128  
FOSC/32  
0
1
The BRG auto-baud clock is determined by the BRG16  
and BRGH bits, as shown in Table 21-6. During ABD,  
both the SPBRGH and SPBRGL registers are used as  
a 16-bit counter, independent of the BRG16 bit setting.  
While calibrating the baud rate period, the SPBRGH  
1
Note:  
During the ABD sequence, the SPBRGL  
and SPBRGH registers are both used as a  
16-bit counter, independent of the BRG16  
setting.  
FIGURE 21-6:  
AUTOMATIC BAUD RATE CALIBRATION  
XXXXh  
0000h  
BRG Value  
001Ch  
Edge #1  
bit 1  
Edge #2  
bit 3  
Edge #3  
bit 5  
bit 4  
Edge #4  
bit 7  
Edge #5  
Stop bit  
Start  
bit 0  
bit 2  
bit 6  
RX Pin  
BRG Clock  
Auto Cleared  
Set by User  
ABDEN bit  
RCIDL  
RCIF bit  
(Interrupt)  
Read  
RCREG  
XXh  
XXh  
1Ch  
00h  
SPBRGL  
SPBRGH  
Note 1: The ABD sequence requires the EUSART module to be configured in Asynchronous mode.  
DS40001723D-page 192  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
21.4.2  
AUTO-BAUD OVERFLOW  
21.4.3.1  
Special Considerations  
During the course of Automatic Baud Detection, the  
ABDOVF bit of the BAUDCON register will be set if the  
baud rate counter overflows before the fifth rising edge  
is detected on the RX pin. The ABDOVF bit indicates  
that the counter has exceeded the maximum count that  
can fit in the 16 bits of the SPBRGH:SPBRGL register  
pair. The overflow condition will set the RCIF flag. The  
counter continues to count until the fifth rising edge is  
detected on the RX pin. The RCIDL bit will remain false  
(‘0’) until the fifth rising edge, at which time, the RDICL  
bit will set. If the RCREG is read after the overflow  
occurs, but before the fifth rising edge, the fifth rising  
edge will set the RCIF again.  
Break Character  
To avoid character errors or character fragments during  
a wake-up event, the wake-up character must be all  
zeros.  
When the wake-up is enabled, the function works  
independent of the low time on the data stream. If the  
WUE bit is set and a valid non-zero character is  
received, the low time from the Start bit to the first rising  
edge will be interpreted as the wake-up event. The  
remaining bits in the character will be received as a  
fragmented character and subsequent characters can  
result in framing or overrun errors.  
Therefore, the initial character in the transmission must  
be all ‘0’s. This must be ten or more bit times; 13-bit  
times are recommended for LIN bus or any number of  
bit times for standard RS-232 devices.  
Terminating the auto-baud process early to clear an  
overflow condition will prevent proper detection of the  
Sync character fifth rising edge. If any falling edges of  
the Sync character have not yet occurred when the  
ABDEN bit is cleared, then those will be falsely  
detected as Start bits. The following steps are  
recommended to clear the overflow condition:  
Oscillator Start-up Time  
Oscillator start-up time must be considered, especially  
in applications using oscillators with longer start-up  
intervals (i.e., LP, XT or HS/PLL mode). The Sync  
Break (or wake-up signal) character must be of  
sufficient length, and be followed by a sufficient  
interval, to allow enough time for the selected oscillator  
to start and provide proper initialization of the EUSART.  
1. Read RCREG to clear RCIF.  
2. If RCIDL is zero, then wait for RCIF and repeat  
Step 1.  
3. Clear the ABDOVF bit.  
21.4.3  
AUTO-WAKE-UP ON BREAK  
WUE Bit  
During Sleep mode, all clocks to the EUSART are  
suspended. Because of this, the Baud Rate Generator  
is inactive and a proper character reception cannot be  
performed. The auto-wake-up feature allows the  
controller to wake-up due to activity on the RX/DT line.  
This feature is available only in Asynchronous mode.  
The wake-up event causes a receive interrupt by  
setting the RCIF bit. The WUE bit is cleared in  
hardware by a rising edge on RX/DT. The interrupt  
condition is then cleared in software by reading the  
RCREG register and discarding its contents.  
To ensure that no actual data is lost, check the RCIDL  
bit to verify that a receive operation is not in process  
before setting the WUE bit. If a receive operation is not  
occurring, the WUE bit may then be set just prior to  
entering the Sleep mode.  
The auto-wake-up feature is enabled by setting the WUE  
bit of the BAUDCON register. Once set, the normal  
receive sequence on RX/DT is disabled, and the  
EUSART remains in an Idle state, monitoring for a  
wake-up event independent of the CPU mode. A  
wake-up event consists of a high-to-low transition on the  
RX/DT line. (This coincides with the start of a Sync Break  
or a wake-up signal character for the LIN protocol.)  
The EUSART module generates an RCIF interrupt  
coincident with the wake-up event. The interrupt is  
generated synchronously to the Q clocks in normal CPU  
operating modes (Figure 21-7), and asynchronously if  
the device is in Sleep mode (Figure 21-8). The interrupt  
condition is cleared by reading the RCREG register.  
The WUE bit is automatically cleared by the low-to-high  
transition on the RX line at the end of the Break. This  
signals to the user that the Break event is over. At this  
point, the EUSART module is in Idle mode waiting to  
receive the next character.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 193  
 
PIC12(L)F1571/2  
FIGURE 21-7:  
AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION  
Q1 Q2 Q3 Q4 Q1 Q2 Q3Q4 Q1Q2 Q3 Q4 Q1Q2 Q3Q4 Q1Q2Q3 Q4 Q1Q2 Q3 Q4 Q1Q2 Q3Q4 Q1Q2 Q3 Q4 Q1Q2Q3 Q4 Q1Q2 Q3 Q4  
OSC1  
Auto-Cleared  
Bit Set by User  
WUE bit  
RX/DT  
Line  
RCIF  
Cleared due to User Read of RCREG  
Note 1: The EUSART remains in Idle while the WUE bit is set.  
FIGURE 21-8:  
AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP  
Q4  
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3  
Q1  
Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4  
Auto Cleared  
OSC1  
Bit Set by User  
WUE bit  
RX/DT  
Line  
Note 1  
RCIF  
Cleared due to User Read of RCREG  
Sleep Command Executed  
Sleep Ends  
Note 1: If the wake-up event requires long oscillator warm-up time, the automatic clearing of the WUE bit can occur while the stposcsignal  
is still active. This sequence should not depend on the presence of Q clocks.  
2: The EUSART remains in Idle while the WUE bit is set.  
DS40001723D-page 194  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
21.4.4  
BREAK CHARACTER SEQUENCE  
21.4.5  
RECEIVING A BREAK CHARACTER  
The EUSART module has the capability of sending the  
special Break character sequences that are required by  
the LIN bus standard. A Break character consists of a  
Start bit, followed by twelve ‘0’ bits and a Stop bit.  
The Enhanced USART module can receive a Break  
character in two ways.  
The first method to detect a Break character uses the  
FERR bit of the RCSTA register and the received data  
as indicated by RCREG. The Baud Rate Generator is  
assumed to have been initialized to the expected baud  
rate.  
To send a Break character, set the SENDB and TXEN  
bits of the TXSTA register. The Break character trans-  
mission is then initiated by a write to the TXREG. The  
value of data written to TXREG will be ignored and all  
0’s will be transmitted.  
A Break character has been received when:  
• RCIF bit is set  
• FERR bit is set  
• RCREG = 00h  
The SENDB bit is automatically reset by hardware after  
the corresponding Stop bit is sent. This allows the user  
to preload the transmit FIFO with the next transmit byte  
following the Break character (typically, the Sync  
character in the LIN specification).  
The second method uses the auto-wake-up feature  
described in Section 21.4.3 “Auto-Wake-up on  
Break”. By enabling this feature, the EUSART will  
sample the next two transitions on RX/DT, cause an  
RCIF interrupt and receive the next data byte followed  
by another interrupt.  
The TRMT bit of the TXSTA register indicates when the  
transmit operation is active or idle, just as it does during  
normal transmission. See Figure 21-9 for the timing of  
the Break character sequence.  
Note that following a Break character, the user will  
typically want to enable the Auto-Baud Detect feature.  
For both methods, the user can set the ABDEN bit of  
the BAUDCON register before placing the EUSART in  
Sleep mode.  
21.4.4.1  
Break and Sync Transmit Sequence  
The following sequence will start a message frame  
header made up of a Break, followed by an auto-baud  
Sync byte. This sequence is typical of a LIN bus master.  
1. Configure the EUSART for the desired mode.  
2. Set the TXEN and SENDB bits to enable the  
Break sequence.  
3. Load the TXREG with a dummy character to  
initiate transmission (the value is ignored).  
4. Write ‘55h’ to TXREG to load the Sync character  
into the transmit FIFO buffer.  
5. After the Break has been sent, the SENDB bit is  
reset by hardware and the Sync character is  
then transmitted.  
When the TXREG becomes empty, as indicated by the  
TXIF, the next data byte can be written to TXREG.  
FIGURE 21-9:  
SEND BREAK CHARACTER SEQUENCE  
Write to TXREG  
Dummy Write  
BRG Output  
(Shift Clock)  
Start bit  
bit 0  
bit 1  
Break  
bit 11  
Stop bit  
TX (pin)  
TXIF bit  
(Transmit  
Interrupt Flag)  
TRMT bit  
(Transmit Shift  
Empty Flag)  
SENDB Sampled Here  
Auto Cleared  
SENDB  
(send Break  
control bit)  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 195  
 
PIC12(L)F1571/2  
21.5.1.2  
Clock Polarity  
21.5 EUSART Synchronous Mode  
A clock polarity option is provided for Microwire  
compatibility. Clock polarity is selected with the SCKP  
bit of the BAUDCON register. Setting the SCKP bit sets  
the clock Idle state as high. When the SCKP bit is set,  
the data changes on the falling edge of each clock.  
Clearing the SCKP bit sets the Idle state as low. When  
the SCKP bit is cleared, the data changes on the rising  
edge of each clock.  
Synchronous serial communications are typically used  
in systems with a single master and one or more  
slaves. The master device contains the necessary  
circuitry for baud rate generation and supplies the clock  
for all devices in the system. Slave devices can take  
advantage of the master clock by eliminating the  
internal clock generation circuitry.  
There are two signal lines in Synchronous mode: a  
bidirectional data line and a clock line. Slaves use the  
external clock supplied by the master to shift the serial  
data into and out of their respective Receive and Trans-  
mit Shift registers. Since the data line is bidirectional,  
synchronous operation is half-duplex only. Half-duplex  
refers to the fact that master and slave devices can  
receive and transmit data but not both simultaneously.  
The EUSART can operate as either a master or slave  
device.  
21.5.1.3  
Synchronous Master Transmission  
Data is transferred out of the device on the RX/DT pin.  
The RX/DT and TX/CK pin output drivers are automat-  
ically enabled when the EUSART is configured for  
synchronous master transmit operation.  
A transmission is initiated by writing a character to the  
TXREG register. If the TSR still contains all or part of a  
previous character the new character data is held in the  
TXREG until the last bit of the previous character has  
been transmitted. If this is the first character, or the  
previous character has been completely flushed from  
the TSR, the data in the TXREG is immediately trans-  
ferred to the TSR. The transmission of the character  
commences immediately following the transfer of the  
data to the TSR from the TXREG.  
Start and Stop bits are not used in synchronous  
transmissions.  
21.5.1  
SYNCHRONOUS MASTER MODE  
The following bits are used to configure the EUSART  
for synchronous master operation:  
• SYNC = 1  
Each data bit changes on the leading edge of the  
master clock and remains valid until the subsequent  
leading clock edge.  
• CSRC = 1  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
Note:  
The TSR register is not mapped in data  
memory, so it is not available to the user.  
Setting the SYNC bit of the TXSTA register configures  
the device for synchronous operation. Setting the CSRC  
bit of the TXSTA register configures the device as a  
master. Clearing the SREN and CREN bits of the RCSTA  
register ensures that the device is in the Transmit mode,  
otherwise the device will be configured to receive. Setting  
the SPEN bit of the RCSTA register enables the  
EUSART.  
21.5.1.4  
Synchronous Master Transmission  
Setup  
1. Initialize the SPBRGH, SPBRGL register pair  
and the BRGH and BRG16 bits to achieve the  
desired baud rate (see Section 21.4 “EUSART  
Baud Rate Generator (BRG)”).  
2. Enable the synchronous master serial port by  
setting bits, SYNC, SPEN and CSRC.  
21.5.1.1  
Master Clock  
3. Disable Receive mode by clearing bits, SREN  
and CREN.  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device config-  
ured as a master transmits the clock on the TX/CK line.  
The TX/CK pin output driver is automatically enabled  
when the EUSART is configured for synchronous  
transmit or receive operation. Serial data bits change  
on the leading edge to ensure they are valid at the trail-  
ing edge of each clock. One clock cycle is generated  
for each data bit. Only as many clock cycles are  
generated as there are data bits.  
4. Enable Transmit mode by setting the TXEN bit.  
5. If 9-bit transmission is desired, set the TX9 bit.  
6. If interrupts are desired, set the TXIE bit of the  
PIE1 register, and the GIE and PEIE bits of the  
INTCON register.  
7. If 9-bit transmission is selected, the ninth bit  
should be loaded in the TX9D bit.  
8. Start transmission by loading data to the TXREG  
register.  
DS40001723D-page 196  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
FIGURE 21-10:  
SYNCHRONOUS TRANSMISSION  
RX/DT  
Pin  
bit 0  
bit 1  
Word 1  
bit 2  
bit 7  
bit 0  
bit 1  
bit 7  
Word 2  
TX/CK Pin  
(SCKP = 0)  
TX/CK Pin  
(SCKP =  
1
)
Write to  
TXREG Reg  
Write Word 1  
Write Word 2  
TXIF bit  
(Interrupt Flag)  
TRMT bit  
TXEN bit  
1’  
1’  
Note: Sync Master mode, SPBRGL = 0, continuous transmission of two 8-bit words.  
FIGURE 21-11:  
SYNCHRONOUS TRANSMISSION (THROUGH TXEN)  
RX/DT Pin  
bit 0  
bit 1  
bit 2  
bit 6  
bit 7  
TX/CK Pin  
Write to  
TXREG Reg.  
TXIF bit  
TRMT bit  
TXEN bit  
TABLE 21-7: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER  
TRANSMISSION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCON  
INTCON  
PIE1  
ABDOVF  
GIE  
RCIDL  
PEIE  
ADIE  
ADIF  
RX9  
SCKP  
INTE  
TXIE(1)  
TXIF(1)  
CREN  
BRG16  
IOCIE  
TMR0IF  
WUE  
INTF  
ABDEN  
IOCIF  
186  
74  
TMR0IE  
RCIE(1)  
RCIF(1)  
SREN  
TMR1GIE  
TMR1GIF  
SPEN  
TMR2IE TMR1IE  
TMR2IF TMR1IF  
75  
PIR1  
78  
RCSTA  
SPBRGL  
SPBRGH  
TXREG  
TXSTA  
ADDEN  
FERR  
OERR  
RX9D  
185  
187*  
187*  
177*  
184  
BRG<7:0>  
BRG<15:8>  
EUSART Transmit Data Register  
TXEN SYNC SENDB BRGH  
CSRC  
TX9  
TRMT  
TX9D  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for synchronous master transmission.  
Page provides register information.  
*
Note 1: PIC12(L)F1572 only.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 197  
PIC12(L)F1571/2  
21.5.1.5  
Synchronous Master Reception  
21.5.1.7  
Receive Overrun Error  
Data is received at the RX/DT pin. The RX/DT pin  
output driver is automatically disabled when the  
EUSART is configured for synchronous master receive  
operation.  
The receive FIFO buffer can hold two characters. An  
overrun error will be generated if a third character, in its  
entirety, is received before RCREG is read to access  
the FIFO. When this happens, the OERR bit of the  
RCSTA register is set. Previous data in the FIFO will  
not be overwritten. The two characters in the FIFO  
buffer can be read, however, no additional characters  
will be received until the error is cleared. The OERR bit  
can only be cleared by clearing the overrun condition.  
If the overrun error occurred when the SREN bit is set  
and CREN is clear, then the error is cleared by reading  
RCREG. If the overrun occurred when the CREN bit is  
set, then the error condition is cleared by either clearing  
the CREN bit of the RCSTA register or by clearing the  
SPEN bit which resets the EUSART.  
In Synchronous mode, reception is enabled by setting  
either the Single Receive Enable bit (SREN of the  
RCSTA register) or the Continuous Receive Enable bit  
(CREN of the RCSTA register).  
When SREN is set and CREN is clear, only as many  
clock cycles are generated as there are data bits in a  
single character. The SREN bit is automatically cleared  
at the completion of one character. When CREN is set,  
clocks are continuously generated until CREN is  
cleared. If CREN is cleared in the middle of a character,  
the CK clock stops immediately and the partial charac-  
ter is discarded. If SREN and CREN are both set, then  
SREN is cleared at the completion of the first character  
and CREN takes precedence.  
21.5.1.8  
Receiving 9-Bit Characters  
The EUSART supports 9-bit character reception. When  
the RX9 bit of the RCSTA register is set the EUSART  
will shift 9 bits into the RSR for each character  
received. The RX9D bit of the RCSTA register is the  
ninth, and Most Significant, data bit of the top unread  
character in the receive FIFO. When reading 9-bit data  
from the receive FIFO buffer, the RX9D data bit must  
be read before reading the eight Least Significant bits  
from the RCREG.  
To initiate reception, set either SREN or CREN. Data is  
sampled at the RX/DT pin on the trailing edge of the  
TX/CK clock pin and is shifted into the Receive Shift  
Register (RSR). When a complete character is  
received into the RSR, the RCIF bit is set and the char-  
acter is automatically transferred to the two-character  
receive FIFO. The Least Significant eight bits of the top  
character in the receive FIFO are available in RCREG.  
The RCIF bit remains set as long as there are unread  
characters in the receive FIFO.  
21.5.1.9  
Synchronous Master Reception Setup  
1. Initialize the SPBRGH/SPBRGL register pair for  
the appropriate baud rate. Set or clear the  
BRGH and BRG16 bits, as required, to achieve  
the desired baud rate.  
Note:  
If the RX/DT function is on an analog pin,  
the corresponding ANSELx bit must be  
cleared for the receiver to function.  
2. Clear the ANSELx bit for the RX pin (if applicable).  
3. Enable the synchronous master serial port by  
setting bits, SYNC, SPEN and CSRC.  
21.5.1.6  
Slave Clock  
Synchronous data transfers use a separate clock line,  
which is synchronous with the data. A device configured  
as a slave receives the clock on the TX/CK line. The  
TX/CK pin output driver is automatically disabled when  
the device is configured for synchronous slave transmit  
or receive operation. Serial data bits change on the  
leading edge to ensure they are valid at the trailing edge  
of each clock. One data bit is transferred for each clock  
cycle. Only as many clock cycles should be received as  
there are data bits.  
4. Ensure bits, CREN and SREN, are clear.  
5. If interrupts are desired, set the RCIE bit of the  
PIE1 register, and the GIE and PEIE bits of the  
INTCON register.  
6. If 9-bit reception is desired, set bit, RX9.  
7. Start reception by setting the SREN bit or for  
continuous reception, set the CREN bit.  
8. Interrupt flag bit, RCIF, will be set when recep-  
tion of a character is complete. An interrupt will  
be generated if the enable bit, RCIE, was set.  
Note:  
If the device is configured as a slave and  
the TX/CK function is on an analog pin, the  
corresponding ANSELx bit must be  
cleared.  
9. Read the RCSTA register to get the ninth bit (if  
enabled) and determine if any error occurred  
during reception.  
10. Read the 8-bit received data by reading the  
RCREG register.  
11. If an overrun error occurs, clear the error by either  
clearing the CREN bit of the RCSTA register or by  
clearing the SPEN bit which resets the EUSART.  
DS40001723D-page 198  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
FIGURE 21-12:  
SYNCHRONOUS RECEPTION (MASTER MODE, SREN)  
RX/DT  
Pin  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
TX/CK Pin  
(SCKP = 0)  
TX/CK Pin  
(SCKP = 1)  
Write to  
SREN bit  
SREN bit  
0’  
CREN bit  
0’  
RCIF bit  
(Interrupt)  
Read  
RCREG  
Note: Timing diagram demonstrates Sync Master mode with bit SREN = 1and bit BRGH = 0.  
TABLE 21-8: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER  
RECEPTION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCON  
INTCON  
PIE1  
ABDOVF  
GIE  
RCIDL  
PEIE  
ADIE  
ADIF  
SCKP  
INTE  
TXIE(1)  
TXIF(1)  
BRG16  
IOCIE  
TMR0IF  
WUE  
INTF  
ABDEN  
IOCIF  
186  
74  
TMR0IE  
RCIE(1)  
RCIF(1)  
TMR1GIE  
TMR1GIF  
TMR2IE TMR1IE  
TMR2IF TMR1IF  
75  
PIR1  
78  
RCREG  
RCSTA  
SPBRGL  
SPBRGH  
TXSTA  
EUSART Receive Data Register  
180*  
185  
187*  
187*  
184  
SPEN  
CSRC  
RX9  
TX9  
SREN  
CREN  
BRG<7:0>  
BRG<15:8>  
SYNC SENDB  
ADDEN  
FERR  
OERR  
RX9D  
TXEN  
BRGH  
TRMT  
TX9D  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for synchronous master reception.  
Page provides register information.  
*
Note 1: PIC12(L)F1572 only.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 199  
PIC12(L)F1571/2  
If two words are written to the TXREG and then the  
SLEEPinstruction is executed, the following will occur:  
21.5.2  
SYNCHRONOUS SLAVE MODE  
The following bits are used to configure the EUSART  
for synchronous slave operation:  
1. The first character will immediately transfer to  
the TSR register and transmit.  
• SYNC = 1  
2. The second word will remain in the TXREG  
register.  
• CSRC = 0  
• SREN = 0(for transmit); SREN = 1(for receive)  
• CREN = 0(for transmit); CREN = 1(for receive)  
• SPEN = 1  
3. The TXIF bit will not be set.  
4. After the first character has been shifted out of  
TSR, the TXREG register will transfer the  
second character to the TSR and the TXIF bit  
will now be set.  
Setting the SYNC bit of the TXSTA register configures the  
device for synchronous operation. Clearing the CSRC bit  
of the TXSTA register configures the device as a slave.  
Clearing the SREN and CREN bits of the RCSTA register  
ensures that the device is in Transmit mode; otherwise,  
the device will be configured to receive. Setting the SPEN  
bit of the RCSTA register enables the EUSART.  
5. If the PEIE and TXIE bits are set, the interrupt  
will wake the device from Sleep and execute the  
next instruction. If the GIE bit is also set, the  
program will call the Interrupt Service Routine.  
21.5.2.2  
Synchronous Slave Transmission  
Setup  
21.5.2.1  
EUSART Synchronous Slave  
Transmit  
1. Set the SYNC and SPEN bits, and clear the  
CSRC bit.  
The operation of the Synchronous Master and  
Slave modes is identical (see Section 21.5.1.3  
“Synchronous Master Transmission”), except in the  
case of Sleep mode.  
2. Clear the ANSELx bit for the CK pin (if applicable).  
3. Clear the CREN and SREN bits.  
4. If interrupts are desired, set the TXIE bit of the  
PIE1 register and the GIE and PEIE bits of the  
INTCON register.  
5. If 9-bit transmission is desired, set the TX9 bit.  
6. Enable transmission by setting the TXEN bit.  
7. If 9-bit transmission is selected, insert the Most  
Significant bit into the TX9D bit.  
8. Start transmission by writing the Least  
Significant eight bits to the TXREG register.  
TABLE 21-9: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE  
TRANSMISSION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCON  
INTCON  
PIE1  
ABDOVF  
GIE  
RCIDL  
PEIE  
ADIE  
ADIF  
RX9  
SCKP  
INTE  
TXIE(1)  
TXIF(1)  
CREN  
BRG16  
IOCIE  
TMR0IF  
WUE  
INTF  
ABDEN  
IOCIF  
186  
74  
TMR0IE  
RCIE(1)  
RCIF(1)  
SREN  
TMR1GIE  
TMR1GIF  
SPEN  
TMR2IE TMR1IE  
TMR2IF TMR1IF  
75  
PIR1  
78  
RCSTA  
TXREG  
TXSTA  
ADDEN  
FERR  
OERR  
RX9D  
185  
177*  
184  
EUSART Transmit Data Register  
TXEN SYNC SENDB BRGH  
CSRC  
TX9  
TRMT  
TX9D  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for synchronous slave transmission.  
Page provides register information.  
*
Note 1: PIC12(L)F1572 only.  
DS40001723D-page 200  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
21.5.2.3  
EUSART Synchronous Slave  
Reception  
21.5.2.4  
Synchronous Slave Reception Setup  
1. Set the SYNC and SPEN bits, and clear the  
CSRC bit.  
The operation of the Synchronous Master and Slave  
modes is identical (Section 21.5.1.5 “Synchronous  
Master Reception”), with the following exceptions:  
2. Clear the ANSELx bit for both the CK and DT  
pins (if applicable).  
3. If interrupts are desired, set the RCIE bit of the  
PIE1 register, and the GIE and PEIE bits of the  
INTCON register.  
• Sleep  
• CREN bit is always set, therefore, the receiver is  
never Idle  
4. If 9-bit reception is desired, set the RX9 bit.  
5. Set the CREN bit to enable reception.  
• SREN bit, which is a “don’t care” in Slave mode  
A character may be received while in Sleep mode by  
setting the CREN bit prior to entering Sleep. Once the  
word is received, the RSR register will transfer the data  
to the RCREG register. If the RCIE enable bit is set, the  
interrupt generated will wake the device from Sleep  
and execute the next instruction. If the GIE bit is also  
set, the program will branch to the interrupt vector.  
6. The RCIF bit will be set when reception is  
complete. An interrupt will be generated if the  
RCIE bit was set.  
7. If 9-bit mode is enabled, retrieve the Most  
Significant bit from the RX9D bit of the RCSTA  
register.  
8. Retrieve the eight Least Significant bits from the  
receive FIFO by reading the RCREG register.  
9. If an overrun error occurs, clear the error by  
either clearing the CREN bit of the RCSTA  
register or by clearing the SPEN bit which resets  
the EUSART.  
TABLE 21-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE  
RECEPTION  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
BAUDCON  
INTCON  
PIE1  
ABDOVF  
GIE  
RCIDL  
PEIE  
ADIE  
ADIF  
SCKP  
INTE  
TXIE(1)  
TXIF(1)  
BRG16  
IOCIE  
TMR0IF  
WUE  
INTF  
ABDEN  
IOCIF  
186  
74  
TMR0IE  
RCIE(1)  
RCIF(1)  
TMR1GIE  
TMR1GIF  
TMR2IE TMR1IE  
TMR2IF TMR1IF  
75  
PIR1  
78  
RCREG  
RCSTA  
TXSTA  
EUSART Receive Data Register  
180*  
185  
184  
SPEN  
CSRC  
RX9  
TX9  
SREN  
TXEN  
CREN  
SYNC  
ADDEN  
SENDB  
FERR  
BRGH  
OERR  
TRMT  
RX9D  
TX9D  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for synchronous slave reception.  
Page provides register information.  
*
Note 1: PIC12(L)F1572 only.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 201  
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 202  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
Each PWM module has four Offset modes:  
22.0 16-BIT PULSE-WIDTH  
• Independent Run  
MODULATION (PWM) MODULE  
• Slave Run with Synchronous Start  
• One-Shot Slave with Synchronous Start  
The Pulse-Width Modulation (PWM) module generates  
a pulse-width modulated signal determined by the  
phase, duty cycle, period and offset event counts that  
are contained in the following registers:  
• Continuous Run Slave with Synchronous Start  
and Timer Reset  
Using the Offset modes, each PWM module can offset  
its waveform relative to any other PWM module in the  
same device. For a more detailed description of the  
Offset modes, refer to Section 22.3 “Offset Modes”.  
• PWMxPH register  
• PWMxDC register  
• PWMxPR register  
• PWMxOF register  
Every PWM module has  
a configurable reload  
Figure 22-1 shows a simplified block diagram of the  
PWM operation.  
operation to ensure all event count buffers change at  
the end of a period, thereby avoiding signal glitches.  
Figure 22-2 shows a simplified block diagram of the  
reload operation. For a more detailed description of  
the reload operation, refer to Section 22.4 “Reload  
Operation”.  
Each PWM module has four modes of operation:  
• Standard  
• Set On Match  
Toggle On Match  
• Center-Aligned  
For a more detailed description of each PWM mode,  
refer to Section 22.2 “PWM Modes”.  
FIGURE 22-1:  
16-BIT PWM BLOCK DIAGRAM  
Rev. 10-000152A  
4/21/2014  
MODE<1:0>  
EN  
PHx_match  
PWM Control  
Unit  
D
Q
PWMxOUT  
DCx_match  
CK  
Q4  
OF3_match(1)  
11  
10  
01  
00  
PWMxPOL  
PWMx_output  
OF2_match(1)  
OF1_match(1)  
Reserved  
To Peripherals  
OF_match  
PRx_match  
Offset  
PWMxOE  
Control  
PWMx  
OFM<1:0>  
E
R
U/D  
OFS  
PWM_clock  
PWMxTMR  
TRIS Control  
PRx_match  
set PRIF  
PHx_match  
OFx_match  
DCx_match  
set DCIF  
Comparator  
16-bt Latch  
PWMxPR  
Comparator  
16-bt Latch  
PWMxPH  
Comparator  
16-bt Latch  
PWMxOF  
Comparator  
16-bt Latch  
PWMxDC  
set PHIF  
set OFIF  
LDx_trigger  
LDx_trigger  
LDx_trigger  
LDx_trigger  
Note 1: A PWM module cannot trigger from its own offset match event.  
The input corresponding to a PWM module’s own offset match is reserved.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 203  
 
PIC12(L)F1571/2  
FIGURE 22-2:  
LOAD TRIGGER BLOCK DIAGRAM  
Rev. 10-000153A  
4/21/2014  
LD3_trigger(1)  
11  
10  
01  
00  
LD2_trigger(1)  
LD1_trigger(1)  
Reserved  
1
0
LDx_trigger  
D
Q
PWMxLDA(2)  
PWMxLDS  
PRx_match  
PWMxLDT  
PWM_clock  
Note 1. The input corresponding to a PWM module’s own load trigger is reserved.  
2. PWMxLDA is cleared by hardware upon LDx_trigger.  
FIGURE 22-3:  
PWM CLOCK SOURCE  
BLOCK DIAGRAM  
22.1 Fundamental Operation  
The PWM module produces a 16-bit resolution  
pulse-width modulated output.  
Rev. 10-000156A  
1/7/2015  
Each PWM module has an independent timer driven by  
a selection of clock sources determined by the  
PWMxCLKCON register (Register 22-4). The timer  
value is compared to event count registers to generate  
the various events of a the PWM waveform, such as the  
period and duty cycle. For a block diagram describing  
the clock sources, refer to Figure 22-3.  
PWMxCS<1:0>  
PWMxPS<2:0>  
FOSC  
HFINTOSC  
LFINTOSC  
Reserved  
00  
01  
10  
11  
Prescaler  
PWMx_clock  
Each PWM module can be enabled individually using  
the EN bit of the PWMxCON register, or several PWM  
modules can be enabled simultaneously using the  
mirror bits of the PWMEN register.  
The current state of the PWM output can be read using  
the OUT bit of the PWMxCON register. In some modes,  
this bit can be set and cleared by software, giving  
additional software control over the PWM waveform.  
This bit is synchronized to FOSC/4 and therefore, does  
not change in real time with respect to the PWM_clock.  
22.1.1  
PWMx PIN CONFIGURATION  
All PWM outputs are multiplexed with the PORT data  
latch, so the pins must also be configured as outputs by  
clearing the associated PORT TRISx bits.  
The slew rate feature may be configured to optimize  
the rate to be used in conjunction with the PWM  
outputs. High-speed output switching is attained by  
clearing the associated PORT SLRCONx bits.  
Note:  
If PWM_clock > FOSC/4, the OUT bit may  
not accurately represent the output state of  
the PWM.  
The PWM outputs can be configured to be open-drain  
outputs by setting the associated PORT ODCONx bits.  
22.1.2  
PWMx Output Polarity  
The output polarity is inverted by setting the POL bit of  
the PWMxCON register. The polarity control affects the  
PWM output even when the module is not enabled.  
DS40001723D-page 204  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
The OUT bit can be used to set or clear the output of  
the PWM in this mode. Writes to this bit will take place  
on the next rising edge of the PWM_clock after the bit  
is written.  
22.2 PWM Modes  
PWM modes are selected with the MODE<1:0> bits of  
the PWMxCON register (Register 22-1).  
In all PWM modes, an offset match event can also be  
used to synchronize the PWMxTMR in three Offset  
modes. See Section 22.3 “Offset Modes” for more  
information.  
A detailed timing diagram for Set On Match mode is  
shown in Figure 22-5.  
22.2.3  
TOGGLE ON MATCH MODE  
The Toggle On Match mode (MODE<1:0> = 10) gener-  
ates a 50% duty cycle PWM with a period twice as long  
as that computed for the Standard PWM mode. Duty  
cycle count has no effect in this mode. The phase count  
determines how many PWMxTMR periods, after a  
period event, the output will toggle.  
22.2.1  
STANDARD MODE  
The Standard mode (MODE<1:0> = 00) selects a  
single-phase PWM output. The PWM output in this  
mode is determined by when the period, duty cycle and  
phase counts match the PWMxTMR value. The start of  
the duty cycle occurs on the phase match and the end  
of the duty cycle occurs on the duty cycle match. The  
period match resets the timer. The offset match can  
also be used to synchronize the PWMxTMR in the  
Offset modes. See Section 22.3 “Offset Modes” for  
more information.  
Writes to the OUT bit of the PWMxCON register will  
have no effect in this mode.  
A detailed timing diagram for Toggle On Match mode is  
shown in Figure 22-6.  
22.2.4  
CENTER-ALIGNED MODE  
Equation 22-1 is used to calculate the PWM period in  
Standard mode.  
The Center-Aligned mode (MODE = 11) generates a  
PWM waveform that is centered in the period. In this  
mode, the period is two times the PWMxPR count. The  
PWMxTMR counts up to the period value, then counts  
back down to 0. The duty cycle count determines both  
the start and end of the active PWM output. The start of  
the duty cycle occurs at the match event when  
PWMxTMR is incrementing and the duty cycle ends at  
the match event when PWMxTMR is decrementing.  
The incrementing match value is the period count  
minus the duty cycle count. The decrementing match  
value is the incrementing match value plus 1.  
Equation 22-2 is used to calculate the PWM duty cycle  
ratio in Standard mode.  
EQUATION 22-1: PWM PERIOD IN  
STANDARD MODE  
PWMxPR + 1Prescale  
Period = -------------------------------------------------------------------  
PWMxCLK  
Equation 22-3 is used to calculate the PWM period in  
Center-Aligned mode.  
EQUATION 22-2: PWM DUTY CYCLE IN  
STANDARD MODE  
EQUATION 22-3: PWM PERIOD IN  
CENTER-ALIGNED MODE  
PWMxDC PWMxPH  
Duty Cycle = ----------------------------------------------------------------  
PWMxPR + 1  
PWMxPR + 1Prescale 2  
Period = ---------------------------------------------------------------------------  
PWMxCLK  
A detailed timing diagram for Standard mode is shown  
in Figure 22-4.  
Equation 22-4 is used to calculate the PWM duty cycle  
ratio in Center-Aligned mode.  
22.2.2  
SET ON MATCH MODE  
The Set On Match mode (MODE<1:0> = 01) generates  
an active output when the phase count matches the  
PWMxTMR value. The output stays active until the  
OUT bit of the PWMxCON register is cleared or the  
PWM module is disabled. The duty cycle count has no  
effect in this mode. The period count only determines  
the maximum PWMxTMR value above which no phase  
matches can occur.  
EQUATION 22-4: PWM DUTY CYCLE IN  
CENTER-ALIGNED MODE  
PWMxDC 2  
Duty Cycle = ------------------------------------------------  
PWMxPR + 1  2  
Writes to the OUT bit will have no effect in this mode.  
A detailed timing diagram for Center-Aligned mode is  
shown in Figure 22-7.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 205  
 
 
 
 
FIGURE 22-4:  
STANDARD PWM MODE TIMING DIAGRAM  
Rev. 10-000142A  
9/5/2013  
Period  
Duty Cycle  
Phase  
PWMxCLK  
PWMxPR  
PWMxPH  
PWMxDC  
10  
4
9
PWMxTMR  
PWMxOUT  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
FIGURE 22-5:  
SET ON MATCH PWM MODE TIMING DIAGRAM  
Rev. 10-000143A  
9/5/2013  
Period  
Phase  
PWMxCLK  
PWMxPR  
PWMxPH  
10  
4
PWMxTMR  
PWMxOUT  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
FIGURE 22-6:  
TOGGLE ON MATCH PWM MODE TIMING DIAGRAM  
Rev. 10-000144A  
9/5/2013  
Period  
Phase  
PWMxCLK  
PWMxPR  
PWMxPH  
10  
4
PWMxTMR  
PWMxOUT  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
FIGURE 22-7:  
CENTER-ALIGNED PWM MODE TIMING DIAGRAM  
Rev. 10-000 145A  
4/22/201 4  
Period  
Duty Cycle  
PWMxCLK  
PWMxPR  
6
PWMxDC  
4
PWMxTMR  
3
0
1
2
3
4
5
6
6
5
4
3
2
1
0
0
1
2
PWMxOUT  
PIC12(L)F1571/2  
22.3.4  
CONTINUOUS RUN SLAVE MODE  
WITH SYNC START AND TIMER  
RESET  
22.3 Offset Modes  
The Offset modes provide the means to adjust the wave-  
form of a slave PWM module relative to the waveform of  
a master PWM module in the same device.  
In Continuous Run Slave mode with Synchronous  
Start and Timer Reset (OFM<1:0> = 11), the slave  
PWMxTMR is inhibited from counting after the slave  
PWM enable is set. The first master OFx_match event  
starts the slave PWMxTMR. Subsequent master  
OFx_match events reset the slave PWMxTMR timer  
value back to 1, after which, the slave PWMxTMR con-  
tinues to count. The next master OFx_match event  
resets the slave PWMxTMR back to 1 to repeat the  
cycle. Slave period events that occur before the  
master’s OFx_match event will reset the slave  
PWMxTMR to zero, after which, the timer will continue  
to count. Slaves operating in this mode must have a  
PWMxPH register pair value equal to or greater than 1;  
otherwise, the phase match event will not occur  
precluding the start of the PWM output duty cycle.  
22.3.1  
INDEPENDENT RUN MODE  
In Independent Run mode (OFM<1:0> = 00), the PWM  
module is unaffected by the other PWM modules in the  
device. The PWMxTMR associated with the PWM  
module in this mode starts counting as soon as the EN bit  
associated with this PWM module is set and continues  
counting until the EN bit is cleared. Period events reset  
the PWMxTMR to zero, after which, the timer continues to  
count.  
A detailed timing diagram of this mode used with  
Standard PWM mode is shown in Figure 22-8.  
22.3.2 SLAVE RUN MODE WITH SYNC START  
In Slave Run mode with Sync Start (OFM<1:0> = 01),  
the slave PWMxTMR waits for the master’s OFx_match  
event. When this event occurs, if the EN bit is set, the  
PWMxTMR begins counting and continues to count  
until software clears the EN bit. Slave period events  
reset the PWMxTMR to zero, after which, the timer  
continues to count.  
The offset timing will persist If both the master and  
slave PWMxPR values are the same, and the Slave  
Offset mode is changed to Independent Run mode  
while the PWM module is operating.  
A detailed timing diagram of this mode used in  
Standard PWM mode is shown in Figure 22-11.  
Note:  
Unexpected results will occur if the slave  
PWM_clock is a higher frequency than the  
master PWM_clock.  
A detailed timing diagram of this mode used with  
Standard PWM mode is shown in Figure 22-9.  
22.3.3  
ONE-SHOT SLAVE MODE WITH  
SYNC START  
22.3.5  
OFFSET MATCH IN  
CENTER-ALIGNED MODE  
In One-Shot Slave mode with Synchronous Start  
(OFM<1:0> = 10), the slave PWMxTMR waits until the  
master's OFx_match event. The timer then begins count-  
ing, starting from the value that is already in the timer, and  
continues to count until the period match event. When the  
period event occurs, the timer resets to zero and stops  
counting. The timer then waits until the next master  
OFx_match event, after which, it begins counting again to  
repeat the cycle. An OFx_match event that occurs before  
the slave PWM has completed the previously triggered  
period will be ignored. A slave period that is greater than  
the master period, but less than twice the master period,  
will result in a slave output every other master period.  
When a master is operating in Center-Aligned mode,  
the offset match event depends on which direction the  
PWMxTMR is counting. Clearing the OFO bit of the  
PWMxOFCON register will cause the OFx_match  
event to occur when the timer is counting up. Setting  
the OFO bit of the PWMxOFCON register will cause  
the OFx_match event to occur when the timer is  
counting down. The OFO bit is ignored in  
non-Center-Aligned modes.  
The OFO bit is double-buffered and requires setting the  
LDA bit to take effect when the PWM module is  
operating.  
Note:  
During the time the slave timers are  
resetting to zero, if another offset match  
event is received, it is possible that the slave  
PWM would not recognize this match event  
and the slave timers would fail to begin  
counting again. This would result in missing  
duty cycles from the output of the slave  
PWM. To prevent this from happening,  
avoid using the same period for both the  
master and slave PWMs.  
Detailed timing diagrams of Center-Aligned mode  
using offset match control in Independent Slave with  
Sync Start mode can be seen in Figure 22-12 and  
Figure 22-13.  
A detailed timing diagram of this mode used with  
Standard PWM mode is shown in Figure 22-10.  
DS40001723D-page 208  
2013-2015 Microchip Technology Inc.  
FIGURE 22-8:  
INDEPENDENT RUN MODE TIMING DIAGRAM  
Rev. 10-000 146B  
7/8/201 5  
Period  
Duty Cycle  
Phase  
Offset  
PWMxCLK  
PWMxPR  
PWMxPH  
PWMxDC  
PWMxOF  
10  
3
5
2
PWMxTMR  
PWMxOUT  
OFx_match  
PHx_match  
DCx_match  
PRx_match  
PWMyTMR  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
0
1
2
PWMyPR  
PWMyPH  
PWMyDC  
4
0
1
PWMyOUT  
Note: PWMx = Master, PWMy = Slave  
FIGURE 22-9:  
SLAVE RUN MODE WITH SYNC START TIMING DIAGRAM  
Rev. 10-000 147B  
7/8/201 5  
Period  
Duty Cycle  
Phase  
Offset  
PWMxCLK  
PWMxPR  
PWMxPH  
PWMxDC  
PWMxOF  
10  
3
5
2
PWMxTMR  
PWMxOUT  
OFx_match  
PWMyTMR  
0
1
0
2
3
1
4
2
5
3
6
4
7
0
8
1
9
2
10  
0
4
1
0
2
1
3
2
4
3
5
4
6
0
3
PWMyPR  
PWMyPH  
PWMyDC  
4
0
1
PWMyOUT  
Note: Master = PWMx, Slave = PWMy  
FIGURE 22-10:  
ONE-SHOT SLAVE RUN MODE WITH SYNC START TIMING DIAGRAM  
Rev. 10-000 148B  
7/8/201 5  
Period  
Duty Cycle  
Phase  
Offset  
PWMxCLK  
PWMxPR  
PWMxPH  
PWMxDC  
PWMxOF  
10  
3
5
2
PWMxTMR  
PWMxOUT  
OFx_match  
PWMyTMR  
0
1
0
2
3
1
4
2
5
3
6
4
7
8
9
10  
0
1
2
3
1
4
2
5
3
6
4
0
PWMyPR  
PWMyPH  
PWMyDC  
4
0
1
PWMyOUT  
Note: Master = PWMx, Slave = PWMy  
FIGURE 22-11:  
CONTINUOUS SLAVE RUN MODE WITH IMMEDIATE RESET AND SYNC START TIMING DIAGRAM  
Rev. 10-000 149B  
7/8/201 5  
Period  
Duty Cycle  
Phase  
Offset  
PWMxCLK  
PWMxPR  
PWMxPH  
PWMxDC  
PWMxOF  
10  
3
5
2
PWMxTMR  
PWMxOUT  
OFx_match  
PWMyTMR  
0
1
0
2
3
1
4
2
5
3
6
4
7
0
8
1
9
2
10  
0
4
1
0
2
1
3
1
4
2
5
3
6
4
3
PWMyPR  
PWMyPH  
PWMyDC  
4
1
2
PWMyOUT  
Note: Master= PWMx, Slave=PWMy  
FIGURE 22-12:  
OFFSET MATCH ON INCREMENTING TIMER TIMING DIAGRAM  
Rev. 10-000 150B  
7/9/201 5  
Period  
Duty Cycle  
Offset  
PWMxCLK  
PWMxPR  
PWMxDC  
PWMxOF  
6
2
2
PWMxTMR  
PWMxOUT  
OFx_match  
PHx_match  
DCx_match  
PRx_match  
PWMyTMR  
0
1
2
3
4
5
6
6
5
4
3
2
1
0
0
1
2
3
0
0
1
2
3
4
4
3
2
1
0
0
0
1
PWMyPR  
PWMyDC  
4
1
PWMyOUT  
Note: Master = PWMx, Slave = PWMy  
 
FIGURE 22-13:  
OFFSET MATCH ON DECREMENTING TIMER TIMING DIAGRAM  
Rev. 10-000 151B  
7/9/201 5  
Period  
Duty Cycle  
Offset  
PWMxCLK  
PWMxPR  
PWMxDC  
PWMxOF  
6
2
2
PWMxTMR  
PWMxOUT  
OF5_match  
PH5_match  
DC5_match  
PR5_match  
PWMyTMR  
0
1
2
3
4
5
6
6
5
4
3
2
1
0
0
1
2
3
0
0
1
2
3
4
4
3
PWMyPR  
PWMyDC  
4
1
PWMyOUT  
Note: Master = PWMx, Slave = PWMy  
 
PIC12(L)F1571/2  
22.4.2  
TRIGGERED RELOAD  
22.4 Reload Operation  
When the LDT bit is set, then the Triggered mode is  
selected and a trigger event is required for the LDA bit  
to take effect. The trigger source is the buffer load  
event of one of the other PWM modules in the device.  
The triggering source is selected by the LDS<1:0> bits  
of the PWMxLDCON register. The buffers will be  
loaded at the first period event following the trigger  
event. Triggered reloading is used when a PWM  
module is operating as a slave to another PWM and it  
is necessary to synchronize the buffer reloads in both  
modules.  
Four of the PWM module control register pairs and one  
control bit are double-buffered so that all can be  
updated simultaneously. These include:  
• PWMxPHH:PWMxPHL register pair  
• PWMxDCH:PWMxDCL register pair  
• PWMxPRH:PWMxPRL register pair  
• PWMxOFH:PWMxOFL register pair  
• OFO control bit  
When written to, these registers do not immediately  
affect the operation of the PWM. By default, writes to  
these registers will not be loaded into the PWM Oper-  
ating Buffer registers until after the arming conditions  
are met. The arming control has two methods of  
operation:  
Note 1: The buffer load operation clears the  
LDA bit.  
2: If the LDA bit is set at the same time as  
PWMxTMR = PWMxPR, the LDA bit is  
ignored until the next period event. Such  
is the case when triggered reload is  
selected and the triggering event occurs  
simultaneously with the target’s period  
event.  
• Immediate  
• Triggered  
The LDT bit of the PWMxLDCON register controls the  
arming method. Both methods require the LDA bit to be  
set. All four buffer pairs will load simultaneously at the  
loading event.  
22.5 Operation in Sleep Mode  
22.4.1  
IMMEDIATE RELOAD  
Each PWM module will continue to operate in Sleep  
mode when either the HFINTOSC or LFINTOSC is  
selected as the clock source by PWMxCLKCON<1:0>.  
When the LDT bit is clear, then the immediate mode is  
selected and the buffers will be loaded at the first period  
event after the LDA bit is set. Immediate reloading is  
used when a PWM module is operating stand-alone or  
when the PWM module is operating as a master to  
other slave PWM modules.  
22.6 Interrupts  
Each PWM module has four independent interrupts  
based on the phase, duty cycle, period and offset match  
events. The interrupt flag is set on the rising edge of  
each of these signals. Refer to Figures 22-12 and 22-13  
for detailed timing diagrams of the match signals.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 215  
PIC12(L)F1571/2  
TABLE 22-1: BIT NAME PREFIXES  
22.7 Register Definitions: PWM Control  
Peripheral  
Bit Name Prefix  
Long bit name prefixes for the 16-bit PWM peripherals  
are shown in Table 22-1. Refer to Section  
1.1 “Register and Bit Naming Conventions” for more  
information  
PWM1  
PWM2  
PWM3  
PWM1  
PWM2  
PWM3  
REGISTER 22-1: PWMxCON: PWMx CONTROL REGISTER  
R/W-0/0  
EN  
R/W-0/0  
OE  
R/HS/HC-0/0  
OUT  
R/W-0/0  
POL  
R/W-0/0  
R/W-0/0  
U-0  
U-0  
MODE<1:0>  
bit 7  
bit 0  
Legend:  
HC = Hardware Clearable bit  
R = Readable bit  
HS = Hardware Settable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
EN: PWMx Module Enable bit  
1= Module is enabled  
0= Module is disabled  
OE: PWMx Output Enable bit  
1= PWM output pin is enabled  
0= PWM output pin is disabled  
bit 5  
bit 4  
OUT: Output State of the PWMx Module bit  
POL: PWMx Output Polarity Control bit  
1= PWM output active state is low  
0= PWM output active state is high  
bit 3-2  
bit 1-0  
MODE<1:0>: PWMx Mode Control bits  
11= Center-Aligned mode  
10= Toggle On Match mode  
01= Set On Match mode  
00= Standard PWM mode  
Unimplemented: Read as ‘0’  
DS40001723D-page 216  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
REGISTER 22-2: PWMxINTE: PWMx INTERRUPT ENABLE REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W-0/0  
OFIE  
R/W-0/0  
PHIE  
R/W-0/0  
DCIE  
R/W-0/0  
PRIE  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
u = Bit is unchanged  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
OFIE: Offset Interrupt Enable bit  
1= Interrupts CPU on offset match  
0= Does not interrupt CPU on offset match  
bit 2  
bit 1  
bit 0  
PHIE: Phase Interrupt Enable bit  
1= Interrupts CPU on phase match  
0= Does not Interrupt CPU on phase match  
DCIE: Duty Cycle Interrupt Enable bit  
1= Interrupts CPU on duty cycle match  
0= Does not interrupt CPU on duty cycle match  
PRIE: Period Interrupt Enable bit  
1= Interrupts CPU on period match  
0= Does not interrupt CPU on period match  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 217  
 
PIC12(L)F1571/2  
REGISTER 22-3: PWMxINTF: PWMx INTERRUPT REQUEST REGISTER  
U-0  
U-0  
U-0  
U-0  
R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0 R/W/HS-0/0  
OFIF PHIF DCIF PRIF  
bit 0  
bit 7  
Legend:  
HC = Hardware Clearable bit  
R = Readable bit  
HS = Hardware Settable bit  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
‘1’ = Bit is set  
‘0’ = Bit is cleared  
bit 7-4  
bit 3  
Unimplemented: Read as ‘0’  
OFIF: Offset Interrupt Flag bit(1)  
1= Offset match event occurred  
0= Offset match event did not occur  
bit 2  
bit 1  
bit 0  
PHIF: Phase Interrupt Flag bit(1)  
1= Phase match event occurred  
0= Phase match event did not occur  
DCIF: Duty Cycle Interrupt Flag bit(1)  
1= Duty cycle match event occurred  
0= Duty cycle match event did not occur  
PRIF: Period Interrupt Flag bit(1)  
1= Period match event occurred  
0= Period match event did not occur  
Note 1: Bit is forced clear by hardware while module is disabled (EN = 0).  
DS40001723D-page 218  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
REGISTER 22-4: PWMxCLKCON: PWMx CLOCK CONTROL REGISTER  
U-0  
R/W-0/0  
R/W-0/0  
PS<2:0>  
R/W-0/0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
CS<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-4  
PS<2:0>: Clock Source Prescaler Select bits  
111= Divides clock source by 128  
110= Divides clock source by 64  
101= Divides clock source by 32  
100= Divides clock source by 16  
011= Divides clock source by 8  
010= Divides clock source by 4  
001= Divides clock source by 2  
000= No prescaler  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
CS<1:0>: Clock Source Select bits  
11= Reserved  
10= LFINTOSC (continues to operate during Sleep)  
01= HFINTOSC (continues to operate during Sleep)  
00= FOSC  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 219  
 
PIC12(L)F1571/2  
REGISTER 22-5: PWMxLDCON: PWMx RELOAD TRIGGER SOURCE SELECT REGISTER  
R/W-0/0  
LDA(1)  
R/W-0/0  
LDT  
U-0  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
LDS<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
u = Bit is unchanged  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
LDA: Load Buffer Armed bit(1)  
If LDT = 1:  
1= Loads the OFx, PHx, DCx and PRx buffers at the end of the period when the selected trigger occurs  
0= Does not load buffers or load has completed  
If LDT = 0:  
1= Loads the OFx, PHx, DCx and PRx buffers at the end of the current period  
0= Does not load buffers or load has completed  
bit 6  
LDT: Load Buffer on Trigger bit  
1= Loads buffers on trigger enabled  
0= Loads buffers on trigger disabled  
Loads the OFx, PHx, DCx and PRx buffers at the end of every period after the selected trigger occurs.  
Reloads internal double buffers at the end of current period. The LDS<1:0> bits are ignored.  
bit 5-2  
bit 1-0  
Unimplemented: Read as ‘0’  
LDS<1:0>: Load Trigger Source Select bits  
11= LD3_trigger(2)  
10= LD2_trigger(2)  
01= LD1_trigger(2)  
00= Reserved  
Note 1: This bit is cleared by the module after a reload operation. It can be cleared in software to clear an existing  
arming event.  
2: The LD_trigger corresponding to the PWM used becomes reserved.  
DS40001723D-page 220  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
REGISTER 22-6: PWMxOFCON: PWMx OFFSET TRIGGER SOURCE SELECT REGISTER  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
OFO(1)  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
OFM<1:0>  
OFS<1:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
Unimplemented: Read as ‘0’  
bit 6-5  
OFM<1:0>: Offset Mode Select bits  
11= Continuous Slave Run mode with immediate Reset and synchronized start when the selected  
offset trigger occurs  
10= One-Shot Slave Run mode with synchronized start when the selected offset trigger occurs  
01= Independent Slave Run mode with synchronized start when the selected offset trigger occurs  
00= Independent Run mode  
bit 4  
OFO: Offset Match Output Control bit(1)  
If MODE<1:0> = 11(PWM Center-Aligned mode):  
1= OFx_match occurs on counter match when counter decrementing, (second match)  
0= OFx_match occurs on counter match when counter incrementing, (first match)  
If MODE<1:0> = 00, 01or 10(all other modes):  
Bit is ignored.  
bit 3-2  
bit 1-0  
Unimplemented: Read as ‘0’  
OFS<1:0>: Offset Trigger Source Select bits  
11= OF3_match(1)  
10= OF2_match(1)  
01= OF1_match(1)  
00= Reserved  
Note 1: The OFx_match corresponding to the PWM used becomes reserved.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 221  
 
PIC12(L)F1571/2  
REGISTER 22-7: PWMxPHH: PWMx PHASE COUNT HIGH REGISTER  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 0  
PH<15:8>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
PH<15:8>: PWMx Phase High bits  
Upper eight bits of PWM phase count.  
REGISTER 22-8: PWMxPHL: PWMx PHASE COUNT LOW REGISTER  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 0  
PH<7:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
PH<7:0>: PWMx Phase Low bits  
Lower eight bits of PWM phase count.  
DS40001723D-page 222  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
REGISTER 22-9: PWMxDCH: PWMx DUTY CYCLE COUNT HIGH REGISTER  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
DC<15:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
DC<15:8>: PWMx Duty Cycle High bits  
Upper eight bits of PWM duty cycle count.  
REGISTER 22-10: PWMxDCL: PWMx DUTY CYCLE COUNT LOW REGISTER  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
DC<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
DC<7:0>: PWMx Duty Cycle Low bits  
Lower eight bits of PWM duty cycle count.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 223  
 
 
PIC12(L)F1571/2  
REGISTER 22-11: PWMxPRH: PWMx PERIOD COUNT HIGH REGISTER  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 0  
PR<15:8>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
PR<15:8>: PWMx Period High bits  
Upper eight bits of PWM period count.  
REGISTER 22-12: PWMxPRL: PWMx PERIOD COUNT LOW REGISTER  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
PR<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
PR<7:0>: PWMx Period Low bits  
Lower eight bits of PWM period count.  
DS40001723D-page 224  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
REGISTER 22-13: PWMxOFH: PWMx OFFSET COUNT HIGH REGISTER  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
OF<15:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
OF<15:8>: PWMx Offset High bits  
Upper eight bits of PWM offset count.  
REGISTER 22-14: PWMxOFL: PWMx OFFSET COUNT LOW REGISTER  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
OF<7:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
OF<7:0>: PWMx Offset Low bits  
Lower eight bits of PWM offset count.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 225  
 
 
PIC12(L)F1571/2  
REGISTER 22-15: PWMxTMRH: PWMx TIMER HIGH REGISTER  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
TMR<15:8>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
TMR<15:8>: PWMx Timer High bits  
Upper eight bits of PWM timer counter.  
REGISTER 22-16: PWMxTMRL: PWMx TIMER LOW REGISTER  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
bit 0  
TMR<7:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-0  
TMR<7:0>: PWMx Timer Low bits  
Lower eight bits of PWM timer counter.  
DS40001723D-page 226  
2013-2015 Microchip Technology Inc.  
 
 
PIC12(L)F1571/2  
Note:  
There are no long and short bit name variants for the following three mirror registers  
REGISTER 22-17: PWMEN: PWMEN BIT ACCESS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
PWM3EN_A PWM2EN_A PWM1EN_A  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
u = Bit is unchanged  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
PWMxEN_A: PWM3/PWM2/PWM1 Enable bits  
Mirror copy of EN bit (PWMxCON<7>).  
REGISTER 22-18: PWMLD: LD BIT ACCESS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
PWM3LDA_A PWM2LDA_A PWM1LDA_A  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
PWMxLDA_A: PWM3/PWM2/PWM1 LD bits  
Mirror copy of LD bit (PWMxLDCON<7>).  
REGISTER 22-19: PWMOUT: PWMOUT BIT ACCESS REGISTER  
U-0  
U-0  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
PWM3OUT_A PWM2OUT_A PWM1OUT_A  
bit 0  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
u = Bit is unchanged  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-3  
bit 2-0  
Unimplemented: Read as ‘0’  
PWMxOUT_A: PWM3/PWM2/PWM1 Output bits  
Mirror copy of OUT bit (PWMxCON<5>).  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 227  
 
 
 
PIC12(L)F1571/2  
TABLE 22-2: SUMMARY OF REGISTERS ASSOCIATED WITH PWM  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
OSCCON  
SPLLEN  
IRCF<3:0>  
SCS<1:0>  
55  
PIE3  
PWM3IE  
PWM3IF  
PWM2IE  
PWM2IF  
PWM1IE  
PWM1IF  
77  
PIR3  
80  
PWMEN  
PWM3EN_A  
PWM2EN_A  
PWM1EN_A  
227  
227  
227  
222  
222  
223  
223  
224  
224  
225  
225  
226  
226  
216  
217  
218  
219  
220  
221  
222  
222  
223  
223  
224  
224  
225  
225  
226  
226  
216  
217  
218  
219  
220  
221  
222  
222  
223  
223  
224  
224  
225  
225  
226  
226  
216  
PWMLD  
PWM3LDA_A PWM2LDA_A PWM1LDA_A  
PWM3OUT_A PWM2OUT_A PWM1OUT_A  
PWMOUT  
PWM1PHL  
PWM1PHH  
PWM1DCL  
PWM1DCH  
PWM1PRH  
PWM1PRL  
PWM1OFH  
PWM1OFL  
PWM1TMRH  
PWM1TMRL  
PWM1CON  
PWM1INTE  
PWM1INTF  
PWM1CLKCON  
PWM1LDCON  
PWM1OFCON  
PWM2PHL  
PWM2PHH  
PWM2DCL  
PWM2DCH  
PWM2PRL  
PWM2PRH  
PWM2OFL  
PWM2OFH  
PWM2TMRL  
PWM2TMRH  
PWM2CON  
PWM2INTE  
PWM2INTF  
PWM2CLKCON  
PWM2LDCON  
PWM2OFCON  
PWM3PHL  
PWM3PHH  
PWM3DCL  
PWM3DCH  
PWM3PRL  
PWM3PRH  
PWM3OFL  
PWM3OFH  
PWM3TMRL  
PWM3TMRH  
PWM3CON  
PH<7:0>  
PH<15:8>  
DC<7:0>  
DC<15:8>  
PR<7:0>  
PR<15:8>  
OF<7:0>  
OF<15:8>  
TMR<7:0>  
TMR<15:8>  
EN  
OE  
OUT  
POL  
MODE<1:0>  
OFIE  
PHIE  
PHIF  
DCIE  
DCIF  
PRIE  
PRIF  
OFIF  
PS<2:0>  
CS<1:0>  
LDS<1:0>  
OFS<1:0>  
LDA  
LDT  
OFM<1:0>  
OFO  
PH<7:0>  
PH<15:8>  
DC<7:0>  
DC<15:8>  
PR<7:0>  
PR<15:8>  
OF<7:0>  
OF<15:8>  
TMR<7:0>  
TMR<15:8>  
EN  
OE  
OUT  
POL  
MODE<1:0>  
OFIE  
PHIE  
PHIF  
DCIE  
DCIF  
PRIE  
PRIF  
OFIF  
PS<2:0>  
CS<1:0>  
LDS<1:0>  
OFS<1:0>  
LDA  
LDT  
OFM<1:0>  
OFO  
PH<7:0>  
PH<15:8>  
DC<7:0>  
DC<15:8>  
PR<7:0>  
PR<15:8>  
OF<7:0>  
OF<15:8>  
TMR<7:0>  
TMR<15:8>  
EN  
OE  
OUT  
POL  
MODE<1:0>  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by the PWM.  
DS40001723D-page 228  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 22-2: SUMMARY OF REGISTERS ASSOCIATED WITH PWM (CONTINUED)  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PWM3INTE  
OFIE  
OFIF  
PHIE  
PHIF  
DCIE  
DCIF  
PRIE  
PRIF  
217  
218  
219  
220  
221  
PWM3INTF  
PWM3CLKCON  
PWM3LDCON  
PWM3OFCON  
PS<2:0>  
CS<1:0>  
LDS<1:0>  
OFS<1:0>  
LDA  
LDT  
OFM<1:0>  
OFO  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by the PWM.  
TABLE 22-3: SUMMARY OF CONFIGURATION WORD WITH CLOCK SOURCES  
Register  
on Page  
Name  
Bits Bit -/7  
Bit -/6  
Bit 13/5  
Bit 12/4  
Bit 11/3  
Bit 10/2  
Bit 9/1  
Bit 8/0  
13:8  
7:0  
CLKOUTEN  
BOREN<1:0>  
CONFIG1  
42  
CP  
MCLRE PWRTE  
WDTE<1:0>  
FOSC<1:0>  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by clock sources.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 229  
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 230  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
23.3 Selectable Input Sources  
23.0 COMPLEMENTARY WAVEFORM  
GENERATOR (CWG) MODULE  
The CWG generates the output waveforms from the  
input sources in Table 23-1.  
The Complementary Waveform Generator (CWG)  
produces a complementary waveform with dead-band  
delay from a selection of input sources.  
TABLE 23-1: SELECTABLE INPUT  
SOURCES  
The CWG module has the following features:  
Source Peripheral  
Signal Name  
C1OUT_sync  
• Selectable dead-band clock source control  
• Selectable input sources  
Comparator C1  
PWM1  
• Output enable control  
PWM1_output  
PWM2_output  
PWM3_output  
• Output polarity control  
PWM2  
• Dead-band control with independent 6-bit rising  
and falling edge dead-band counters  
PWM3  
The input sources are selected using the GxIS<2:0>  
bits in the CWGxCON1 register (Register 23-2).  
• Auto-shutdown control with:  
- Selectable shutdown sources  
- Auto-restart enable  
23.4 Output Control  
- Auto-shutdown pin override control  
Immediately after the CWG module is enabled, the  
complementary drive is configured with both CWGxA  
and CWGxB drives cleared.  
23.1 Fundamental Operation  
The CWG generates two output waveforms from the  
selected input source.  
23.4.1  
OUTPUT ENABLES  
The off-to-on transition of each output can be delayed  
from the on-to-off transition of the other output, thereby,  
creating a time delay immediately where neither output  
is driven. This is referred to as dead time and is covered  
in Section 23.5 “Dead-Band Control”. A typical  
operating waveform with dead band, generated from a  
single input signal, is shown in Figure 23-2.  
Each CWG output pin has individual output enable  
control. Output enables are selected with the GxOEA  
and GxOEB bits of the CWGxCON0 register. When an  
output enable control is cleared, the module asserts no  
control over the pin. When an output enable is set, the  
override value or active PWM waveform is applied to  
the pin per the port priority selection. The output pin  
enables are dependent on the module enable bit,  
GxEN. When GxEN is cleared, CWG output enables  
and CWG drive levels have no effect.  
It may be necessary to guard against the possibility of  
circuit Faults or a feedback event arriving too late, or  
not at all. In this case, the active drive must be termi-  
nated before the Fault condition causes damage. This  
is referred to as auto-shutdown and is covered in  
Section 23.9 “Auto-Shutdown Control”.  
23.4.2  
POLARITY CONTROL  
The polarity of each CWG output can be selected  
independently. When the output polarity bit is set, the  
corresponding output is active-high. Clearing the output  
polarity bit configures the corresponding output as  
active-low. However, polarity does not affect the  
override levels. Output polarity is selected with the  
GxPOLA and GxPOLB bits of the CWGxCON0 register.  
23.2 Clock Source  
The CWG module allows the following clock sources  
to be selected:  
• FOSC (system clock)  
• HFINTOSC (16 MHz only)  
The clock sources are selected using the G1CS0 bit of  
the CWGxCON0 register (Register 23-1).  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 231  
 
FIGURE 23-1:  
SIMPLIFIED CWG BLOCK DIAGRAM  
Rev. 10-000123D  
7/10/2015  
2
GxASDLA  
00  
10  
11  
GxASDLA = 01  
1
0'  
1'  
GxCS  
FOSC  
CWGxDBR  
6
cwg_clock  
HFINTOSC  
CWGxA  
1
EN  
3
=
=
GxIS  
0
R
TRISx  
S
Q
Q
GxOEA  
C1OUT_async  
Reserved  
GxPOLA  
GxPOLB  
Input Source  
CWGxDBF  
6
PWM1_out  
PWM2_out  
PWM3_out  
Reserved  
R
Reserved  
GxOEB  
Reserved  
EN  
TRISx  
0
R
1
CWGxB  
00  
10  
11  
0'  
1'  
GxASE  
Auto-Shutdown  
Source  
CWG1FLT (INT pin)  
GxASDSFLT  
shutdown  
S
S
Q
Q
D
Q
C1OUT_async  
GxASDSC1  
2
GxASDLB  
GxASDLB = 01  
GxASE Data Bit  
WRITE  
R
GxARSEN  
set dominate  
x = CWG module number  
PIC12(L)F1571/2  
FIGURE 23-2:  
TYPICAL CWG OPERATION WITH PWM1 (NO AUTO-SHUTDOWN)  
cwg_clock  
PWM1  
CWGxA  
Rising Edge  
Dead Band  
Rising Edge Dead Band  
Falling Edge Dead Band  
Rising Edge  
Dead Band  
Falling Edge Dead Band  
CWGxB  
23.5 Dead-Band Control  
23.7 Falling Edge Dead Band  
Dead-band control provides for non-overlapping output  
signals to prevent shoot-through current in power  
switches. The CWG contains two 6-bit dead-band  
counters. One dead-band counter is used for the rising  
edge of the input source control. The other is used for  
the falling edge of the input source control.  
The falling edge dead band delays the turn-on of the  
CWGxB output from when the CWGxA output is turned  
off. The falling edge dead-band time starts when the  
falling edge of the input source goes true. When this  
happens, the CWGxA output is immediately turned off  
and the falling edge dead-band delay time starts. When  
the falling edge dead-band delay time is reached, the  
CWGxB output is turned on.  
Dead band is timed by counting CWG clock periods  
from zero, up to the value in the rising or falling Dead-  
Band Counter registers. See the CWGxDBR and  
CWGxDBF registers (Register 23-4 and Register 23-5,  
respectively).  
The CWGxDBF register sets the duration of the dead-  
band interval on the falling edge of the input source  
signal. This duration is from 0 to 64 counts of  
dead band.  
23.6 Rising Edge Dead Band  
Dead band is always counted off the edge on the input  
source signal. A count of 0 (zero), indicates that no  
dead band is present.  
The rising edge dead band delays the turn-on of the  
CWGxA output from when the CWGxB output is turned  
off. The rising edge dead-band time starts when the  
rising edge of the input source signal goes true. When  
this happens, the CWGxB output is immediately turned  
off and the rising edge dead-band delay time starts.  
When the rising edge dead-band delay time is reached,  
the CWGxA output is turned on.  
If the input source signal is not present for enough time  
for the count to be completed, no output will be seen on  
the respective output.  
Refer to Figure 23-3 and Figure 23-4 for examples.  
The CWGxDBR register sets the duration of the dead-  
band interval on the rising edge of the input source  
signal. This duration is from 0 to 64 counts of dead band.  
Dead band is always counted off the edge on the input  
source signal. A count of 0 (zero), indicates that no  
dead band is present.  
If the input source signal is not present for enough time  
for the count to be completed, no output will be seen on  
the respective output.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 233  
FIGURE 23-3:  
DEAD-BAND OPERATION, CWGxDBR = 01h, CWGxDBF = 02h  
cwg_clock  
Input Source  
CWGxA  
CWGxB  
FIGURE 23-4:  
DEAD-BAND OPERATION, CWGxDBR = 03h, CWGxDBF = 04h, SOURCE SHORTER THAN DEAD BAND  
cwg_clock  
Input Source  
CWGxA  
CWGxB  
Source Shorter than Dead Band  
PIC12(L)F1571/2  
23.8 Dead-Band Uncertainty  
23.9 Auto-Shutdown Control  
When the rising and falling edges of the input source  
triggers the dead-band counters, the input may be  
asynchronous. This will create some uncertainty in the  
dead-band time delay. The maximum uncertainty is  
equal to one CWG clock period. Refer to Equation 23-1  
for more detail.  
Auto-shutdown is a method to immediately override the  
CWG output levels with specific overrides that allow for  
safe shutdown of the circuit. The shutdown state can be  
either cleared automatically or held until cleared by  
software.  
23.9.1  
SHUTDOWN  
EQUATION 23-1: DEAD-BAND  
UNCERTAINTY  
The shutdown state can be entered by either of the  
following two methods:  
• Software generated  
• External Input  
1
TDEADBAND_UNCERTAINTY = ----------------------------  
Fcwg_clock  
23.9.1.1  
Software Generated Shutdown  
Setting the GxASE bit of the CWGxCON2 register will  
force the CWG into the shutdown state.  
When auto-restart is disabled, the shutdown state will  
persist as long as the GxASE bit is set.  
Example:  
When auto-restart is enabled, the GxASE bit will clear  
automatically and resume operation on the next rising  
edge event. See Figure 23-6.  
Fcwg_clock = 16 MHz  
23.9.1.2  
External Input Source  
External shutdown inputs provide the fastest way to  
safely suspend CWG operation in the event of a Fault  
condition. When any of the selected shutdown inputs  
goes active, the CWG outputs will immediately go to  
the selected override levels without software delay. Any  
combination of two input sources can be selected to  
cause a shutdown condition. The sources are:  
Therefore:  
1
TDEADBAND_UNCERTAINTY = ----------------------------  
Fcwg_clock  
• Comparator C1 – C1OUT_async  
• CWG1FLT  
1
= ------------------  
16 MHz  
Shutdown inputs are selected in the CWGxCON2  
register (Register 23-3).  
= 62.5ns  
Note:  
Shutdown inputs are level sensitive, not  
edge sensitive. The shutdown state  
cannot be cleared, except by disabling  
auto-shutdown, as long as the shutdown  
input level persists.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 235  
 
PIC12(L)F1571/2  
23.11.1 PIN OVERRIDE LEVELS  
23.10 Operation During Sleep  
The levels driven to the output pins, while the shutdown  
input is true, are controlled by the GxASDLA  
and GxASDLB bits of the CWGxCON1 register  
(Register 23-3). GxASDLA controls the CWG1A over-  
ride level and GxASDLB controls the CWG1B override  
level. The control bit logic level corresponds to the out-  
put logic drive level while in the shutdown state. The  
polarity control does not apply to the override level.  
The CWG module operates independently from the  
system clock, and will continue to run during Sleep  
provided that the clock and input sources selected  
remain active.  
The HFINTOSC remains active during Sleep, provided  
that the CWG module is enabled, the input source is  
active and the HFINTOSC is selected as the clock  
source, regardless of the system clock source  
selected.  
23.11.2 AUTO-SHUTDOWN RESTART  
In other words, if the HFINTOSC is simultaneously  
selected as the system clock and the CWG clock  
source, when the CWG is enabled and the input source  
is active, the CPU will go idle during Sleep, but the  
CWG will continue to operate and the HFINTOSC will  
remain active.  
After an auto-shutdown event has occurred, there are  
two ways to resume operation:  
• Software controlled  
• Auto-restart  
The restart method is selected with the GxARSEN bit  
of the CWGxCON2 register. Waveforms of software  
controlled and automatic restarts are shown in  
Figure 23-5 and Figure 23-6.  
This will have a direct effect on the Sleep mode current.  
23.11 Configuring the CWG  
23.11.2.1 Software Controlled Restart  
The following steps illustrate how to properly configure  
the CWG to ensure a synchronous start:  
When the GxARSEN bit of the CWGxCON2 register  
is cleared, the CWG must be restarted after an  
auto-shutdown event by software.  
1. Ensure that the TRISx control bits correspond-  
ing to CWGxA and CWGxB are set so that both  
are configured as inputs.  
Clearing the shutdown state requires all selected shut-  
down inputs to be low, otherwise, the GxASE bit will  
remain set. The overrides will remain in effect until the  
first rising edge event after the GxASE bit is cleared.  
The CWG will then resume operation.  
2. Clear the GxEN bit if not already cleared.  
3. Set desired dead-band times with the CWGxDBR  
and CWGxDBF registers.  
4. Set up the following controls in the CWGxCON2  
auto-shutdown register:  
23.11.2.2 Auto-Restart  
• Select desired shutdown source.  
When the GxARSEN bit of the CWGxCON2 register is  
set, the CWG will restart from the auto-shutdown state  
automatically.  
• Select both output overrides to the desired  
levels (this is necessary even if not using  
auto-shutdown because start-up will be from  
a shutdown state).  
The GxASE bit will clear automatically when all shut-  
down sources go low. The overrides will remain in  
effect until the first rising edge event after the GxASE  
bit is cleared. The CWG will then resume operation.  
• Set the GxASE bit and clear the GxARSEN  
bit.  
5. Select the desired input source using the  
CWGxCON1 register.  
6. Configure the following controls in the  
CWGxCON0 register:  
• Select desired clock source.  
• Select the desired output polarities.  
• Set the output enables for the outputs to be  
used.  
7. Set the GxEN bit.  
8. Clear the TRISx control bits corresponding to  
CWGxA and CWGxB to be used to configure  
those pins as outputs.  
9. If auto-restart is to be used, set the GxARSEN  
bit and the GxASE bit will be cleared automati-  
cally. Otherwise, clear the GxASE bit to start the  
CWG.  
DS40001723D-page 236  
2013-2015 Microchip Technology Inc.  
FIGURE 23-5: SHUTDOWN FUNCTIONALITY, AUTO-RESTART DISABLED (GxARSEN = 0, GxASDLA = 01, GxASDLB = 01)  
GxASE Cleared by Software  
Shutdown Event Ceases  
CWG Input  
Source  
Shutdown Source  
GxASE  
Tri-State (No Pulse)  
Tri-State (No Pulse)  
CWG1A  
CWG1B  
No Shutdown  
Output Resumes  
Shutdown  
FIGURE 23-6:  
SHUTDOWN FUNCTIONALITY, AUTO-RESTART ENABLED (GxARSEN = 1, GxASDLA = 01, GxASDLB = 01)  
Shutdown Event Ceases  
GxASE Auto-Cleared by Hardware  
CWG Input  
Source  
Shutdown Source  
GxASE  
Tri-State (No Pulse)  
CWG1A  
CWG1B  
Tri-State (No Pulse)  
Shutdown  
No Shutdown  
Output Resumes  
PIC12(L)F1571/2  
23.12 Register Definitions: CWG Control  
REGISTER 23-1: CWGxCON0: CWGx CONTROL REGISTER 0  
R/W-0/0  
GxEN  
R/W-0/0  
GxOEB  
R/W-0/0  
GxOEA  
R/W-0/0  
GxPOLB  
R/W-0/0  
GxPOLA  
U-0  
U-0  
R/W-0/0  
GxCS0  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
GxEN: CWGx Enable bit  
1= Module is enabled  
0= Module is disabled  
GxOEB: CWGxB Output Enable bit  
1= CWGxB is available on appropriate I/O pin  
0= CWGxB is not available on appropriate I/O pin  
GxOEA: CWGxA Output Enable bit  
1= CWGxA is available on appropriate I/O pin  
0= CWGxA is not available on appropriate I/O pin  
GxPOLB: CWGxB Output Polarity bit  
1= Output is inverted polarity  
0= Output is normal polarity  
GxPOLA: CWGxA Output Polarity bit  
1= Output is inverted polarity  
0= Output is normal polarity  
bit 2-1  
bit 0  
Unimplemented: Read as ‘0’  
GxCS0: CWGx Clock Source Select bit  
1= HFINTOSC  
0= FOSC  
DS40001723D-page 238  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
REGISTER 23-2: CWGxCON1: CWGx CONTROL REGISTER 1  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
U-0  
R/W-0/0  
R/W-0/0  
R/W-0/0  
bit 0  
GxASDLB<1:0>  
GxASDLA<1:0>  
GxIS<2:0>  
bit 7  
Legend:  
R = Readable bit  
W = Writable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
x = Bit is unknown  
‘0’ = Bit is cleared  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7-6  
GxASDLB<1:0>: CWGx Shutdown State for CWGxB bits  
When an Auto-Shutdown Event is Present (GxASE = 1):  
11= CWGxB pin is driven to ‘1’, regardless of the setting of the GxPOLB bit  
10= CWGxB pin is driven to ‘0’, regardless of the setting of the GxPOLB bit  
01= CWGxB pin is tri-stated  
00= CWGxB pin is driven to its inactive state after the selected dead-band interval; GxPOLB will still  
control the polarity of the output  
bit 5-4  
GxASDLA<1:0>: CWGx Shutdown State for CWGxA bits  
When an Auto-Shutdown Event is Present (GxASE = 1):  
11= CWGxA pin is driven to ‘1’, regardless of the setting of the GxPOLA bit  
10= CWGxA pin is driven to ‘0’, regardless of the setting of the GxPOLA bit  
01= CWGxA pin is tri-stated  
00= CWGxA pin is driven to its inactive state after the selected dead-band interval; GxPOLA will still  
control the polarity of the output  
bit 3  
Unimplemented: Read as ‘0’  
bit 2-0  
GxIS<2:0>: CWGx Input Source Select bits  
111= Reserved  
110= Reserved  
101= Reserved  
100= PWM3 – PWM3_out  
011= PWM2 – PWM2_out  
010= PWM1 – PWM1_out  
001= Reserved  
000= Comparator C1 – C1OUT_async  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 239  
 
PIC12(L)F1571/2  
REGISTER 23-3: CWGxCON2: CWGx CONTROL REGISTER 2  
R/W-0/0  
GxASE  
R/W-0/0  
U-0  
U-0  
U-0  
R/W-0/0  
R/W-0/0  
U-0  
GxARSEN  
GxASDSC1 GxASDSFLT  
bit 7  
bit 0  
Legend:  
R = Readable bit  
W = Writable bit  
x = Bit is unknown  
‘0’ = Bit is cleared  
u = Bit is unchanged  
‘1’ = Bit is set  
U = Unimplemented bit, read as ‘0’  
-n/n = Value at POR and BOR/Value at all other Resets  
bit 7  
bit 6  
GxASE: Auto-Shutdown Event Status bit  
1= An auto-shutdown event has occurred  
0= No auto-shutdown event has occurred  
GxARSEN: Auto-Restart Enable bit  
1= Auto-restart is enabled  
0= Auto-restart is disabled  
bit 5-3  
bit 2  
Unimplemented: Read as ‘0’  
GxASDSC1: CWGx Auto-Shutdown on Comparator C1 Enable bit  
1= Shutdown when Comparator C1 output (C1OUT_async) is high  
0= Comparator C1 output has no effect on shutdown  
bit 1  
bit 0  
GxASDSFLT: CWGx Auto-Shutdown on FLT Enable bit  
1= Shutdown when CWG1FLT input is low  
0= CWG1FLT input has no effect on shutdown  
Unimplemented: Read as ‘0’  
DS40001723D-page 240  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
REGISTER 23-4: CWGxDBR: CWGx COMPLEMENTARY WAVEFORM GENERATOR RISING  
DEAD-BAND COUNT REGISTER  
U-0  
U-0  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
CWGxDBR<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
CWGxDBR<5:0>: Complementary Waveform Generator (CWGx) Rising Counts bits  
11 1111= 63-64 counts of dead band  
11 1110= 62-63 counts of dead band  
00 0010= 2-3 counts of dead band  
00 0001= 1-2 counts of dead band  
00 0000= 0 counts of dead band  
REGISTER 23-5: CWGxDBF: CWGx COMPLEMENTARY WAVEFORM GENERATOR FALLING  
DEAD-BAND COUNT REGISTER  
U-0  
U-0  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
R/W-x/u  
CWGxDBF<5:0>  
bit 7  
bit 0  
Legend:  
R = Readable bit  
u = Bit is unchanged  
‘1’ = Bit is set  
W = Writable bit  
U = Unimplemented bit, read as ‘0’  
x = Bit is unknown  
‘0’ = Bit is cleared  
-n/n = Value at POR and BOR/Value at all other Resets  
q = Value depends on condition  
bit 7-6  
bit 5-0  
Unimplemented: Read as ‘0’  
CWGxDBF<5:0>: Complementary Waveform Generator (CWGx) Falling Counts bits  
11 1111= 63-64 counts of dead band  
11 1110= 62-63 counts of dead band  
00 0010= 2-3 counts of dead band  
00 0001= 1-2 counts of dead band  
00 0000= 0 counts of dead band; dead-band generation is bypassed  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 241  
 
 
PIC12(L)F1571/2  
TABLE 23-2: SUMMARY OF REGISTERS ASSOCIATED WITH CWG  
Register  
on Page  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ANSELA  
ANSA4  
ANSA2  
ANSA1  
ANSA0  
G1CS0  
114  
238  
239  
240  
241  
241  
113  
CWG1CON0 G1EN  
G1OEB G1OEA G1POLB G1POLA  
CWG1CON1  
G1ASDLB<1:0>  
G1ASDLA<1:0>  
G1IS<1:0>  
CWG1CON2 G1ASE G1ARSEN  
G1ASDSC1 G1ASDSFLT  
CWG1DBF<5:0>  
CWG1DBR<5:0>  
CWG1DBF  
CWG1DBR  
TRISA  
(1)  
TRISA<5:4>  
TRISA2  
TRISA<1:0>  
Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by the CWG.  
Note 1: Unimplemented, read as ‘1’.  
DS40001723D-page 242  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
24.3 Common Programming Interfaces  
24.0 IN-CIRCUIT SERIAL  
PROGRAMMING™ (ICSP™)  
Connection to a target device is typically done through  
an ICSP™ header. A commonly found connector on  
development tools is the RJ-11 in the 6P6C (6-pin,  
6-connector) configuration. See Figure 24-1.  
ICSP™ programming allows customers to manufacture  
circuit boards with unprogrammed devices. Programming  
can be done after the assembly process, allowing the  
device to be programmed with the most recent firmware  
or a custom firmware. Five pins are needed for ICSP™  
FIGURE 24-1:  
ICD RJ-11 STYLE  
CONNECTOR INTERFACE  
programming:  
• ICSPCLK  
• ICSPDAT  
• MCLR/VPP  
• VDD  
• VSS  
ICSPDAT  
NC  
ICSPCLK  
2 4 6  
In Program/Verify mode, the program memory, User IDs  
and the Configuration Words are programmed through  
serial communications. The ICSPDAT pin is a bidirec-  
tional I/O used for transferring the serial data and the  
ICSPCLK pin is the clock input. For more information on  
ICSP™, refer to the “PIC12(L)F1501/PIC16(L)F150X  
Memory Programming Specification” (DS41573).  
VDD  
1 3  
5
Target  
PC Board  
Bottom Side  
VPP/MCLR  
VSS  
Pin Description*  
1 = VPP/MCLR  
2 = VDD Target  
3 = VSS (ground)  
4 = ICSPDAT  
24.1 High-Voltage Programming Entry  
Mode  
The device is placed into High-Voltage Programming  
Entry mode by holding the ICSPCLK and ICSPDAT pins  
low, then raising the voltage on MCLR/VPP to VIHH.  
5 = ICSPCLK  
6 = No Connect  
24.2 Low-Voltage Programming Entry  
Mode  
Another connector often found in use with the PICkit™  
programmers is a standard 6-pin header with 0.1 inch  
spacing. Refer to Figure 24-2.  
The Low-Voltage Programming Entry mode allows the  
PIC® MCUs (Flash) to be programmed using VDD only,  
without high voltage. When the LVP bit of the  
Configuration Words is set to ‘1’, the ICSP Low-Voltage  
Programming Entry mode is enabled. To disable the  
Low-Voltage ICSP mode, the LVP bit must be  
programmed to ‘0’.  
Entry into the Low-Voltage Programming Entry mode  
requires the following steps:  
1. MCLR is brought to VIL.  
2.  
A
32-bit key sequence is presented on  
ICSPDAT while clocking ICSPCLK.  
Once the key sequence is complete, MCLR must be  
held at VIL for as long as Program/Verify mode is to be  
maintained.  
If Low-Voltage Programming is enabled (LVP = 1), the  
MCLR Reset function is automatically enabled and  
cannot be disabled. See Section 6.5 “MCLR” for more  
information.  
The LVP bit can only be reprogrammed to ‘0’ by using  
the High-Voltage Programming mode.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 243  
 
PIC12(L)F1571/2  
FIGURE 24-2:  
PICkit™ PROGRAMMER STYLE CONNECTOR INTERFACE  
Rev. 10-000128A  
7/30/2013  
Pin 1 Indicator  
Pin Description*  
1 = VPP/MCLR  
1
2
3
4
5
6
2 = VDD Target  
3 = VSS (ground)  
4 = ICSPDAT  
5 = ICSPCLK  
6 = No connect  
*
The 6-pin header (0.100" spacing) accepts 0.025" square pins  
For additional interface recommendations, refer to your  
specific device programmer manual prior to PCB  
design.  
It is recommended that isolation devices be used to  
separate the programming pins from other circuitry.  
The type of isolation is highly dependent on the specific  
application and may include devices, such as resistors,  
diodes or even jumpers. See Figure 24-3 for more  
information.  
FIGURE 24-3:  
TYPICAL CONNECTION FOR ICSP™ PROGRAMMING  
Rev. 10-000129A  
7/30/2013  
External  
Programming  
Signals  
Device to be  
Programmed  
VDD  
VDD  
VDD  
VPP  
VSS  
MCLR/VPP  
VSS  
Data  
ICSPDAT  
ICSPCLK  
Clock  
*
*
*
To Normal Connections  
*
Isolation devices (as required).  
DS40001723D-page 244  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
25.1 Read-Modify-Write Operations  
25.0 INSTRUCTION SET SUMMARY  
Any instruction that specifies a file register as part of  
the instruction performs a Read-Modify-Write (R-M-W)  
operation. The register is read, the data is modified and  
the result is stored according to either the instruction or  
the destination designator, ‘d’. A read operation is  
performed on a register even if the instruction writes to  
that register.  
Each instruction is a 14-bit word containing the opera-  
tion code (opcode) and all required operands. The  
opcodes are broken into three broad categories.  
• Byte-Oriented  
• Bit-Oriented  
• Literal and Control  
The literal and control category contains the most  
varied instruction word format.  
TABLE 25-1: OPCODE FIELD  
DESCRIPTIONS  
Table 25-3 lists the instructions recognized by the  
MPASM™ assembler.  
Field  
Description  
All instructions are executed within a single instruction  
cycle, with the following exceptions, which may take  
two or three cycles:  
f
W
b
Register file address (0x00 to 0x7F).  
Working register (accumulator).  
Bit address within an 8-bit file register.  
Literal field, constant data or label.  
• Subroutine takes two cycles (CALL, CALLW)  
• Returns from interrupts or subroutines take two  
cycles (RETURN, RETLW, RETFIE)  
k
x
Don’t care location (= 0or 1).  
• Program branching takes two cycles (GOTO, BRA,  
BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)  
• One additional instruction cycle will be used when  
any instruction references an indirect file register  
and the file select register is pointing to program  
memory  
The assembler will generate code with x = 0.  
It is the recommended form of use for  
compatibility with all Microchip software tools.  
d
n
Destination select; d = 0: store result in W,  
d = 1: store result in file register f.  
Default is d = 1.  
One instruction cycle consists of 4 oscillator cycles; for  
an oscillator frequency of 4 MHz, this gives a nominal  
instruction execution rate of 1 MHz.  
FSR or INDF number (0-1).  
mm Pre-Post Increment-Decrement mode  
selection.  
All instruction examples use the format ‘0xhh’ to  
represent a hexadecimal number, where ‘h’ signifies a  
hexadecimal digit.  
TABLE 25-2: ABBREVIATION  
DESCRIPTIONS  
Field  
Description  
PC Program Counter  
TO Time-out bit  
C
Carry bit  
DC Digit Carry bit  
Zero bit  
PD Power-Down bit  
Z
2013-2015 Microchip Technology Inc.  
DS40001723D-page 245  
PIC12(L)F1571/2  
FIGURE 25-1:  
GENERAL FORMAT FOR  
INSTRUCTIONS  
Byte-oriented file register operations  
13  
8
7
6
0
OPCODE  
d
f (FILE #)  
d = 0for destination W  
d = 1for destination f  
f = 7-bit file register address  
Bit-oriented file register operations  
13 10 9  
7 6  
0
OPCODE  
b (BIT #)  
f (FILE #)  
b = 3-bit bit address  
f = 7-bit file register address  
Literal and control operations  
General  
13  
8
7
0
OPCODE  
k (literal)  
k = 8-bit immediate value  
CALLand GOTOinstructions only  
13 11 10  
OPCODE  
0
k (literal)  
k = 11-bit immediate value  
MOVLPinstruction only  
13  
7
6
0
0
OPCODE  
k (literal)  
k = 7-bit immediate value  
MOVLBinstruction only  
13  
5 4  
OPCODE  
k (literal)  
k = 5-bit immediate value  
BRAinstruction only  
13  
9
8
0
OPCODE  
k (literal)  
k = 9-bit immediate value  
FSR Offset instructions  
13  
7
6
5
0
0
OPCODE  
n
k (literal)  
n = appropriate FSR  
k = 6-bit immediate value  
FSRIncrement instructions  
13  
3
2
n
1
OPCODE  
m (mode)  
n = appropriate FSR  
m = 2-bit mode value  
OPCODE only  
13  
0
OPCODE  
DS40001723D-page 246  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 25-3: ENHANCED MID-RANGE INSTRUCTION SET  
14-Bit Opcode  
Status  
Mnemonic,  
Operands  
Description  
Cycles  
Notes  
Affected  
MSb  
LSb  
BYTE-ORIENTED FILE REGISTER OPERATIONS  
00 0111 dfff ffff C, DC, Z  
11 1101 dfff ffff C, DC, Z  
00 0101 dfff ffff  
ADDWF  
ADDWFC f, d  
ANDWF  
ASRF  
LSLF  
f, d  
Add W and f  
Add with Carry W and f  
AND W with f  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
f, d  
f, d  
f, d  
f, d  
f
Z
Arithmetic Right Shift  
Logical Left Shift  
Logical Right Shift  
Clear f  
11 0111 dfff ffff C, Z  
11 0101 dfff ffff C, Z  
11 0110 dfff ffff C, Z  
LSRF  
CLRF  
CLRW  
COMF  
DECF  
INCF  
IORWF  
MOVF  
MOVWF  
RLF  
RRF  
SUBWF  
SUBWFB f, d  
SWAPF  
XORWF  
00 0001 lfff ffff  
00 0001 0000 00xx  
00 1001 dfff ffff  
00 0011 dfff ffff  
00 1010 dfff ffff  
00 0100 dfff ffff  
00 1000 dfff ffff  
00 0000 1fff ffff  
00 1101 dfff ffff  
00 1100 dfff ffff  
Z
Z
Z
Z
Z
Z
Z
Clear W  
Complement f  
Decrement f  
Increment f  
f, d  
f, d  
f, d  
f, d  
f, d  
f
f, d  
f, d  
f, d  
2
2
2
2
2
2
2
2
2
2
2
2
Inclusive OR W with f  
Move f  
Move W to f  
Rotate Left f through Carry  
Rotate Right f through Carry  
Subtract W from f  
Subtract with Borrow W from f  
Swap nibbles in f  
Exclusive OR W with f  
C
C
00 0010 dfff ffff C, DC, Z  
11 1011 dfff ffff C, DC, Z  
00 1110 dfff ffff  
f, d  
f, d  
00 0110 dfff ffff  
Z
BYTE-ORIENTED SKIP OPERATIONS  
DECFSZ f, d  
Decrement f, Skip if 0  
Increment f, Skip if 0  
1(2)  
1(2)  
00  
00  
1011 dfff ffff  
1111 dfff ffff  
1, 2  
1, 2  
INCFSZ  
f, d  
BIT-ORIENTED FILE REGISTER OPERATIONS  
BCF  
BSF  
f, b  
f, b  
Bit Clear f  
Bit Set f  
1
1
01  
01  
00bb bfff ffff  
01bb bfff ffff  
2
2
BIT-ORIENTED SKIP OPERATIONS  
BTFSC  
BTFSS  
f, b  
f, b  
Bit Test f, Skip if Clear  
Bit Test f, Skip if Set  
1 (2)  
1 (2)  
01  
01  
10bb bfff ffff  
11bb bfff ffff  
1, 2  
1, 2  
LITERAL OPERATIONS  
ADDLW  
ANDLW  
IORLW  
MOVLB  
MOVLP  
MOVLW  
SUBLW  
XORLW  
k
k
k
k
k
k
k
k
Add literal and W  
AND literal with W  
Inclusive OR literal with W  
Move literal to BSR  
Move literal to PCLATH  
Move literal to W  
1
1
1
1
1
1
1
1
11  
11  
11  
00  
11  
11  
11  
11  
1110 kkkk kkkk C, DC, Z  
1001 kkkk kkkk  
1000 kkkk kkkk  
0000 001k kkkk  
0001 1kkk kkkk  
0000 kkkk kkkk  
Z
Z
Subtract W from literal  
Exclusive OR literal with W  
1100 kkkk kkkk C, DC, Z  
1010 kkkk kkkk  
Z
Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle  
is executed as a NOP.  
2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one  
additional instruction cycle.  
3: See the table in the MOVIWand MOVWIinstruction descriptions.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 247  
PIC12(L)F1571/2  
TABLE 25-3: ENHANCED MID-RANGE INSTRUCTION SET (CONTINUED)  
14-Bit Opcode  
Mnemonic,  
Operands  
Status  
Affected  
Description  
Cycles  
Notes  
MSb  
LSb  
CONTROL OPERATIONS  
BRA  
BRW  
CALL  
CALLW  
GOTO  
RETFIE  
RETLW  
RETURN  
k
Relative Branch  
Relative Branch with W  
Call Subroutine  
Call Subroutine with W  
Go to address  
Return from interrupt  
Return with literal in W  
Return from Subroutine  
2
2
2
2
2
2
2
2
11  
00  
10  
00  
10  
00  
11  
00  
001k kkkk kkkk  
0000 0000 1011  
0kkk kkkk kkkk  
0000 0000 1010  
1kkk kkkk kkkk  
0000 0000 1001  
0100 kkkk kkkk  
0000 0000 1000  
k
k
k
k
INHERENT OPERATIONS  
CLRWDT  
NOP  
OPTION  
RESET  
SLEEP  
TRIS  
f
Clear Watchdog Timer  
No Operation  
Load OPTION_REG register with W  
Software device Reset  
Go into Standby mode  
Load TRIS register with W  
1
1
1
1
1
1
00  
00  
00  
00  
00  
00  
0000 0110 0100 TO, PD  
0000 0000 0000  
0000 0110 0010  
0000 0000 0001  
0000 0110 0011 TO, PD  
0000 0110 0fff  
C COMPILER OPTIMIZED  
ADDFSR n, k  
Add Literal k to FSRn  
Move Indirect FSRn to W with pre/post inc/dec  
modifier, mm  
1
1
11 0001 0nkk kkkk  
00 0000 0001 0nmm  
kkkk  
MOVIW  
n mm  
Z
Z
2, 3  
k[n]  
n mm  
Move INDFn to W, Indexed Indirect.  
Move W to Indirect FSRn with pre/post inc/dec  
modifier, mm  
1
1
11 1111 0nkk 1nmm  
00 0000 0001 kkkk  
2
2, 3  
MOVWI  
k[n]  
Move W to INDFn, Indexed Indirect.  
1
11 1111 1nkk  
2
Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle  
is executed as a NOP.  
2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require  
one additional instruction cycle.  
3: See the table in the MOVIWand MOVWIinstruction descriptions.  
DS40001723D-page 248  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
25.2 Instruction Descriptions  
ADDFSR  
Add Literal to FSRn  
ANDLW  
AND literal with W  
Syntax:  
[ label ] ADDFSR FSRn, k  
Syntax:  
[ label ] ANDLW  
0 k 255  
k
Operands:  
-32 k 31  
n [ 0, 1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .AND. (k) (W)  
Operation:  
FSR(n) + k FSR(n)  
Z
Status Affected:  
Description:  
None  
The contents of W register are  
AND’ed with the 8-bit literal ‘k’. The  
result is placed in the W register.  
The signed 6-bit literal ‘k’ is added to  
the contents of the FSRnH:FSRnL  
register pair.  
FSRn is limited to the range 0000h -  
FFFFh. Moving beyond these bounds  
will cause the FSR to wraparound.  
ADDLW  
Add literal and W  
ANDWF  
AND W with f  
Syntax:  
[ label ] ADDLW  
0 k 255  
k
Syntax:  
[ label ] ANDWF f,d  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
0 f 127  
d 0,1  
(W) + k (W)  
C, DC, Z  
Operation:  
(W) .AND. (f) (destination)  
Status Affected:  
Description:  
Z
The contents of the W register are  
added to the 8-bit literal ‘k’ and the  
result is placed in the W register.  
AND the W register with register ‘f’. If  
‘d’ is ‘0’, the result is stored in the W  
register. If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
ADDWF  
Add W and f  
ASRF  
Arithmetic Right Shift  
Syntax:  
[ label ] ADDWF f,d  
Syntax:  
[ label ] ASRF f {,d}  
Operands:  
0 f 127  
d 0,1  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) + (f) (destination)  
Operation:  
(f<7>)dest<7>  
(f<7:1>) dest<6:0>,  
(f<0>) C,  
Status Affected:  
Description:  
C, DC, Z  
Add the contents of the W register  
with register ‘f’. If ‘d’ is ‘0’, the result is  
stored in the W register. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
Status Affected:  
Description:  
C, Z  
The contents of register ‘f’ are shifted  
one bit to the right through the Carry  
flag. The MSb remains unchanged. If  
‘d’ is ‘0’, the result is placed in W. If ‘d’  
is ‘1’, the result is stored back in  
register ‘f’.  
ADDWFC  
ADD W and CARRY bit to f  
C
register f  
Syntax:  
[ label ] ADDWFC  
f {,d}  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(W) + (f) + (C) dest  
Status Affected:  
Description:  
C, DC, Z  
Add W, the Carry flag and data mem-  
ory location ‘f’. If ‘d’ is ‘0’, the result is  
placed in W. If ‘d’ is ‘1’, the result is  
placed in data memory location ‘f’.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 249  
PIC12(L)F1571/2  
BTFSC  
Bit Test f, Skip if Clear  
BCF  
Bit Clear f  
Syntax:  
[ label ] BTFSC f,b  
Syntax:  
[ label ] BCF f,b  
Operands:  
0 f 127  
0 b 7  
Operands:  
0 f 127  
0 b 7  
Operation:  
skip if (f<b>) = 0  
Operation:  
0(f<b>)  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
If bit ‘b’ in register ‘f’ is ‘1’, the next  
instruction is executed.  
Bit ‘b’ in register ‘f’ is cleared.  
If bit ‘b’, in register ‘f’, is ‘0’, the next  
instruction is discarded, and a NOPis  
executed instead, making this a  
2-cycle instruction.  
BTFSS  
Bit Test f, Skip if Set  
BRA  
Relative Branch  
Syntax:  
[ label ] BTFSS f,b  
Syntax:  
[ label ] BRA label  
[ label ] BRA $+k  
Operands:  
0 f 127  
0 b < 7  
Operands:  
-256 label - PC + 1 255  
-256 k 255  
Operation:  
skip if (f<b>) = 1  
Operation:  
(PC) + 1 + k PC  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
If bit ‘b’ in register ‘f’ is ‘0’, the next  
instruction is executed.  
If bit ‘b’ is ‘1’, then the next  
instruction is discarded and a NOPis  
executed instead, making this a  
2-cycle instruction.  
Add the signed 9-bit literal ‘k’ to the  
PC. Since the PC will have incre-  
mented to fetch the next instruction,  
the new address will be PC + 1 + k.  
This instruction is a 2-cycle instruc-  
tion. This branch has a limited range.  
BRW  
Relative Branch with W  
Syntax:  
[ label ] BRW  
None  
Operands:  
Operation:  
Status Affected:  
Description:  
(PC) + (W) PC  
None  
Add the contents of W (unsigned) to  
the PC. Since the PC will have incre-  
mented to fetch the next instruction,  
the new address will be PC + 1 + (W).  
This instruction is a 2-cycle instruc-  
tion.  
BSF  
Bit Set f  
Syntax:  
[ label ] BSF f,b  
Operands:  
0 f 127  
0 b 7  
Operation:  
1(f<b>)  
Status Affected:  
Description:  
None  
Bit ‘b’ in register ‘f’ is set.  
DS40001723D-page 250  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
CALL  
Call Subroutine  
CLRWDT  
Clear Watchdog Timer  
Syntax:  
[ label ] CALL  
0 k 2047  
k
Syntax:  
[ label ] CLRWDT  
Operands:  
Operation:  
Operands:  
Operation:  
None  
(PC)+ 1TOS,  
k PC<10:0>,  
(PCLATH<6:3>) PC<14:11>  
00h WDT  
0WDT prescaler,  
1TO  
1PD  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
TO, PD  
Call Subroutine. First, return address  
(PC + 1) is pushed onto the stack.  
The 11-bit immediate address is  
loaded into PC bits <10:0>. The upper  
bits of the PC are loaded from  
PCLATH. CALLis a 2-cycle instruc-  
tion.  
CLRWDTinstruction resets the Watch-  
dog Timer. It also resets the prescaler  
of the WDT.  
Status bits TO and PD are set.  
COMF  
Complement f  
CALLW  
Subroutine Call With W  
Syntax:  
[ label ] COMF f,d  
Syntax:  
[ label ] CALLW  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
None  
(PC) +1 TOS,  
(W) PC<7:0>,  
Operation:  
(f) (destination)  
(PCLATH<6:0>) PC<14:8>  
Status Affected:  
Description:  
Z
The contents of register ‘f’ are com-  
plemented. If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
Status Affected:  
Description:  
None  
Subroutine call with W. First, the  
return address (PC + 1) is pushed  
onto the return stack. Then, the con-  
tents of W is loaded into PC<7:0>,  
and the contents of PCLATH into  
PC<14:8>. CALLWis a 2-cycle  
instruction.  
DECF  
Decrement f  
CLRF  
Clear f  
Syntax:  
[ label ] DECF f,d  
Syntax:  
[ label ] CLRF  
0 f 127  
f
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h (f)  
1Z  
Operation:  
(f) - 1 (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
Decrement register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W  
The contents of register ‘f’ are cleared  
and the Z bit is set.  
register. If ‘d’ is ‘1’, the result is stored  
back in register ‘f’.  
CLRW  
Clear W  
Syntax:  
[ label ] CLRW  
Operands:  
Operation:  
None  
00h (W)  
1Z  
Status Affected:  
Description:  
Z
W register is cleared. Zero bit (Z) is  
set.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 251  
PIC12(L)F1571/2  
DECFSZ  
Decrement f, Skip if 0  
INCFSZ  
Increment f, Skip if 0  
Syntax:  
[ label ] DECFSZ f,d  
Syntax:  
[ label ] INCFSZ f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) - 1 (destination);  
skip if result = 0  
Operation:  
(f) + 1 (destination),  
skip if result = 0  
Status Affected:  
Description:  
None  
Status Affected:  
Description:  
None  
The contents of register ‘f’ are decre-  
mented. If ‘d’ is ‘0’, the result is placed  
in the W register. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’.  
The contents of register ‘f’ are incre-  
mented. If ‘d’ is ‘0’, the result is placed  
in the W register. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’.  
If the result is ‘1’, the next instruction is  
executed. If the result is ‘0’, then a  
NOPis executed instead, making it a  
2-cycle instruction.  
If the result is ‘1’, the next instruction is  
executed. If the result is ‘0’, a NOPis  
executed instead, making it a 2-cycle  
instruction.  
GOTO  
Unconditional Branch  
IORLW  
Inclusive OR literal with W  
Syntax:  
[ label ] GOTO  
0 k 2047  
k
Syntax:  
[ label ] IORLW  
0 k 255  
(W) .OR. k (W)  
Z
k
Operands:  
Operation:  
Operands:  
Operation:  
Status Affected:  
Description:  
k PC<10:0>  
PCLATH<6:3> PC<14:11>  
Status Affected:  
Description:  
None  
The contents of the W register are  
OR’ed with the 8-bit literal ‘k’. The  
result is placed in the W register.  
GOTOis an unconditional branch. The  
11-bit immediate value is loaded into  
PC bits <10:0>. The upper bits of PC  
are loaded from PCLATH<4:3>. GOTO  
is a 2-cycle instruction.  
INCF  
Increment f  
IORWF  
Inclusive OR W with f  
Syntax:  
[ label ] INCF f,d  
Syntax:  
[ label ] IORWF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) + 1 (destination)  
Operation:  
(W) .OR. (f) (destination)  
Status Affected:  
Description:  
Z
Status Affected:  
Description:  
Z
The contents of register ‘f’ are incre-  
mented. If ‘d’ is ‘0’, the result is placed  
in the W register. If ‘d’ is ‘1’, the result  
is placed back in register ‘f’.  
Inclusive OR the W register with regis-  
ter ‘f’. If ‘d’ is ‘0’, the result is placed in  
the W register. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
DS40001723D-page 252  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
LSLF  
Logical Left Shift  
MOVF  
Move f  
Syntax:  
[ label ] LSLF f {,d}  
Syntax:  
[ label ] MOVF f,d  
Operands:  
0 f 127  
d [0,1]  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f<7>) C  
Operation:  
(f) (dest)  
(f<6:0>) dest<7:1>  
0 dest<0>  
Status Affected:  
Description:  
Z
The contents of register f is moved to  
a destination dependent upon the  
status of d. If d = 0,  
destination is W register. If d = 1, the  
destination is file register f itself. d = 1  
is useful to test a file register since  
status flag Z is affected.  
Status Affected:  
Description:  
C, Z  
The contents of register ‘f’ are shifted  
one bit to the left through the Carry flag.  
A ‘0’ is shifted into the LSb. If ‘d’ is ‘0’,  
the result is placed in W. If ‘d’ is ‘1’, the  
result is stored back in register ‘f’.  
Words:  
1
1
C
register f  
0
Cycles:  
Example:  
MOVF  
FSR, 0  
After Instruction  
LSRF  
Logical Right Shift  
W
Z
=
=
value in FSR register  
1
Syntax:  
[ label ] LSRF f {,d}  
Operands:  
0 f 127  
d [0,1]  
Operation:  
0 dest<7>  
(f<7:1>) dest<6:0>,  
(f<0>) C,  
Status Affected:  
Description:  
C, Z  
The contents of register ‘f’ are shifted  
one bit to the right through the Carry  
flag. A ‘0’ is shifted into the MSb. If ‘d’ is  
0’, the result is placed in W. If ‘d’ is ‘1’,  
the result is stored back in register ‘f’.  
0
C
register f  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 253  
PIC12(L)F1571/2  
MOVIW  
Move INDFn to W  
MOVLP  
Move literal to PCLATH  
Syntax:  
[ label ] MOVIW ++FSRn  
[ label ] MOVIW --FSRn  
[ label ] MOVIW FSRn++  
[ label ] MOVIW FSRn--  
[ label ] MOVIW k[FSRn]  
Syntax:  
[ label ] MOVLP  
0 k 127  
k PCLATH  
None  
k
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
n [0,1]  
mm [00,01, 10, 11]  
-32 k 31  
The 7-bit literal ‘k’ is loaded into the  
PCLATH register.  
INDFn W  
Effective address is determined by  
MOVLW  
Move literal to W  
FSR + 1 (preincrement)  
FSR - 1 (predecrement)  
FSR + k (relative offset)  
Syntax:  
[ label ] MOVLW  
0 k 255  
k (W)  
k
Operands:  
Operation:  
Status Affected:  
Description:  
After the Move, the FSR value will be  
either:  
None  
FSR + 1 (all increments)  
FSR - 1 (all decrements)  
Unchanged  
The 8-bit literal ‘k’ is loaded into W reg-  
ister. The “don’t cares” will assemble as  
0’s.  
Status Affected:  
Z
Words:  
1
1
Cycles:  
Example:  
Mode  
Syntax  
mm  
00  
01  
10  
11  
MOVLW  
0x5A  
Preincrement  
Predecrement  
Postincrement  
Postdecrement  
++FSRn  
--FSRn  
FSRn++  
FSRn--  
After Instruction  
W
=
0x5A  
MOVWF  
Move W to f  
[ label ] MOVWF  
0 f 127  
(W) (f)  
Syntax:  
f
Description:  
This instruction is used to move data  
between W and one of the indirect  
registers (INDFn). Before/after this  
move, the pointer (FSRn) is updated by  
pre/post incrementing/decrementing it.  
Operands:  
Operation:  
Status Affected:  
Description:  
None  
Move data from W register to register  
‘f’.  
Note: The INDFn registers are not  
physical registers. Any instruction that  
accesses an INDFn register actually  
accesses the register at the address  
specified by the FSRn.  
Words:  
1
1
Cycles:  
Example:  
MOVWF  
Before Instruction  
OPTION_REG = 0xFF  
OPTION_REG  
FSRn is limited to the range 0000h -  
FFFFh. Incrementing/decrementing it  
beyond these bounds will cause it to  
wraparound.  
W
= 0x4F  
After Instruction  
OPTION_REG = 0x4F  
= 0x4F  
W
MOVLB  
Move literal to BSR  
Syntax:  
[ label ] MOVLB  
0 k 31  
k BSR  
None  
k
Operands:  
Operation:  
Status Affected:  
Description:  
The 5-bit literal ‘k’ is loaded into the  
Bank Select Register (BSR).  
DS40001723D-page 254  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
NOP  
No Operation  
MOVWI  
Move W to INDFn  
Syntax:  
[ label ] NOP  
Syntax:  
[ label ] MOVWI ++FSRn  
[ label ] MOVWI --FSRn  
[ label ] MOVWI FSRn++  
[ label ] MOVWI FSRn--  
[ label ] MOVWI k[FSRn]  
Operands:  
Operation:  
Status Affected:  
Description:  
Words:  
None  
No operation  
None  
No operation.  
Operands:  
Operation:  
n [0,1]  
mm [00,01, 10, 11]  
-32 k 31  
1
Cycles:  
1
W INDFn  
Effective address is determined by  
Example:  
NOP  
FSR + 1 (preincrement)  
FSR - 1 (predecrement)  
FSR + k (relative offset)  
After the Move, the FSR value will be  
either:  
Load OPTION_REG Register  
with W  
OPTION  
FSR + 1 (all increments)  
FSR - 1 (all decrements)  
Syntax:  
[ label ] OPTION  
None  
Unchanged  
Operands:  
Operation:  
Status Affected:  
Description:  
Status Affected:  
None  
(W) OPTION_REG  
None  
Mode  
Syntax  
mm  
00  
01  
10  
11  
Move data from W register to  
OPTION_REG register.  
Preincrement  
Predecrement  
Postincrement  
Postdecrement  
++FSRn  
--FSRn  
FSRn++  
FSRn--  
RESET  
Software Reset  
Syntax:  
[ label ] RESET  
Description:  
This instruction is used to move data  
between W and one of the indirect  
registers (INDFn). Before/after this  
move, the pointer (FSRn) is updated by  
pre/post incrementing/decrementing it.  
Operands:  
Operation:  
None  
Execute a device Reset. Resets the  
nRI flag of the PCON register.  
Status Affected:  
Description:  
None  
Note: The INDFn registers are not  
physical registers. Any instruction that  
accesses an INDFn register actually  
accesses the register at the address  
specified by the FSRn.  
This instruction provides a way to  
execute a hardware Reset by soft-  
ware.  
FSRn is limited to the range 0000h -  
FFFFh. Incrementing/decrementing it  
beyond these bounds will cause it to  
wraparound.  
The increment/decrement operation on  
FSRn WILL NOT affect any Status bits.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 255  
PIC12(L)F1571/2  
RETURN  
Return from Subroutine  
RETFIE  
Syntax:  
Return from Interrupt  
[ label ] RETFIE  
None  
Syntax:  
[ label ] RETURN  
None  
Operands:  
Operation:  
Status Affected:  
Description:  
Operands:  
Operation:  
TOS PC  
None  
TOS PC,  
1GIE  
Status Affected:  
Description:  
None  
Return from subroutine. The stack is  
POPed and the top of the stack (TOS)  
is loaded into the Program Counter.  
This is a 2-cycle instruction.  
Return from Interrupt. Stack is POPed  
and Top-of-Stack (TOS) is loaded in  
the PC. Interrupts are enabled by  
setting Global Interrupt Enable bit,  
GIE (INTCON<7>). This is a 2-cycle  
instruction.  
Words:  
1
Cycles:  
Example:  
2
RETFIE  
After Interrupt  
PC  
=
TOS  
GIE =  
1
RLF  
Rotate Left f through Carry  
RETLW  
Syntax:  
Return with literal in W  
Syntax:  
Operands:  
[ label ]  
RLF f,d  
[ label ] RETLW  
0 k 255  
k
0 f 127  
d [0,1]  
Operands:  
Operation:  
k (W);  
TOS PC  
Operation:  
See description below  
C
Status Affected:  
Description:  
Status Affected:  
Description:  
None  
The contents of register ‘f’ are rotated  
one bit to the left through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in  
the W register. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
The W register is loaded with the 8-bit  
literal ‘k’. The Program Counter is  
loaded from the top of the stack (the  
return address). This is a 2-cycle  
instruction.  
C
Register f  
Words:  
1
2
Cycles:  
Example:  
Words:  
1
1
CALL TABLE;W contains table  
;offset value  
Cycles:  
Example:  
;W now has table value  
RLF  
REG1,0  
TABLE  
Before Instruction  
REG1  
C
=
=
1110 0110  
0
ADDWF PC ;W = offset  
RETLW k1 ;Begin table  
After Instruction  
RETLW k2  
;
REG1  
W
C
=
=
=
1110 0110  
1100 1100  
1
RETLW kn ; End of table  
Before Instruction  
W
=
0x07  
After Instruction  
W
=
value of k8  
DS40001723D-page 256  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
RRF  
Rotate Right f through Carry  
SUBLW  
Subtract W from literal  
Syntax:  
[ label ] RRF f,d  
Syntax:  
[ label ] SUBLW  
0 k 255  
k
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
k - (W) W)  
C, DC, Z  
Operation:  
See description below  
C
Status Affected:  
Description:  
The W register is subtracted (2’s com-  
plement method) from the 8-bit literal  
‘k’. The result is placed in the W regis-  
ter.  
The contents of register ‘f’ are rotated  
one bit to the right through the Carry  
flag. If ‘d’ is ‘0’, the result is placed in  
the W register. If ‘d’ is ‘1’, the result is  
placed back in register ‘f’.  
C = 0  
W k  
C = 1  
W k  
C
Register f  
DC = 0  
DC = 1  
W<3:0> k<3:0>  
W<3:0> k<3:0>  
SUBWF  
Subtract W from f  
SLEEP  
Enter Sleep mode  
[ label ] SLEEP  
None  
Syntax:  
[ label ] SUBWF f,d  
Syntax:  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
00h WDT,  
0WDT prescaler,  
1TO,  
Operation:  
(f) - (W) destination)  
Status Affected:  
Description:  
C, DC, Z  
0PD  
Subtract (2’s complement method) W  
register from register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W  
register. If ‘d’ is ‘1’, the result is stored  
back in register ‘f.  
Status Affected:  
Description:  
TO, PD  
The power-down Status bit, PD is  
cleared. Time-out Status bit, TO is  
set. Watchdog Timer and its pres-  
caler are cleared.  
C = 0  
W f  
The processor is put into Sleep mode  
with the oscillator stopped.  
C = 1  
W f  
DC = 0  
DC = 1  
W<3:0> f<3:0>  
W<3:0> f<3:0>  
SUBWFB  
Subtract W from f with Borrow  
Syntax:  
SUBWFB f {,d}  
Operands:  
0 f 127  
d [0,1]  
Operation:  
(f) – (W) – (B) dest  
Status Affected:  
Description:  
C, DC, Z  
Subtract W and the BORROW flag  
(CARRY) from register ‘f’ (2’s comple-  
ment method). If ‘d’ is ‘0’, the result is  
stored in W. If ‘d’ is ‘1’, the result is  
stored back in register ‘f’.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 257  
PIC12(L)F1571/2  
SWAPF  
Swap Nibbles in f  
XORLW  
Exclusive OR literal with W  
Syntax:  
[ label ] SWAPF f,d  
Syntax:  
[ label ] XORLW  
0 k 255  
k
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) .XOR. k W)  
Z
Operation:  
(f<3:0>) (destination<7:4>),  
(f<7:4>) (destination<3:0>)  
The contents of the W register are  
XOR’ed with the 8-bit  
literal ‘k’. The result is placed in the  
W register.  
Status Affected:  
Description:  
None  
The upper and lower nibbles of regis-  
ter ‘f’ are exchanged. If ‘d’ is ‘0’, the  
result is placed in the W register. If ‘d’  
is ‘1’, the result is placed in register ‘f’.  
XORWF  
Exclusive OR W with f  
TRIS  
Load TRIS Register with W  
Syntax:  
[ label ] XORWF f,d  
Syntax:  
[ label ] TRIS f  
5 f 7  
Operands:  
0 f 127  
d [0,1]  
Operands:  
Operation:  
Status Affected:  
Description:  
(W) TRIS register ‘f’  
None  
Operation:  
(W) .XOR. (f) destination)  
Status Affected:  
Description:  
Z
Move data from W register to TRIS  
register.  
When ‘f’ = 5, TRISA is loaded.  
When ‘f’ = 6, TRISB is loaded.  
When ‘f’ = 7, TRISC is loaded.  
Exclusive OR the contents of the W  
register with register ‘f’. If ‘d’ is ‘0’, the  
result is stored in the W register. If ‘d’  
is ‘1’, the result is stored back in regis-  
ter ‘f’.  
DS40001723D-page 258  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
26.0 ELECTRICAL SPECIFICATIONS  
(†)  
26.1 Absolute Maximum Ratings  
Ambient temperature under bias............................................................................................................ -40°C to +125°C  
Storage temperature .............................................................................................................................. -65°C to +150°C  
Voltage on pins with respect to VSS:  
on VDD pin  
PIC12F1571/2 ................................................................................................................. -0.3V to +6.5V  
PIC12LF1571/2 ............................................................................................................... -0.3V to +4.0V  
on MCLR pin ................................................................................................................................. -0.3V to +9.0V  
on all other pins .................................................................................................................. -0.3V to (VDD + 0.3V)  
Maximum current:  
on VSS pin(1)  
-40°C TA +85°C .................................................................................................................... 250 mA  
+85°C TA +125°C ................................................................................................................... 85 mA  
on VDD pin(1)  
-40°C TA +85°C .................................................................................................................... 250 mA  
+85°C TA +125°C ................................................................................................................... 85 mA  
Sunk by any standard I/O pin ..................................................................................................................... 50 mA  
Sourced by any standard I/O pin ................................................................................................................ 50 mA  
Clamp current, IK (VPIN < 0 or VPIN > VDD) ......................................................................................................... 20 mA  
Total power dissipation(2) .....................................................................................................................................800 mW  
Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be  
limited by the device package power dissipation characterizations, see Table 26-6: “Thermal  
Characteristics” to calculate device specifications.  
2: Power dissipation is calculated as follows: PDIS = VDD x {IDD IOH} + {(VDD – VOH) x IOH} + (VOl x IOL).  
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the  
device. This is a stress rating only and functional operation of the device at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for  
extended periods may affect device reliability.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 259  
PIC12(L)F1571/2  
26.2 Standard Operating Conditions  
The standard operating conditions for any device are defined as:  
Operating Voltage:  
Operating Temperature:  
VDDMIN VDD VDDMAX  
TA_MIN TA TA_MAX  
VDD — Operating Supply Voltage(1)  
PIC12LF1571/2  
VDDMIN (FOSC 16 MHz)............................................................................................................... +1.8V  
VDDMIN (FOSC 32 MHz)............................................................................................................... +2.5V  
VDDMAX .......................................................................................................................................... +3.6V  
PIC12F1571/2  
VDDMIN (FOSC 16 MHz)............................................................................................................... +2.3V  
VDDMIN (FOSC 32 MHz)............................................................................................................... +2.5V  
VDDMAX .......................................................................................................................................... +5.5V  
TA — Operating Ambient Temperature Range  
Industrial Temperature  
TA_MIN ............................................................................................................................................ -40°C  
TA_MAX .......................................................................................................................................... +85°C  
Extended Temperature  
TA_MIN ............................................................................................................................................ -40°C  
TA_MAX ........................................................................................................................................ +125°C  
Note 1: See Parameter D001, DS Characteristics: Supply Voltage.  
DS40001723D-page 260  
2013-2015 Microchip Technology Inc.  
 
PIC12(L)F1571/2  
FIGURE 26-1:  
VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C, PIC12F1571/2 ONLY  
Rev. 10-000130B  
9/19/2013  
5.5  
2.5  
2.3  
0
16  
32  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: Refer to Table 26-7 for each Oscillator mode’s supported frequencies.  
FIGURE 26-2:  
VOLTAGE FREQUENCY GRAPH, -40°C TA +125°C, PIC12LF1571/2 ONLY  
Rev. 10-000131B  
9/19/2013  
3.6  
2.5  
1.8  
0
16  
32  
Frequency (MHz)  
Note 1: The shaded region indicates the permissible combinations of voltage and frequency.  
2: Refer to Table 26-7 for each Oscillator mode’s supported frequencies.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 261  
PIC12(L)F1571/2  
26.3 DC Characteristics  
TABLE 26-1: SUPPLY VOLTAGE  
PIC12LF1571/2  
Standard Operating Conditions (unless otherwise stated)  
PIC12F1571/2  
Param.  
No.  
Sym.  
Characteristic  
Supply Voltage  
Min.  
Typ†  
Max.  
Units  
Conditions  
D001  
VDD  
VDDMIN  
1.8  
2.5  
VDDMAX  
3.6  
3.6  
V
V
FOSC 16 MHz  
FOSC 32 MHz (Note 3)  
D001  
2.3  
2.5  
5.5  
5.5  
V
V
FOSC 16 MHz  
FOSC 32 MHz (Note 3)  
(1)  
D002*  
VDR  
RAM Data Retention Voltage  
1.5  
1.7  
V
V
Device in Sleep mode  
Device in Sleep mode  
D002*  
(2)  
D002A* VPOR  
Power-on Reset Release Voltage  
1.6  
1.6  
V
V
D002A*  
(2)  
D002B* VPORR*  
Power-on Reset Rearm Voltage  
0.8  
1.5  
V
V
V
D002B*  
D003  
VFVR  
Fixed Voltage Reference Voltage  
1.024  
-40°C TA +85°C  
D003A VADFVR  
FVR Gain Voltage Accuracy for  
ADC  
1x VFVR, ADFVR = 01, VDD 2.5V  
2x VFVR, ADFVR = 10, VDD 2.5V  
4x VFVR, ADFVR = 11, VDD 4.75V  
-4  
+4  
%
D003B VCDAFVR FVR Gain Voltage Accuracy for  
1x VFVR, CDAFVR = 01, VDD 2.5V  
2x VFVR, CDAFVR = 10, VDD 2.5V  
4x VFVR, CDAFVR = 11, VDD 4.75V  
-4  
+4  
%
Comparator  
(2)  
D004*  
SVDD  
VDD Rise Rate  
0.05  
V/ms Ensures that the Power-on Reset  
signal is released properly  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.  
2: See Figure 26-3, POR and POR Rearm with Slow Rising VDD.  
3: PLL required for 32 MHz operation.  
DS40001723D-page 262  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 26-3:  
POR AND POR REARM WITH SLOW RISING VDD  
VDD  
VPOR  
VPORR  
SVDD  
VSS  
NPOR(1)  
POR Rearm  
VSS  
(2)  
(3)  
TPOR  
TVLOW  
Note 1: When NPOR is low, the device is held in Reset.  
2: TPOR: 1 s typical.  
3: TVLOW: 2.7 s typical.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 263  
PIC12(L)F1571/2  
TABLE 26-2: SUPPLY CURRENT (IDD)(1,2)  
PIC12LF1571/2  
PIC12F1571/2  
Standard Operating Conditions (unless otherwise stated)  
Conditions  
Note  
Param.  
No.  
Device  
Characteristics  
Min.  
Typ†  
Max. Units  
VDD  
D013  
35  
60  
44  
69  
A  
A  
1.8  
3.0  
FOSC = 1 MHz,  
External Clock (ECM),  
Medium Power mode  
D013  
68  
91  
93  
A  
A  
A  
A  
A  
2.3  
3.0  
5.0  
1.8  
3.0  
FOSC = 1 MHz,  
External Clock (ECM),  
Medium Power mode  
120  
160  
132  
233  
131  
116  
203  
D014  
D014  
FOSC = 4 MHz,  
External Clock (ECM),  
Medium Power mode  
174  
234  
299  
5.5  
221  
286  
374  
11  
A  
A  
A  
A  
A  
2.3  
3.0  
5.0  
1.8  
3.0  
FOSC = 4 MHz,  
External Clock (ECM),  
Medium Power mode  
D015  
D015  
FOSC = 31 kHz,  
LFINTOSC,  
-40°C TA +85°C  
7.3  
12  
13  
15  
21  
24  
A  
A  
2.3  
3.0  
5.0  
1.8  
3.0  
2.3  
3.0  
5.0  
1.8  
3.0  
2.3  
3.0  
5.0  
1.8  
3.0  
2.3  
3.0  
5.0  
FOSC = 31 kHz,  
LFINTOSC,  
-40°C TA +85°C  
17  
25  
A  
D016  
D016  
111  
133  
144  
162  
216  
0.5  
0.7  
0.6  
0.8  
0.9  
0.7  
1.1  
0.9  
1.1  
1.3  
151  
176  
209  
237  
288  
0.6  
0.9  
0.8  
0.9  
1.0  
0.8  
1.2  
1.1  
1.3  
1.5  
A  
FOSC = 500 kHz,  
MFINTOSC  
A  
A  
FOSC = 500 kHz,  
MFINTOSC  
A  
A  
D017*  
D017*  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
FOSC = 8 MHz,  
HFINTOSC  
FOSC = 8 MHz,  
HFINTOSC  
D018  
D018  
FOSC = 16 MHz,  
HFINTOSC  
FOSC = 16 MHz,  
HFINTOSC  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave,  
from rail-to-rail; all I/O pins tri-stated, pulled to VSS; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
3: PLL required for 32 MHz operation.  
DS40001723D-page 264  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 26-2: SUPPLY CURRENT (IDD)(1,2) (CONTINUED)  
PIC12LF1571/2  
PIC12F1571/2  
Standard Operating Conditions (unless otherwise stated)  
Conditions  
Note  
Param.  
No.  
Device  
Characteristics  
Min.  
Typ†  
Max. Units  
VDD  
D018A*  
2
2.4  
mA  
3.0  
FOSC = 32 MHz,  
HFINTOSC (Note 3)  
D018A*  
D019A  
2.1  
2.2  
1.7  
2.5  
2.6  
1.9  
mA  
mA  
mA  
3.0  
5.0  
3.0  
FOSC = 32 MHz,  
HFINTOSC (Note 3)  
FOSC = 32 MHz,  
External Clock (ECH),  
High-Power mode (Note 3)  
D019A  
D019B  
D019B  
1.8  
1.9  
2
mA  
mA  
3.0  
5.0  
FOSC = 32 MHz,  
External Clock (ECH),  
High-Power mode (Note 3)  
2.3  
2.2  
4.3  
5.9  
8.3  
A  
A  
1.8  
3.0  
FOSC = 32 kHz,  
External Clock (ECL),  
Low-Power mode  
12  
15  
17  
18  
30  
20  
25  
26  
25  
38  
A  
A  
A  
A  
A  
2.3  
3.0  
5.0  
1.8  
3.0  
FOSC = 32 kHz,  
External Clock (ECL),  
Low-Power mode  
D019C  
D019C  
FOSC = 500 kHz,  
External Clock (ECL),  
Low-Power mode  
29  
37  
42  
40  
51  
53  
A  
A  
A  
2.3  
3.0  
5.0  
FOSC = 500 kHz,  
External Clock (ECL),  
Low-Power mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: The test conditions for all IDD measurements in active operation mode are: CLKIN = external square wave,  
from rail-to-rail; all I/O pins tri-stated, pulled to VSS; MCLR = VDD; WDT disabled.  
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O  
pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have  
an impact on the current consumption.  
3: PLL required for 32 MHz operation.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 265  
PIC12(L)F1571/2  
TABLE 26-3: POWER-DOWN CURRENTS (IPD)(1,2)  
Operating Conditions (unless otherwise stated)  
Low-Power Sleep Mode  
PIC12LF1571/2  
PIC12F1571/2  
Param.  
Low-Power Sleep Mode, VREGPM = 1  
Conditions  
Note  
Max.  
Max.  
Device Characteristics  
Min.  
Typ†  
Units  
No.  
+85°C +125°C  
VDD  
D022  
Base IPD  
Base IPD  
0.020  
0.025  
0.6  
0.8  
2.6  
2.9  
A  
A  
1.8  
3.0  
WDT, BOR and FVR disabled,  
all peripherals inactive,  
VREGPM = 1  
D022  
0.2  
0.3  
0.4  
0.9  
3.0  
3.6  
2.8  
3.8  
4.5  
A  
A  
A  
2.3  
3.0  
5.0  
WDT, BOR and FVR disabled,  
all peripherals inactive,  
Low-Power Sleep mode,  
VREGPM = 1  
D022A  
Base IPD  
9
14  
19  
21  
15  
21  
22  
A  
A  
A  
2.3  
3.0  
5.0  
WDT, BOR and FVR disabled,  
all peripherals inactive,  
Normal Power Sleep mode,  
VREGPM = 0  
11  
12  
D023  
D023  
0.3  
0.5  
0.5  
0.6  
0.7  
13  
0.8  
1.1  
1.7  
1.9  
2.1  
18  
28  
24  
30  
33  
9
2.9  
3.5  
4.1  
4.4  
4.7  
20  
29  
25  
31  
35  
11  
11  
13  
4
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
A  
1.8  
3.0  
2.3  
3.0  
5.0  
1.8  
3.0  
2.3  
3.0  
5.0  
3.0  
3.0  
5.0  
3.0  
3.0  
5.0  
1.8  
3.0  
2.3  
3.0  
5.0  
1.8  
3.0  
2.3  
3.0  
5.0  
WDT Current  
WDT Current  
D023A  
D023A  
FVR Current  
FVR Current  
22  
16  
19  
20  
D024  
D024  
6.5  
7.0  
8.0  
0.2  
0.4  
0.5  
0.03  
0.04  
0.2  
0.3  
0.4  
250  
250  
280  
280  
280  
BOR Current  
BOR Current  
10  
12  
2
D24A  
D24A  
LPBOR Current  
LPBOR Current  
2
4
3
5
D026  
D026  
0.7  
0.8  
1.3  
1.4  
1.5  
2.7  
3
ADC Current (Note 3),  
No conversion in progress  
3.8  
3.9  
4
ADC Current (Note 3),  
No conversion in progress  
D026A*  
D026A*  
ADC Current (Note 3),  
Conversion in progress  
ADC Current (Note 3),  
Conversion in progress  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The peripheral current can be determined by subtracting the base IPD current from this limit. Max. values should be  
used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VSS.  
3: ADC clock source is FRC.  
DS40001723D-page 266  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 26-3: POWER-DOWN CURRENTS (IPD)(1,2) (CONTINUED)  
Operating Conditions (unless otherwise stated)  
Low-Power Sleep Mode  
PIC12LF1571/2  
PIC12F1571/2  
Param.  
Low-Power Sleep Mode, VREGPM = 1  
Conditions  
Note  
Max.  
Max.  
Device Characteristics  
Min.  
Typ†  
Units  
No.  
+85°C +125°C  
VDD  
D027  
4
7
9
A  
A  
A  
A  
A  
A  
A  
1.8  
3.0  
2.3  
3.0  
5.0  
1.8  
3.0  
Comparator,  
CxSP = 0  
4.2  
13  
14  
16  
20  
21  
8
10  
21  
25  
26  
36  
38  
D027  
20  
23  
24  
35  
36  
Comparator,  
CxSP = 0  
D028A  
D028A  
Comparator,  
Normal Power, CxSP = 1  
(Note 1)  
28  
29  
31  
47  
51  
52  
48  
52  
53  
A  
A  
A  
2.3  
3.0  
5.0  
Comparator,  
Normal Power, CxSP = 1,  
VREGPM = 1 (Note 1)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The peripheral current can be determined by subtracting the base IPD current from this limit. Max. values should be  
used when calculating total current consumption.  
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with  
the part in Sleep mode, with all I/O pins in high-impedance state and tied to VSS.  
3: ADC clock source is FRC.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 267  
PIC12(L)F1571/2  
TABLE 26-4: I/O PORTS  
Standard Operating Conditions (unless otherwise stated)  
Param.  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
No.  
VIL  
Input Low Voltage  
I/O Ports:  
D030  
D030A  
D031  
with TTL Buffer  
0.8  
V
V
V
V
V
V
4.5V VDD 5.5V  
0.15 VDD  
0.2 VDD  
0.3 VDD  
0.8  
1.8V VDD 4.5V  
2.0V VDD 5.5V  
with Schmitt Trigger Buffer  
with I2C Levels  
with SMbus Levels  
MCLR  
2.7V VDD 5.5V  
D032  
0.2 VDD  
VIH  
Input High Voltage  
I/O Ports:  
D040  
D040A  
D041  
with TTL Buffer  
2.0  
0.25 VDD + 0.8  
0.8 VDD  
0.7 VDD  
2.1  
V
V
V
V
V
V
4.5V VDD 5.5V  
1.8V VDD 4.5V  
2.0V VDD 5.5V  
with Schmitt Trigger Buffer  
with I2C Levels  
with SMbus Levels  
MCLR  
2.7V VDD 5.5V  
D042  
D060  
0.8 VDD  
(1)  
IIL  
Input Leakage Current  
I/O Ports  
± 5  
± 5  
± 125  
± 1000  
± 200  
nA  
nA  
nA  
VSS VPIN VDD,  
Pin at high-impedance, +85°C  
VSS VPIN VDD,  
Pin at high-impedance, +125°C  
D061  
MCLR(2)  
± 50  
VSS VPIN VDD,  
Pin at high-impedance, +85°C  
IPUR  
VOL  
Weak Pull-up Current  
D070*  
25  
25  
100  
140  
200  
300  
A  
A  
VDD = 3.3V, VPIN = VSS  
VDD = 5.0V, VPIN = VSS  
Output Low Voltage  
D080  
D090  
I/O Ports  
0.6  
V
IOL = 8 mA, VDD = 5V  
IOL = 6 mA, VDD = 3.3V  
IOL = 1.8 mA, VDD = 1.8V  
VOH  
Output High Voltage  
I/O Ports  
VDD – 0.7  
V
IOH = 3.5 mA, VDD = 5V  
IOH = 3 mA, VDD = 3.3V  
IOH = 1 mA, VDD = 1.8V  
Capacitive Loading Specifications on Output Pins  
All I/O Pins  
These parameters are characterized but not tested.  
D101A* CIO  
50  
pF  
*
Data in “Typ” column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Negative current is defined as current sourced by the pin.  
2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent  
normal operating conditions. Higher leakage current may be measured at different input voltages.  
DS40001723D-page 268  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 26-5: MEMORY PROGRAMMING SPECIFICATIONS  
Standard Operating Conditions (unless otherwise stated)  
Param.  
No.  
Sym.  
Characteristic  
Program Memory  
Min.  
Typ†  
Max.  
Units  
Conditions  
Programming Specifications  
D110  
D111  
VIHH  
Voltage on MCLR/VPP Pin  
8.0  
9.0  
10  
V
(Note 2)  
IDDP  
Supply Current during  
Programming  
mA  
D112  
D113  
D114  
VBE  
VDD for Bulk Erase  
2.7  
VDDMIN  
VDDMAX  
VDDMAX  
V
V
VPEW  
VDD for Write or Row Erase  
IPPPGM Current on MCLR/VPP during  
Erase/Write  
1.0  
mA  
D115  
D121  
IDDPGM Current on VDD during  
Erase/Write  
5.0  
mA  
Program Flash Memory  
EP  
Cell Endurance  
10K  
E/W -40C TA +85C  
(Note 1)  
D122  
D123  
D124  
VPRW  
TIW  
VDD for Read/Write  
VDDMIN  
2
VDDMAX  
2.5  
V
Self-Timed Write Cycle Time  
Characteristic Retention  
ms  
TRETD  
40  
Year Provided no other  
specifications are violated  
D125  
EHEFC High-Endurance Flash Cell  
100K  
E/W 0C TA +60°C, lower  
byte last 128 addresses  
Data in “Typ” column is at 3.0V, +25°C unless otherwise stated. These parameters are for design  
guidance only and are not tested.  
Note 1: Self-write and block erase.  
2: Required only if single-supply programming is disabled.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 269  
PIC12(L)F1571/2  
TABLE 26-6: THERMAL CHARACTERISTICS  
Standard Operating Conditions (unless otherwise stated)  
Param.  
Sym.  
Characteristic  
Typ.  
Units  
Conditions  
No.  
TH01  
JA  
Thermal Resistance Junction to Ambient  
56.7  
89.3  
149.5  
39.4  
9.0  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C  
8-pin DFN 3x3 mm package  
8-pin PDIP package  
8-pin SOIC package  
8-pin UDFN 3x3 mm package  
8-pin DFN 3x3 mm package  
8-pin PDIP package  
TH02  
JC  
Thermal Resistance Junction to Case  
43.1  
39.9  
40.3  
150  
8-pin SOIC package  
8-pin UDFN 3x3 mm package  
TH03  
TH04  
TH05  
TH06  
TH07  
TJMAX  
PD  
Maximum Junction Temperature  
Power Dissipation  
W
PD = PINTERNAL + PI/O  
(1)  
PINTERNAL Internal Power Dissipation  
W
PINTERNAL = IDD x VDD  
PI/O  
I/O Power Dissipation  
Derated Power  
W
PI/O = (IOL * VOL) + (IOH * (VDD – VOH))  
(2)  
PDER  
W
PDER = PDMAX (TJ TA)/JA  
Note 1: IDD is current to run the chip alone without driving any load on the output pins.  
2: TA = Ambient Temperature; TJ = Junction Temperature.  
DS40001723D-page 270  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
26.4 AC Characteristics  
Timing Parameter Symbology has been created with one of the following formats:  
1. TppS2ppS  
2. TppS  
T
F
Frequency  
Lowercase letters (pp) and their meanings:  
pp  
cc  
T
Time  
CCP1  
CLKOUT  
CS  
osc  
rd  
CLKIN  
RD  
ck  
cs  
di  
rw  
sc  
ss  
t0  
RD or WR  
SCKx  
SS  
SDIx  
do  
dt  
SDO  
Data in  
I/O PORT  
MCLR  
T0CKI  
T1CKI  
WR  
io  
t1  
mc  
wr  
Uppercase letters and their meanings:  
S
F
H
I
Fall  
P
R
V
Z
Period  
High  
Rise  
Invalid (High-impedance)  
Low  
Valid  
L
High-impedance  
FIGURE 26-4:  
LOAD CONDITIONS  
Rev. 10-000133A  
8/1/2013  
Load Condition  
Pin  
CL  
VSS  
Legend: CL=50 pF for all pins  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 271  
 
PIC12(L)F1571/2  
FIGURE 26-5:  
CLOCK TIMING  
Q4  
Q1  
Q2  
Q3  
Q4  
Q1  
CLKIN  
OS02  
OS04  
OS04  
OS03  
CLKOUT  
(CLKOUT Mode)  
Note 1: See Table 26-10.  
TABLE 26-7: CLOCK OSCILLATOR TIMING REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Param.  
No.  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units  
Conditions  
OS01  
FOSC  
External CLKIN Frequency(1)  
DC  
DC  
DC  
50  
0.5  
4
MHz External Clock (ECL)  
MHz External Clock (ECM)  
MHz External Clock (ECH)  
20  
OS02  
OS03  
TOSC  
TCY  
External CLKIN Period(1)  
Instruction Cycle Time(1)  
ns  
ns  
External Clock (EC)  
TCY = 4/FOSC  
200  
TCY  
DC  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on  
characterization data for that particular oscillator type under standard operating conditions with the device executing code.  
Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current con-  
sumption. All devices are tested to operate at “min” values with an external clock applied to the CLKIN pin. When an  
external clock input is used, the “max” cycle time limit is “DC” (no clock) for all devices.  
DS40001723D-page 272  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 26-8: OSCILLATOR PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Param.  
No.  
Freq.  
Tolerance  
Sym.  
Characteristic  
Min. Typ† Max. Units  
Conditions  
OS08  
HFOSC  
Internal Calibrated HFINTOSC  
Frequency(1)  
±2%  
16.0  
MHz VDD = 3.0V, TA = 25°C  
(Note 2)  
OS09  
LFOSC  
Internal LFINTOSC Frequency  
31  
5
kHz  
OS10* TWARM  
HFINTOSC  
15  
s  
Wake-up from Sleep Start-up Time  
LFINTOSC  
0.5  
ms  
Wake-up from Sleep Start-up Time  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 F and 0.01 F values in parallel are recommended.  
2: See Figure 26-6: “HFINTOSC Frequency Accuracy Over Device VDD and Temperature.  
FIGURE 26-6:  
HFINTOSC FREQUENCY ACCURACY OVER DEVICE VDD AND TEMPERATURE  
+125  
± 5%  
± 3%  
+85  
+60  
+25  
± 2%  
0
± 5%  
-40  
1.8  
2.0  
2.5  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
3.0  
TABLE 26-9: PLL CLOCK TIMING SPECIFICATIONS (VDD = 2.7V TO 5.5V)  
Param  
Sym.  
Characteristic  
Min.  
Typ†  
Max.  
Units Conditions  
No.  
F10  
FOSC Oscillator Frequency Range  
4
16  
8
32  
MHz  
MHz  
ms  
F11  
FSYS On-Chip VCO System Frequency  
F12  
F13*  
TRC  
PLL Start-up Time (Lock Time)  
2
CLK CLKOUT Stability (Jitter)  
-0.25%  
+0.25%  
%
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3V, +25C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 273  
 
PIC12(L)F1571/2  
FIGURE 26-7:  
CLKOUT AND I/O TIMING  
Cycle  
Write  
Q4  
Fetch  
Q1  
Read  
Q2  
Execute  
Q3  
FOSC  
OS12  
OS11  
OS20  
OS21  
CLKOUT  
OS19  
OS13  
OS18  
OS16  
OS17  
I/O pin  
(Input)  
OS14  
OS15  
I/O pin  
(Output)  
New Value  
Old Value  
OS18, OS19  
TABLE 26-10: CLKOUT AND I/O TIMING PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Param.  
No.  
Sym.  
Characteristic  
Min.  
Typ† Max. Units  
Conditions  
(1)  
OS11  
OS12  
OS13  
OS14  
OS15  
OS16  
TosH2ckL FOSCto CLKOUT  
TosH2ckH FOSCto CLKOUT  
50  
70  
72  
20  
ns  
ns  
ns  
ns  
ns  
ns  
3.3V VDD 5.0V  
3.3V VDD 5.0V  
(1)  
TckL2ioV  
TioV2ckH Port Input Valid Before CLKOUT  
TosH2ioV Fosc(Q1 cycle) to Port Out Valid  
CLKOUTto Port Out Valid(1)  
(1)  
TOSC + 200 ns  
70*  
3.3V VDD 5.0V  
3.3V VDD 5.0V  
TosH2ioI  
Fosc(Q2 cycle) to Port Input Invalid  
50  
(I/O in setup time)  
OS17  
TioV2osH Port Input Valid to Fosc(Q2 cycle)  
20  
ns  
ns  
ns  
(I/O in setup time)  
OS18*  
OS19*  
TioR  
TioF  
Port Output Rise Time  
Port Output Fall Time  
40  
15  
72  
32  
VDD = 1.8V,  
3.3V VDD 5.0V  
28  
15  
55  
30  
VDD = 1.8V,  
3.3V VDD 5.0V  
OS20*  
OS21*  
Tinp  
Tioc  
INT Pin Input High or Low Time  
25  
25  
ns  
ns  
Interrupt-On-Change New Input Level Time  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, +25C unless otherwise stated.  
Note 1: Measurements are taken in EXTRC mode where CLKOUT output is 4 x TOSC.  
DS40001723D-page 274  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 26-8:  
RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP  
TIMER TIMING  
VDD  
MCLR  
30  
Internal  
POR  
33  
PWRT  
Time-out  
32  
OSC  
Start-up Time  
(1)  
Internal Reset  
Watchdog Timer  
(1)  
Reset  
31  
34  
34  
I/O Pins  
Note 1: Asserted low.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 275  
PIC12(L)F1571/2  
TABLE 26-11: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER  
AND BROWN-OUT RESET PARAMETERS  
Standard Operating Conditions (unless otherwise stated)  
Param.  
Sym.  
TMCL  
Characteristic  
Min. Typ† Max. Units  
Conditions  
No.  
30  
MCLR Pulse Width (low)  
2
s  
ms VDD = 3.3V-5V,  
1:512 prescaler used  
31  
TWDTLP Low-Power Watchdog Timer  
Time-out Period  
10  
16  
27  
32  
TOST  
Oscillator Start-up Timer Period(1)  
1024  
65  
TOSC  
33*  
TPWRT Power-up Timer Period  
40  
140  
ms PWRTE = 0  
34*  
35  
TIOZ  
I/O High-Impedance from MCLR Low  
or Watchdog Timer Reset  
Brown-out Reset Voltage(2)  
2.0  
s  
VBOR  
2.55 2.70 2.85  
2.35 2.45 2.58  
1.80 1.90 2.05  
V
V
V
BORV = 0  
BORV = 1(PIC12F1571/2)  
BORV = 1(PIC12LF1571/2)  
36*  
37*  
38  
VHYST  
Brown-out Reset Hysteresis  
0
1
25  
16  
60  
35  
mV -40°C TA +85°C  
s VDD VBOR  
TBORDC Brown-out Reset DC Response Time  
VLPBOR Low-Power Brown-out Reset Voltage  
1.8  
2.1  
2.5  
V
LPBOR = 1  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance  
only and are not tested.  
Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.  
2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as  
possible. 0.1 F and 0.01 F values in parallel are recommended.  
FIGURE 26-9:  
BROWN-OUT RESET TIMING AND CHARACTERISTICS  
VDD  
VBOR and VHYST  
VBOR  
(Device in Brown-out Reset)  
(Device not in Brown-out Reset)  
37  
Reset  
33  
(due to BOR)  
DS40001723D-page 276  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 26-10:  
TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS  
T0CKI  
40  
41  
42  
T1CKI  
45  
46  
49  
47  
TMR0 or  
TMR1  
TABLE 26-12: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Param.  
No.  
Sym.  
TT0H  
Characteristic  
T0CKI High Pulse Width  
Min.  
Typ†  
Max.  
Units  
Conditions  
40*  
No Prescaler  
With Prescaler  
No Prescaler  
With Prescaler  
0.5 TCY + 20  
ns  
ns  
ns  
ns  
10  
0.5 TCY + 20  
10  
41*  
42*  
TT0L  
TT0P  
T0CKI Low Pulse Width  
T0CKI Period  
Greater of:  
20 or TCY + 40  
N
ns N = Prescale value  
45*  
46*  
47*  
TT1H  
TT1L  
TT1P  
T1CKI High Synchronous, No Prescaler  
0.5 TCY + 20  
ns  
Time  
Synchronous, with Prescaler  
15  
ns  
Asynchronous  
30  
ns  
T1CKI Low Synchronous, No Prescaler  
0.5 TCY + 20  
ns  
Time  
Synchronous, with Prescaler  
15  
30  
ns  
Asynchronous  
ns  
T1CKI Input Synchronous  
Period  
Greater of:  
30 or TCY + 40  
N
ns N = Prescale value  
Asynchronous  
60  
ns  
49*  
TCKEZTMR1 Delay from External Clock Edge to Timer  
Increment  
2 TOSC  
7 TOSC  
Timers in Sync  
mode  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 277  
PIC12(L)F1571/2  
TABLE 26-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS(1,2,3)  
Operating Conditions (unless otherwise stated)  
VDD = 3.0V, TA = +25°C  
Param.  
No.  
Sym.  
Characteristic  
Resolution  
Min.  
Typ†  
Max. Units  
Conditions  
AD01  
AD02  
AD03  
AD04  
AD05  
AD06  
AD07  
AD08  
NR  
±1  
±1  
±1  
±1  
10  
±1.7  
±1  
bit  
EIL  
EDL  
Integral Error  
LSb VREF = 3.0V  
Differential Error  
LSb No missing codes, VREF = 3.0V  
LSb VREF = 3.0V  
EOFF Offset Error  
±2.5  
±2.0  
VDD  
VREF  
10  
EGN Gain Error  
LSb VREF = 3.0V  
VREF Reference Voltage  
VAIN Full-Scale Range  
1.8  
VSS  
V
V
VREF = (VRPOS – VRNEG) (Note 4)  
ZAIN Recommended Impedance of  
Analog Voltage Source  
kCan go higher if external 0.01 F capacitor is  
present on input pin.  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: Total absolute error includes integral, differential, offset and gain errors.  
2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.  
3: See Section 27.0 “DC and AC Characteristics Graphs and Charts” for operating characterization.  
4: ADC VREF is selected by the ADPREF<0> bit.  
DS40001723D-page 278  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 26-11:  
ADC CONVERSION TIMING (ADC CLOCK FOSC-BASED)  
BSF ADCON0, GO  
AD133  
Q4  
1 TCY  
AD131  
AD130  
ADC_clk  
9
8
7
6
3
2
1
0
ADC Data  
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
FIGURE 26-12:  
ADC CONVERSION TIMING (ADC CLOCK FROM FRC)  
BSF ADCON0, GO  
AD133  
Q4  
1 TCY  
AD131  
AD130  
ADC_clk  
9
8
7
3
2
1
0
6
ADC Data  
NEW_DATA  
1 TCY  
OLD_DATA  
ADRES  
ADIF  
GO  
DONE  
Sampling Stopped  
AD132  
Sample  
Note 1: If the ADC clock source is selected as FRC, a time of TCY is added before the ADC clock starts; this allows the  
SLEEPinstruction to be executed.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 279  
PIC12(L)F1571/2  
TABLE 26-14: ADC CONVERSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Param.  
Sym.  
Characteristic  
Min.  
Typ†  
Max. Units  
Conditions  
No.  
AD130* TAD  
ADC Clock Period (TADC)  
ADC Internal FRC Oscillator Period (TFRC)  
AD131 TCNV Conversion Time  
(not including Acquisition Time)(1)  
1.0  
1.0  
2.0  
11  
6.0  
6.0  
s FOSC-based  
s ADCS<2:0> = x11(ADC FRC mode)  
TAD Set GO/DONE bit to conversion  
complete  
AD132* TACQ Acquisition Time  
5.0  
s  
AD133* THCD Holding Capacitor Disconnect Time  
1/2 TAD  
1/2 TAD + 1TCY  
FOSC-based,  
ADCS<2:0> = x11(ADC FRC mode)  
*
These parameters are characterized but not tested.  
Data in “Typ” column is at 3.0V, +25°C unless otherwise stated. These parameters are for design guidance only and are  
not tested.  
Note 1: The ADRES register may be read on the following TCY cycle.  
DS40001723D-page 280  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 26-15: COMPARATOR SPECIFICATIONS(1)  
Operating Conditions (unless otherwise stated)  
VDD = 3.0V, TA = +25°C  
Param.  
No.  
Sym.  
Characteristics  
Input Offset Voltage  
Min.  
Typ.  
Max.  
Units  
Comments  
CM01  
VIOFF  
±7.5  
±60  
mV CxSP = 1,  
VICM = VDD/2  
CM02  
VICM  
Input Common-Mode Voltage  
Common-Mode Rejection Ration  
Response Time Rising Edge  
Response Time Falling Edge  
Response Time Rising Edge  
Response Time Falling Edge  
0
50  
VDD  
V
CM03  
CMRR  
TRESP  
dB  
(2)  
CM04A  
CM04B  
CM04C  
CM04D  
CM05*  
400  
200  
1200  
550  
800  
400  
ns  
ns  
ns  
ns  
s  
CxSP = 1  
CxSP = 1  
CxSP = 0  
CxSP = 0  
TMC2OV Comparator Mode Change to  
Output Valid  
10  
CM06  
CHYSTER Comparator Hysteresis  
25  
mV CxHYS = 1,  
CxSP = 1  
*
These parameters are characterized but not tested.  
Note 1: See Section 27.0 “DC and AC Characteristics Graphs and Charts” for operating characterization.  
2: Response time measured with one comparator input at VDD/2, while the other input transitions from  
VSS to VDD.  
TABLE 26-16: DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS(1)  
Operating Conditions (unless otherwise stated)  
VDD = 3.0V, TA = +25°C  
Param.  
No.  
Sym.  
Characteristics  
Step Size  
Min.  
Typ.  
Max.  
Units  
Comments  
DAC01*  
DAC02*  
DAC03*  
DAC04*  
*
CLSB  
VDD/32  
1/2  
V
LSb  
CACC  
CR  
Absolute Accuracy  
Unit Resistor Value (R)  
Settling Time(2)  
5K  
CST  
10  
s  
These parameters are characterized but not tested.  
Note 1: See Section 27.0 “DC and AC Characteristics Graphs and Charts” for operating characterization.  
2: Settling time measured while DACR<4:0> transitions from ‘0000’ to ‘1111’.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 281  
PIC12(L)F1571/2  
FIGURE 26-13:  
USART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING  
CK  
DT  
US121  
US121  
US122  
US120  
Refer to Figure 26-4 for load conditions.  
Note:  
TABLE 26-17: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Param.  
No.  
Symbol  
Characteristic  
Min.  
Max.  
Units  
Conditions  
US120  
TCKH2DTV SYNC XMIT (Master and Slave)  
Clock High to Data-Out Valid  
80  
100  
45  
ns  
ns  
ns  
ns  
ns  
ns  
3.0V VDD 5.5V  
1.8V VDD 5.5V  
3.0V VDD 5.5V  
1.8V VDD 5.5V  
3.0V VDD 5.5V  
1.8V VDD 5.5V  
US121  
US122  
TCKRF  
Clock Out Rise Time and Fall Time  
(Master mode)  
50  
TDTRF  
Data-Out Rise Time and Fall Time  
45  
50  
FIGURE 26-14:  
USART SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING  
CK  
DT  
US125  
US126  
Note: Refer to Figure 26-4 for load conditions.  
TABLE 26-18: USART SYNCHRONOUS RECEIVE REQUIREMENTS  
Standard Operating Conditions (unless otherwise stated)  
Param.  
No.  
Symbol  
Characteristic  
Min.  
Max. Units  
Conditions  
US125 TDTV2CKL SYNC RCV (Master and Slave)  
Data-Hold before CK (DT hold time)  
10  
15  
ns  
ns  
US126 TCKL2DTL Data-Hold after CK (DT hold time)  
DS40001723D-page 282  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
27.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS  
The graphs and tables provided in this section are for design guidance and are not tested.  
In some graphs or tables, the data presented is outside specified operating range (i.e., outside specified VDD range).  
This is for information only and devices are ensured to operate properly only within the specified range.  
Note:  
The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.  
Typical” represents the mean of the distribution at +25C. “MAXIMUM”, “Max.”, “MINIMUM” or “Min.”  
represents (mean + 3) or (mean – 3) respectively, where is a standard deviation over each  
temperature range.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 283  
PIC12(L)F1571/2  
FIGURE 27-1:  
IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 32 kHz, PIC12LF1571/2 ONLY  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
Max.  
Max: 85°C + 3ı  
Typical: 25°C  
Typical  
1.0  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 27-2:  
IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 32 kHz, PIC12F1571/2 ONLY  
25  
Max: 85°C + 3ı  
Typical: 25°C  
Max.  
20  
15  
10  
5
Typical  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
DS40001723D-page 284  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 27-3:  
IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 500 kHz, PIC12LF1571/2 ONLY  
40  
Max: 85°C + 3ı  
Typical: 25°C  
35  
30  
25  
20  
Max.  
Typical  
15  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 27-4:  
IDD, EC OSCILLATOR, LOW-POWER MODE, FOSC = 500 kHz, PIC12F1571/2 ONLY  
50  
Max.  
Max: 85°C + 3ı  
Typical: 25°C  
45  
40  
35  
30  
25  
Typical  
20  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 285  
PIC12(L)F1571/2  
FIGURE 27-5:  
IDD TYPICAL, EC OSCILLATOR, MEDIUM POWER MODE, PIC12LF1571/2 ONLY  
300  
Typical: 25°C  
250  
200  
150  
100  
50  
4 MHz  
1 MHz  
3.2  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 27-6:  
IDD MAXIMUM, EC OSCILLATOR, MEDIUM POWER MODE, PIC12LF1571/2 ONLY  
300  
4 MHz  
Max: 85°C + 3ı  
250  
200  
150  
100  
50  
1 MHz  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
DS40001723D-page 286  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 27-7:  
IDD TYPICAL, EC OSCILLATOR, MEDIUM POWER MODE, PIC12F1571/2 ONLY  
350  
4 MHz  
300  
250  
200  
150  
100  
50  
Typical: 25°C  
1 MHz  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
FIGURE 27-8:  
IDD MAXIMUM, EC OSCILLATOR, MEDIUM POWER MODE, PIC12F1571/2 ONLY  
400  
350  
300  
250  
200  
150  
100  
50  
Max: 85°C + 3ı  
4 MHz  
1 MHz  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 287  
PIC12(L)F1571/2  
FIGURE 27-9:  
IDD TYPICAL, EC OSCILLATOR, HIGH-POWER MODE, PIC12LF1571/2 ONLY  
2.5  
Typical: 25°C  
2.0  
1.5  
1.0  
0.5  
32 MHz  
16 MHz  
8 MHz  
2.6  
0.0  
1.6  
1.8  
2.0  
2.2  
2.4  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 27-10:  
IDD MAXIMUM, EC OSCILLATOR, HIGH-POWER MODE, PIC12LF1571/2 ONLY  
2.5  
Max: 85°C + 3ı  
32 MHz  
2.0  
1.5  
1.0  
0.5  
16 MHz  
8 MHz  
0.0  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
DS40001723D-page 288  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 27-11:  
IDD TYPICAL, EC OSCILLATOR, HIGH-POWER MODE, PIC12F1571/2 ONLY  
2.5  
Typical: 25°C  
2.0  
1.5  
1.0  
0.5  
32 MHz  
16 MHz  
8 MHz  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
FIGURE 27-12:  
IDD MAXIMUM, EC OSCILLATOR, HIGH-POWER MODE, PIC12F1571/2 ONLY  
2.5  
Max: 85°C + 3ı  
32 MHz  
2.0  
1.5  
1.0  
0.5  
16 MHz  
8 MHz  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 289  
PIC12(L)F1571/2  
FIGURE 27-13:  
IDD, LFINTOSC, FOSC = 31 kHz, PIC12LF1571/2 ONLY  
10  
9
Max.  
Max: 85°C + 3ı  
Typical: 25°C  
Typical  
8
7
6
5
4
3
2
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 27-14:  
IDD, LFINTOSC, FOSC = 31 kHz, PIC12F1571/2 ONLY  
25  
Max: 85°C + 3ı  
Typical: 25°C  
Max.  
20  
15  
10  
5
Typical  
0
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
DS40001723D-page 290  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 27-15:  
IDD, MFINTOSC, FOSC = 500 kHz, PIC12LF1571/2 ONLY  
170  
160  
150  
140  
130  
120  
110  
Max: 85°C + 3ı  
Typical: 25°C  
Max.  
Typical  
100  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 27-16:  
IDD, MFINTOSC, FOSC = 500 kHz, PIC12F1571/2 ONLY  
260  
240  
220  
200  
180  
160  
140  
120  
Max.  
Max: 85°C + 3ı  
Typical: 25°C  
Typical  
100  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 291  
PIC12(L)F1571/2  
FIGURE 27-17:  
IDD TYPICAL, HFINTOSC, PIC12LF1571/2 ONLY  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
16 MHz  
8 MHz  
Typical: 25°C  
4 MHz  
2 MHz  
1 MHz  
0.0  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 27-18:  
IDD MAXIMUM, HFINTOSC, PIC12LF1571/2 ONLY  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
16 MHz  
Max: 85°C + 3ı  
8 MHz  
1 MHz  
4 MHz  
2 MHz  
0.0  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
DS40001723D-page 292  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 27-19:  
IDD TYPICAL, HFINTOSC, PIC12F1571/2 ONLY  
1.4  
16 MHz  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Typical: 25°C  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
FIGURE 27-20:  
IDD MAXIMUM, HFINTOSC, PIC12F1571/2 ONLY  
1.6  
1.4  
16 MHz  
Max: 85°C + 3ı  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
8 MHz  
4 MHz  
2 MHz  
1 MHz  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 293  
PIC12(L)F1571/2  
FIGURE 27-21:  
IPD BASE, LOW-POWER SLEEP MODE, PIC12LF1571/2 ONLY  
350  
300  
Max: 85°C + 3ı  
Typical: 25°C  
Max.  
250  
200  
150  
100  
50  
Typical  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 27-22:  
IPD BASE, LOW-POWER SLEEP MODE, PIC12F1571/2 ONLY  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
Max: 85°C + 3ı  
Typical: 25°C  
Max  
Typical  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
DS40001723D-page 294  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 27-23:  
IPD, WATCHDOG TIMER (WDT), PIC12LF1571/2 ONLY  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
Max: 85°C + 3ı  
Typical: 25°C  
Max.  
Typical  
0.0  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 27-24:  
IPD, WATCHDOG TIMER (WDT), PIC12F1571/2 ONLY  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Max: 85°C + 3ı  
Typical: 25°C  
Max.  
Typical  
0.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 295  
PIC12(L)F1571/2  
FIGURE 27-25:  
IPD, FIXED VOLTAGE REFERENCE (FVR), PIC12LF1571/2 ONLY  
28  
Max: 85°C + 3ı  
26  
24  
22  
20  
18  
16  
14  
12  
10  
Typical: 25°C  
Max.  
Typical  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 27-26:  
IPD, FIXED VOLTAGE REFERENCE (FVR), PIC12F1571/2 ONLY  
24  
22  
20  
18  
16  
14  
12  
Max.  
Typical  
Max: 85°C + 3ı  
Typical: 25°C  
10  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
DS40001723D-page 296  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 27-27:  
IPD, BROWN-OUT RESET (BOR), BORV = 1, PIC12LF1571/2 ONLY  
9
8.5  
8
Max: 85°C + 3ı  
Typical: 25°C  
Max.  
7.5  
7
Typical  
6.5  
6
5.5  
5
4.5  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
VDD (V)  
FIGURE 27-28:  
IPD, BROWN-OUT RESET (BOR), BORV = 1, PIC12F1571/2 ONLY  
12  
11  
Max: 85°C + 3ı  
Typical: 25°C  
10  
9
Max.  
8
Typical  
7
6
5
4
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
VDD (V)  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 297  
PIC12(L)F1571/2  
FIGURE 27-29:  
IPD, LOW-POWER BROWN-OUT RESET (LPBOR = 0), PIC12LF1571/2 ONLY  
1.8  
1.6  
1.4  
1.2  
1
Max: 85°C + 3ı  
Typical: 25°C  
Max.  
0.8  
0.6  
0.4  
0.2  
Typical  
0
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
VDD (V)  
FIGURE 27-30:  
IPD, LOW-POWER BROWN-OUT RESET (LPBOR = 0), PIC12F1571/2 ONLY  
1.8  
Max: 85°C + 3ı  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
Typical: 25°C  
Max.  
Typical  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
4.2  
4.4  
4.6  
4.8  
5.0  
5.2  
5.4  
5.6  
VDD (V)  
DS40001723D-page 298  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 27-31:  
IPD, ADC NON-CONVERTING, PIC12LF1571/2 ONLY  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Max: 85°C + 3ı  
Typical: 25°C  
Max.  
Typical  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 27-32:  
IPD, ADC NON-CONVERTING, PIC12F1571/2 ONLY  
1.4  
Max: 85°C + 3ı  
Typical: 25°C  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Max.  
Typical  
0.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 299  
PIC12(L)F1571/2  
FIGURE 27-33:  
IPD, COMPARATOR, LOW-POWER MODE (CxSP = 0), PIC12F1571/2 ONLY  
22  
20  
18  
16  
14  
12  
10  
8
Max: 85°C + 3ı  
Typical: 25°C  
Max.  
Typical  
6
4
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
FIGURE 27-34:  
IPD, COMPARATOR, NORMAL POWER MODE (CxSP = 1), PIC12LF1571/2 ONLY  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
Max: -40°C + 3ı  
Typical: 25°C  
Max.  
Typical  
12  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
DS40001723D-page 300  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 27-35:  
IPD, COMPARATOR, NORMAL POWER MODE (CxSP = 1), PIC12F1571/2 ONLY  
45  
Max: -40°C + 3ı  
Typical: 25°C  
40  
35  
30  
25  
20  
15  
10  
Max.  
Typical  
2.0  
2.5  
3.0  
3.5  
4.0  
VDD (V)  
4.5  
5.0  
5.5  
6.0  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 301  
PIC12(L)F1571/2  
FIGURE 27-36:  
IPD, PWM, HFINTOSC MODE (16 MHz), PIC12LF1571/2 ONLY  
1100  
Max: 85°C + 3ı  
Typical: 25°C  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
Max.  
Typical  
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
FIGURE 27-37:  
IPD, PWM, HFINTOSC MODE (16 MHz), PIC12F1571/2 ONLY  
1,200  
Max: 85°C + 3ı  
Typical: 25°C  
1,100  
1,000  
900  
Max.  
Typical  
800  
700  
600  
500  
400  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
VDD (V)  
DS40001723D-page 302  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
FIGURE 27-38:  
FVR STABILIZATION PERIOD  
60  
Max: Typical + 3ı  
Typical: statistical mean @ 25°C  
50  
40  
30  
20  
10  
Max.  
Typical  
Note:  
The FVR Stabilization Period applies when:  
1) coming out of RESET or exiting Sleep mode for PIC12/16LFxxxx devices.  
2) when exiting sleep mode with VREGPM = 1 for PIC12/16Fxxxx devices  
In all other cases, the FVR is stable when released from RESET.  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
VDD (V)  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 303  
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 304  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
28.1 MPLAB X Integrated Development  
Environment Software  
28.0 DEVELOPMENT SUPPORT  
The PIC® microcontrollers (MCU) and dsPIC® digital  
signal controllers (DSC) are supported with a full range  
of software and hardware development tools:  
The MPLAB X IDE is a single, unified graphical user  
interface for Microchip and third-party software, and  
hardware development tool that runs on Windows®,  
Linux and Mac OS® X. Based on the NetBeans IDE,  
MPLAB X IDE is an entirely new IDE with a host of free  
software components and plug-ins for high-  
performance application development and debugging.  
Moving between tools and upgrading from software  
simulators to hardware debugging and programming  
tools is simple with the seamless user interface.  
• Integrated Development Environment  
- MPLAB® X IDE Software  
• Compilers/Assemblers/Linkers  
- MPLAB XC Compiler  
- MPASMTM Assembler  
- MPLINKTM Object Linker/  
MPLIBTM Object Librarian  
- MPLAB Assembler/Linker/Librarian for  
Various Device Families  
With complete project management, visual call graphs,  
a configurable watch window and a feature-rich editor  
that includes code completion and context menus,  
MPLAB X IDE is flexible and friendly enough for new  
users. With the ability to support multiple tools on  
multiple projects with simultaneous debugging, MPLAB  
X IDE is also suitable for the needs of experienced  
users.  
• Simulators  
- MPLAB X SIM Software Simulator  
• Emulators  
- MPLAB REAL ICE™ In-Circuit Emulator  
• In-Circuit Debuggers/Programmers  
- MPLAB ICD 3  
Feature-Rich Editor:  
- PICkit™ 3  
• Color syntax highlighting  
• Device Programmers  
- MPLAB PM3 Device Programmer  
• Smart code completion makes suggestions and  
provides hints as you type  
• Low-Cost Demonstration/Development Boards,  
Evaluation Kits and Starter Kits  
• Automatic code formatting based on user-defined  
rules  
• Third-party development tools  
• Live parsing  
User-Friendly, Customizable Interface:  
• Fully customizable interface: toolbars, toolbar  
buttons, windows, window placement, etc.  
• Call graph window  
Project-Based Workspaces:  
• Multiple projects  
• Multiple tools  
• Multiple configurations  
• Simultaneous debugging sessions  
File History and Bug Tracking:  
• Local file history feature  
• Built-in support for Bugzilla issue tracker  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 305  
PIC12(L)F1571/2  
28.2 MPLAB XC Compilers  
28.4 MPLINK Object Linker/  
MPLIB Object Librarian  
The MPLAB XC Compilers are complete ANSI C  
compilers for all of Microchip’s 8, 16, and 32-bit MCU  
and DSC devices. These compilers provide powerful  
integration capabilities, superior code optimization and  
ease of use. MPLAB XC Compilers run on Windows,  
Linux or MAC OS X.  
The MPLINK Object Linker combines relocatable  
objects created by the MPASM Assembler. It can link  
relocatable objects from precompiled libraries, using  
directives from a linker script.  
The MPLIB Object Librarian manages the creation and  
modification of library files of precompiled code. When  
a routine from a library is called from a source file, only  
the modules that contain that routine will be linked in  
with the application. This allows large libraries to be  
used efficiently in many different applications.  
For easy source level debugging, the compilers provide  
debug information that is optimized to the MPLAB X  
IDE.  
The free MPLAB XC Compiler editions support all  
devices and commands, with no time or memory  
restrictions, and offer sufficient code optimization for  
most applications.  
The object linker/library features include:  
• Efficient linking of single libraries instead of many  
smaller files  
MPLAB XC Compilers include an assembler, linker and  
utilities. The assembler generates relocatable object  
files that can then be archived or linked with other relo-  
catable object files and archives to create an execut-  
able file. MPLAB XC Compiler uses the assembler to  
produce its object file. Notable features of the assem-  
bler include:  
• Enhanced code maintainability by grouping  
related modules together  
• Flexible creation of libraries with easy module  
listing, replacement, deletion and extraction  
28.5 MPLAB Assembler, Linker and  
Librarian for Various Device  
Families  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command-line interface  
MPLAB Assembler produces relocatable machine  
code from symbolic assembly language for PIC24,  
PIC32 and dsPIC DSC devices. MPLAB XC Compiler  
uses the assembler to produce its object file. The  
assembler generates relocatable object files that can  
then be archived or linked with other relocatable object  
files and archives to create an executable file. Notable  
features of the assembler include:  
• Rich directive set  
• Flexible macro language  
• MPLAB X IDE compatibility  
28.3 MPASM Assembler  
The MPASM Assembler is a full-featured, universal  
macro assembler for PIC10/12/16/18 MCUs.  
• Support for the entire device instruction set  
• Support for fixed-point and floating-point data  
• Command-line interface  
The MPASM Assembler generates relocatable object  
files for the MPLINK Object Linker, Intel® standard HEX  
files, MAP files to detail memory usage and symbol  
reference, absolute LST files that contain source lines  
and generated machine code, and COFF files for  
debugging.  
• Rich directive set  
• Flexible macro language  
• MPLAB X IDE compatibility  
The MPASM Assembler features include:  
• Integration into MPLAB X IDE projects  
• User-defined macros to streamline  
assembly code  
• Conditional assembly for multipurpose  
source files  
• Directives that allow complete control over the  
assembly process  
DS40001723D-page 306  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
28.6 MPLAB X SIM Software Simulator  
28.8 MPLAB ICD 3 In-Circuit Debugger  
System  
The MPLAB X SIM Software Simulator allows code  
development in a PC-hosted environment by simulat-  
ing the PIC MCUs and dsPIC DSCs on an instruction  
level. On any given instruction, the data areas can be  
examined or modified and stimuli can be applied from  
a comprehensive stimulus controller. Registers can be  
logged to files for further run-time analysis. The trace  
buffer and logic analyzer display extend the power of  
the simulator to record and track program execution,  
actions on I/O, most peripherals and internal registers.  
The MPLAB ICD 3 In-Circuit Debugger System is  
Microchip’s most cost-effective, high-speed hardware  
debugger/programmer for Microchip Flash DSC and  
MCU devices. It debugs and programs PIC Flash  
microcontrollers and dsPIC DSCs with the powerful,  
yet easy-to-use graphical user interface of the MPLAB  
IDE.  
The MPLAB ICD 3 In-Circuit Debugger probe is  
connected to the design engineer’s PC using a high-  
speed USB 2.0 interface and is connected to the target  
with a connector compatible with the MPLAB ICD 2 or  
MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3  
supports all MPLAB ICD 2 headers.  
The MPLAB X SIM Software Simulator fully supports  
symbolic debugging using the MPLAB XC Compilers,  
and the MPASM and MPLAB Assemblers. The soft-  
ware simulator offers the flexibility to develop and  
debug code outside of the hardware laboratory envi-  
ronment, making it an excellent, economical software  
development tool.  
28.9 PICkit 3 In-Circuit Debugger/  
Programmer  
The MPLAB PICkit 3 allows debugging and program-  
ming of PIC and dsPIC Flash microcontrollers at a most  
affordable price point using the powerful graphical user  
interface of the MPLAB IDE. The MPLAB PICkit 3 is  
connected to the design engineer’s PC using a full-  
speed USB interface and can be connected to the tar-  
get via a Microchip debug (RJ-11) connector (compati-  
ble with MPLAB ICD 3 and MPLAB REAL ICE). The  
connector uses two device I/O pins and the Reset line  
to implement in-circuit debugging and In-Circuit Serial  
Programming™ (ICSP™).  
28.7 MPLAB REAL ICE In-Circuit  
Emulator System  
The MPLAB REAL ICE In-Circuit Emulator System is  
Microchip’s next generation high-speed emulator for  
Microchip Flash DSC and MCU devices. It debugs and  
programs all 8, 16 and 32-bit MCU, and DSC devices  
with the easy-to-use, powerful graphical user interface of  
the MPLAB X IDE.  
The emulator is connected to the design engineer’s  
PC using a high-speed USB 2.0 interface and is  
connected to the target with either a connector  
compatible with in-circuit debugger systems (RJ-11)  
or with the new high-speed, noise tolerant, Low-  
Voltage Differential Signal (LVDS) interconnection  
(CAT5).  
28.10 MPLAB PM3 Device Programmer  
The MPLAB PM3 Device Programmer is a universal,  
CE compliant device programmer with programmable  
voltage verification at VDDMIN and VDDMAX for  
maximum reliability. It features a large LCD display  
(128 x 64) for menus and error messages, and a mod-  
ular, detachable socket assembly to support various  
package types. The ICSP cable assembly is included  
as a standard item. In Stand-Alone mode, the MPLAB  
PM3 Device Programmer can read, verify and program  
PIC devices without a PC connection. It can also set  
code protection in this mode. The MPLAB PM3  
connects to the host PC via an RS-232 or USB cable.  
The MPLAB PM3 has high-speed communications and  
optimized algorithms for quick programming of large  
memory devices, and incorporates an MMC card for file  
storage and data applications.  
The emulator is field upgradable through future firmware  
downloads in MPLAB X IDE. MPLAB REAL ICE offers  
significant advantages over competitive emulators  
including full-speed emulation, run-time variable  
watches, trace analysis, complex breakpoints, logic  
probes, a ruggedized probe interface and long (up to  
three meters) interconnection cables.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 307  
PIC12(L)F1571/2  
28.11 Demonstration/Development  
Boards, Evaluation Kits, and  
Starter Kits  
28.12 Third-Party Development Tools  
Microchip also offers a great collection of tools from  
third-party vendors. These tools are carefully selected  
to offer good value and unique functionality.  
A wide variety of demonstration, development and  
evaluation boards for various PIC MCUs and dsPIC  
DSCs allows quick application development on fully  
functional systems. Most boards include prototyping  
areas for adding custom circuitry and provide applica-  
tion firmware and source code for examination and  
modification.  
• Device Programmers and Gang Programmers  
from companies, such as SoftLog and CCS  
• Software Tools from companies, such as Gimpel  
and Trace Systems  
• Protocol Analyzers from companies, such as  
Saleae and Total Phase  
The boards support a variety of features, including LEDs,  
temperature sensors, switches, speakers, RS-232  
interfaces, LCD displays, potentiometers and additional  
EEPROM memory.  
• Demonstration Boards from companies, such as  
MikroElektronika, Digilent® and Olimex  
• Embedded Ethernet Solutions from companies,  
such as EZ Web Lynx, WIZnet and IPLogika®  
The demonstration and development boards can be  
used in teaching environments, for prototyping custom  
circuits and for learning about various microcontroller  
applications.  
In addition to the PICDEM™ and dsPICDEM™  
demonstration/development board series of circuits,  
Microchip has a line of evaluation kits and demonstra-  
®
tion software for analog filter design, KEELOQ security  
ICs, CAN, IrDA®, PowerSmart battery management,  
SEEVAL® evaluation system, Sigma-Delta ADC, flow  
rate sensing, plus many more.  
Also available are starter kits that contain everything  
needed to experience the specified device. This usually  
includes a single application and debug capability, all  
on one board.  
Check the Microchip web page (www.microchip.com)  
for the complete list of demonstration, development  
and evaluation kits.  
DS40001723D-page 308  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
29.0 PACKAGING INFORMATION  
29.1 Package Marking Information  
8-Lead PDIP (300 mil)  
Example  
12F1571  
XXXXXXXX  
XXXXXNNN  
e
3
E/P  
017  
YYWW  
1310  
8-Lead SOIC (3.90 mm)  
Example  
12F1571  
E/SN1310  
017  
NNN  
Legend: XX...X Customer-specific information  
Y
YY  
WW  
NNN  
Year code (last digit of calendar year)  
Year code (last 2 digits of calendar year)  
Week code (week of January 1 is week ‘01’)  
Alphanumeric traceability code  
Pb-free JEDEC® designator for Matte Tin (Sn)  
e
3
*
This package is Pb-free. The Pb-free JEDEC designator (  
can be found on the outer packaging for this package.  
)
e3  
Note: In the event the full Microchip part number cannot be marked on one line, it will  
be carried over to the next line, thus limiting the number of available  
characters for customer-specific information.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 309  
PIC12(L)F1571/2  
Package Marking Information (Continued)  
8-Lead MSOP (3x3 mm)  
Example  
L1571I  
310017  
8-Lead DFN (3x3x0.9 mm)  
8-Lead UDFN (3x3x0.5 mm)  
Example  
MFQ0  
1312  
017  
XXXX  
YYWW  
NNN  
PIN 1  
PIN 1  
DS40001723D-page 310  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
TABLE 29-1: 8-LEAD 3x3x0.9 DFN (MF) TOP  
MARKING  
TABLE 29-2: 8-LEAD 3x3x0.5 UDFN (RF)  
TOP MARKING  
Part Number  
Marking  
Part Number  
Marking  
PIC12F1571-E/MF  
PIC12F1572-E/MF  
PIC12F1571-I/MF  
PIC12F1572-I/MF  
PIC12LF1571-E/MF  
PIC12LF1572-E/MF  
PIC12LF1571-I/MF  
PIC12LF1572-I/MF  
MFY0/YYWW/NNN  
MGA0/YYWW/NNN  
MFZ0  
PIC12F1571-E/MF  
PIC12F1572-E/MF  
PIC12F1571-I/MF  
PIC12F1572-I/MF  
PIC12LF1571-E/MF  
PIC12LF1572-E/MF  
PIC12LF1571-I/MF  
PIC12LF1572-I/MF  
MFY0/YYWW/NNN  
MGA0/YYWW/NNN  
MFZ0  
MGB0  
MGB0  
MGC0  
MGC0  
MGE0  
MGE0  
MGD0  
MGD0  
MGF0  
MGF0  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 311  
PIC12(L)F1571/2  
29.2 Package Details  
The following sections give the technical details of the packages.  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
N
B
E1  
NOTE 1  
1
2
TOP VIEW  
E
A2  
A
C
PLANE  
L
c
A1  
e
eB  
8X b1  
8X b  
.010  
C
SIDE VIEW  
END VIEW  
Microchip Technology Drawing No. C04-018D Sheet 1 of 2  
DS40001723D-page 312  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
8-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
ALTERNATE LEAD DESIGN  
(VENDOR DEPENDENT)  
DATUM A  
DATUM A  
b
b
e
2
e
2
e
e
Units  
Dimension Limits  
INCHES  
NOM  
8
.100 BSC  
-
MIN  
MAX  
Number of Pins  
Pitch  
N
e
A
Top to Seating Plane  
-
.210  
.195  
-
Molded Package Thickness  
Base to Seating Plane  
Shoulder to Shoulder Width  
Molded Package Width  
Overall Length  
Tip to Seating Plane  
Lead Thickness  
Upper Lead Width  
A2  
A1  
E
E1  
D
L
c
b1  
b
eB  
.115  
.015  
.290  
.240  
.348  
.115  
.008  
.040  
.014  
-
.130  
-
.310  
.250  
.365  
.130  
.010  
.060  
.018  
-
.325  
.280  
.400  
.150  
.015  
.070  
.022  
.430  
Lower Lead Width  
Overall Row Spacing  
§
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. § Significant Characteristic  
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or  
protrusions shall not exceed .010" per side.  
4. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing No. C04-018D Sheet 2 of 2  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 313  
PIC12(L)F1571/2  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS40001723D-page 314  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 315  
PIC12(L)F1571/2  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈꢄꢉꢊꢋꢌꢆꢍꢎꢄꢈꢈꢆꢏꢐꢊꢈꢋꢑꢃꢆꢒꢍꢓꢔꢆꢕꢆꢓꢄꢖꢖꢗꢘꢙꢆꢚꢛꢜꢝꢆꢎꢎꢆꢞꢗꢅꢟꢆꢠꢍꢏꢡꢢꢣ  
ꢓꢗꢊꢃꢤ ꢀꢁꢂꢃꢄꢅꢆꢃ!ꢁ"ꢄꢃꢇ#ꢂꢂꢆꢈꢄꢃꢉꢊꢇ$ꢊꢋꢆꢃ%ꢂꢊ&ꢌꢈꢋ"'ꢃꢉꢍꢆꢊ"ꢆꢃ"ꢆꢆꢃꢄꢅꢆꢃꢎꢌꢇꢂꢁꢇꢅꢌꢉꢃ(ꢊꢇ$ꢊꢋꢌꢈꢋꢃꢏꢉꢆꢇꢌ)ꢌꢇꢊꢄꢌꢁꢈꢃꢍꢁꢇꢊꢄꢆ%ꢃꢊꢄꢃ  
ꢅꢄꢄꢉ*++&&&ꢐ!ꢌꢇꢂꢁꢇꢅꢌꢉꢐꢇꢁ!+ꢉꢊꢇ$ꢊꢋꢌꢈꢋ  
DS40001723D-page 316  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 317  
PIC12(L)F1571/2  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS40001723D-page 318  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 319  
PIC12(L)F1571/2  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS40001723D-page 320  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 321  
PIC12(L)F1571/2  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
DS40001723D-page 322  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (RF) - 3x3x0.50 mm Body [UDFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
D
A
B
E
N
(DATUM A)  
(DATUM B)  
NOTE 1  
2X  
0.10 C  
2X  
1
2
TOP VIEW  
0.10 C  
0.05 C  
A1  
C
A
SEATING  
PLANE  
8X  
(A3)  
0.05 C  
C A B  
SIDE VIEW  
0.10  
D2  
2
1
L
0.10  
K
C A B  
E2  
NOTE 1  
N
e
8X b  
e
2
0.10  
C A B  
BOTTOM VIEW  
Microchip Technology Drawing C04-254A Sheet 1 of 2  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 323  
PIC12(L)F1571/2  
8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (RF) - 3x3x0.50 mm Body [UDFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
Units  
Dimension Limits  
MILLIMETERS  
NOM  
MIN  
MAX  
Number of Terminals  
Pitch  
Overall Height  
Standoff  
Terminal Thickness  
Overall Width  
Exposed Pad Width  
Overall Length  
Exposed Pad Length  
Terminal Width  
Terminal Length  
N
8
e
0.65 BSC  
0.50  
0.02  
0.065 REF  
3.00 BSC  
1.50  
3.00 BSC  
2.30  
A
A1  
A3  
E
E2  
D
D2  
b
L
0.45  
0.00  
0.55  
0.05  
1.40  
1.60  
2.20  
0.25  
0.35  
0.20  
2.40  
0.35  
0.55  
-
0.30  
0.45  
-
Terminal-to-Exposed-Pad  
K
Notes:  
1. Pin 1 visual index feature may vary, but must be located within the hatched area.  
2. Package is saw singulated  
3. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
REF: Reference Dimension, usually without tolerance, for information purposes only.  
Microchip Technology Drawing C04-254A Sheet 2 of 2  
DS40001723D-page 324  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (RF) - 3x3x0.50 mm Body [UDFN]  
Note: For the most current package drawings, please see the Microchip Packaging Specification located at  
http://www.microchip.com/packaging  
C
X2  
E
Y2  
X1  
G1  
G2  
SILK SCREEN  
Y1  
RECOMMENDED LAND PATTERN  
Units  
Dimension Limits  
E
MILLIMETERS  
NOM  
0.65 BSC  
MIN  
MAX  
Contact Pitch  
Optional Center Pad Width  
Optional Center Pad Length  
Contact Pad Spacing  
X2  
Y2  
C
1.60  
2.40  
2.90  
Contact Pad Width (X8)  
X1  
Y1  
G1  
G2  
0.35  
0.85  
Contact Pad Length (X8)  
Contact Pad to Contact Pad (X6)  
Contact Pad to Center Pad (X8)  
0.20  
0.30  
Notes:  
1. Dimensioning and tolerancing per ASME Y14.5M  
BSC: Basic Dimension. Theoretically exact value shown without tolerances.  
Microchip Technology Drawing C04-2254A  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 325  
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 326  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
APPENDIX A: DATA SHEET  
REVISION HISTORY  
Revision A (10/2013)  
Original release of this document.  
Revision B (2/2014)  
Updated PIC12(L)F1571/2 Family Types table  
Program Memory Flash heading (words to K words).  
Revision C (8/2014)  
Updated PWM chapter. Changed to Final data sheet.  
Updated IDD and IPD parameters in the Electrical  
Specification chapter. Added Characterization Graphs.  
Added Section 1.1: Register and Bit Naming  
Conventions.  
Updated Figures 5-3 and 15-5. Updated Tables 3-1,  
3-7, and 3-10. Updated Section 15.2.5. Updated Equa-  
tion 15-1.  
Revision D (8/2015)  
Updated Clocking Structure, Memory, Low-Power  
Features, Family Types table and Pin Diagram Table  
on cover pages.  
Added Sections 3.2: High-Endurance Flash and  
5.4: Clock Switching Before Sleep. Added Table 29-2  
and 8-pin UDFN packaging.  
Updated Examples 3-2 and 15-1.  
Updated Figures 8-1, 21-1, 22-8 through 22-13 and  
23-1.  
Updated Registers 7-5, 8-1, 22-6 and 23-3.  
Updated Sections 8.2.2, 15.2.6, 16.0, 21.0, 21.4.2,  
22.3.3, 23.9.1.2, 23.11.1, 26.1 and 29.1.  
Updated Tables 1, 3-3, 3-4, 3-10, 5-1, 16-1, 17-3, 22-2,  
23-2, 26-6, 26-8 and 29-1.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 327  
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 328  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
THE MICROCHIP WEB SITE  
CUSTOMER SUPPORT  
Microchip provides online support via our WWW site at  
www.microchip.com. This web site is used as a means  
to make files and information easily available to  
customers. Accessible by using your favorite Internet  
browser, the web site contains the following  
information:  
Users of Microchip products can receive assistance  
through several channels:  
• Distributor or Representative  
• Local Sales Office  
• Field Application Engineer (FAE)  
Technical Support  
Product Support – Data sheets and errata,  
application notes and sample programs, design  
resources, user’s guides and hardware support  
documents, latest software releases and archived  
software  
Customers  
should  
contact  
their  
distributor,  
representative or Field Application Engineer (FAE) for  
support. Local sales offices are also available to help  
customers. A listing of sales offices and locations is  
included in the back of this document.  
General Technical Support – Frequently Asked  
Questions (FAQ), technical support requests,  
online discussion groups, Microchip consultant  
program member listing  
Technical support is available through the web site  
at: http://microchip.com/support  
Business of Microchip – Product selector and  
ordering guides, latest Microchip press releases,  
listing of seminars and events, listings of  
Microchip sales offices, distributors and factory  
representatives  
CUSTOMER CHANGE NOTIFICATION  
SERVICE  
Microchip’s customer notification service helps keep  
customers current on Microchip products. Subscribers  
will receive e-mail notification whenever there are  
changes, updates, revisions or errata related to a  
specified product family or development tool of interest.  
To register, access the Microchip web site at  
www.microchip.com. Under “Support”, click on  
“Customer Change Notification” and follow the  
registration instructions.  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 329  
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 330  
2013-2015 Microchip Technology Inc.  
PIC12(L)F1571/2  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
(1)  
[X]  
PART NO.  
X
/XX  
XXX  
-
Examples:  
Device Tape and Reel  
Option  
Temperature  
Range  
Package  
Pattern  
a)  
PIC12LF1571T - I/SO  
Tape and Reel,  
Industrial temperature,  
SOIC package  
b)  
c)  
PIC12F1572 - I/P  
Industrial temperature,  
PDIP package  
Device:  
PIC12LF1571, PIC12F1571  
PIC12LF1572, PIC12F1572  
PIC12F1571-E/MF  
Extended Temperature,  
DFN package  
Tape and Reel  
Option:  
Blank = Standard packaging (tube or tray)  
T
= Tape and Reel(1)  
Temperature  
Range:  
I
E
=
=
-40C to +85C (Industrial)  
-40C to +125C (Extended)  
Note 1: Tape and Reel identifier only appears in the  
catalog part number description. This identifier  
is used for ordering purposes and is not printed  
on the device package. Check with your  
Microchip Sales Office for package availability  
with the Tape and Reel option.  
Package:(2)  
MF  
MS  
P
SN  
RF  
=
=
=
=
=
Micro Lead Frame (DFN) 3x3x0.9 mm  
MSOP  
Plastic DIP  
SOIC  
Micro Lead Frame (UDFN) 3x3x0.5 mm  
2: For other small form-factor package availability  
and marking information, please visit  
www.microchip.com/packaging or contact your  
local sales office.  
Pattern:  
QTP, SQTP, Code or Special Requirements  
(blank otherwise)  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 331  
PIC12(L)F1571/2  
NOTES:  
DS40001723D-page 332  
2013-2015 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts  
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is provided only for your convenience  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications.  
MICROCHIP MAKES NO REPRESENTATIONS OR  
WARRANTIES OF ANY KIND WHETHER EXPRESS OR  
IMPLIED, WRITTEN OR ORAL, STATUTORY OR  
OTHERWISE, RELATED TO THE INFORMATION,  
INCLUDING BUT NOT LIMITED TO ITS CONDITION,  
QUALITY, PERFORMANCE, MERCHANTABILITY OR  
FITNESS FOR PURPOSE. Microchip disclaims all liability  
arising from this information and its use. Use of Microchip  
devices in life support and/or safety applications is entirely at  
the buyer’s risk, and the buyer agrees to defend, indemnify and  
hold harmless Microchip from any and all damages, claims,  
suits, or expenses resulting from such use. No licenses are  
conveyed, implicitly or otherwise, under any Microchip  
intellectual property rights unless otherwise stated.  
Trademarks  
The Microchip name and logo, the Microchip logo, dsPIC,  
FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer,  
LANCheck, MediaLB, MOST, MOST logo, MPLAB,  
OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC,  
SST, SST Logo, SuperFlash and UNI/O are registered  
trademarks of Microchip Technology Incorporated in the  
U.S.A. and other countries.  
The Embedded Control Solutions Company and mTouch are  
registered trademarks of Microchip Technology Incorporated  
in the U.S.A.  
Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo,  
CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit  
Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet,  
KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo,  
MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code  
Generation, PICDEM, PICDEM.net, PICkit, PICtail,  
RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total  
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,  
WiperLock, Wireless DNA, and ZENA are trademarks of  
Microchip Technology Incorporated in the U.S.A. and other  
countries.  
SQTP is a service mark of Microchip Technology Incorporated  
in the U.S.A.  
Silicon Storage Technology is a registered trademark of  
Microchip Technology Inc. in other countries.  
GestIC is a registered trademark of Microchip Technology  
Germany II GmbH & Co. KG, a subsidiary of Microchip  
Technology Inc., in other countries.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2013-2015, Microchip Technology Incorporated, Printed in  
the U.S.A., All Rights Reserved.  
ISBN: 978-1-63277-715-7  
QUALITY MANAGEMENT SYSTEM  
CERTIFIED BY DNV  
Microchip received ISO/TS-16949:2009 certification for its worldwide  
headquarters, design and wafer fabrication facilities in Chandler and  
Tempe, Arizona; Gresham, Oregon and design centers in California  
and India. The Company’s quality system processes and procedures  
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals, nonvolatile memory and  
analog products. In addition, Microchip’s quality system for the design  
and manufacture of development systems is ISO 9001:2000 certified.  
== ISO/TS 16949 ==  
2013-2015 Microchip Technology Inc.  
DS40001723D-page 333  
Worldwide Sales and Service  
AMERICAS  
ASIA/PACIFIC  
ASIA/PACIFIC  
EUROPE  
Corporate Office  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://www.microchip.com/  
support  
Asia Pacific Office  
China - Xiamen  
Tel: 86-592-2388138  
Fax: 86-592-2388130  
Austria - Wels  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
China - Zhuhai  
Tel: 86-756-3210040  
Fax: 86-756-3210049  
Denmark - Copenhagen  
Tel: 45-4450-2828  
Fax: 45-4485-2829  
Hong Kong  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
India - Bangalore  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123  
France - Paris  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79  
Australia - Sydney  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755  
Web Address:  
www.microchip.com  
India - New Delhi  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632  
Germany - Dusseldorf  
Tel: 49-2129-3766400  
Atlanta  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455  
China - Beijing  
Tel: 86-10-8569-7000  
Fax: 86-10-8528-2104  
Germany - Karlsruhe  
Tel: 49-721-625370  
India - Pune  
Tel: 91-20-3019-1500  
China - Chengdu  
Tel: 86-28-8665-5511  
Fax: 86-28-8665-7889  
Germany - Munich  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44  
Austin, TX  
Tel: 512-257-3370  
Japan - Osaka  
Tel: 81-6-6152-7160  
Fax: 81-6-6152-9310  
Boston  
China - Chongqing  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500  
Italy - Milan  
Tel: 39-0331-742611  
Fax: 39-0331-466781  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088  
Japan - Tokyo  
Tel: 81-3-6880- 3770  
Fax: 81-3-6880-3771  
China - Dongguan  
Tel: 86-769-8702-9880  
Italy - Venice  
Tel: 39-049-7625286  
Chicago  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075  
Korea - Daegu  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302  
China - Hangzhou  
Tel: 86-571-8792-8115  
Fax: 86-571-8792-8116  
Netherlands - Drunen  
Tel: 31-416-690399  
Fax: 31-416-690340  
Korea - Seoul  
Cleveland  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or  
82-2-558-5934  
China - Hong Kong SAR  
Tel: 852-2943-5100  
Fax: 852-2401-3431  
Poland - Warsaw  
Tel: 48-22-3325737  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643  
Spain - Madrid  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91  
China - Nanjing  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470  
Malaysia - Kuala Lumpur  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859  
Dallas  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924  
Sweden - Stockholm  
Tel: 46-8-5090-4654  
China - Qingdao  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205  
Malaysia - Penang  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068  
Detroit  
Novi, MI  
UK - Wokingham  
Tel: 44-118-921-5800  
China - Shanghai  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066  
Philippines - Manila  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069  
Tel: 248-848-4000  
Fax: 44-118-921-5820  
Houston, TX  
Tel: 281-894-5983  
China - Shenyang  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393  
Singapore  
Tel: 65-6334-8870  
Fax: 65-6334-8850  
Indianapolis  
Noblesville, IN  
Tel: 317-773-8323  
Fax: 317-773-5453  
China - Shenzhen  
Tel: 86-755-8864-2200  
Fax: 86-755-8203-1760  
Taiwan - Hsin Chu  
Tel: 886-3-5778-366  
Fax: 886-3-5770-955  
Los Angeles  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608  
China - Wuhan  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118  
Taiwan - Kaohsiung  
Tel: 886-7-213-7828  
Taiwan - Taipei  
Tel: 886-2-2508-8600  
Fax: 886-2-2508-0102  
New York, NY  
Tel: 631-435-6000  
China - Xian  
Tel: 86-29-8833-7252  
Fax: 86-29-8833-7256  
San Jose, CA  
Tel: 408-735-9110  
Thailand - Bangkok  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350  
Canada - Toronto  
Tel: 905-673-0699  
Fax: 905-673-6509  
07/14/15  
DS40001723D-page 334  
2013-2015 Microchip Technology Inc.  

相关型号:

PIC12LF1571-I/SN

暂无描述
MICROCHIP

PIC12LF1571T-I/MS

RISC MICROCONTROLLER
MICROCHIP

PIC12LF1572

HIGH-VOLTAGE ICSP PROGRAMMING
MICROCHIP

PIC12LF1572-I/MF

RISC MICROCONTROLLER
MICROCHIP

PIC12LF1572-I/MS

RISC MICROCONTROLLER
MICROCHIP

PIC12LF1572-I/SN

RISC MICROCONTROLLER
MICROCHIP

PIC12LF1572T-I/MS

RISC MICROCONTROLLER
MICROCHIP

PIC12LF1612

HIGH-VOLTAGE ICSP PROGRAMMING
MICROCHIP

PIC12LF1822

18/20/28-Pin Flash Microcontrollers with XLP Technology
MICROCHIP

PIC12LF1822-E/MF

8/14-Pin Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP

PIC12LF1822-E/ML

8/14-Pin Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP

PIC12LF1822-E/P

8/14-Pin Flash Microcontrollers with nanoWatt XLP Technology
MICROCHIP