TC2015-2.85VCT [MICROCHIP]

2.8 V FIXED POSITIVE LDO REGULATOR, 0.14 V DROPOUT, PDSO5, SC-74A, SOT-23A, 5 PIN;
TC2015-2.85VCT
型号: TC2015-2.85VCT
厂家: MICROCHIP    MICROCHIP
描述:

2.8 V FIXED POSITIVE LDO REGULATOR, 0.14 V DROPOUT, PDSO5, SC-74A, SOT-23A, 5 PIN

光电二极管 输出元件 调节器
文件: 总18页 (文件大小:355K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TC2014/2015/2185  
M
50 mA, 100 mA, 150 mA CMOS LDOs with  
Shutdown and Reference Bypass  
Features  
General Description  
• Low Supply Current: 80 µA (Max)  
The TC2014, TC2015 and TC2185 are high-accuracy  
(typically ±0.4%) CMOS upgrades for bipolar low drop-  
out regulators, such as the LP2980. Total supply cur-  
rent is typically 55 µA; 20 to 60 times lower than in  
bipolar regulators.  
• Low Dropout Voltage: 140 mV (Typ) @ 150 mA  
• High Output Voltage Accuracy: ±0.4% (Typ)  
• Standard or Custom Output Voltages  
• Power-Saving Shutdown Mode  
• Reference Bypass Input for Ultra Low-Noise  
Operation  
• Fast Shutdown Response Time: 60 µsec (Typ)  
• Over-Current Protection  
• Space-Saving 5-Pin SOT-23A Package  
• Pin Compatible Upgrades for Bipolar Regulators  
• Wide Operating Temperature Range:  
-40°C to +125°C  
The key features of the device include low noise oper-  
ation (plus bypass reference), low dropout voltage  
– typically 45 mV for the TC2014, 90 mV for the  
TC2015, and 140 mV for the TC2185, at full load – and  
fast response to step changes in load. Supply current  
is reduced to 0.5 µA (max) and V  
falls to zero when  
OUT  
the shutdown input is low. The devices also incorporate  
over-current protection.  
The TC2014, TC2015 and TC2185 are stable with an  
output capacitor of 1 µF and have a maximum output  
current of 50 mA, 100 mA and 150 mA, respectively.  
For higher output versions, see the TC1107  
(DS21356), TC1108 (DS21357) and TC1173  
Applications  
• Battery Operated Systems  
• Portable Computers  
• Medical Instruments  
• Instrumentation  
(DS21362) (I  
= 300 mA) datasheets.  
OUT  
Related Literature  
• Cellular / GSM / PHS Phones  
• Linear Post-Regulator for SMPS  
• Pagers  
• Application Notes: AN765, AN766, AN776 and  
AN792  
Typical Application  
Package Type  
1
5
VOUT  
VIN  
VOUT  
VIN  
5-Pin SOT-23A  
+
+
VOUT  
5
Bypass  
4
1 µF  
1 µF  
2
TC2014  
TC2014  
TC2015  
TC2185  
GND  
TC2015  
TC2185  
2
1
3
VIN  
GND SHDN  
3
4
SHDN  
Bypass  
0.01 µF  
Reference  
Bypass Cap  
(Optional)  
Shutdown Control  
(from Power Control Logic)  
2003 Microchip Technology Inc.  
DS21662C-page 1  
TC2014/2015/2185  
1.0  
ELECTRICAL  
PIN FUNCTION TABLE  
CHARACTERISTICS  
Name  
Function  
Absolute Maximum Ratings †  
V
GND  
SHDN  
Bypass  
Unregulated Supply Input  
Ground Terminal  
Shutdown Control Input  
Reference Bypass Input  
Regulated Voltage Output  
IN  
Input Voltage ................................................................... 6.5V  
Output Voltage ....................................... (– 0.3) to (VIN + 0.3)  
Operating Temperature ......................... – 40°C < TJ < 125°C  
Storage Temperature ................................. – 65°C to +150°C  
Maximum Voltage on Any Pin ................ VIN +0.3V to – 0.3V  
Maximum Junction Temperature.................................. 150°C  
V
OUT  
† Notice: Stresses above those listed under "Maximum  
Ratings" may cause permanent damage to the device. This is  
a stress rating only and functional operation of the device at  
those or any other conditions above those indicated in the  
operation listings of this specification is not implied. Exposure  
to maximum rating conditions for extended periods may affect  
device reliability.  
ELECTRICAL CHARACTERISTICS  
Electrical Specifications: Unless otherwise specified, VIN = VR + 1V, IL = 100 µA, COUT = 3.3 µF, SHDN > VIH, TA = +25°C.  
BOLDFACE type specifications apply for junction temperature of -40°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Input Operating Voltage  
Maximum Output  
Current  
VIN  
IOUTMAX  
2.7  
50  
100  
150  
6.0  
V
mA  
Note 1  
TC2014  
TC2015  
TC2185  
Note 2  
Output Voltage  
VOUT  
VR - 2.0% VR ± 0.4% VR + 2.0%  
V
VOUT Temperature  
Coefficient  
TCVOUT  
20  
40  
ppm/°C Note 3  
Line Regulation  
Load Regulation  
(Note 4)  
VOUT/VIN  
VOUT/VOUT  
0.05  
0.33  
0.43  
2
0.5  
+1.0  
+2.0  
%
%
(VR + 1V) < VIN < 6V  
TC2014;TC2015: IL = 0.1 mA to IOUTMAX  
TC2185: IL = 0.1 mA to IOUTMAX Note 4  
-1.0  
-2.0  
Dropout Voltage  
VIN - VOUT  
mV  
Note 5  
IL = 100 µA  
IL = 50 mA  
45  
70  
90  
140  
55  
140  
210  
80  
TC2015; TC2185 IL = 100 mA  
TC2185  
IL = 150 mA  
Supply Current  
IIN  
µA  
µA  
SHDN = VIH, IL=0  
SHDN = 0V  
Shutdown Supply  
Current  
IINSD  
0.05  
0.5  
Note 1: The minimum VIN has to meet two conditions: VIN = 2.7V and VIN = VR + VDROPOUT  
.
2:  
3:  
VR is the regulator output voltage setting. For example: VR = 1.8V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V.  
6  
(VOUTMAX VOUTMIN) × 10  
---------------------------------------------------------------------------  
=
TCVOUT  
V
OUT × ∆T  
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 1.0 mA to the maximum specified output current. Changes in output voltage due to heating  
effects are covered by the thermal regulation specification.  
5: Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal  
value at a V differential.  
6: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied,  
excluding load or line regulation effects. Specifications are for a current pulse equal to IMAX at VIN = 6V for T = 10 msec.  
7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction tem-  
perature and the thermal resistance from junction-to-air (i.e. TA, TJ, θJA).  
8: Time required for VOUT to reach 95% of VR (output voltage setting), after VSHDN is switched from 0 to VIN  
.
DS21662C-page 2  
2003 Microchip Technology Inc.  
 
 
 
 
 
 
 
 
TC2014/2015/2185  
ELECTRICAL CHARACTERISTICS (CONTINUED)  
Electrical Specifications: Unless otherwise specified, VIN = VR + 1V, IL = 100 µA, COUT = 3.3 µF, SHDN > VIH, TA = +25°C.  
BOLDFACE type specifications apply for junction temperature of -40°C to +125°C.  
Parameters  
Sym  
Min  
Typ  
Max  
Units  
Conditions  
Power Supply  
Rejection Ratio  
PSRR  
55  
dB  
F 1 kHz, Cbypass=0.01 µF  
Output Short Circuit  
Current  
IOUTSC  
160  
300  
mA  
VOUT = 0V  
Thermal Regulation  
Output Noise  
VOUT/PD  
0.04  
200  
V/W  
Note 6, Note 7  
eN  
nV/Hz IL = IOUTMAX, F = 10 kHz  
470 pF from Bypass to GND  
Response Time,  
(Note 8)  
TR  
60  
µsec  
VIN = 4V, IL = 30 mA,  
IN = 1 µF, COUT = 10 µF  
C
(from Shutdown Mode)  
SHDN Input  
SHDN Input High  
VIH  
VIL  
60  
%VIN VIN = 2.5V to 6.0V  
%VIN VIN = 2.5V to 6.0V  
Threshold  
SHDN Input Low  
Threshold  
15  
Note 1: The minimum VIN has to meet two conditions: VIN = 2.7V and VIN = VR + VDROPOUT  
.
2:  
3:  
VR is the regulator output voltage setting. For example: VR = 1.8V, 2.7V, 2.8V, 2.85V, 3.0V, 3.3V.  
6  
(VOUTMAX VOUTMIN) × 10  
---------------------------------------------------------------------------  
=
TCVOUT  
V
OUT × ∆T  
4: Regulation is measured at a constant junction temperature using low duty cycle pulse testing. Load regulation is tested  
over a load range from 1.0 mA to the maximum specified output current. Changes in output voltage due to heating  
effects are covered by the thermal regulation specification.  
5: Dropout voltage is defined as the input-to-output differential at which the output voltage drops 2% below its nominal  
value at a V differential.  
6: Thermal Regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied,  
excluding load or line regulation effects. Specifications are for a current pulse equal to IMAX at VIN = 6V for T = 10 msec.  
7: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction tem-  
perature and the thermal resistance from junction-to-air (i.e. TA, TJ, θJA).  
8: Time required for VOUT to reach 95% of VR (output voltage setting), after VSHDN is switched from 0 to VIN  
.
2003 Microchip Technology Inc.  
DS21662C-page 3  
TC2014/2015/2185  
2.0  
TYPICAL PERFORMANCE CURVES  
Note: The graphs and tables provided following this note are a statistical summary based on a limited number of  
samples and are provided for informational purposes only. The performance characteristics listed herein  
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified  
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.  
Note: Unless otherwise indicated, V = V + 1V, I = 100 µA, C  
= 3.3 µF, SHDN > V , T = +25°C.  
IN  
R
L
OUT  
IH  
A
63.0  
60.0  
57.0  
54.0  
51.0  
48.0  
45.0  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
VIN = 2.8V  
VIN = 6.0V  
VR = 1.8V  
C
OUT = 3.3 µF  
VIN = 6.0V  
VIN = 2.8V  
VR = 1.8V  
COUT = 3.3 µF  
IL = 150 mA  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-1:  
Supply Current vs. Junction  
FIGURE 2-4:  
Output Voltage vs. Junction  
Temperature.  
Temperature (150 mA).  
0.8  
0.6  
0.4  
0.2  
0
1.82  
TA = -45°C  
TA = +25°C  
TA = +25°C  
1.815  
1.81  
TA = -45°C  
1.805  
1.8  
TA = +125°C  
TA = +125°C  
-0.2  
1.795  
1.79  
VR = 1.8V  
VR = 1.8V  
COUT = 3.3 µF  
L = 150 mA  
-0.4  
-0.6  
-0.8  
C
OUT = 3.3 µF  
IL = 150 mA  
I
1.785  
2.8 3.2 3.6  
4
4.4 4.8 5.2 5.6  
6
2.8 3.2 3.6  
4
4.4 4.8 5.2 5.6  
6
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-2:  
Load Regulation vs. Supply  
FIGURE 2-5:  
Output Voltage vs. Supply  
Voltage.  
Voltage.  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
1.810  
VR = 1.8V  
COUT = 3.3 µF  
VR = 1.8V  
OUT = 3.3 µF  
IL = 0.1 mA  
C
VIN = 2.8V  
VIN = 6.0V  
IL = 150 mA  
1.805  
1.800  
1.795  
1.790  
IL = 100 mA  
IL = 50 mA  
IL = 20 mA  
Note: Dropout Voltage is not  
a tested parameter for 1.8V.  
IN(min) ! 2.7V  
0.05  
0.00  
V
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-3:  
Output Voltage vs. Junction  
FIGURE 2-6:  
Dropout Voltage vs.  
Temperature (0.1 mA).  
Junction Temperature.  
DS21662C-page 4  
2003 Microchip Technology Inc.  
TC2014/2015/2185  
Note: Unless otherwise indicated, V = V + 1V, I = 100 µA, C  
= 3.3 µF, SHDN > V , T = +25°C.  
IN  
R
L
OUT  
IH  
A
60.0  
58.0  
56.0  
54.0  
52.0  
50.0  
48.0  
46.0  
44.0  
2.705  
2.700  
2.695  
2.690  
2.685  
2.680  
2.675  
2.670  
2.665  
VR = 2.7V  
COUT = 3.3 µF  
VIN = 3.7V  
VIN = 6.0V  
VIN = 6.0V  
VIN = 2.8V  
VR = 2.7V  
OUT = 3.3 µF  
L = 150 mA  
C
I
Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-7:  
Supply Current vs. Junction  
FIGURE 2-10:  
Output Voltage vs. Junction  
Temperature.  
Temperature (150 mA).  
0.5  
0.3  
2.705  
2.7  
2.695  
2.69  
2.685  
2.68  
2.675  
2.67  
2.665  
TA = +25°C  
TA = -45°C  
TA = -45°C  
TA = +25°C  
0.1  
-0.1  
TA = +125°C  
VR = 2.7V  
VR = 2.7V  
-0.3  
-0.5  
COUT = 3.3 µF  
IL = 150 mA  
COUT = 3.3 µF  
TA = +125°C  
IL = 150 mA  
3.7  
4
4.3  
4.6  
4.9  
5.2  
5.5  
5.8  
3.7  
4
4.3 4.6 4.9 5.2 5.5 5.8  
Supply Voltage (V)  
Supply Voltage (V)  
FIGURE 2-8:  
Load Regulation vs. Supply  
FIGURE 2-11:  
Output Voltage vs. Supply  
Voltage.  
Voltage.  
2.690  
2.688  
2.686  
2.684  
2.682  
2.680  
2.678  
2.676  
2.674  
2.672  
2.670  
0.160  
VR = 2.7V  
COUT = 3.3 µF  
IL = 150 mA  
VIN = 6.0V  
0.120  
0.080  
0.040  
0.000  
VIN = 3.7V  
IL = 100 mA  
IL = 50 mA  
IL = 20 mA  
VR = 2.7V  
C
OUT = 3.3 µF  
I
L = 0.1 mA  
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-9:  
Output Voltage vs. Junction  
FIGURE 2-12:  
Dropout Voltage vs.  
Temperature (0.1 mA).  
Junction Temperature.  
2003 Microchip Technology Inc.  
DS21662C-page 5  
TC2014/2015/2185  
Note: Unless otherwise indicated, V = V + 1V, I = 100 µA, C  
= 3.3 µF, SHDN > V , T = +25°C.  
IH A  
IN  
R
L
OUT  
60  
57  
54  
51  
48  
45  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
VR = 5.0V  
COUT = 3.3 µF  
VIN = 6.0V  
IL = 150 mA  
IL = 100 mA  
IL = 50 mA  
VR = 5.0V  
OUT = 3.3 µF  
C
Junction Temperature (°C)  
Junction Temperature (°C)  
FIGURE 2-13:  
Supply Current vs. Junction  
FIGURE 2-16:  
Dropout Voltage vs.  
Temperature.  
Junction Temperature.  
V
V
C
= 3.8V  
= 2.8V  
= 1 µF Ceramic  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
4.94  
4.93  
IN  
OUT  
IN  
IL = 150 mA  
C
= 1 µF Ceramic  
OUT  
Frequency = 1 kHz  
V
OUT  
100mV/DIV  
IL = 100 mA  
IL = 0.1 mA  
VR = 5.0V  
COUT = 3.3 µF  
IN = 6.0V  
V
Load Current  
150mA  
Load  
100mA  
Junction Temperature (°C)  
FIGURE 2-14:  
Output Voltage vs. Junction  
FIGURE 2-17:  
(C = 1 µF).  
Load Transient Response.  
Temperature (150 mA).  
OUT  
V
V
C
C
= 3.0V  
IN  
0.40  
0.30  
= 2.8V  
OUT  
= 1 µF Ceramic  
= 10 µF Ceramic  
IN  
IL = 150 mA  
OUT  
Frequency = 10 kHz  
0.20  
0.10  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
100mV / DIV  
V
OUT  
IL = 100 mA  
IL = 50 mA  
VR = 5.0V  
C
OUT = 3.3 µF  
Load Current  
VIN = 6.0 V  
150mA  
Load  
100mA  
Junction Temperature (°C)  
FIGURE 2-15:  
Load Regulation vs.  
FIGURE 2-18:  
(C = 10 µF).  
Load Transient Response.  
Junction Temperature.  
OUT  
DS21662C-page 6  
2003 Microchip Technology Inc.  
TC2014/2015/2185  
Note: Unless otherwise indicated, V = V + 1V, I = 100 µA, C  
= 3.3 µF, SHDN > V , T = +25°C.  
IH A  
IN  
R
L
OUT  
FIGURE 2-19:  
(C = 1 µF).  
Line Transient Response.  
FIGURE 2-22:  
Wake-Up Response.  
OUT  
0
VIN = 4.0V  
VINAC = 100 mV  
OUTDC = 3.0V  
COUT = 1µF Ceramic  
V
OUT  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
CBYPASS = 0.01 µF Ceramic  
100mV/DIV  
V
150mA  
IOUT = 150 mA  
IOUT = 100 mA  
IOUT = 50 mA  
100mA  
V
V
= 3.105V  
IN  
= 3.006V  
OUT  
C
C
R
= 1 µF Ceramic  
IN  
10  
100  
1k  
10k  
100k  
1M  
= 10 µF Ceramic  
OUT  
LOAD  
= 20 Ω  
0
Frequency (Hz)  
FIGURE 2-20:  
Dropout. (C  
Load Transient Response in  
FIGURE 2-23:  
(C  
PSRR vs. Frequency  
= 10 µF).  
= 1 µF Ceramic).  
OUT  
OUT  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
VIN = 4.0V  
COUT = 10 µF Ceramic  
CBYPASS = 0.01 µF Ceramic  
V
V
INAC = 100 mV  
OUTDC = 3.0V  
IOUT = 150 mA  
IOUT = 100 mA  
10  
100  
1k  
10k  
100k  
1M  
0
Frequency (Hz)  
FIGURE 2-21:  
Shutdown Delay Time.  
FIGURE 2-24:  
(C  
PSRR vs. Frequency  
= 10 µF Ceramic).  
OUT  
2003 Microchip Technology Inc.  
DS21662C-page 7  
TC2014/2015/2185  
Note: Unless otherwise indicated, V = V + 1V, I = 100 µA, C  
= 3.3 µF, SHDN > V , T = +25°C.  
IH A  
IN  
R
L
OUT  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
VIN = 4.0V  
VIN = 4.0V  
COUT = 10 µF Tantalum  
IOUT = 150 mA  
VOUTDC = 3.0V  
IOUT = 100 µA  
CBYPASS = 470 pF  
VINAC = 100 mV  
VOUTDC = 3.0V  
1
CBYPASS = 0 µF  
0.1  
COUT = 10 µF  
COUT = 1 µF  
CBYPASS = 0.01 µF  
0.10  
10  
1
100  
1k  
10k  
100k  
1M  
0.001  
100  
1k  
10k  
100k  
1M  
10  
Frequency (Hz)  
Frequency (Hz)  
FIGURE 2-25:  
(C  
PSRR vs. Frequency  
FIGURE 2-26:  
Output Noise vs. Frequency.  
= 10 µF Tantalum).  
OUT  
DS21662C-page 8  
2003 Microchip Technology Inc.  
TC2014/2015/2185  
3.3  
Shutdown Control Input (SHDN)  
3.0  
PIN DESCRIPTIONS  
The regulator is fully enabled when a logic high is  
applied to SHDN. The regulator enters shutdown when  
a logic low is applied to this input. During shutdown,  
output voltage falls to zero and supply current is  
reduced to 0.5 µA (max).  
The descriptions of the pins are described in Table 3-1.  
TABLE 3-1:  
Pin No.  
PIN FUNCTION TABLE  
Symbol  
Description  
1
2
3
4
5
V
Unregulated supply input  
Ground terminal  
Shutdown control input  
Reference bypass input  
Regulated voltage output  
IN  
3.4  
Reference Bypass Input (Bypass)  
GND  
SHDN  
Bypass  
Connecting a low value ceramic capacitor to this pin  
will further reduce output voltage noise and improve the  
Power Supply Ripple Rejection (PSRR) performance  
of the LDO. Typical values from 470 pF to 0.01 µF are  
suggested. Smaller and larger values can be used but  
do affect the speed at which the LDO output voltage  
rises when input power is applied. The larger the  
bypass capacitor, the slower the output voltage will  
rise.  
V
OUT  
3.1  
Unregulated Supply Input (V )  
IN  
Connect unregulated input supply to the V pin. If  
IN  
there is a large distance between the input supply and  
the LDO regulator some input capacitance is neces-  
sary for proper operation. A 1 µF capacitor connected  
3.5  
Regulated Voltage Output (V  
)
OUT  
of the LDO. Also con-  
from  
V
to ground is recommended for most  
IN  
applications.  
Connect the output load to V  
nect one side of the LDO output de coupling capacitor  
as close as possible to the V pin.  
OUT  
3.2  
Ground Terminal (GND)  
OUT  
Connect the unregulated input supply ground return to  
GND. Also connect one side of the 1 µF typical input  
decoupling capacitor close to this pin and one side of  
the output capacitor C  
to this pin.  
OUT  
2003 Microchip Technology Inc.  
DS21662C-page 9  
 
TC2014/2015/2185  
4.1  
Bypass Input  
4.0  
DETAILED DESCRIPTION  
A 0.01 µF ceramic capacitor connected from the  
Bypass input to ground reduces noise present on the  
internal reference, which in turn significantly reduces  
output noise. If output noise is not a concern, this input  
may be left unconnected. Larger capacitor values may  
be used, but the result is a longer time period to rated  
output voltage when power is initially applied.  
The TC2014, TC2015 and TC2185 are precision fixed  
output voltage regulators (If an adjustable version is  
needed, see the TC1070, TC1071 or TC1187  
(DS21353) datasheet.) Unlike bipolar regulators, the  
TC2014, TC2015 and TC2185 supply current does not  
increase with load current. In addition, the LDO output  
voltage is stable using 1 µF of ceramic or tantalum  
capacitance over the entire specified input voltage  
range and output current range.  
4.2  
Output Capacitor  
Figure 4-1 shows a typical application circuit. The reg-  
A 1 µF (min) capacitor from V  
to ground is required.  
OUT  
ulator is enabled any time the shutdown input (SHDN)  
The output capacitor should have an esr (effective  
series resistance) of 0.01to 5for V 2.5V, and  
is at or above V , and disabled (shutdown) when  
IH  
OUT  
SHDN is at or below V . SHDN may be controlled by a  
0.05. to 5for V  
< 2.5V. Ceramic, tantalum or alu-  
IL  
OUT  
CMOS logic gate or I/O port of a microcontroller. If the  
SHDN input is not required, it should be connected  
directly to the input supply. While in shutdown, supply  
minum electrolytic capacitors can be used. When using  
ceramic capacitors, X5R and X7R dielectric material  
are recommended due to their stable tolerance over  
temperature. However, other dielectrics can be used as  
long as the minimum output capacitance is maintained.  
current decreases to 0.05 µA (typical) and V  
zero volts.  
falls to  
OUT  
4.3  
Input Capacitor  
1
5
VOUT  
A 1 µF capacitor should be connected from V to GND  
VOUT  
VIN  
IN  
if there is more than 10 inches of wire between the reg-  
ulator and this AC filter capacitor, or if a battery is used  
as the power source. Aluminum, electrolytic or tanta-  
lum capacitors can be used (Since many aluminum  
electrolytic capacitors freeze at approximately -30°C,  
solid tantalum are recommended for applications oper-  
ating below -25°C). When operating from sources other  
than batteries, supply-noise rejection and transient  
response can be improved by increasing the value of  
the input and output capacitors and employing passive  
filtering techniques.  
+
+
+
1 µF  
1 µF  
Battery  
2
TC2014  
GND  
TC2015  
TC2185  
3
4
SHDN  
Bypass  
0.01 µF  
Reference  
Bypass Cap  
(Optional)  
Shutdown Control  
(from Power Control Logic)  
FIGURE 4-1:  
Typical Application Circuit.  
DS21662C-page 10  
2003 Microchip Technology Inc.  
 
TC2014/2015/2185  
The P equation can be used in conjunction with the  
5.0  
5.1  
THERMAL CONSIDERATIONS  
Power Dissipation  
D
P
equation to ensure regulator thermal operation  
DMAX  
is within limits. For example:  
The amount of power the regulator dissipates is prima-  
rily a function of input voltage, output voltage and  
output current.  
The following equation is used to calculate worst-case  
power dissipation:  
Given:  
V
V
I
= 3.0V +10%  
= 2.7V – 2.5%  
= 40 mA  
= +125°C  
= +55°C  
INMAX  
OUTMIN  
LOADMAX  
T
T
JMAX  
EQUATION  
AMAX  
P
≈ (VINMAX VOUTMIN)ILMAX  
D
Find:  
Where:  
1. Actual power dissipation  
P
= Worst-case actual power dissipation  
= Maximum voltage on V  
= Minimum regulator output voltage  
= Maximum output (load) current  
2. Maximum allowable dissipation  
D
V
V
INMAX  
OUTMIN  
LMAX  
IN  
Actual power dissipation:  
I
PD = (VINMAX VOUTMIN)ILMAX  
The maximum allowable power dissipation (P  
) is  
[(3.0 × 1.1) (2.7 × 0.975)]40 × 103  
DMAX  
--------------------------------------------------------------------------------------------  
a function of the maximum ambient temperature  
=
220  
(T  
(T  
), the maximum allowable die temperature  
AMAX  
= 26.7mW  
) (+125°C) and the thermal resistance from junc-  
JMAX  
tion-to-air (θ ). The 5-Pin SOT-23A package has a θ  
JA  
JA  
of approximately 220°C/Watt when mounted on a  
typical two layer FR4 dielectric copper clad PC board.  
Maximum allowable power dissipation:  
T
JMAX TAMAX  
--------------------------------------  
PDMAX  
=
=
θJA  
EQUATION  
T
JMAX TAMAX  
125 55  
--------------------  
--------------------------------------  
=
PDMAX  
220  
θJA  
= 318mW  
Where all terms are previously defined.  
In this example, the TC2014 dissipates a maximum of  
only 26.7 mW; far below the allowable limit of 318 mW.  
In a similar manner, the P equation and P  
equa-  
DMAX  
D
tion can be used to calculate maximum current and/or  
input voltage limits.  
5.2  
Layout Considerations  
The primary path of heat conduction out of the package  
is via the package leads. Therefore, layouts having a  
ground plane, wide traces at the pads and wide power  
supply bus lines combine to lower θ and, therefore,  
JA  
increase the maximum allowable power dissipation  
limit.  
2003 Microchip Technology Inc.  
DS21662C-page 11  
TC2014/2015/2185  
6.0  
6.1  
PACKAGING INFORMATION  
Package Marking Information  
cdef  
c&d represents part number code + temperature  
range and voltage  
(V)  
TC2014  
TC2015  
TC2185  
1.8  
2.5  
2.7  
2.8  
2.85  
3.0  
3.3  
PA  
PB  
PC  
PD  
PE  
PF  
PG  
RA  
RB  
RC  
RD  
RE  
RF  
RG  
UA  
UB  
UC  
UD  
UE  
UF  
UG  
represents year and 2-month period code  
represents lot ID number  
e
f
DS21662C-page 12  
2003 Microchip Technology Inc.  
TC2014/2015/2185  
5-Lead Plastic Small Outline Transistor (OT) (SOT23)  
E
E1  
p
B
p1  
D
n
1
α
c
A
A2  
φ
A1  
L
β
Units  
Dimension Limits  
INCHES*  
NOM  
MILLIMETERS  
MIN  
MAX  
MIN  
NOM  
MAX  
n
p
p1  
A
A2  
A1  
E
E1  
D
L
φ
c
B
α
β
Number of Pins  
Pitch  
Outside lead pitch (basic)  
Overall Height  
Molded Package Thickness  
5
5
.038  
.075  
.046  
.043  
.003  
.110  
.064  
.116  
.018  
5
0.95  
1.90  
1.18  
1.10  
0.08  
2.80  
1.63  
2.95  
0.45  
5
.035  
.035  
.000  
.102  
.059  
.110  
.014  
0
.057  
0.90  
1.45  
.051  
.006  
.118  
.069  
.122  
.022  
10  
.008  
.020  
10  
0.90  
0.00  
2.60  
1.50  
2.80  
0.35  
0
0.09  
0.35  
0
1.30  
0.15  
3.00  
1.75  
3.10  
0.55  
10  
0.20  
0.50  
10  
Standoff  
§
Overall Width  
Molded Package Width  
Overall Length  
Foot Length  
Foot Angle  
Lead Thickness  
Lead Width  
.004  
.014  
0
.006  
.017  
5
0.15  
0.43  
5
Mold Draft Angle Top  
Mold Draft Angle Bottom  
0
5
10  
0
5
10  
* Controlling Parameter  
§ Significant Characteristic  
Notes:  
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed  
.010” (0.254mm) per side.  
JEDEC Equivalent: MO-178  
Drawing No. C04-091  
2003 Microchip Technology Inc.  
DS21662C-page 13  
TC2014/2015/2185  
NOTES:  
DS21662C-page 14  
2003 Microchip Technology Inc.  
TC2014/2015/2185  
PRODUCT IDENTIFICATION SYSTEM  
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.  
Examples:  
PART NO.  
Device  
-XX  
X
XXXX  
a)  
b)  
c)  
TC2014-1.8VCTTR:5LD SOT-23-A, 1.8V,  
Output  
Voltage  
Temperature  
Range  
Package  
Tape and Reel.  
TC2014-2.85VCTTR: 5LD SOT-23-A,  
2.85V, Tape and Reel.  
TC2014-3.3VCTTR: 5LD SOT-23-A, 3.3V,  
Tape and Reel.  
Device:  
TC2014: 50 mA LDO with Shutdown and VREF Bypass  
TC2015: 100 mA LDO with Shutdown and VREF Bypass  
TC2185: 150 mA LDO with Shutdown and VREF Bypass  
a)  
b)  
c)  
TC2015-1.8VCTTR: 5LD SOT-23-A, 1.8V,  
Tape and Reel.  
TC2015-2.85VCTTR: 5LD SOT-23-A,  
2.85V, Tape and Reel.  
TC2015-3.0VCTTR: 5LD SOT-23-A, 3.0V,  
Tape and Reel.  
Output Voltage:  
XX  
XX  
XX  
XX  
XX  
=
=
=
=
=
1.8V  
2.7V  
2.8V  
3.0V  
3.3V  
a)  
b)  
TC2185-1.8VCTTR: 5LD SOT-23-A, 1.8V,  
Tape and Reel.  
TC2185-2.8VCTTR: 5LD SOT-23-A, 2.8V,  
Tape and Reel.  
Temperature Range:  
Package:  
V
=
-40°C to +125°C  
CTTR  
=
Plastic Small Outline Transistor (SOT-23),  
5-lead, Tape and Reel  
Sales and Support  
Data Sheets  
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recom-  
mended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:  
1. Your local Microchip sales office  
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277  
3. The Microchip Worldwide Site (www.microchip.com)  
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.  
Customer Notification System  
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.  
2003 Microchip Technology Inc.  
DS21662C-page15  
TC2014/2015/2185  
NOTES:  
DS21662C-page 16  
2003 Microchip Technology Inc.  
Note the following details of the code protection feature on Microchip devices:  
Microchip products meet the specification contained in their particular Microchip Data Sheet.  
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the  
intended manner and under normal conditions.  
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our  
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data  
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.  
Microchip is willing to work with the customer who is concerned about the integrity of their code.  
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not  
mean that we are guaranteeing the product as “unbreakable.”  
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our  
products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such  
acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.  
Information contained in this publication regarding device  
applications and the like is intended through suggestion only  
and may be superseded by updates. It is your responsibility to  
ensure that your application meets with your specifications. No  
representation or warranty is given and no liability is assumed  
by Microchip Technology Incorporated with respect to the  
accuracy or use of such information, or infringement of patents  
or other intellectual property rights arising from such use or  
otherwise. Use of Microchip’s products as critical components in  
life support systems is not authorized except with express  
written approval by Microchip. No licenses are conveyed,  
implicitly or otherwise, under any intellectual property rights.  
Trademarks  
The Microchip name and logo, the Microchip logo, KEELOQ,  
MPLAB, PIC, PICmicro, PICSTART, PRO MATE and  
PowerSmart are registered trademarks of Microchip Technology  
Incorporated in the U.S.A. and other countries.  
FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL  
and The Embedded Control Solutions Company are registered  
trademarks of Microchip Technology Incorporated in the U.S.A.  
Accuron, dsPIC, dsPICDEM.net, ECONOMONITOR,  
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming,  
ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,  
MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net,  
PowerCal, PowerInfo, PowerTool, rfPIC, Select Mode,  
SmartSensor, SmartShunt, SmartTel and Total Endurance are  
trademarks of Microchip Technology Incorporated in the U.S.A.  
and other countries.  
Serialized Quick Turn Programming (SQTP) is a service mark of  
Microchip Technology Incorporated in the U.S.A.  
All other trademarks mentioned herein are property of their  
respective companies.  
© 2003, Microchip Technology Incorporated, Printed in the  
U.S.A., All Rights Reserved.  
Printed on recycled paper.  
Microchip received QS-9000 quality system  
certification for its worldwide headquarters,  
design and wafer fabrication facilities in  
Chandler and Tempe, Arizona in July 1999  
and Mountain View, California in March 2002.  
The Company’s quality system processes and  
procedures are QS-9000 compliant for its  
®
PICmicro 8-bit MCUs, KEELOQ® code hopping  
devices, Serial EEPROMs, microperipherals,  
non-volatile memory and analog products. In  
addition, Microchip’s quality system for the  
design and manufacture of development  
systems is ISO 9001 certified.  
2003 Microchip Technology Inc.  
DS21662C - page 17  
M
WORLDWIDE SALES AND SERVICE  
Japan  
AMERICAS  
ASIA/PACIFIC  
Microchip Technology Japan K.K.  
Benex S-1 6F  
Corporate Office  
Australia  
2355 West Chandler Blvd.  
Microchip Technology Australia Pty Ltd  
Suite 22, 41 Rawson Street  
Epping 2121, NSW  
3-18-20, Shinyokohama  
Kohoku-Ku, Yokohama-shi  
Kanagawa, 222-0033, Japan  
Tel: 81-45-471- 6166 Fax: 81-45-471-6122  
Chandler, AZ 85224-6199  
Tel: 480-792-7200 Fax: 480-792-7277  
Technical Support: 480-792-7627  
Web Address: http://www.microchip.com  
Australia  
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755  
Korea  
China - Beijing  
Rocky Mountain  
Microchip Technology Korea  
168-1, Youngbo Bldg. 3 Floor  
Samsung-Dong, Kangnam-Ku  
Seoul, Korea 135-882  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Beijing Liaison Office  
Unit 915  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7966 Fax: 480-792-4338  
Bei Hai Wan Tai Bldg.  
Tel: 82-2-554-7200 Fax: 82-2-558-5934  
Atlanta  
No. 6 Chaoyangmen Beidajie  
Beijing, 100027, No. China  
Tel: 86-10-85282100 Fax: 86-10-85282104  
Singapore  
3780 Mansell Road, Suite 130  
Alpharetta, GA 30022  
Microchip Technology Singapore Pte Ltd.  
200 Middle Road  
Tel: 770-640-0034 Fax: 770-640-0307  
China - Chengdu  
#07-02 Prime Centre  
Boston  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Chengdu Liaison Office  
Rm. 2401-2402, 24th Floor,  
Singapore, 188980  
2 Lan Drive, Suite 120  
Westford, MA 01886  
Tel: 978-692-3848 Fax: 978-692-3821  
Tel: 65-6334-8870 Fax: 65-6334-8850  
Taiwan  
Ming Xing Financial Tower  
Microchip Technology (Barbados) Inc.,  
Taiwan Branch  
No. 88 TIDU Street  
Chicago  
Chengdu 610016, China  
333 Pierce Road, Suite 180  
Itasca, IL 60143  
11F-3, No. 207  
Tel: 86-28-86766200 Fax: 86-28-86766599  
Tung Hua North Road  
Taipei, 105, Taiwan  
China - Fuzhou  
Tel: 630-285-0071 Fax: 630-285-0075  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Fuzhou Liaison Office  
Unit 28F, World Trade Plaza  
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139  
Dallas  
4570 Westgrove Drive, Suite 160  
Addison, TX 75001  
EUROPE  
Austria  
No. 71 Wusi Road  
Tel: 972-818-7423 Fax: 972-818-2924  
Fuzhou 350001, China  
Microchip Technology Austria GmbH  
Durisolstrasse 2  
Detroit  
Tel: 86-591-7503506 Fax: 86-591-7503521  
Tri-Atria Office Building  
China - Hong Kong SAR  
A-4600 Wels  
32255 Northwestern Highway, Suite 190  
Farmington Hills, MI 48334  
Tel: 248-538-2250 Fax: 248-538-2260  
Microchip Technology Hongkong Ltd.  
Unit 901-6, Tower 2, Metroplaza  
223 Hing Fong Road  
Austria  
Tel: 43-7242-2244-399  
Fax: 43-7242-2244-393  
Denmark  
Kwai Fong, N.T., Hong Kong  
Kokomo  
Tel: 852-2401-1200 Fax: 852-2401-3431  
2767 S. Albright Road  
Kokomo, Indiana 46902  
Tel: 765-864-8360 Fax: 765-864-8387  
Microchip Technology Nordic ApS  
Regus Business Centre  
Lautrup hoj 1-3  
China - Shanghai  
Microchip Technology Consulting (Shanghai)  
Co., Ltd.  
Ballerup DK-2750 Denmark  
Tel: 45 4420 9895 Fax: 45 4420 9910  
Los Angeles  
Room 701, Bldg. B  
18201 Von Karman, Suite 1090  
Irvine, CA 92612  
Far East International Plaza  
No. 317 Xian Xia Road  
France  
Microchip Technology SARL  
Parc d’Activite du Moulin de Massy  
43 Rue du Saule Trapu  
Tel: 949-263-1888 Fax: 949-263-1338  
Shanghai, 200051  
San Jose  
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060  
Microchip Technology Inc.  
2107 North First Street, Suite 590  
San Jose, CA 95131  
China - Shenzhen  
Batiment A - ler Etage  
Microchip Technology Consulting (Shanghai)  
Co., Ltd., Shenzhen Liaison Office  
91300 Massy, France  
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79  
Tel: 408-436-7950 Fax: 408-436-7955  
Rm. 1812, 18/F, Building A, United Plaza  
No. 5022 Binhe Road, Futian District  
Shenzhen 518033, China  
Germany  
Toronto  
Microchip Technology GmbH  
Steinheilstrasse 10  
6285 Northam Drive, Suite 108  
Mississauga, Ontario L4V 1X5, Canada  
Tel: 905-673-0699 Fax: 905-673-6509  
Tel: 86-755-82901380 Fax: 86-755-82966626  
D-85737 Ismaning, Germany  
China - Qingdao  
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44  
Rm. B503, Fullhope Plaza,  
Italy  
No. 12 Hong Kong Central Rd.  
Qingdao 266071, China  
Microchip Technology SRL  
Centro Direzionale Colleoni  
Palazzo Taurus 1 V. Le Colleoni 1  
20041 Agrate Brianza  
Tel: 86-532-5027355 Fax: 86-532-5027205  
India  
Milan, Italy  
Microchip Technology Inc.  
India Liaison Office  
Tel: 39-039-65791-1 Fax: 39-039-6899883  
Divyasree Chambers  
United Kingdom  
1 Floor, Wing A (A3/A4)  
No. 11, O’Shaugnessey Road  
Bangalore, 560 025, India  
Tel: 91-80-2290061 Fax: 91-80-2290062  
Microchip Ltd.  
505 Eskdale Road  
Winnersh Triangle  
Wokingham  
Berkshire, England RG41 5TU  
Tel: 44 118 921 5869 Fax: 44-118 921-5820  
12/05/02  
DS21662C-page 18  
2003 Microchip Technology Inc.  

相关型号:

TC2015-2.85VCTTR

50 mA, 100 mA, 150 mA CMOS LDOs with Shutdown and Reference Bypass
MICROCHIP

TC2015-2.8VCTTR

50 mA, 100 mA, 150 mA CMOS LDOs
MICROCHIP

TC2015-3.0VCT

3 V FIXED POSITIVE LDO REGULATOR, 0.14 V DROPOUT, PDSO5, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC2015-3.0VCTTR

50 mA, 100 mA, 150 mA CMOS LDOs with Shutdown and Reference Bypass
MICROCHIP

TC2015-3.3VCTTR

3.3 V FIXED POSITIVE LDO REGULATOR, 0.14 V DROPOUT, PDSO5, PLASTIC, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC2015-5.0VCTTR

5 V FIXED POSITIVE LDO REGULATOR, 0.14 V DROPOUT, PDSO5, PLASTIC, SC-74A, SOT-23A, 5 PIN
MICROCHIP

TC20152802DH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1500V V(RRM), 1 Element, TC2, 3 PIN
POWEREX

TC20152803DH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1500V V(RRM), 1 Element, TC2, 3 PIN
POWEREX

TC20152804DH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1500V V(RRM), 1 Element, TC2, 3 PIN
POWEREX

TC20152805DH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1500V V(RRM), 1 Element, TC2, 3 PIN
POWEREX

TC20152807DH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1500V V(RRM), 1 Element, TC2, 3 PIN
POWEREX

TC2015280FDH

Silicon Controlled Rectifier, 4396A I(T)RMS, 1500V V(RRM), 1 Element, TC2, 3 PIN
POWEREX