VSC8504XKS-04 [MICROCHIP]

Ethernet Transceiver;
VSC8504XKS-04
型号: VSC8504XKS-04
厂家: MICROCHIP    MICROCHIP
描述:

Ethernet Transceiver

以太网:16GBASE-T 电信 电信集成电路
文件: 总139页 (文件大小:1541K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
VSC8504-01 Datasheet  
Quad-Port 10/100/1000BASE-T PHY with Synchronous  
Ethernet and QSGMII/SGMII MAC  
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of  
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the  
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have  
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any  
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all  
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not  
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to  
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi  
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely  
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP  
rights, whether with regard to such information itself or anything described by such information. Information provided in this  
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this  
document or to any products and services at any time without notice.  
Microsemi Headquarters  
One Enterprise, Aliso Viejo,  
CA 92656 USA  
Within the USA: +1 (800) 713-4113  
Outside the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
Fax: +1 (949) 215-4996  
Email: sales.support@microsemi.com  
www.microsemi.com  
About Microsemi  
©2018 Microsemi, a wholly owned  
subsidiary of Microchip Technology Inc. All  
rights reserved. Microsemi and the  
Microsemi logo are registered trademarks of  
Microsemi Corporation. All other trademarks  
and service marks are the property of their  
respective owners.  
Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of  
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.  
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and  
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's  
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication  
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and  
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.  
VMDS-10402. 4.2 11/18  
Contents  
1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1  
1.2  
1.3  
1.4  
Revision 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Revision 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Revision 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Revision 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2 Product Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1  
Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
Low Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Advanced Carrier Ethernet Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Wide Range of Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2.2  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3 Functional Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1.1  
3.1.2  
3.1.3  
3.1.4  
3.1.5  
3.1.6  
3.1.7  
3.1.8  
QSGMII/SGMII MAC-to-1000BASE-X Link Partner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
QSGMII/SGMII MAC-to-100BASE-FX Link Partner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
QSGMII/SGMII MAC-to-AMS and 1000BASE-X Media SerDes . . . . . . . . . . . . . . . . . . . . . . . . 7  
QSGMII/SGMII MAC-to-AMS and 100BASE-FX Media SerDes . . . . . . . . . . . . . . . . . . . . . . . . 8  
QSGMII/SGMII MAC-to-AMS and Protocol Transfer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
QSGMII/SGMII MAC-to-Cat5 Link Partner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
QSGMII/SGMII MAC-to-Protocol Transfer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1000BASE-X MAC-to-Cat5 Link Partner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.2  
3.3  
SerDes MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.2.1  
3.2.2  
3.2.3  
SerDes MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SGMII MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
QSGMII MAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SerDes Media Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
QSGMII/SGMII to 1000BASE-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
QSGMII/SGMII to 100BASE-FX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
QSGMII to SGMII Protocol Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Unidirectional Transport for Fiber Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.4  
3.5  
PHY Addressing and Port Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.4.1  
3.4.2  
PHY Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
SerDes Port Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Cat5 Twisted Pair Media Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.5.1  
3.5.2  
3.5.3  
3.5.4  
3.5.5  
3.5.6  
3.5.7  
Voltage Mode Line Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Cat5 Autonegotiation and Parallel Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Automatic Crossover and Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Manual HP Auto-MDIX Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Link Speed Downshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Energy Efficient Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Ring Resiliency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.6  
3.7  
Automatic Media Sense Interface Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.7.1  
3.7.2  
3.7.3  
Configuring the Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Single-Ended REFCLK Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Differential REFCLK Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.8  
3.9  
Ethernet Inline Powered Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
IEEE 802.3af PoE Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
iii  
3.10  
ActiPHY Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
3.10.1 Low Power State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.10.2 Link Partner Wake-Up State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.10.3 Normal Operating State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.11  
3.12  
3.13  
Media Recovered Clock Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.11.1 Clock Selection Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.11.2 Clock Output Squelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.12.1 SMI Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.12.2 SMI Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
LED Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.13.1 LED Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.13.2 Extended LED Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.13.3 LED Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.13.4 Basic Serial LED Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.13.5 Enhanced Serial LED Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.13.6 LED Port Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.14  
3.15  
Fast Link Failure Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Integrated Two-Wire Serial Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.15.1 Read/Write Access Using the Two-Wire Serial MUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
3.16  
3.17  
GPIO Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Testing Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.17.1 Ethernet Packet Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.17.2 CRC Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.17.3 Far-End Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.17.4 Near-End Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
3.17.5 Connector Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.17.6 SerDes Loopbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.17.7 VeriPHY Cable Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3.17.8 JTAG Boundary Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.17.9 JTAG Instruction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
3.17.10 Boundary Scan Register Cell Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
3.18  
3.19  
100BASE-FX Halt Code Transmission and Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
3.19.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
4 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
4.1  
Register and Bit Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
4.2  
IEEE 802.3 and Main Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.2.6  
4.2.7  
4.2.8  
4.2.9  
Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Mode Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Device Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Autonegotiation Advertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Link Partner Autonegotiation Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Autonegotiation Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Transmit Autonegotiation Next Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Autonegotiation Link Partner Next Page Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
1000BASE-T Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
4.2.10 1000BASE-T Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
4.2.11 MMD Access Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
4.2.12 MMD Address or Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
4.2.13 1000BASE-T Status Extension 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
4.2.14 100BASE-TX/FX Status Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
4.2.15 1000BASE-T Status Extension 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
4.2.16 Bypass Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
4.2.17 Error Counter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
4.2.18 Error Counter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
iv  
4.2.19 Error Counter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
4.2.20 Extended Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
4.2.21 Extended PHY Control Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
4.2.22 Extended PHY Control Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
4.2.23 Interrupt Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
4.2.24 Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
4.2.25 Device Auxiliary Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
4.2.26 LED Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
4.2.27 LED Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
4.2.28 Extended Page Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
4.3  
Extended Page 1 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
4.3.1  
4.3.2  
4.3.3  
4.3.4  
4.3.5  
4.3.6  
4.3.7  
4.3.8  
4.3.9  
SerDes Media Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Cu Media CRC Good Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Extended Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
ActiPHY Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
PoE and Miscellaneous Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
VeriPHY Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
VeriPHY Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
VeriPHY Control 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Ethernet Packet Generator Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
4.3.10 Ethernet Packet Generator Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
4.4  
4.5  
Extended Page 2 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
4.4.1  
4.4.2  
4.4.3  
Cu PMD Transmit Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
EEE Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Ring Resiliency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Extended Page 3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
4.5.1  
4.5.2  
4.5.3  
4.5.4  
4.5.5  
4.5.6  
4.5.7  
4.5.8  
4.5.9  
MAC SerDes PCS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
MAC SerDes PCS Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
MAC SerDes Clause 37 Advertised Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
MAC SerDes Clause 37 Link Partner Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
MAC SerDes Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Media SerDes Transmit Good Packet Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Media SerDes Transmit CRC Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Media SerDes PCS Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Media SerDes PCS Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
4.5.10 Media SerDes Clause 37 Advertised Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
4.5.11 Media SerDes Clause 37 Link Partner Ability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
4.5.12 Media SerDes Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
4.5.13 Fiber Media CRC Good Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
4.5.14 Fiber Media CRC Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
4.6  
General Purpose Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
4.6.1  
4.6.2  
4.6.3  
4.6.4  
4.6.5  
4.6.6  
4.6.7  
4.6.8  
4.6.9  
Reserved General Purpose Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
SIGDET/GPIO Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
GPIO Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
GPIO Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
GPIO Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
GPIO Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Microprocessor Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
MAC Configuration and Fast Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Two-Wire Serial MUX Control 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
4.6.10 Two-Wire Serial MUX Control 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
4.6.11 Two-Wire Serial MUX Data Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
4.6.12 Recovered Clock 1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
4.6.13 Recovered Clock 2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
4.6.14 Enhanced LED Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
4.6.15 Global Interrupt Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
4.7  
Clause 45 Registers to Support Energy Efficient Ethernet and 802.3bf . . . . . . . . . . . . . . . . . . . . . . . . 88  
4.7.1  
PCS Status 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
v
4.7.2  
4.7.3  
4.7.4  
4.7.5  
EEE Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
EEE Wake Error Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
EEE Advertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
EEE Link Partner Advertisement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
5 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
5.1  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
5.1.8  
VDD25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
LED and GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Internal Pull-Up or Pull-Down Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
SerDes Interface (SGMII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Enhanced SerDes Interface (QSGMII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Thermal Diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
5.2  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.2.7  
5.2.8  
5.2.9  
Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Recovered Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
SerDes Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
SerDes Driver Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
SerDes Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
SerDes Receiver Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Enhanced SerDes Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Basic Serial LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Enhanced Serial LEDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
5.2.10 JTAG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
5.2.11 Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
5.2.12 Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
5.3  
5.4  
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Stress Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
6 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
6.1  
6.2  
6.3  
Pin Identifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Pins by Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
GPIO and SIGDET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112  
SGMII/SerDes/QSGMII MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
SerDes Media Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Serial Management Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Twisted Pair Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
6.4  
6.5  
Pins by Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Pins by Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
7 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
7.1  
7.2  
7.3  
Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122  
Thermal Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Moisture Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
8 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
8.1  
8.2  
8.3  
AMS and 100BASE-FX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
10BASE-T signal amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
SNR degradation and link drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
vi  
8.4  
Clause 45 register 3.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Clause 45 register 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Clause 45 register address post-increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Fast link failure indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Near-end loopback with AMS enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Carrier detect assertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Link status not correct in register 24E3.2 for 100BASE-FX operation . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Register 28.14 does not reflect autonegotiation disabled in 100BASE-FX mode . . . . . . . . . . . . . . . . 126  
Internal clock disabled when media switches from fiber to copper with autonegotiation disabled . . . . 126  
Near-end loopback non-functional in protocol transfer mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Fiber-media recovered clock does not squelch based on link status . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
1000BASE-X parallel detect mode with Clause 37 autonegotiation enabled . . . . . . . . . . . . . . . . . . . . 127  
Anomalous PCS error indications in Energy Efficient Ethernet mode . . . . . . . . . . . . . . . . . . . . . . . . . 127  
8.5  
8.6  
8.7  
8.8  
8.9  
8.10  
8.11  
8.12  
8.13  
8.14  
8.15  
8.16  
9 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
vii  
Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Dual Media Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Copper Transceiver Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Fiber Media Transceiver Application Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
SGMII MAC-to-1000BASE-X Link Partner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
QSGMII MAC-to-1000BASE-X Link Partner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
QSGMII/SGMII MAC-to-100BASE-FX Link Partner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
QSGMII/SGMII MAC-to-AMS and 1000BASE-X Media SerDes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
QSGMII/SGMII MAC-to-AMS and 100BASE-FX Media SerDes . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
QSGMII/SGMII MAC-to-AMS and Protocol Transfer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
QSGMII/SGMII MAC-to-Cat5 Link Partner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
QSGMII/SGMII MAC-to-Protocol Transfer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
1000BASE-X MAC-to-Cat5 Link Partner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
SerDes MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SGMII MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
QSGMII MAC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Cat5 Media Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Low Power Idle Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Automatic Media Sense Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
2.5 V CMOS Single-Ended REFCLK Input Resistor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.3 V CMOS Single-Ended REFCLK Input Resistor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5 V CMOS Single-Ended REFCLK Input Resistor Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
AC Coupling for REFCLK Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Inline Powered Ethernet Switch Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
ActiPHY State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
SMI Read Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
SMI Write Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
MDINT Configured as an Open-Drain (Active-Low) Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
MDINT Configured as an Open-Source (Active-High) Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Two-Wire Serial MUX with SFP Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Two-Wire Serial MUX Read and Write Register Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Far-End Loopback Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Near-End Loopback Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Connector Loopback Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Data Loops of the SerDes Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Test Access Port and Boundary Scan Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Register Space Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
SGMII DC Transmit Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
SGMII DC Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
SGMII DC Driver Output Impedance Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
SGMII DC Input Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Test Circuit for Recovered Clock Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
QSGMII Transient Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Basic Serial LED Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Enhanced Serial LED Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
JTAG Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Test Circuit for TDO Disable Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Serial Management Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Pin Diagram, Top Left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Pin Diagram, Top Right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
Figure 35  
Figure 36  
Figure 37  
Figure 38  
Figure 39  
Figure 40  
Figure 41  
Figure 42  
Figure 43  
Figure 44  
Figure 45  
Figure 46  
Figure 47  
Figure 48  
Figure 49  
Figure 50  
Figure 51  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
viii  
Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
MAC Interface Mode Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Supported MDI Pair Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
AMS Media Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
REFCLK Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
LED Drive State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
LED Mode and Function Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Extended LED Mode and Function Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
LED Serial Bitstream Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Register Bits for GPIO Control and Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SerDes Macro Address Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
JTAG Instruction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
IDCODE JTAG Device Identification Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
USERCODE JTAG Device Identification Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
JTAG Instruction Code IEEE Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
IEEE 802.3 Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Main Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Mode Control, Address 0 (0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Mode Status, Address 1 (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Identifier 1, Address 2 (0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Identifier 2, Address 3 (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Device Autonegotiation Advertisement, Address 4 (0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Autonegotiation Link Partner Ability, Address 5 (0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Autonegotiation Expansion, Address 6 (0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Autonegotiation Next Page Transmit, Address 7 (0x07) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Autonegotiation LP Next Page Receive, Address 8 (0x08) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
1000BASE-T Control, Address 9 (0x09) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
1000BASE-T Status, Address 10 (0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
MMD EEE Access, Address 13 (0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
MMD Address or Data Register, Address 14 (0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
1000BASE-T Status Extension 1, Address 15 (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
100BASE-TX/FX Status Extension, Address 16 (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
1000BASE-T Status Extension 2, Address 17 (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Bypass Control, Address 18 (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Extended Control and Status, Address 19 (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Extended Control and Status, Address 20 (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Extended Control and Status, Address 21 (0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Extended Control and Status, Address 22 (0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Extended PHY Control 1, Address 23 (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Extended PHY Control 2, Address 24 (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Interrupt Mask, Address 25 (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Interrupt Status, Address 26 (0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Auxiliary Control and Status, Address 28 (0x1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
LED Mode Select, Address 29 (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
LED Behavior, Address 30 (0x1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Extended/GPIO Register Page Access, Address 31 (0x1F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Extended Registers Page 1 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
SerDes Media Control, Address 16E1 (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Cu Media CRC Good Counter, Address 18E1 (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Extended Mode Control, Address 19E1 (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Extended PHY Control 3, Address 20E1 (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Extended PHY Control 4, Address 23E1 (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
VeriPHY Control Register 1, Address 24E1 (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
VeriPHY Control Register 2, Address 25E1 (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
Table 17  
Table 18  
Table 19  
Table 20  
Table 21  
Table 22  
Table 23  
Table 24  
Table 25  
Table 26  
Table 27  
Table 28  
Table 29  
Table 30  
Table 31  
Table 32  
Table 33  
Table 34  
Table 35  
Table 36  
Table 37  
Table 38  
Table 39  
Table 40  
Table 41  
Table 42  
Table 43  
Table 44  
Table 45  
Table 46  
Table 47  
Table 48  
Table 49  
Table 50  
Table 51  
Table 52  
Table 53  
Table 54  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
ix  
Table 55  
Table 56  
Table 57  
Table 58  
Table 59  
Table 60  
Table 61  
Table 62  
Table 63  
Table 64  
Table 65  
Table 66  
Table 67  
Table 68  
Table 69  
Table 70  
Table 71  
Table 72  
Table 73  
Table 74  
Table 75  
Table 76  
Table 77  
Table 78  
Table 79  
Table 80  
Table 81  
Table 82  
Table 83  
Table 84  
Table 85  
Table 86  
Table 87  
Table 88  
Table 89  
Table 90  
Table 91  
Table 92  
Table 93  
Table 94  
Table 95  
Table 96  
Table 97  
Table 98  
Table 99  
Table 100  
Table 101  
Table 102  
Table 103  
Table 104  
Table 105  
Table 106  
Table 107  
Table 108  
Table 109  
Table 110  
Table 111  
Table 112  
Table 113  
VeriPHY Control Register 3, Address 26E1 (0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
VeriPHY Control Register 3 Fault Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
EPG Control Register 1, Address 29E1 (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
EPG Control Register 2, Address 30E1 (0x1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Extended Registers Page 2 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Cu PMD Transmit Control, Address 16E2 (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
EEE Control, Address 17E2 (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Ring Resiliency, Address 30E2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Extended Registers Page 3 Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
MAC SerDes PCS Control, Address 16E3 (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
MAC SerDes PCS Status, Address 17E3 (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
MAC SerDes Cl37 Advertised Ability, Address 18E3 (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
MAC SerDes Cl37 LP Ability, Address 19E3 (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
MAC SerDes Status, Address 20E3 (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Media SerDes Tx Good Packet Counter, Address 21E3 (0x15) . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Media SerDes Tx CRC Error Counter, Address 22E3 (0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Media SerDes PCS Control, Address 23E3 (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Media SerDes PCS Status, Address 24E3 (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
Media SerDes Cl37 Advertised Ability, Address 25E3 (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
MAC SerDes Cl37 LP Ability, Address 26E3 (0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Media SerDes Status, Address 27E3 (0x1B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Fiber Media CRC Good Counter, Address 28E3 (0x1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Fiber Media CRC Error Counter, Address 29E3 (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
General Purpose Registers Page Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
SIGDET/GPIO Control, Address 13G (0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
GPIO Control 2, Address 14G (0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
GPIO Input, Address 15G (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
GPIO Output, Address 16G (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
GPIO Input/Output Configuration, Address 17G (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Microprocessor Command Register, Address 18G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
MAC Configuration and Fast Link Register, Address 19G (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Two-Wire Serial MUX Control 1, Address 20G (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
Two-Wire Serial MUX Interface Status and Control, Address 21G (0x15) . . . . . . . . . . . . . . . . . . . 84  
Two-Wire Serial MUX Data Read/Write, Address 22G (0x16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Recovered Clock 1 Control, Address 23G (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Recovered Clock 2 Control, Address 24G (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Enhanced LED Control, Address 25G (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Global Interrupt Status, Address 29G (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Clause 45 Registers Page Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
PCS Status 1, Address 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
EEE Capability, Address 3.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
EEE Wake Error Counter, Address 3.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
EEE Advertisement, Address 7.60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
EEE Advertisement, Address 7.61 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
802.3bf Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
VDD25 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
LED and GPIO Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Internal Pull-Up or Pull-Down Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
Reference Clock DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
SerDes Driver DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
SerDes Receiver DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Enhanced SerDes Driver DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
Enhanced SerDes Receiver DC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Thermal Diode Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Reference Clock AC Characteristics for QSGMII 125 MHz Differential Clock . . . . . . . . . . . . . . . . 97  
Recovered Clock AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
SerDes Outputs AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
SerDes Driver Jitter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
x
Table 114  
Table 115  
Table 116  
Table 117  
Table 118  
Table 119  
Table 120  
Table 121  
Table 122  
Table 123  
Table 124  
Table 125  
Table 126  
Table 127  
Table 128  
Table 129  
Table 130  
Table 131  
Table 132  
Table 133  
Table 134  
Table 135  
Table 136  
Table 137  
Table 138  
Table 139  
SerDes Input AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
SerDes Receiver Jitter Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Enhanced SerDes Outputs AC Specifications, SGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Enhanced SerDes Outputs AC Specifications, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
Enhanced SerDes Driver Jitter Characteristics, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Enhanced SerDes Input AC Specifications, SGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Enhanced SerDes Inputs AC Specifications, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Enhanced SerDes Receiver Jitter Tolerance, QSGMII Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Basic Serial LEDs AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
Enhanced Serial LEDs AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
JTAG Interface AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Serial Management Interface AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
Reset Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Stress Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
Pin Type Symbol Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
GPIO and SIGDET Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
JTAG Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Miscellaneous Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111  
Power Supply Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
SerDes MAC Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113  
SerDes Media Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
SMI Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Twisted Pair Interface Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Thermal Resistances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
xi  
Revision History  
1
Revision History  
This section describes the changes that were implemented in this document. The changes are listed by  
revision, starting with the most current publication.  
1.1  
1.2  
Revision 4.2  
Revision 4.2 was published in May 2018. The following is a summary of the changes in this document.  
Configuration procedure steps were clarified. For more information, see Configuration, page 42.  
The description of bit 10 was updated for register 0. For more information, see Table 18, page 46.  
Design considerations were updated. For more information, see Design Considerations, page 125.  
Revision 4.1  
Revision 4.1 was published in August 2017. The following is a summary of the changes in this document.  
All references to LVDS were clarified to reflect LVDS compatibility.  
Operating modes were updated to correctly reflect available functionality.  
A note was added about the use of recovered clock outputs and fast link failure indication in EEE  
mode.  
Data Loops of the SerDes Macro image was updated.  
The equipment loop description was updated to correctly reflect available functionality.  
JTAG ID code was updated.  
Timeout values for ActiPHY link status timeout control registers were corrected.  
The default value for the disable carrier extension bit of the ActiPHY Control register was corrected  
to 1.  
EEE Control register descriptions were updated to indicate sticky bits.  
Register 17E3 bit 0 was updated to correctly reflect available functionality.  
Clarification footnotes were added for register 18G.  
Reference clock DC specifications were updated.  
Design considerations were updated.  
Temperature specifications were added to the part ordering information.  
1.3  
1.4  
Revision 4.0  
Revision 4.0 of this datasheet was published in January 2013. The following is a summary of the  
changes implemented in the datasheet:  
An application diagram was added and existing application diagrams were updated to accurately  
reflect the supported interfaces.  
The block diagram was updated to better represent the functional blocks.  
Configuration information for operating modes was added.  
Several electrical specifications were updated.  
Design considerations were added.  
An illustration showing the test circuit for the recovered clock output signals was added.  
Revision 2.0  
Revision 2.0 of this datasheet was published in November 2012. This was the first publication of the  
document.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
1
Product Overview  
2
Product Overview  
The VSC8504-01 is a low-power, quad-port Gigabit Ethernet transceiver with four SerDes interfaces for  
quad-port dual media capability. It also includes an integrated quad port two-wire serial multiplexer  
(MUX) to control SFPs or PoE modules. It has a low electromagnetic interference (EMI) line driver, and  
integrated line side termination resistors that conserve both power and printed circuit board (PCB) space.  
The VSC8504-01 includes dual recovered clock outputs to support Synchronous Ethernet applications.  
Programmable clock squelch control is included to inhibit undesirable clocks from propagating and to  
help prevent timing loops. The VSC8504-01 also supports a ring resiliency feature that allows a  
1000BASE-T connected PHY port to switch between master and slave timing without having to interrupt  
the 1000BASE-T link.  
Using Microsemi’s EcoEthernet v2.0 PHY technology, the VSC8504-01 supports energy efficiency  
features such as Energy Efficient Ethernet (EEE), ActiPHY link down power savings, and PerfectReach  
that can adjust power based on the cable length. It also supports fully optimized power consumption in all  
link speeds.  
Microsemi's mixed signal and digital signal processing (DSP) architecture is a key operational feature of  
the VSC8504-01, assuring robust performance even under less-than-favorable environmental  
conditions. It supports both half-duplex and full-duplex 10BASE-T, 100BASE-TX, and 1000BASE-T  
communication speeds over Category 5 (Cat5) unshielded twisted pair (UTP) cable at distances greater  
than 100 m, displaying excellent tolerance to NEXT, FEXT, echo, and other types of ambient  
environmental and system electronic noise. The device also supports four dual media ports that can  
support up to four 100BASE-FX, 1000BASE-X fiber, and/or triple-speed copper SFPs.  
The following illustrations show a high-level, general view of typical VSC8504-01 applications.  
Figure 1 • Dual Media Application Diagram  
1.0 V  
2.5 V  
1x QSGMII,  
4x SGMII, or  
4x 1000BASE-X MAC  
4× RJ-45  
and Magnetics  
VSC8504-01  
1x QSGMII,  
4x SGMII MAC, or  
4x 1000BASE-X MAC  
4 ports dual media  
(fiber or copper)  
QSGMII or SGMII  
MAC interface  
SerDes  
4× SFPs  
(fiber or copper)  
SCL/SDA  
Figure 2 • Copper Transceiver Application Diagram  
1.0 V  
2.5 V  
1x QSGMII,  
4x SGMII, or  
4x 1000BASE-X MAC  
VSC8504-01  
4 ports copper media  
QSGMII or SGMII  
MAC interface  
1x QSGMII,  
4x SGMII MAC, or  
4x 1000BASE-X MAC  
4× RJ-45  
and Magnetics  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
2
Product Overview  
Figure 3 • Fiber Media Transceiver Application Diagram  
1.0 V  
2.5 V  
1x QSGMII,  
4x SGMII, or  
4x 1000BASE-X MAC  
VSC8504-01  
4 ports fiber media  
QSGMII or SGMII  
MAC interface  
1x QSGMII,  
4x SGMII MAC, or  
4x 1000BASE-X MAC  
4× 1000BASE-X SFP  
or  
4x 100BASE-FX SFP  
2.1  
Key Features  
This section lists the main features and benefits of the VSC8504-01 device.  
2.1.1  
Low Power  
Low power consumption of approximately 425 mW per port in 1000BASE-T mode, 200 mW per port  
in 100BASE-TX mode, 225 mW per port in 10BASE-T mode, and less than 115 mW per port in  
100BASE-FX and 1000BASE-X modes  
ActiPHY™ link down power savings  
PerfectReach™ smart cable reach algorithm  
IEEE 802.3az-2010 Energy Efficient Ethernet idle power savings  
2.1.2  
Advanced Carrier Ethernet Support  
Recovered clock outputs with programmable clock squelch control and fast link failure indication  
(<1 ms; worst-case <3 ms) for G.8261 Synchronous Ethernet applications  
Ring resiliency for maintaining linkup integrity when switching between 1000BASE-T master and  
slave timing  
Supports IEEE 802.3bf timing and synchronization standard  
Integrated quad two-wire serial mux to control SFP and PoE modules  
Support for IEEE 802.3ah unidirectional transport for 100BASE-FX and 1000BASE-X fiber media  
2.1.3  
2.1.4  
Wide Range of Support  
Compliant with IEEE 802.3 (10BASE-T, 100BASE-TX, 1000BASE-T, 100BASE-FX, and  
1000BASE-X) specifications  
Support for >16 kB jumbo frames in all speeds with programmable synchronization FIFOs  
Supports Cisco QSGMII v1.3, Cisco SGMII v1.9, 1000BASE-X MACs, IEEE 1149.1 JTAG boundary  
scan, and IEEE 1149.6 AC-JTAG  
Available in a low-cost, 256-pin BGA package with a 17 mm × 17 mm body size  
Flexibility  
VeriPHY® cable diagnostics suite provides extensive network cable information such as cable  
length, termination status, and open/short fault location  
Patented, low EMI line driver with integrated line side termination resistors  
Four programmable direct-drive LEDs per port with adjustable brightness levels using register  
controls; bi-color LED support using two LED pins  
Serial LED interface option  
Extensive test features including near end, far end, copper media connector, SerDes MAC/media  
loopback, and Ethernet packet generator with CRC error counter to decrease time-to-market  
Note: All MAC interfaces must be the same — all QSGMII or SGMII.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
3
Product Overview  
2.2  
Block Diagram  
The following illustration shows the primary functional blocks of the VSC8504-01 device.  
Figure 4 • Block Diagram  
TXVPA_n  
TXVNA_n  
TXVPB_n  
TXVNB_n  
TXVPC_n  
TXVNC_n  
TXVPD_n  
TXVND_n  
MDI  
Twisted  
Pair  
10/100/  
1000BASE-T  
PCS and  
10/100/  
1000BASE-T  
PMA  
AutoNeg  
Interface  
RCVRDCLK1  
RCVRDCLK2  
GPI09/FASTLINK-FAIL  
Sync  
Ethernet  
MAC_TDP_n  
MAC_TDN_n  
MAC_RDP_n  
MAC_RDN_n  
100BASE-FX PCS  
100BASE-FX PMA  
FIBROP_n  
FIBRON_n  
1000BASE-X Fiber  
10/100/1000 SFP  
PMA  
FIBRIP_n  
FIBRIN_n  
1000BASE-X Fiber  
10/100/1000SFP  
PCS and AutoNeg  
GPIO[3:0]/SIGDET_n  
GPIO8/I2C_SDA  
GPIO[7:4]/I2C_SCL_n  
I2C MUX  
COMA_MODE  
REFCLK_P/N  
REFCLK_SEL2  
REF_FILT_A  
REF_REXT_A  
SerDes_Rext_[1:0]  
Management  
NRESET  
MDC  
MDIO  
and  
Control Interface  
(MIIM)  
PLL and Analog  
LED Interface  
JTAG  
MDINT  
PHYADD[4:2]  
LED[3:0]_[0:3]  
Note: All MAC interfaces must be the same—all QSGMII SGMII, or 1000BASE-X.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
4
Functional Descriptions  
3
Functional Descriptions  
This section describes the functional aspects of the VSC8504-01 device, including available  
configurations, operational features, and testing functionality. It also defines the device setup parameters  
that configure the device for a particular application.  
3.1  
Operating Modes  
The following table lists the operating modes of the VSC8504-01 device.  
Table 1 •  
Operating Modes  
Operating Mode  
Supported Media  
Notes  
QSGMII/SGMII MAC-to-1000BASE-X 1000BASE-X  
Link Partner  
See Figure 5, page 6.  
QSGMII/SGMII MAC-to-100BASE-FX 100BASE-FX  
Link Partner  
See Figure 7, page 7.  
See Figure 8, page 7.  
See Figure 9, page 8.  
QSGMII/SGMII MAC-to-AMS and  
1000BASE-X SerDes  
1000BASE-X,  
10/100/1000BASE-T  
QSGMII/SGMII MAC-to-AMS and  
100BASE-FX SerDes  
100BASE-FX,  
10/100/1000BASE-T  
QSGMII/SGMII MAC-to-AMS and  
Protocol Transfer mode  
SFP/Fiber Protocol Transfer See Figure 10, page 9.  
mode (10/100/1000BASE-T  
Cu SFP),  
10/100/1000BASE-T  
QSGMII/SGMII MAC-to-Cat5 Link  
Partner  
10/100/1000BASE-T  
See Figure 11, page 10.  
QSGMII/SGMII MAC-to-Protocol  
Transfer mode  
SFP/Fiber Protocol Transfer See Figure 12, page 10.  
mode (10/100/1000BASE-T  
Cu SFP)  
1000BASE-X MAC-to-Cat5 Link  
Partner  
1000BASE-T only  
See Figure 13, page 11.  
Note: All MAC interfaces must be the same — all QSGMII or SGMII.  
3.1.1  
QSGMII/SGMII MAC-to-1000BASE-X Link Partner  
The following illustrations and sections show the register settings used to configure a QSGMII/SGMII  
MAC-to-1000BASE-X link partner.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
5
Functional Descriptions  
Figure 5 • SGMII MAC-to-1000BASE-X Link Partner  
TXVP_0  
TXVN_0  
4
4
MDI Twisted Pair,  
PMA, PCS, and  
AutoNeg  
TDP_0  
TDN_0  
RDP_0  
RDN_0  
SGMII  
MAC  
TXVP_3  
4
4
TXVN_3  
FIBROP/N_0  
FIBRIP/N_0  
QSGMII/SGMII,  
1000BASE-X,  
PMA, PCS, and  
AutoNeg  
Fiber  
Fiber  
100BASE-FX,  
PMA, PCS, and  
AutoNeg  
1000BASE-X  
SFP Module  
1000BASE-X  
LP  
SIGDET0  
TDP_3  
TDN_3  
RDP_3  
RDN_3  
1000BASE-X Fiber,  
10/100/1000BASE-T  
Copper SFP, PMA,  
PCS, and AutoNeg  
FIBROP/N_3  
FIBRIP/N_3  
Fiber  
Fiber  
1000BASE-X  
SFP Module  
1000BASE-X  
LP  
SIGDET3  
3.1.1.1  
MAC interface SGMII  
Use the following settings to configure the SGMII MAC interface.  
Set register 19G bits 15:14 = 00.  
Set register 23 (main register) bit 12 = 0.  
Set register 18G = 0x80F0. For more information, see Table 63, page 72.  
Figure 6 • QSGMII MAC-to-1000BASE-X Link Partner  
TXVP_0  
TXVN_0  
4
4
MDI Twisted Pair,  
PMA, PCS, and  
AutoNeg  
TDP_0  
TDN_0  
RDP_0  
RDN_0  
QSGMII  
MAC  
TXVP_3  
4
4
TXVN_3  
FIBROP/N_0  
FIBRIP/N_0  
QSGMII/SGMII,  
1000BASE-X,  
PMA, PCS, and  
AutoNeg  
Fiber  
100BASE-FX,  
PMA, PCS, and  
AutoNeg  
1000BASE-X  
SFP Module  
1000BASE-X  
LP  
Fiber  
SIGDET0  
TDP_3  
TDN_3  
RDP_3  
RDN_3  
1000BASE-X Fiber,  
10/100/1000BASE-T  
Copper SFP, PMA,  
PCS, and AutoNeg  
FIBROP/N_3  
FIBRIP/N_3  
Fiber  
Fiber  
1000BASE-X  
SFP Module  
1000BASE-X  
LP  
SIGDET3  
3.1.1.2  
3.1.1.3  
MAC interface QSGMII  
Use the following settings to configure the QSGMII MAC interface.  
Set register 19G bits 15:14 = 01.  
Set register 23 (main register) bit 12 = 0.  
Set register 18G = 0x80F0. For more information, see Table 63, page 72.  
Media interface 1000BASE-X SFP Fiber (1000BASE-X Link Partner)  
Use the following settings to configure the 1000BASE-X SFP fiber media interface.  
Set register 23 bits 10:8 = 010.  
Set register 0 bit 12 = 1 (enable autonegotiation).  
Set register 18G = 0x8FC1. For more information, see Table 63, page 72.  
The F in 0x8FC1 identifies the port. To exclude a port from the configuration, set its bit to 0. For example,  
the configuration of port 0 and port 1 to 1000BASE-X is 0011 or 3, making the bit setting 0x83C1.  
Note: Whenever there is a mode change a software reset (register 0 bit 15) is required to make the mode  
change effective. This register is cleared when read.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
6
Functional Descriptions  
3.1.2  
QSGMII/SGMII MAC-to-100BASE-FX Link Partner  
The following illustration and sections show the register settings used to configure a QSGMII/SGMII  
MAC-to-100BASE-FX link partner.  
Figure 7 • QSGMII/SGMII MAC-to-100BASE-FX Link Partner  
TXVP_0  
TXVN_0  
4
4
MDI Twisted Pair,  
PMA, PCS, and  
AutoNeg  
TDP_0  
TDN_0  
RDP_0  
RDN_0  
QSGMII  
MAC  
TXVP_3  
4
4
TXVN_3  
FIBROP/N_0  
FIBRIP/N_0  
QSGMII/SGMII,  
1000BASE-X,  
PMA, PCS, and  
AutoNeg  
Fiber  
Fiber  
100BASE-FX,  
PMA, PCS, and  
AutoNeg  
100BASE-FX  
SFP Module  
100BASE-FX  
LP  
SIGDET0  
TDP_3  
TDN_3  
RDP_3  
RDN_3  
1000BASE-X Fiber,  
10/100/1000BASE-T  
Copper SFP, PMA,  
PCS, and AutoNeg  
FIBROP/N_3  
FIBRIP/N_3  
Fiber  
Fiber  
100BASE-FX  
SFP Module  
100BASE-FX  
LP  
SIGDET3  
3.1.2.1  
3.1.2.2  
MAC interface SGMII  
Use the following settings to configure the SGMII MAC interface.  
Set register 19G bits 15:14 = 00.  
Set register 23 (main register) bit 12 = 0.  
Set register 18G = 0x80F0. For more information, see Table 63, page 72.  
Media interface 100BASE-FX SFP Fiber (100BASE-FX Link Partner)  
Use the following settings to configure the 100BASE-FX SFP fiber media interface.  
Set register 23 bits 10:8 = 011.  
Set register 0 bit 12 = 0 (autonegotiation not present in 100BASE-FX PHY).  
Set register 18G = 0x8FD1. For more information, see Table 63, page 72.  
For QSGMII only port 0 is used.  
Note: Whenever there is a mode change a software reset (register 0 bit 15) is required to make the mode  
change effective. This register is cleared when read.  
3.1.3  
QSGMII/SGMII MAC-to-AMS and 1000BASE-X Media SerDes  
The following illustration and sections show the register settings used to configure a QSGMII/SGMII  
MAC-to-AMS and 1000BASE-X media SerDes.  
Figure 8 • QSGMII/SGMII MAC-to-AMS and 1000BASE-X Media SerDes  
TXVP_0  
TXVN_0  
4
4
10/100/1000  
BASE-T LP  
Port 0  
MDI Twisted Pair,  
PMA, PCS, and  
AutoNeg  
TDP_0  
TDN_0  
RDP_0  
RDN_0  
QSGMII/  
SGMII  
MAC  
TXVP_3  
4
4
10/100/1000  
BASE-T LP  
Port 3  
TXVN_3  
FIBROP/N_0  
FIBRIP/N_0  
QSGMII/SGMII,  
1000BASE-X,  
PMA, PCS, and  
AutoNeg  
Fiber  
Fiber  
100BASE-FX,  
PMA, PCS, and  
AutoNeg  
1000BASE-X  
SFP Module  
1000BASE-X  
LP  
SIGDET0  
TDP_3  
TDN_3  
RDP_3  
RDN_3  
1000BASE-X Fiber,  
10/100/1000BASE-T  
Copper SFP, PMA,  
PCS, and AutoNeg  
FIBROP/N_3  
FIBRIP/N_3  
Fiber  
Fiber  
1000BASE-X  
SFP Module  
1000BASE-X  
LP  
SIGDET3  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
7
Functional Descriptions  
3.1.3.1  
MAC interface SGMII  
Use the following settings to configure the SGMII MAC interface.  
Set register 19G bits 15:14 = 00.  
Set register 23 (main register) bit 12 = 0.  
Set register 18G = 0x80F0. For more information, see Table 63, page 72.  
3.1.3.2  
3.1.3.3  
Media interface 1000BASE-X SFP Fiber (1000BASE-X Link Partner)  
Use the following settings to configure the 1000BASE-X SFP fiber media interface.  
Set register 23 bits 10:8 = 010.  
Set register 0 bit 12 = 1 (enable autonegotiation).  
AMS Preference Setup  
Use the following settings for the AMS preferences setup.  
Set register 23 bit 10 = 1 (enable AMS).  
Set register 23 bit 11 to the port preferences.  
The media selected by AMS can be read from register 20E1 bits 7:6. For more information, see Table 4,  
page 18.  
For QSGMII only port 0 is used.  
Note: Whenever there is a mode change a software reset (register 0 bit 15) is required to make the mode  
change effective. This register is cleared when read.  
3.1.4  
QSGMII/SGMII MAC-to-AMS and 100BASE-FX Media SerDes  
The following illustration and sections show the register settings used to configure a QSGMII/SGMII  
MAC-to-AMS and 100BASE-FX media SerDes.  
Figure 9 • QSGMII/SGMII MAC-to-AMS and 100BASE-FX Media SerDes  
TXVP_0  
TXVN_0  
4
4
10/100/1000  
BASE-T LP  
Port 0  
MDI Twisted Pair,  
PMA, PCS, and  
AutoNeg  
TDP_0  
TDN_0  
RDP_0  
RDN_0  
QSGMII/  
SGMII  
MAC  
TXVP_3  
4
4
10/100/1000  
BASE-T LP  
Port 3  
TXVN_3  
FIBROP/N_0  
FIBRIP/N_0  
QSGMII/SGMII,  
1000BASE-X,  
PMA, PCS, and  
AutoNeg  
Fiber  
Fiber  
100BASE-FX,  
PMA, PCS, and  
AutoNeg  
100BASE-FX  
SFP Module  
100BASE-FX  
LP  
SIGDET0  
TDP_3  
TDN_3  
RDP_3  
RDN_3  
1000BASE-X Fiber,  
10/100/1000BASE-T  
Copper SFP, PMA,  
PCS, and AutoNeg  
FIBROP/N_3  
FIBRIP/N_3  
Fiber  
Fiber  
100BASE-FX  
SFP Module  
100BASE-FX  
LP  
SIGDET3  
3.1.4.1  
3.1.4.2  
MAC interface SGMII  
Use the following settings to configure the SGMII MAC interface.  
Set register 19G bits 15:14 = 00.  
Set register 23 (main register) bit 12 = 0.  
Set register 18G = 0x80F0. For more information, see Table 63, page 72.  
Media interface 100BASE-FX SFP Fiber (100BASE-FX Link Partner)  
Use the following settings to configure the 100BASE-FX SFP fiber media interface.  
Set register 23 bits 10:8 = 011.  
Set register 0 bit 12 = 1 (enable autonegotiation).  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
8
Functional Descriptions  
3.1.4.3  
AMS Preference Setup  
Use the following settings for the AMS preferences setup.  
Set register 23 bit 10 = 1 (enable AMS).  
Set register 23 bit 11 to the port preferences.  
The media selected by AMS can be read from register 20E1 bits 7;6. For more information, see Table 4,  
page 18.  
For QSGMII only port 0 is used.  
Note: Whenever there is a mode change a software reset (register 0 bit 15) is required to make the mode  
change effective. This register is cleared when read.  
3.1.5  
QSGMII/SGMII MAC-to-AMS and Protocol Transfer Mode  
The following illustration and sections show the register settings used to configure a QSGMII/SGMII  
MAC-to-AMS and Protocol Transfer mode.  
Figure 10 • QSGMII/SGMII MAC-to-AMS and Protocol Transfer Mode  
TXVP_0  
TXVN_0  
4
4
10/100/1000  
BASE-T LP  
Port 0  
MDI Twisted Pair,  
PMA, PCS, and  
AutoNeg  
TDP_0  
TDN_0  
RDP_0  
RDN_0  
QSGMII/  
SGMII  
MAC  
TXVP_3  
4
4
10/100/1000  
BASE-T LP  
Port 3  
TXVN_3  
FIBROP/N_0  
FIBRIP/N_0  
QSGMII/SGMII,  
1000BASE-X,  
PMA, PCS, and  
AutoNeg  
Fiber  
Fiber  
10/100/1000  
BASE-T  
Copper SFP  
10/100/1000  
BASE-T  
Copper SFP  
100BASE-FX,  
PMA, PCS, and  
AutoNeg  
SIGDET0  
TDP_3  
TDN_3  
RDP_3  
RDN_3  
1000BASE-X Fiber,  
10/100/1000BASE-T  
Copper SFP, PMA,  
PCS, and AutoNeg  
FIBROP/N_3  
FIBRIP/N_3  
10/100/1000  
BASE-T  
Copper SFP  
10/100/1000  
BASE-T  
Copper SFP  
SIGDET3  
3.1.5.1  
MAC interface SGMII  
Use the following settings to configure the SGMII MAC interface.  
Set register 19G bits 15:14 = 00.  
Set register 23 (main register) bit 12 = 0.  
Set register 18G = 0x80F0. For more information, see Table 63, page 72.  
3.1.5.2  
3.1.5.3  
Media interface 10/100/1000BASE-T Cu-SFP  
Use the following settings to configure the fiber/SFP media interface for protocol transfer mode.  
Set register 23 bits 10:8 = 001.  
Set register 0 bit 12 = 1 (enable autonegotiation).  
AMS Preference Setup  
Use the following settings for the AMS preferences setup.  
Set register 23 bit 10 = 1 (enable AMS).  
Set register 23 bit 11 to the port preferences.  
The media selected by AMS can be read from register 20E1 bits 7;6. For more information, see Table 4,  
page 18.  
For QSGMII only port 0 is used.  
Note: Whenever there is a mode change a software reset (register 0 bit 15) is required to make the mode  
change effective. This register is cleared when read.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
9
Functional Descriptions  
3.1.6  
QSGMII/SGMII MAC-to-Cat5 Link Partner  
The following illustration and sections show the register settings used to configure a QSGMII/SGMII  
MAC-to-Cat5 link partner.  
Figure 11 • QSGMII/SGMII MAC-to-Cat5 Link Partner  
TXVP_0  
TXVN_0  
4
4
10/100/1000  
BASE-T LP  
Port 0  
MDI Twisted Pair,  
PMA, PCS, and  
AutoNeg  
TDP_0  
TDN_0  
RDP_0  
RDN_0  
QSGMII/  
SGMII  
MAC  
TXVP_3  
4
4
10/100/1000  
BASE-T LP  
Port 3  
TXVN_3  
FIBROP/N_0  
FIBRIP/N_0  
QSGMII/SGMII,  
1000BASE-X,  
PMA, PCS, and  
AutoNeg  
100BASE-FX,  
PMA, PCS, and  
AutoNeg  
SIGDET0  
TDP_3  
TDN_3  
RDP_3  
RDN_3  
1000BASE-X Fiber,  
10/100/1000BASE-T  
Copper SFP, PMA,  
PCS, and AutoNeg  
FIBROP/N_3  
FIBRIP/N_3  
SIGDET3  
3.1.6.1  
MAC interface SGMII  
Use the following settings to configure the SGMII MAC interface.  
Set register 19G bits 15:14 = 00.  
Set register 23 (main register) bit 12 = 0.  
Set register 18G = 0x80F0. For more information, see Table 63, page 72.  
For QSGMII only port 0 is used.  
Note: Whenever there is a mode change a software reset (register 0 bit 15) is required to make the mode  
change effective. This register is cleared when read.  
3.1.7  
QSGMII/SGMII MAC-to-Protocol Transfer Mode  
The following illustration and sections show the register settings used to configure a QSGMII/SGMII  
MAC-to-Protocol Transfer mode.  
Figure 12 • QSGMII/SGMII MAC-to-Protocol Transfer Mode  
TXVP_0  
TXVN_0  
4
4
MDI Twisted Pair,  
PMA, PCS, and  
AutoNeg  
TDP_0  
TDN_0  
RDP_0  
RDN_0  
QSGMII/  
SGMII  
MAC  
TXVP_3  
4
4
TXVN_3  
FIBROP/N_0  
FIBRIP/N_0  
QSGMII/SGMII,  
1000BASE-X,  
PMA, PCS, and  
AutoNeg  
Fiber  
Fiber  
10/100/1000  
BASE-T  
Copper SFP  
10/100/1000  
BASE-T  
Copper SFP  
100BASE-FX,  
PMA, PCS, and  
AutoNeg  
SIGDET0  
TDP_3  
TDN_3  
RDP_3  
RDN_3  
1000BASE-X Fiber,  
10/100/1000BASE-T  
Copper SFP, PMA,  
PCS, and AutoNeg  
FIBROP/N_3  
FIBRIP/N_3  
Fiber  
Fiber  
10/100/1000  
BASE-T  
Copper SFP  
10/100/1000  
BASE-T  
Copper SFP  
SIGDET3  
3.1.7.1  
MAC interface SGMII  
Use the following settings to configure the SGMII MAC interface.  
Set register 19G bits 15:14 = 00.  
Set register 23 (main register) bit 12 = 0.  
Set register 18G = 0x80F0. For more information, see Table 63, page 72.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
10  
Functional Descriptions  
3.1.7.2  
Media interface 10/100/1000BASE-T Cu-SFP  
Use the following settings to configure the fiber/SFP media interface for protocol transfer mode.  
Set register 23 bits 10:8 = 001.  
Set register 0 bit 12 = 1 (enable autonegotiation).  
For QSGMII only port 0 is used.  
Note: Whenever there is a mode change a software reset (register 0 bit 15) is required to make the mode  
change effective. This register is cleared when read.  
3.1.8  
1000BASE-X MAC-to-Cat5 Link Partner  
The following illustration and sections show the register settings used to configure a 1000BASE-X MAC-  
to-Cat5 Link Partner.  
Figure 13 • 1000BASE-X MAC-to-Cat5 Link Partner  
TXVP_0  
TXVN_0  
4
4
Port 0  
1000BASE-T LP  
MDI Twisted Pair,  
PMA, PCS, and  
AutoNeg  
TDP_0  
TDN_0  
RDP_0  
RDN_0  
Fiber  
Fiber  
1000BASE-X  
MAC  
1000BASE-T  
SFP Module  
TXVP_3  
4
4
Port 3  
TXVN_3  
1000BASE-T LP  
FIBROP/N_0  
FIBRIP/N_0  
QSGMII/SGMII,  
1000BASE-X,  
PMA, PCS, and  
AutoNeg  
100BASE-FX,  
PMA, PCS, and  
AutoNeg  
SIGDET0  
TDP_3  
TDN_3  
RDP_3  
RDN_3  
Fiber  
Fiber  
1000BASE-X Fiber,  
10/100/1000BASE-T  
Copper SFP, PMA,  
PCS, and AutoNeg  
FIBROP/N_3  
FIBRIP/N_3  
1000BASE-X  
MAC  
1000BASE-T  
SFP Module  
SIGDET3  
In this mode the device provides data throughput of 1000 Mbps only.  
3.1.8.1  
MAC interface  
Use the following settings to configure the MAC interface.  
Set register 19G bits 15:14 = 00.  
Set register 23 (main register) bit 12 = 1.  
3.1.8.2  
Clause 37 MAC Autonegotiation  
For clause 37 MAC autonegotiation, set register 16E3 bit 7 = 1.  
Note: Whenever there is a mode change a software reset (register 0 bit 15) is required to make the mode  
change effective. This register is cleared when read.  
3.2  
SerDes MAC Interface  
The VSC8504-01 SerDes MAC interface performs data serialization and deserialization functions using  
an integrated SerDes block. The interface operates in 1000BASE-X compliant mode, QSGMII mode, or  
SGMII mode. The SerDes and enhanced SerDes blocks have the termination resistor integrated into the  
device. The SerDes block also has the AC decoupling capacitors integrated in the receive path.  
Integrated AC decoupling is not supported in the enhanced SerDes block (QSGMII SerDes). Register  
19G is a global register and only needs to be set once to configure the device. The other register bits are  
configured on a per-port basis and the operation either needs to be repeated for each port, or a  
broadcast write needs to be used by setting register 22, bit 0 to configure all the ports simultaneously.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
11  
Functional Descriptions  
3.2.1  
SerDes MAC  
When connected to a SerDes MAC compliant to 1000BASE-X, the VSC8504-01 device provides data  
throughput at a rate of 1000 Mbps only; 10 Mbps and 100 Mbps rates are not supported. To configure the  
device for SerDes MAC mode, set register 19G, bits 15:14 = 0, and register 23, bit 12 = 1. The device  
also supports 1000BASE-X Clause 37 MAC-side autonegotiation and is enabled through register 16E3,  
bit 7. To configure the rest of the device for 1000 Mbps operation, select 1000BASE-T only by disabling  
the 10BASE-T/100BASE-TX advertisements in register 4.  
Figure 14 • SerDes MAC Interface  
0.1 µF  
0.1 µF  
0.1 µF  
TxP  
TxN  
RxP  
RxN  
TxP  
100 Ω  
TxN  
SerDes MAC  
PHY Port_n  
RxP  
100 Ω  
0.1 µF  
100 Ω  
RxN  
3.2.2  
SGMII MAC  
When configured to detect and switch between 10BASE-T, 100BASE-T, and 1000BASE-T data rates, the  
VSC8504-01 device can be connected to an SGMII-compatible MAC. To configure the device for SGMII  
MAC mode, set register 19G, bits 15:14 = 00 and register 23, bit 12 = 0. In addition, set register 18G as  
desired. This device also supports SGMII MAC-side autonegotiation and is enabled through register  
16E3, bit 7.  
Figure 15 • SGMII MAC Interface  
0.1 µF  
0.1 µF  
0.1 µF  
TxP  
TxN  
RxP  
RxN  
TxP  
100 Ω  
TxN  
SGMII MAC  
PHY Port_n  
RxP  
100 Ω  
0.1 µF  
100 Ω  
RxN  
3.2.3  
QSGMII MAC  
The VSC8504-01 device supports a QSGMII MAC to convey four ports of network data and port speed  
between 10BASE-T, 100BASE-T, and 1000BASE-T data rates and operates in both half-duplex and full-  
duplex at all port speeds.The MAC interface protocol for each port within QSGMII can be either  
1000BASE-X or SGMII, if the QSGMII MAC that the VSC8504-01 is connecting to supports this  
functionality. To configure the device for QSGMII MAC mode, set register 19G, bits 15:14 = 01. In  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
12  
Functional Descriptions  
addition, set register 18G as desired. The device also supports SGMII MAC-side autonegotiation on each  
individual port and is enabled through register 16E3, bit 7, of that port.  
Figure 16 • QSGMII MAC Interface  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
TxP  
TxN  
RxP  
RxN  
TxP  
TxN  
RxP  
RxN  
PHY  
Port_0  
100 Ω  
PHY  
Port_1  
QSGMII MAC  
PHY  
Port_2  
100 Ω  
100 Ω  
PHY  
Port_3  
3.3  
SerDes Media Interface  
The device SerDes media interface performs data serialization and deserialization functions using an  
integrated SerDes block in the SerDes media interface. The interface operates at 1.25 Gbps speed,  
providing full-duplex and half-duplex for 10/100/1000 Mbps bandwidth that can connect directly to  
100BASE-FX/1000BASE-X-compliant optical devices as well as to 10/100/1000BASE-T copper SFP  
devices. The interface also provides support for unidirectional transport as defined in IEEE 802.3-2008,  
Clause 66. The SerDes interface has the following operating modes:  
QSGMII/SGMII to 1000BASE-X  
QSGMII/SGMII to 100BASE-FX  
QSGMII/SGMII to SGMII/1000BASE-X protocol transfer  
The SerDes media block has the termination resistor integrated into the device. It also has the AC  
decoupling capacitors integrated in the receive path.  
A software reset through register 0, bit 15 is required when changing operating modes between  
100BASE-FX and 1000BASE-X.  
3.3.1  
3.3.2  
QSGMII/SGMII to 1000BASE-X  
The 1000BASE-X SerDes media in QSGMII/SGMII mode supports IEEE 802.3 Clause 36 and Clause  
37, which describe 1000BASE-X fiber autonegotiation. In this mode, control and status of the SerDes  
media is displayed in the VSC8504-01 device registers 0 through 15 in a manner similar to what is  
described in IEEE 802.3 Clause 28. In this mode, connected copper SFPs can only operate at  
1000BASE-T speed. A link in this mode is established using autonegotiation (enabled or disabled)  
between the PHY and the link partner. To configure the PHY in this mode, set register 23, bits 10:8 = 010.  
To configure 1000BASE-X autonegotiation for this mode, set register 0, bit 12. Setting this mode and  
configurations can be performed individually on each of the four ports. Ethernet packet generator (EPG),  
cyclical redundancy check (CRC) counters, and loopback modes are supported in 1000BASE-X mode.  
QSGMII/SGMII to 100BASE-FX  
The VSC8504-01 supports 100BASE-FX communication speed for connecting to fiber modules such as  
GBICs and SFPs. This capability is facilitated by using the connections on the SerDes pins when  
connected to a MAC through QSGMII/SGMII. Ethernet packet generator (EPG), cyclical redundancy  
check (CRC) counters, and loopback modes are supported in the 100BASE-FX mode. Setting this mode  
and configurations can be performed individually on each of the four ports. To configure the PHY in this  
mode, set register 23, bits 10:8 = 011.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
13  
Functional Descriptions  
3.3.3  
QSGMII to SGMII Protocol Conversion  
QSGMII to SGMII (protocol transfer) mode is a feature that links a fiber module or triple speed  
10/100/1000-T copper SFP to the QSGMII MAC through the device. SGMII can be converted to QSGMII  
with protocol conversion using this mode.  
To configure the PHY in this mode, set register 23, bits 10:8 = 001. To establish the link, assert the  
relevant signal-detect pin.  
All relevant LED modes are supported except for collision, duplex, and autonegotiation fault. The triple-  
speed copper SFP’s link status and data type plugged into the port can be indicated by the PHY’s LEDs.  
Setting this particular mode and configuration can be performed individually on each of the four ports  
within a QSGMII grouping.  
3.3.4  
Unidirectional Transport for Fiber Media  
The VSC8504-01 device supports IEEE 802.3ah for unidirectional transport across its 1000BASE-X and  
100BASE-FX fiber media. This feature enables transmission across fiber media, regardless of whether  
the PHY has determined that a valid link has been established (register 1, bit 2). The only valid operating  
modes for unidirectional fiber mode are 100BASE-FX or 1000BASE-X fiber media.  
To enable this feature, set register 0, bit 5 to 1. For status of the unidirectional ability, read register 1,  
bit 7.  
Note: Automatic media sensing does not work with this feature. In addition, because unidirectional fiber media  
must have autonegotiation disabled, SGMII autonegotiation must also be disabled (register 16E3,  
bit 7 = 0).  
3.4  
PHY Addressing and Port Mapping  
This section contains information about PHY addressing and port mapping.  
3.4.1  
3.4.2  
PHY Addressing  
The VSC8504-01 includes three external PHY address pins, PHYADD[4:2], to allow control of multiple  
PHY devices on a system board sharing a common management bus. These pins set the most  
significant bits of the PHY address port map. The lower two bits of the address for each port are derived  
from the physical address of the port (0 to 3) and the setting of the PHY address reversal bit in register  
20E1, bit 9.  
SerDes Port Mapping  
The VSC8504-01 includes seven 1.25 GHz SerDes macros and one 5 GHz enhanced SerDes macro.  
Three of the seven SerDes macros are configured as SGMII MAC interfaces and the remaining four are  
configured as 1000BASE-X/100BASE-FX SerDes media interfaces. The enhanced SerDes macro can  
be configured as either a QSGMII MAC interface or the fourth SGMII MAC interface. The following table  
shows the different operating modes based on the settings of register 19G, bits 15:14.  
Table 2 •  
MAC Interface Mode Mapping  
19G[15:14]  
Operating Mode  
SGMII  
00  
01  
10  
11  
QSGMII  
Reserved  
Reserved  
3.5  
Cat5 Twisted Pair Media Interface  
The VSC8504-01 twisted pair interface is compliant with IEEE 802.3-2008 and the IEEE 802.3az-2010  
standard for energy efficient Ethernet.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
14  
Functional Descriptions  
3.5.1  
Voltage Mode Line Driver  
Unlike many other gigabit PHYs, the VSC8504-01 uses a patented voltage mode line driver that allows it  
to fully integrate the series termination resistors, which are required to connect the PHY’s Cat5 interface  
to an external 1:1 transformer. Also, the interface does not require the user to place an external voltage  
on the center tap of the magnetic. The following illustration shows the connections.  
Figure 17 • Cat5 Media Interface  
PHY Port_n  
Transformer  
TXVPA_n  
RJ-45  
TXVNA_n  
TXVPB_n  
TXVNB_n  
TXVPC_n  
TXVNC_n  
TXVPD_n  
TXVND_n  
3.5.2  
Cat5 Autonegotiation and Parallel Detection  
The VSC8504-01 supports twisted pair autonegotiation, as defined by IEEE 802.3-2008 Clause 28 and  
IEEE 802.3az-2010. The autonegotiation process evaluates the advertised capabilities of the local PHY  
and its link partner to determine the best possible operating mode. In particular, autonegotiation can  
determine speed, duplex configuration, and master or slave operating modes for 1000BASE-TX.  
Autonegotiation also enables a connected MAC to communicate with its link partner MAC through the  
VSC8504-01 using optional next pages, which set attributes that may not otherwise be defined by the  
IEEE standard.  
If the Category 5 (Cat5) link partner does not support autonegotiation, the VSC8504-01 automatically  
uses parallel detection to select the appropriate link speed.  
Autonegotiation is disabled by clearing register 0, bit 12. When autonegotiation is disabled, the state of  
register bits 0.6, 0.13, and 0.8 determine the device operating speed and duplex mode.  
Note: While 10BASE-T and 100BASE-TX do not require autonegotiation, Clause 40 has defined 1000BASE-T  
to require autonegotiation.  
3.5.3  
Automatic Crossover and Polarity Detection  
For trouble-free configuration and management of Ethernet links, the VSC8504-01 includes a robust  
automatic crossover detection feature for all three speeds on the twisted pair interface (10BASE-T,  
100BASE-T, and 1000BASE T). Known as HP Auto-MDIX, the function is fully compliant with Clause 40  
of IEEE 802.3-2008.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
15  
Functional Descriptions  
Additionally, the device detects and corrects polarity errors on all MDI pairs — a useful capability that  
exceeds the requirements of the standard.  
Both HP Auto-MDIX detection and polarity correction are enabled in the device by default. Default  
settings can be changed using device register bits 18.5:4. Status bits for each of these functions are  
located in register 28.  
Note: The VSC8504-01 can be configured to perform HP Auto-MDIX, even when autonegotiation is disabled  
and the link is forced into 10/100 speeds. To enable this feature, set register 18.7 to 0. To use the  
feature, also set register 0.12 to 0.  
The HP Auto-MDIX algorithm successfully detects, corrects, and operates with any of the MDI wiring pair  
combinations listed in the following table, which shows that twisted pair A (of four twisted paris A, B, C,  
and D) is connected to the RJ45 connector 1,2 in normal MDI mode.  
Table 3 •  
Supported MDI Pair Combinations  
RJ45 Connections  
1, 2 3, 6 4, 5 7, 8 Mode  
A
B
A
B
B
A
B
A
C
D
D
C
D
C
C
D
Normal MDI  
Normal MDI-X  
Normal MDI with pair swap on C and D pair  
Normal MDI-X with pair swap on C and D pair  
3.5.4  
3.5.5  
Manual HP Auto-MDIX Setting  
As an alternative to HP Auto-MDIX detection, the PHY can be forced to be MDI or MDI-X using register  
19E1, bits 3:2. Setting these bits to 10 forces MDI and setting 11 forces MDI-X. Leaving the bits 00  
enables the HP Auto-MDIX setting to be based on register 18, bits 7 and 5.  
Link Speed Downshift  
For operation in cabling environments that are incompatible with 1000BASE-T, the VSC8504-01 provides  
an automatic link speed downshift option. When enabled, the device automatically changes its  
1000BASE-T autonegotiation advertisement to the next slower speed after a set number of failed  
attempts at 1000BASE-T. No reset is required to get out of this state when a subsequent link partner with  
1000BASE-T support is connected. This feature is useful in setting up in networks using older cable  
installations that include only pairs A and B, and not pairs C and D.  
To configure and monitor link speed downshifting, set register 20E1, bits 4:1. For more information, see  
Table 29, page 52.  
3.5.6  
Energy Efficient Ethernet  
The VSC8504-01 supports the IEEE 802.3az-2010 Energy Efficient Ethernet standard. This standard  
provides a method for reducing power consumption on an Ethernet link during times of low utilization. It  
uses low power idles (LPI) to achieve this objective.  
Figure 18 • Low Power Idle Operation  
Active  
Low Power Idle  
Quiet  
Active  
Quiet  
Tq  
Quiet  
Ts  
Tr  
Using LPI, the usage model for the link is to transmit data as fast as possible and then return to a low  
power idle state. Energy is saved on the link by cycling between active and low power idle states. During  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
16  
Functional Descriptions  
LPI, power is reduced by turning off unused circuits and using this method, energy use scales with  
bandwidth utilization.  
The VSC8504-01 uses LPI to optimize power dissipation in 100BASE-TX and 1000BASE-T modes of  
operation. In addition, the IEEE 802.3az-2010 standard defines a 10BASE-Te mode that reduces  
transmit signal amplitude from 5 V peak-to-peak to approximately 3.3 V peak-to-peak. This mode  
reduces power consumption in 10 Mbps link speed and fully interoperates with legacy 10BASE-T  
compliant PHYs over 100 m Cat5 cable or better.  
To configure the VSC8504-01 in 10BASE-Te mode, set register 17E2.15 to 1 for each port. Additional  
energy efficient Ethernet features are controlled through Clause 45 registers. For more information, see  
Design Considerations, page 125.  
3.5.7  
Ring Resiliency  
Ring resiliency changes the timing reference between the master and slave PHYs without altering the  
master/slave configuration in 1000BASE-T mode. The master PHY transmitter sends data based on the  
local clock and initiates timing recovery in the receiver. The slave PHY instructs node to switch the local  
timing reference to the recovered clock from other PHYs in the box, freezes timing recovery, and locks  
clock frequency for the transmitter. The master PHY makes a smooth transition to transmission from  
local clock to recovered clock after timing lock is achieved.  
Ring resiliency can be used in synchronous Ethernet systems, because the local clocks in each node are  
synchronized to a grandmaster clock.  
Note: For ring resiliency to successfully exchange master/slave timing over 1000BASE-T, the link partner must  
also support ring resiliency.  
3.6  
Automatic Media Sense Interface Mode  
Automatic media sense (AMS) mode automatically sets the media interface to Cat5 mode or SerDes  
mode. The active media mode chosen is based on the automatic media sense preferences set in the  
device register 23, bit 11. The following illustration shows a block diagram of AMS functionality on ports 0  
through 3 of the VSC8504-01 device.  
Figure 19 • Automatic Media Sense Block Diagram  
PHY port_n  
Cat5  
MAC  
QSGMII/  
SGMII  
Serial MAC  
Auto Sense  
Logic  
TD  
RD  
SerDes  
SIGDET  
Fiber Optic  
Module  
When both the SerDes and Cat5 media interfaces attempt to establish a link, the preferred media  
interface overrides a linkup of the nonpreferred media interface. For example, if the preference is set for  
SerDes mode and Cat5 media establishes a link, Cat5 becomes the active media interface. However,  
after the SerDes media interface establishes a link, the Cat5 interface drops its link because the  
preference was set for SerDes mode. In this scenario, the SerDes preference determines the active  
media source until the SerDes link is lost. Also, Cat5 media cannot link up unless there is no SerDes  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
17  
Functional Descriptions  
media link established. The following table shows the possible link conditions based on preference  
settings.  
Table 4 •  
AMS Media Preferences  
Cat5 Linked,  
SerDes Linked, Both Cat5 and  
Preference Cat5 Linked,  
SerDes Linked,  
SerDes Attempts Cat5 Attempts  
SerDes Attempt  
to Link  
Setting  
SerDes  
Cat5  
Fiber Not Linked Cat5 Not Linked to Link  
to Link  
SerDes  
Cat5  
Cat5  
Cat5  
SerDes  
SerDes  
SerDes  
Cat5  
SerDes  
Cat5  
The status of the media mode selected by the AMS can be read from device register 20E1, bits 7:6. It  
indicates whether copper media, SerDes media, or no media is selected. Each PHY has four automatic  
media sense modes. The difference between the modes is based on the SerDes media modes:  
SGMII or QSGMII MAC to AMS and 1000BASE-X SerDes  
SGMII or QSGMII MAC to AMS and 100BASE-FX SerDes  
SGMII or QSGMII MAC to AMS and SGMII (protocol transfer)  
For more information about SerDes media mode functionality with AMS enabled, see SerDes Media  
Interface, page 13.  
3.7  
Reference Clock  
The device reference clock supports both 25 MHz and 125 MHz clock signals. The reference clock can  
be either differential or single-ended. If differential, it must be capacitively coupled and LVDS compatible.  
3.7.1  
Configuring the Reference Clock  
The REFCLK_SEL2 pin configures the reference clock speed. The following table shows the functionality  
and associated reference clock frequency.  
Table 5 •  
REFCLK Frequency Selection  
REFCLK_SEL2 Frequency  
0
1
25 MHz  
125 MHz  
3.7.2  
Single-Ended REFCLK Input  
To use a single-ended reference clock, an external resistor network is required. The purpose of the  
network is to limit the amplitude and to adjust the center of the swing. The configurations for a single-  
ended REFCLK, with the clock centered at 1 V and a 500 mV peak-to-peak swing, are shown in the  
following illustrations.  
Figure 20 • 2.5 V CMOS Single-Ended REFCLK Input Resistor Network  
VDD1A  
220  
REFCLK_P  
2.5 V  
CMOS  
REFCLK_N  
910 Ω  
VDD1A  
VSSA  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
18  
Functional Descriptions  
Figure 21 • 3.3 V CMOS Single-Ended REFCLK Input Resistor Network  
VDD1A  
270 Ω  
REFCLK_P  
3.3 V  
CMOS  
REFCLK_N  
430 Ω  
VDD1A  
VSSA  
Figure 22 • 5 V CMOS Single-Ended REFCLK Input Resistor Network  
VDD1A  
430 Ω  
300 Ω  
REFCLK_P  
5 V  
CMOS  
REFCLK_N  
VDD1A  
VSSA  
Note: A single-ended 25 MHz reference clock is not guaranteed to meet requirements for QSGMII MAC  
operation.  
3.7.3  
Differential REFCLK Input  
AC coupling is required when using a differential REFCLK. Differential clocks must be capacitively  
coupled and LVDS compatible. The following illustration shows the configuration.  
Figure 23 • AC Coupling for REFCLK Input  
REFCLK_P  
PHY Equivalent  
Termination Circuit  
0.1 µF  
50 Ω  
50 Ω  
VTT (Internal Voltage)  
REFCLK_N  
0.1 µF  
3.8  
Ethernet Inline Powered Devices  
The VSC8504-01 can detect legacy inline powered devices in Ethernet network applications. Inline  
powered detection capability is useful in systems that enable IP phones and other devices (such as  
wireless access points) to receive power directly from their Ethernet cable, similar to office digital phones  
receiving power from a private branch exchange (PBX) office switch over telephone cabling. This type of  
setup eliminates the need for an external power supply and enables the inline powered device to remain  
active during a power outage, assuming that the Ethernet switch is connected to an uninterrupted power  
supply, battery, back-up power generator, or other uninterruptable power source.  
For more information about legacy inline powered device detection, visit the Cisco Web site at  
www.cisco.com. The following illustration shows an example of an inline powered Ethernet switch  
application.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
19  
Functional Descriptions  
Figure 24 • Inline Powered Ethernet Switch Diagram  
Gigabit Switch  
Processor  
Control  
QSGMII/  
SGMII  
SMI  
Interface  
Inline,  
Power-Over-Ethernet  
(PoE)  
PHY_port0  
PHY_port1  
PHY_portn  
Power Supply  
Transformer  
Transformer  
Transformer  
RJ-45  
I/F  
RJ-45  
I/F  
RJ-45  
I/F  
Cat5  
Link  
Partner  
Link  
Partner  
Link  
Partner  
The following procedure describes the process that an Ethernet switch must perform to process inline  
power requests made by a link partner (LP) that is, in turn, capable of receiving inline power:  
1. Enable the inline powered device detection mode on each VSC8504-01 PHY using its serial  
management interface. Set register bit 23E1.10 to 1.  
2. Ensure that the VSC8504-01 autonegotiation enable bit (register 0.12) is also set to 1. In the  
application, the device sends a special fast link pulse (FLP) signal to the LP. Reading register  
bit 23E1.9:8 returns 00 during the search for devices that require power over Ethernet (PoE).  
3. The VSC8504-01 PHY monitors its inputs for the FLP signal looped back by the LP. An LP capable  
of receiving PoE loops back the FLP pulses when the LP is in a powered down state. This is  
reported when VSC8504-01 register bit 23E1.9:8 reads back 01. It can also be verified as an inline  
power detection interrupt by reading VSC8504-01 register bit 26.9, which should be a 1, and which  
is subsequently cleared and the interrupt de-asserted after the read. When an LP device does not  
loop back the FLP after a specific time, VSC8504-01 register bit 23E1.9:8 automatically resets to 10.  
4. If the VSC8504-01 PHY reports that the LP requires PoE, the Ethernet switch must enable inline  
power on this port, externally of the PHY.  
5. The PHY automatically disables inline powered device detection when the VSC8504-01 register bits  
23E1.9:8 automatically reset to 10, and then automatically changes to its normal autonegotiation  
process. A link is then autonegotiated and established when the link status bit is set (register bit 1.2  
is set to 1).  
6. In the event of a link failure (indicated when VSC8504-01 register bit 1.2 reads 0), it is  
recommended that the inline power be disabled to the inline powered device external to the PHY.  
The VSC8504-01 PHY disables its normal autonegotiation process and re-enables its inline  
powered device detection mode.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
20  
Functional Descriptions  
3.9  
IEEE 802.3af PoE Support  
The VSC8504-01 device is compatible with designs that are intended for use in systems that supply  
power to data terminal equipment (DTE) by means of the MDI or twisted pair cable, as described in IEEE  
802.3af Clause 33.  
3.10 ActiPHY Power Management  
In addition to the IEEE-specified power-down control bit (device register bit 0.11), the device also  
includes an ActiPHY power management mode for each PHY. This mode enables support for power-  
sensitive applications. It utilizes a signal-detect function that monitors the media interface for the  
presence of a link to determine when to automatically power-down the PHY. The PHY wakes up at a  
programmable interval and attempts to wake up the link partner PHY by sending a burst of FLP over  
copper media.  
The ActiPHY power management mode in the VSC8504-01 is enabled on a per-port basis during normal  
operation at any time by setting register bit 28.6 to 1.  
The following operating states are possible when ActiPHY mode is enabled:  
Low power state  
Link partner wake-up state  
Normal operating state (link-up state)  
The VSC8504-01 switches between the low power state and LP wake-up state at a programmable rate  
(the default is two seconds) until signal energy has been detected on the media interface pins. When  
signal energy is detected, the PHY enters the normal operating state. If the PHY is in its normal operating  
state and the link fails, the PHY returns to the low power state after the expiration of the link status time-  
out timer. After reset, the PHY enters the low power state.  
When autonegotiation is enabled in the PHY, the ActiPHY state machine operates as described. When  
autonegotiation is disabled and the link is forced to use 10BASE-T or 100BASE-TX modes while the  
PHY is in its low power state, the PHY continues to transition between the low power and LP wake-up  
states until signal energy is detected on the media pins. At that time, the PHY transitions to the normal  
operating state and stays in that state even when the link is dropped. When autonegotiation is disabled  
while the PHY is in the normal operation state, the PHY stays in that state when the link is dropped and  
does not transition back to the low power state.  
The following illustration shows the relationship between ActiPHY states and timers.  
Figure 25 • ActiPHY State Diagram  
Low Power State  
Signal Energy Detected on  
Media  
FLP Burst or  
Clause 37 Restart  
Signal Sent  
Sleep Timer Expires  
Timeout Timer Expires and  
Auto-negotiation Enabled  
Normal  
Operation State  
LP Wake-up  
State  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
21  
Functional Descriptions  
3.10.1 Low Power State  
In the low power state, all major digital blocks are powered down. However, the SMI interface (MDC,  
MDIO, and MDINT) functionality is provided.  
In this state, the PHY monitors the media interface pins for signal energy. The PHY comes out of low  
power state and transitions to the normal operating state when signal energy is detected on the media.  
This happens when the PHY is connected to one of the following:  
Autonegotiation-capable link partner  
Another PHY in enhanced ActiPHY LP wake-up state  
In the absence of signal energy on the media pins, the PHY periodically transitions from low-power state  
to LP wake-up state, based on the programmable sleep timer (register bits 20E1.14:13). The actual sleep  
time duration is randomized from –80 ms to 60 ms to avoid two linked PHYs in ActiPHY mode entering a  
lock-up state during operation.  
3.10.2 Link Partner Wake-Up State  
In the link partner wake-up state, the PHY attempts to wake up the link partner. Up to three complete FLP  
bursts are sent on alternating pairs A and B of the Cat5 media for a duration based on the wake-up timer,  
which is set using register bits 20E1.12:11.  
In this state, SMI interface (MDC, MDIO, and MDINT) functionality is provided.  
After sending signal energy on the relevant media, the PHY returns to the low power state.  
3.10.3 Normal Operating State  
In the normal operating state, the PHY establishes a link with a link partner. When the media is  
unplugged or the link partner is powered down, the PHY waits for the duration of the programmable link  
status time-out timer, which is set using register bit 28.7 and bit 28.2. It then enters the low power state.  
3.11 Media Recovered Clock Outputs  
For Synchronous Ethernet applications, the VSC8504-01 includes two recovered clock output pins,  
RCVRDCLK1 and RCVRDCLK2, controlled by registers 23G and 24G, respectively. The recovered clock  
pins are synchronized to the clock of the active media link.  
To enable recovered clock output, set register 23G or 24G, bit 15, to 1. By default, the recovered clock  
output pins are disabled and held low, including when NRESET is asserted. Registers 23G and 24G also  
control the PHY port for clock output, the clock source, the clock frequency (either 25 MHz, 31.25 MHz,  
or 125 MHz), and squelch conditions.  
Note: When EEE is enabled on a link, the use of the recovered clock output is not recommended due to long  
holdovers occurring during EEE Quiet/Refresh cycles.  
3.11.1 Clock Selection Settings  
On each pin, the recovered clock supports the following sources, as set by registers 23G or 24G, bits 2:0:  
Fiber SerDes media recovered clock  
Copper PHY recovered clock  
Copper PHY media transmitter TCLK output (RCVRDCLK1 only.) For more information, see  
Table 68, page 75 and Table 69, page 75.  
Note: When using the automatic media sense feature, the recovered clock output cannot automatically change  
between each active media. Changing the media source must be managed through the recovered clock  
register settings.  
Adjust the squelch level to enable 1000BASE-T master mode recovered clock for SyncE operation. This  
is accomplished by changing the 23G and 24G register bits 5:4 to 01. This setting also provides clock out  
for 10BASE-T operation. For 1000BASE-T master mode, the clock is based on the VSC8504-01  
REFCLK input, which is a local clock.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
22  
Functional Descriptions  
3.11.2 Clock Output Squelch  
Under certain conditions, the PHY outputs a clock based on the REFCLK_P and REFCLK_N pins, such  
as when there is no link present or during autonegotiation. To prevent an undesirable clock from  
appearing on the recovered clock pins, the VSC8504-01 squelches, or inhibits, the clock output based on  
any of the following criteria:  
No link is detected (the link status register 1, bit 2 = 0). In fiber media modes, sync status is required  
to unsquelch the recovered clock output instead of link status.  
The link is found to be unstable using the fast link failure detection feature. The  
GPIO9/FASTLINK-FAIL pin is asserted high when enabled.  
The active link is in 10BASE-T or in 1000BASE-T master mode. These modes produce unreliable  
recovered clock sources.  
CLK_SQUELCH_IN is enabled to squelch the clock.  
Use registers 23G or 24G, bits 5:4 to configure the clock squelch criteria. These registers can also  
disable the squelch feature. The CLK_SQUELCH_IN pin controls the squelching of the clock. Both  
RCVRDCLK1 and RCVRDCLK2 are squelched when the CLK_SQUELCH_IN pin is high.  
3.12 Serial Management Interface  
The VSC8504-01 device includes an IEEE 802.3-compliant serial management interface (SMI) that is  
affected by use of its MDC and MDIO pins. The SMI provides access to device control and status  
registers. The register set that controls the SMI consists of 32 16-bit registers, including all required  
IEEE-specified registers. Also, there are additional pages of registers accessible using device register  
31.  
Energy efficient Ethernet control registers are available through the SMI using Clause 45 registers and  
Clause 22 register access in registers 13 through 14. For more information, see Table 7, page 25 and  
Table 72, page 76.  
The SMI is a synchronous serial interface with input data to the VSC8504-01 on the MDIO pin that is  
clocked on the rising edge of the MDC pin. The output data is sent on the MDIO pin on the rising edge of  
the MDC signal. The interface can be clocked at a rate from 0 MHz to 12.5 MHz, depending on the total  
load on MDIO. An external 2-kΩ pull-up resistor is required on the MDIO pin.  
3.12.1 SMI Frames  
Data is transferred over the SMI using 32-bit frames with an optional, arbitrary-length preamble. Before  
the first frame can be sent, at least two clock pulses on MDC must be provided with the MDIO signal at  
logic one to initialize the SMI state machine. The following illustrations show the SMI frame format for  
read and write operations.  
Figure 26 • SMI Read Frame  
Station manager drives MDIO  
PHY drives MDIO  
MDC  
MDIO  
Z
Z
1
0
1
1
0
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
Z
0
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Z
Z
Preamble  
(optional)  
Register Data  
from PHY  
Register Address  
to PHY  
Idle  
SFD Read  
PHY Address  
TA  
Idle  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
23  
Functional Descriptions  
Figure 27 • SMI Write Frame  
Station manager drives MDIO (PHY tri-states MDIO during the entire sequence)  
MDC  
MDIO  
Z
Z
1
0
1
0
1
A4 A3 A2 A1 A0 R4 R3 R2 R1 R0  
1
0
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Z
Z
Preamble  
(optional)  
Register Data  
to PHY  
Register Address  
to PHY  
Idle  
SFD Write  
PHY Address  
TA  
Idle  
The following list provides additional information about the terms used in the SMI read and write timing  
diagrams.  
Idle During idle, the MDIO node goes to a high-impedance state. This allows an external pull-up  
resistor to pull the MDIO node up to a logical 1 state. Because the idle mode does not contain any  
transitions on MDIO, the number of bits is undefined during idle.  
Preamble By default, preambles are not expected or required. The preamble is a string of ones. If  
it exists, the preamble must be at least 1 bit; otherwise, it can be of an arbitrary length.  
Start of Frame (SFD) A pattern of 01 indicates the start of frame. If the pattern is not 01, all  
following bits are ignored until the next preamble pattern is detected.  
Read or Write Opcode A pattern of 10 indicates a read. A 01 pattern indicates a write. If the bits  
are not either 01 or 10, all following bits are ignored until the next preamble pattern is detected.  
PHY Address The particular VSC8504-01 responds to a message frame only when the received  
PHY address matches its physical address. The physical address is 5 bits long (4:0).  
Register Address The next five bits are the register address.  
Turnaround The two bits used to avoid signal contention when a read operation is performed on  
the MDIO are called the turnaround (TA) bits. During read operations, the VSC8504-01 drives the  
second TA bit, a logical 0.  
Data The 16-bits read from or written to the device are considered the data or data stream. When  
data is read from a PHY, it is valid at the output from one rising edge of MDC to the next rising edge  
of MDC. When data is written to the PHY, it must be valid around the rising edge of MDC.  
Idle The sequence is repeated.  
3.12.2 SMI Interrupt  
The SMI includes an output interrupt signal, MDINT, for signaling the station manager when certain  
events occur in the VSC8504-01.  
The MDINT pin can be configured for open-drain (active-low) by tying the pin to a pull-up resistor and to  
VDDIO. The following illustration shows this configuration.  
Figure 28 • MDINT Configured as an Open-Drain (Active-Low) Pin  
External Pull-up  
Resistor at the  
VDDIO  
Station Manager  
for Open-drain  
(Active-low Mode)  
PHY_n  
Interrupt Pin Enable  
(Register 25.15)  
MDINT  
(to the Station  
Manager)  
MDINT  
Interrupt Pin Status  
(Register 26.15)  
Alternatively, the MDINT pin can be configured for open-source (active-high) by tying the pin to a pull-  
down resistor and to VSS. The following illustration shows this configuration.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
24  
Functional Descriptions  
Figure 29 • MDINT Configured as an Open-Source (Active-High) Pin  
VDDIO  
Interrupt Pin Enable  
(Register 25.15)  
MDINT  
(to the Station  
Manager)  
External Pull-down  
at the Station  
MDINT  
Interrupt Pin Status  
(Register 26.15)  
PHY_n  
Manager  
For Open-source  
(Active-high Mode)  
When a PHY generates an interrupt, the MDINT pin is asserted (driven high or low, depending on resistor  
connection) if the interrupt pin enable bit (MII register 25.15) is set.  
3.13 LED Interface  
The LED interface supports the following configurations: direct drive, basic serial LED mode, and  
enhanced serial LED mode. The polarity of the LED outputs is programmable and can be changed  
through register 17E2, bits 13:10. The default polarity is active low.  
Direct drive mode provides four LED signals per port, LED0_[0:3] through LED3_[0:3]. The mode and  
function of each LED signal can be configured independently. When serial LED mode is enabled, the  
direct drive pins not used by the serial LED interface remain available.  
In basic serial LED mode, all signals that can be displayed on LEDs are sent as LED_Data and  
LED_CLK for external processing. In enhanced serial LED mode, up to four LED signals per port can be  
sent as LED_Data, LED_CLK, LED_LD, and LED_Pulse. The following sections provide detailed  
information about the various LED modes.  
Note: LED number is listed using the convention, LED<LED#>_<Port#>.  
The following table shows the bit 9 settings for register 14G that are used to control the LED behavior for  
all the LEDs in VSC8504-01.  
Table 6 •  
LED Drive State  
Setting  
Active  
Ground  
Ground  
Not Active  
Tristate  
VDD  
14G.9 = 1 (default)  
14G.9 = 0 (alternate setting)  
3.13.1 LED Modes  
Each LED pin can be configured to display different status information that can be selected by setting the  
LED mode in register 29. The modes listed in the following table are equivalent to the setting used in  
register 29 to configure each LED pin. The default LED state is active low and can be changed by  
modifying the value in register 17E2, bits 13:10. The blink/pulse-stretch is dependent on the LED  
behavior setting in register 30.  
The following table provides a summary of the LED modes and functions.  
Table 7 •  
LED Mode and Function Summary  
Mode Function Name  
Link/Activity  
LED State and Description  
0
1: No link in any speed on any media interface.  
0: Valid link at any speed on any media interface.  
Blink or pulse-stretch = Valid link at any speed on any media  
interface with activity present.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
25  
Functional Descriptions  
Table 7 •  
LED Mode and Function Summary (continued)  
Mode Function Name  
LED State and Description  
1
2
3
4
Link1000/Activity  
1: No link in 1000BASE-T or 1000BASE-X.  
0: Valid 1000BASE-T or 1000BASE-X.  
Blink or pulse-stretch = Valid 1000BASE-T or 1000BASE-X  
link with activity present.  
Link100/Activity  
Link10/Activity  
1: No link in 100BASE-TX or 100BASE-FX.  
0: Valid 100BASE-TX or 100BASE-FX.  
Blink or pulse-stretch = Valid 100BASE-TX or 100BASE-FX  
link with activity present.  
1: No link in 10BASE-T.  
0: Valid 10BASE-T link.  
Blink or pulse-stretch = Valid 10BASE-T link with activity  
present.  
Link100/1000/Activity  
1: No link in 100BASE-TX, 100BASE-FX, 1000BASE-X, or  
1000BASE-T.  
0: Valid 100BASE-TX, 100BASE-FX, 1000BASE-X, or  
1000BASE-T link. Blink or pulse-stretch = Valid 100BASE-TX,  
100BASE-FX, 1000BASE-X, or 1000BASE-T link with activity  
present.  
5
6
7
8
Link10/1000/Activity  
Link10/100/Activity  
1: No link in 10BASE-T, 1000BASE-X, or 1000BASE-T.  
0: Valid 10BASE-T, 1000BASE-X, or 1000BASE-T link.  
Blink or pulse-stretch = Valid 10BASE-T, 1000BASE-X, or  
1000BASE-T link with activity present.  
1: No link in 10BASE-T, 100BASE-FX, or 100BASE-TX.  
0: Valid 10BASE-T, 100BASE-FX, or 100BASE-TX link.  
Blink or pulse-stretch = Valid 10BASE-T, 100BASE-FX, or  
100BASE-TX link with activity present.  
Link100BASE-FX/1000BAS 1: No link in 100BASE-FX or 1000BASE-X.  
E-X/Activity  
0: Valid 100BASE-FX or 1000BASE-X link.  
Blink or pulse-stretch = Valid 100BASE-FX or 1000BASE-X  
link with activity present.  
Duplex/Collision  
1: Link established in half-duplex mode, or no link established.  
0: Link established in full-duplex mode.  
Blink or pulse-stretch = Link established in half-duplex mode  
but collisions are present.  
9
Collision  
Activity  
1: No collision detected.  
Blink or pulse-stretch = Collision detected.  
10  
1: No activity present.  
Blink or pulse-stretch = Activity present (becomes TX activity  
present when register bit 30.14 is set to 1).  
11  
100BASE-FX/1000BASE-X 1: No 100BASE-FX or 1000BASE-X activity present.  
Fiber Activity  
Blink or pulse-stretch = 100BASE-FX or 1000BASE-X activity  
present (becomes RX activity present when register bit 30.14  
is set to 1).  
12  
13  
Autonegotiation Fault  
Serial Mode  
1: No autonegotiation fault present.  
0: Autonegotiation fault occurred.  
Serial stream. See Basic Serial LED Mode, page 28. Only  
relevant on PHY port 0 and reserved in others.  
14  
15  
Force LED Off  
Force LED On  
1: De-asserts the LED(1)  
0: Asserts the LED(1)  
.
.
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
26  
Functional Descriptions  
1. Setting this mode suppresses LED blinking after reset.  
3.13.2 Extended LED Modes  
In addition to the LED modes in register 29, there are also additional LED modes that are enabled on the  
LED0_[3:0] pins whenever the corresponding register 19E1, bits 15 to 12 are set to 1. Each of these bits  
enables extended modes on a specific LED pin and these extended modes are shown in the following  
table. For example, LED0 = mode 17 means that register 19E1 bit 12 = 1 and register 29 bits 3 to  
0 = 0001.  
The following table provides a summary of the extended LED modes and functions.  
Table 8 •  
Extended LED Mode and Function Summary  
Mode Function Name  
LED State and Description  
16  
17  
18  
19  
Link1000BASE-X Activity 1: No link in 1000BASE-X.  
0: Valid 1000BASE-X link.  
Link100BASE-FX Activity 1: No link in 100BASE-FX.  
0: Valid 100BASE-FX link.  
1000BASE-X Activity  
1: No 1000BASE-X activity present.  
Blink or pulse-stretch = 1000BASE-X activity present.  
100BASE-FX Activity  
1: No 100BASE-FX activity present.  
Blink or pulse-stretch = 100BASE-FX activity present.  
20  
21  
22  
Force LED Off  
Force LED On  
Fast Link Fail  
1: De-asserts the LED.  
0: Asserts the LED. LED pulsing is disabled in this mode.  
1: Enable fast link fail on the LED pin  
0: Disable  
3.13.3 LED Behavior  
Several LED behaviors can be programmed into the VSC8504-01. Use the settings in register 30 and  
19E1 to program LED behavior, which includes the following.  
LED Combine Enables an LED to display the status for a combination of primary and secondary  
modes. This can be enabled or disabled for each LED pin. For example, a copper link running in  
1000BASE-T mode and activity present can be displayed with one LED by configuring an LED pin to  
Link1000/Activity mode. The LED asserts when linked to a 1000BASE-T partner and also blinks or  
performs pulse-stretch when activity is either transmitted by the PHY or received by the Link Partner.  
When disabled, the combine feature only provides status of the selected primary function. In this  
example, only Link1000 asserts the LED, and the secondary mode, activity, does not display when the  
combine feature is disabled.  
LED Blink or Pulse-Stretch This behavior is used for activity and collision indication. This can be  
uniquely configured for each LED pin. Activity and collision events can occur randomly and intermittently  
throughout the link-up period. Blink is a 50% duty cycle oscillation of asserting and de-asserting an LED  
pin. Pulse-stretch guarantees that an LED is asserted and de-asserted for a specific period of time when  
activity is either present or not present. These rates can also be configured using a register setting.  
Rate of LED Blink or Pulse-Stretch This behavior controls the LED blink rate or pulse-stretch length  
when blink/pulse-stretch is enabled on an LED pin. The blink rate, which alternates between a high and  
low voltage level at a 50% duty cycle, can be set to 2.5 Hz, 5 Hz, 10 Hz, or 20 Hz. For pulse-stretch, the  
rate can be set to 50 ms, 100 ms, 200 ms, or 400 ms. The blink rate selection for PHY0 globally sets the  
rate used for all LED pins on all PHY ports.  
LED Pulsing Enable To provide additional power savings, the LEDs (when asserted) can be pulsed at  
5 kHz, 20% duty cycle.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
27  
Functional Descriptions  
LED Blink After Reset The LEDs will blink for one second after power-up and after any time all resets  
have been de-asserted. This can be disabled through register 19E1, bit 11 = 0.  
Fiber LED Disable This bit controls whether the LEDs indicate the fiber and copper status (default) or  
the copper status only.  
Pulse Programmable Control These bits add the ability to width and frequency of LED pulses. This  
feature facilitates power reduction options.  
Fast Link Failure For more information about this feature, see Fast Link Failure Indication, page 29.  
3.13.4 Basic Serial LED Mode  
Optionally, the VSC8504-01 can be configured so that access to all its LED signals is available through  
two pins. This option is enabled by setting LED0 on PHY0 to serial LED mode in register 29, bits 3:0 to  
0xD. When serial LED mode is enabled, the LED0_0 pin becomes the serial data pin, and the LED1_0  
pin becomes the serial clock pin. All other LED pins can still be configured normally. The serial LED  
mode clocks the 48 LED status bits on the rising edge of the serial clock.  
The LED behavior settings can also be used in serial LED mode. The controls are used on a per-PHY  
basis, where the LED combine and LED blink or pulse-stretch setting of LED0_n for each PHY is used to  
control the behavior of each bit of the serial LED stream for each corresponding PHY. To configure LED  
behavior, set device register 30.  
The following table shows the 48-bit serial output bitstream of each LED signal. The individual signals  
can be clocked in the following order.  
Table 9 •  
LED Serial Bitstream Order  
Output  
PHY0 PHY1 PHY2 PHY3  
Link/activity  
Link1000/activity  
Link100/activity  
Link10/activity  
Fiber link/activity  
Duplex/collision  
Collision  
1
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
2
3
4
5
6
7
Activity  
8
Fiber activity  
Tx activity  
9
10  
11  
Rx activity  
Autonegotiation fault 12  
3.13.5 Enhanced Serial LED Mode  
VSC8504-01 can be configured to output up to four LED signals per port on a serial stream that can be  
de-serialized externally to drive LEDs on the system board. In enhanced serial LED mode, the port 0 and  
port 1 LED output pins serve the following functions:  
LED0_0/LED0_1: LED_DATA  
LED1_0/LED1_1: LED_CLK  
LED2_0/LED2_1: LED_LD  
LED3_0/LED3_1: LED_PULSE  
The serial LED_DATA is shifted out on the falling edge of LED_CLK and is latched in the external  
serial-to-parallel converter on the rising edge of LED_CLK. The falling edge of LED_LD signal can be  
used to shift the data from the shift register in the converter to the parallel output drive register. When a  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
28  
Functional Descriptions  
separate parallel output drive register is not used in the external serial-to-parallel converter, the LEDs will  
blink at a high frequency as the data bits are being shifted through, which may be undesirable. LED pin  
functionality is controlled by setting register 25G, bits 7:1.  
The LED_PULSE signal provides a 5 kHz pulse stream whose duty cycle can be modulated to turn on/off  
LEDs at a high rate. This signal can be tied to the output enable signal of the serial-to-parallel converter  
to provide the LED dimming functionality to save energy. The LED_PULSE duty cycle is controlled by  
setting register 25G, bits 15:8.  
3.13.6 LED Port Swapping  
For additional hardware configurations, the VSC8504-01 can have its LED port order swapped. This is a  
useful feature to help simplify PCB layout design. Register 25G bit 0 controls the LED port swapping  
mode.  
Note: LED port swapping only applies to the parallel LED outputs and does not affect the serial LED outputs.  
3.14 Fast Link Failure Indication  
To aid Synchronous Ethernet applications, the VSC8504-01 can indicate the onset of a link failure in less  
than 1 ms (worst-case <3 ms). By comparison, the IEEE 802.3 standard establishes a delay of up to  
750 ms before indicating that a 1000BASE-T link is no longer present. A fast link failure indication is  
critical to support ports used in a synchronization timing link application. The fast link failure indication  
works for all copper media speeds, but not for fiber media. Fast link failure is supported for each PHY  
port through the GPIO9/FASTLINK-FAIL pin.  
Note: For all links except 1000BASE-T, the fast link failure indication matches the link status register (address  
1, bit 2). For 1000BASE-T links, the link failure is based on a circuit that analyzes the integrity of the link,  
and at the indication of failure, will assert.  
Note: The Fast Link Failure Indication should not be used when EEE is enabled on a link.  
3.15 Integrated Two-Wire Serial Multiplexer  
The VSC8504-01 includes an integrated quad two-wire serial multiplexer (MUX), eliminating the need for  
an external two-wire serial device for the control and status of SFP or PoE modules. There are five  
two-wire serial controller pins: four clocks and one shared data pin. Each SFP or PoE connects to the  
multipurpose GPIO[7:4]_I2C_SCL_[3:0] and GPIO8/I2C_SDA device pins, which must be configured to  
the corresponding two-wire serial function. For more information about configuring the pins, see  
Two-Wire Serial MUX Control 1, page 83. For SFP modules, VSC8504-01 can also provide control for  
the MODULE_DETECT and TX_DIS module pins using the multipurpose LED and GPIO pins.  
Figure 30 • Two-Wire Serial MUX with SFP Control and Status  
SDA  
SFP0  
SCL  
Management  
Interface  
SDA  
SFP1  
MDC  
SCL  
Integrated I2C  
Mux  
MDIO  
SDA  
SCL  
GPIO4/I2C_SCL_0  
GPIO5/I2C_SCL_1  
GPIO6/I2C_SCL_2  
GPIO7/I2C_SCL_3  
SFP2  
SFP3  
GPIO8/I2C_SDA  
SDA  
SCL  
PHY  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
29  
Functional Descriptions  
3.15.1 Read/Write Access Using the Two-Wire Serial MUX  
Using the integrated two-wire serial MUX, the VSC8504-01 device can read and write to an SFP or PoE  
module through the SCL and SDA pins. If the ability is required to write to the slave two-wire serial  
device, refer to the device's specific datasheet for more information.  
Note: The VSC8504-01 device does not automatically increment the two-wire serial address. Each desired  
address must be intentionally set.  
Main control of the integrated two-wire serial MUX is available through register 20G. The two-wire serial  
MUX pins are enabled or disabled using register 20G bits 3:0. Register 20G bits 15:9 set the two-wire  
serial device address (the default is 0xA0). Using register 20G bits 5:4, the two-wire serial frequency can  
be changed from 100 kHz to other speeds, such as 50 kHz, 100 kHz (the default), 400 kHz, and 2 MHz.  
Registers 21G and 22G provide status and control of the read/write process. The following illustration  
shows the read and write register flow.  
Figure 31 • Two-Wire Serial MUX Read and Write Register Flow  
Start  
21G.15 = 0  
Wait for  
Ready  
Read Data =  
22G.15:8  
21G.9 = 1  
21G.15 = 1  
21G.15 = 1  
21G.11:10 = PHY port to Write  
21G.7:0 = Address to Write  
21G.8 = 1  
Write  
SFP  
Data  
Wait for  
Ready  
Read or Write  
22G.7:0 = Data to Write  
21G.15 = 0  
Read SFP Data  
21G.11:10 = PHY port to Read  
21G.7:0 = Address to Read  
21G.8 = 1  
21G.9 = 1  
To read a value from a specific address of the two-wire serial slave device:  
1. Read the VSC8504-01 device register 21G bit 15, and ensure that it is set.  
2. Write the PHY port address to be read to register 21G bits 11:10.  
3. Write the two-wire serial address to be read to register 21G bits 7:0.  
4. Set both register 21G bits 8 and 9 to 1.  
5. When register 21G bit 15 changes to 1, read the 8-bit data value found at register 22G bits 15:8.  
This is the contents of the address just read by the PHY.  
To write a value to a specific address of the two-wire serial slave device:  
1. Read the VSC8504-01 device register 21G bit 15 and ensure that it is set.  
2. Write the PHY port address to be written to register 21G bits 11:10.  
3. Write the address to be written to register 21G bits 7:0.  
4. Set register 21 bit 8 to 0.  
5. Set register 22G bits 7:0 with the 8-bit value to be written to the slave device.  
6. Set register 21G bit 9 to 1.  
To avoid collisions during read and write transactions on the two-wire serial bus, always wait until register  
21G bit 15 changes to 1 before performing another two-wire serial read or write operation.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
30  
Functional Descriptions  
3.16 GPIO Pins  
The VSC8504-01 provides 18 multiplexed general purpose input/output (GPIO) pins. All device GPIO  
pins and their behavior are controlled using registers. The following table shows an overview of the  
register controls for GPIO pins. For more information, see General Purpose Registers, page 78.  
Table 10 • Register Bits for GPIO Control and Status  
GPIO Pin  
GPIO_ctrl  
13G.1:0  
GPIO Input GPIO Output GPIO Output Enable  
GPIO0/SIGDET0  
GPIO1/SIGDET1  
GPIO2/SIGDET2  
GPIO3/SIGDET3  
GPIO4/I2C_SCL_0  
GPIO5/I2C_SCL_1  
GPIO6/I2C_SCL_2  
GPIO7/I2C_SCL_3  
GPIO8/I2C_SDA  
GPIO9/FASTLINK_FAIL  
15G.0  
15G.1  
15G.2  
15G.3  
15G.4  
15G.5  
15G.6  
15G.7  
15G.8  
15G.9  
16G.0  
16G.1  
16G.2  
16G.3  
16G.4  
16G.5  
16G.6  
16G.7  
16G.8  
16G.9  
17G.0  
17G.1  
17G.2  
17G.3  
17G.4  
17G.5  
17G.6  
17G.7  
17G.8  
17G.9  
13G.3:2  
13G.5:4  
13G.7:6  
13G.9:8.  
13G.11:10  
13G.13:12  
13G.15:14  
14G.1:0  
14G.3:2  
3.17 Testing Features  
The VSC8504-01 device includes several testing features designed to facilitate performing system-level  
debugging and in-system production testing. This section describes the available features.  
3.17.1 Ethernet Packet Generator  
The Ethernet packet generator (EPG) can be used at each of the 10/100/1000BASE-T speed settings for  
copper Cat5 media and fiber media to isolate problems between the MAC and the VSC8504-01, or  
between a locally connected PHY and its remote link partner. Enabling the EPG feature effectively  
disables all MAC interface transmit pins and selects the EPG as the source for all data transmitted onto  
the twisted pair interface. This feature is not used when the SerDes media is set to pass-through mode.  
Important The EPG is intended for use with laboratory or in-system testing equipment only. Do not use  
the EPG testing feature when the VSC8504-01 is connected to a live network.  
To enable the VSC8504-01 EPG feature, set the device register bit 29E1.15 to 1.  
When the EPG is enabled, packet loss occurs during transmission of packets from the MAC to the PHY.  
However, the PHY receive output pins to the MAC are still active when the EPG is enabled. When it is  
necessary to disable the MAC receive pins as well, set the register bit 0.10 to 1.  
When the device register bit 29E1.14 is set to 1, the PHY begins transmitting Ethernet packets based on  
the settings in registers 29E1 and 30E1. These registers set:  
Source and destination addresses for each packet  
Packet size  
Interpacket gap  
FCS state  
Transmit duration  
Payload pattern  
When register bit 29E1.13 is set to 0, register bit 29E1.14 is cleared automatically after 30,000,000  
packets are transmitted.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
31  
Functional Descriptions  
3.17.2 CRC Counters  
Two sets of cyclical redundancy check (CRC) counters are available in all PHYs in VSC8504-01. One set  
monitors traffic on the copper interface and the other set monitors traffic on the SerDes interface.  
The device CRC counters operate in the 100BASE-FX/1000BASE-X over SerDes mode as well as in the  
10/100/1000BASE-T mode as follows:  
After receiving a packet on the media interface, register bit 15 in register 18E1 or register 28E3 is set and  
cleared after being read.  
The packet then is counted by either the good CRC counter or the bad CRC counter.  
Both CRC counters are also automatically cleared when read.  
The good CRC counter’s highest value is 9,999 packets. After this value is reached, the counter clears  
on the 10,000th packet and continues to count additional packets beyond that value. The bad CRC  
counter stops counting when it reaches its maximum counter limit of 255 packets.  
3.17.2.1 Copper Interface CRC Counters  
Two separate CRC counters are available and reside between the copper interface PCSs and SerDes  
MAC interface. There is a 14-bit good CRC counter available through register bits 18E1.13:0 and a  
separate 8-bit bad CRC counter available in register bits 23E1.7:0.  
3.17.2.2 SerDes Interface CRC Counters  
Two separate CRC counters are available and reside between the SerDes media interface PCSs and  
SerDes MAC interface. There is a 14-bit good CRC counter available through register bits 28E3.13:0 and  
a separate 8-bit bad CRC counter available in register bits 29E3.7:0.  
3.17.2.3 SerDes Fiber Media Transmit Counters  
Two fiber media transmit counters are available to verify packets being transmitted on the fiber media.  
Register bits 21E3.13:0 are the good CRC packet counters and register bits 22E3.7:0 are the CRC error  
counters.  
3.17.3 Far-End Loopback  
The far-end loopback testing feature is enabled by setting register bit 23.3 to 1. When enabled, it forces  
incoming data from a link partner on the current media interface, into the MAC interface of the PHY, to be  
retransmitted back to the link partner on the media interface as shown in the following illustration. In  
addition, the incoming data also appears on the receive data pins of the MAC interface. Data present on  
the transmit data pins of the MAC interface is ignored when using this testing feature.  
Figure 32 • Far-End Loopback Diagram  
PHY_port_n  
RX  
RXD  
TXD  
Link Partner  
MAC  
TX  
3.17.4 Near-End Loopback  
When the near-end loopback testing feature is enabled, transmitted data (TXD) is looped back in the  
PCS block onto the receive data signals (RXD), as shown in the following illustration. When using this  
testing feature, no data is transmitted over the network. To enable near-end loopback, set the device  
register bit 0.14 to 1.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
32  
Functional Descriptions  
Figure 33 • Near-End Loopback Diagram  
PHY_port_n  
RX  
RXD  
TXD  
Link Partner  
TX  
MAC  
3.17.5 Connector Loopback  
The connector loopback testing feature allows the twisted pair interface to be looped back externally.  
When using this feature, the PHY must be connected to a loopback connector or a loopback cable.  
Connect pair A to pair B, and pair C to pair D, as shown in the following illustration. The connector  
loopback feature functions at all available interface speeds.  
Figure 34 • Connector Loopback Diagram  
A
B
C
D
RXD  
TXD  
Cat5  
PHY_port_n  
MAC  
When using the connector loopback testing feature, the device autonegotiation, speed, and duplex  
configuration is set using device registers 0, 4, and 9. For 1000BASE-T connector loopback, the  
following additional writes are required. Execute the additional writes in the following order:  
1. Enable the 1000BASE-T connector loopback. Set register bit 24.0 to 1.  
2. Disable pair swap correction. Set register bit 18.5 to 1.  
3.17.6 SerDes Loopbacks  
For test purposes, the SerDes and SerDes macro interfaces provides several data loops. The following  
illustration shows the SerDes loopbacks.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
33  
Functional Descriptions  
Figure 35 • Data Loops of the SerDes Macro  
n
bit IF  
n
bit IF  
SLIVER  
Digital interface, configuration, and control  
logic including synchronous Ethernet clock tree  
D
Q >  
Facility Loop  
HS-ref. clock  
HS-ref. clock  
RC-PLL  
DES  
n:1  
SER  
1:n  
Equipment-Loop  
Input-Loop  
OB  
IB  
Analog Services Modules  
(BIAS, clk tree buffers,  
ESD protection  
)
RX  
TX  
3.17.6.1 SGMII Mode  
When the MAC interface is configured in SGMII mode, write the following 16-bit value to register 18G:  
Bits 15:12 0x9  
Bits 11:8: Port address (0x0 to 0x3)  
Bits 7:4: Loopback type  
Bits 3:0: 0x2  
where loopback type is:  
0x0: No loopback  
0x2: Input loopback  
0x4: Facility loopback  
0x8: Equipment loopback  
3.17.6.2 QSGMII Mode  
When the MAC interface is configured in QSGMII mode, write the following 16-bit value to register 18G:  
Bits 15:12 0x9  
Bits 11:8: Port address (0x0)  
Bits 7:4: Loopback type  
Bits 3:0: 0x2  
where loopback type is:  
0x0: No loopback  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
34  
Functional Descriptions  
0x2: Input loopback  
0x4: Facility loopback  
0x8: Equipment loopback  
Note: Loopback configuration affects all ports associated with a QSGMII. Individual port loopback within a  
QSGMII is not possible.  
3.17.6.3 Fiber Media Port Mode  
When the SerDes is configured as a fiber media port, write the following 16-bit value to register 18G:  
Bits 15:12: 0x8  
Bits 11:8: Port address  
Bits 7:4: Loopback type  
Bits 3:0: 0x2  
where port address is:  
0x1: Fiber0 port  
0x2: Fiber1 port  
0x4: Fiber2 port  
0x8: Fiber3 port  
Port addresses for fiber media SerDes can be OR'ed together to address multiple ports using a single  
command. bit 18G.15 will be cleared when the internal configuration is complete.  
3.17.6.4 Facility Loop  
The recovered and de-multiplexer deserializer data output is looped back to the serializer data input and  
replaces the data delivered by the digital core. This test loop provides the possibility to test the complete  
analog macro data path from outside including input buffer, clock and data recovery, serialization and  
output buffer. The data received by the input buffer must be transmitted by the output buffer after some  
delay.  
Additional configuration of the macro is required for facility loopback mode. When entering facility  
loopback mode, the set = 1 option should be run; when exiting facility loopback mode, the set = 0 option  
should be run.  
PhyWrite(PhyBaseAddr, 31, 0x0010);  
PhyWrite(PhyBaseAddr, 18, 0x8s03);  
// where “s” is the physical address of the SerDes macro  
PhyWrite(PhyBaseAddr, 18, 0xd7cb);  
PhyWrite(PhyBaseAddr, 18, 0x8007);  
tmp1 = PhyRead(PhyBaseAddr, 18);  
tmp2 = tmp1 & 0x0ff0;  
if (set)  
tmp3 = tmp2 | 0x0010;  
else  
tmp3 = tmp2 & 0x0fe0;  
tmp4 = tmp3 | 0x8006;  
PhyWrite(PhyBaseAddr, 18, tmp4);  
if (SGMII)  
PhyWrite(PhyBaseAddr, 18, 0x9p40);  
// where “p” is the logical address of the SGMII interface  
else  
PhyWrite(PhyBaseAddr, 18, 0x8p40);  
// where “p” is the logical address of the Fiber media interface  
// PhyBaseAddr is the 5-bit base address of the internal PHYs.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
35  
Functional Descriptions  
// The upper 3 bits are set by the PHYADD[4:2] pins and the  
// lower 2 bits are 0.  
Additional configuration of the enhanced SerDes macro is required for facility loopback mode. When  
entering facility loopback mode, the set = 1 option should be run; when exiting facility loopback mode,  
the set = 0 option should be run.  
PhyWrite(PhyBaseAddr, 31, 0x0010);  
PhyWrite(PhyBaseAddr, 18, 0x8013);  
PhyWrite(PhyBaseAddr, 18, 0xd7cb);  
PhyWrite(PhyBaseAddr, 18, 0x8007);  
tmp1 = PhyRead(PhyBaseAddr, 18);  
tmp2 = tmp1 & 0x0ff0;  
if (set)  
tmp3 = tmp2 | 0x0100;  
else  
tmp3 = tmp2 & 0x0ef0;  
tmp4 = tmp3 | 0x8006;  
PhyWrite(PhyBaseAddr, 18, tmp4);  
PhyWrite(PhyBaseAddr, 18, 0x9c40);  
// PhyBaseAddr is the 5-bit base address of the internal PHYs.  
// The upper 3 bits are set by the PHYADD[4:2] pins and the  
// lower 2 bits are 0.  
3.17.6.5 Equipment Loop  
The 1-bit data stream at the serializer output is looped back to the deserializer and replaces the received  
data stream from the input buffer. This test loop provides the possibility to verify the digital data path  
internally. The transmit data goes through the serialization, the clock and data recovery and  
deserialization before the data is fed back to the digital core.  
Note: After entering equipment loopback mode, the following workaround should be run with set = 1 option in  
case external signal is not present; when exiting equipment loopback mode, the set = 0 option should be  
run:  
SGMII/QSGMII SerDes  
PhyWrite(<phy>, 31, 0x52b5);  
PhyWrite(<phy>, 16, 0xa68c);  
tmp17 = PhyRead(<phy>,17);  
if (set)  
tmp17 |= 0x0010; //Set SigDet as desired, Set bit 4  
else // clear SigDet  
tmp17 &= 0xffef; //Clear SigDet, bit 4  
PhyWrite(<phy>, 17, tmp17);  
PhyWrite(<phy>, 16, 0x868c);  
PhyWrite(<phy>, 31, 0x0);  
Fiber media SerDes  
PhyWrite(<phy>, 31, 0x52b5);  
PhyWrite(<phy>, 16, 0xa68a);  
tmp17 = PhyRead(<phy>,17);  
if (set)  
tmp17 |= 0x0010; //Set SigDet as desired, Set bit 4  
else // clear SigDet  
tmp17 &= 0xffef; //Clear SigDet, bit 4  
PhyWrite(<phy>, 17, tmp17);  
PhyWrite(<phy>, 16, 0x868a);  
PhyWrite(<phy>, 31, 0x0);  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
36  
Functional Descriptions  
3.17.6.6 Input Loop  
The received 1-bit data stream of the input buffer is looped back asynchronously to the output buffer. This  
test loop provides the possibility to test only the analog parts of the SGMII interface because only the  
input and output buffer are part of this loop.  
Note: When the enhanced SerDes macro is in input loopback, the output is inverted relative to the input.  
The following table shows the SerDes macro address map.  
Table 11 • SerDes Macro Address Map  
SerDes Macro  
SerDes0  
SerDes1  
SerDes2  
SerDes3  
SerDes4  
SerDes5  
SerDes6  
Physical Address (s)  
Interface Logical Type (p)  
Address  
0x1  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
Fiber0  
SGMII1  
Fiber1  
SGMII2  
Fiber2  
SGMII3  
Fiber3  
0x1  
0x2  
0x2  
0x4  
0x3  
0x8  
3.17.7 VeriPHY Cable Diagnostics  
The VSC8504-01 includes a comprehensive suite of cable diagnostic functions that are available using  
SMI reads and writes. These functions enable a variety of cable operating conditions and status to be  
accessed and checked. The VeriPHY suite has the ability to identify the cable length and operating  
conditions and to isolate a variety of common faults that can occur on the Cat5 twisted pair cabling.  
Note: When a link is established on the twisted pair interface in the 1000BASE-T mode, VeriPHY can run  
without disrupting the link or disrupting any data transfer. However, when a link is established in  
100BASE-TX or 10BASE-T modes, VeriPHY causes the link to drop while the diagnostics are running.  
After diagnostics are finished, the link is re-established.  
The following diagnostic functions are part of the VeriPHY suite:  
Detecting coupling between cable pairs  
Detecting cable pair termination  
Determining cable length  
3.17.7.1 Coupling Between Cable Pairs  
Shorted wires, improper termination, or high crosstalk resulting from an incorrect wire map can cause  
error conditions, such as anomalous coupling between cable pairs. These conditions can prevent the  
device from establishing a link in any speed.  
3.17.7.2 Cable Pair Termination  
Proper termination of Cat5 cable requires a 100 Ω differential impedance between the positive and  
negative cable terminals. IEEE 802.3 allows for a termination of 115 Ω maximum and 85 Ω minimum.  
VeriPHY diagnostics can report anomalous termination that falls outside of this range. The diagnostics  
can also determine the presence of an open or shorted cable pair.  
3.17.7.3 Cable Length  
When the Cat5 cable in an installation is properly terminated, VeriPHY reports the approximate cable  
length in meters. If there is a cable fault the distance to the fault is reported.  
3.17.7.4 Mean Square Error Noise  
The average absolute error can be read out when either a 100BASE-TX or 1000BASE-T link is  
established. In the case of 1000BASE-T link, there are four average absolute error terms, one for each  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
37  
Functional Descriptions  
twisted pair over which signal is received. Use the following script to read average absolute error for  
100BASE-TX:  
PhyWrite(<phy>, 31, 0x52b5);  
PhyWrite(<phy>, 16, 0xa3c0);  
PhyRead(<phy>, 16);  
tmp17 = PhyRead(<phy>, 17);  
tmp18 = PhyRead(<phy>, 18);  
mse = (tmp18 << 4) | (tmp17 >> 12);  
PhyWrite(<phy>, 31, 0);  
The returned average absolute error is in units of 1/2,048 and can be found in the mse variable.  
PhyWrite(<phy>, 31, 0x52b5);  
PhyWrite(<phy>, 16, 0xa3c0);  
PhyRead(<phy>, 16);  
tmp17 = PhyRead(<phy>, 17);  
tmp18 = PhyRead(<phy>, 18);  
mseA = (tmp18 << 4) | (tmp17 >> 12);  
mseB = tmp17 & 0x0fff;  
PhyWrite(<phy>, 16, 0xa3c2);  
PhyRead(<phy>, 16);  
tmp17 = PhyRead(<phy>, 17);  
tmp18 = PhyRead(<phy>, 18);  
mseC = (tmp18 << 4) | (tmp17 >> 12);  
mseD = tmp17 & 0x0fff;  
PhyWrite(<phy>, 31, 0);  
The returned average absolute error is in units of 1/2,048 and can be found in the mseA, mseB, mseC,  
and mseD variables for each twisted pair.  
3.17.8 JTAG Boundary Scan  
The VSC8504-01 supports the test access port (TAP) and boundary scan architecture described in  
IEEE 1149.1. The device includes an IEEE 1149.1-compliant test interface, referred to as a JTAG TAP  
interface.  
The JTAG boundary scan logic on the VSC8504-01, accessed using its TAP interface, consists of a  
boundary scan register and other logic control blocks. The TAP controller includes all IEEE-required  
signals (TMS, TCK, TDI, and TDO), in addition to the optional asynchronous reset signal TRST. The  
following illustration shows the TAP and boundary scan architecture.  
Important When JTAG is not in use, the TRST pin must be tied to ground with a pull-down resistor for  
normal operation.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
38  
Functional Descriptions  
Figure 36 • Test Access Port and Boundary Scan Architecture  
Boundary Scan  
Register  
Device Identification  
Register  
Bypass Register  
TDO  
MUX,  
DFF  
Control  
Instruction Register,  
Instruction Decode  
Control  
TDI  
TMS  
Control  
Select  
Test Access Port  
Controller  
NTRST  
TCK  
TDO Enable  
After a TAP reset, the device identification register is serially connected between TDI and TDO by  
default. The TAP instruction register is loaded either from a shift register when a new instruction is shifted  
in, or, if there is no new instruction in the shift register, a default value of 6'b100000 (IDCODE) is loaded.  
Using this method, there is always a valid code in the instruction register, and the problem of toggling  
instruction bits during a shift is avoided. Unused codes are mapped to the BYPASS instruction.  
3.17.9 JTAG Instruction Codes  
The VSC8504-01 supports the following instruction codes:  
Table 12 • JTAG Instruction Codes  
Instruction Code Description  
BYPASS  
The bypass register contains a single shift-register stage and is  
used to provide a minimum-length serial path (one TCK clock  
period) between TDI and TDO to bypass the device when no test  
operation is required.  
CLAMP  
Allows the state of the signals driven from the component pins to  
be determined from the boundary scan register while the bypass  
register is selected as the serial path between TDI and TDO.  
While the CLAMP instruction is selected, the signals driven from  
the component pins do not change.  
EXTEST  
Allows tests of the off-chip circuitry and board-level  
interconnections by sampling input pins and loading data onto  
output pins. Outputs are driven by the contents of the boundary  
scan cells, which have to be updated with valid values, with the  
PRELOAD instruction, prior to the EXTEST instruction.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
39  
Functional Descriptions  
Table 12 • JTAG Instruction Codes (continued)  
Instruction Code Description  
HIGHZ  
Places the component in a state in which all of its system logic  
outputs are placed in a high-impedance state. In this state, an in-  
circuit test system can drive signals onto the connections normally  
driven by a component output without incurring a risk of damage to  
the component. This makes it possible to use a board where not  
all of the components are compatible with the IEEE 1149.1  
standard.  
IDCODE  
Provides the version number (bits 31:28), device family ID (bits  
27:12), and the manufacturer identity (bits 11:1) to be serially read  
from the device.  
SAMPLE/PRELOA Allows a snapshot of inputs and outputs during normal system  
D
operation to be taken and examined. It also allows data values to  
be loaded into the boundary scan cells prior to the selection of  
other boundary scan test instructions.  
USERCODE  
Provides the version number (bits 31:28), part number (bits 27:12),  
and the manufacturer identity (bits 11:1) to be serially read from  
the device.  
The following tables provide information about the IDCODE and USERCODE binary values stored in the  
device JTAG registers.  
Table 13 • IDCODE JTAG Device Identification Register Descriptions  
Description Device Version Family ID  
Bit field 31–28 27–12  
Binary value 0000  
Manufacturing Identity  
LSB  
11–1  
0
1
1000 0101 0111 0100 000 0111 0100  
Table 14 • USERCODE JTAG Device Identification Register Descriptions  
Description Device Version Model Number  
Bit field 31–28 27–12  
Binary value 0010  
Manufacturing Identity  
LSB  
11–1  
0
1
1000 0101 0111 0100 000 0111 0100  
The following table provides information about the location and IEEE compliance of the JTAG instruction  
codes used in the VSC8504-01. Instructions not explicitly listed in the table are reserved. For more  
information about these IEEE specifications, visit the IEEE Web site at www.IEEE.org.  
Table 15 • JTAG Instruction Code IEEE Compliance  
Register  
Instruction  
Code  
Selected Register  
Boundary Scan  
Boundary Scan  
Width  
IEEE 1149.1  
Mandatory  
Mandatory  
EXTEST  
6'b000000  
161  
SAMPLE/PRELOA 6'b000001  
D
161  
IDCODE  
USERCODE  
CLAMP  
6'b100000  
6'b100101  
6'b000010  
6'b000101  
6'b111111  
Device Identification  
Device Identification  
Bypass Register  
Bypass Register  
Bypass Register  
32  
32  
1
Optional  
Optional  
Optional  
Optional  
Mandatory  
HIGHZ  
1
BYPASS  
1
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
40  
Functional Descriptions  
3.17.10 Boundary Scan Register Cell Order  
All inputs and outputs are observed in the boundary scan register cells. All outputs are additionally driven  
by the contents of boundary scan register cells. Bidirectional pins have all three related boundary scan  
register cells: input, output, and control.  
The complete boundary scan cell order is available as a BSDL file format on the Microsemi Web site at  
www.Microsemi.com.  
3.18 100BASE-FX Halt Code Transmission and Reception  
The VSC8504-01 device supports transmission and reception of halt code words in 100BASE-FX mode.  
There are three separate scripts provided to initiate transmission of halt code words, stop transmission of  
halt code words and detect reception of halt code words. Use the following scripts to implement each of  
these functions:  
Sending the HALT codeword:  
PhyWrite(<phy>, 31, 0x52b5);  
PhyWrite(<phy>, 16, 0xac82);  
reg18 = PhyRead(<phy>, 18);  
reg18 = (reg18 & 0xf0) | 0x0c;  
PhyWrite(<phy>, 18, reg18);  
PhyWrite(<phy>, 17, 0xe739);  
PhyWrite(<phy>, 16, 0x8c82);  
PhyWrite< <phy>, 16, 0xbe80);  
reg17 = PhyRead(<phy>, 17);  
reg18 = PhyRead(<phy>, 18);  
reg17 = reg17 | 0x0040;  
PhyWrite(<phy>, 18, reg18);  
PhyWrite(<phy>, 17, reg17);  
PhyWrite(<phy>, 16, 0x9e80);  
PhyWrite(<phy>, 31, 0);  
Stop sending the HALT codeword:  
PhyWrite(<phy>, 31, 0x52b5);  
PhyWrite< <phy>, 16, 0xbe80);  
reg17 = PhyRead(<phy>, 17);  
reg18 = PhyRead(<phy>, 18);  
reg17 = reg17 & ~0x0040;  
PhyWrite(<phy>, 18, reg18);  
PhyWrite(<phy>, 17, reg17);  
PhyWrite(<phy>, 16, 0x9e80);  
PhyWrite(<phy>, 31, 0);  
Detecting whether the HALT codeword is being sent by the link partner:  
long patternset[5] = {  
0xce739,  
0xe739c,  
0x739ce,  
0x39ce7,  
0x9ce73  
};  
Turning on the pattern checker:  
PhyWrite(<phy>, 31, 0x52b5);  
PhyWrite(<phy>, 16, 0xbe80);  
reg18 = PhyRead(<phy>, 18);  
reg17 = PhyRead(<phy>, 17);  
reg17 = reg17 | 4;  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
41  
Functional Descriptions  
PhyWrite(<phy>, 18, reg18);  
PhyWrite(<phy>, 17, reg17);  
PhyWrite(<phy>, 16, 0x9e80);  
Sweeping through all five pattern shifts checking for a match:  
for (i = 0, matchfailed = 1; i < 5 && matchfailed; ++i) {  
PhyWrite(<phy>, 16, 0xac84);  
reg18 = PhyRead(<phy>, 18);  
reg18 = (reg18 & 0xf0) | (patternset[i] >> 16)  
PhyWrite(<phy>, 18, reg18);  
PhyWrite(<phy>, 17, patternset[i] & 0xffff);  
PhyWrite(<phy>, 16, 0x8c84);  
PhyWrite(<phy>, 16, 0xbe84); // Dummy read to clear latched mismatch  
PhyWrite(<phy>, 16, 0xbe84); // Read pattern check failure status  
matchfailed = PhyRead(<phy>, 17) & 1; // Extract pattern check failure status  
}
Turning off the pattern checker:  
PhyWrite(<phy>, 16, 0xbe80);  
reg18 = PhyRead(<phy>, 18);  
reg17 = PhyRead(<phy>, 17);  
reg17 = reg17 & ~4;  
PhyWrite(<phy>, 18, reg18);  
PhyWrite(<phy>, 17, reg17);  
PhyWrite(<phy>, 16, 0x9e80);  
PhyWrite(<phy>, 31, 0);  
HALT_codeword_detected =!matchfailed;  
3.19 Configuration  
The VSC8504-01 can be configured by setting internal memory registers using the management  
interface. To configure the device, perform the following steps:  
1. COMA_MODE active, drive high (optional).  
2. Apply power.  
3. Apply RefClk.  
4. Release reset, drive high. Power and clock must be stable before releasing reset.  
5. Wait 120 ms minimum.  
6. Apply patch from PHY_API (required for production released optional for board testing).  
7. Configure register 19G for MAC mode (to access register 19G, register 31 must be 0x10). Read  
register 19G. Set bits 15:14, MAC configuration as follows:  
00: SGMII  
01: QSGMII  
10: Reserved  
11: Reserved  
Write new register 19G.  
8. Configure register 18G for MAC on all 4 PHYs write:  
SGMII: 0x80F0  
QSGMII: 0x80E0  
Read register 18G until bit 15 equals 0.  
9. If Fiber Media on all 4 PHYs configure register 18G by writing:  
Media 1000BASE-X: 0x8FC1  
Media 100BASE-FX: 0x8FD1  
10. If Fiber Media read register 18G till bit 15 equals 0.  
11. Configure register 23 for MAC and Media mode (to access register 23, register 31 must be 0). Read  
register 23. Set bits 10:8 as follows:  
000: Copper  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
42  
Functional Descriptions  
010: 1000BASE-X  
011: 100BASE-FX  
Write new register 23.  
12. Software reset. Read register 0 (to access register 0, register 31 must be 0). Set bit 15 to 1.  
Write new register 0.  
13. Read register 0 until bit 15 equals 0.  
14. Release the COMA_MODE pin, drive low (only necessary if COMA_MODE pin is driven high or  
unconnected).  
3.19.1 Initialization  
The COMA_MODE pin provides an optional feature that may be used to control when the PHYs become  
active. The typical usage is to keep the PHYs from becoming active before they have been fully  
initialized. For more information, see Configuration, page 42. By not being active until after complete  
initialization keeps links from going up and down. Alternatively the COMA_MODE pin may be connected  
low (ground) and the PHYs will be fully active once out of reset.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
43  
Registers  
4
Registers  
This section provides information about how to configure the VSC8504-01 using its internal memory  
registers and the management interface. The registers marked reserved and factory test should not be  
read or written to, because doing so may produce undesired effects.  
The default value documented for registers is based on the value at reset; however, in some cases, that  
value may change immediately after reset.  
The access type for each register is shown using the following abbreviations:  
RO: Read Only  
ROCR: Read Only, Clear on Read  
RO/LH: Read Only, Latch High  
RO/LL: Read Only, Latch Low  
R/W: Read and Write  
RWSC: Read Write Self Clearing  
The VSC8504-01 uses several different types of registers:  
IEEE Clause 22 device registers with addresses from 0 to 31  
Three pages of extended registers with addresses from 16E1–30E1, 16E2–30E2, and 16E3–30E3  
General-purpose registers with addresses from 0G to 30G  
IEEE Clause 45 devices registers accessible through the Clause 22 registers 13 and 14 to support  
IEEE 802.3az-2010 energy efficient Ethernet registers  
The following illustration shows the relationship between the device registers and their address spaces.  
Figure 37 • Register Space Diagram  
0
1
2
3
.
0G  
1G  
2G  
3G  
.
.
.
Clause 45  
Registers  
IEEE 802.3  
Standard  
.
Registers  
.
13  
14  
15  
.
.
15G  
General Purpose  
Registers  
16  
17  
18  
19  
.
16G  
17G  
18G  
19G  
.
.
.
16E1  
17E1  
18E1  
19E1  
.
.
.
16E2  
17E2  
18E2  
19E2  
.
.
.
16E3  
17E3  
18E3  
19E3  
.
.
.
Extended  
Registers 1  
Extended  
Registers 2  
Extended  
Registers 3  
Main Registers  
.
.
.
.
.
.
.
.
.
.
.
.
30  
30G  
30E1  
30E2  
30E3  
31  
0x0000  
0x0010  
0x0001  
0x0002  
0x0003  
Reserved Registers For main registers 16–31, extended registers 16E1–30E1, 16E2–30E2, 16E3–  
30E3, and general purpose registers 0G–30G, any bits marked as Reserved should be processed as  
read-only and their states as undefined.  
Reserved Bits In writing to registers with reserved bits, use a read-modify-then-write technique, where  
the entire register is read but only the intended bits to be changed are modified. Reserved bits cannot be  
changed and their read state cannot be considered static or unchanging.  
4.1  
Register and Bit Conventions  
Registers are referred to by their address and bit number in decimal notation. A range of bits is indicated  
with a colon. For example, a reference to address 26, bits 15 through 14 is shown as 26.15:14.  
A register with an E and a number attached (example 27E1) means it is a register contained within  
extended register page number 1. A register with a G attached (example 13G) means it is a GPIO page  
register.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
44  
Registers  
Bit numbering follows the IEEE standard with bit 15 being the most significant bit and bit 0 being the least  
significant bit.  
4.2  
IEEE 802.3 and Main Registers  
In the VSC8504-01, the page space of the standard registers consists of the IEEE 802.3 standard  
registers and the Microsemi standard registers. The following table lists the names of the registers  
associated with the addresses as specified by IEEE 802.3.  
Table 16 • IEEE 802.3 Registers  
Address Name  
0
Mode Control  
1
Mode Status  
2
PHY Identifier 1  
3
PHY Identifier 2  
4
Autonegotiation Advertisement  
Autonegotiation Link Partner Ability  
Autonegotiation Expansion  
Autonegotiation Next-Page Transmit  
Autonegotiation Link Partner Next-Page Receive  
1000BASE-T Control  
5
6
7
8
9
10  
1000BASE-T Status  
11–12  
13  
Reserved  
Clause 45 Access Registers from IEEE 802.3  
Table 22-6 and 22.24.3.11-12 and Annex 22D  
14  
15  
Clause 45 Access Registers from IEEE 802.3  
Table 22-6 and 22.24.3.11-12 and Annex 22D  
1000BASE-T Status Extension 1  
The following table lists the names of the registers in the main page space of the device. These registers  
are accessible only when register address 31 is set to 0x0000.  
Table 17 • Main Registers  
Address Name  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
100BASE-TX status extension  
1000BASE-T status extension 2  
Bypass control  
Error Counter 1  
Error Counter 2  
Error Counter 3  
Extended control and status  
Extended PHY control 1  
Extended PHY control 2  
Interrupt mask  
Interrupt status  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
45  
Registers  
Table 17 • Main Registers (continued)  
Address Name  
27  
28  
29  
30  
31  
Reserved  
Auxiliary control and status  
LED mode select  
LED behavior  
Extended register page access  
4.2.1  
Mode Control  
The device register at memory address 0 controls several aspects of VSC8504-01 functionality. The  
following table shows the available bit settings in this register and what they control.  
Table 18 • Mode Control, Address 0 (0x00)  
Bit Name  
Access Description  
Default  
15 Software reset  
R/W  
Self-clearing. Restores all serial management  
interface (SMI) registers to default state,  
except for sticky and super-sticky bits.  
1: Reset asserted.  
0
0: Reset de-asserted. Wait [X] after setting this  
bit to initiate another SMI register access.  
14 Loopback  
R/W  
1: Loopback enabled.  
0
0
1
0: Loopback disabled. When loop back is  
enabled, the device functions at the current  
speed setting and with the current duplex  
mode setting (bits 6, 8, and 13 of this register).  
13 Forced speed selection R/W  
LSB  
Least significant bit. MSB is bit 6.  
00: 10 Mbps.  
01: 100 Mbps.  
10: 1000 Mbps.  
11: Reserved.  
12 Autonegotiation enable R/W  
1: Autonegotiation enabled.  
0: Autonegotiation disabled.  
11 Power-down  
10 Isolate  
R/W  
R/W  
1: Power-down enabled.  
0
0
1: Disconnect the MAC-side interface of the  
device from the rest of the datapath. Traffic  
entering the PHY from either the MAC-side or  
media-side interface will terminate inside the  
PHY.  
9
8
Restart autonegotiation R/W  
Self-clearing bit.  
1: Restart autonegotiation on media interface.  
0
0
Duplex  
R/W  
R/W  
1: Full-duplex.  
0: Half-duplex.  
7
6
Collision test enable  
1: Collision test enabled.  
0
Forced speed selection R/W  
MSB  
Most significant bit. LSB is bit 13.(1)  
00: 10 Mbps.  
10  
01: 100 Mbps.  
10: 1000 Mbps.  
11: Reserved.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
46  
Registers  
Table 18 • Mode Control, Address 0 (0x00) (continued)  
Bit Name  
Access Description  
R/W When bit 0.12 = 1 or bit 0.8 = 0, this bit is  
Default  
5
Unidirectional enable  
0
ignored. When bit 0.12 = 0 and bit 0.8 = 1, the  
behavior is as follows:  
1: Enable transmit from media independent  
interface regardless of whether the PHY has  
determined that a valid link has been  
established.  
0: Enable transmit from media independent  
interface only when the PHY has determined  
that a valid link has been established.  
Note: This bit is only applicable in  
100BASE-FX and 1000BASE-X  
fiber media modes.  
4:0 Reserved  
Reserved.  
00000  
1. Before selecting the 1000 Mbps forced speed mode, manually configure the PHY as master or slave by  
setting bit 11 in register 9 (1000BASE-T Control). Each time the link drops, the PHY needs to be powered  
down manually to enable it to link up again using the master/slave setting specified in register 9.11.  
4.2.2  
Mode Status  
The register at address 1 in the device main registers space allows you to read the currently enabled  
mode setting. The following table shows possible readouts of this register.  
Table 19 • Mode Status, Address 1 (0x01)  
Bit Name  
Access Description  
RO 1: 100BASE-T4 capable.  
Default  
15 100BASE-T4 capability  
0
1
1
1
1
0
0
1
14 100BASE-TX FDX capability RO  
13 100BASE-TX HDX capability RO  
1: 100BASE-TX FDX capable.  
1: 100BASE-TX HDX capable.  
1: 10BASE-T FDX capable.  
1: 10BASE-T HDX capable.  
1: 100BASE-T2 FDX capable.  
1: 100BASE-T2 HDX capable.  
12 10BASE-T FDX capability  
11 10BASE-T HDX capability  
RO  
RO  
10 100BASE-T2 FDX capability RO  
9
8
100BASE-T2 HDX capability RO  
Extended status enable  
RO  
1: Extended status information present in  
register 15.  
7
Unidirectional ability  
RO  
1: PHY able to transmit from media  
independent interface regardless of  
whether the PHY has determined that a  
valid link has been established.  
0: PHY able to transmit from media  
independent interface only when the PHY  
has determined that a valid link has been  
established.  
1
Note: This bit is only applicable to  
100BASE-FX and  
1000BASE-X fiber media  
modes.  
6
Preamble suppression  
capability  
RO  
1: MF preamble can be suppressed.  
0: MF required.  
1
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
47  
Registers  
Table 19 • Mode Status, Address 1 (0x01) (continued)  
Bit Name Access Description  
Default  
5
4
Autonegotiation complete  
RO  
RO  
1: Autonegotiation complete.  
0
0
Remote fault  
Latches high.  
1: Far-end fault detected.  
3
2
Autonegotiation capability  
Link status  
RO  
RO  
1: Autonegotiation capable.  
1
0
Latches low.  
1: Link is up.  
1
0
Jabber detect  
RO  
RO  
Latches high.  
1: Jabber condition detected.  
0
1
Extended capability  
1: Extended register capable.  
4.2.3  
Device Identification  
All 16 bits in both register 2 and register 3 in the VSC8504-01 are used to provide information associated  
with aspects of the device identification. The following tables list the expected readouts.  
Table 20 • Identifier 1, Address 2 (0x02)  
Bit Name  
Access Description  
RO OUI most significant bits (3:18)  
Default  
15:0 Organizationally unique identifier  
(OUI)  
0×0007  
Table 21 • Identifier 2, Address 3 (0x03)  
Bit  
Name  
Access Description  
Default  
15:10 OUI  
RO  
RO  
OUI least significant bits (19:24)  
000001  
001100  
9:4  
3:0  
Microsemi model  
number  
VSC8504-01 (0xC)  
Device revision number RO  
Revision D  
0010  
4.2.4  
Autonegotiation Advertisement  
The bits in address 4 in the main registers space control the VSC8504-01 ability to notify other devices of  
the status of its autonegotiation feature. The following table shows the available settings and readouts.  
Table 22 • Device Autonegotiation Advertisement, Address 4 (0x04)  
Bit Name  
Access Description  
Default  
15 Next page transmission request R/W  
1: Request enabled  
0
0
0
0
0
0
0
1
1
1
14 Reserved  
RO  
Reserved  
13 Transmit remote fault  
12 Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1: Enabled  
Reserved  
11 Advertise asymmetric pause  
10 Advertise symmetric pause  
1: Advertises asymmetric pause  
1: Advertises symmetric pause  
1: Advertises 100BASE-T4  
1: Advertise 100BASE-TX FDX  
1: Advertises 100BASE-TX HDX  
1: Advertises 10BASE-T FDX  
9
8
7
6
Advertise100BASE-T4  
Advertise100BASE-TX FDX  
Advertise100BASE-TX HDX  
Advertise10BASE-T FDX  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
48  
Registers  
Table 22 • Device Autonegotiation Advertisement, Address 4 (0x04) (continued)  
Bit Name  
Access Description  
Default  
1
5
Advertise10BASE-T HDX  
R/W  
R/W  
1: Advertises 10BASE-T HDX  
4:0 Advertise selector  
00001  
4.2.5  
Link Partner Autonegotiation Capability  
The bits in main register 5 can be used to determine if the Cat5 link partner (LP) used with the  
VSC8504-01 is compatible with the autonegotiation functionality.  
Table 23 • Autonegotiation Link Partner Ability, Address 5 (0x05)  
Bit Name  
Access Description  
Default  
15 LP next page transmission request RO  
1: Requested  
0
14 LP acknowledge  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
1: Acknowledge  
0
13 LP remote fault  
1: Remote fault  
0
12 Reserved  
Reserved  
0
11 LP advertise asymmetric pause  
10 LP advertise symmetric pause  
1: Capable of asymmetric pause  
1: Capable of symmetric pause  
1: Capable of 100BASE-T4  
1: Capable of 100BASE-TX FDX  
1: Capable of 100BASE-TX HDX  
1: Capable of 10BASE-T FDX  
1: Capable of 10BASE-T HDX  
0
0
9
8
7
6
5
LP advertise 100BASE-T4  
0
LP advertise 100BASE-TX FDX  
LP advertise 100BASE-TX HDX  
LP advertise 10BASE-T FDX  
LP advertise 10BASE-T HDX  
0
0
0
0
4:0 LP advertise selector  
00000  
4.2.6  
Autonegotiation Expansion  
The bits in main register 6 work together with those in register 5 to indicate the status of the LP  
autonegotiation functioning. The following table shows the available settings and readouts.  
Table 24 • Autonegotiation Expansion, Address 6 (0x06)  
Bit  
Name  
Access Description  
Default  
All zeros  
0
15:5 Reserved  
RO  
RO  
Reserved.  
4
Parallel detection fault  
LP next page capable  
This bit latches high.  
1: Parallel detection fault.  
3
2
1
RO  
1: LP is next page capable.  
0
1
0
Local PHY next page capable RO  
Page received RO  
1: Local PHY is next page capable.  
This bit latches low.  
1: New page is received.  
0
LP is autonegotiation capable RO  
1: LP is capable of autonegotiation.  
0
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
49  
Registers  
4.2.7  
Transmit Autonegotiation Next Page  
The settings in register 7 in the main registers space provide information about the number of pages in  
an autonegotiation sequence. The following table shows the settings available.  
Table 25 • Autonegotiation Next Page Transmit, Address 7 (0x07)  
Bit  
15  
14  
13  
Name  
Access Description  
Default  
Next page  
Reserved  
Message page  
R/W  
RO  
1: More pages follow  
0
0
1
Reserved  
R/W  
1: Message page  
0: Unformatted page  
12  
11  
Acknowledge 2  
Toggle  
R/W  
RO  
1: Complies with request  
0: Cannot comply with request  
0
1: Previous transmitted LCW = 0 0: 0  
Previous transmitted LCW = 1  
10:0 Message/unformatted code R/W  
00000000001  
4.2.8  
Autonegotiation Link Partner Next Page Receive  
The bits in register 8 of the main register space work together with register 7 to determine certain aspects  
of the LP autonegotiation. The following table shows the possible readouts.  
Table 26 • Autonegotiation LP Next Page Receive, Address 8 (0x08)  
Bit  
15  
14  
13  
Name  
Access Description  
Default  
LP next page  
Acknowledge  
LP message page  
RO  
RO  
RO  
1: More pages follow  
0
0
0
1: LP acknowledge  
1: Message page  
0: Unformatted page  
12  
11  
LP acknowledge 2  
LP toggle  
RO  
RO  
1: LP complies with request  
0
0
1: Previous transmitted LCW = 0  
0: Previous transmitted LCW = 1  
10:0 LP message/unformatted code RO  
All zeros  
4.2.9  
1000BASE-T Control  
The VSC8504-01's 1000BASE-T functionality is controlled by the bits in register 9 of the main register  
space. The following table shows the settings and readouts available.  
Table 27 • 1000BASE-T Control, Address 9 (0x09)  
Bit  
Name  
Access Description  
Default  
15:13 Transmitter test mode R/W  
000: Normal  
000  
001: Mode 1: Transmit waveform test  
010: Mode 2: Transmit jitter test as master  
011: Mode 3: Transmit jitter test as slave  
100: Mode 4: Transmitter distortion test  
101–111: Reserved  
12  
Master/slave manual  
configuration  
R/W  
1: Master/slave manual configuration enabled 0  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
50  
Registers  
Table 27 • 1000BASE-T Control, Address 9 (0x09) (continued)  
Bit  
Name  
Access Description  
Default  
11  
Master/slave value  
R/W  
This register is only valid when bit 9.12 is set  
0
to 1.  
1: Configure PHY as master during  
negotiation  
0: Configure PHY as slave during negotiation  
10  
9
Port type  
R/W  
R/W  
R/W  
R/W  
1: Multi-port device  
0: Single-port device  
1
1000BASE-T FDX  
capability  
1: PHY is 1000BASE-T FDX capable  
1: PHY is 1000BASE-T HDX capable  
Reserved  
1
8
1000BASE-T HDX  
capability  
1
7:0  
Reserved  
0x00  
Note: Transmitter test mode (bits 15:13) operates in the manner described in IEEE 802.3 section 40.6.1.1.2.  
When using any of the transmitter test modes, the automatic media sense feature must be disabled. For  
more information, see Extended PHY Control Set 1, page 56.  
4.2.10 1000BASE-T Status  
The bits in register 10 of the main register space can be read to obtain the status of the 1000BASE-T  
communications enabled in the device. The following table shows the readouts.  
Table 28 • 1000BASE-T Status, Address 10 (0x0A)  
Bit Name  
Access Description  
Default  
15 Master/slave  
RO  
This bit latches high.  
0
configuration fault  
1: Master/slave configuration fault detected  
0: No master/slave configuration fault detected  
14 Master/slave  
configuration resolution  
RO  
RO  
1: Local PHY configuration resolved to master 1  
0: Local PHY configuration resolved to slave  
13 Local receiver status  
1: Local receiver is operating normally  
1: Remote receiver OK  
0
0
0
12 Remote receiver status RO  
11 LP 1000BASE-T FDX  
capability  
RO  
1: LP 1000BASE-T FDX capable  
10 LP 1000BASE-T HDX  
capability  
RO  
1: LP 1000BASE-T HDX capable  
0
9:8 Reserved  
RO  
RO  
Reserved  
00  
7:0 Idle error count  
Self-clearing register  
0x00  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
51  
Registers  
4.2.11 MMD Access Control Register  
The bits in register 13 of the main register space are a window to the EEE registers as defined in  
IEEE 802.3az-2010 Clause 45.  
Table 29 • MMD EEE Access, Address 13 (0x0D)  
Bit  
Name  
Access Description  
15:14 Function R/W  
00: Address  
01: Data, no post increment  
10: Data, post increment for read and write  
11: Data, post increment for write only  
13:5  
4:0  
Reserved R/W  
DVAD R/W  
Reserved  
Device address as defined in IEEE 802.3az-2010 table  
45–1  
4.2.12 MMD Address or Data Register  
The bits in register 14 of the main register space are a window to the EEE registers as defined in  
IEEE 802.3az-2010 Clause 45.  
Table 30 • MMD Address or Data Register, Address 14 (0x0E)  
Bit  
Name  
Access Description  
15:0 Register Address/Data R/W  
When register 13.15:14 = 2'b00, address of register of  
the device that is specified by 13.4:0. Otherwise, the  
data to be written to or read from the register.  
4.2.13 1000BASE-T Status Extension 1  
Register 15 provides additional information about the operation of the device 1000BASE-T  
communications. The following table shows the readouts available.  
Table 31 • 1000BASE-T Status Extension 1, Address 15 (0x0F)  
Bit  
15  
14  
13  
12  
Name  
Access Description  
Default  
1000BASE-X FDX capability RO  
1000BASE-X HDX capability RO  
1000BASE-T FDX capability RO  
1000BASE-T HDX capability RO  
1: PHY is 1000BASE-X FDX capable 1  
1: PHY is 1000BASE-X HDX capable 1  
1: PHY is 1000BASE-T FDX capable 1  
1: PHY is 1000BASE-T HDX capable 1  
11:0 Reserved  
RO  
Reserved  
0x000  
4.2.14 100BASE-TX/FX Status Extension  
Register 16 in the main registers page space of the VSC8504-01 provides additional information about  
the status of the device's 100BASE-TX/100BASE-FX operation.  
Table 32 • 100BASE-TX/FX Status Extension, Address 16 (0x10)  
Bit Name  
Access Description  
Default  
15 100BASE-TX/FX Descrambler  
14 100BASE-TX/FX lock error  
RO  
RO  
1: Descrambler locked  
0
0
Self-clearing bit.  
1: Lock error detected  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
52  
Registers  
Table 32 • 100BASE-TX/FX Status Extension, Address 16 (0x10) (continued)  
Bit Name  
Access Description  
Default  
13 100BASE-TX/FX disconnect  
state  
RO  
Self-clearing bit.  
1: PHY 100BASE-TX link disconnect  
detected  
0
12 100BASE-TX/FX current link  
status  
RO  
RO  
1: PHY 100BASE-TX link active  
0
0
0
0
11 100BASE-TX/FX receive error  
Self-clearing bit.  
1: Receive error detected  
10 100BASE-TX/FX transmit error RO  
Self-clearing bit.  
1: Transmit error detected  
9
100BASE-TX/FX SSD error  
100BASE-TX/FX ESD error  
RO  
RO  
RO  
Self-clearing bit.  
1: Start-of-stream delimiter error  
detected  
8
Self-clearing bit.  
1: End-of-stream delimiter error  
detected  
0
7:0 Reserved  
Reserved  
4.2.15 1000BASE-T Status Extension 2  
The second status extension register is at address 17 in the device main registers space. It provides  
information about another set of parameters associated with 1000BASE-T communications. For  
information about the first status extension register, see Table 31, page 52.  
Table 33 • 1000BASE-T Status Extension 2, Address 17 (0x11)  
Bit Name  
Access Description  
Default  
15 1000BASE-T descrambler  
14 1000BASE-T lock error  
RO  
RO  
1: Descrambler locked.  
0
0
Self-clearing bit.  
1: Lock error detected  
13 1000BASE-T disconnect state RO  
Self-clearing bit.  
0
1: PHY 1000BASE-T link disconnect  
detected  
12 1000BASE-T current link  
status  
RO  
RO  
RO  
RO  
RO  
1: PHY 1000BASE-T link active  
0
0
0
0
0
0
0
0
11 1000BASE-T receive error  
Self-clearing bit.  
1: Receive error detected  
10 1000BASE-T transmit error  
Self-clearing bit.  
1: Transmit error detected  
9
8
7
6
5
1000BASE-T SSD error  
1000BASE-T ESD error  
Self-clearing bit.  
1: Start-of-stream delimiter error detected  
Self-clearing bit.  
1: End-of-stream delimiter error detected  
1000BASE-T carrier extension RO  
error  
Self-clearing bit.  
1: Carrier extension error detected  
Non-compliant BCM5400  
detected  
RO  
1: Non-compliant BCM5400 link partner  
detected  
MDI crossover error  
RO  
1: MDI crossover error was detected  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
53  
Registers  
Table 33 • 1000BASE-T Status Extension 2, Address 17 (0x11) (continued)  
Bit Name  
Access Description  
RO Reserved  
Default  
4:0 Reserved  
4.2.16 Bypass Control  
The bits in this register control aspects of functionality in effect when the device is disabled for the  
purpose of traffic bypass. The following table shows the settings available.  
Table 34 • Bypass Control, Address 18 (0x12)  
Bit Name  
Access Description  
Default  
15 Transmit disable  
14 4B5B encoder/decoder  
13 Scrambler  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
1: PHY transmitter disabled  
0
0
0
0
0
0
0
1: Bypass 4B/5B encoder/decoder  
1: Bypass scrambler  
12 Descrambler  
11 PCS receive  
10 PCS transmit  
1: Bypass descrambler  
1: Bypass PCS receiver  
1: Bypass PCS transmit  
1: Bypass Link Fail Inhibit (LFI) timer  
Reserved  
9
8
7
LFI timer  
Reserved  
HP Auto-MDIX at forced  
10/100  
R/W  
Sticky bit.  
1
0
0
0
1
1: Disable HP Auto-MDIX at forced 10/100  
speeds  
6
5
4
3
Non-compliant BCM5400  
detect disable  
R/W  
Sticky bit.  
1: Disable non-compliant BCM5400  
detection  
Disable pair swap correction R/W  
(HP Auto-MDIX when  
autonegotiation enabled)  
Sticky bit.  
1: Disable the automatic pair swap  
correction  
Disable polarity correction  
Parallel detect control  
Pulse shaping filter  
R/W  
R/W  
Sticky bit.  
1: Disable polarity inversion correction on  
each subchannel  
Sticky bit.  
1: Do not ignore advertised ability  
0: Ignore advertised ability  
2
1
R/W  
R/W  
1: Disable pulse shaping filter  
0
0
Disable automatic  
1000BASE-T next page  
exchange  
Sticky bit.  
1: Disable automatic 1000BASE T next  
page exchanges  
0
Reserved  
RO  
Reserved  
Note: If bit 18.1 is set to 1 in this register, automatic exchange of next pages is disabled, and control is returned  
to the user through the SMI after the base page is exchanged. The user then must send the correct  
sequence of next pages to the link partner, determine the common capabilities, and force the device into  
the correct configuration following the successful exchange of pages.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
54  
Registers  
4.2.17 Error Counter 1  
The bits in register 19 provide an error counter. The following table shows the settings available.  
Table 35 • Extended Control and Status, Address 19 (0x13)  
Bit  
15:8 Reserved  
7:0 100/1000 receive  
error counter  
Name  
Access Description  
Default  
RO  
RO  
Reserved.  
8-bit counter that saturates when it reaches  
255. These bits are self-clearing when read.  
0x00  
4.2.18 Error Counter 2  
The bits in register 20 provide an error counter. The following table shows the settings available.  
Table 36 • Extended Control and Status, Address 20 (0x14)  
Bit  
Name  
Access Description  
Default  
15:8 Reserved  
RO  
Reserved.  
7:0  
100/1000 false carrier RO  
counter  
8-bit counter that saturates when it reaches  
255. These bits are self-clearing when read.  
0x00  
4.2.19 Error Counter 3  
The bits in register 21 provide an error counter. The following table shows the settings available.  
Table 37 • Extended Control and Status, Address 21 (0x15)  
Bit  
15:8 Reserved  
7:0 Copper media link  
disconnect counter  
Name  
Access Description  
Default  
RO  
RO  
Reserved.  
8-bit counter that saturates when it reaches  
255. These bits are self-clearing when read.  
0x00  
4.2.20 Extended Control and Status  
The bits in register 22 provide additional device control and readouts. The following table shows the  
settings available.  
Table 38 • Extended Control and Status, Address 22 (0x16)  
Bit  
Name  
Access Description  
Default  
15  
Force 10BASE-T link high R/W  
Sticky bit.  
0
1: Bypass link integrity test  
0: Enable link integrity test  
14  
13  
12  
Jabber detect disable  
Disable 10BASE-T echo  
Disable SQE mode  
R/W  
R/W  
R/W  
Sticky bit.  
1: Disable jabber detect  
0
1
1
Sticky bit.  
1: Disable 10BASE-T echo  
Sticky bit.  
1: Disable SQE mode  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
55  
Registers  
Table 38 • Extended Control and Status, Address 22 (0x16) (continued)  
Bit  
Name  
Access Description  
Default  
11:10 10BASE-T squelch control R/W  
Sticky bit.  
00  
00: Normal squelch  
01: Low squelch  
10: High squelch  
11: Reserved  
9
8
7
Sticky reset enable  
EOF Error  
R/W  
RO  
Super-sticky bit.  
1: Enabled  
1
0
0
0
This bit is self-clearing.  
1: EOF error detected  
10BASE-T disconnect state RO  
This bit is self-clearing.  
1: 10BASE-T link disconnect detected  
6
10BASE-T link status  
Reserved  
RO  
RO  
R/W  
1: 10BASE-T link active  
Reserved  
5:1  
0
SMI broadcast write  
Sticky bit.  
0
1: Enabled  
The following information applies to the extended control and status bits:  
When bit 22.15 is set, the link integrity state machine is bypassed and the PHY is forced into a link  
pass status.  
When bits 22.11:10 are set to 00, the squelch threshold levels are based on the IEEE standard for  
10BASE-T. When set to 01, the squelch level is decreased, which can improve the bit error rate  
performance on long loops. When set to 10, the squelch level is increased and can improve the bit  
error rate in high-noise environments.  
When bit 22.9 is set, all sticky register bits retain their values during a software reset. Clearing this  
bit causes all sticky register bits to change to their default values upon software reset. Super-sticky  
bits retain their values upon software reset regardless of the setting of bit 22.9.  
When bit 22.0 is set, if a write to any PHY register (registers 0–31, including extended registers), the  
same write is broadcast to all PHYs. For example, if bit 22.0 is set to 1 and a write to PHY0 is  
executed (register 0 is set to 0x1040), all PHYs' register 0s are set to 0x1040.Disabling this bit  
restores normal PHY write operation. Reads are still possible when this bit is set, but the value that  
is read corresponds only to the particular PHY being addressed.  
4.2.21 Extended PHY Control Set 1  
The following table shows the settings available.  
Table 39 • Extended PHY Control 1, Address 23 (0x17)  
Bit  
Name  
Access Description  
Default  
15:13 Reserved  
R/W  
MAC interface mode R/W  
Reserved  
0
0
12  
11  
Super-sticky bit.  
0: SGMII  
1: 1000BASE-X.  
Note: Register 19G.15:14 must be = 00  
for this selection to be valid.  
AMS preference  
R/W  
Super-sticky bit.  
0
1: Cat5 copper preferred.  
0: SerDes fiber/SFP preferred.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
56  
Registers  
Table 39 • Extended PHY Control 1, Address 23 (0x17) (continued)  
Bit  
Name  
Access Description  
R/W Super-sticky bits.  
Default  
10:8  
Media operating  
mode  
000  
000: Cat5 copper only.  
001: SerDes fiber/SFP protocol transfer mode  
only.  
010: 1000BASE-X fiber/SFP media only with  
autonegotiation performed by the PHY.  
011: 100BASE-FX fiber/SFP on the fiber media  
pins only.  
101: Automatic media sense (AMS) with Cat5  
media or SerDes fiber/SFP protocol transfer  
mode.  
110: AMS with Cat5 media or 1000BASE-X  
fiber/SFP media with autonegotiation performed  
by PHY.  
111: AMS with Cat5 media or 100BASE-FX  
fiber/SFP media.  
100: AMS.  
7:6  
Force AMS override R/W  
00: Normal AMS selection  
00  
0
01: Force AMS to select SerDes media only  
10: Force AMS to select copper media only  
11: Reserved  
5:4  
3
Reserved  
RO  
Reserved.  
Far-end loopback  
mode  
R/W  
1: Enabled.  
2:0  
Reserved  
RO  
Reserved.  
Note: After configuring bits 13:8 of the extended PHY control register set 1, a software reset (register 0, bit 15)  
must be written to change the device operating mode. On read, these bits only indicate the actual  
operating mode and not the pending operating mode setting before a software reset has taken place.  
4.2.22 Extended PHY Control Set 2  
The second set of extended controls is located in register 24 in the main register space for the device.  
The following table shows the settings and readouts available.  
Table 40 • Extended PHY Control 2, Address 24 (0x18)  
Bit  
Name  
Access Description  
Default  
15:13 100BASE-TX edge  
rate control  
R/W  
Sticky bit.  
001  
011: +5 edge rate (slowest)  
010: +4 edge rate  
001: +3 edge rate  
000: +2 edge rate  
111: +1 edge rate  
110: Default edge rate  
101: –1 edge rate  
100: –2 edge rate (fastest)  
12  
PICMG 2.16 reduced R/W  
power mode  
Sticky bit.  
1: Enabled  
0
11:6  
Reserved  
RO  
Reserved  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
57  
Registers  
Table 40 • Extended PHY Control 2, Address 24 (0x18) (continued)  
Bit  
Name  
Access Description  
Default  
5:4  
Jumbo packet mode R/W  
Sticky bit.  
00  
00: Normal IEEE 1.5 kB packet length  
01: 9 kB jumbo packet length (12 kB with  
60 ppm or better reference clock)  
10: 12 kB jumbo packet length (16 kB with  
70 ppm or better reference clock)  
11: Reserved  
3:1  
0
Reserved  
RO  
Reserved  
1000BASE-T  
R/W  
1: Enabled  
0
connector loopback  
Note: When bits 5:4 are set to jumbo packet mode, the default maximum packet values are based on 100 ppm  
driven reference clock to the device. Controlling the ppm offset between the MAC and the PHY as  
specified in the bit description results in a higher jumbo packet length.  
4.2.23 Interrupt Mask  
These bits control the device interrupt mask. The following table shows the settings available.  
Table 41 • Interrupt Mask, Address 25 (0x19)  
Bit Name  
Access Description  
Default  
15  
14  
13  
12  
11  
10  
9
MDINT interrupt status enable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Sticky bit. 1: Enabled.  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Speed state change mask  
Link state change mask  
Sticky bit. 1: Enabled.  
Sticky bit. 1: Enabled.  
Sticky bit. 1: Enabled.  
Sticky bit. 1: Enabled.  
Sticky bit. 1: Enabled.  
Sticky bit. 1: Enabled.  
Sticky bit. 1: Enabled.  
Sticky bit. 1: Enabled.  
FDX state change mask  
Autonegotiation error mask  
Autonegotiation complete mask  
Inline powered device (PoE) detect mask R/W  
8
Symbol error interrupt mask  
Fast link failure interrupt mask  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
7
6:5 Reserved  
4
3
2
1
0
AMS media changed mask(1)  
Sticky bit. 1: Enabled.  
Sticky bit. 1: Enabled.  
Sticky bit. 1: Enabled.  
Sticky bit. 1: Enabled.  
Sticky bit. 1: Enabled.  
False carrier interrupt mask  
Link speed downshift detect mask  
Master/Slave resolution error mask  
RX_ER interrupt mask  
1. If hardware interrupts are not used, the mask can still be set and the status polled for changes.  
Note: When bit 25.15 is set, the MDINT pin is enabled. When enabled, the state of this pin reflects the state of  
bit 26.15. Clearing this bit only inhibits the MDINT pin from being asserted. Also, before enabling this bit,  
read register 26 to clear any previously inactive interrupts pending that will cause bit 25.15 to be set.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
58  
Registers  
4.2.24 Interrupt Status  
The status of interrupts already written to the device is available for reading from register 26 in the main  
registers space. The following table shows the expected readouts.  
Table 42 • Interrupt Status, Address 26 (0x1A)  
Bit Name  
Access Description  
Default  
15  
14  
13  
12  
11  
10  
9
Interrupt status  
RO  
RO  
RO  
RO  
RO  
Self-clearing bit. 1: Interrupt pending.  
0
0
0
0
0
0
0
Speed state change status  
Link state change status  
FDX state change status  
Autonegotiation error status  
Self-clearing bit. 1: Interrupt pending.  
Self-clearing bit. 1: Interrupt pending.  
Self-clearing bit. 1: Interrupt pending.  
Self-clearing bit. 1: Interrupt pending.  
Self-clearing bit. 1: Interrupt pending.  
Self-clearing bit. 1: Interrupt pending.  
Autonegotiation complete status RO  
Inline powered device detect  
status  
RO  
8
7
Symbol error status  
RO  
RO  
RO  
RO  
RO  
RO  
Self-clearing bit. 1: Interrupt pending.  
Self-clearing bit. 1: Interrupt pending.  
0
0
0
0
0
0
Fast link failure detect status  
6:5 Reserved  
4
3
2
AMS media changed mask(1)  
Self-clearing bit. 1: Interrupt pending.  
Self-clearing bit. 1: Interrupt pending.  
Self-clearing bit. 1: Interrupt pending.  
False carrier interrupt status  
Link speed downshift detect  
status  
1
0
Master/Slave resolution error  
status  
RO  
RO  
Self-clearing bit. 1: Interrupt pending.  
Self-clearing bit. 1: Interrupt pending.  
0
0
RX_ER interrupt status  
1. If hardware interrupts are not used, the mask can still be set and the status polled for changes.  
The following information applies to the interrupt status bits:  
All set bits in this register are cleared after being read (self-clearing). If bit 26.15 is set, the cause of  
the interrupt can be read by reading bits 26.14:0.  
For bits 26.14 and 26.12, bit 0.12 must be set for this interrupt to assert.  
For bit 26.2, bits 4.8:5 must be set for this interrupt to assert.  
For bit 26.0, this interrupt will not occur when RX_ER is used for carrier-extension decoding of a link  
partner's data transmission.  
4.2.25 Device Auxiliary Control and Status  
Register 28 provides control and status information for several device functions not controlled or  
monitored by other device registers. The following table shows the settings available and the expected  
readouts.  
Table 43 • Auxiliary Control and Status, Address 28 (0x1C)  
Bit Name  
Access Description  
Default  
15 Autonegotiation complete  
RO  
RO  
RO  
Duplicate of bit 1.5  
0
0
0
14 Autonegotiation disabled  
Inverted duplicate of bit 0.12  
131 HP Auto-MDIX crossover  
indication  
1: HP Auto-MDIX crossover performed  
internally  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
59  
Registers  
Table 43 • Auxiliary Control and Status, Address 28 (0x1C) (continued)  
Bit Name  
Access Description  
Default  
12 CD pair swap  
11 A polarity inversion  
10 B polarity inversion  
RO  
RO  
RO  
RO  
RO  
1: CD pairs are swapped  
0
0
0
0
0
0
1: Polarity swap on pair A  
1: Polarity swap on pair B  
1: Polarity swap on pair C  
1: Polarity swap on pair D  
9
8
7
C polarity inversion  
D polarity inversion  
ActiPHY link status time-out R/W  
control [1]  
Sticky bit. Bits 7 and 2 are part of the  
ActiPHY Link Status time-out control. Bit 7  
is the MSB.  
00: 2.3 seconds  
01: 3.3 seconds  
10: 4.3 seconds  
11: 5.3 seconds  
6
5
ActiPHY mode enable  
FDX status  
R/W  
RO  
RO  
Sticky bit.  
1: Enabled  
0
1: Full-duplex  
0: Half-duplex  
00  
0
4:3 Speed status  
00: Speed is 10BASE-T  
01: Speed is 100BASE-TX or 100BASE-FX  
10: Speed is 1000BASE-T or 1000BASE-X  
11: Reserved  
2
ActiPHY link status time-out R/W  
control [0]  
Sticky bit. Bits 7 and 2 are part of the  
ActiPHY Link Status time-out control. Bit 7  
is the MSB.  
1
00: 2.3 seconds  
01: 3.3 seconds  
10: 4.3 seconds  
11: 5.3 seconds  
1:0 Media mode status  
RO  
00: No media selected  
01: Copper media selected  
10: SerDes (Fiber) media selected  
11: Reserved  
00  
1. In 1000BT mode, if Force MDI crossover is performed while link is up, the 1000BT link must be re-negotiated  
in order for this bit to reflect the actual Auto-MDIX setting.  
4.2.26 LED Mode Select  
The device LED outputs are controlled using the bits in register 29 of the main register space. The  
following table shows the information needed to access the functionality of each of the outputs. For more  
information about LED modes, see Table 7, page 25. For information about enabling the extended LED  
mode bits in Register 19E1 bits 13 to 12, see Table 8, page 27.  
Table 44 • LED Mode Select, Address 29 (0x1D)  
Bit  
Name  
Access Description  
Default  
15:12 LED3 mode select R/W  
Sticky bit. Select from LED modes 0–15. 1000  
11:8  
7:4  
LED2 mode select R/W  
LED1 mode select R/W  
LED0 mode select R/W  
Sticky bit. Select from LED modes 0–15. 0000  
Sticky bit. Select from LED modes 0–15. 0010  
Sticky bit. Select from LED modes 0–15. 0001  
3:0  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
60  
Registers  
4.2.27 LED Behavior  
The bits in register 30 control and enable you to read the status of the pulse or blink rate of the device  
LEDs. The following table shows the settings you can write to the register or read from the register.  
Table 45 • LED Behavior, Address 30 (0x1E)  
Bit  
Name  
Access Description  
Default  
15  
Copper and fiber  
R/W  
Sticky bit  
0
LED combine disable  
0: Combine enabled (Copper/Fiber on  
link/linkXXXX/activity LED)  
1: Disable combination (link/linkXXXX/activity  
LED; indicates copper only)  
14  
Activity output select R/W  
Sticky bit  
0
1: Activity LED becomes TX_Activity and fiber  
activity LED becomes RX_Activity  
0: TX and RX activity both displayed on activity  
LEDs  
13  
12  
Reserved  
RO  
Reserved  
LED pulsing enable R/W  
Sticky bit  
0
0: Normal operation  
1: LEDs pulse with a 5 kHz, programmable duty  
cycle when active  
11:10 LED blink/pulse-  
stretch rate  
R/W  
Sticky bit  
01  
00: 2.5 Hz blink rate/400 ms pulse-stretch  
01: 5 Hz blink rate/200 ms pulse-stretch  
10: 10 Hz blink rate/100 ms pulse-stretch  
11: 20 Hz blink rate/50 ms pulse-stretch  
The blink rate selection for PHY0 globally sets  
the rate used for all LED pins on all PHY ports  
9
8
Reserved  
RO  
Reserved  
LED3 pulse-  
stretch/blink select  
R/W  
Sticky bit  
1: Pulse-stretch  
0: Blink  
0
0
0
0
7
6
5
LED2 pulse-  
stretch/blink select  
R/W  
R/W  
R/W  
Sticky bit  
1: Pulse-stretch  
0: Blink  
LED1 pulse-  
stretch/blink select  
Sticky bit  
1: Pulse-stretch  
0: Blink  
LED0 pulse-  
Sticky bit  
stretch/blink select  
1: Pulse-stretch  
0: Blink  
4
3
Reserved  
RO  
Reserved  
LED3 combine  
feature disable  
R/W  
Sticky bit  
0: Combine enabled (link/activity,  
duplex/collision)  
0
0
1: Disable combination (link only, duplex only)  
2
LED2 combine  
feature disable  
R/W  
Sticky bit  
0: Combine enabled (link/activity,  
duplex/collision)  
1: Disable combination (link only, duplex only)  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
61  
Registers  
Table 45 • LED Behavior, Address 30 (0x1E) (continued)  
Bit  
Name  
Access Description  
Default  
1
LED1 combine  
feature disable  
R/W  
Sticky bit  
0: Combine enabled (link/activity,  
duplex/collision)  
0
1: Disable combination (link only, duplex only)  
0
LED0 combine  
feature disable  
R/W  
Sticky bit  
0: Combine enabled (link/activity,  
duplex/collision)  
0
1: Disable combination (link only, duplex only)  
Note: Bits 30.11:10 are active only in port 0 and affect the behavior of LEDs for all the ports.  
4.2.28 Extended Page Access  
To provide functionality beyond the IEEE 802.3-specified registers and main device registers, the  
VSC8504-01 includes an extended set of registers that provide an additional 15 register spaces.  
The register at address 31 controls the access to the extended registers for the VSC8504-01. Accessing  
the GPIO page register space is similar to accessing the extended page registers. The following table  
shows the settings available.  
Table 46 • Extended/GPIO Register Page Access, Address 31 (0x1F)  
Bit  
Name  
Access Description  
Default  
15:0 Extended/GPIO page R/W  
register access  
0x0000: Register 16–30 accesses main register 0x0000  
space. Writing 0x0000 to register 31 restores the  
main register access.  
0x0001: Registers 16–30 access extended  
register space 1  
0x0002: Registers 16–30 access extended  
register space 2  
0x0003: Registers 16–30 access extended  
register space 3  
0x0010: Registers 0–30 access GPIO register  
space  
4.3  
Extended Page 1 Registers  
To access the extended page 1 registers (16E1–30E1), enable extended register access by writing  
0x0001 to register 31. Writing 0x0000 to register 31 restores the main register access.  
When extended page 1 register access is enabled, reads and writes to registers 16–30 affect the  
extended registers 16E1–30E1 instead of those same registers in the IEEE-specified register space.  
Registers 0–15 are not affected by the state of the extended page register access.  
Table 47 • Extended Registers Page 1 Space  
Address  
16E1  
Name  
SerDes Media Control  
Reserved  
17E1  
18E1  
Cu Media CRC good counter  
Extended mode and SIGDET control  
Extended PHY control 3 (ActiPHY)  
19E1  
20E1  
21E1–22E1 Reserved  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
62  
Registers  
Table 47 • Extended Registers Page 1 Space (continued)  
Address  
23E1  
Name  
Extended PHY control 4 (PoE and CRC error counter)  
24E1  
VeriPHY 1  
VeriPHY 2  
VeriPHY 3  
25E1  
26E1  
27E1–28E1 Reserved  
29E1  
30E1  
Ethernet packet generator (EPG) 1  
EPG 2  
4.3.1  
SerDes Media Control  
Register 16E1 controls some functions of the SerDes media interface on ports 0–3. These settings are  
only valid for those ports. The following table shows the setting available in this register.  
Table 48 • SerDes Media Control, Address 16E1 (0x10)  
Bit Name Access Description  
Default  
15:14 Transmit remote fault  
R/W  
RO  
RO  
Remote fault indication sent to link  
partner (LP)  
00  
13:12 Link partner (LP) remote  
fault  
Remote fault bits sent by LP during  
autonegotiation  
00  
1
11:10 Reserved  
Reserved  
9
Allow 1000BASE-X link-up R/W  
Sticky bit.  
1: Allow 1000BASE-X fiber media link-up  
capability  
0: Suppress 1000BASE-X fiber media  
link-up capability  
8
Allow 100BASE-FX link-up R/W  
Sticky bit.  
1
0
1: Allow 100BASE-FX fiber media link-up  
capability  
0: Suppress 100BASE-FX fiber media  
link-up capability  
7
6
Reserved  
RO  
RO  
Reserved  
Far end fault detected in  
100BASE-FX  
Self-clearing bit.  
1: Far end fault in 100BASE-FX detected  
5:0  
Reserved  
RO  
Reserved  
4.3.2  
Cu Media CRC Good Counter  
Register 18E1 makes it possible to read the contents of the CRC good counter for packets that are  
received on the Cu media interface; the number of CRC routines that have executed successfully. The  
following table shows the expected readouts.  
Table 49 • Cu Media CRC Good Counter, Address 18E1 (0x12)  
Bit  
Name  
Access Description  
Default  
15  
Packet since last read RO  
Self-clearing bit.  
0
1: Packet received since last read.  
14  
Reserved  
RO  
Reserved.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
63  
Registers  
Table 49 • Cu Media CRC Good Counter, Address 18E1 (0x12) (continued)  
Bit  
Name  
Access Description  
RO Self-clearing bit. Counter containing the  
Default  
13:0 Cu Media CRC good  
counter contents  
0x000  
number of packets with valid CRCs modulo  
10,000; this counter does not saturate and  
will roll over to zero on the next good packet  
received after 9,999.  
4.3.3  
Extended Mode Control  
Register 19E1 controls the extended LED and other chip modes. The following table shows the settings  
available.  
Table 50 • Extended Mode Control, Address 19E1 (0x13)  
Bit  
15  
14  
13  
12  
11  
Name  
Access Description  
Default  
LED3 Extended Mode  
LED2 Extended Mode  
LED1 Extended Mode  
LED0 Extended Mode  
R/W  
R/W  
R/W  
R/W  
1: See Extended LED Modes, page 27  
0
0
0
0
0
1: See Extended LED Modes, page 27  
1: See Extended LED Modes, page 27  
1: See Extended LED Modes, page 27  
LED Reset Blink Suppress R/W  
1: Blink LEDs after COMA_MODE is  
de-asserted  
0: Suppress LED blink after COMA_MODE  
is de-asserted  
10:5 Reserved  
RO  
Reserved  
0
0
4
Fast link failure  
R/W  
Enable fast link failure pin. This must be  
done from PHY0 only.  
1: Enabled  
0: Disabled (GPIO9 pin becomes general  
purpose I/O)  
3:2  
Force MDI crossover  
Reserved  
R/W  
RO  
00: Normal HP Auto-MDIX operation  
01: Reserved  
10: Copper media forced to MDI  
11: Copper media forced MDI-X  
00  
0
1
0
Reserved  
GPIO[3:0]/SIGDET[3:0] pin R/W  
polarity  
1: Active low  
0: Active high  
4.3.4  
ActiPHY Control  
Register 20E1 controls the device ActiPHY sleep timer, its wake-up timer, and its link speed downshifting  
feature. The following table shows the settings available.  
Table 51 • Extended PHY Control 3, Address 20E1 (0x14)  
Bit  
Name  
Access Description  
1: Disable carrier extension in 1000BASE-T 1  
copper links  
Default  
15  
Disable carrier extension R/W  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
64  
Registers  
Table 51 • Extended PHY Control 3, Address 20E1 (0x14) (continued)  
Bit Name Access Description  
Default  
14:13 ActiPHY sleep timer  
R/W  
Sticky bit.  
01  
00: 1 second  
01: 2 seconds  
10: 3 seconds  
11: 4 seconds  
12:11 ActiPHY wake-up timer  
R/W  
Sticky bit.  
00  
00: 160 ms  
01: 400 ms  
10: 800 ms  
11: 2 seconds  
10  
9
Reserved  
RO  
Reserved  
PHY address reversal  
R/W  
Reverse PHY address  
0
Enabling causes physical PHY 0 to have  
address of 3, PHY 1 address of 2, PHY 2  
address of 1, and PHY 3 address of 0.  
Changing this bit to 1 should initially be  
done from PHY 0 and changing to 0 from  
PHY3  
1: Enabled  
0: Disabled  
8
Reserved  
RO  
RO  
Valid only on PHY0  
7:6  
Media mode status  
00: No media selected  
01: Copper media selected  
10: SerDes media selected  
11: Reserved  
00  
0
5
Enable 10BASE-T no  
preamble mode  
R/W  
R/W  
Sticky bit.  
1: 10BASE-T will assert RX_DV indication  
when data is presented to the receiver even  
without a preamble preceding it  
4
Enable link speed  
Sticky bit.  
0
autodownshift feature  
1: Enable auto link speed downshift from  
1000BASE-T  
3:2  
Link speed auto downshift R/W  
control  
Sticky bits.  
00: Downshift after 2 failed 1000BASE-T  
autonegotiation attempts  
01  
01: Downshift after 3 failed 1000BASE-T  
autonegotiation attempts  
10: Downshift after 4 failed 1000BASE-T  
autonegotiation attempts  
11: Downshift after 5 failed 1000BASE-T  
autonegotiation attempts  
1
0
Link speed auto downshift RO  
status  
0: No downshift  
1: Downshift is required or has occurred  
0
Reserved  
RO  
Reserved  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
65  
Registers  
4.3.5  
PoE and Miscellaneous Functionality  
The register at address 23E1 controls various aspects of inline powering and the CRC error counter in  
the VSC8504-01.  
Table 52 • Extended PHY Control 4, Address 23E1 (0x17)  
Bit  
Name  
Access Description  
RO PHY address; latched on reset  
Default  
15:11 PHY address  
10  
Inline powered device R/W  
detection  
Sticky bit.  
1: Enabled  
0
9:8  
Inline powered device RO  
detection status  
Only valid when bit 10 is set.  
00: Searching for devices  
01: Device found; requires inline power  
10: Device found; does not require inline  
power  
00  
11: Reserved  
7:0  
Cu Media CRC error  
counter  
RO  
Self-clearing bit  
RC error counter for packets received on the Cu media interface. The value saturates at 0xFF and  
subsequently clears when read and restarts count.0x00  
4.3.6  
VeriPHY Control 1  
Register 24E1 in the extended register space provides control over the device VeriPHY diagnostics  
features. There are three separate VeriPHY control registers. The following table shows the settings  
available and describes the expected readouts.  
Table 53 • VeriPHY Control Register 1, Address 24E1 (0x18)  
Bit  
Name  
Access Description  
Default  
15  
VeriPHY trigger  
R/W  
RO  
Self-clearing bit.  
0
1: Triggers the VeriPHY algorithm and clears  
when VeriPHY has completed. Settings in  
registers 24E–26E become valid after this bit  
clears.  
14  
VeriPHY valid  
1: VeriPHY results in registers 24E–26E are  
valid.  
0
13:8 Pair A (1, 2) distance RO  
Loop length or distance to anomaly for pair A (1, 0x00  
2).  
7:6  
5:0  
Reserved  
RO  
Reserved.  
Pair B (3, 6) distance RO  
Loop length or distance to anomaly for pair B (3, 0x00  
6).  
Note: The resolution of the 6-bit length field is 3 meters.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
66  
Registers  
4.3.7  
VeriPHY Control 2  
The register at address 25E1 consists of the second of the three device registers that provide control  
over VeriPHY diagnostics features. The following table shows the expected readouts.  
Table 54 • VeriPHY Control Register 2, Address 25E1 (0x19)  
Bit  
Name  
Access Description  
RO Reserved  
Pair C (4, 5) distance RO  
Default  
15:14 Reserved  
13:8  
Loop length or distance to anomaly for pair C 0x00  
(4, 5)  
7:6  
5:0  
Reserved  
RO  
Reserved  
Pair D (7, 8) distance RO  
Loop length or distance to anomaly for pair D 0x00  
(7, 8)  
Note: The resolution of the 6-bit length field is 3 meters.  
4.3.8  
VeriPHY Control 3  
The register at address 26E1 consists of the third of the three device registers that provide control over  
VeriPHY diagnostics features. Specifically, this register provides information about the termination status  
(fault condition) for all four link partner pairs. The following table shows the expected readouts.  
Table 55 • VeriPHY Control Register 3, Address 26E1 (0x1A)  
Bit  
Name  
Access Description  
Default  
0x00  
15:12 Pair A (1, 2) termination status  
RO  
RO  
Termination fault for pair A (1, 2)  
11:8  
7:4  
Pair B (3, 6) termination status  
Termination fault for pair B (3, 4)  
Termination fault for pair C (4, 5)  
Termination fault for pair D (7, 8)  
0x00  
Pair C (4, 5) termination status RO  
Pair D (7, 8) termination status RO  
0x00  
3:0  
0x00  
The following table shows the meanings for the various fault codes.  
Table 56 • VeriPHY Control Register 3 Fault Codes  
Code Denotes  
0000 Correctly terminated pair  
0001 Open pair  
0010 Shorted pair  
0100 Abnormal termination  
1000 Cross-pair short to pair A  
1001 Cross-pair short to pair B  
1010 Cross-pair short to pair C  
1011 Cross-pair short to pair D  
1100 Abnormal cross-pair coupling with pair A  
1101 Abnormal cross-pair coupling with pair B  
1110 Abnormal cross-pair coupling with pair C  
1111 Abnormal cross-pair coupling with pair D  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
67  
Registers  
4.3.9  
Ethernet Packet Generator Control 1  
The EPG control register provides access to and control of various aspects of the EPG testing feature.  
There are two separate EPG control registers. The following table shows the settings available in the first  
register.  
Table 57 • EPG Control Register 1, Address 29E1 (0x1D)  
Bit  
15  
14  
13  
Name  
Access Description  
Default  
EPG enable  
EPG run or stop  
R/W  
R/W  
1: Enable EPG  
1: Run EPG  
0
0
0
Transmission duration R/W  
1: Continuous (sends in 10,000-packet  
increments)  
0: Send 30,000,000 packets and stop  
12:11 Packet length  
R/W  
00: 125 bytes  
0
01: 64 bytes  
10: 1518 bytes  
11: 10,000 bytes (jumbo packet)  
10  
9:6  
5:2  
1
Interpacket gap  
Destination address  
Source address  
Payload type  
R/W  
R/W  
R/W  
R/W  
R/W  
1: 8,192 ns  
0: 96 ns  
0
Lowest nibble of the 6-byte destination  
address  
0001  
0000  
0
Lowest nibble of the 6-byte destination  
address  
1: Randomly generated payload pattern  
0: Fixed based on payload pattern  
0
Bad frame check  
sequence (FCS)  
generation  
1: Generate packets with bad FCS  
0: Generate packets with good FCS  
0
The following information applies to the EPG control number 1:  
Do not run the EPG when the VSC8504-01 is connected to a live network.  
bit 29E1.13 (continuous EPG mode control): When enabled, this mode causes the device to send  
continuous packets. When disabled, the device continues to send packets only until it reaches the  
next 10,000-packet increment mark. It then ceases to send packets.  
The 6-byte destination address in bits 9:6 is assigned one of 16 addresses in the range of 0xFF FF  
FF FF FF F0 through 0xFF FF FF FF FF FF.  
The 6-byte source address in bits 5:2 is assigned one of 16 addresses in the range of 0xFF FF FF  
FF FF F0 through 0xFF FF FF FF FF FF.  
If any of bits 13:0 are changed while the EPG is running (bit 14 is set to 1), bit 14 must be cleared  
and then set back to 1 for the change to take effect and to restart the EPG.  
4.3.10 Ethernet Packet Generator Control 2  
Register 30E1 consists of the second set of bits that provide access to and control over the various  
aspects of the EPG testing feature. The following table shows the settings available.  
Table 58 • EPG Control Register 2, Address 30E1 (0x1E)  
Bit  
Name  
Access Description  
Data pattern repeated in the payload of 0x00  
packets generated by the EPG  
Default  
15:0 EPG packet payload R/W  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
68  
Registers  
Note: If any of bits 15:0 in this register are changed while the EPG is running (bit 14 of register 29E1 is set to  
1), that bit (29E1.14) must first be cleared and then set back to 1 for the change to take effect and to  
restart the EPG.  
4.4  
Extended Page 2 Registers  
To access the extended page 2 registers (16E2–30E2), enable extended register access by writing  
0x0002 to register 31. For more information, see Table 46, page 62.  
When extended page 2 register access is enabled, reads and writes to registers 16–30 affect the  
extended registers 16E2–30E2 instead of those same registers in the IEEE-specified register space.  
Registers 0–15 are not affected by the state of the extended page register access.  
Writing 0x0000 to register 31 restores the main register access.  
The following table lists the addresses and register names in the extended register page 2 space. These  
registers are accessible only when the device register 31 is set to 0x0002.  
Table 59 • Extended Registers Page 2 Space  
Address  
16E2  
Name  
Cu PMD Transmit Control  
EEE Control  
17E2  
18E2-29E2  
30E2  
Reserved  
Ring Resiliency Control  
4.4.1  
Cu PMD Transmit Control  
The register at address 16E2 consists of the bits that provide control over the amplitude settings for the  
transmit side Cu PMD interface. These bits provide the ability to make small adjustments in the signal  
amplitude to compensate for minor variations in the magnetics from different vendors. Extreme caution  
must be exercised when changing these settings from the default values as they have a direct impact on  
the signal quality. Changing these settings also affects the linearity and harmonic distortion of the  
transmitted signals. For help with changing these values, contact your Microsemi representative.  
Table 60 • Cu PMD Transmit Control, Address 16E2 (0x10)  
Bit  
Name  
Access Description  
Default  
15:12 1000BASE-T signal R/W  
amplitude trim(1)  
1000BASE-T signal amplitude  
1111: -1.7%  
1110: -2.6%  
1101: -3.5%  
1100: -4.4%  
1011: -5.3%  
1010: -7%  
0000  
1001: -8.8%  
1000: -10.6%  
0111: 5.5%  
0110: 4.6%  
0101: 3.7%  
0100: 2.8%  
0011: 1.9%  
0010: 1%  
0001: 0.1%  
0000: -0.8%  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
69  
Registers  
Table 60 • Cu PMD Transmit Control, Address 16E2 (0x10) (continued)  
Bit  
Name  
Access Description  
Default  
11:8  
100BASE-TX signal R/W  
amplitude trim(2)  
100BASE-TX signal amplitude  
1111: -1.7%  
1110: -2.6%  
1101: -3.5%  
1100: -4.4%  
1011: -5.3%  
1010: -7%  
0010  
1001: -8.8%  
1000: -10.6%  
0111 5.5%  
0110: 4.6%  
0101: 3.7%  
0100: 2.8%  
0011: 1.9%  
0010: 1%  
0001: 0.1%  
0000: -0.8%  
7:4  
10BASE-T signal  
amplitude trim(3)  
R/W  
10BASE-T signal amplitude  
1111: -7%  
1011  
1110: -7.9%  
1101: -8.8%  
1100: -9.7%  
1011: -10.6%  
1010: -11.5%  
1001: -12.4%  
1000: -13.3%  
0111: 0%  
0110: -0.7%  
0101: -1.6%  
0100: -2.5%  
0011: -3.4%  
0010: -4.3%  
0001: -5.2%  
0000: -6.1%  
3:0  
10BASE-Te signal R/W  
amplitude trim  
10BASE-Te signal amplitude  
1111: -30.45%  
1110: -31.1%  
1110  
1101: -31.75%  
1100: -32.4%  
1011: -33.05%  
1010: -33.7%  
1001: -34.35%  
1000: -35%  
0111: -25.25%  
0110: -25.9%  
0101: -26.55%  
0100: -27.2%  
0011: -27.85%  
0010: -28.5%  
0001: -29.15%  
0000: -29.8%  
1. Changes to 1000BASE-T amplitude may result in unpredictable side effects.  
2. Adjust 100BASE-TX to specific magnetics.  
3. Amplitude is limited by VCC (2.5 V).  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
70  
Registers  
4.4.2  
EEE Control  
The register at address 17E2 consists of the bits that provide additional control over the chip behavior in  
energy efficient Ethernet (IEEE 802.3az-2010) mode.  
Table 61 • EEE Control, Address 17E2 (0x11)  
Bit  
Name  
Access Description  
Default  
15  
Enable 10BASE-Te R/W  
Sticky bit.  
0
Enable energy efficient (IEEE 802.3az-2010)  
10BASE-Te operating mode.  
14  
Enable LED in fiber R/W  
unidirectional mode  
Sticky bit.  
0
1: Enable LED functions in fiber unidirectional  
mode.  
13:10 Invert LED polarity  
R/W  
Sticky bits.  
0000  
Invert polarity of LED[3:0]_[3:0] signals. Default  
is to drive an active low signal on the LED pins.  
This also applies to enhanced serial LED mode.  
For more information, see Enhanced Serial LED  
Mode, page 28.  
9:6  
5
Reserved  
RO  
Reserved.  
Enable 1000BASE-T R/W  
force mode  
Sticky bit.  
0
1: Enable 1000BASE-T force mode to allow PHY  
to link-up in 1000BASE-T mode without forcing  
master/slave when register 0, bits 6 and 13 are  
set to 2’b10.  
41  
Force transmit LPI  
R/W  
Sticky bit.  
0
0
0
0
0
1: Enable the EPG to transmit LPI on the MDI,  
ignore data from the MAC interface.  
0: Transmit idles being received from the MAC.  
3
Inhibit 100BASE-TX R/W  
transmit EEE LPI  
Sticky bit.  
1: Disable transmission of EEE LPI on transmit  
path MDI in 100BASE-TX mode when receiving  
LPI from MAC.  
2
Inhibit 100BASE-TX R/W  
receive EEE LPI  
Sticky bit.  
1: Disable transmission of EEE LPI on receive  
path MAC interface in 100BASE-TX mode when  
receiving LPI from the MDI.  
1
Inhibit 1000BASE-T R/W  
transmit EEE LPI  
Sticky bit.  
1: Disable transmission of EEE LPI on transmit  
path MDI in 1000BASE-T mode when receiving  
LPI from MAC.  
0
Inhibit 1000BASE-T R/W  
receive EEE LPI  
Sticky bit.  
1: Disable transmission of EEE LPI on receive  
path MAC interface in 1000BASE-T mode when  
receiving LPI from the MDI.  
1. 17E2 bits 4:0 are for debugging purposes only, not for operational use.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
71  
Registers  
4.4.3  
Ring Resiliency Control  
The following table shows the register settings for the ring resiliency controls at address 30E2.  
Table 62 • Ring Resiliency, Address 30E2  
Bit  
Name  
Access Description  
Default  
15  
Ring resiliency  
startup enable  
R/W  
Sticky  
0
(master TR enable)  
14  
13  
12  
Advertise ring  
resiliency  
R/W  
RO  
Sticky  
0
0
0
LP ring resiliency  
advertisement  
Force ring resiliency R/W  
enable (override  
autoneg)  
Sticky  
11:6  
5:4  
Reserved  
RO  
RO  
Reserved  
000000  
00  
Ring resiliency  
status  
Ring resiliency status (from r1000 DSP SM)  
00: Timing slave(1)  
10: Timing slave becoming master  
11: Timing master(1)  
01: Timing master becoming slave  
3:1  
0
Reserved  
RO  
Reserved  
000  
0
Start switchover  
(only when not in  
progress)  
RWSC  
1. Reflects autoneg master/slave at initial link-up  
4.5  
Extended Page 3 Registers  
To access the extended page 3 registers (16E3–30E3), enable extended register access by writing  
0x0003 to register 31. For more information, see Table 46, page 62.  
When extended page 3 register access is enabled, reads and writes to registers 16–30 affect the  
extended registers 16E3–30E3 instead of those same registers in the IEEE-specified register space.  
Registers 0–15 are not affected by the state of the extended page register access.  
Writing 0x0000 to register 31 restores the main register access.  
The following table lists the addresses and register names in the extended register page 3 space. These  
registers are accessible only when the device register 31 is set to 0x0003.  
Table 63 • Extended Registers Page 3 Space  
Address Name  
16E3  
17E3  
18E3  
19E3  
20E3  
21E3  
22E3  
MAC SerDes PCS Control  
MAC SerDes PCS Status  
MAC SerDes Clause 37 Advertised Ability  
MAC SerDes Clause 37 Link Partner Ability  
MAC SerDes Status  
Media SerDes Transmit Good Packet Counter  
Media SerDes Transmit CRC Error Counter  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
72  
Registers  
Table 63 • Extended Registers Page 3 Space (continued)  
Address Name  
23E3  
24E3  
25E3  
26E3  
27E3  
28E3  
29E3  
30E3  
Media SerDes PCS Control  
Media SerDes PCS Status  
Media SerDes Clause 37 Advertised Ability  
Media SerDes Clause 37 Link Partner Ability  
Media SerDes status  
Fiber Media CRC Good Counter  
Fiber Media CRC Error Counter  
Reserved  
4.5.1  
MAC SerDes PCS Control  
The register at address 16E3 consists of the bits that provide access to and control over MAC SerDes  
PCS block. The following table shows the settings available.  
Table 64 • MAC SerDes PCS Control, Address 16E3 (0x10)  
Bit  
Name  
Access Description  
Default  
15  
MAC interface disable  
R/W  
R/W  
Sticky bit.  
0
1: 1000BASE-X MAC interface disable when  
media link down.  
14  
13  
MAC interface restart  
Sticky bit.  
0
0
0
1: 1000BASE-X MAC interface restart on  
media link change.  
MAC interface PD enable R/W  
Sticky bit.  
1: MAC interface autonegotiation parallel  
detect enable.  
12  
11  
MAC interface  
autonegotiation restart  
R/W  
R/W  
Self-clearing bit.  
1: Restart MAC interface autonegotiation.  
Force advertised ability  
1: Force 16-bit advertised ability from register 0  
18E3.  
10:8 SGMII preamble control R/W  
000: No effect on the start of packet.  
001: If both the first two nibbles of the 10/100  
packet are not 0x5, a byte of 0x55 must be  
prefixed to the output, otherwise there will be  
no effect on the start of packet.  
001  
010: If both the first two nibbles of the 10/100  
packet are not 0x5, a byte of 0x55 must be  
prefixed to the output. An additional byte of  
0x55 must be prefixed to the output if the  
next two nibbles are also not 0x5.  
011–111: Reserved.  
7
6
5
MAC SerDes  
autonegotiation enable  
R/W  
1: MAC SerDes ANEG enable.  
0
SerDes polarity at input of R/W  
MAC  
1: Invert polarity of signal received at input of 0  
MAC.  
SerDes polarity at output R/W  
of MAC  
1: Invert polarity of signal at output of MAC.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
73  
Registers  
Table 64 • MAC SerDes PCS Control, Address 16E3 (0x10) (continued)  
Bit  
Name  
Access Description  
Default  
4
Fast link status enable  
R/W  
1: Use fast link fail indication as link status  
0
indication to MAC SerDes.  
0: Use normal link status indication to MAC  
SerDes.  
3
Reserved  
Reserved  
R/W  
RO  
Reserved.  
Reserved.  
0
2:0  
4.5.2  
MAC SerDes PCS Status  
The register at address 17E3 consists of the bits that provide status from the MAC SerDes PCS block.  
The following table shows the settings available.  
Table 65 • MAC SerDes PCS Status, Address 17E3 (0x11)  
Bit  
Name  
Access Description  
15:13 Reserved  
RO  
RO  
Reserved  
12  
11  
SGMII alignment error  
1: SGMII alignment error occurred  
MAC interface LP autonegotiation RO  
restart  
1: MAC interface link partner autonegotiation  
restart request occurred  
10  
Reserved  
RO  
RO  
Reserved  
9:8  
MAC remote fault  
01, 10, and 11: Remote fault detected from  
MAC  
00: No remote fault detected from MAC  
7
6
5
4
3
Asymmetric pause advertisement RO  
1: Asymmetric pause advertised by MAC  
1: Symmetric pause advertised by MAC  
1: Full duplex advertised by MAC  
Symmetric pause advertisement  
Full duplex advertisement  
Half duplex advertisement  
RO  
RO  
RO  
1: Half duplex advertised by MAC  
MAC interface LP autonegotiation RO  
capable  
1: MAC interface link partner autonegotiation  
capable  
2
1
MAC interface link status  
RO  
RO  
1: MAC interface link status connected  
MAC interface autonegotiation  
complete  
1: MAC interface autonegotiation complete  
0
MAC comma detect  
RO  
1: Comma currently detected  
0: comma currently not detected  
4.5.3  
MAC SerDes Clause 37 Advertised Ability  
The register at address 18E3 consists of the bits that provide access to and control over MAC SerDes  
Clause 37 advertised ability. The following table shows the settings available.  
Table 66 • MAC SerDes Cl37 Advertised Ability, Address 18E3 (0x12)  
Bit Name Access Description  
Default  
15:0 MAC SerDes advertised R/W  
ability  
Current configuration code word being  
advertised (this register is read/write if  
16E3.11 = 1)  
0x0000  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
74  
Registers  
4.5.4  
MAC SerDes Clause 37 Link Partner Ability  
The register at address 19E3 consists of the bits that provide status of the MAC SerDes link partner's  
Clause 37 advertised ability. The following table shows the settings available.  
Table 67 • MAC SerDes Cl37 LP Ability, Address 19E3 (0x13)  
Bit  
Name  
Access Description  
15:0 MAC SerDes LP ability RO  
Last configuration code word received from link partner  
4.5.5  
MAC SerDes Status  
The register at address 20E3 consists of the bits that provide access to MAC SerDes status. The  
following table shows the settings available.  
Table 68 • MAC SerDes Status, Address 20E3 (0x14)  
Bit  
15  
14  
Name  
Access Description  
Reserved  
RO  
RO  
Reserved  
MAC comma detect  
Super-sticky bit. Cleared upon SW reset.  
1: Comma detected  
0: Comma not detected  
13  
QSGMII sync status  
RO  
RO  
12:0 Reserved  
Reserved  
4.5.6  
4.5.7  
Media SerDes Transmit Good Packet Counter  
The register at address 21E3 consists of the bits that provide status of the media SerDes transmit good  
packet counter. The following table shows the settings available.  
Table 69 • Media SerDes Tx Good Packet Counter, Address 21E3 (0x15)  
Bit  
15  
14  
Name  
Access Description  
Tx good packet counter active RO  
1: Transmit good packet counter active  
Reserved  
Reserved  
RO  
RO  
13:0 Tx good packet count  
Transmit good packet count modulo 10000  
Media SerDes Transmit CRC Error Counter  
The register at address 22E3 consists of the bits that provide status of the media SerDes transmit packet  
count that had a CRC error. The following table shows the settings available.  
Table 70 • Media SerDes Tx CRC Error Counter, Address 22E3 (0x16)  
Bit  
15:8 Reserved  
7:0 Tx CRC packet count RO  
Name  
Access Description  
RO  
Reserved  
Transmit CRC packet count (saturates at 255)  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
75  
Registers  
4.5.8  
Media SerDes PCS Control  
The register at address 23E3 consists of the bits that provide access to and control over Media SerDes  
PCS control. The following table shows the settings available.  
Table 71 • Media SerDes PCS Control, Address 23E3 (0x17)  
Bit  
Name  
Access Description  
Default  
15:14 Reserved  
RO  
Reserved  
13  
Media interface autonegotiation R/W  
parallel-detection  
Sticky bit.  
1: SerDes media autonegotiation  
parallel detect enabled  
0
12  
11  
Reserved  
RO  
Reserved  
Force advertised ability  
R/W  
1: Force 16-bit advertised ability  
from register 25E3.15:0  
0
0
10:7  
6
Reserved  
RO  
Reserved  
Polarity reversal input  
Media SerDes polarity reversal  
input  
0: No polarity reversal (default)  
1: Polarity reversed  
5
Polarity reversal output  
Reserved  
Media SerDes polarity reversal  
output  
0: No polarity reversal (default)  
1: Polarity reversed  
0
4:0  
RO  
Reserved  
4.5.9  
Media SerDes PCS Status  
The register at address 24E3 consists of the bits that provide status of the Media SerDes PCS block. The  
following table shows the settings available.  
Table 72 • Media SerDes PCS Status, Address 24E3 (0x18)  
Bit  
Name  
Access Description  
15:14 Reserved  
RO  
RO  
RO  
RO  
Reserved  
13  
12  
11  
SerDes protocol transfer  
100 Mb or 100BASE-FX link status  
10 Mb link status  
SerDes protocol transfer  
Media interface link partner  
autonegotiation restart  
1: Media interface link partner  
autonegotiation restart request  
occurred  
10  
Reserved  
RO  
RO  
Reserved  
9:8  
Remote fault detected  
01, 10, 11: Remote fault detected  
from link partner  
7
6
5
4
Link partner asymmetric pause RO  
1: Asymmetric pause advertised by  
link partner  
Link partner symmetric pause  
RO  
RO  
RO  
1: Symmetric pause advertised by  
link partner  
Link partner full duplex  
advertisement  
1: Full duplex advertised by link  
partner  
Link partner half duplex  
advertisement  
1: Half duplex advertised by link  
partner  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
76  
Registers  
Table 72 • Media SerDes PCS Status, Address 24E3 (0x18) (continued)  
Bit  
Name  
Access Description  
3
Link partner autonegotiation  
capable  
RO  
1: Media interface link partner  
autonegotiation capable  
2
1
Media interface link status  
RO  
1: Media interface link status  
Media interface autonegotiation RO  
complete  
1: Media interface autonegotiation  
complete  
0
Media interface signal detect  
RO  
1: Media interface signal detect  
4.5.10 Media SerDes Clause 37 Advertised Ability  
The register at address 25E3 consists of the bits that provide access to and control over Media SerDes  
Clause 37 advertised ability. The following table shows the settings available.  
Table 73 • Media SerDes Cl37 Advertised Ability, Address 25E3 (0x19)  
Bit  
Name  
Access Description  
Default  
15:0 Media SerDes  
advertised ability  
R/W  
Current configuration code word being advertised. 0x0000  
This register is read/write when 23E3.11 = 1.  
4.5.11 Media SerDes Clause 37 Link Partner Ability  
The register at address 26E3 consists of the bits that provide status of the media SerDes link partner's  
Clause 37 advertised ability. The following table shows the settings available.  
Table 74 • MAC SerDes Cl37 LP Ability, Address 26E3 (0x1A)  
Bit  
Name  
Access Description  
15:0 Media SerDes LP ability RO  
Last configuration code word received from link partner  
4.5.12 Media SerDes Status  
The register at address 27E3 consists of the bits that provide access to Media SerDes status. The  
following table shows the settings available.  
Table 75 • Media SerDes Status, Address 27E3 (0x1B)  
Bit  
Name  
Access Description  
15  
K28.5 comma realignment RO  
Self-clearing bit.  
1: K28.5 comma re-alignment has occurred  
14  
Signal detect  
RO  
RO  
Self-clearing bit. Sticky bit.  
1: SerDes media signal detect  
13:0 Reserved  
Reserved  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
77  
Registers  
4.5.13 Fiber Media CRC Good Counter  
Register 28E3 makes it possible to read the contents of the CRC good counter for packets that are  
received on the Fiber media interface; the number of CRC routines that have executed successfully. The  
following table shows the expected readouts.  
Table 76 • Fiber Media CRC Good Counter, Address 28E3 (0x1C)  
Bit  
Name  
Access Description  
Default  
15  
Packet since last read RO  
Self-clearing bit.  
0
1: Packet received since last read.  
14  
Reserved  
RO  
Reserved.  
13:0 Fiber media CRC good RO  
counter contents  
Self-clearing bit. Counter containing the  
number of packets with valid CRCs. This  
counter does not saturate and will roll over.  
0x000  
4.5.14 Fiber Media CRC Error Counter  
Register 29E3 makes it possible to read the contents of the CRC error counter for packets that are  
received on the Fiber media interface. The following table shows the expected readouts.  
Table 77 • Fiber Media CRC Error Counter, Address 29E3 (0x1D)  
Bit  
Name  
Access Description  
Default  
15:8 Reserved  
RO  
Reserved.  
7:0  
Fiber Media CRC RO  
error counter  
Self-clearing bit. CRC error counter for packets  
received on the Fiber media interface. The value  
saturates at 0xFF and subsequently clears when  
read and restarts count.  
0x00  
4.6  
General Purpose Registers  
Accessing the general purpose register space is similar to accessing the extended page registers. Set  
register 31 to 0x0010. This sets all 32 registers to the general purpose register space.  
To restore main register page access, write 0x0000 to register 31.  
The following table lists the addresses and register names in the general purpose register page space.  
These registers are accessible only when the device register 31 is set to 0x0010. All general purpose  
register bits are super-sticky.  
Table 78 • General Purpose Registers Page Space  
Address Name  
0G–12G Reserved  
13G  
14G  
15G  
16G  
17G  
18G  
19G  
20G  
LED/SIGDET/GPIO Control  
GPIO Control 2  
GPIO Input  
GPIO Output  
GPIO Output Enable  
Micro Command  
MAC Mode and Fast Link Configuration  
Two-Wire Serial MUX Control 1  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
78  
Registers  
Table 78 • General Purpose Registers Page Space (continued)  
Address Name  
21G  
22G  
23G  
24G  
25G  
26G  
27G  
28G  
29G  
30G  
Two-Wire Serial MUX Control 2  
Two-Wire Serial MUX Data Read/Write  
Recovered Clock 0 Control  
Recovered Clock 1 Control  
Enhanced LED Control  
Reserved  
Reserved  
Reserved  
Global Interrupt Status  
Reserved  
4.6.1  
4.6.2  
Reserved General Purpose Address Space  
The bits in registers 0G to 12G and 30G of the general purpose register space are reserved.  
SIGDET/GPIO Control  
The SIGDET control bits configure the GPIO[3:0]/SIGDET[3:0] pins to function either as signal detect  
pins for each fiber media port, or as GPIOs. The following table shows the values that can be written.  
Table 79 • SIGDET/GPIO Control, Address 13G (0x0D)  
Bit  
Name  
Access Description  
Default  
15:14 GPIO7/I2C_SCL_3 R/W  
13:12 GPIO6/I2C_SCL_2 R/W  
11:10 GPIO5/I2C_SCL_1 R/W  
00: SCL for PHY3  
01: Reserved  
10: Reserved  
11: Controlled by MII registers 15G to 17G  
00  
00: SCL for PHY2  
01: Reserved  
10: Reserved  
11: Controlled by MII registers 15G to 17G  
00  
00  
00  
00  
00  
00: SCL for PHY1  
01: Reserved  
10: Reserved  
11: Controlled by MII registers 15G to 17G  
9:8  
7:6  
5:4  
GPIO4/I2C_SCL_0 R/W  
00: SCL for PHY0  
01: Reserved  
10: Reserved  
11: Controlled by MII registers 15G to 17G  
GPIO3/SIGDET3  
control  
R/W  
R/W  
00: SIGDET operation  
01: Reserved  
10: Reserved  
11: Controlled by MII registers 15G to 17G  
GPIO2/SIGDET2  
control  
00: SIGDET operation  
01: Reserved  
10: Reserved  
11: Controlled by MII registers 15G to 17G  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
79  
Registers  
Table 79 • SIGDET/GPIO Control, Address 13G (0x0D) (continued)  
Bit  
Name  
Access Description  
Default  
3:2  
GPIO1/SIGDET1  
control  
R/W  
00: SIGDET operation  
01: Reserved  
00  
10: Reserved  
11: Controlled by MII registers 15G to 17G  
1:0  
GPIO0/SIGDET0  
control  
R/W  
00: SIGDET operation  
01: Reserved  
00  
10: Reserved  
11: Controlled by MII registers 15G to 17G  
4.6.3  
GPIO Control 2  
The GPIO control 2 register configures the functionality of the COMA_MODE input pins, and provides  
control for possible GPIO pin options.  
Table 80 • GPIO Control 2, Address 14G (0x0E)  
Bit  
Name  
Access Description  
Default  
15:14 GPIO12 and GPIO13  
R/W  
GPIO12 and GPIO13 control.  
00: Reserved  
01: Reserved.  
10: Reserved.  
11: GPIO12/GPIO13 operation. Controlled  
by MII registers 15G to 17G.  
13  
12  
COMA_MODE output  
enable (active low)  
R/W  
R/W  
1: COMA_MODE pin is an input.  
0: COMA_MODE pin is an output.  
1
0
COMA_MODE output  
data  
Value to output on the COMA_MODE pin  
when it is configured as an output.  
11  
10  
COMA_MODE input data RO  
Data read from the COMA_MODE pin.  
Tri-state enable for  
two-wire serial bus  
R/W  
1: Tri-states two-wire serial bus output  
signals instead of driving them high. This  
allows those signals to be pulled above  
VDD25 using an external pull-up resistor.  
0: Drive two-wire serial bus output signals  
to high and low values as appropriate.  
1
1
0
9
Tri-state enable for LEDs R/W  
1: Tri-state LED output signals instead of  
driving them high. This allows the signals  
to be pulled above VDDIO using an external  
pull-up resistor.  
0: Drive LED bus output signals to high and  
low values.  
8
Reserved  
GPIO11  
RO  
Reserved  
7:6  
R/W  
GPIO11 control.  
00: Reserved  
01: Reserved  
10: Reserved  
11: Controlled by MII registers 15G to 17G  
5:4  
GPIO10  
R/W  
GPIO10 control.  
00: Reserved  
01: Reserved  
10: Reserved  
11: Controlled by MII registers 15G to 17G  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
80  
Registers  
Table 80 • GPIO Control 2, Address 14G (0x0E) (continued)  
Bit  
Name  
Access Description  
Default  
3:2  
GPIO9/FASTLINK_FAIL  
R/W  
GPIO9/FASTLINK_FAIL control.  
00: FASTLINK_FAIL operation  
01: Reserved  
10: Reserved  
11: Controlled by MII registers 15G to 17G  
1:0  
GPIO8/I2C_SDA  
R/W  
GPIO8/I2C_SDA control.  
00: I2C_SDA operation  
01: Reserved  
10: Reserved  
11: Controlled by MII registers 15G to 17G  
4.6.4  
GPIO Input  
The input register contains information about the input to the device GPIO pins. Read from this register to  
access the data on the device GPIO pins. The following table shows the readout you can expect.  
Table 81 • GPIO Input, Address 15G (0x0F)  
Bit  
Name  
Access Description  
Default  
15:14 Reserved  
RO  
Reserved  
13  
12  
11  
10  
9
GPIO13  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
GPIO13 input  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GPIO12  
GPIO12 input  
GPIO11  
GPIO11 input  
GPIO10  
GPIO10 input  
GPIO9/FASTLINK_FAIL  
GPIO8/I2C_SDA  
GPIO7/I2C_SCL_3  
GPIO6/I2C_SCL_2  
GPIO5/I2C_SCL_1  
GPIO4/I2C_SCL_0  
GPIO3/SIGDET3  
GPIO2/SIGDET2  
GPIO1/SIGDET1  
GPIO0/SIGDET0  
GPIO9/FASTLINK_FAIL input  
GPIO8/I2C_SDA input  
GPIO7/I2C_SCL_3 input  
GPIO6/I2C_SCL_2 input  
GPIO5/I2C_SCL_1 input  
GPIO4/I2C_SCL_0 input  
GPIO3/SIGDET3 input  
GPIO2/SIGDET2 input  
GPIO1/SIGDET1 input  
GPIO0/SIGDET0 input  
8
7
6
5
4
3
2
1
0
4.6.5  
GPIO Output  
The output register allows you to access and control the output from the device GPIO pins. The following  
table shows the values you can write.  
Table 82 • GPIO Output, Address 16G (0x10)  
Bit  
Name  
Access Description  
Default  
15:14 Reserved  
RO  
Reserved  
13  
12  
GPIO13  
GPIO12  
R/W  
R/W  
GPIO13 output  
GPIO12 output  
0
0
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
81  
Registers  
Table 82 • GPIO Output, Address 16G (0x10) (continued)  
Bit  
11  
10  
9
Name  
Access Description  
Default  
GPIO11  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
GPIO11 output  
0
0
0
0
0
0
0
0
0
0
0
0
GPIO10  
GPIO10 output  
GPIO9/FASTLINK_FAIL  
GPIO8/I2C_SDA  
GPIO7/I2C_SCL_3  
GPIO6/I2C_SCL_2  
GPIO5/I2C_SCL_1  
GPIO4/I2C_SCL_0  
GPIO3/SIGDET3  
GPIO2/SIGDET2  
GPIO1/SIGDET1  
GPIO0/SIGDET0  
GPIO9/FASTLINK_FAIL output  
GPIO8/I2C_SDA output  
GPIO7/I2C_SCL_3 output  
GPIO6/I2C_SCL_2 output  
GPIO5/I2C_SCL_1 output  
GPIO4/I2C_SCL_0 output  
GPIO3/SIGDET3 output  
GPIO2/SIGDET2 output  
GPIO1/SIGDET1 output  
GPIO0/SIGDET0 output  
8
7
6
5
4
3
2
1
0
4.6.6  
GPIO Pin Configuration  
Register 17G in the GPIO register space controls whether a particular GPIO pin functions as an input or  
an output. The following table shows the settings available.  
Table 83 • GPIO Input/Output Configuration, Address 17G (0x11)  
Bit  
Name  
Access Description  
Default  
15:14 Reserved  
RO  
Reserved  
13  
12  
11  
10  
9
GPIO13  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
GPIO13 output enable  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GPIO12  
GPIO12 output enable  
GPIO11  
GPIO11 output enable  
GPIO10  
GPIO10 output enable  
GPIO9/FASTLINK_FAIL  
GPIO8/I2C_SDA  
GPIO7/I2C_SCL_3  
GPIO6/I2C_SCL_2  
GPIO5/I2C_SCL_1  
GPIO4/I2C_SCL_0  
GPIO3/SIGDET3  
GPIO2/SIGDET2  
GPIO1/SIGDET1  
GPIO0/SIGDET0  
GPIO9/FASTLINK_FAIL output enable  
GPIO8/I2C_SDA output enable  
GPIO7/I2C_SCL_3 output enable  
GPIO6/I2C_SCL_2 output enable  
GPIO5/I2C_SCL_1 output enable  
GPIO4/I2C_SCL_0 output enable  
GPIO3/SIGDET3 output enable  
GPIO2/SIGDET2 output enable  
GPIO1/SIGDET1 output enable  
GPIO0/SIGDET0 output  
8
7
6
5
4
3
2
1
0
4.6.7  
Microprocessor Command  
Register 18G is a command register. Bit 15 tells the internal processor to execute the command. When  
bit 15 is cleared the command has completed. Software needs to wait until bit 15 = 0 before proceeding  
with the next PHY register access. Bit 14 = 1 typically indicates an error condition where the squelch  
patch was not loaded. Use the following steps to execute the command:  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
82  
Registers  
1. Write desired command  
2. Check bit 15 (move existing text)  
3. Check bit 14 (if set, then error)  
Note: Commands may take up to 25 ms to complete before bit 15 changes to 0.  
Table 84 • Microprocessor Command Register, Address 18G  
Command  
Setting  
0x80F0  
0x80E0  
Enable 4 ports MAC SGMII  
Enable 4 ports MAC QSGMII  
QSGMII transmitter control(1)  
Enable 4 ports Media 1000BASE-X  
Enable 4 ports Media 100BASE-FX  
0x8FC1(2)  
0x8FD1(2)  
1. Contact your Microsemi representative for an initialization script that greatly simplifies the programming  
of QSGMII transmit controls.  
2. The “F” in the command has a bit representing each of the four PHYs. To exclude a PHY from the  
configuration, set its bit to 0. For example, the configuration of PHY 3 and PHY 2 to 1000BASE-X would  
be 1100 or a “C” and the command would be 0x8CC1.  
4.6.8  
MAC Configuration and Fast Link  
Register 19G in the GPIO register space controls the MAC interface mode and the selection of the  
source PHY for the fast link failure indication. The following table shows the settings available for the  
GPIO9/FASTLINK-FAIL pin.  
Table 85 • MAC Configuration and Fast Link Register, Address 19G (0x13)  
Bit  
Name  
Access Description  
Default  
15:14 MAC configuration  
R/W  
Select MAC interface mode  
00  
00: SGMII  
01: QSGMII  
10: Reserved  
11: Reserved  
13:4  
3:0  
Reserved  
RO  
Reserved  
Fast link failure port setting R/W  
Select fast link failure PHY source 0xF  
0000: Port0  
0001: Port1  
0010: Port2  
0011: Port3  
1100–1111: Output disabled  
4.6.9  
Two-Wire Serial MUX Control 1  
The following table shows the settings available to control the integrated two-wire serial MUX.  
Table 86 • Two-Wire Serial MUX Control 1, Address 20G (0x14)  
Bit  
Name  
Access Description  
Default  
15:9 Two-wire serial  
device address  
R/W  
Top 7 bits of the 8-bit address sent out on the two 0xA0  
wire serial stream. The bottom bit is the  
read/write signal, which is controlled by register  
21G, bit 8. SFPs use 0xA0.  
8:6  
Reserved  
RO  
Reserved.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
83  
Registers  
Table 86 • Two-Wire Serial MUX Control 1, Address 20G (0x14) (continued)  
Bit  
Name  
Access Description  
Default  
5:4  
Two-wire serial SCL R/W  
clock frequency  
00: 50 kHz  
01: 100 kHz  
10: 400 kHz  
11: 2 MHz  
01  
3
2
1
0
Two-wire serial MUX R/W  
port 3 enable  
1: Enabled.  
0
0
0
0
0: Two-wire serial disabled. Becomes GPIO pin.  
Two-wire serial MUX R/W  
port 2 enable  
1: Enabled.  
0: Two-wire serial disabled. Becomes GPIO pin.  
Two-wire serial MUX R/W  
port 1 enable  
1: Enabled.  
0: Two-wire serial disabled. Becomes GPIO pin.  
Two-wire serial MUX R/W  
port 0 enable  
1: Enabled.  
0: Two-wire serial disabled. Two-wire serial MUX  
port 0 becomes GPIO pin if serial LED function is  
enabled, regardless of the settings of this bit.  
4.6.10 Two-Wire Serial MUX Control 2  
Register 21G is used to control the two-wire serial MUX for status and control of two-wire serial slave  
devices.  
Table 87 • Two-Wire Serial MUX Interface Status and Control, Address 21G (0x15)  
Bit  
Name  
Access Description  
Default  
15  
Two-wire serial MUX  
ready  
RO  
1: Two-wire serial MUX is ready for read or  
write  
14:12 Reserved  
RO  
Reserved  
11:10 PHY port Address  
R/W  
Specific VSC8504-01 PHY port being  
addressed.  
00  
0
9
Enable two-wire serial  
MUX access  
R/W  
Self-clearing bit.  
1: Execute read or write through the two-wire  
serial MUX based on the settings of register  
bit 21G.8  
8
Two-wire serial MUX  
read or write  
R/W  
R/W  
1: Read from two-wire serial MUX  
0: Write to two-wire serial MUX  
1
7:0  
Two-wire serial MUX  
address  
Sets the address of the two-wire serial MUX 0x00  
used to direct read or write operations.  
4.6.11 Two-Wire Serial MUX Data Read/Write  
Register 22G in the extended register space enables access to the two-wire serial MUX.  
Table 88 • Two-Wire Serial MUX Data Read/Write, Address 22G (0x16)  
Bit  
Name  
Access Description  
Default  
15:8 Two-wire serial MUX RO  
read data  
Eight-bit data read from two-wire serial MUX;  
requires setting both register 21G.9 and 21G.8 to  
1.  
7:0  
Two-wire serial MUX R/W  
write data  
Eight-bit data to be written to two-wire serial MUX. 0x00  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
84  
Registers  
4.6.12 Recovered Clock 1 Control  
Register 23G in the extended register space controls the functionality of the recovered clock 1 output  
signal.  
Table 89 • Recovered Clock 1 Control, Address 23G (0x17)  
Bit  
Name  
Access Description  
R/W 1: Enable recovered clock 1 output  
Default  
15  
Enable  
0
RCVRDCLK1  
0: Disable recovered clock 1 output  
14:11 Clock source select R/W  
Select bits for source PHY for recovered clock:  
0000: PHY0  
0000  
0001: PHY1  
0010: PHY2  
0011: PHY3  
0100–1111: Reserved  
10:8  
Clock frequency  
select  
R/W  
RO  
Select output clock frequency:  
000: 25 MHz output clock  
001: 125 MHz output clock  
010: 31.25 MHz output clock  
011–111: Reserved  
000  
7:6  
5:4  
Reserved  
Reserved.  
Clock squelch level R/W  
Select clock squelch level  
00: Automatically squelch clock to low when the  
link is not up, is unstable, is up in a mode that  
does not support the generation of a recovered  
clock (1000BASE-T master or 10BASE-T), or is  
up in EEE mode (100BASE-TX or 1000BASE-T  
slave).  
01: Same as 00 except that the clock is also  
generated in 1000BASE-T master and 10BASE-T  
link-up modes. This mode also generates a  
recovered clock output in EEE mode during  
reception of LP_IDLE.  
10: Squelch only when the link is not up.  
11: Disable clock squelch.  
Note: A clock from the SerDes or Cu PHY  
will be output on the recovered  
clock output in this mode when the  
link is down.  
When the CLK_SQUELCH_IN pin is set high, it  
squelches the recovered clocks regardless of bit  
settings.  
3
Reserved  
RO  
Reserved.  
2:0  
Clock selection for R/W  
specified PHY  
000: Serial media recovered clock  
001: Copper PHY recovered clock  
010: Copper PHY transmitter TCLK  
011–111: Reserved  
000  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
85  
Registers  
4.6.13 Recovered Clock 2 Control  
Register 24G in the extended register space controls the functionality of the recovered clock 2 output  
signal.  
Table 90 • Recovered Clock 2 Control, Address 24G (0x18)  
Bit  
Name  
Access Description  
Enable recovered clock 2 output  
Default  
15  
Enable RCVRDCLK2 R/W  
0
14:11 Clock source select  
R/W  
Select bits for source PHY for recovered clock: 0000  
0000: PHY0  
0001: PHY1  
0010: PHY2  
0011: PHY3  
0100–1111: Reserved  
10:8  
Clock frequency  
select  
R/W  
Select output clock frequency:  
000: 25 MHz output clock  
001: 125 MHz output clock  
010: 31.25 MHz output clock  
011–111: Reserved  
000  
7:6  
5:4  
Reserved  
RO  
Reserved  
Clock squelch level  
R/W  
Select clock squelch level:  
00: Automatically squelch clock to low when the  
link is not up, is unstable, is up in a mode that  
does not support the generation of a recovered  
clock (1000BASE-T master or 10BASE-T), or is  
up in EEE mode (100BASE-TX or 1000BASE-T  
slave).  
01: Same as 00 except that the clock is also  
generated in 1000BASE-T master and  
10BASE-T link-up modes. This mode also  
generates a recovered clock output in EEE  
mode during reception of LP_IDLE  
10: Squelch only when the link is not up  
11: Disable clock squelch.  
Note: A clock from the SerDes or Cu  
PHY will be output on the  
recovered clock output in this  
mode when the link is down.  
Note: A clock from the SerDes or Cu  
PHY will be output on the  
recovered clock output in this  
mode when the link is down.  
When the CLK_SQUELCH_IN pin is set high, it  
squelches the recovered clocks regardless of  
bit settings.  
3
Reserved  
RO  
Reserved  
2:0  
Clock selection for  
specified PHY  
R/W  
000: Serial media recovered clock  
001: Copper PHY recovered clock  
010–111: Reserved  
000  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
86  
Registers  
4.6.14 Enhanced LED Control  
The following table contains the bits to control advanced functionality of the parallel and serial LED  
signals.  
Table 91 • Enhanced LED Control, Address 25G (0x19)  
Bit  
Name  
Access Description  
R/W Programmable control for LED pulsing  
Default  
15:8 LED pulsing duty cycle  
control  
00  
duty cycle when bit 30.12 is set to 1. Valid  
settings are between 0 and 198. A setting  
of 0 corresponds to a 0.5% duty cycle and  
198 corresponds to a 99.5% duty cycle.  
Intermediate values change the duty cycle  
in 0.5% increments  
7
Port 1 enhanced serial LED R/W  
output enable  
Enable the enhanced serial LED output  
functionality for port 1 LED pins.  
1: Enhanced serial LED outputs  
0: Normal function  
0
0
6
Port 0 enhanced serial LED R/W  
output enable  
Enable the enhanced serial LED output  
functionality for port 0 LED pins.  
1: Enhanced serial LED outputs  
0: Normal function  
5:3  
Serial LED frame rate  
selection  
R/W  
Select frame rate of serial LED stream  
000: 2500 Hz frame rate  
001: 1000 Hz frame rate  
010: 500 Hz frame rate  
011: 250 Hz frame rate  
100: 200 Hz frame rate  
101: 125 Hz frame rate  
110: 40 Hz frame rate  
111: Output basic serial LED stream  
See Table 9, page 28.  
2:1  
Serial LED select  
LED port swapping  
R/W  
R/W  
Select which LEDs from each PHY to  
enable on the serial stream  
00: Enable all four LEDs of each PHY  
01: Enable LEDs 2, 1 and 0 of each PHY  
10: Enable LEDs 1 and 0 of each PHY  
11: Enable LED 0 of each PHY  
00  
0
See LED Port Swapping, page 29.  
4.6.15 Global Interrupt Status  
The following table contains the interrupt status from the various sources to indicate which one caused  
that last interrupt on the pin.  
Table 92 • Global Interrupt Status, Address 29G (0x1D)  
Bit  
15:4  
3
Name  
Access Description  
Reserved  
RO  
Reserved  
PHY3 interrupt source(1) RO  
PHY3 interrupt source indication  
0: PHY3 caused the interrupt  
1: PHY3 did not cause the interrupt  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
87  
Registers  
Table 92 • Global Interrupt Status, Address 29G (0x1D) (continued)  
Bit  
Name  
Access Description  
2
PHY2 interrupt source(1) RO  
PHY1 interrupt source(1) RO  
PHY0 interrupt source(1) RO  
PHY2 interrupt source indication  
0: PHY2 caused the interrupt  
1: PHY2 did not cause the interrupt  
1
0
PHY1 interrupt source indication  
0: PHY1 caused the interrupt  
1: PHY1 did not cause the interrupt  
PHY0 interrupt source indication  
0: PHY0 caused the interrupt  
1: PHY0 did not cause the interrupt  
1. This bit is set to 1 when the corresponding PHY’s Interrupt Status register 26 (0x1A) is read.  
4.7  
Clause 45 Registers to Support Energy Efficient Ethernet  
and 802.3bf  
This section describes the Clause 45 registers that are required to support energy efficient Ethernet.  
Access to these registers is through the IEEE standard registers 13 and 14 (MMD access control and  
MMD data or address registers) as described in section 4.2.11 and 4.2.12.  
The following table lists the addresses and register names in the Clause 45 register page space. When  
the link is down, 0 is the value returned for the x.180x addresses.  
Table 93 • Clause 45 Registers Page Space  
Address Name  
1.1801  
1.1803  
1.1805  
1.1807  
3.1  
Tx maximum delay through PHY  
Tx minimum delay through PHY  
Rx maximum delay through PHY  
Rx minimum delay through PHY  
PCS status 1  
3.20  
EEE capability  
3.22  
EEE wake error counter  
4.1801  
4.1803  
4.1805  
4.1807  
7.60  
Tx maximum delay through xMII (SGMII, QSGMII, including FIFO variations)  
Tx minimum delay through xMII (SGMII, QSGMII, including FIFO variations)  
Rx maximum delay through xMII (SGMII, QSGMII, including FIFO variations)  
Rx minimum delay through xMII (SGMII, QSGMII, including FIFO variations)  
EEE advertisement  
7.61  
EEE link partner advertisement  
4.7.1  
PCS Status 1  
The bits in the PCS Status 1 register provide a status of the EEE operation from the PCS for the link that  
is currently active.  
Table 94 • PCS Status 1, Address 3.1  
Bit  
Name  
Access Description  
RO Reserved  
15:12 Reserved  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
88  
Registers  
Table 94 • PCS Status 1, Address 3.1 (continued)  
Bit  
Name  
Access Description  
11  
Tx LPI received  
RO/LH 1: Tx PCS has received LPI  
0: LPI not received  
10  
9
Rx LPI received  
Tx LPI indication  
Rx LPI indication  
Reserved  
RO/LH 1: Rx PCS has received LPI  
0: LPI not received  
RO  
RO  
RO  
1: Tx PCS is currently receiving LPI  
0: PCS is not currently receiving LPI  
8
1: Rx PCS is currently receiving LPI  
0: PCS is not currently receiving LPI  
7:3  
2
Reserved  
PCS receive link status RO  
1: PCS receive link up  
0: PCS receive link down  
1:0  
Reserved RO  
Reserved  
4.7.2  
EEE Capability  
This register is used to indicate the capability of the PCS to support EEE functions for each PHY type.  
The following table shows the bit assignments for the EEE capability register.  
Table 95 • EEE Capability, Address 3.20  
Bit  
Name  
Access Description  
15:3 Reserved  
RO  
1000BASE-T EEE RO  
Reserved  
2
1
0
1: EEE is supported for 1000BASE-T  
0: EEE is not supported for 1000BASE-T  
100BASE-TX  
EEE  
RO  
RO  
1: EEE is supported for 100BASE-TX  
0: EEE is not supported for 100BASE-TX  
Reserved  
Reserved  
4.7.3  
EEE Wake Error Counter  
This register is used by PHY types that support EEE to count wake time faults where the PHY fails to  
complete its normal wake sequence within the time required for the specific PHY type. The definition of  
the fault event to be counted is defined for each PHY and can occur during a refresh or a wakeup as  
defined by the PHY. This 16-bit counter is reset to all zeros when the EEE wake error counter is read or  
when the PHY undergoes hardware or software reset.  
Table 96 • EEE Wake Error Counter, Address 3.22  
Bit  
Name  
Access Description  
Count of wake time faults for a PHY  
15:0 Wake error counter RO  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
89  
Registers  
4.7.4  
EEE Advertisement  
This register defines the EEE advertisement that is sent in the unformatted next page following a EEE  
technology message code. The following table shows the bit assignments for the EEE advertisement  
register.  
Table 97 • EEE Advertisement, Address 7.60  
Bit  
Name  
Access Description  
Default  
15:3 Reserved  
RO  
1000BASE-T EEE R/W  
Reserved  
2
1
0
1: Advertise that the 1000BASE-T has EEE  
capability  
0: Do not advertise that the 1000BASE-T has EEE  
capability  
0
100BASE-TX  
EEE  
R/W  
RO  
1: Advertise that the 100BASE-TX has EEE  
capability  
0: Do not advertise that the 100BASE-TX has EEE  
capability  
0
Reserved  
Reserved  
4.7.5  
EEE Link Partner Advertisement  
All the bits in the EEE LP Advertisement register are read only. A write to the EEE LP advertisement  
register has no effect. When the AN process has been completed, this register will reflect the contents of  
the link partner's EEE advertisement register. The following table shows the bit assignments for the EEE  
advertisement register.  
Table 98 • EEE Advertisement, Address 7.61  
Bit  
Name  
Access Description  
15:3 Reserved  
RO  
1000BASE-T EEE RO  
Reserved  
2
1
0
1: Link partner is advertising EEE capability for 1000BASE-T  
0: Link partner is not advertising EEE capability for  
1000BASE-T  
100BASE-TX  
EEE  
RO  
1: Link partner is advertising EEE capability for 100BASE-TX  
0: Link partner is not advertising EEE capability for  
100BASE-TX  
Reserved  
RO  
Reserved  
The following table shows the bit assignments for the 802.3bf registers. When the link is down, 0 is the  
value returned. cl45reg1_1801 would be device address of 1 and register address of 1801.  
Table 99 • 802.3bf Registers  
Register  
1.1801  
1.1803  
1.1805  
1.1807  
4.1801  
Name  
Function  
cl45reg1_1801_val[15:0]  
cl45reg1_1803_val[15:0]  
cl45reg1_1805_val[15:0]  
cl45reg1_1807_val[15:0]  
cl45reg4_1801_val[15:0]  
Tx maximum delay through PHY (PMA/PMD/PCS)  
Tx minimum delay through PHY (PMA/PMD/PCS)  
Rx maximum delay through PHY (PMA/PMD/PCS)  
Rx minimum delay through PHY (PMA/PMD/PCS)  
Tx maximum delay through xMII (SGMII, QSGMII,  
including FIFO variations)  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
90  
Registers  
Table 99 • 802.3bf Registers (continued)  
Register  
Name  
Function  
4.1803  
cl45reg4_1803_val[15:0]  
Tx minimum delay through xMII (SGMII, QSGMII,  
including FIFO variations)  
4.1805  
4.1807  
cl45reg4_1805_val[15:0]  
cl45reg4_1807_val[15:0]  
Rx maximum delay through xMII (SGMII, QSGMII,  
including FIFO variations)  
Rx minimum delay through xMII (SGMII, QSGMII,  
including FIFO variations)  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
91  
Electrical Specifications  
5
Electrical Specifications  
This section provides the DC characteristics, AC characteristics, recommended operating conditions,  
and stress ratings for the VSC8504-01 device.  
5.1  
DC Characteristics  
This section contains the DC specifications for the VSC8504-01 device.  
5.1.1  
VDD25  
The following table shows the DC specifications for the pins referenced to VDD25. The specifications  
listed in the following table are valid only when VDD1 = 1.0 V, VDD1A = 1.0 V, or VDD25A = 2.5 V.  
Table 100 • VDD25 DC Characteristics  
Parameter  
Symbol Minimum Maximum Unit Condition  
Output high voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input leakage current  
VOH  
VOL  
VIH  
2.0  
2.8  
0.4  
3.3  
0.7  
32  
32  
6
V
IOH = –1.0 mA  
IOL = 1.0 mA  
–0.3  
1.85  
–0.3  
–32  
–32  
V
V
VIL  
V
IILEAK  
µA  
µA  
mA  
Internal resistor included  
Internal resistor included  
Output leakage current IOLEAK  
Output low current drive IOL  
strength  
Output high current drive IOH  
strength  
–6  
mA  
5.1.2  
LED and GPIO  
The following table shows the DC specifications for the LED and GPIO pins.  
Table 101 • LED and GPIO Characteristics  
Pin  
Symbol  
IOH  
Minimum  
–24  
Maximum  
Unit  
mA  
mA  
mA  
mA  
LED  
LED  
GPIO  
GPIO  
24  
IOL  
IOH  
12  
IOL  
–12  
5.1.3  
Internal Pull-Up or Pull-Down Resistors  
Internal pull-up or pull-down resistors are specified in the following table. For more information about  
signals with internal pull-up or pull-down resistors, see Pins by Function, page 110.  
All internal pull-up resistors are connected to their respective I/O supply.  
Table 102 • Internal Pull-Up or Pull-Down Resistors  
Parameter  
Symbol  
Minimum Typical Maximum Unit  
33 53 90 kΩ  
Internal pull-up resistor, GPIO  
RPU_GPIO  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
92  
Electrical Specifications  
Table 102 • Internal Pull-Up or Pull-Down Resistors (continued)  
Parameter  
Symbol  
RPU  
Minimum Typical Maximum Unit  
Internal pull-up resistor, all others  
Internal pull-down resistor  
96  
96  
120  
120  
144  
144  
kΩ  
kΩ  
RPD  
5.1.4  
Reference Clock  
The following table shows the DC specifications for a differential reference clock input signal  
Table 103 • Reference Clock DC Characteristics  
Parameter  
Symbol Minimum  
Typical  
Maximum  
1260  
Unit  
mV  
mV  
Input voltage range  
VIP,VIN  
|VID|  
–25  
Input differential peak-to-peak  
voltage  
1501  
1200  
Input common-mode voltage  
Differential input impedance  
VICM  
RI  
0
12002  
mV  
100  
Ω
1. To meet jitter specifications, the minimum |VID| must be 400 mV. When using a single-ended clock input, the  
REFCLK_P low voltage must be less than  
VDDA – 200 mV, and the high voltage level must be greater than VDDA + 200 mV  
2. The maximum common-mode voltage is provided without a differential signal. The common-mode voltage is  
only limited by the maximum and minimum input voltage range and by the differential amplitude of the input  
signal.  
5.1.5  
SerDes Interface (SGMII)  
The SerDes output drivers are designed to operate in SGMII/LVDS mode. The SGMII/LVDS mode meets  
or exceeds the DC requirements of Serial-GMII Specification Revision 1.9 (ENG-46158), unless  
otherwise noted. The following table lists the DC specifications for the SGMII driver. The values are valid  
for all configurations, unless stated otherwise.  
Table 104 • SerDes Driver DC Specifications  
Parameter  
Symbol Minimum Maximum Unit Condition  
Output high voltage, VOA or VOB  
Output low voltage, VOA or VOB  
Output differential peak voltage  
VOH  
VOL  
1050  
mV RL = 100 Ω ±1%  
mV RL = 100 Ω ±1%  
0
|VOD  
|
350  
450  
450  
580  
140  
mV VDD_VS = 1.0 V  
RL = 100 Ω ±1%  
Output differential peak voltage,  
fiber media 1000BASE-X  
|VOD  
VOS  
RO  
|
350  
420  
40  
mV VDD_VS = 1.0 V  
RL = 100 Ω ±1%  
Output offset voltage(1)  
mV VDD_VS = 1.0 V  
RL = 100 Ω ±1%  
DC output impedance,  
single-ended, SGMII mode  
Ω
VC = 1.0 V  
See Figure 40,  
page 94  
RO mismatch between A and B,  
SGMII mode(2)  
ΔRO  
10  
25  
%
VC = 1.0 V  
See Figure 40,  
page 94  
Change in |VOD| between 0 and 1, Δ|VOD  
SGMII mode  
|
mV  
RL = 100 Ω ±1%  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
93  
Electrical Specifications  
Table 104 • SerDes Driver DC Specifications (continued)  
Parameter Symbol Minimum Maximum Unit Condition  
Change in VOS between 0 and 1, ΔVOS  
25  
40  
12  
mV RL = 100 Ω ±1%  
SGMII mode  
Output current, driver shorted to  
GND, SGMII mode  
|IOSA|,  
|IOSB  
mA  
mA  
|
Output current, drivers shorted  
together, SGMII mode  
|IOSAB|  
1. Requires AC-coupling for SGMII compliance.  
2. Matching of reflection coefficients. For more information about test methods, see IEEE Std 1596.3-1996.  
Figure 38 • SGMII DC Transmit Test Circuit  
VOA  
V
OD = VOA – VOB  
100 Ω ± 1%  
VOS = ½ (VOA + VOB  
)
VOB  
Figure 39 • SGMII DC Definitions  
VOA  
VOB  
GND  
VOD  
0 V differential  
|VOD  
|
|VOD  
|
0 V differential  
VOS  
VOS  
GND  
Δ|VOD| = | |VOAH – VOBL| – |VOBH – VOAL| |  
ΔVOS = | ½(VOAH + VOBL) – ½(VOAL + VOBH) |  
Figure 40 • SGMII DC Driver Output Impedance Test Circuit  
50 Ω ± 0.1%  
VOA  
+
Vc  
0 and 1  
VOB  
50 Ω ± 0.1%  
The following table lists the DC specifications for the SGMII receivers.  
Table 105 • SerDes Receiver DC Specifications  
Parameter  
Symbol Minimum Maximum Unit Condition  
Input voltage range, VIA or VIB  
VI  
–25  
100  
1250  
1000  
mV  
mV  
Input differential peak-to-peak  
voltage  
|VID|  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
94  
Electrical Specifications  
Table 105 • SerDes Receiver DC Specifications (continued)  
Parameter  
Symbol Minimum Maximum Unit Condition  
(2)  
Input common-mode voltage(1) VICM  
0
VDD_A  
mV Without any  
differential signal  
Receiver differential input  
impedance  
RI  
80  
25  
120  
Ω
Input differential hysteresis,  
SGMII mode  
VHYST  
mV  
1. SGMII compliancy requires external AC-coupling. When interfacing with specific Microsemi devices, DC-  
coupling is possible. For more information, contact your local Microsemi sales representative.  
2. The common-mode voltage is only limited by the maximum and minimum input voltage range and the  
input signal’s differential amplitude.  
Figure 41 • SGMII DC Input Definitions  
VIA  
VID = VIA – VIB  
VIC = ½ (VIA + VIB)  
VIB  
5.1.6  
Enhanced SerDes Interface (QSGMII)  
All DC specifications for the enhanced SerDes interface are compliant with QSGMII Specification  
Revision 1.3 and meet or exceed the requirements in the standard. They are also compliant with OIF-  
CEI-02.0 requirements where applicable.  
The enhanced SerDes interface supports the following operating modes: SGMII, QSGMII, and SFP. The  
values in the following table apply to the modes specified in the condition column.  
The following table shows the DC specifications for the enhanced SerDes driver.  
Table 106 • Enhanced SerDes Driver DC Specifications  
Parameter  
Symbol Minimum Maximum Unit Condition  
Output differential peak voltage,  
SFP and QSGMII modes  
|VODp  
|
250  
400  
mV VDD_VS = 1.0 V  
RL = 100 Ω ±1%  
maximum drive  
Output differential peak voltage,  
SGMII mode(1)  
|VODp  
RO  
|
150  
40  
400  
140  
mV VDD_VS = 1.0 V  
RL = 100 Ω ±1%  
DC output impedance,  
single-ended, SGMII mode  
Ω
VC = 1.0 V  
See Figure 40,  
page 94  
RO mismatch between A and B,  
SGMII mode(2)  
ΔRO  
10  
%
VC = 1.0 V  
See Figure 40,  
page 94  
Change in |VOD| between 0 and 1, Δ|VOD  
|
25  
25  
mV  
RL = 100 Ω ±1%  
SGMII mode  
Change in VOS between 0 and 1, ΔVOS  
SGMII mode  
mV RL = 100 Ω ±1%  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
95  
Electrical Specifications  
Table 106 • Enhanced SerDes Driver DC Specifications (continued)  
Parameter  
Symbol Minimum Maximum Unit Condition  
Output current, drivers shorted to |IOSA|,  
40  
12  
mA  
ground, SGMII and QSGMII  
modes  
|IOSB  
|
Output current, drivers shorted  
together, SGMII and QSGMII  
modes  
|IOSAB  
|
mA  
1. Voltage is adjustable in 64 steps.  
2. Matching of reflection coefficients. For more information about test methods, see IEEE Std 1596.3-1996.  
The following table lists the DC specifications for the enhanced SerDes receiver.  
Table 107 • Enhanced SerDes Receiver DC Specifications  
Parameter  
Symbol Minimum Typical Maximum Unit  
(1)  
Input voltage range, VIA or VIB  
VI  
–0.25  
100  
0
1.2  
V
Input differential peak-to-peak voltage  
Input common-mode voltage  
|VID|  
VICM  
RI  
1600  
1200  
120  
mV  
mV  
Ω
Receiver differential input impedance  
80  
100  
1. QSGMII DC input sensitivity is less than 400 mV.  
5.1.7  
Current Consumption  
The following tables show the current consumption values for each mode. Add significant margin above  
the values for sizing power supplies.  
Table 108 • Current Consumption  
Mode  
Typical  
Maximum  
1 V 1 V  
Unit Condition  
1 V  
1 V  
2.5 V  
2.5 V  
2.5 V 2.5 V  
Digital Analog Digital Analog Digital Analog Digital Analog  
Reset  
52  
55  
9
1
460  
525  
900  
640  
575  
575  
585  
565  
900  
640  
575  
575  
585  
565  
110  
220  
270  
245  
240  
240  
300  
290  
225  
200  
195  
195  
255  
245  
13  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
15  
5
mA  
mA  
Power down  
110  
170  
200  
185  
180  
180  
240  
235  
160  
145  
140  
140  
200  
195  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
20  
25  
1000BASE-T 395  
100BASE-TX 190  
445  
290  
240  
205  
20  
500  
310  
245  
210  
25  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
4-Port SGMII  
4-Port SGMII  
4-Port SGMII  
4-Port SGMII  
4-Port SGMII  
4-Port SGMII  
4-Port QSGMII  
4-Port QSGMII  
4-Port QSGMII  
4-Port QSGMII  
4-Port QSGMII  
4-Port QSGMII  
10BASE-T  
10BASE-Te  
145  
145  
1000BASE-X 155  
100BASE-FX 140  
1000BASE-T 390  
100BASE-TX 185  
20  
25  
460  
305  
255  
220  
35  
500  
310  
245  
210  
25  
10BASE-T  
10BASE-Te  
140  
140  
1000BASE-X 150  
100BASE-FX 135  
35  
25  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
96  
Electrical Specifications  
5.1.8  
Thermal Diode  
The VSC8504-01 device includes an on-die diode and internal circuitry for monitoring die temperature  
(junction temperature). The operation and accuracy of the diode is not guaranteed and should only be  
used as a reference. Care should be taken to find compatible grounded cathode temperature monitoring  
device.  
A thermal sensor, located on the board or in a stand-alone measurement kit, can monitor and display the  
die temperature of the switch for thermal management or instrumentation purposes.  
Temperature measurement using a thermal diode is very sensitive to noise.  
The following table provides the diode parameter and interface specifications. Note that the ThermDC pin  
is connected to VSS internally in the device.  
Table 109 • Thermal Diode Parameters  
Parameter  
Symbol  
IFW  
n
Typical  
Maximum  
Unit  
Forward bias current  
Diode ideality factor  
1
mA  
1.008  
Note: Microsemi does not support or recommend operation of the thermal diode under reverse bias.  
The ideality factor, n, represents the deviation from ideal diode behavior as exemplified by the diode  
equation:  
q
nkT  
---------  
Vd ×  
IFW = IS ×  
– 1  
e
where, Is = saturation current, q = electronic charge, Vd = voltage across the diode, k = Boltzmann Constant, and T =  
absolute temperature (Kelvin).  
5.2  
AC Characteristics  
This section provides the AC specifications for the VSC8504-01 device.  
5.2.1  
Reference Clock  
The following table shows the AC specifications for a 125 MHz differential reference clock source.  
Performance is guaranteed for 125 MHz differential clocks only; however, 125 MHz single-ended clocks  
are also supported for QSGMII interfaces.  
25 MHz clock implementations are available but are limited to SGMII interfaces. For more information,  
contact your Microsemi representative.  
Table 110 • Reference Clock AC Characteristics for QSGMII 125 MHz Differential Clock  
Parameter  
Symbol  
Minimum Typical Maximum Unit Condition  
Reference clock  
frequency,  
ƒ
125.00  
MHz ±100 ppm  
REFCLK_SEL2 = 1  
Duty cycle  
DC  
40  
50  
60  
%
Rise time and fall time tr, tf  
1.5  
ns  
20% to 80%  
threshold  
RefClk input RMS jitter  
requirement, bandwidth  
between 12 kHz and  
500 kHz(1)  
20  
ps  
To meet jitter  
generation of 1G  
output data per  
IEEE 802.3z  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
97  
Electrical Specifications  
Table 110 • Reference Clock AC Characteristics for QSGMII 125 MHz Differential Clock (continued)  
Parameter  
Symbol  
Minimum Typical Maximum Unit Condition  
RefClk input RMS jitter  
requirement, bandwidth  
between 500 kHz and  
15 MHz(1)  
4
ps  
ps  
ps  
dB  
dB  
To meet jitter  
generation of 1G  
output data per  
IEEE 802.3z  
RefClk input RMS jitter  
requirement, bandwidth  
between 15 MHz and  
40 MHz(1)  
20  
100  
0.3  
3
To meet jitter  
generation of 1G  
output data per  
IEEE 802.3z  
RefClk input RMS jitter  
requirement, bandwidth  
between 40 MHz and  
80 MHz(1)  
To meet jitter  
generation of 1G  
output data per  
IEEE 802.3z  
Jitter gain from RefClk  
to SerDes output,  
bandwidth between  
0 MHz and 0.1 MHz  
Jitter gain from RefClk  
to SerDes output,  
1
bandwidth between  
0.1 MHz and 7 MHz  
Jitter gain from RefClk  
to SerDes output,  
1–20 × log  
(ƒ/7 MHz)  
3–20 × log dB  
(ƒ/7 MHz)  
bandwidth above 7 MHz  
1. Maximum RMS jitter allowed at the RefClk input for the given bandwidth.  
5.2.2  
Recovered Clock  
This section provides the AC characteristics for the recovered clock output signals. The following  
illustration shows the test circuit for the recovered clock output signals.  
Figure 42 • Test Circuit for Recovered Clock Output Signals  
39 Ω  
50 Ω  
8 pF  
Device Under Test  
Signal Measurement Point  
The following table shows the AC specifications for the RCVRDCLK1 and RCVRDCLK2 outputs.  
Table 111 • Recovered Clock AC Characteristics  
Parameter  
Symbol  
Minimum Typical Maximum Unit Condition  
Recovered clock  
frequency  
ƒ
125.00  
31.25  
25.00  
8.0  
MHz  
MHz  
MHz  
ns  
Recovered clock  
frequency  
ƒ
ƒ
Recovered clock  
frequency  
Recovered clock cycle tRCYC  
time  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
98  
Electrical Specifications  
Table 111 • Recovered Clock AC Characteristics (continued)  
Parameter Symbol Minimum Typical Maximum Unit Condition  
Recovered clock cycle tRCYC  
time  
32.0  
ns  
Recovered clock cycle tRCYC  
time  
40.0  
ns  
Frequency stability  
ƒSTABILITY  
50  
60  
ppm  
%
Duty cycle, master  
mode  
DC  
40  
50  
Clock rise time and  
fall time  
tR, tF  
600  
ps  
ps  
20% to 80%  
Peak-to-peak jitter,  
copper media  
interface (master  
mode)  
JPPCLK_Cu  
200  
Jitter bandwidth  
between 12 kHz  
and 10 MHz  
Peak-to-peak jitter,  
fiber media interface,  
100BASE-FX  
JPPCLK_FiFX  
1.2  
ns  
ps  
Jitter bandwidth  
between 12 kHz  
and 80 MHz  
Peak-to-peak jitter,  
fiber media interface,  
1000BASE-X  
JPPCLK_FiX  
200  
Jitter bandwidth  
between 12 kHz  
and 80 MHz  
5.2.3  
SerDes Outputs  
The values listed in the following table are valid for all configurations, unless otherwise noted.  
Table 112 • SerDes Outputs AC Specifications  
Parameter  
Symbol  
Minimum  
Maximum Unit  
Condition  
VOD ringing compared to VRING  
VS, SGMII mode  
±10  
200  
30  
%
RL = 100 Ω ±1%  
VOD rise time and fall time, tR, tF  
SGMII mode  
100  
ps  
20% to 80% of VS  
RL = 100 Ω ±1%  
Differential peak-to-peak VOD  
output voltage  
mV  
dB  
dB  
Tx disabled  
Differential output return  
loss, 50 MHz to 625 MHz  
RLO_DIFF 10  
RL = 100 Ω ±1%  
RL = 100 Ω ±1%  
Differential output return  
loss, 625 MHz to  
1250 MHz  
RLO_DIFF 10–10 × log  
(ƒ/625 MHz)  
Common-mode return  
loss, 50 MHz to 625 MHz  
RLOCM  
tSKEW  
6
dB  
ps  
Interpair skew, SGMII  
mode  
20  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
99  
Electrical Specifications  
5.2.4  
SerDes Driver Jitter  
The following table lists the jitter characteristics for the SerDes output driver.  
Table 113 • SerDes Driver Jitter Characteristics  
Parameter  
Symbol Maximum Unit Condition  
Total jitter  
TJO  
192  
80  
ps  
ps  
Measured according to IEEE 802.3.38.5  
Measured according to IEEE 802.3.38.5  
Deterministic jitter DJO  
5.2.5  
SerDes Inputs  
The following table lists the AC specifications for the SerDes inputs.  
Table 114 • SerDes Input AC Specifications  
Parameter  
Maximum  
Unit Condition  
dB RL = 100 Ω ±1%  
Differential input return loss, 10  
50 MHz to 625 MHz  
Differential input return loss, 10–10 × log (ƒ/625 MHz) dB  
625 MHz to 1250 MHz  
RL = 100 Ω ±1%  
5.2.6  
SerDes Receiver Jitter Tolerance  
The following table lists jitter tolerances for the SerDes receiver.  
Table 115 • SerDes Receiver Jitter Tolerance  
Parameter  
Symbol Minimum Unit Condition  
Total jitter tolerance, greater than TJTI  
637 kHz, SFP mode  
600  
370  
1.4  
ps  
ps  
ns  
ns  
ns  
Measured according to  
IEEE 802.3 38.6.8  
Deterministic jitter tolerance,  
greater than 637 kHz, SFP mode  
DJTI  
JTCD  
DDJ  
RJT  
Measured according to  
IEEE 802.3 38.6.8  
Cycle distortion jitter tolerance,  
100BASE-FX mode  
Measured according to  
ISO/IEC 9314-3:1990  
Data-dependent jitter tolerance,  
100BASE-FX mode  
2.2  
Measured according to  
ISO/IEC 9314-3:1990  
Random peak-to-peak jitter  
2.27  
Measured according to  
ISO/IEC 9314-3:1990  
tolerance, 100BASE-FX mode  
5.2.7  
Enhanced SerDes Interface  
All AC specifications for the enhanced SerDes interface are compliant with QSGMII Specification  
Revision 1.3 and meet or exceed the requirements in the standard. They are also compliant with the OIF-  
CEI-02.0 requirements where applicable.  
The enhanced SerDes interface supports the following modes of operation: SGMII, QSGMII, and SFP.  
The values in the tables in the following sections apply to the QSGMII modes listed in the condition  
column and are based on the test circuit shown in Figure 38, page 94. The transmit and receive eye  
specifications relate to the eye diagrams shown in the following illustration, with the compliance load as  
defined in the test circuit.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
100  
Electrical Specifications  
Figure 43 • QSGMII Transient Parameters  
Transmitter Eye Mask  
Receiver Eye Mask  
T_Y2  
T_Y1  
0
R_Y2  
R_Y1  
0
–T_Y1  
–T_Y2  
–R_Y1  
–R_Y2  
0
T_X1  
T_X2  
1–T_X2 1–T_X1  
1.0  
0
R_X1  
0.5  
1–R_X1  
1.0  
Time (UI)  
Time (UI)  
5.2.7.1  
Enhanced SerDes Outputs  
The following table provides the AC specifications for the enhanced SerDes outputs in SGMII mode.  
Table 116 • Enhanced SerDes Outputs AC Specifications, SGMII Mode  
Parameter  
Symbol Minimum  
Maximum Unit Condition  
Unit interval, 1.25G mode  
VOD ringing compared to VS  
UI  
800 ps  
VRING  
±10  
200  
%
RL = 100 Ω ±1%  
VOD rise time and fall time  
tR, tF  
100  
ps  
20% to 80% of VS  
RL = 100 Ω ±1%  
Differential peak-to-peak output VOD  
voltage  
30  
mV Tx disabled  
Differential output return loss, RLO_DIFF 10  
dB  
dB  
dB  
ps  
RL = 100 Ω ±1%  
RL = 100 Ω ±1%  
50 MHz to 625 MHz  
Differential output return loss, RLO_DIFF 10–10 × log  
625 MHz to 1250 MHz  
(ƒ/625 MHz)  
Common-mode return loss,  
50 MHz to 625 MHz  
RLOCM  
tSKEW  
6
Intrapair skew  
20  
The following table provides the AC specifications for the enhanced SerDes outputs in QSGMII mode.  
Table 117 • Enhanced SerDes Outputs AC Specifications, QSGMII Mode  
Parameter  
Symbol Minimum  
Maximum Unit Condition  
Unit interval, 5G  
UI  
200 ps  
V
OD rise time and fall time tR, tF  
30  
96  
30  
ps  
20% to 80% of VS  
RL = 100 Ω ±1%  
Differential peak-to-peak  
output voltage  
VOD  
mV Tx disabled  
Differential output return  
loss, 100 MHz to 2.5 GHz  
RLO_DIFF  
8
dB  
dB  
RL = 100 Ω ±1%  
RL = 100 Ω ±1%  
Differential output return  
loss, 2.5 GHz to 5 GHz  
RLO_DIFF 8 dB – 16.6 log  
(ƒ/2.5 GHz)  
Eye mask X1  
Eye mask X2  
T_X1  
T_X2  
0.15  
0.4  
UI  
UI  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
101  
Electrical Specifications  
Table 117 • Enhanced SerDes Outputs AC Specifications, QSGMII Mode  
Parameter  
Symbol Minimum  
Maximum Unit Condition  
Eye mask Y1  
Eye mask Y2  
T_Y1  
T_Y2  
200  
mV  
450  
mV  
5.2.7.2  
Enhanced SerDes Driver Jitter Characteristics  
The following table lists the jitter characteristics for the enhanced SerDes driver in QSGMII mode. For  
information about jitter characteristics for the enhanced SerDes driver in SGMII mode, see Table 113,  
page 100.  
Table 118 • Enhanced SerDes Driver Jitter Characteristics, QSGMII Mode  
Parameter  
Symbol Maximum Unit Condition  
Total output jitter  
TJO  
60  
ps  
Measured according to  
IEEE 802.3.38.5.  
Deterministic output jitter  
DJO  
10  
ps  
Measured according to  
IEEE 802.3.38.5.  
5.2.7.3  
Enhanced SerDes Inputs  
The following table lists the AC specifications for the enhanced SerDes inputs in SGMII mode.  
Table 119 • Enhanced SerDes Input AC Specifications, SGMII Mode  
Parameter  
Symbol Minimum Unit Condition  
Unit interval, 1.25G  
UI  
ps  
800 ps  
Differential input return loss,  
50 MHz to 625 MHz  
RLI_DIFF 10  
dB  
RL = 100 Ω ±1%  
Common-mode input return loss, RLICM  
50 MHz to 625 MHz  
6
dB  
The following table lists the AC specifications for the enhanced SerDes inputs in QSGMII mode.  
Table 120 • Enhanced SerDes Inputs AC Specifications, QSGMII Mode  
Parameter  
Symbol Minimum  
Maximum Unit Condition  
Unit interval, 5G  
UI  
200 ps  
Differential input return loss, RLI_DIFF  
100 MHz to 2.5 GHz  
8
dB  
dB  
dB  
RL = 100 Ω ±1%  
Differential input return loss, RLI_DIFF 8 dB – 16.6 log  
2.5 GHz to 5 GHz  
RL = 100 Ω ±1%  
(ƒ/2.5 GHz)  
Common-mode input return RLICM  
loss, 100 MHz to 2.5 GHz  
6
Eye mask X1  
Eye mask Y1  
Eye mask Y2  
R_X1  
R_Y1  
R_Y2  
0.3  
50  
UI  
mV  
mV  
450  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
102  
Electrical Specifications  
5.2.7.4  
Enhanced SerDes Receiver Jitter Tolerance  
The following table lists the jitter tolerance for the enhanced SerDes receiver in QSGMII mode. For  
information about jitter tolerance for the enhanced SerDes receiver in SGMII mode, see Table 115,  
page 100.  
Table 121 • Enhanced SerDes Receiver Jitter Tolerance, QSGMII Mode  
Parameter  
Symbol Maximum Unit Condition  
Bounded high-probability jitter(1)  
BHPJ  
90  
ps  
92 ps peak-to-peak random  
jitter and 38 ps sinusoidal jitter  
(SJHF).  
Sinusoidal jitter, maximum  
Sinusoidal jitter, high frequency  
Total jitter tolerance  
SJMAX  
SJHF  
TJTI  
1000  
10  
ps  
ps  
ps  
120  
92 ps peak-to-peak random  
jitter and 38 ps sinusoidal jitter  
(SJHF).  
1. This is the sum of uncorrelated bounded high probability jitter (0.15 UI), and correlated bounded high  
probability jitter (0.30 UI). Uncorrelated bounded high probability jitter is distribution where the value of the  
jitter shows no correlation to any signal level being transmitted, formally defined as deterministic jitter (DJ).  
Correlated bounded high probability jitter is jitter distribution where the value of the jitter shows a strong  
correlation to the signal level being transmitted.  
5.2.8  
Basic Serial LEDs  
This section contains the AC specifications for the basic serial LEDs.  
Table 122 • Basic Serial LEDs AC Characteristics  
Parameter  
Symbol  
Typical  
Unit  
ns  
LED_CLK cycle time  
tCYC  
1024  
Pause between LED port sequences tPAUSE_port 3072  
ns  
Pause between LED bit sequences tPAUSE_bit 25.541632 ms  
LED_CLK to LED_DATA  
tCO  
1
ns  
Figure 44 • Basic Serial LED Timing  
tcyc  
tPAUSE_port  
LED_CLK  
tco  
LED_DATA  
Bit 1  
Bit 2  
Bit X  
Bit 1  
5.2.9  
Enhanced Serial LEDs  
This section contains the AC specifications for the enhanced serial LEDs. The duty cycle of the  
LED_PULSE signal is programmable and can be varied between 0.5% and 99.5%.  
Table 123 • Enhanced Serial LEDs AC Characteristics  
Parameter  
Symbol Minimum Typical  
tCYC 256  
Maximum Unit  
LED_CLK cycle time  
ns  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
103  
Electrical Specifications  
Table 123 • Enhanced Serial LEDs AC Characteristics (continued)  
Parameter  
Symbol Minimum Typical  
Maximum Unit  
Pause between LED_DATA bit sequences tPAUSE  
0.396  
24.996  
ms  
ns  
ns  
ns  
µs  
LED_CLK to LED_DATA  
LED_CLK to LED_LD  
LED_LD pulse width  
tCO  
127  
256  
128  
tCL  
tLW  
LED_PULSE cycle time  
tPULSE  
199  
201  
Figure 45 • Enhanced Serial LED Timing  
tcyc  
tpause  
LED_CLK  
tcl  
tco  
Bit 1  
LED_DATA  
Bit 2  
Bit X  
Bit 1  
Bit 2  
tlw  
LED_LD  
tpulse  
LED_PULSE  
5.2.10 JTAG Interface  
This section provides the AC specifications for the JTAG interface. The specifications meet or exceed the  
requirements of IEEE 1149.1-2001. The JTAG receive signal requirements are requested at the pin of  
the device. The JTAG_TRST signal is asynchronous to the clock, and does not have a setup or hold time  
requirement.  
Table 124 • JTAG Interface AC Specifications  
Parameter  
Symbol Minimum Maximum Unit Condition  
TCK frequency  
TCK cycle time  
TCK high time  
TCK low time  
ƒ
10  
MHz  
ns  
tC  
100  
40  
40  
10  
10  
tW(CH)  
tW(CL)  
tSU  
ns  
ns  
Setup time to TCK rising  
ns  
Hold time from TCK rising tH  
TDO valid after TCK falling tV(C)  
ns  
28  
30  
ns  
CL = 10 pF  
CL = 0 pF  
TDO hold time from TCK  
falling  
tH(TDO)  
0
ns  
TDO disable time(1)  
tDIS  
ns  
ns  
See Figure 47, page 105.  
TRST time low  
tW(TL)  
30  
1. The pin begins to float when a 300 mV change from the actual VOH/VOL level occurs.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
104  
Electrical Specifications  
Figure 46 • JTAG Interface Timing Diagram  
tc  
TCK  
tW(CH)  
tW(CL)  
TDI  
TMS  
tSU  
tH  
tV(C)  
TDO  
tH(TDO)  
tDIS  
See definition  
nTRST  
tW(TL)  
Figure 47 • Test Circuit for TDO Disable Time  
3.3 V  
500 Ω  
From output under test  
500 Ω  
5 pF  
5.2.11 Serial Management Interface  
This section contains the AC specifications for the serial management interface (SMI).  
Table 125 • Serial Management Interface AC Characteristics  
Parameter  
Symbol Minimum Typical Maximum  
Unit Condition  
MDC  
fCLK  
2.5  
12.5  
MHz  
frequency(1)  
MDC cycle time tCYC  
MDC time high tWH  
80  
20  
20  
10  
400  
50  
ns  
ns  
ns  
ns  
MDC time low  
tWL  
tSU  
50  
Setup to MDC  
rising  
Hold from MDC tH  
rising  
10  
ns  
MDC rise time  
tR  
100  
ns  
MDC = 0: 1 MHz  
MDC = 1:  
tCYC × 10%(1)  
MHz – fCLK maximum  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
105  
Electrical Specifications  
Table 125 • Serial Management Interface AC Characteristics (continued)  
Parameter  
Symbol Minimum Typical Maximum  
Unit Condition  
MDC fall time  
tF  
100  
CYC × 10%(1)  
t
MDC to MDIO  
valid  
tCO  
10  
300  
ns  
Time-dependant on  
the value of the  
external pull-up  
resistor on the MDIO  
pin  
1. For fCLK above 1 MHz, the minimum rise time and fall time is in relation to the frequency of the MDC clock  
period. For example, if fCLK is 2 MHz, the minimum clock rise time and fall time is 50 ns.  
Figure 48 • Serial Management Interface Timing  
tWL  
tWH  
MDC  
tCYC  
tSU  
tH  
MDIO  
(write)  
Data  
tCO  
MDIO  
(read)  
Data  
5.2.12 Reset Timing  
This section contains the AC specifications that apply to device reset functionality. The signal applied to  
the NRESET input must comply with the specifications listed in the following table.  
Table 126 • Reset Timing Specifications  
Parameter  
Symbol Minimum Maximum Unit  
NRESET assertion time after power  
supplies and clock stabilize  
tW  
2
ms  
Recovery time from reset inactive to  
device fully active  
tREC  
105  
ms  
NRESET pulse width  
tW(RL)  
100  
105  
ns  
Wait time between NRESET de-assert tWAIT  
and access of the SMI interface  
ms  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
106  
Electrical Specifications  
5.3  
Operating Conditions  
The following table shows the recommended operating conditions for the VSC8504-01 device.  
Table 127 • Recommended Operating Conditions  
Parameter  
Symbol Minimum Typical Maximum Unit  
Power supply voltage for V  
Power supply voltage for V  
Power supply voltage for V  
Power supply voltage for V  
V
V
V
V
T
T
0.95  
0.95  
2.38  
2.38  
0
1.00  
1.00  
2.50  
2.50  
1.05  
1.05  
2.62  
2.62  
125  
V
V
V
V
DD1  
DD1  
DD1A  
DD25  
DD25A  
DD1A  
DD25  
DD25A  
(1)  
(1)  
VSC8504-01 operating temperature  
VSC8504-04 operating temperature  
°C  
°C  
–40  
125  
1. Minimum specification is ambient temperature, and the maximum is junction temperature. For carrier  
class applications, the maximum operating temperature is 110 °C junction.  
5.4  
Stress Ratings  
This section contains the stress ratings for the VSC8504-01 device.  
Warning Stresses listed in the following table may be applied to devices one at a time without causing  
permanent damage. Functionality at or exceeding the values listed is not implied. Exposure to these  
values for extended periods may affect device reliability.  
Table 128 • Stress Ratings  
Parameter  
Symbol  
Minimum Maximum Unit  
Power supply voltage for core supply  
Power supply voltage for analog circuits  
Power supply voltage for analog circuits  
Power supply voltage for digital I/O  
Input voltage for GPIO and logic input pins  
Storage temperature  
V
V
V
V
–0.3  
–0.3  
–0.3  
–0.3  
1.10  
1.10  
2.75  
2.75  
3.3  
V
V
VDD1  
VDD1A  
VDD25A  
VDD25  
V
V
V
T
–55  
125  
250  
°C  
V
S
Electrostatic discharge voltage, charged  
device model  
V
–250  
ESD_CDM  
(1)  
Electrostatic discharge voltage, human body  
model  
V
See note  
V
ESD_HBM  
1. This device has completed all required testing as specified in the JEDEC standard JESD22-A114,  
Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM), and complies with a  
Class 2 rating. The definition of Class 2 is any part that passes an ESD pulse of 2000 V, but fails an  
ESD pulse of 4000 V.  
Warning This device can be damaged by electrostatic discharge (ESD) voltage. Microsemi  
recommends that all integrated circuits be handled with appropriate precautions. Failure to observe  
proper handling and installation procedures may adversely affect reliability of the device.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
107  
Pin Descriptions  
6
Pin Descriptions  
The VSC8504-01 device has 256 pins, which are described in this section.  
The pin information is also provided as an attached Microsoft Excel file so that you can copy it  
electronically. In Acrobat, double-click the attachment icon.  
6.1  
Pin Identifications  
This section contains the pin descriptions for the VSC8504-01 device. The following table provides  
notations for definitions of the various pin types.  
Table 129 • Pin Type Symbol Definitions  
Symbol Pin Type  
Description  
3V  
3.3 V-tolerant pin.  
Analog bias pin.  
ABIAS  
ADIFF  
I
Analog bias  
Analog differential Analog differential signal pair.  
Input  
Input without on-chip pull-up or pull-down resistor.  
I/O  
Bidirectional  
No connect  
Output  
Bidirectional input or output signal.  
No connect pins must be left floating.  
Output signal.  
NC  
O
OD  
OS  
PD  
PU  
ST  
Open drain  
Open source  
Pull-down  
Pull-up  
Open drain output.  
Open source output.  
On-chip pull-down resistor to VSS.  
On-chip pull-up resistor to VDD_IO.  
Input has Schmitt-trigger circuitry.  
Schmitt-trigger  
6.2  
Pin Diagram  
The following illustrations show the pin diagram for the VSC8504-01 device. For clarity, the device is  
shown in two halves, the top left and top right.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
108  
Pin Descriptions  
Figure 49 • Pin Diagram, Top Left  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
NC_1  
TXVPA_3  
TXVPB_3  
TXVPC_3  
TXVPD_3  
TXVPA_2  
TXVPB_2  
TXVPC_2  
VSS_1  
TXVNA_3  
TXVNB_3  
TXVNC_3  
TXVND_3  
VSS_3  
TXVNA_2  
VDD25A_3  
VSS_7  
TXVNB_2  
VDD1A_1  
VSS_8  
TXVNC_2  
VDD1A_2  
VSS_9  
REFCLK_N VDD25A_1 THERMDA  
VDD25A_2  
THERMDC_VSS  
REFCLK_P  
REF_FILT_A REF_REXT_A  
VSS_6  
REFCLK_SEL2  
TMS  
TDI  
TRST  
TCK  
VDD25A_6  
VSS_20  
LED3_0  
LED3_1  
LED3_2  
LED3_3  
VDD1_1  
VDD1_3  
VDD1_5  
VDD1_7  
VDD1_9  
VDD1_11  
VSS_14  
VSS_21  
VSS_27  
VSS_33  
VSS_39  
VSS_45  
VSS_51  
VSS_57  
VSS_63  
VDD1A_5  
FIBROP_2  
FIBRON_2  
VSS_15  
VSS_22  
VSS_28  
VSS_34  
VSS_40  
VSS_46  
VSS_52  
VSS_58  
VSS_64  
VDD1A_6  
FIBRIP_2  
FIBRIN_2  
VSS_16  
VSS_23  
VSS_29  
VSS_35  
VSS_41  
VSS_47  
VSS_53  
VSS_59  
VSS_65  
VDD1A_7  
RDP_2  
TDO  
G
H
J
LED0_0  
LED1_0  
LED1_1  
LED1_2  
LED1_3  
RESERVED_73  
LED2_0  
LED2_1  
LED2_2  
LED2_3  
COMA_MODE  
LED0_1  
LED0_2  
K
L
LED0_3  
RESERVED_5  
RESERVED_6  
RESERVED_7  
RESERVED_8  
VSS_69  
RESERVED_3 VDD1_13  
M
N
P
R
T
MDINT  
MDIO  
NRESET  
VDD25_2  
VDD1_15  
VDD1_17  
RESERVED_71  
RESERVED_72  
MDC  
VDD25_4 RESERVED_4 VDD25A_8  
FIBROP_3  
FIBRON_3  
FIBRIP_3  
FIBRIN_3  
RDP_3  
RDN_3  
TDP_3  
TDN_3  
NC_3  
RDN_2  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
109  
Pin Descriptions  
Figure 50 • Pin Diagram, Top Right  
9
10  
11  
12  
13  
14  
15  
16  
TXVPD_2  
TXVPA_1  
TXVPB_1  
TXVPC_1  
TXVPD_1  
TXVPA_0  
TXVPB_0  
NC_2  
A
B
C
D
E
F
TXVND_2  
TXVNA_1  
TXVNB_1  
TXVNC_1  
VSS_4  
TXVND_1  
TXVNA_0  
TXVNB_0  
TXVNC_0  
TXVND_0  
CLK_SQUELCH_IN  
VSS_2  
VDD1A_3 RESERVED_1 VDD25A_4  
VDD1A_4 VDD25A_5  
TXVPC_0  
TXVPD_0  
RESERVED_70  
VSS_10  
VSS_17  
VSS_24  
VSS_30  
VSS_36  
VSS_42  
VSS_48  
VSS_54  
VSS_60  
VSS_66  
VDD1A_8  
TDP_2  
VSS_11  
VSS_18  
VSS_25  
VSS_31  
VSS_37  
VSS_43  
VSS_49  
VSS_55  
VSS_61  
VSS_67  
VSS_12  
VSS_19  
VSS_26  
VSS_32  
VSS_38  
VSS_44  
VSS_50  
VSS_56  
VSS_62  
VSS_68  
VSS_13  
RESERVED_2  
VDD25A_7  
VSS_73  
VSS_71  
VSS_72  
VDD1_2  
VDD1_4  
VDD1_6  
VDD1_8  
VDD1_10  
VDD1_12  
VDD1_14  
VDD1_16  
VDD1_18  
PHYADD4  
PHYADD3  
GPIO13  
VSS_74  
VSS_75  
RCVRDCLK1  
PHYADD2  
VDD25_1  
VSS_78  
RCVRDCLK2 G  
VSS_76  
VSS_77  
H
J
RESERVED_18  
RESERVED_19  
GPIO12  
GPIO9/FASTLINK-FAIL  
GPIO8/I2C_SDA  
GPIO4/I2C_SCL_0  
GPIO10  
GPIO11  
K
L
GPIO5/I2C_SCL_1  
GPIO6/I2C_SCL_2  
GPIO7/I2C_SCL_3  
GPIO1/SIGDET1 GPIO2/SIGDET2 GPIO3/SIGDET3  
VDD25_3  
M
N
P
R
T
SerDes_Rext_1 GPIO0/SIGDET0  
SerDes_Rext_0  
TDP_0  
RDP_0  
TDN_0  
RDN_0  
VSS_70  
NC_4  
VDD1A_9 VDD1A_10 VDD25A_9 VDD25A_10  
FIBROP_1  
FIBRON_1  
FIBRIP_1  
FIBRIN_1  
RDP_1  
RDN_1  
TDP_1  
TDN_1  
FIBROP_0  
FIBRON_0  
FIBRIP_0  
FIBRIN_0  
TDN_2  
6.3  
Pins by Function  
This section contains the functional pin descriptions for the VSC8504-01 device.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
110  
Pin Descriptions  
6.3.1  
GPIO and SIGDET  
The following table lists the GPIO and SIGDET pins.  
Table 130 • GPIO and SIGDET Pins  
Name  
Pin  
Type  
Description  
GPIO0/SIGDET0  
GPIO1/SIGDET1  
GPIO2/SIGDET2  
GPIO3/SIGDET3  
GPIO4/I2C_SCL_0  
GPIO5/I2C_SCL_1  
GPIO6/I2C_SCL_2  
GPIO7/I2C_SCL_3  
GPIO8/I2C_SDA  
N14 I/O, PU, 3 V  
General purpose input/output (GPIO). The  
multipurpose SIGDET pins, two-wire serial  
controller pins, and fast link fail pin can be  
configured to serve as GPIOs.  
M14  
M15  
M16  
L13  
L14  
L15  
L16  
K13  
GPIO9/FASTLINK-FAIL K14  
GPIO10  
GPIO11  
GPIO12  
GPIO13  
K15  
K16  
J14  
H14  
6.3.2  
JTAG  
The following table lists the JTAG test pins.  
Table 131 • JTAG Pins  
Name Pin Type  
Description  
TCK  
TDI  
F3 I, PU, ST, 3 V  
F2 I, PU, ST, 3 V  
F1  
E2 I, PU, ST, 3 V  
JTAG test clock input.  
JTAG test serial data input.  
JTAG test serial data output.  
JTAG test mode select.  
TDO  
TMS  
O
TRST E3 I, PU, ST, 3 V  
JTAG reset.  
Important When JTAG is not in use, this pin must be tied to  
ground with a pull-down resistor for normal operation.  
6.3.3  
Miscellaneous  
The following table lists the miscellaneous pins.  
Table 132 • Miscellaneous Pins  
Name  
Pin  
Type  
Description  
CLK_SQUELCH_IN E15  
I, PU,  
3 V  
Input control to squelch recovered clock.  
COMA_MODE  
L3  
I, PU,  
3 V  
When this pin is asserted high, all PHYs are held  
in a powered down state. When de-asserted low,  
all PHYs are powered up and resume normal  
operation. This signal is also used to synchronize  
the operation of multiple chips on the same PCB to  
provide visual synchronization for LEDs driven by  
(1)  
separate chips.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
111  
Pin Descriptions  
Table 132 • Miscellaneous Pins (continued)  
Name  
Pin  
Type  
Description  
LED0_[0:3]  
LED1_[0:3]  
LED2_[0:3]  
LED3_[0:3]  
G1, H1, J1, K1  
G2, H2, J2, K2  
G3, H3, J3, K3  
G4, H4, J4, K4  
O
LED direct-drive outputs. All LEDs pins are  
active-low. A serial LED stream can also be  
implemented. See LED Mode Select, page 60.  
Note: LEDbit_port, where port = PHY port  
number and bit = the particular LED  
for the port.  
NC_1  
NC_2  
NC_3  
NC_4  
A1  
A16  
T1  
NC  
No connect.  
T16  
PHYADD2  
PHYADD3  
PHYADD4  
G13  
G14  
F14  
I, PD,  
3 V  
Device SMI address bits 4:2.  
RCVRDCLK1  
RCVRDCLK2  
F16  
G16  
O
Clock output can be enabled or disabled and also  
output a clock frequency of 125 MHz or 25 MHz  
based on the selected active recovered media  
programmed for this pin. This pin is not active  
when NRESET is asserted. When disabled, the  
pin is held low.  
REF_FILT_A  
D3  
D4  
ABIAS Reference filter connects to an external 1 µF  
capacitor to analog ground.  
REF_REXT_A  
ABIAS Reference external connects to an external 2 kΩ  
(1%) resistor to analog ground.  
REFCLK_N  
REFCLK_P  
C1  
D1  
I,  
125 MHz or 25 MHz reference clock input pair.  
ADIFF Must be capacitively coupled and LVDS  
compatible.  
REFCLK_SEL2  
E1  
I, PU,  
3 V  
Selects the reference clock speed:  
0: 25 MHz (VSS)  
1: 125 MHz (2.5 V)  
Use 125 MHz for typical applications.  
RESERVED_[1:8]  
C10, D13, L4,  
P4, L1, M1, N1,  
P1  
NC  
NC  
Leave these pins unconnected (floating).  
RESERVED_[18:19] J15, J16  
Leave these pins unconnected (floating).  
Leave these pins unconnected (floating).  
Thermal diode anode.  
RESERVED_[70:73] E16, N3, N4, L2 NC  
THERMDA  
C3  
D2  
A
A
THERMDC_VSS  
Thermal diode cathode connected to device  
ground. Temperature sensor must be chosen  
accordingly.  
1. For more information, see Initialization, page 43. For a typical bring-up example, see Configuration, page 42.  
6.3.4  
Power Supply  
The following table lists the power supply pins and associated functional pins. All power supply pins must  
be connected to their respective voltage input, even if certain functions are not used for a specific  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
112  
Pin Descriptions  
application. No power supply sequencing is required. However, clock and power must be stable before  
releasing Reset.  
Table 133 • Power Supply Pins  
Name  
Pin  
Type Description  
VDD1_[1:18]  
E5, E12, F5, F12, G5, G12,  
H5, H12, J5, J12, K5, K12,  
L5, L12, M5, M12, N5, N12  
1.0 V 1.0 V internal digital logic.  
VDD1A_[1:10]  
VDD25_[1:4]  
C7, C8, C9, C13, P6, P7, P8, 1.0 V 1.0 V analog power requiring additional  
P9, P10, P11  
PCB power supply filtering. Associated  
with the QSGMII/SGMII MAC receiver  
output pins.  
H13, M4, M13, P3  
2.5 V 2.5 V general digital power supply.  
Associated with the LED, GPIO, JTAG,  
twisted pair interface, reference filter,  
reference external supply connect, and  
recovered clock pins.  
VDD25A_[1:10] C2, C4, C6, C11, C14, E4,  
E13, P5, P12, P13  
2.5 V 2.5 V general analog power supply.  
VSS_[1:4]  
B1, B16, C5, C12  
0 V  
General device ground.  
VSS_[6:78]  
D5, D6, D7, D8, D9, D10,  
D11, D12, E6, E7, E8, E9,  
E10, E11, F4, F6, F7, F8, F9,  
F10, F11, G6, G7, G8, G9,  
G10, G11, H6, H7, H8, H9,  
H10, H11, J6, J7, J8, J9, J10,  
J11, K6, K7, K8, K9, K10,  
K11, L6, L7, L8, L9, L10, L11,  
M6, M7, M8, M9, M10, M11,  
N6, N7, N8, N9, N10, N11,  
R1, R16, D14, E14, F13, F15,  
G15, H15, H16, J13  
6.3.5  
SGMII/SerDes/QSGMII MAC Interface  
The following table lists the SerDes MAC interface pins.  
Table 134 • SerDes MAC Interface Pins  
Name  
Pin Type  
Description  
RDN_0  
RDP_0  
P16 O, ADIFF PHY0 QSGMII/SGMII/SerDes MAC receiver output pair.  
P15  
RDN_1  
RDN_2  
RDN_3  
RDP_1  
RDP_2  
RDP_3  
T12 O, ADIFF SGMII/SerDes MAC receiver output pair.  
T8  
T4  
R12  
R8  
R4  
SerDes_Rext_0 P14 ABIAS  
SerDes bias pins. Connect to a 620 Ω 1% resistor between  
SerDes_Rext_0 and SerDes_Rext_1.  
SerDes_Rext_1 N13 ABIAS  
SerDes bias pins. Connect to a 620 Ω 1% resistor between  
SerDes_Rext_0 and SerDes_Rext_1.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
113  
Pin Descriptions  
Table 134 • SerDes MAC Interface Pins (continued)  
Name  
Pin Type  
Description  
TDN_0  
TDP_0  
N16 I, ADIFF  
N15  
PHY0 QSGMII/SGMII/SerDes MAC transmitter input pair.  
TDN_1  
TDN_2  
TDN_3  
TDP_1  
TDP_2  
TDP_3  
T13 I, ADIFF  
T9  
T5  
R13  
R9  
R5  
SGMII/SerDes MAC transmitter input pair.  
6.3.6  
SerDes Media Interface  
The following table lists the SerDes media interface pins.  
Table 135 • SerDes Media Interface Pins  
Name  
Pin Type  
Description  
FIBRIN_0 T15 I, ADIFF SerDes media receiver input pair.  
FIBRIN_1 T11  
FIBRIN_2 T7  
FIBRIN_3 T3  
FIBRIP_0 R15 I, ADIFF SerDes media receiver input pair.  
FIBRIP_1 R11  
FIBRIP_2 R7  
FIBRIP_3 R3  
FIBRON_0 T14 O, ADIFF SerDes media transmitter output pair.  
FIBRON_1 T10  
FIBRON_2 T6  
FIBRON_3 T2  
FIBROP_0 R14 O, ADIFF SerDes media transmitter output pair.  
FIBROP_1 R10  
FIBROP_2 R6  
FIBROP_3 R2  
6.3.7  
Serial Management Interface  
The following table lists the serial management interface (SMI) pins. The SMI pins are referenced to  
VDD25 and can be set to a 2.5 V power supply.  
Table 136 • SMI Pins  
Name  
Pin Type  
P2 I, PD, 3 V  
Description  
MDC  
Management data clock. A 0 MHz to 12.5 MHz reference input is  
used to clock serial MDIO data into and out of the PHY.  
MDINT  
M2 I/O, OS, OD Management interrupt signal. Upon reset the device will configure  
these pins as active-low (open drain) or active-high (open source)  
based on the polarity of an external 10 kΩ resistor connection.  
These pins can be tied together in a wired-OR configuration with  
only a single pull-up or pull-down resistor.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
114  
Pin Descriptions  
Table 136 • SMI Pins (continued)  
Name  
Pin Type  
Description  
MDIO  
N2 I/O, OD  
Management data input/output pin. Serial data is written or read  
from this pin bidirectionally between the PHY and Station Manager,  
synchronously on the positive edge of MDC. One external pull-up  
resistor is required at the Station Manager, and its value depends  
on the MDC clock frequency and the total sum of the capacitive  
loads from the MDIO pins.  
NRESET M3 I, PD, ST, 3 V Device reset. Active low input that powers down the device and  
sets all register bits to their default state.  
6.3.8  
Twisted Pair Interface  
The following table lists the twisted pair interface pins.  
Table 137 • Twisted Pair Interface Pins  
Name  
Pin  
Type  
Description  
TXVNA_0  
TXVNA_1  
TXVNA_2  
TXVNA_3  
B14 ADIFF TX/RX channel A negative signal  
B10  
B6  
B2  
TXVNB_0  
TXVNB_1  
TXVNB_2  
TXVNB_3  
B15 ADIFF TX/RX channel B negative signal  
B11  
B7  
B3  
TXVNC_0  
TXVNC_1  
TXVNC_2  
TXVNC_3  
C15 ADIFF TX/RX channel C negative signal  
B12  
B8  
B4  
TXVND_0  
TXVND_1  
TXVND_2  
TXVND_3  
D15 ADIFF TX/RX channel D negative signal  
B13  
B9  
B5  
TXVPA_0  
TXVPA_1  
TXVPA_2  
TXVPA_3  
A14 ADIFF TX/RX channel A positive signal  
A10  
A6  
A2  
TXVPB_0  
TXVPB_1  
TXVPB_2  
TXVPB_3  
A15 ADIFF TX/RX channel B positive signal  
A11  
A7  
A3  
TXVPC_0  
TXVPC_1  
TXVPC_2  
TXVPC_3  
C16 ADIFF TX/RX channel C positive signal  
A12  
A8  
A4  
TXVPD_0  
TXVPD_1  
TXVPD_2  
TXVPD_3  
D16 ADIFF TX/RX channel D positive signal  
A13  
A9  
A5  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
115  
Quad-Port 10/100/1000BASE-T PHY with Synchronous Ethernet and QSGMII/SGMII  
MAC  
6.4  
Pins by Number  
This section provides a numeric list of the pins.  
C7 VDD1A_1  
E13 VDD25A_7  
A1 NC_1  
C8 VDD1A_2  
C9 VDD1A_3  
C10 RESERVED_1  
C11 VDD25A_4  
C12 VSS_4  
E14 VSS_72  
A2 TXVPA_3  
A3 TXVPB_3  
A4 TXVPC_3  
A5 TXVPD_3  
A6 TXVPA_2  
A7 TXVPB_2  
A8 TXVPC_2  
A9 TXVPD_2  
A10 TXVPA_1  
A11 TXVPB_1  
A12 TXVPC_1  
A13 TXVPD_1  
A14 TXVPA_0  
A15 TXVPB_0  
A16 NC_2  
E15 CLK_SQUELCH_IN  
E16 RESERVED_70  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
TDO  
TDI  
C13 VDD1A_4  
C14 VDD25A_5  
C15 TXVNC_0  
C16 TXVPC_0  
D1 REFCLK_P  
D2 THERMDC_VSS  
D3 REF_FILT_A  
D4 REF_REXT_A  
D5 VSS_6  
TCK  
VSS_20  
VDD1_3  
VSS_21  
VSS_22  
VSS_23  
VSS_24  
F10 VSS_25  
F11 VSS_26  
F12 VDD1_4  
F13 VSS_73  
F14 PHYADD4  
F15 VSS_74  
F16 RCVRDCLK1  
G1 LED0_0  
G2 LED1_0  
G3 LED2_0  
G4 LED3_0  
G5 VDD1_5  
G6 VSS_27  
G7 VSS_28  
G8 VSS_29  
G9 VSS_30  
G10 VSS_31  
G11 VSS_32  
G12 VDD1_6  
G13 PHYADD2  
G14 PHYADD3  
G15 VSS_75  
G16 RCVRDCLK2  
H1 LED0_1  
H2 LED1_1  
D6 VSS_7  
D7 VSS_8  
B1 VSS_1  
D8 VSS_9  
B2 TXVNA_3  
B3 TXVNB_3  
B4 TXVNC_3  
B5 TXVND_3  
B6 TXVNA_2  
B7 TXVNB_2  
B8 TXVNC_2  
B9 TXVND_2  
B10 TXVNA_1  
B11 TXVNB_1  
B12 TXVNC_1  
B13 TXVND_1  
B14 TXVNA_0  
B15 TXVNB_0  
B16 VSS_2  
D9 VSS_10  
D10 VSS_11  
D11 VSS_12  
D12 VSS_13  
D13 RESERVED_2  
D14 VSS_71  
D15 TXVND_0  
D16 TXVPD_0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
REFCLK_SEL2  
TMS  
TRST  
VDD25A_6  
VDD1_1  
VSS_14  
VSS_15  
VSS_16  
VSS_17  
C1 REFCLK_N  
C2 VDD25A_1  
C3 THERMDA  
C4 VDD25A_2  
C5 VSS_3  
E10 VSS_18  
E11 VSS_19  
E12 VDD1_2  
C6 VDD25A_3  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
116  
Pins by number (continued)  
H3 LED2_1  
H4 LED3_1  
H5 VDD1_7  
H6 VSS_33  
H7 VSS_34  
H8 VSS_35  
H9 VSS_36  
H10 VSS_37  
H11 VSS_38  
H12 VDD1_8  
H13 VDD25_1  
H14 GPIO13  
H15 VSS_76  
H16 VSS_77  
K12 VDD1_12  
N5 VDD1_17  
N6 VSS_63  
K13 GPIO8/I2C_SDA  
K14 GPIO9/FASTLINK-FAIL  
K15 GPIO10  
N7 VSS_64  
N8 VSS_65  
K16 GPIO11  
N9 VSS_66  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
RESERVED_5  
RESERVED_73  
COMA_MODE  
RESERVED_3  
VDD1_13  
N10 VSS_67  
N11 VSS_68  
N12 VDD1_18  
N13 SerDes_Rext_1  
N14 GPIO0/SIGDET0  
N15 TDP_0  
VSS_51  
VSS_52  
N16 TDN_0  
VSS_53  
P1  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
P9  
RESERVED_8  
MDC  
VSS_54  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
LED0_2  
LED1_2  
LED2_2  
LED3_2  
VDD1_9  
VSS_39  
VSS_40  
VSS_41  
VSS_42  
L10 VSS_55  
VDD25_4  
RESERVED_4  
VDD25A_8  
VDD1A_5  
VDD1A_6  
VDD1A_7  
VDD1A_8  
L11 VSS_56  
L12 VDD1_14  
L13 GPIO4/I2C_SCL_0  
L14 GPIO5/I2C_SCL_1  
L15 GPIO6/I2C_SCL_2  
L16 GPIO7/I2C_SCL_3  
M1 RESERVED_6  
M2 MDINT  
P10 VDD1A_9  
P11 VDD1A_10  
P12 VDD25A_9  
P13 VDD25A_10  
P14 SerDes_Rext_0  
P15 RDP_0  
J10 VSS_43  
J11 VSS_44  
J12 VDD1_10  
J13 VSS_78  
J14 GPIO12  
J15 RESERVED_18  
J16 RESERVED_19  
K1 LED0_3  
K2 LED1_3  
K3 LED2_3  
K4 LED3_3  
K5 VDD1_11  
K6 VSS_45  
K7 VSS_46  
K8 VSS_47  
K9 VSS_48  
K10 VSS_49  
K11 VSS_50  
M3 NRESET  
M4 VDD25_2  
M5 VDD1_15  
M6 VSS_57  
M7 VSS_58  
P16 RDN_0  
M8 VSS_59  
R1 VSS_69  
R2 FIBROP_3  
R3 FIBRIP_3  
R4 RDP_3  
M9 VSS_60  
M10 VSS_61  
M11 VSS_62  
M12 VDD1_16  
R5 TDP_3  
M13 VDD25_3  
R6 FIBROP_2  
R7 FIBRIP_2  
R8 RDP_2  
M14 GPIO1/SIGDET1  
M15 GPIO2/SIGDET2  
M16 GPIO3/SIGDET3  
N1 RESERVED_7  
N2 MDIO  
R9 TDP_2  
R10 FIBROP_1  
R11 FIBRIP_1  
R12 RDP_1  
N3 RESERVED_71  
N4 RESERVED_72  
R13 TDP_1  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
117  
Pins by number (continued)  
R14 FIBROP_0  
R15 FIBRIP_0  
R16 VSS_70  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
NC_3  
FIBRON_3  
FIBRIN_3  
RDN_3  
TDN_3  
FIBRON_2  
FIBRIN_2  
RDN_2  
TDN_2  
T10 FIBRON_1  
T11 FIBRIN_1  
T12 RDN_1  
T13 TDN_1  
T14 FIBRON_0  
T15 FIBRIN_0  
T16 NC_4  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
118  
Quad-Port 10/100/1000BASE-T PHY with Synchronous Ethernet and QSGMII/SGMII  
MAC  
6.5  
Pins by Name  
This section provides an alphabetic list of the pins.  
LED1_2  
LED1_3  
LED2_0  
LED2_1  
LED2_2  
LED2_3  
LED3_0  
LED3_1  
LED3_2  
LED3_3  
MDC  
J2  
RESERVED_3  
RESERVED_4  
RESERVED_5  
RESERVED_6  
RESERVED_7  
RESERVED_8  
RESERVED_18  
RESERVED_19  
RESERVED_70  
RESERVED_71  
RESERVED_72  
RESERVED_73  
SerDes_Rext_0  
SerDes_Rext_1  
TCK  
L4  
CLK_SQUELCH_IN  
COMA_MODE  
FIBRIN_0  
E15  
L3  
K2  
P4  
G3  
H3  
L1  
T15  
T11  
T7  
M1  
N1  
FIBRIN_1  
J3  
FIBRIN_2  
K3  
P1  
FIBRIN_3  
T3  
G4  
H4  
J15  
J16  
E16  
N3  
FIBRIP_0  
R15  
R11  
R7  
FIBRIP_1  
J4  
FIBRIP_2  
K4  
FIBRIP_3  
R3  
P2  
N4  
FIBRON_0  
T14  
T10  
T6  
MDINT  
M2  
N2  
L2  
FIBRON_1  
MDIO  
P14  
N13  
F3  
FIBRON_2  
NC_1  
A1  
FIBRON_3  
T2  
NC_2  
A16  
T1  
FIBROP_0  
R14  
R10  
R6  
NC_3  
TDI  
F2  
FIBROP_1  
NC_4  
T16  
M3  
G13  
G14  
F14  
F16  
G16  
P16  
T12  
T8  
TDN_0  
N16  
T13  
T9  
FIBROP_2  
NRESET  
PHYADD2  
PHYADD3  
PHYADD4  
RCVRDCLK1  
RCVRDCLK2  
RDN_0  
TDN_1  
FIBROP_3  
R2  
TDN_2  
GPIO0/SIGDET0  
GPIO1/SIGDET1  
GPIO2/SIGDET2  
GPIO3/SIGDET3  
GPIO4/I2C_SCL_0  
GPIO5/I2C_SCL_1  
GPIO6/I2C_SCL_2  
GPIO7/I2C_SCL_3  
GPIO8/I2C_SDA  
GPIO9/FASTLINK-FAIL  
GPIO10  
N14  
M14  
M15  
M16  
L13  
L14  
L15  
L16  
K13  
K14  
K15  
K16  
J14  
H14  
G1  
TDN_3  
T5  
TDO  
F1  
TDP_0  
N15  
R13  
R9  
TDP_1  
TDP_2  
RDN_1  
TDP_3  
R5  
RDN_2  
THERMDA  
THERMDC_VSS  
TMS  
C3  
RDN_3  
T4  
D2  
E2  
RDP_0  
P15  
R12  
R8  
RDP_1  
TRST  
E3  
RDP_2  
TXVNA_0  
TXVNA_1  
TXVNA_2  
TXVNA_3  
TXVNB_0  
TXVNB_1  
TXVNB_2  
TXVNB_3  
TXVNC_0  
B14  
B10  
B6  
GPIO11  
RDP_3  
R4  
GPIO12  
REF_FILT_A  
REF_REXT_A  
REFCLK_N  
REFCLK_P  
REFCLK_SEL2  
RESERVED_1  
RESERVED_2  
D3  
D4  
C1  
GPIO13  
B2  
LED0_0  
B15  
B11  
B7  
LED0_1  
H1  
D1  
E1  
LED0_2  
J1  
LED0_3  
K1  
C10  
D13  
B3  
LED1_0  
G2  
C15  
LED1_1  
H2  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
119  
Pins by name (continued)  
TXVNC_1  
TXVNC_2  
TXVNC_3  
TXVND_0  
TXVND_1  
TXVND_2  
TXVND_3  
TXVPA_0  
TXVPA_1  
TXVPA_2  
TXVPA_3  
TXVPB_0  
TXVPB_1  
TXVPB_2  
TXVPB_3  
TXVPC_0  
TXVPC_1  
TXVPC_2  
TXVPC_3  
TXVPD_0  
TXVPD_1  
TXVPD_2  
TXVPD_3  
VDD1_1  
VDD1_2  
VDD1_3  
VDD1_4  
B12  
B8  
VDD1A_1  
VDD1A_2  
VDD1A_3  
VDD1A_4  
VDD1A_5  
VDD1A_6  
VDD1A_7  
VDD1A_8  
VDD1A_9  
VDD1A_10  
VDD25_1  
VDD25_2  
VDD25_3  
VDD25_4  
VDD25A_1  
VDD25A_2  
VDD25A_3  
VDD25A_4  
VDD25A_5  
VDD25A_6  
VDD25A_7  
VDD25A_8  
VDD25A_9  
VDD25A_10  
VSS_1  
C7  
VSS_19  
VSS_20  
VSS_21  
VSS_22  
VSS_23  
VSS_24  
VSS_25  
VSS_26  
VSS_27  
VSS_28  
VSS_29  
VSS_30  
VSS_31  
VSS_32  
VSS_33  
VSS_34  
VSS_35  
VSS_36  
VSS_37  
VSS_38  
VSS_39  
VSS_40  
VSS_41  
VSS_42  
VSS_43  
VSS_44  
VSS_45  
VSS_46  
VSS_47  
VSS_48  
VSS_49  
VSS_50  
VSS_51  
VSS_52  
VSS_53  
VSS_54  
VSS_55  
VSS_56  
VSS_57  
VSS_58  
VSS_59  
E11  
F4  
C8  
B4  
C9  
F6  
D15  
B13  
B9  
C13  
P6  
F7  
F8  
P7  
F9  
B5  
P8  
F10  
F11  
G6  
G7  
G8  
G9  
G10  
G11  
H6  
H7  
H8  
H9  
H10  
H11  
J6  
A14  
A10  
A6  
P9  
P10  
P11  
H13  
M4  
M13  
P3  
A2  
A15  
A11  
A7  
A3  
C2  
C16  
A12  
A8  
C4  
C6  
C11  
C14  
E4  
A4  
D16  
A13  
A9  
E13  
P5  
J7  
A5  
P12  
P13  
B1  
J8  
E5  
J9  
E12  
F5  
J10  
J11  
K6  
VSS_2  
B16  
C5  
F12  
G5  
VSS_3  
VDD1_5  
VDD1_6  
VDD1_7  
VDD1_8  
VDD1_9  
VDD1_10  
VDD1_11  
VDD1_12  
VDD1_13  
VDD1_14  
VDD1_15  
VDD1_16  
VDD1_17  
VDD1_18  
VSS_4  
C12  
D5  
K7  
G12  
H5  
VSS_6  
K8  
VSS_7  
D6  
K9  
H12  
J5  
VSS_8  
D7  
K10  
K11  
L6  
VSS_9  
D8  
J12  
K5  
VSS_10  
D9  
VSS_11  
D10  
D11  
D12  
E6  
L7  
K12  
L5  
VSS_12  
L8  
VSS_13  
L9  
L12  
M5  
VSS_14  
L10  
L11  
M6  
M7  
M8  
VSS_15  
E7  
M12  
N5  
VSS_16  
E8  
VSS_17  
E9  
N12  
VSS_18  
E10  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
120  
Pins by name (continued)  
VSS_60  
VSS_61  
VSS_62  
VSS_63  
VSS_64  
VSS_65  
VSS_66  
VSS_67  
VSS_68  
VSS_69  
VSS_70  
VSS_71  
VSS_72  
VSS_73  
VSS_74  
VSS_75  
VSS_76  
VSS_77  
VSS_78  
M9  
M10  
M11  
N6  
N7  
N8  
N9  
N10  
N11  
R1  
R16  
D14  
E14  
F13  
F15  
G15  
H15  
H16  
J13  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
121  
Package Information  
7
Package Information  
VSC8504XKS-01 and VSC8504XKS-04 are packaged in a lead(Pb)-free, 256-pin, plastic ball grid array  
(BGA) with a 17 mm × 17 mm body size, 1 mm pin pitch, and 1.8 mm maximum height.  
Lead(Pb)-free products from Microsemi comply with the temperatures and profiles defined in the joint  
IPC and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC  
standard.  
This section provides the package drawing, thermal specifications, and moisture sensitivity rating for the  
VSC8504-01 device.  
7.1  
Package Drawing  
The following illustration shows the package drawing for the VSC8504-01 device. The drawing contains  
the top view, bottom view, side view, dimensions, tolerances, and notes.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
122  
Package Information  
Figure 51 • Package Drawing  
Top View  
Bottom View  
0.20 (4×)  
Pin A1 corner  
17.00  
X
Pin A1 corner  
16151413121110 9 8 7 6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
1.00  
15.00  
17.00  
K
L
M
N
P
R
T
1.00  
Y
15.00  
Side View  
0.25 Z  
0.20 Z  
Z
4
Seating plane  
Ø 0.45–0.64  
5
Ø 0.25 M  
Ø 0.10 M  
Z
Z
X Y  
Notes  
1. All dimensions and tolerances are in millimeters (mm).  
2. Ball diameter is 0.50 mm.  
3. Radial true position is represented by typical values.  
4. Primary datum Z and seating plane are defined by the  
spherical crowns of the solder balls.  
5. Dimension is measured at the maximum solder ball  
diameter, parallel to primary datum Z.  
7.2  
Thermal Specifications  
Thermal specifications for this device are based on the JEDEC JESD51 family of documents. These  
documents are available on the JEDEC Web site at www.jedec.org. The thermal specifications are  
modeled using a four-layer test board with two signal layers, a power plane, and a ground plane (2s2p  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
123  
Package Information  
PCB). For more information about the thermal measurement method used for this device, see the  
JESD51-1 standard.  
Table 138 • Thermal Resistances  
Symbol  
°C/W  
5.9  
Parameter  
θ
Die junction to package case top  
JCtop  
θ
12.7  
22  
Die junction to printed circuit board  
Die junction to ambient  
JB  
θ
JA  
θ
θ
at 1 m/s  
18.5  
16.3  
Die junction to moving air measured at an air speed of 1 m/s  
Die junction to moving air measured at an air speed of 2 m/s  
JMA  
at 2 m/s  
JMA  
To achieve results similar to the modeled thermal measurements, the guidelines for board design  
described in the JESD51 family of publications must be applied. For information about applications using  
BGA packages, see the following:  
JESD51-2A, Integrated Circuits Thermal Test Method Environmental Conditions, Natural Convection  
(Still Air)  
JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions, Forced Convection  
(Moving Air)  
JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions, Junction-to-Board  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
7.3  
Moisture Sensitivity  
This device is rated moisture sensitivity level 4 as specified in the joint IPC and JEDEC standard  
IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC standard.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
124  
Design Considerations  
8
Design Considerations  
This section provides information about design considerations for the VSC8504-01 device.  
8.1  
AMS and 100BASE-FX  
When the PHY operating mode (set in register 23) is AMS and the current active media is 100BASE-FX,  
register 0 bit 12 will be 0. This would normally indicate that auto-negotiation is disabled and the PHY is in  
forced mode. But in this mode, it has other meanings.  
The workaround is to ensure that bit 12 is always written as 1 when doing writes or updates to register 0  
in AMS mode.  
8.2  
8.3  
8.4  
10BASE-T signal amplitude  
10BASE-T signal amplitude can be lower than the minimum specified in IEEE 802.3 paragraph  
14.3.1.2.1 (2.2 V) at low supply voltages.  
This issue is not estimated to present any system level impact. Performance is not impaired with cables  
up to 130 m with various link partners.  
SNR degradation and link drops  
The link may drop after approximately 100 master/slave relationship swaps with the ring resiliency  
feature when using Category 5 (Cat5) cables that are longer than 75 m.  
The workaround is to use a combination of an initialization script and a procedure change. Contact  
Microsemi for the workaround solution if the ring resiliency feature is being enabled.  
Clause 45 register 3.22  
The clause 45, register 3.22 is cleared upon read only when the extended page access register (register  
31) is set to 0.  
This register cannot be read when the page access register is set to a value other than 0.  
The workaround is to set extended page access register to 0 before accessing clause 45, register 3.22.  
8.5  
Clause 45 register 3.1  
Clause 45, register 3.1, Rx and Tx LPI received bits are cleared upon read only when the extended page  
access register (register 31) is set to 0.  
This has a minor implication for software that needs to ensure that the extended page access register is  
set to 0 before reading clause 45, register 3.1.  
The workaround is to set extended page access register to 0 before accessing clause 45, register 3.1.  
8.6  
8.7  
Clause 45 register address post-increment  
Clause 45 register address post-increment only works when reading registers and only when extended  
page access register (register 31) is set to 0.  
The workaround is to access the registers individually.  
Fast link failure indication  
The fast link failure indication for all the ports is enabled using port 0, register 19E.4.  
The workaround is to set register 19E.4 = 1 in PHY 0 to enable Fast Link Fail indication.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
125  
Design Considerations  
8.8  
8.9  
Near-end loopback with AMS enabled  
Near-end loopback does not work when AMS is enabled. Near-end loopback is controlled by setting bit  
14 of register 0.  
The workaround is to disable AMS when enabling loopback. This is a debug feature and does not have  
any real life implications.  
Carrier detect assertion  
Carrier detect assertion is set to false incorrectly when 9 out of 10 bits in the K28.1 word are in error.  
No real life implication is expected, because the event that can trigger this error is extremely unlikely. If it  
does occur, the link may drop momentarily and come back up.  
8.10 Link status not correct in register 24E3.2 for 100BASE-  
FX operation  
The link status in register 24E3.2 only reflects the status of 1000BASE-X links. It does not reflect the  
status of 100BASE-FX links.  
The workaround is to check register 28.4:3 for media operating mode (10 for fiber), 28.4:3 for speed  
status (100 for 100 Mbps), and then check 16.12 for current link status.  
8.11 Register 28.14 does not reflect autonegotiation disabled  
in 100BASE-FX mode  
Register 28.14 does not reflect autonegotiation status in 100BASE-FX mode. It works correctly in all  
copper and 1000BASE-X media modes.  
The workaround is to use register 0.12 for autonegotiation status in 100BASE-FX mode when AMS is  
disabled. For more information about limitations when AMS is enabled, see AMS and 100BASE-FX,  
page 125.  
8.12 Internal clock disabled when media switches from fiber  
to copper with autonegotiation disabled  
When the device switches from fiber to copper media when autonegotiation is disabled, an internal clock  
may be stuck low causing the device to not pass traffic correctly.  
The workaround is to write a value of 0xC040 to register 0 when switching media from fiber to copper.  
8.13 Near-end loopback non-functional in protocol transfer  
mode  
Near-end loopback does not work correctly when the device is configured in protocol transfer mode.  
This is a debug feature and does not have any effect on the normal operation of the device.  
8.14 Fiber-media recovered clock does not squelch based on  
link status  
To squelch the clock in fiber media mode, code sync status is used instead of link status. This causes the  
clock to not be squelched if the device is configured in 1000BASE-X mode with autonegotiation enabled  
when the transmit fiber is unplugged.  
There is a software workaround for this issue where the device's internal microcontroller monitors link  
status and forces the clock off when no link is present.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
126  
Design Considerations  
8.15 1000BASE-X parallel detect mode with Clause 37  
autonegotiation enabled  
When connected to a forced-mode link partner and attempting autonegotiation, the PHY in 1000BASEX  
parallel detect mode requires a minimum 250 ms IDLE stream in order to establish a link. If the PHY port  
is programmed with 1000BASE-X parallel detect-enabled (MAC-side register 16E3 bit 13, or media-side  
register 23E3 bit 13), then a forced-mode link partner sending traffic with an inter-packet gap less than  
250 ms will not allow the local device’s PCS to transition from a link-down to link-up state.  
8.16 Anomalous PCS error indications in Energy Efficient  
Ethernet mode  
When a port is processing traffic with Energy Efficient Ethernet enabled on the link, certain PCS errors  
(such as false carriers, spurious start-of-stream detection, and idle errors) and EEE wake errors may  
occur. There is no effect on traffic bit error rate for cable lengths up to 75 meters, and minor packet loss  
may occur on links longer than 75 meters. Regardless of cable length, some error indications should not  
be used while EEE is enabled. These error indications include false carrier interrupts (Interrupt Status  
register 26 bit 3), receive error interrupts (Interrupt Status register 26 bit 0), and EEE wake error  
interrupts.  
Contact Microsemi for a script that needs to be applied during system initialization if EEE will be enabled.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
127  
Ordering Information  
9
Ordering Information  
The VSC8504-01 device is offered with two operating temperature ranges. The range for VSC8504-01 is  
0 °C ambient to 125 °C junction, and the range for VSC8504-04 is -40 °C ambient to 125 °C junction.  
VSC8504XKS-01 and VSC8504XKS-04 are packaged in a lead(Pb)-free, 256-pin, plastic ball grid array  
(BGA) with a 17 mm × 17 mm body size, 1 mm pin pitch, and 1.8 mm maximum height.  
Lead(Pb)-free products from Microsemi comply with the temperatures and profiles defined in the joint  
IPC and JEDEC standard IPC/JEDEC J-STD-020. For more information, see the IPC and JEDEC  
standard.  
The following table lists the ordering information for the VSC8504-01 device.  
Table 139 • Ordering Information  
Part Order Number Description  
VSC8504XKS-01  
VSC8504XKS-04  
Lead-free, 256-pin, plastic BGA with a 17 mm × 17 mm body size, 1 mm  
pin pitch, and 1.8 mm maximum height. The operating temperature is 0 °C  
ambient to 125 °C junction .  
1
Lead-free, 256-pin, plastic BGA with a 17 mm × 17 mm body size, 1 mm  
pin pitch, and 1.8 mm maximum height. The operating temperature is  
1
–40 °C ambient to 125 °C junction .  
1. For carrier class applications, the maximum operating temperature is 110 °C junction.  
VMDS-10402 VSC8504-01 Datasheet Revision 4.2  
128  

相关型号:

VSC8504XKS-05

Ethernet Transceiver
MICROCHIP

VSC850FX

Telecom Switching Circuit
ETC

VSC8512XJG-02

Ethernet Transceiver
MICROCHIP

VSC8522XJQ-02

Ethernet Transceiver
MICROCHIP

VSC8522XJQ-04

Ethernet Transceiver
MICROCHIP

VSC852TP

Digital Time Switch, PBGA440, 35 X 35 MM, BGA-440
VITESSE

VSC852TV

Digital Time Switch, PBGA440, 35 X 35 MM, TBGA-440
VITESSE

VSC8538XHJ

Octal Port 10/100/1000BASE-T PHY
VITESSE

VSC8552XKS-01

Ethernet Transceiver
MICROCHIP

VSC8552XKS-02

Ethernet Transceiver
MICROCHIP

VSC8552XKS-04

Ethernet Transceiver
MICROCHIP

VSC8552XKS-05

Ethernet Transceiver
MICROCHIP