ZL40219LDG1 [MICROCHIP]

Low Skew Clock Driver, 4000/14000/40000 Series, 16 True Output(s), 0 Inverted Output(s), CMOS;
ZL40219LDG1
型号: ZL40219LDG1
厂家: MICROCHIP    MICROCHIP
描述:

Low Skew Clock Driver, 4000/14000/40000 Series, 16 True Output(s), 0 Inverted Output(s), CMOS

驱动 逻辑集成电路
文件: 总23页 (文件大小:539K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZL40219  
Precision 1:8 LVDS Fanout Buffer  
with On-Chip Input Termination  
Data Sheet  
April 2014  
Features  
Ordering Information  
ZL40219LDG1 32 Pin QFN  
Trays  
Tape and Reel  
Inputs/Outputs  
ZL40219LDF1  
32 Pin QFN  
Accepts differential or single-ended input  
LVPECL, LVDS, CML, HCSL, LVCMOS  
Matte Tin  
Package size: 5 x 5 mm  
-40oC to +85oC  
On-chip input termination and biasing for AC  
coupled inputs  
Eight precision LVDS outputs  
Applications  
Operating frequency up to 750 MHz  
General purpose clock distribution  
Low jitter clock trees  
Power  
Options for 2.5 V or 3.3 V power supply  
Logic translation  
Current consumption of 112 mA  
Clock and data signal restoration  
On-chip Low Drop Out (LDO) Regulator for superior  
power supply rejection  
Wired communications: OTN, SONET/SDH, GE,  
10 GE, FC and 10G FC  
Performance  
PCI Express generation 1/2/3 clock distribution  
Wireless communications  
Ultra low additive jitter of 135 fs RMS  
High performance microprocessor clock  
distribution  
out0_p  
out0_n  
out1_p  
out1_n  
out2_p  
out2_n  
ctrl  
vt  
Termination  
and Bias  
out3_p  
out3_n  
clk_p  
clk_n  
Buffer  
out4_p  
out4_n  
out5_p  
out5_n  
out6_p  
out6_n  
out7_p  
out7_n  
Figure 1 - Functional Block Diagram  
1
Microsemi Corporation  
Copyright 2014, Microsemi Corporation. All Rights Reserved.  
ZL40219  
Data Sheet  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Inputs/Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Change Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.0 Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
2.0 Pin Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.0 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1 Clock Inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2 Clock Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.3 Device Additive Jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.4 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.4.1 Sensitivity to power supply noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.4.2 Power supply filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.4.3 PCB layout considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.0 AC and DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.0 Performance Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
6.0 Typical Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.0 Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
8.0 Mechanical Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2
Microsemi Corporation  
ZL40219  
Data Sheet  
List of Figures  
Figure 1 - Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 2 - Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 3 - Simplified Diagram of Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 4 - Clock Input - LVPECL - DC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 5 - Clock Input - LVPECL - AC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 6 - Clock Input - LVDS - DC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 7 - Clock Input - LVDS - AC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 8 - Clock Input - CML- AC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 9 - Clock Input - HCSL- AC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 10 - Clock Input - AC-coupled Single-Ended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 11 - Clock Input - DC-coupled 3.3V CMOS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 12 - Simplified LVDS Output Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 13 - LVDS DC Coupled Termination (Internal Receiver Termination) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 14 - LVDS DC Coupled Termination (External Receiver Termination) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 15 - LVDS AC Coupled Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 16 - LVDS AC Output Termination for CML Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 17 - Additive Jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 18 - Decoupling Connections for Power Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 19 - Differential Output Voltage Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 20 - Input To Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3
Microsemi Corporation  
ZL40219  
Data Sheet  
Change Summary  
Below are the changes from the February 2013 issue to the April 2014 issue:  
Page  
Item  
Change  
Added PCI Express clock distribution.  
Added exposed pad to Pin Description.  
1
6
8
Applications  
Pin Description  
Figure 4 and Figure 5  
Removed 22 Ohm series resistors from Figure 4 and 5. These  
resistors are not required; however there is no impact to  
performance if the resistors are included.  
16  
18  
Power supply filtering  
Figure 19  
Corrected typo of 0.3 ohm to 0.15 ohm.  
Clarification of V and V  
.
OD  
ID  
Below are the changes from the November 2012 issue to the February 2013 issue:  
Page  
Item  
Change  
8
Figure 4  
Changed text to indicate the circuit is not recommended for  
VDD_driver=2.5V.  
12  
Figure 12  
Changed gate values to +/+ on the left and -/- on the right.  
4
Microsemi Corporation  
ZL40219  
Data Sheet  
1.0 Package Description  
The device is packaged in a 32 pin QFN  
24  
22  
20  
18  
16  
out5_p  
out5_n  
out6_p  
out6_n  
out7_p  
out7_n  
NC  
out2_n  
out2_p  
out1_n  
out1_p  
out0_n  
out0_p  
NC  
26  
14  
12  
28  
30  
32  
gnd (E-pad)  
10  
vdd  
vdd  
2
4
6
8
Figure 2 - Pin Connections  
5
Microsemi Corporation  
ZL40219  
Data Sheet  
2.0 Pin Description  
Pin #  
Name  
Description  
3, 6  
clk_p, clk_n, Differential Input (Analog Input). Differential (or single ended) input signals.  
For single-ended inputs see See “Clock Inputs” on page 7  
30, 29, out0_p, out0_n Differential Output (Analog Output). Differential outputs.  
28, 27, out1_p, out1_n  
26, 25, out2_p, out2_n  
24, 23, out3_p, out3_n  
18, 17, out4_p, out4_n  
16, 15, out5_p, out5_n  
14, 13, out6_p, out6_n  
12, 11 out7_p, out7_n  
9, 19,  
vdd  
Positive Supply Voltage. 2.5 V or 3.3 V nominal.  
DC DC  
22, 32  
1, 8  
vdd_core  
gnd  
Positive Supply Voltage. 2.5 V or 3.3 V nominal.  
DC DC  
2, 7,  
Ground. 0 V.  
20, 21  
4
5
vt  
On-Chip Input Termination Node (Analog). Center tap between internal 50 Ohm  
termination resistors.  
The use of this pin is detailed in section “Clock Inputs” on page 7, for various input signal  
types.  
ctrl  
Digital Control for On-Chip Input Termination (Input). Selects differential input mode;  
0: DC coupled LVPECL or LVDS modes  
1: AC coupled differential modes  
This pin is internally pulled down to GND. The use of this pin is detailed in section “Clock  
Inputs” on page 7, for various input signal types.  
10, 31  
NC  
No Connection. Leave unconnected.  
Device GND.  
Exposed Pad  
6
Microsemi Corporation  
ZL40219  
Data Sheet  
3.0 Functional Description  
he ZL40219 is an LVDS clock fanout buffer with eight output clock drivers capable of operating at frequencies up to  
750MHz.  
The ZL40219 provides an internal input termination network for DC and AC coupled inputs; optional input biasing  
for AC coupled inputs is also provided. The ZL40219 can accept DC coupled LVPECL or LVDS and AC coupled  
LVPECL and LVDS input signals, AC coupled CML or HCSL input signals, and single ended signals. A pin  
compatible device with external termination is also available.  
The ZL40219 is designed to fan out low-jitter reference clocks for wired or optical communications applications  
while adding minimal jitter to the clock signal. An internal linear power supply regulator and bulk capacitors  
minimize additive jitter due to power supply noise. The device operates from 2.5V+/-5% or 3.3V+/-5% supply. Its  
operation is guaranteed over the industrial temperature range -40°C to +85°C.  
The device block diagram is shown in Figure 1; its operation is described in the following sections.  
3.1 Clock Inputs  
The device has a differential input equipped with two on-chip 50 Ohm termination resistors arranged in series with a  
center tap. The input can accept many differential and single-ended signals with AC or DC coupling as appropriate.  
A control pin is available to enable internal biasing for AC coupled inputs. A block diagram of the input stage is in  
Figure 3.  
clk_p  
50  
Receiver  
50  
clk_n  
Vt  
Bias  
ctrl  
Figure 3 - Simplified Diagram of Input Stage  
This following figures give the components values and configuration for the various circuits compatible with the  
input stage and the use of the Vt and ctrl pins in each case.  
In the following diagrams where the ctrl pin is logically one and the Vt pin is not connected, the Vt pin can be  
instead connected to VDD with a capacitor. A capacitor can also help in Figure 4 between Vt and VDD. This  
capacitor will minimize the noise at the point between the two internal termination resistors and improve the overall  
performance of the device.  
7
Microsemi Corporation  
ZL40219  
Data Sheet  
VDD_driver  
VDD  
Zo = 50 Ohms  
clk_p  
LVPECL  
Driver  
clk_n  
Vt  
Zo = 50 Ohms  
Ctrl  
“0”  
R
For 3.3V R=50 ohms  
Not recommended for VDD_driver=2.5V  
Figure 4 - Clock Input - LVPECL - DC Coupled  
VDD_driver  
VDD  
Zo = 50 Ohms  
Zo = 50 Ohms  
clk_p  
LVPECL  
Driver  
clk_n  
Vt  
NC  
“1”  
R
R
Ctrl  
For 3.3V: R=150 ohms  
For 2.5V: R=85 ohms  
Figure 5 - Clock Input - LVPECL - AC Coupled  
8
Microsemi Corporation  
ZL40219  
Data Sheet  
VDD_driver  
VDD  
Zo = 50 Ohms  
clk_p  
LVDS  
Driver  
clk_n  
Vt  
Zo = 50 Ohms  
NC  
Ctrl  
“0”  
Figure 6 - Clock Input - LVDS - DC Coupled  
VDD_driver  
VDD  
Zo = 50 Ohms  
clk_p  
LVDS  
Driver  
R
clk_n  
Vt  
Zo = 50 Ohms  
NC  
Ctrl  
“1”  
For VDD_driver = 3.3 V: R= 900 Ohms  
For VDD_driver = 2.5 V: R = 680 Ohms  
Figure 7 - Clock Input - LVDS - AC Coupled  
9
Microsemi Corporation  
ZL40219  
Data Sheet  
VDD_driver  
VDD  
R
R
Zo = 50 Ohms  
clk_p  
CML  
Driver  
clk_n  
Vt  
Zo = 50 Ohms  
NC  
Ctrl  
“1”  
R= 50 Ohms  
Figure 8 - Clock Input - CML- AC Coupled  
VDD_driver  
VDD  
Zo = 50 Ohms  
clk_p  
HCSL  
Driver  
clk_n  
Vt  
Zo = 50 Ohms  
NC  
R
R
Ctrl  
“1”  
R= 50 Ohms  
Figure 9 - Clock Input - HCSL- AC Coupled  
10  
Microsemi Corporation  
ZL40219  
Data Sheet  
VDD_driver  
VDD  
CMOS  
Driver  
Zo = 50 Ohms  
clk_p  
clk_n  
Vt  
Ctrl  
“1”  
Figure 10 - Clock Input - AC-coupled Single-Ended  
VDD_driver  
VDD  
CMOS  
Driver  
Zo = 50 Ohms  
clk_p  
clk_n  
Vt  
NC  
Ctrl  
“1”  
Figure 11 - Clock Input - DC-coupled 3.3V CMOS  
11  
Microsemi Corporation  
ZL40219  
Data Sheet  
3.2 Clock Outputs  
LVDS has lower signal swing than LVPECL which results in a low power consumption. A simplified diagram for the  
LVDS output stage is shown in Figure 12.  
VDD  
3 mA  
+
+
Output  
Figure 12 - Simplified LVDS Output Driver  
The methods to terminate the ZL40219 drivers are shown in the following figures.  
VDD_Rx  
VDD  
ZL40219  
Zo = 50 Ohms  
clk_p  
LVDS  
Receiver  
clk_n  
Zo = 50 Ohms  
Figure 13 - LVDS DC Coupled Termination (Internal Receiver Termination)  
12  
Microsemi Corporation  
ZL40219  
Data Sheet  
VDD_Rx  
VDD  
ZL40219  
Zo = 50 Ohms  
Zo = 50 Ohms  
clk_p  
LVDS  
Receiver  
100 Ohms  
clk_n  
Figure 14 - LVDS DC Coupled Termination (External Receiver Termination)  
VDD_Rx  
VDD_Rx  
VDD  
R1  
R1  
ZL40219  
Zo = 50 Ohms  
Zo = 50 Ohms  
clk_p  
LVDS  
Receiver  
100 Ohms  
R2  
clk_n  
R2  
Note: R1 and R2 values and need for external termination  
depend on the specification of the LVDS receiver  
Figure 15 - LVDS AC Coupled Termination  
13  
Microsemi Corporation  
ZL40219  
Data Sheet  
VDD_Rx  
VDD  
50 Ohms  
50 Ohms  
ZL40219  
Zo = 50 Ohms  
clk_p  
CML  
Receiver  
clk_n  
Zo = 50 Ohms  
Figure 16 - LVDS AC Output Termination for CML Inputs  
14  
Microsemi Corporation  
ZL40219  
Data Sheet  
3.3 Device Additive Jitter  
The ZL40219 clock fanout buffer is not intended to filter clock jitter. The jitter performance of this type of device is  
characterized by its additive jitter. Additive jitter is the jitter the device would add to a hypothetical jitter-free clock as  
it passes through the device. The additive jitter of the ZL40219 is random and as such it is not correlated to the jitter  
of the input clock signal.  
The square of the resultant random RMS jitter at the output of the ZL40219 is equal to the sum of the squares of the  
various random RMS jitter sources including: input clock jitter; additive jitter of the buffer; and additive jitter due to  
power supply noise. There may be additional deterministic jitter sources, but they are not shown in Figure 17.  
2
2
Jadd  
Jps  
2
2
Jout2= Jin +Jadd2+Jps  
2
Jin  
+
+
Jin  
Jadd  
Jps  
= Random input clock jitter (RMS)  
= Additive jitter due to the device (RMS)  
= Additive jitter due to power supply noise (RMS)  
= Resultant random output clock jitter (RMS)  
Jout  
Figure 17 - Additive Jitter  
15  
Microsemi Corporation  
ZL40219  
Data Sheet  
3.4 Power Supply  
This device operates employing either a 2.5V supply or 3.3V supply.  
3.4.1 Sensitivity to power supply noise  
Power supply noise from sources such as switching power supplies and high-power digital components such as  
FPGAs can induce additive jitter on clock buffer outputs. The ZL40219 is equipped with an on-chip linear power  
regulator and on-chip bulk capacitors to minimize additive jitter due to power supply noise. The on-chip regulation,  
recommended power supply filtering, and good PCB layout all work together to minimize the additive jitter from  
power supply noise.  
3.4.2 Power supply filtering  
Jitter levels may increase when noise is present on the power pins. For optimal jitter performance, the device  
should be isolated from the power planes connected to its power supply pins as shown in Figure •.  
10 µF capacitors should be size 0603 or size 0805 X5R or X7R ceramic, 6.3 V minimum rating  
0.1 µF capacitors should be size 0402 X5R ceramic, 6.3 V minimum rating  
Capacitors should be placed next to the connected device power pins  
A 0.15 ohm resistor is recommended  
1
vdd_core  
0.1 µF  
8
0.1 µF  
0.15  
ZL40219  
9
vdd  
10 µF  
19  
0.1 µF  
22  
0.1 µF  
32  
10 µF  
Figure 18 - Decoupling Connections for Power Pins  
3.4.3 PCB layout considerations  
The power nets in Figure 18 can be implemented either as a plane island or routed power topology without effect  
overall jitter performance of the device.  
16  
Microsemi Corporation  
ZL40219  
4.0 AC and DC Electrical Characteristics  
Data Sheet  
Absolute Maximum Ratings*  
Parameter  
Sym.  
Min.  
Max.  
4.6  
Units  
1
2
3
4
5
6
7
Supply voltage  
VDD_R  
-0.5  
-0.5  
V
Voltage on any digital pin  
Soldering temperature  
Storage temperature  
Junction temperature  
Voltage on input pin  
V
V
V
PIN  
DD  
T
260  
°C  
°C  
°C  
V
T
-55  
125  
125  
ST  
T
j
V
V
DD  
input  
Input capacitance each pin  
C
500  
fF  
p
* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.  
* Voltages are with respect to ground (GND) unless otherwise stated  
Recommended Operating Conditions*  
Characteristics  
Sym.  
Min.  
Typ.  
Max.  
Units  
1
2
3
Supply voltage 2.5 V mode  
Supply voltage 3.3 V mode  
Operating temperature  
VDD25  
VDD33  
TA  
2.375  
3.135  
-40  
2.5  
3.3  
25  
2.625  
3.465  
85  
V
V
°C  
* Voltages are with respect to ground (GND) unless otherwise stated  
DC Electrical Characteristics - Current Consumption  
Characteristics  
Sym.  
Min. Typ. Max. Units  
Notes  
Notes  
1
Supply current LVDS drivers - loaded  
(all outputs are active)  
Idd_load  
112  
mA  
DC Electrical Characteristics - Inputs and Outputs - for 2.5/3.3 V Supply  
Characteristics  
Sym.  
Min.  
Typ.  
Max.  
Units  
1
2
3
CMOS control logic high-level input  
CMOS control logic low-level input  
VCIH  
VCIL  
IIL  
0.7*V  
V
V
DD  
0.3*V  
DD  
CMOS control logic Input leakage  
current  
1
µA  
V = V or 0 V  
I DD  
4
5
Differential input common mode  
voltage  
VICM  
VICM  
1.1  
1.1  
1.6  
2.0  
1
V
V
for 2.5 V  
for 3.3 V  
Differential input common mode  
voltage  
6
7
8
9
Differential input voltage difference  
Differential input resistance  
VID  
VIR  
0.25  
80  
V
ohm  
V
100  
0.30  
1.25  
120  
0.40  
LVDS output differential voltage*  
LVDS Common Mode voltage  
VOD  
VCM  
0.25  
1.1  
1.375  
V
* The VOD parameter was measured between 125 and 750 MHz  
17  
Microsemi Corporation  
ZL40219  
Data Sheet  
clk_p  
outx_p  
VID  
VOD  
clk_n  
GND  
outx_n  
GND  
VICM  
VCM  
outx_p – outx_n  
clk_p – clk_n  
0
0
2*VID  
2*VOD  
Figure 19 - Differential Output Voltage Parameter  
AC Electrical Characteristics* - Inputs and Outputs (see Figure 20) - for 2.5/3.3 V Supply.  
Characteristics  
Sym.  
1/t  
Min.  
Typ.  
Max.  
Units  
Notes  
1
2
3
4
5
6
Maximum Operating Frequency  
Input to output clock propagation delay  
Output to output skew  
750  
2
MHz  
ns  
p
t
0
1
80  
120  
0
pd  
t
150  
300  
5
ps  
out2out  
Part to part output skew  
t
ps  
part2part  
Output clock Duty Cycle degradation  
LVDS Output slew rate  
t
/ t  
-5  
Percent  
V/ns  
PWH PWL  
r
0.55  
SL  
* Supply voltage and operating temperature are as per Recommended Operating Conditions  
t
P
t
t
PWL  
PWH  
Input  
t
pd  
Output  
Figure 20 - Input To Output Timing  
18  
Microsemi Corporation  
ZL40219  
Data Sheet  
5.0 Performance Characterization  
Additive Jitter at 2.5 V*  
Jitter  
Measurement  
Filter  
Typical  
Output Frequency (MHz)  
Notes  
RMS (fs)  
1
2
3
4
5
6
7
125  
12 kHz - 20 MHz  
184  
174  
157  
152  
139  
138  
135  
212.5  
311.04  
425  
12 kHz - 20 MHz  
12 kHz - 20 MHz  
12 kHz - 20 MHz  
12 kHz - 20 MHz  
12 kHz - 20 MHz  
12 kHz - 20 MHz  
500  
622.08  
750  
*The values in this table were taken with an approximate slew rate of 0.8 V/ns.  
Additive Jitter at 3.3 V*  
Jitter  
Measurement  
Filter  
Typical  
Output Frequency (MHz)  
Notes  
RMS (fs)  
1
2
3
4
5
6
7
125  
12 kHz - 20 MHz  
187  
176  
156  
153  
140  
139  
137  
212.5  
311.04  
425  
12 kHz - 20 MHz  
12 kHz - 20 MHz  
12 kHz - 20 MHz  
12 kHz - 20 MHz  
12 kHz - 20 MHz  
12 kHz - 20 MHz  
500  
622.08  
750  
*The values in this table were taken with an approximate slew rate of 0.8 V/ns.  
Additive Jitter from a Power Supply Tone*  
Carrier frequency  
Parameter  
Typical  
Units  
Notes  
125MHz  
750MHz  
25 mV at 100 kHz  
25 mV at 100 kHz  
33  
33  
fs RMS  
fs RMS  
* The values in this table are the additive periodic jitter caused by an interfering tone typically caused by a switching power supply. For this test,  
measurements were taken over the full temperature and voltage range for VDD = 3.3 V. The magnitude of the interfering tone is measured at the  
DUT.  
19  
Microsemi Corporation  
ZL40219  
Data Sheet  
6.0 Typical Behavior  
0.35  
0.2  
0.15  
0.1  
0.34  
0.33  
0.32  
0.31  
0.3  
0.05  
0
-0.05  
-0.1  
-0.15  
-0.2  
0
5
10  
15  
20  
0
100  
200  
300  
400  
500  
600  
700  
800  
Time (ns)  
Frequency (MHz)  
Typical Waveform at 155.52 MHz  
VOD vs Frequency  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-60  
125 MHz  
212.5 MHz  
-65  
425 MHz  
750 MHz  
-70  
-75  
-80  
-85  
-90  
125 MHz  
212.5 MHz  
425 MHz  
750 MHz  
20  
30  
40  
50  
60  
70  
80  
90  
100  
100  
150  
200  
250  
300  
350  
400  
450  
500  
Tone Magnitude (mV)  
Tone Frequency (kHz)  
Power Supply Tone Frequency versus PSRR  
Power Supply Tone Magnitude versus PSRR  
0.9  
0.85  
0.8  
0.75  
0.7  
0.65  
0.6  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature ( C)  
Propagation Delay versus Temperature  
Note: This is for a single device. For more details, see the  
characterization section.  
20  
Microsemi Corporation  
ZL40219  
Data Sheet  
7.0 Package Characteristics  
Thermal Data  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Junction to Ambient Thermal Resistance  
ΘJA  
Still Air  
1 m/s  
2 m/s  
37.4  
33.1  
31.5  
oC/W  
Junction to Case Thermal Resistance  
Junction to Board Thermal Resistance  
Maximum Junction Temperature*  
Maximum Ambient Temperature  
ΘJC  
ΘJB  
Tjmax  
TA  
24.4  
19.5  
125  
85  
oC/W  
oC/W  
oC  
oC  
21  
Microsemi Corporation  
ZL40219  
Data Sheet  
8.0 Mechanical Drawing  
22  
Microsemi Corporation  
Information relating to products and services furnished herein by Microsemi Corporation or its subsidiaries (collectively “Microsemi”) is  
believed to be reliable. However, Microsemi assumes no liability for errors that may appear in this publication, or for liability otherwise  
arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual  
property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase  
of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by  
Microsemi or licensed from third parties by Microsemi, whatsoever. Purchasers of products are also hereby notified that the use of  
product in certain ways or in combination with Microsemi, or non-Microsemi furnished goods or services may infringe patents or other  
intellectual property rights owned by Microsemi.  
This publication is issued to provide information only and (unless agreed by Microsemi in writing) may not be used, applied or  
reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or  
services concerned. The products, their specifications, services and other information appearing in this publication are subject to  
change by Microsemi without notice. No warranty or guarantee express or implied is made regarding the capability, performance or  
suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not  
constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user’s responsibility to  
fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used  
is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These  
products are not suitable for use in any medical and other products whose failure to perform may result in significant injury or death to  
the user. All products and materials are sold and services provided subject to Microsemi’s conditions of sale which are available on  
request.  
For more information about all Microsemi products  
visit our website at  
www.microsemi.com  
TECHNICAL DOCUMENTATION – NOT FOR RESALE  
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor  
and system solutions for communications, defense and security, aerospace and industrial  
markets. Products include high-performance and radiation-hardened analog mixed-signal  
integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and  
synchronization devices and precise time solutions, setting the world’s standard for time; voice  
processing devices; RF solutions; discrete components; security technologies and scalable  
anti-tamper products; Power-over-Ethernet ICs and midspans; as well as custom design  
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif. and has  
approximately 3,400 employees globally. Learn more at www.microsemi.com.  
Microsemi Corporate Headquarters One  
One Enterprise, Aliso Viejo CA 92656 USA  
Within the USA: +1 (800) 713-4113  
Outside the USA: +1 (949) 380-6100  
Sales: +1 (949) 380-6136  
© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of  
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.  
Fax: +1 (949) 215-4996  
E-mail: sales.support@microsemi.com  
ZL40219  

相关型号:

ZL40235LDG1

Clock Driver
MICROCHIP

ZL40241LDF1

Clock Driver
MICROCHIP

ZL40241LDF1

Low Skew Clock Driver,
MICROSEMI

ZL40241LDG1

Clock Driver
MICROCHIP

ZL40241LDG1

Low Skew Clock Driver,
MICROSEMI

ZL40252LDF1

Low Skew Clock Driver,
MICROSEMI

ZL40253LDG1

Low Skew Clock Driver,
MICROSEMI

ZL40264LDF1

Clock Driver
MICROCHIP

ZL40264LDG1

Clock Driver
MICROCHIP

ZL40272

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control
MICROCHIP

ZL40272LDF1

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control
MICROCHIP

ZL40272LDG1

Low-Skew, Low Additive Jitter, 12 Output HCSL/LVDS/ LVPECL Fanout Buffer with Per-Output Enable Control
MICROCHIP