MT48V4M32LFFC [MICRON]

SYNCHRONOUS DRAM; 同步DRAM
MT48V4M32LFFC
型号: MT48V4M32LFFC
厂家: MICRON TECHNOLOGY    MICRON TECHNOLOGY
描述:

SYNCHRONOUS DRAM
同步DRAM

动态存储器
文件: 总61页 (文件大小:1390K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCE‡  
128Mb: x16, x32  
MOBILE SDRAM  
MT48LC8M16LFFF, MT48V8M16LFFF – 2 Meg x 16 x 4 banks  
MT48LC4M32LFFC , MT48V4M32LFFC – 1 Meg x 32 x 4 banks  
SYNCHRONOUS  
DRAM  
For the latest data sheet revisions, please refer to the Micron Web  
site: www.micron.com/dramds  
FEATURES  
Temperature Compensated Self Refresh (TCSR)  
Fully synchronous; all signals registered on positive  
edge of system clock  
Internal pipelined operation; column address can be  
changed every clock cycle  
PIN ASSIGNMENT (Top View)  
54-Ball VFBGA  
Internal banks for hiding row access/precharge  
Programmable burst lengths: 1, 2, 4, 8, or full page  
Auto Precharge, includes CONCURRENT AUTO  
PRECHARGE, and Auto Refresh Modes  
Self Refresh Mode; standard and low power  
64ms, 4,096-cycle refresh  
LVTTL-compatible inputs and outputs  
Low voltage power supply  
Partial Array Self Refresh power-saving mode  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
V
SS  
DQ14  
DQ12  
DQ10  
DQ8  
DQ15  
V
SS  
Q
V
DDQ  
DQ0  
VDD  
DQ13  
DQ11  
DQ9  
NC  
V
DD  
Q
VSSQ  
DQ2  
DQ4  
DQ6  
LDQM  
RAS#  
BA1  
A1  
DQ1  
DQ3  
DQ5  
DQ7  
WE#  
CS#  
V
SS  
Q
VDDQ  
V
DD  
Q
VSSQ  
V
SS  
VDD  
Operating Temperature Range  
Industrial (-40oC to +85oC)  
UDQM  
NC/A12  
A8  
CLK  
A11  
A7  
CKE  
A9  
CAS#  
BA0  
A0  
F
G
H
J
OPTIONS  
MARKING  
VDD/VDDQ  
A6  
A10  
3.3V/3.3V  
2.5V/2.5V or 1.8V  
LC  
V
V
SS  
A5  
A4  
A3  
A2  
VDD  
Configurations  
8 Meg x 16 (2 Meg x 16 x 4 banks)  
4 Meg x 32 (1 Meg x 32 x 4 banks)  
8M16  
4M32  
Top View  
(Ball Down)  
Package/Ball out  
Plastic Package  
54-ball FBGA (8mm x 9mm)(x16 only)  
90-ball FBGA (11mm x 13mm)  
8 Meg x 16  
4 Meg x 32  
FF1  
FC1  
Configuration  
Refresh Count  
2 Meg x 16 x 4 banks 1 Meg x 32 x 4 banks  
4K  
4K  
Row Addressing  
Bank Addressing  
Column Addressing  
4K (A0–A11)  
4 (BA0, BA1)  
512 (A0–A8)  
4K (A0–A11)  
4 (BA0, BA1)  
256 (A0–A7)  
Timing (Cycle Time)  
8ns @ CL = 3 (125 MHz)  
10ns @ CL = 3 (100 MHz)  
-8  
-10  
Part Number Example:  
KEY TIMING PARAMETERS  
MT48V8M16LFFC-8  
tRCD tRP  
NOTE: 1. See page 61 for FBGA/VFBGA Device Marking  
SPEED  
CLOCK  
ACCESS TIME  
Table.  
GRADE FREQUENCY CL=1* CL=2* CL=3*  
-8  
-10  
-8  
125 MHz  
100 MHz  
100 MHz  
83 MHz  
50 MHz  
40 MHz  
7ns  
7ns  
20ns 20ns  
20ns 20ns  
20ns 20ns  
20ns 20ns  
20ns 20ns  
20ns 20ns  
8ns  
8ns  
-10  
-8  
19ns  
22ns  
-10  
*CL = CAS (READ) latency  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
1
PRODUCTS AND SPECIFICATIONS DISCUSSED HEREIN ARE FOR EVALUATION AND REFERENCE PUROPOSES ONLY AND ARE SUBJECT TO CHANGE BY  
MICRON WITHOUT NOTICE. PRODUCTS ARE ONLY WARRANTED BY MICRON TO MEET MICRON'S PRODUCTION AND DATA SHEET SPECIFICATIONS.  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
90-Ball FBGA PIN ASSIGNMENT  
(Top View)  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
DQ26 DQ24  
V
SS  
V
DD  
DQ23  
DQ21  
DQ19  
DQ28  
V
DDQ  
V
SS  
Q
VDD  
Q
VSSQ  
V
SS  
Q
Q
DQ27 DQ25  
DQ29 DQ30  
DQ22  
DQ17  
NC  
DQ20  
DQ18  
DQ16  
DQM2  
A0  
V
V
DD  
Q
Q
V
SS  
DD  
V
DD  
Q
DQ31  
DQM3  
A5  
NC  
A3  
A6  
NC  
A9  
NC  
VSSQ  
F
V
SS  
A2  
VDD  
G
H
J
A4  
A7  
A10  
NC  
A1  
A8  
BA1  
A11  
RAS#  
DQM0  
CLK  
CKE  
BA0  
CAS#  
CS#  
K
L
DQM1  
NC  
WE#  
DQ7  
DQ5  
DQ3  
V
DD  
Q
DQ8  
DQ10  
V
SS  
V
DD  
VSSQ  
M
N
P
V
SS  
Q
Q
DQ9  
DQ6  
DQ1  
V
V
DD  
Q
Q
V
SS  
DQ12 DQ14  
DD  
DQ11  
V
DDQ  
VSS  
Q
V
DD  
Q
V
SSQ  
DQ4  
DQ2  
R
DQ13 DQ15  
V
SS  
V
DD  
DQ0  
Ball and Array  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
2
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
128Mb SDRAM PART NUMBERS  
PART NUMBER  
VDD/VDDQ  
ARCHITECTURE  
8 Meg x 16  
8 Meg x 16  
4 Meg x 32  
4 Meg x 32  
PACKAGE  
54-BALL VFBGA  
54-BALL VFBGA  
90-BALL FBGA  
90-BALL FBGA  
MT48LC8M16LFFF-xx  
MT48V8M16LFFF-xx  
MT48LC4M32LFFC-xx  
MT48V4M32LFFC-xx  
3.3V / 3.3V  
2.5V / 2.5V-1.8V  
3.3V / 3.3V  
2.5V / 2.5V-1.8V  
GENERAL DESCRIPTION  
®
The Micron 128Mb SDRAM is a high-speed CMOS,  
dynamicrandom-accessmemorycontaining134,217,728  
bits. It is internally configured as a quad-bank DRAM  
withasynchronousinterface(allsignalsareregisteredon  
the positive edge of the clock signal, CLK). Each of the  
x16’s 33,554,432-bit banks is organized as 4,096 rows by  
512 columns by 16 bits. Each of the x32’s 33,554,432-bit  
banks is organized as 4,096 rows by 256 columns by 32  
bits.  
precharge that is initiated at the end of the burst se-  
quence.  
The 128Mb SDRAM uses an internal pipelined  
architecture to achieve high-speed operation. This  
architecture is compatible with the 2n rule of prefetch  
architectures, but it also allows the column address to be  
changed on every clock cycle to achieve a high-speed,  
fully random access. Precharging one bank while access-  
ing one of the other three banks will hide the precharge  
cycles and provide seamless high-speed, random-access  
operation.  
The 128Mb SDRAM is designed to operate in 3.3V or  
2.5V, low-power memory systems. An auto refresh mode  
is provided, along with a power-saving, power-down  
mode. All inputs and outputs are LVTTL-compatible.  
SDRAMs offer substantial advances in DRAM operat-  
ing performance, including the ability to synchronously  
burst data at a high data rate with automatic column-  
address generation, the ability to interleave between in-  
ternal banks in order to hide precharge time and the  
capabilitytorandomlychangecolumnaddressesoneach  
clock cycle during a burst access.  
Read and write accesses to the SDRAM are burst ori-  
ented; accesses start at a selected location and continue  
for a programmed number of locations in a programmed  
sequence. Accesses begin with the registration of an AC-  
TIVE command, which is then followed by a READ or  
WRITE command. The address bits registered coinci-  
dent with the ACTIVE command are used to select the  
bank and row to be accessed (BA0, BA1 select the bank;  
A0-A11 select the row). The address bits registered coin-  
cident with the READ or WRITE command are used to  
select the starting column location for the burst access.  
The SDRAM provides for programmable READ or  
WRITE burst lengths of 1, 2, 4, or 8 locations, or the full  
page, with a burst terminate option. An auto precharge  
function may be enabled to provide a self-timed row  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
3
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
TABLE OF CONTENTS  
Functional Block Diagram – 8 Meg x 16 ................  
Functional Block Diagram – 4 Meg x 32 ................  
54-Ball Pin Descriptions .........................................  
90-Ball Pin Descriptions .........................................  
5
6
7
8
Truth Table 2 (CKE) ................................................ 30  
Truth Table 3 (Current State, Same Bank) ..................... 31  
Truth Table 4 (Current State, Different Bank) ................. 33  
Absolute Maximum Ratings ................................... 35  
DC Electrical Characteristics  
Functional Description .........................................  
Initialization ......................................................  
Register Definition ............................................  
mode register ................................................  
Burst Length............................................  
9
9
9
9
9
and Operating Conditions ................................... 35  
AC Electrical Characteristics and Recommended  
Operating Conditions (Timing Table) ............. 36  
AC Functional Characteristics ................................ 37  
IDD Specifications and Conditions ......................... 37  
Capacitance ............................................................ 38  
Burst Type ............................................... 10  
CAS Latency ............................................ 11  
Operating Mode ...................................... 11  
Extended Mode Register ......................... 12  
Timing Waveforms  
Initialize and Load mode register...................... 40  
Power-Down Mode ............................................ 41  
Clock Suspend Mode ......................................... 42  
Auto Refresh Mode ............................................ 43  
Self Refresh Mode .............................................. 44  
Reads  
Read – Without Auto Precharge ................... 45  
Read – With Auto Precharge ........................ 46  
Single Read – Without Auto Precharge ........ 47  
Single Read – With Auto Precharge ............. 48  
Alternating Bank Read Accesses ................... 49  
Read – Full-Page Burst .................................. 50  
Read – DQM Operation ................................ 51  
Writes  
Temperature Compensated Self Refresh . 12  
Partial Array Self Refresh......................... 13  
Commands ............................................................. 14  
Truth Table 1 (Commands and DQM Operation) ............ 14  
Command Inhibit ............................................. 15  
No Operation (NOP).......................................... 15  
Load mode register ............................................ 15  
Active ................................................................ 15  
Read ................................................................ 15  
Write ................................................................ 15  
Precharge ........................................................... 15  
Auto Precharge .................................................. 15  
Burst Terminate ................................................. 15  
Auto Refresh ...................................................... 16  
Self Refresh ........................................................ 16  
Operation................................................................ 17  
Bank/Row Activation ........................................ 17  
Reads ................................................................ 18  
Writes ................................................................ 24  
Precharge ........................................................... 26  
Concurrent Auto Precharge .............................. 28  
Power-Down ...................................................... 26  
Clock Suspend ................................................... 27  
Burst Read/Single Write .................................... 27  
Write – Without Auto Precharge ................. 52  
Write – With Auto Precharge ....................... 53  
Single Write – Without Auto Precharge....... 54  
Single Write – With Auto Precharge ............ 55  
Alternating Bank Write Accesses ................. 56  
Write – Full-Page Burst ................................. 57  
Write – DQM Operation .............................. 58  
54-Ball VFBGA Drawing ............................... 59  
90-Ball FBGA Drawing ................................. 60  
FBGA/VFBGA Device Marking ..................... 61  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
4
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
FUNCTIONAL BLOCK DIAGRAM  
8 Meg x16 SDRAM  
BA1  
BA0  
0
1
0
1
Bank  
0
0
1
1
0
1
2
3
CKE  
CLK  
CONTROL  
LOGIC  
CS#  
WE#  
BANK3  
CAS#  
RAS#  
BANK2  
BANK1  
REFRESH  
COUNTER  
12  
MODE REGISTER  
12  
BANK0  
ROW-  
ADDRESS  
LATCH  
&
ROW-  
ADDRESS  
MUX  
12  
BANK0  
MEMORY  
ARRAY  
2
2
4096  
DQML,  
DQMH  
12  
(4,096 x 512 x 16)  
DECODER  
DATA  
OUTPUT  
REGISTER  
SENSE AMPLIFIERS  
4096  
16  
DQ0-  
DQ15  
I/O GATING  
2
16  
DQM MASK LOGIC  
READ DATA LATCH  
WRITE DRIVERS  
BANK  
CONTROL  
LOGIC  
A0-A11,  
BA0, BA1  
ADDRESS  
REGISTER  
14  
DATA  
INPUT  
REGISTER  
2
16  
512  
(x16)  
COLUMN  
DECODER  
COLUMN-  
ADDRESS  
COUNTER/  
LATCH  
9
9
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
5
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
FUNCTIONAL BLOCK DIAGRAM  
4 Meg x 32 SDRAM  
BA1  
0
0
1
1
BA0  
0
1
0
1
Bank  
0
1
2
3
CKE  
CLK  
CONTROL  
LOGIC  
CS#  
WE#  
BANK3  
CAS#  
RAS#  
BANK2  
BANK1  
BANK0  
REFRESH  
COUNTER  
12  
MODE REGISTER  
12  
BANK0  
ROW-  
ADDRESS  
LATCH  
&
ROW-  
ADDRESS  
MUX  
12  
BANK0  
MEMORY  
ARRAY  
4
4
4096  
DQM0–  
DQM3  
12  
(4,096 x 256 x 32)  
DECODER  
DATA  
OUTPUT  
REGISTER  
SENSE AMPLIFIERS  
8192  
32  
DQ0–  
DQ31  
I/O GATING  
2
32  
DQM MASK LOGIC  
READ DATA LATCH  
WRITE DRIVERS  
BANK  
CONTROL  
LOGIC  
A0–A11,  
BA0, BA1  
ADDRESS  
REGISTER  
14  
DATA  
INPUT  
REGISTER  
2
32  
256  
(x32)  
COLUMN  
DECODER  
COLUMN-  
ADDRESS  
COUNTER/  
LATCH  
8
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
6
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
BALL DESCRIPTIONS  
54-BALL VFBGA  
SYMBOL  
TYPE  
DESCRIPTION  
F2  
CLK  
Input Clock: CLK is driven by the system clock. All SDRAM input signals are sampled  
on the positive edge of CLK. CLK also increments the internal burst counter  
and controls the output registers.  
F3  
CKE  
Input Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CLK signal.  
Deactivating the clock provides PRECHARGE POWER-DOWN and SELF REFRESH  
operation (all banks idle), ACTIVE POWER-DOWN (row active in any bank) or  
CLOCK SUSPEND operation (burst/access in progress). CKE is synchronous  
except after the device enters power-down and self refresh modes, where  
CKE becomes asynchronous until after exiting the same mode. The input  
buffers, including CLK, are disabled during power-down and self refresh  
modes, providing low standby power. CKE may be tied HIGH.  
G9  
CS#  
Input Chip Select: CS# enables (registered LOW) and disables (registered HIGH) the  
command decoder. All commands are masked when CS# is registered HIGH.  
CS# provides for external bank selection on systems with multiple banks. CS#  
is considered part of the command code.  
F7, F8, F9  
E8, F1  
CAS#, RAS#,  
WE#  
Input Command Inputs: CAS#, RAS#, and WE# (along with CS#) define the  
command being entered.  
LDQM,  
UDQM  
Input Input/Output Mask: DQM is sampled HIGH and is an input mask signal for  
write accesses and an output enable signal for read accesses. Input data is  
masked during a WRITE cycle. The output buffers are placed in a High-Z state  
(two-clock latency) when during a READ cycle. LDQM corresponds to DQ0–  
DQ7, UDQM corresponds to DQ8–DQ15. LDQM and UDQM are considered  
same state when referenced as DQM.  
G7, G8  
BA0, BA1  
A0–A11  
Input Bank Address Input(s): BA0 and BA1 define to which bank the ACTIVE, READ,  
WRITE or PRECHARGE command is being applied. These pins also provide the  
op-code during a LOAD MODE REGISTER command  
H7, H8, J8, J7, J3, J2,  
H3, H2, H1, G3, H9, G2,  
Input Address Inputs: A0–A11 are sampled during the ACTIVE command (row-  
address A0–A11) and READ/WRITE command (column-address A0–A8; with  
A10 defining auto precharge) to select one location out of the memory array  
in the respective bank. A10 is sampled during a PRECHARGE command to  
determine if all banks are to be precharged (A10 HIGH) or bank selected by  
BA0, BA1 (LOW). The address inputs also provide the op-code during a LOAD  
MODE REGISTER command.  
A8, B9, B8, C9, C8, D9,  
D8, E9, E1, D2, D1, C2,  
C1, B2, B1, A2  
DQ0–DQ15  
I/O  
Data Input/Output: Data bus  
E2, G1  
NC  
No Connect: These pins should be left unconnected.  
G1 is a no connect for this part but may be used as A12 in future designs.  
A7, B3, C7, D3  
VDDQ  
Supply DQ Power: Isolated power on the die to improve noise immunity.  
A3, B7, C3, D7,  
A9, E7, J9  
VSSQ  
VDD  
Supply DQ Ground: Isolated power on the die to improve noise immunity.  
Supply Power Supply: Voltage dependant on option.  
A1, E3, J1  
VSS  
Supply Ground.  
128Mb: x16, x32 Mobile SDRAM  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
©2002, Micron Technology, Inc.  
7
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
BALL DESCRIPTIONS  
90-BALL FBGA  
SYMBOL  
TYPE  
DESCRIPTION  
J1  
CLK  
Input Clock: CLK is driven by the system clock. All SDRAM input signals are sampled  
on the positive edge of CLK. CLK also increments the internal burst counter  
and controls the output registers.  
J2  
CKE  
Input Clock Enable: CKE activates (HIGH) and deactivates (LOW) the CLK signal.  
Deactivating the clock provides PRECHARGE POWER-DOWN and SELF REFRESH  
operation (all banks idle), ACTIVE POWER-DOWN (row active in any bank) or  
CLOCK SUSPEND operation (burst/access in progress). CKE is synchronous  
except after the device enters power-down and self refresh modes, where  
CKE becomes asynchronous until after exiting the same mode. The input  
buffers, including CLK, are disabled during power-down and self refresh  
modes, providing low standby power. CKE may be tied HIGH.  
J8  
CS#  
Input Chip Select: CS# enables (registered LOW) and disables (registered HIGH) the  
command decoder. All commands are masked when CS# is registered HIGH.  
CS# provides for external bank selection on systems with multiple banks. CS#  
is considered part of the command code.  
J9, K7, K8  
RAS#, CAS#  
WE#  
Input Command Inputs: RAS#, CAS#, and WE# (along with CS#) define the  
command being entered.  
K9, K1, F8, F2  
DQM0–3  
Input Input/Output Mask: DQM is sampled HIGH and is an input mask signal for  
write accesses and an output enable signal for read accesses. Input data is  
masked during a WRITE cycle. The output buffers are placed in a High-Z state  
(two-clock latency) when during a READ cycle. DQM0 corresponds to DQ0–  
DQ7, DQM1 corresponds to DQ8–DQ15, DQM2 corresponds to DQ16–DQ23  
and DQM3 corresponds to DQ24–DQ31. DQM0-3 are considered same state  
when referenced as DQM.  
J7, H8  
BA0, BA1  
A0–A11  
Input Bank Address Input(s): BA0 and BA1 define to which bank the ACTIVE, READ,  
WRITE or PRECHARGE command is being applied. These pins also provide the  
op-code during a LOAD MODE REGISTER command  
G8, G9, F7, F3, G1, G2,  
G3, H1, H2, J3, G7, H9  
Input Address Inputs: A0–A11 are sampled during the ACTIVE command (row-  
address A0–A11) and READ/WRITE command (column-address A0–A7; with  
A10 defining auto precharge) to select one location out of the memory array  
in the respective bank. A10 is sampled during a PRECHARGE command to  
determine if all banks are to be precharged (A10 HIGH) or bank selected by  
BA0, BA1 (LOW). The address inputs also provide the op-code during a LOAD  
MODE REGISTER command.  
R8, N7, R9, N8, P9, M8,  
M7, L8, L2, M3, M2, P1, N2,  
R1, N3, R2, E8, D7, D8, B9,  
C8, A9, C7, A8, A2, C3, A1,  
C2, B1, D2, D3, E2  
DQ0–DQ31  
I/O  
Data Input/Output: Data bus  
E3, E7, H3, H7, K2, K3  
NC  
No Connect: These pins should be left unconnected.  
H7 and H9 are not connects for this part but may be used as A12 and A11 in  
future designs.  
B2, B7, C9, D9, E1,  
L1, M9, N9, P2, P7  
VDDQ  
VSSQ  
Supply DQ Power: Isolated power on the die to improve noise immunity.  
B8, B3, C1, D1, E9,  
L9, M1, N1, P3, P8  
Supply DQ Ground: Isolated power on the die to improve noise immunity.  
A7, F9, L7, R7  
A3, F1, L3, R3  
VDD  
VSS  
Supply Power Supply: Voltage dependant on option.  
Supply Ground.  
128Mb: x16, x32 Mobile SDRAM  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
©2002, Micron Technology, Inc.  
8
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
FUNCTIONAL DESCRIPTION  
Register Definition  
In general, the 128Mb SDRAMs (2 Meg x16 x 4 banks  
and 1 Meg x 32 x 4 banks) are quad-bank DRAMs that  
operate at 3.3V or 2.5V and include a synchronous inter-  
face (all signals are registered on the positive edge of the  
clock signal, CLK). Each of the x16’s 33,554,432-bit banks  
is organized as 4,096 rows by 512 columns by 16 bits.  
Each of the x32’s 33,554,432-bit banks is organized as  
4,096 rows by 256 columns by 32bits.  
MODE REGISTER  
In order to achieve low power consumption, there are  
two mode registers in the Mobile component, Mode Reg-  
isterandExtendedModeRegister. Forthissection, Mode  
Register is referred to. Extended Mode register is dis-  
cussedonpage12. Themoderegisterisusedtodefinethe  
specific mode of operation of the SDRAM. This definition  
includes the selection of a burst length, a burst type, a  
CAS latency, an operating mode and a write burst mode,  
as shown in Figure 1. The mode register is programmed  
via the LOAD MODE REGISTER command and will retain  
the stored information until it is programmed again or  
the device loses power.  
Mode Register bits M0-M2 specify the burst length,  
M3 specifies the type of burst (sequential or interleaved),  
M4-M6 specify the CAS latency, M7 and M8 specify the  
operating mode, M9, M10, and M11 should be set to zero.  
M12 and M13 should be set to zero to prevent extended  
mode register.  
Read and write accesses to the SDRAM are burst ori-  
ented; accesses start at a selected location and continue  
for a programmed number of locations in a programmed  
sequence. Accesses begin with the registration of an AC-  
TIVE command, which is then followed by a READ or  
WRITEcommand. Theaddressbitsregisteredcoincident  
with the ACTIVE command are used to select the bank  
and row to be accessed (BA0 and BA1 select the bank, A0-  
A11selecttherow). Theaddressbits(x16:A0-A8; x32:A0-  
A7; ) registered coincident with the READ or WRITE com-  
mand are used to select the starting column location for  
the burst access.  
The mode register must be loaded when all banks are  
idle, and the controller must wait the specified time  
before initiating the subsequent operation. Violating ei-  
ther of these requirements will result in unspecified op-  
eration.  
Priortonormaloperation, theSDRAMmustbeinitial-  
ized. The following sections provide detailed informa-  
tion covering device initialization, register definition,  
command descriptions and device operation.  
Burst Length  
Initialization  
Read and write accesses to the SDRAM are burst ori-  
ented, with the burst length being programmable, as  
shown in Figure 1. The burst length determines the maxi-  
mum number of column locations that can be accessed  
for a given READ or WRITE command. Burst lengths of 1,  
2, 4, or 8 locations are available for both the sequential  
and the interleaved burst types, and a full-page burst is  
available for the sequential type. The full-page burst is  
used in conjunction with the BURST TERMINATE com-  
mand to generate arbitrary burst lengths.  
SDRAMs must be powered up and initialized in a  
predefined manner. Operational procedures other than  
those specified may result in undefined operation. Once  
power is applied to VDD and VDDQ (simultaneously) and  
the clock is stable (stable clock is defined as a signal  
cycling within timing constraints specified for the clock  
pin), the SDRAM requires a 100µs delay prior to issuing  
anycommandotherthanaCOMMANDINHIBITorNOP.  
Starting at some point during this 100µs period and con-  
tinuing at least through the end of this period, COM-  
MAND INHIBIT or NOP commands should be applied.  
Once the 100µs delay has been satisfied with at least  
one COMMAND INHIBIT or NOP command having been  
applied, a PRECHARGE command should be applied. All  
banks must then be precharged, thereby placing the  
device in the all banks idle state.  
Reserved states should not be used, as unknown op-  
eration or incompatibility with future versions may re-  
sult.  
WhenaREADorWRITEcommandisissued, ablockof  
columns equal to the burst length is effectively selected.  
All accesses for that burst take place within this block,  
meaning that the burst will wrap within the block if a  
boundary is reached. The block is uniquely selected by  
A1-A8 (x16) or A1-A7 (x32) when the burst length is set to  
two; by A2-A8 (x16) or A2-A7 (x32) when the burst length  
is set to four; and by A3-A8 (x16) or A3-A7 (x32) when the  
burst length is set to eight. The remaining (least signifi-  
cant) address bit(s) is (are) used to select the starting  
location within the block. Full-page bursts wrap within  
the page if the boundary is reached.  
Once in the idle state, two AUTO REFRESH cycles  
must be performed. After the AUTO REFRESH cycles are  
complete, the SDRAM is ready for mode register pro-  
gramming. Because the mode register will power up in an  
unknown state, it should be loaded prior to applying any  
operational command.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
9
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
Burst Type  
Accesses within a given burst may be programmed to  
be either sequential or interleaved; this is referred to as  
the burst type and is selected via bit M3.  
The ordering of accesses within a burst is determined  
by the burst length, the burst type and the starting col-  
umn address, as shown in Table 1.  
Table 1  
Burst Definition  
Burst  
Length  
Starting Column Order of Accesses Within a Burst  
Address  
Type = Sequential Type = Interleaved  
A0  
0
1
0-1  
1-0  
0-1  
1-0  
2
4
A1 A0  
Figure 1  
Mode Register Definition  
0
0
1
1
0
1
0
1
0-1-2-3  
1-2-3-0  
2-3-0-1  
3-0-1-2  
0-1-2-3  
1-0-3-2  
2-3-0-1  
3-2-1-0  
Address Bus  
BA1 BA0 A11 A10 A9 A8  
A7 A6 A5 A4  
A3 A2 A1 A0  
A2 A1 A0  
M13 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1 M0  
13 12  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0-1-2-3-4-5-6-7  
1-2-3-4-5-6-7-0  
2-3-4-5-6-7-0-1  
3-4-5-6-7-0-1-2  
4-5-6-7-0-1-2-3  
5-6-7-0-1-2-3-4  
6-7-0-1-2-3-4-5  
7-0-1-2-3-4-5-6  
Cn, Cn + 1, Cn + 2  
Cn + 3, Cn + 4...  
…Cn - 1,  
0-1-2-3-4-5-6-7  
1-0-3-2-5-4-7-6  
2-3-0-1-6-7-4-5  
3-2-1-0-7-6-5-4  
4-5-6-7-0-1-2-3  
5-4-7-6-1-0-3-2  
6-7-4-5-2-3-0-1  
7-6-5-4-3-2-1-0  
9
8
6
5
4
1
11 10  
7
3
2
0
Mode Register (Mx)  
Reserved* WB Op Mode CAS Latency  
BT  
Burst Length  
Reserved**  
8
Burst Length  
*Should program  
M10 = “0, 0”  
to ensure compatibility  
with future devices.  
M2 M1 M0  
M3 = 0  
M3 = 1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1
2
1
2
4
4
8
8
** BA1, BA0 = “0, 0”  
to prevent Extended  
Mode Register.  
Full  
Page  
(y)  
n = A0-A11  
Reserved  
Reserved  
Reserved  
Full Page  
Reserved  
Reserved  
Reserved  
Reserved  
Not Supported  
(location 0-y)  
Cn…  
NOTE: 1. For full-page accesses: y = 512 (x16), y = 256  
(x32).  
Burst Type  
M3  
0
Sequential  
Interleaved  
2. For a burst length of two, A1-A8 (x16) or A1-A7  
(x32) select the block-of-two burst; A0 selects  
the starting column within the block.  
3. For a burst length of four, A2-A8 (x16) or A2-A7  
(x32) select the block-of-four burst; A0-A1 select  
the starting column within the block.  
4. For a burst length of eight, A3-A8 (x16) or A3-  
A7 (x32) select the block-of-eight burst; A0-A2  
select the starting column within the block.  
5. For a full-page burst, the full row is selected  
and A0-A8 (x16) or A0-A7 (x32) select the  
starting column.  
6. Whenever a boundary of the block is reached  
within a given sequence above, the following  
access wraps within the block.  
1
CAS Latency  
M6 M5 M4  
Reserved  
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
3
Reserved  
Reserved  
Reserved  
Reserved  
M8  
0
M7  
0
M6-M0  
Defined  
-
Operating Mode  
Standard Operation  
All other states reserved  
-
-
7. For a burst length of one, A0-A8 (x16) or A0-A7  
(x32) select the unique column to be accessed,  
and mode register bit M3 is ignored.  
Write Burst Mode  
M9  
0
Programmed Burst Length  
Single Location Access  
1
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
10  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
CAS Latency  
Operating Mode  
The CAS latency is the delay, in clock cycles, between  
the registration of a READ command and the availability  
of the first piece of output data. The latency can be set to  
one, two, or three clocks.  
The normal operating mode is selected by setting M7  
and M8 to zero; the other combinations of values for M7  
and M8 are reserved for future use and/or test modes.  
The programmed burst length applies to both READ and  
WRITE bursts.  
Test modes and reserved states should not be used  
because unknown operation or incompatibility with fu-  
ture versions may result.  
If a READ command is registered at clock edge n, and  
the latency is m clocks, the data will be available by clock  
edge n + m. The DQs will start driving as a result of the  
clock edge one cycle earlier (n + m - 1), and provided that  
the relevant access times are met, the data will be valid by  
clock edge n + m. For example, assuming that the clock  
cycle time is such that all relevant access times are met,  
if a READ command is registered at T0 and the latency is  
programmed to two clocks, the DQs will start driving  
after T1 and the data will be valid by T2, as shown in  
Figure 2. Table 2 indicates the operating frequencies at  
which each CAS latency setting can be used.  
Reserved states should not be used as unknown op-  
eration or incompatibility with future versions  
may result.  
Figure 2  
CAS Latency  
Table 2  
CAS Latency  
T0  
T1  
T2  
CLK  
ALLOWABLE OPERATING  
FREQUENCY (MHz)  
COMMAND  
READ  
NOP  
t
CAS  
CAS  
CAS  
t
LZ  
OH  
SPEED  
- 8  
LATENCY = 1 LATENCY = 2 LATENCY = 3  
D
OUT  
DQ  
t
AC  
50  
40  
100  
83  
125  
100  
- 10  
CAS Latency = 1  
T0  
T1  
T2  
T3  
CLK  
COMMAND  
READ  
NOP  
t
NOP  
t
LZ  
OH  
D
OUT  
DQ  
t
AC  
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
CLK  
COMMAND  
READ  
NOP  
NOP  
NOP  
t
t
LZ  
OH  
D
OUT  
DQ  
t
AC  
CAS Latency = 3  
DON’T CARE  
UNDEFINED  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
11  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
EXTENDED MODE REGISTER TABLE  
BA1 BA0 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Address Bus  
M13 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1 M0  
13 12 11 10  
9
8
7
6
5
4
3
2
1
0
Extended Mode  
Register (Ex)  
1
0
All must be set to "0"  
TCSR  
PASR  
A4 A3 Maximum Case Temp  
1
0
1
0
85˚C  
70˚C  
0
1
1
0
45˚C  
15˚C  
A2  
0
A1  
0
A0  
0
Self Refresh Coverage  
Four Banks  
0
0
1
Two Banks (Bank 0,1)  
0
1
0
One Bank (Bank 0)  
RFU  
RFU  
RFU  
RFU  
RFU  
0
1
1
1
1
0
0
1
1
0
1
0
1
1
1
Notes: 1. E13 and E12 (BA1 and BA0) must be “1, 0” to select the  
Extended Mode Register (vs. the base Mode Register).  
2. RFU: Reserved for Future Use  
TEMPERATURE COMPENSATED SELF REFRESH  
Temperature Compensated Self Refresh (TCSR) al-  
lows the controller to program the Refresh interval dur-  
ingSELFREFRESHmode, accordingtothecasetempera-  
ture of the Mobile device. This allows great power savings  
during SELF REFRESH during most operating tempera-  
ture ranges. Only during extreme temperatures would  
the controller have to select a TCSR level that will guaran-  
tee data during SELF REFRESH.  
Every cell in the DRAM requires refreshing due to the  
capacitor losing its charge over time. The refresh rate is  
dependent on temperature. At higher temperatures a  
capacitor loses charge quicker than at lower tempera-  
tures, requiring the cells to be refreshed more often.  
Historically, during Self Refresh, the refresh rate has  
been set to accomodate the worst case, or highest tem-  
perature range expected.  
EXTENDED MODE REGISTER  
The Extended Mode Register controls the functions  
beyond those controlled by the Mode Register. These  
additional functions are special features of the Mobile  
device. TheyincludeTemperatureCompensatedSelfRe-  
fresh (TCSR) Control, and Partial Array Self Refresh  
(PASR).  
The Extended Mode Register is programmed via the  
Mode Register Set command (BA1=1,BA0=0) and retains  
the stored information until it is programmed again or  
the device loses power.  
The Extended Mode Register must be programmed  
with M5 through M11 set to “0”. The Extended Mode  
Register must be loaded when all banks are idle and no  
bursts are in progress, and the controller must wait the  
specified time before before initiating any subsequent  
operation. Violating either of these requirements results  
in unspecified operation.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
12  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
Thus, during ambient temperatures, the power  
consumed during refresh was unnecessarily high,  
because the refresh rate was set to accommodate the  
higher temperatures. Setting M4 and M3, allow the  
DRAM to accomodate more specific temperature  
regions during SELF REFRESH. There are four  
temperature settings, which will vary the SELF  
REFRESH current according to the selected tempera-  
ture. This selectable refresh rate will save power when  
the DRAM is operating at normal temperatures.  
PARTIAL ARRAY SELF REFRESH  
For further power savings during SELF REFRESH, the  
Partial Array Self Refresh (PASR) feature allows the con-  
troller to select the amount of memory that will be re-  
freshed during SELF REFRESH. The refresh options are  
all banks (banks 0, 1, 2, and 3); two banks(banks 0 and 1);  
and one bank (bank 0). WRITE and READ commands  
occur to any bank selected during standard operation,  
but only the selected banks in PASR will be refreshed  
during SELF REFRESH. It’s important to note that data  
in banks 2 and 3 will be lost when the two bank option is  
used. Data will be lost in banks 1, 2, and 3 when the one  
bank option is used.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
13  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
Commands  
Truth Table 1 provides a quick reference of available  
commands. This is followed by a written description of  
each command. Three additional Truth Tables appear  
following the Operation section; these tables provide  
current state/next state information.  
TRUTH TABLE 1 – COMMANDS AND DQM OPERATION  
(Note: 1)  
NAME (FUNCTION)  
CS# RAS# CAS# WE# DQM  
ADDR  
X
DQs NOTES  
COMMAND INHIBIT (NOP)  
H
L
L
L
L
L
L
L
X
H
L
X
H
H
L
X
H
H
H
L
X
X
X
X
NO OPERATION (NOP)  
X
ACTIVE (Select bank and activate row)  
READ (Select bank and column, and start READ burst)  
WRITE (Select bank and column, and start WRITE burst)  
BURST TERMINATE  
X
Bank/Row  
Bank/Col  
X
X
3
4
4
8
8
H
H
H
L
L/H  
L/H  
X
L
Bank/Col Valid  
H
H
L
L
X
Code  
X
Active  
PRECHARGE (Deactivate row in bank or banks)  
L
X
X
X
5
AUTO REFRESH or SELF REFRESH  
(Enter self refresh mode)  
L
H
X
6, 7  
LOAD MODE REGISTER  
L
L
L
L
X
L
Op-Code  
X
2
8
8
Write Enable/Output Enable  
Write Inhibit/Output High-Z  
Active  
High-Z  
H
NOTE: 1. CKE is HIGH for all commands shown except SELF REFRESH.  
2. A0-A10 define the op-code written to the mode register.  
3. A0-A11 provide row address, and BA0, BA1 determine which bank is made active.  
4. A0-A8 (x16) or A0-A7 (x32) provide column address; A10 HIGH enables the auto precharge feature (nonpersistent),  
while A10 LOW disables the auto precharge feature; BA0, BA1 determine which bank is being read from or written to.  
5. A10 LOW: BA0, BA1 determine the bank being precharged. A10 HIGH: All banks precharged and BA0, BA1 are “Don’t  
Care.”  
6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.  
7. Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care” except for CKE.  
8. Activates or deactivates the DQs during WRITEs (zero-clock delay) and READs (two-clock delay). DQM0 controls DQ0-  
7, DQM1 controls DQ8-15, DQM2 controls DQ16-23, and DQM3 controls DQ24-31.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
14  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
COMMAND INHIBIT  
auto precharge is used. If auto precharge is selected, the  
row being accessed will be precharged at the end of the  
WRITE burst; if auto precharge is not selected, the row  
will remain open for subsequent accesses. Input data  
appearing on the DQs is written to the memory array  
subject to the DQM input logic level appearing coinci-  
dent with the data. If a given DQM signal is registered  
LOW, the corresponding data will be written to memory;  
if the DQM signal is registered HIGH, the corresponding  
data inputs will be ignored, and a WRITE will not be  
executed to that byte/column location.  
TheCOMMANDINHIBITfunctionpreventsnewcom-  
mands from being executed by the SDRAM, regardless of  
whether the CLK signal is enabled. The SDRAM is effec-  
tively deselected. Operations already in progress are not  
affected.  
NO OPERATION (NOP)  
The NO OPERATION (NOP) command is used to per-  
form a NOP to an SDRAM which is selected (CS# is LOW).  
This prevents unwanted commands from being regis-  
tered during idle or wait states. Operations already in  
progress are not affected.  
PRECHARGE  
The PRECHARGE command is used to deactivate the  
openrowinaparticularbankortheopenrowinallbanks.  
The bank(s) will be available for a subsequent row access  
LOAD MODE REGISTER  
The mode register is loaded via inputs A0, BA0, BA1.  
See mode register heading in the Register Definition  
section. The LOAD MODE REGISTER and LOAD EX-  
TENDED MODE REGISTER commands can only be is-  
sued when all banks are idle, and a subsequent execut-  
t
a specified time ( RP) after the PRECHARGE command is  
issued. Input A10 determines whether one or all banks  
aretobeprecharged, andinthecasewhereonlyonebank  
is to be precharged, inputs BA0, BA1 select the bank.  
Otherwise BA0, BA1 are treated as “Don’t Care.” Once a  
bank has been precharged, it is in the idle state and must  
be activated prior to any READ or WRITE commands  
being issued to that bank.  
t
able command cannot be issued until MRD is met.  
ACTIVE  
The ACTIVE command is used to open (or activate) a  
row in a particular bank for a subsequent access. The  
value on the BA0, BA1 inputs selects the bank, and the  
address provided on inputs A0-A11 selects the row. This  
row remains active (or open) for accesses until a  
PRECHARGE command is issued to that bank. A  
PRECHARGE command must be issued before opening a  
different row in the same bank.  
AUTO PRECHARGE  
Auto precharge is a feature which performs the same  
individual-bank PRECHARGEfunction described above,  
without requiring an explicit command. This is accom-  
plished by using A10 to enable auto precharge in con-  
junction with a specific READ or WRITE command. A  
PRECHARGE of the bank/row that is addressed with the  
READ or WRITE command is automatically performed  
upon completion of the READ or WRITE burst, except in  
the full-page burst mode, where auto precharge does not  
apply. Auto precharge is nonpersistent in that it is either  
enabled or disabled for each individual READ or WRITE  
command.  
READ  
The READ command is used to initiate a burst read  
access to an active row. The value on the BA0, BA1 inputs  
selects the bank, and the address provided on inputs A0-  
A8 (x16) or A0-A7 (x32) selects the starting column loca-  
tion. The value on input A10 determines whether or not  
auto precharge is used. If auto precharge is selected, the  
row being accessed will be precharged at the end of the  
READ burst; if auto precharge is not selected, the row will  
remain open for subsequent accesses. Read data appears  
on the DQs subject to the logic level on the DQM inputs  
two clocks earlier. If a given DQM signal was registered  
HIGH, the corresponding DQs will be High-Z two clocks  
later; if the DQM signal was registered LOW, the DQs will  
provide valid data.  
Auto precharge ensures that the precharge is initiated  
at the earliest valid stage within a burst. The user must  
not issue another command to the same bank until the  
t
precharge time ( RP) is completed. This is determined as  
if an explicit PRECHARGE command was issued at the  
earliest possible time, as described for each burst type in  
the Operation section of this data sheet.  
BURST TERMINATE  
The BURST TERMINATE command is used to trun-  
cate either fixed-length or full-page bursts. The most  
recently registered READ or WRITE command prior to  
the BURST TERMINATE command will be truncated, as  
shown in the Operation section of this data sheet.  
WRITE  
The WRITE command is used to initiate a burst write  
access to an active row. The value on the BA0, BA1 inputs  
selects the bank, and the address provided on inputs A0-  
A8 (x16) or A0-A7 (x32) selects the starting column loca-  
tion. The value on input A10 determines whether or not  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
15  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
SELF REFRESH  
AUTO REFRESH  
The SELF REFRESH command can be used to retain  
data in the SDRAM, even if the rest of the system is  
powereddown.Whenintheselfrefreshmode,theSDRAM  
retains data without external clocking. The SELF RE-  
FRESH command is initiated like an AUTO REFRESH  
command except CKE is disabled (LOW). Once the SELF  
REFRESH command is registered, all the inputs to the  
SDRAM become “Don’t Care” with the exception of CKE,  
which must remain LOW.  
AUTO REFRESH is used during normal operation of  
the SDRAM and is analogous to CAS#-BEFORE-RAS#  
(CBR) REFRESH in conventional DRAMs. This  
command is nonpersistent, so it must be issued each  
time a refresh is required. All active banks must be  
PRECHARGED prior to issuing an AUTO REFRESH  
command. The AUTO REFRESH command should not  
be issued until the minimum RP has been met after the  
PRECHARGE command as shown in the operation sec-  
tion.  
t
Once self refresh mode is engaged, the SDRAM pro-  
vides its own internal clocking, causing it to perform its  
own AUTO REFRESH cycles. The SDRAM must remain in  
The addressing is generated by the internal refresh  
controller. This makes the address bits “Don’t Care”  
duringanAUTOREFRESHcommand.The128MbSDRAM  
t
self refresh mode for a minimum period equal to RAS  
t
and may remain in self refresh mode for an indefinite  
period beyond that.  
requires 4,096 AUTO REFRESH cycles every 64ms ( REF),  
regardless of width option. Providing a distributed AUTO  
REFRESH command every 15.625µs will meet the refresh  
requirementandensurethateachrowisrefreshed. Alter-  
natively, 4,096AUTOREFRESHcommandscanbeissued  
The procedure for exiting self refresh requires a se-  
quence of commands. First, CLK must be stable (stable  
clock is defined as a signal cycling within timing con-  
straints specified for the clock pin) prior to CKE going  
back HIGH. Once CKE is HIGH, the SDRAM must have  
NOP commands issued (a minimum of two clocks) for  
t
in a burst at the minimum cycle rate ( RFC), once every  
64ms.  
t
XSR because time is required for the completion of any  
internal refresh in progress.  
Upon exiting the self refresh mode, AUTO REFRESH  
commands must be issued every 15.625µs or less as both  
SELF REFRESH and AUTO REFRESH utilize the row re-  
fresh counter.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
16  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
Operation  
Figure 3  
Activating a Specific Row in a  
Specific Bank  
BANK/ROW ACTIVATION  
Before any READ or WRITE commands can be issued  
to a bank within the SDRAM, a row in that bank must be  
“opened.” This is accomplished via the ACTIVE com-  
mand, which selects both the bank and the row to be  
activated (see Figure 3).  
CLK  
CKE  
CS#  
HIGH  
After opening a row (issuing an ACTIVE command), a  
READ or WRITE command may be issued to that row,  
t
t
subject to the RCD specification. RCD (MIN) should be  
divided by the clock period and rounded up to the next  
whole number to determine the earliest clock edge after  
the ACTIVE command on which a READ or WRITE com-  
RAS#  
t
mand can be entered. For example, a RCD specification  
of 20ns with a 125 MHz clock (8ns period) results in 2.5  
clocks, rounded to 3. This is reflected in Figure 4, which  
covers any case where 2 < RCD (MIN)/ CK 3. (The same  
procedure is used to convert other specification limits  
from time units to clock cycles.)  
CAS#  
WE#  
t
t
A subsequent ACTIVE command to a different row in  
the same bank can only be issued after the previous  
active row has been “closed” (precharged). The mini-  
mum time interval between successive ACTIVE com-  
ROW  
A0–A10, A11  
BA0, BA1  
ADDRESS  
t
mands to the same bank is defined by RC.  
BANK  
ADDRESS  
A subsequent ACTIVE command to another bank can  
be issued while the first bank is being accessed, which  
results in a reduction of total row-access overhead. The  
minimumtimeintervalbetweensuccessiveACTIVEcom-  
t
mands to different banks is defined by RRD.  
Figure 4  
t
t
t
Example: Meeting RCD (MIN) When 2 < RCD (MIN)/ CK  
3
T0  
T1  
T2  
T3  
T4  
CLK  
READ or  
WRITE  
COMMAND  
ACTIVE  
NOP  
NOP  
t
RCD  
DON’T CARE  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
17  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
READs  
READ bursts are initiated with a READ command, as  
shown in Figure 5.  
Upon completion of a burst, assuming no other com-  
mands have been initiated, the DQs will go High-Z. A full-  
page burst will continue until terminated. (At the end of  
the page, it will wrap to column 0 and continue.)  
Data from any READ burst may be truncated with a  
subsequentREADcommand,anddatafromafixed-length  
READ burst may be immediately followed by data from a  
READcommand. Ineithercase, acontinuousflowofdata  
can be maintained. The first data element from the new  
burst follows either the last element of a completed burst  
or the last desired data element of a longer burst that is  
being truncated. The new READ command should be  
issued x cycles before the clock edge at which the last  
desired data element is valid, where x equals the CAS  
latency minus one.  
The starting column and bank addresses are provided  
with the READ command, and auto precharge is either  
enabledordisabledforthatburstaccess.Ifautoprecharge  
is enabled, the row being accessed is precharged at the  
completion of the burst. For the generic READ com-  
mandsusedinthefollowingillustrations, autoprecharge  
is disabled.  
During READ bursts, the valid data-out element from  
the starting column address will be available following  
the CAS latency after the READ command. Each subse-  
quent data-out element will be valid by the next positive  
clock edge. Figure 6 shows general timing for each pos-  
sible CAS latency setting.  
Figure 5  
READ Command  
Figure 6  
CAS Latency  
T0  
T1  
T2  
CLK  
CLK  
CKE  
CS#  
HIGH  
COMMAND  
READ  
NOP  
t
t
LZ  
OH  
DOUT  
DQ  
t
AC  
CAS Latency = 1  
RAS#  
T0  
T1  
T2  
T3  
CAS#  
WE#  
CLK  
COMMAND  
READ  
NOP  
t
NOP  
t
LZ  
OH  
DOUT  
DQ  
COLUMN  
ADDRESS  
t
A0-A8  
AC  
CAS Latency = 2  
A9, A11  
ENABLE AUTO PRECHARGE  
DISABLE AUTO PRECHARGE  
T0  
T1  
T2  
T3  
T4  
A10  
CLK  
COMMAND  
READ  
NOP  
NOP  
NOP  
t
BANK  
ADDRESS  
BA0,1  
t
LZ  
OH  
DOUT  
DQ  
t
DON’T CARE  
AC  
CAS Latency = 3  
DON’T CARE  
UNDEFINED  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
18  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
This is shown in Figure 7 for CAS latencies of two and  
three; data element n + 3 is either the last of a burst of four  
or the last desired of a longer burst. The 128Mb SDRAM  
uses a pipelined architecture and therefore does not  
require the 2n rule associated with a prefetch architec-  
ture. A READ command can be initiated on any clock  
cycle following a previous READ command. Full-speed  
random read accesses can be performed to the same  
bank, as shown in Figure 8, or each subsequent READ  
may be performed to a different bank.  
Figure 7  
Consecutive READ Bursts  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
COMMAND  
X = 0 cycles  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
D
OUT  
D
n + 1  
OUT  
D
n + 2  
OUT  
DOUT  
D
OUT  
n
n + 3  
b
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
COMMAND  
X = 1 cycle  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
D
OUT  
D
n + 1  
OUT  
DOUT  
D
n + 3  
OUT  
D
OUT  
n
n + 2  
b
CAS Latency = 2  
T1  
T0  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ  
NOP  
NOP  
NOP  
READ  
NOP  
NOP  
NOP  
COMMAND  
X = 2 cycles  
BANK,  
COL n  
BANK,  
COL b  
ADDRESS  
DQ  
D
OUT  
DOUT  
D
n + 2  
OUT  
D
n + 3  
OUT  
DOUT  
b
n
n + 1  
CAS Latency = 3  
NOTE: Each READ command may be to either bank. DQM is LOW.  
DON’T CARE  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
19  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
Figure 8  
Random READ Accesses  
T0  
T1  
T2  
T3  
T4  
CLK  
COMMAND  
ADDRESS  
DQ  
READ  
READ  
READ  
READ  
NOP  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
DOUT  
DOUT  
D
OUT  
D
OUT  
n
a
x
m
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
COMMAND  
ADDRESS  
DQ  
READ  
READ  
READ  
READ  
NOP  
NOP  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
DOUT  
DOUT  
D
OUT  
D
OUT  
n
a
x
m
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
READ  
READ  
READ  
READ  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
DOUT  
D
OUT  
D
OUT  
D
OUT  
n
a
x
m
CAS Latency = 3  
NOTE: Each READ command may be to either bank. DQM is LOW.  
DON’T CARE  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
20  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
Data from any READ burst may be truncated with a  
subsequent WRITE command, and data from a fixed-  
length READ burst may be immediately followed by data  
from a WRITE command (subject to bus turnaround  
limitations). The WRITE burst may be initiated on the  
clock edge immediately following the last (or last de-  
sired)dataelementfromtheREADburst, providedthatI/  
O contention can be avoided. In a given system design,  
there may be a possibility that the device driving the  
input data will go Low-Z before the SDRAM DQs go High-  
Z. In this case, at least a single-cycle delay should occur  
between the last read data and the WRITE command.  
The DQM input is used to avoid I/O contention, as  
shown in Figures 9 and 10. The DQM signal must be  
asserted (HIGH) at least two clocks prior to the WRITE  
command (DQM latency is two clocks for output buffers)  
to suppress data-out from the READ. Once the WRITE  
command is registered, the DQs will go High-Z (or re-  
main High-Z), regardless of the state of the DQM signal,  
provided the DQM was active on the clock just prior to  
the WRITE command that truncated the READ com-  
mand. If not, the second WRITE will be an invalid WRITE.  
For example, if DQM was LOW during T4 in Figure 10,  
then the WRITEs at T5 and T7 would be valid, while the  
WRITE at T6 would be invalid.  
The DQM signal must be de-asserted prior to the  
WRITE command (DQM latency is zero clocks for input  
buffers) to ensure that the written data is not masked.  
Figure 9 shows the case where the clock frequency allows  
for bus contention to be avoided without adding a NOP  
cycle, and Figure 10 shows the case where the additional  
NOP is needed.  
Figure 9  
READ to WRITE  
Figure 10  
READ to WRITE With  
Extra Clock Cycle  
T0  
T1  
T2  
T3  
T4  
T0  
T1  
T2  
T3  
T4  
T5  
CLK  
CLK  
DQM  
DQM  
READ  
NOP  
NOP  
NOP  
WRITE  
COMMAND  
ADDRESS  
READ  
NOP  
NOP  
NOP  
NOP  
WRITE  
COMMAND  
ADDRESS  
BANK,  
COL n  
BANK,  
COL b  
BANK,  
COL n  
BANK,  
COL b  
t
t
CK  
HZ  
t
HZ  
DOUT  
n
DIN  
b
DQ  
t
D
OUT  
n
DIN b  
DS  
DQ  
t
DS  
DON’T CARE  
DON’T CARE  
NOTE:  
A CAS latency of three is used for illustration. The READ command  
may be to any bank, and the WRITE command may be to any bank.  
NOTE:  
A CAS latency of three is used for illustration. The READ  
command may be to any bank, and the WRITE command  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
21  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
A fixed-length READ burst may be followed by, or  
truncated with, a PRECHARGE command to the same  
bank (provided that auto precharge was not activated),  
and a full-page burst may be truncated with a  
PRECHARGE command to the same bank. The  
PRECHARGE command should be issued x cycles before  
the clock edge at which the last desired data element is  
valid, where x equals the CAS latency minus one. This is  
shown in Figure 11 for each possible CAS latency; data  
element n + 3 is either the last of a burst of four or the last  
desired of a longer burst. Following the PRECHARGE  
command, a subsequent command to the same bank  
cannotbeissueduntil RPismet. Notethatpartoftherow  
precharge time is hidden during the access of the last  
data element(s).  
In the case of a fixed-length burst being executed to  
completion, a PRECHARGE command issued at the opti-  
mum time (as described above) provides the same op-  
eration that would result from the same fixed-length  
burst with auto precharge. The disadvantage of the  
t
Figure 11  
READ to PRECHARGE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
t
RP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
COMMAND  
ADDRESS  
DQ  
X = 0 cycles  
BANK  
(a or all)  
BANK a,  
COL n  
BANK a,  
ROW  
D
OUT  
D
n + 1  
OUT  
DOUT  
DOUT  
n
n + 2  
n + 3  
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
t
RP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
COMMAND  
ADDRESS  
DQ  
X = 1 cycle  
BANK  
(a or all)  
BANK a,  
BANK a,  
ROW  
COL  
n
D
OUT  
D
n + 1  
OUT  
DOUT  
DOUT  
n + 3  
n
n + 2  
CAS Latency = 2  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
t
RP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
NOP  
ACTIVE  
COMMAND  
ADDRESS  
DQ  
X = 2 cycles  
BANK  
(a or all)  
BANK a,  
BANK a,  
ROW  
COL  
n
D
OUT  
DOUT  
DOUT  
D
n + 3  
OUT  
n
n + 1  
n + 2  
CAS Latency = 3  
NOTE: DQM is LOW.  
DON’T CARE  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
22  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
PRECHARGE command is that it requires that the com-  
mand and address buses be available at the appropriate  
time to issue the command; the advantage of the  
PRECHARGE command is that it can be used to truncate  
fixed-length or full-page bursts.  
Full-page READ bursts can be truncated with the  
BURST TERMINATE command, and fixed-length READ  
burstsmaybetruncatedwithaBURSTTERMINATEcom-  
mand, provided that auto precharge was not activated.  
The BURST TERMINATE command should be issued x  
cycles before the clock edge at which the last desired data  
element is valid, where x equals the CAS latency minus  
one. This is shown in Figure 12 for each possible CAS  
latency; data element n + 3 is the last desired data ele-  
ment of a longer burst.  
Figure 12  
Terminating a READ Burst  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
BURST  
TERMINATE  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
X = 0 cycles  
BANK,  
COL n  
D
OUT  
D
n + 1  
OUT  
D
n + 2  
OUT  
DOUT  
n
n + 3  
CAS Latency = 1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
BURST  
TERMINATE  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
X = 1 cycle  
BANK,  
COL n  
D
OUT  
D
n + 1  
OUT  
DOUT  
D
n + 3  
OUT  
n
n + 2  
CAS Latency = 2  
T1  
T0  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
COMMAND  
ADDRESS  
DQ  
BURST  
TERMINATE  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
X = 2 cycles  
BANK,  
COL n  
D
OUT  
DOUT  
D
n + 2  
OUT  
D
n + 3  
OUT  
n
n + 1  
CAS Latency = 3  
NOTE: DQM is LOW.  
DON’T CARE  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
23  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
WRITEs  
WRITE bursts are initiated with a WRITE command,  
as shown in Figure 13.  
command applies to the new command. An example is  
shown in Figure 15. Data n + 1 is either the last of a burst  
of two or the last desired of a longer burst. The 128Mb  
SDRAM uses a pipelined architecture and therefore does  
not require the 2n rule associated with a prefetch archi-  
tecture. A WRITE command can be initiated on any clock  
cycle following a previous WRITE command. Full-speed  
random write accesses within a page can be performed to  
thesamebank, asshowninFigure16, oreachsubsequent  
WRITE may be performed to a different bank.  
The starting column and bank addresses are pro-  
vided with the WRITE command, and auto precharge is  
either enabled or disabled for that access. If auto  
precharge is enabled, the row being accessed is  
precharged at the completion of the burst. For the ge-  
neric WRITE commands used in the following illustra-  
tions, auto precharge is disabled.  
During WRITE bursts, the first valid data-in element  
will be registered coincident with the WRITE command.  
Subsequent data elements will be registered on each  
successive positive clock edge. Upon completion of a  
fixed-length burst, assuming no other commands have  
been initiated, the DQs will remain High-Z and any addi-  
tional input data will be ignored (see Figure 14). A full-  
page burst will continue until terminated. (At the end of  
the page, it will wrap to column 0 and continue.)  
Data for any WRITE burst may be truncated with a  
subsequentWRITEcommand, anddataforafixed-length  
WRITE burst may be immediately followed by data for a  
WRITE command. The new WRITE command can be  
issued on any clock following the previous WRITE com-  
mand, and the data provided coincident with the new  
Figure 14  
WRITE Burst  
T0  
T1  
T2  
T3  
CLK  
WRITE  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
DIN  
DIN  
n + 1  
n
Figure 13  
WRITE Command  
NOTE:  
Burst length = 2. DQM is LOW.  
CLK  
CKE HIGH  
Figure 15  
WRITE to WRITE  
CS#  
T0  
T1  
T2  
RAS#  
CLK  
CAS#  
WE#  
WRITE  
NOP  
WRITE  
COMMAND  
ADDRESS  
DQ  
COLUMN  
A0-A8  
ADDRESS  
BANK,  
COL n  
BANK,  
COL b  
A9, A11  
DIN  
DIN  
DIN  
b
ENABLE AUTO PRECHARGE  
n
n + 1  
A10  
DISABLE AUTO PRECHARGE  
NOTE:  
DQM is LOW. Each WRITE  
command may be to any bank.  
BANK  
ADDRESS  
BA0,1  
DON’T CARE  
VALID ADDRESS  
DON’T CARE  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
24  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
Data for any WRITE burst may be truncated with a  
subsequent READ command, and data for a fixed-length  
WRITE burst may be immediately followed by a READ  
command. Once the READ command is registered, the  
data inputs will be ignored, and WRITEs will not be  
executed. An example is shown in Figure 17. Data n + 1 is  
either the last of a burst of two or the last desired of a  
longer burst.  
least one clock plus time, regardless of frequency.  
In addition, when truncating a WRITE burst, the DQM  
signal must be used to mask input data for the clock edge  
prior to, and the clock edge coincident with, the  
PRECHARGE command. An example is shown in Figure  
18. Data n + 1 is either the last of a burst of two or the last  
desired of a longer burst. Following the PRECHARGE  
command, a subsequent command to the same bank  
t
Data for a fixed-length WRITE burst may be followed  
by, or truncated with, a PRECHARGE command to the  
same bank (provided that auto precharge was not acti-  
vated), and a full-page WRITE burst may be truncated  
with a PRECHARGE command to the same bank. The  
cannot be issued until RP is met.  
In the case of a fixed-length burst being executed to  
completion, a PRECHARGE command issued at the opti-  
mum time (as described above) provides the same op-  
eration that would result from the same fixed-length  
burst with auto precharge. The disadvantage of the  
PRECHARGE command is that it requires that the com-  
mand and address buses be available at the appropriate  
time to issue the command; the advantage of the  
PRECHARGE command is that it can be used to truncate  
fixed-length or full-page bursts.  
t
PRECHARGE command should be issued WR after the  
clock edge at which the last desired input data element is  
t
registered. The auto precharge mode requires a WR of at  
Figure 16  
Random WRITE Cycles  
T0  
T1  
T2  
T3  
CLK  
COMMAND  
ADDRESS  
Figure 18  
WRITE to PRECHARGE  
WRITE  
WRITE  
WRITE  
WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
t
t
WR@ CK 15ns  
BANK,  
COL n  
BANK,  
COL a  
BANK,  
COL x  
BANK,  
COL m  
DQM  
t
RP  
D
IN  
D
IN  
D
IN  
DIN  
x
NOP  
NOP  
NOP  
WRITE  
NOP  
PRECHARGE  
ACTIVE  
COMMAND  
ADDRESS  
DQ  
m
n
a
BANK  
(a or all)  
BANK a,  
COL n  
BANK a,  
ROW  
NOTE:  
Each WRITE command may be to any bank.  
DQM is LOW.  
t
WR  
D
n
IN  
DIN  
n + 1  
DQ  
t
t
WR@ CK < 15ns  
Figure 17  
DQM  
WRITE to READ  
t
RP  
T0  
T1  
T2  
T3  
T4  
T5  
NOP  
NOP  
WRITE  
NOP  
NOP  
PRECHARGE  
ACTIVE  
COMMAND  
ADDRESS  
CLK  
BANK  
(a or all)  
BANK a,  
COL n  
BANK a,  
ROW  
t
WR  
WRITE  
NOP  
READ  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
D
n
IN  
DIN  
n + 1  
DQ  
BANK,  
COL n  
BANK,  
COL b  
NOTE:  
DQM could remain LOW in this example if the WRITE burst is a fixed length  
of two.  
DON’T CARE  
DIN  
D
IN  
DOUT  
DOUT  
DQ  
n
n + 1  
b
b + 1  
NOTE:  
The WRITE command may be to any bank, and the READ command may  
be to any bank. DQM is LOW. CAS latency = 2 for illustration.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
25  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
Fixed-length or full-page WRITE bursts can be trun-  
cated with the BURST TERMINATE command. When  
truncating a WRITE burst, the input data applied coinci-  
dent with the BURST TERMINATE command will be  
ignored. The last data written (provided that DQM is  
LOW at that time) will be the input data applied one clock  
previous to the BURST TERMINATE command. This is  
shown in Figure 19, where data n is the last desired data  
element of a longer burst.  
PRECHARGE  
The PRECHARGE command (see Figure 20) is used to  
deactivate the open row in a particular bank or the open  
row in all banks. The bank(s) will be available for a subse-  
t
quent row access some specified time ( RP) after the  
PRECHARGE command is issued. Input A10 determines  
whether one or all banks are to be precharged, and in the  
case where only one bank is to be precharged, inputs  
BA0, BA1 select the bank. When all banks are to be  
precharged, inputs BA0, BA1 are treated as “Don’t Care.”  
Once a bank has been precharged, it is in the idle state  
and must be activated prior to any READ or WRITE com-  
mands being issued to that bank.  
Figure 19  
Terminating a WRITE Burst  
T0  
T1  
T2  
POWER-DOWN  
Power-down occurs if CKE is registered LOW coinci-  
dent with a NOP or COMMAND INHIBIT when no ac-  
cesses are in progress. If power-down occurs when all  
banks are idle, this mode is referred to as precharge  
power-down; if power-down occurs when there is a row  
active in any bank, this mode is referred to as active  
power-down. Entering power-down deactivates the in-  
put and output buffers, excluding CKE, for maximum  
power savings while in standby. The device may not  
remain in the power-down state longer than the refresh  
period (64ms) since no refresh operations are performed  
in this mode.  
CLK  
BURST  
TERMINATE  
NEXT  
COMMAND  
WRITE  
COMMAND  
ADDRESS  
DQ  
BANK,  
COL n  
(ADDRESS)  
(DATA)  
DIN  
n
The power-down state is exited by registering a NOP  
or COMMAND INHIBIT and CKE HIGH at the desired  
t
clock edge (meeting CKS). See Figure 21.  
Figure 20  
PRECHARGE Command  
Figure 21  
Power-Down  
CLK  
CKE  
HIGH  
( (  
) )  
CLK  
( (  
) )  
> t  
CKS  
t
CKS  
CS#  
CKE  
( (  
) )  
( (  
) )  
( (  
) )  
RAS#  
COMMAND  
NOP  
NOP  
ACTIVE  
t
All banks idle  
RCD  
Input buffers gated off  
t
RAS  
CAS#  
WE#  
t
RC  
Enter power-down mode.  
Exit power-down mode.  
DON’T CARE  
A0-A9  
A10  
All Banks  
Bank Selected  
BANK  
ADDRESS  
BA0,1  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
26  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
CLOCK SUSPEND  
The clock suspend mode occurs when a column ac-  
cess/burst is in progress and CKE is registered LOW. In  
the clock suspend mode, the internal clock is deacti-  
vated, “freezing” the synchronous logic.  
Clock suspend mode is exited by registering CKE  
HIGH; the internal clock and related operation will re-  
sume on the subsequent positive clock edge.  
For each positive clock edge on which CKE is sampled  
LOW, the next internal positive clock edge is suspended.  
Any command or data present on the input pins at the  
time of a suspended internal clock edge is ignored; any  
data present on the DQ pins remains driven; and burst  
counters are not incremented, as long as the clock is  
suspended. (See examples in Figures 22 and 23.)  
BURST READ/SINGLE WRITE  
The burst read/single write mode is entered by pro-  
gramming the write burst mode bit (M9) in the mode  
register to a logic 1. In this mode, all WRITE commands  
result in the access of a single column location (burst of  
one), regardless of the programmed burst length. READ  
commandsaccesscolumnsaccordingtotheprogrammed  
burst length and sequence, just as in the normal mode of  
operation (M9 = 0).  
Figure 22  
Clock Suspend During WRITE Burst  
Figure 23  
Clock Suspend During READ Burst  
T0  
T1  
T2  
T3  
T4  
T5  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
CLK  
CKE  
CLK  
CKE  
INTERNAL  
CLOCK  
INTERNAL  
CLOCK  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
ADDRESS  
DQ  
NOP  
WRITE  
NOP  
NOP  
COMMAND  
ADDRESS  
BANK,  
COL n  
BANK,  
COL n  
D
OUT  
D
OUT  
D
n + 2  
OUT  
DOUT  
n + 3  
n
n + 1  
D
n
IN  
D
n + 1  
IN  
DIN  
n + 2  
D
IN  
DON’T CARE  
NOTE: For this example, CAS latency = 2, burst length = 4 or greater, and  
DON’T CARE  
DQM is LOW.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
27  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
CONCURRENT AUTO PRECHARGE  
An access command (READ or WRITE) to another  
bank while an access command with auto precharge  
enabled is executing is not allowed by SDRAMs, unless  
theSDRAMsupportsCONCURRENTAUTOPRECHARGE.  
Micron SDRAMs support CONCURRENT AUTO  
PRECHARGE. Four cases where CONCURRENT AUTO  
PRECHARGE occurs are defined below.  
on bank n, CAS latency later. The PRECHARGE to  
bank n will begin when the READ to bank m is regis-  
tered (Figure 24).  
2. Interrupted by a WRITE (with or without auto  
precharge): A WRITE to bank m will interrupt a READ  
on bank n when registered. DQM should be used two  
clocks prior to the WRITE command to prevent bus  
contention. The PRECHARGE to bank n will begin  
when the WRITE to bank m is registered (Figure 25).  
READ with Auto Precharge  
1. Interrupted by a READ (with or without auto  
precharge): A READ to bank m will interrupt a READ  
Figure 24  
READ With Auto Precharge Interrupted by a READ  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ - AP  
BANK n  
READ - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page Active  
READ with Burst of 4  
Interrupt Burst, Precharge  
t
Idle  
BANK n  
t
RP - BANK n  
RP - BANK m  
Internal  
States  
Page Active  
READ with Burst of 4  
Precharge  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
D
a
OUT  
D
a + 1  
OUT  
D
OUT  
D
d + 1  
OUT  
d
CAS Latency = 3 (BANK n)  
CAS Latency = 3 (BANK m)  
NOTE: DQM is LOW.  
Figure 25  
READ With Auto Precharge Interrupted by a WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
READ - AP  
BANK n  
WRITE - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page  
Active  
READ with Burst of 4  
Page Active  
Interrupt Burst, Precharge  
t
Idle  
WR - BANK m  
BANK n  
t
RP - BANK  
n
Internal  
States  
WRITE with Burst of 4  
Write-Back  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
1
DQM  
D
OUT  
DIN  
d
D
d + 1  
IN  
D
d + 2  
IN  
DIN  
d + 3  
DQ  
a
CAS Latency = 3 (BANK n)  
NOTE: 1. DQM is HIGH at T2 to prevent OUT-a+1 from contending with DIN-d at T4.  
D
DON’T CARE  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
28  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
WRITE with Auto Precharge  
3. Interrupted by a READ (with or without auto  
precharge): A READ to bank m will interrupt a WRITE  
on bank n when registered, with the data-out appear-  
ing CAS latency later. The PRECHARGE to bank n will  
4. Interrupted by a WRITE (with or without auto  
precharge):AWRITEtobank mwillinterruptaWRITE  
on bank n when registered. The PRECHARGE to bank  
t
t
n will begin after WR is met, where WR begins when  
the WRITE to bank is registered.  
t
t
begin after WR is met, where WR begins when the  
READ to bank m is registered. The last valid WRITE to  
bank n will be data-in registered one clock prior to the  
READ to bank m (Figure 26).  
m
The last valid data WRITE to bank n will be data  
registered one clock prior to a WRITE to bank m  
(Figure 27).  
Figure 26  
WRITE With Auto Precharge Interrupted by a READ  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
WRITE - AP  
BANK n  
READ - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page Active  
WRITE with Burst of 4  
Interrupt Burst, Write-Back  
Precharge  
BANK n  
t
RP - BANK n  
t
WR - BANK n  
Internal  
States  
t
RP - BANK m  
Page Active  
READ with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
DIN  
D
a + 1  
IN  
D
OUT  
DOUT  
d + 1  
a
d
CAS Latency = 3 (BANK m)  
NOTE: 1. DQM is LOW.  
Figure 27  
WRITE With Auto Precharge Interrupted by a WRITE  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
CLK  
WRITE - AP  
BANK n  
WRITE - AP  
BANK m  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
COMMAND  
Page Active  
WRITE with Burst of 4  
Interrupt Burst, Write-Back  
Precharge  
BANK n  
t
RP - BANK n  
t
WR - BANK n  
Internal  
States  
t
WR - BANK m  
Write-Back  
Page Active  
WRITE with Burst of 4  
BANK m  
BANK n,  
COL a  
BANK m,  
COL d  
ADDRESS  
DQ  
DIN  
D
a + 1  
IN  
D
a + 2  
IN  
D
IN  
D
d + 1  
IN  
D
d + 2  
IN  
DIN  
d + 3  
a
d
NOTE: 1. DQM is LOW.  
DON’T CARE  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
29  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
TRUTH TABLE 2 – CKE  
(Notes: 1-4)  
CKE  
CKE  
CURRENT STATE  
Power-Down  
COMMAND  
ACTION  
n
NOTES  
n-1  
n
n
L
L
X
X
X
Maintain Power-Down  
Maintain Self Refresh  
Maintain Clock Suspend  
Exit Power-Down  
Self Refresh  
Clock Suspend  
Power-Down  
L
H
L
COMMAND INHIBIT or NOP  
COMMAND INHIBIT or NOP  
X
5
6
7
Self Refresh  
Exit Self Refresh  
Clock Suspend  
All Banks Idle  
All Banks Idle  
Reading or Writing  
Exit Clock Suspend  
Power-Down Entry  
Self Refresh Entry  
H
H
COMMAND INHIBIT or NOP  
AUTO REFRESH  
VALID  
Clock Suspend Entry  
H
See Truth Table 3  
NOTE: 1. CKEn is the logic state of CKE at clock edge n; CKEn-1 was the state of CKE at the previous clock edge.  
2. Current state is the state of the SDRAM immediately prior to clock edge n.  
3. COMMANDn is the command registered at clock edge n, and ACTIONn is a result of COMMANDn.  
4. All states and sequences not shown are illegal or reserved.  
5. Exiting power-down at clock edge n will put the device in the all banks idle state in time for clock edge n + 1  
(provided that tCKS is met).  
6. Exiting self refresh at clock edge n will put the device in the all banks idle state once tXSR is met. COMMAND INHIBIT  
or NOP commands should be issued on any clock edges occurring during the tXSR period. A minimum of two NOP  
commands must be provided during tXSR period.  
7. After exiting clock suspend at clock edge n, the device will resume operation and recognize the next command at  
clock edge n + 1.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
30  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
TRUTH TABLE 3 – CURRENT STATE BANK n, COMMAND TO BANK n  
(Notes: 1-6; notes appear below and on next page)  
CURRENT STATE CS# RAS# CAS# WE# COMMAND (ACTION)  
NOTES  
Any  
Idle  
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
L
X
H
H
L
X
H
H
H
L
COMMAND INHIBIT (NOP/Continue previous operation)  
NO OPERATION (NOP/Continue previous operation)  
ACTIVE (Select and activate row)  
L
AUTO REFRESH  
7
7
L
L
LOAD MODE REGISTER  
L
H
L
L
PRECHARGE  
11  
10  
10  
8
H
H
L
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE (Deactivate row in bank or banks)  
READ (Select column and start new READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE (Truncate READ burst, start PRECHARGE)  
BURST TERMINATE  
Row Active  
L
H
L
L
Read  
(Auto  
H
H
L
H
L
10  
10  
8
L
Precharge  
Disabled)  
Write  
H
H
L
L
H
H
H
L
L
9
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start new WRITE burst)  
PRECHARGE (Truncate WRITE burst, start PRECHARGE)  
BURST TERMINATE  
10  
10  
8
(Auto  
L
Precharge  
Disabled)  
H
H
L
H
L
9
NOTE: 1. This table applies when CKEn-1 was HIGH and CKEn is HIGH (see Truth Table 2) and after tXSR has been  
met (if the previous state was self refresh).  
2. This table is bank-specific, except where noted; i.e., the current state is for a specific bank and the commands shown  
are those allowed to be issued to that bank when in that state. Exceptions are covered in the notes below.  
3. Current state definitions:  
Idle: The bank has been precharged, and tRP has been met.  
Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and  
no register accesses are in progress.  
Read: A READ burst has been initiated, with auto precharge disabled, and has not yet  
terminated or been terminated.  
Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated  
or been terminated.  
4. The following states must not be interrupted by a command issued to the same bank. COMMAND INHIBIT or NOP  
commands, or allowable commands to the other bank should be issued on any clock edge occurring during these  
states. Allowable commands to the other bank are determined by its current state and Truth Table 3, and according to  
Truth Table 4.  
Precharging: Starts with registration of a PRECHARGE command and ends when tRP is met. Once tRP is  
met, the bank will be in the idle state.  
Row Activating: Starts with registration of an ACTIVE command and ends when tRCD is met. Once tRCD is  
met, the bank will be in the row active state.  
Read w/Auto  
Precharge Enabled: Starts with registration of a READ command with auto precharge enabled and ends when tRP  
has been met. Once tRP is met, the bank will be in the idle state.  
Write w/Auto  
Precharge Enabled: Starts with registration of a WRITE command with auto precharge enabled and ends when  
tRP has been met. Once tRP is met, the bank will be in the idle state.  
(Continued on next page)  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
31  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
NOTE (continued):  
5. The following states must not be interrupted by any executable command; COMMAND INHIBIT or NOP commands  
must be applied on each positive clock edge during these states.  
Refreshing: Starts with registration of an AUTO REFRESH command and ends when tRC is met. Once tRC is  
met, the SDRAM will be in the all banks idle state.  
Accessing Mode  
Register: Starts with registration of a LOAD MODE REGISTER command and ends when tMRD has been  
met. Once tMRD is met, the SDRAM will be in the all banks idle state.  
Precharging All: Starts with registration of a PRECHARGE ALL command and ends when tRP is met. Once tRP is  
met, all banks will be in the idle state.  
6. All states and sequences not shown are illegal or reserved.  
7. Not bank-specific; requires that all banks are idle.  
8. May or may not be bank-specific; if all banks are to be precharged, all must be in a valid state for precharging.  
9. Not bank-specific; BURST TERMINATE affects the most recent READ or WRITE burst, regardless of bank.  
10. READs or WRITEs listed in the Command (Action) column include READs or WRITEs with auto precharge enabled and  
READs or WRITEs with auto precharge disabled.  
11. Does not affect the state of the bank and acts as a NOP to that bank.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
32  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
TRUTH TABLE 4 – CURRENT STATE BANK n, COMMAND TO BANK m  
(Notes: 1-6; notes appear below and on next page)  
CURRENT STATE CS# RAS# CAS# WE# COMMAND (ACTION)  
NOTES  
Any  
H
L
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
H
X
L
X
H
X
H
L
X
H
X
H
H
L
COMMAND INHIBIT (NOP/Continue previous operation)  
NO OPERATION (NOP/Continue previous operation)  
Any Command Otherwise Allowed to Bank m  
ACTIVE (Select and activate row)  
Idle  
Row  
Activating,  
Active, or  
Precharging  
Read  
H
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE  
7
7
L
H
H
L
L
L
H
H
L
ACTIVE (Select and activate row)  
(Auto  
H
H
L
READ (Select column and start new READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE  
7, 10  
7, 11  
9
Precharge  
Disabled)  
Write  
L
H
H
L
L
L
H
H
L
ACTIVE (Select and activate row)  
(Auto  
H
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start new WRITE burst)  
PRECHARGE  
7, 12  
7, 13  
9
Precharge  
Disabled)  
Read  
L
H
H
L
L
L
H
H
L
ACTIVE (Select and activate row)  
(With Auto  
Precharge)  
H
H
L
READ (Select column and start new READ burst)  
WRITE (Select column and start WRITE burst)  
PRECHARGE  
7, 8, 14  
7, 8, 15  
9
L
H
H
L
L
Write  
L
H
H
L
ACTIVE (Select and activate row)  
(With Auto  
Precharge)  
H
H
L
READ (Select column and start READ burst)  
WRITE (Select column and start new WRITE burst)  
PRECHARGE  
7, 8, 16  
7, 8, 17  
9
L
H
L
NOTE: 1. This table applies when CKEn-1 was HIGH and CKEn is HIGH (see Truth Table 2) and after tXSR has been met (if the  
previous state was self refresh).  
2. This table describes alternate bank operation, except where noted; i.e., the current state is for bank n and the  
commands shown are those allowed to be issued to bank m (assuming that bank m is in such a state that the given  
command is allowable). Exceptions are covered in the notes below.  
3. Current state definitions:  
Idle: The bank has been precharged, and tRP has been met.  
Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and  
no register accesses are in progress.  
Read: A READ burst has been initiated, with auto precharge disabled, and has not yet terminated  
or been terminated.  
Write: A WRITE burst has been initiated, with auto precharge disabled, and has not yet terminated  
or been terminated.  
Read w/Auto  
Precharge Enabled: Starts with registration of a READ command with auto precharge enabled, and ends when  
tRP has been met. Once tRP is met, the bank will be in the idle state.  
Write w/Auto  
Precharge Enabled: Starts with registration of a WRITE command with auto precharge enabled, and ends when  
tRP has been met. Once tRP is met, the bank will be in the idle state.  
(Continued on next page)  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
33  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
NOTE (continued):  
4. AUTO REFRESH, SELF REFRESH and LOAD MODE REGISTER commands may only be issued when all banks are idle.  
5. A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current  
state only.  
6. All states and sequences not shown are illegal or reserved.  
7. READs or WRITEs to bank m listed in the Command (Action) column include READs or WRITEs with auto precharge  
enabled and READs or WRITEs with auto precharge disabled.  
8. CONCURRENT AUTO PRECHARGE: Bank n will initiate the auto precharge command when its burst has been  
interrupted by bank m’s burst.  
9. Burst in bank n continues as initiated.  
10. For a READ without auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m  
will interrupt the READ on bank n, CAS latency later (Figure 7).  
11. For a READ without auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m  
will interrupt the READ on bank n when registered (Figures 9 and 10). DQM should be used one clock prior to the  
WRITE command to prevent bus contention.  
12. For a WRITE without auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m  
will interrupt the WRITE on bank n when registered (Figure 17), with the data-out appearing CAS latency later. The  
last valid WRITE to bank n will be data-in registered one clock prior to the READ to bank m.  
13. For a WRITE without auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m  
will interrupt the WRITE on bank n when registered (Figure 15). The last valid WRITE to bank n will be data-in  
registered one clock prior to the READ to bank m.  
14. For a READ with auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will  
interrupt the READ on bank n, CAS latency later. The PRECHARGE to bank n will begin when the READ to bank m is  
registered (Figure 24).  
15. For a READ with auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will  
interrupt the READ on bank n when registered. DQM should be used two clocks prior to the WRITE command to  
prevent bus contention. The PRECHARGE to bank n will begin when the WRITE to bank m is registered (Figure 25).  
16. For a WRITE with auto precharge interrupted by a READ (with or without auto precharge), the READ to bank m will  
interrupt the WRITE on bank n when registered, with the data-out appearing CAS latency later. The PRECHARGE to  
bank n will begin after tWR is met, where tWR begins when the READ to bank m is registered. The last valid WRITE to  
bank n will be data-in registered one clock prior to the READ to bank m (Figure 26).  
17. For a WRITE with auto precharge interrupted by a WRITE (with or without auto precharge), the WRITE to bank m will  
interrupt the WRITE on bank n when registered. The PRECHARGE to bank n will begin after tWR is met, where tWR  
begins when the WRITE to bank m is registered. The last valid WRITE to bank n will be data registered one clock prior  
to the WRITE to bank m (Figure 27).  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
34  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
*Stresses greater than those listed under “Absolute Maxi-  
mum Ratings” may cause permanent damage to the de-  
vice. This is a stress rating only, and functional operation  
of the device at these or any other conditions above those  
indicated in the operational sections of this specification  
is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
ABSOLUTE MAXIMUM RATINGS*  
Voltage on VDD/VDDQ Supply  
Relative to VSS(3.3V) ............................. -1V to +4.6V  
Relative to VSS(2.5V) ......................... -0.5V to +3.6V  
Voltage on Inputs, NC or I/O Pins  
Relative to VSS(3.3V) ............................. -1V to +4.6V  
Relative to VSS(2.5V) ......................... -0.5V to +3.6V  
Operating Temperature,  
T
(Industrial) ....................................... -40°C to +85°C  
A
Storage Temperature (plastic) ................ -55°C to +150°C  
Power Dissipation ..........................................................1W  
DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS - LC VERSION  
(Notes: 1, 5, 6; notes appear on page 39; VDD = +3.3V 0.3V, VDDQ = +3.3V 0.3V  
PARAMETER/CONDITION  
Supply Voltage  
SYMBOL  
VDD  
MIN  
MAX UNITS NOTES  
3
3
2
3.6  
3.6  
V
V
V
I/O Supply Voltage  
VDDQ  
VIH  
Input High Voltage: Logic 1; All inputs  
VDD + 0.3  
22  
22  
Input Low Voltage: Logic 0; All inputs  
VIL  
VOH  
VOL  
II  
-0.3  
2.4  
0.8  
V
V
Data Output High Voltage: Logic 1; All inputs  
Data Output LOW Voltage: LOGIC 0; All inputs  
0.4  
5
V
Input Leakage Current:  
-5  
µA  
Any Input 0V VIN VDD (All other pins not under test = 0V)  
Output Leakage Current: DQs are disabled; 0V VOUT VDDQ  
IOZ  
-5  
5
µA  
DC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS - V VERSION  
(Notes: 1, 5, 6; notes appear on page 39; VDD = 2.5 0.2V, VDDQ = +2.5V 0.2V or +1.8V 0.15V )  
PARAMETER/CONDITION  
Supply Voltage  
SYMBOL  
MIN  
2.3  
MAX UNITS NOTES  
VDD  
2.7  
2.7  
V
V
I/O Supply Voltage  
VDDQ(2.5V)  
2.3  
VDDQ(1.8V)  
1.65  
1.25  
-0.3  
1.95  
VDD + 0.3  
+0.55  
V
Input High Voltage: Logic 1; All inputs  
VIH  
VIL  
VOH  
VOL  
II  
V
22  
22  
Input Low Voltage: Logic 0; All inputs  
V
Data Output High Voltage: Logic 1; All inputs  
Data Output Low Voltage: LOGIC 0; All inputs  
Input Leakage Current:  
VDDQ - 0.2  
V
0.2  
V
-2  
2
µA  
Any input 0V VIN VDD (All other pins not under test = 0V)  
Output Leakage Current: DQs are disabled; 0V VOUT VDDQ  
IOZ  
-5  
5
µA  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
35  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
AC ELECTRICAL CHARACTERISTICS AND OPERATING CONDITIONS  
(VDD = +3.3V 0.3V or 2.5 0.2V, VDDQ = +3.3V 0.3V or +2.5V 0.2V or +1.8V 0.15V )  
PARAMETER/CONDITION  
SYMBOL  
VIH  
MIN  
1.4  
MAX UNITS NOTES  
Input High Voltage: Logic 1; All inputs  
Input Low Voltage: Logic 0; All inputs  
V
V
VIL  
0.4  
ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS  
(Notes: 5, 6, 8, 9, 11; notes appear on page 39)  
AC CHARACTERISTICS  
PARAMETER  
Access time from CLK (pos. edge)  
-8  
-10  
SYMBOL MIN  
MAX  
7
8
MIN MAX UNITS NOTES  
CL = 3 tAC (3)  
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ns  
ns  
ns  
ns  
27  
CL = 2 tAC (2)  
CL = 1 tAC (1)  
19  
22  
Address hold time  
Address setup time  
CLK high-level width  
CLK low-level width  
Clock cycle time  
tAH  
1
2.5  
3
1
2.5  
3
tAS  
tCH  
tCL  
3
3
CL = 3 tCK (3)  
8
10  
12  
25  
1
23  
23  
23  
CL = 2 tCK (2)  
10  
20  
1
CL = 1 tCK (1)  
CKE hold time  
tCKH  
CKE setup time  
tCKS  
2.5  
1
2.5  
1
2.5  
1
2.5  
1
CS#, RAS#, CAS#, WE#, DQM hold time  
CS#, RAS#, CAS#, WE#, DQM setup time  
Data-in hold time  
Data-in setup time  
Data-out high-impedance time  
tCMH  
tCMS  
tDH  
tDS  
2.5  
2.5  
CL = 3 tHZ (3)  
7
8
19  
7
8
22  
10  
10  
10  
CL = 2 tHZ (2)  
CL = 1 tHZ (1)  
Data-out low-impedance time  
Data-out hold time (load)  
tLZ  
tOH  
tOHN  
tRAS  
tRC  
tRCD  
tREF  
tRFC  
tRP  
1
1
2.5  
1.8  
48  
80  
20  
2.5  
1.8  
50  
Data-out hold time (no load)  
ACTIVE to PRECHARGE command  
ACTIVE to ACTIVE command period  
ACTIVE to READ or WRITE delay  
Refresh period (4,096 rows)  
AUTO REFRESH period  
PRECHARGE command period  
ACTIVE bank a to ACTIVE bank b command  
Transition time  
28  
120,000  
64  
120,000  
64  
100  
20  
80  
20  
20  
0.5  
100  
20  
20  
tRRD  
tT  
1.2  
0.5  
1.2  
7
24  
WRITE recovery time  
tWR 1 CLK +  
7ns  
1 CLK +  
5ns  
15  
80  
15  
100  
ns  
ns  
25  
20  
Exit SELF REFRESH to ACTIVE command  
tXSR  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
36  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
AC FUNCTIONAL CHARACTERISTICS  
(Notes: 5, 6, 7, 8, 9, 11; notes appear on page 39)  
PARAMETER  
SYMBOL  
tCCD  
tCKED  
tPED  
tDQD  
tDQM  
tDQZ  
-8  
1
1
1
0
0
2
0
5
2
1
1
2
2
3
2
1
-10 UNITS NOTES  
READ/WRITE command to READ/WRITE command  
CKE to clock disable or power-down entry mode  
CKE to clock enable or power-down exit setup mode  
DQM to input data delay  
1
1
1
0
0
2
0
5
2
1
1
2
2
3
2
1
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK 15, 21  
tCK 16, 21  
tCK  
tCK  
tCK 16, 21  
17  
14  
14  
17  
17  
17  
17  
DQM to data mask during WRITEs  
DQM to data high-impedance during READs  
WRITE command to input data delay  
Data-in to ACTIVE command  
tDWD  
tDAL  
Data-in to PRECHARGE command  
Last data-in to burst STOP command  
Last data-in to new READ/WRITE command  
Last data-in to PRECHARGE command  
LOAD MODE REGISTER command to ACTIVE or REFRESH command  
Data-out to high-impedance from PRECHARGE command  
tDPL  
tBDL  
17  
17  
tCDL  
tRDL  
tMRD  
tROH(3)  
tROH(2)  
tROH(1)  
tCK  
tCK  
tCK  
tCK  
26  
17  
17  
17  
CL = 3  
CL = 2  
CL = 1  
IDD SPECIFICATIONS AND CONDITIONS (x16)  
(Notes: 1, 5, 6, 11, 13; notes appear on page 39; VDD = +3.3V 0.3V or 2.5 0.2V, VDDQ = +3.3V 0.3V or +2.5V  
0.2V or +1.8V 0.15V )  
MAX  
PARAMETER/CONDITION  
SYMBOL  
-8  
-10 UNITS NOTES  
Operating Current: Active Mode;  
IDD1  
130 100  
mA  
3, 18,  
19, 32  
t
t
Burst = 2; READ or WRITE; RC = RC (MIN)  
Standby Current: Power-Down Mode; All banks idle; CKE = LOW  
Standby Current: Active Mode;  
CKE = HIGH; CS# = HIGH; All banks active after RCD met;  
No accesses in progress  
IDD2  
IDD3  
350 350  
µA  
32  
35  
30  
95  
mA  
3, 12,  
19, 32  
t
Operating Current: Burst Mode; Page burst;  
READ or WRITE; All banks active  
IDD4  
100  
mA  
3, 18,  
19, 32  
t
t
t
Auto Refresh Current  
CKE = HIGH; CS# = HIGH  
RFC = RFC (MIN)  
IDD5  
IDD6  
210 170  
mA  
mA  
3, 12,  
18, 19,  
32, 33  
RFC = 15.625µs  
3
3
IDD7 - SELF REFRESH CURRENT OPTIONS (x16)  
(Notes: Note 4 appears on page 39) (VDD = +3.3V 0.3V or 2.5 0.2V, VDDQ) = +3.3V 0.3V or +2.5V 0.2V or  
+1.8V 0.15V)  
Temperature Compensated Self Refresh  
Parameter/Condition  
Max  
Temperature  
-8 and -10  
UNITS NOTES  
Self Refresh Current:  
CKE < 0.2V  
85ºC  
70ºC  
45ºC  
15ºC  
800  
500  
350  
300  
µA  
µA  
µA  
µA  
4
4
4
4
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
37  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
IDD SPECIFICATIONS AND CONDITIONS (x32)  
(Notes: 1, 5, 6, 11, 13; notes appear on page 39; VDD = +3.3V 0.3V or 2.5 0.2V, VDDQ = +3.3V 0.3V or +2.5V  
0.2V or +1.8V 0.15V )  
MAX  
PARAMETER/CONDITION  
SYMBOL  
-8  
-10 UNITS NOTES  
Operating Current: Active Mode;  
Burst = 2; READ or WRITE; RC = RC (MIN)  
IDD1  
150 120  
mA  
3, 18,  
19, 32  
t
t
Standby Current: Power-Down Mode;  
All banks idle; CKE = LOW  
IDD2  
IDD3  
350 350  
µA  
32  
Standby Current: Active Mode;  
CKE = HIGH; CS# = HIGH; All banks active after RCD met;  
No accesses in progress  
40  
35  
mA  
3, 12,  
19, 32  
t
Operating Current: Burst Mode; Page burst;  
READ or WRITE; All banks active  
IDD4  
115 110  
220 180  
mA  
3, 18,  
19, 32  
t
t
Auto Refresh Current  
CKE = HIGH; CS# = HIGH  
RFC = RFC (MIN)  
RFC = 15.625µs  
IDD5  
IDD6  
mA  
mA  
3, 12,  
18, 19,  
32, 33  
t
3
3
IDD7 - SELF REFRESH CURRENT OPTIONS (x32)  
(Notes: Note 4 appears on page 39) (VDD = +3.3V 0.3V or 2.5 0.2V, VDDQ) = +3.3V 0.3V or +2.5V 0.2V or  
+1.8V 0.15V)  
Temperature Compensated Self Refresh  
Parameter/Condition  
Max  
Temperature  
-8 and -10  
UNITS NOTES  
Self Refresh Current:  
CKE < 0.2V  
85ºC  
70ºC  
45ºC  
15ºC  
1000  
550  
400  
350  
µA  
µA  
µA  
µA  
4
4
4
4
CAPACITANCE  
(Note: 2; notes appear on page 39)  
PARAMETER  
SYMBOL MIN  
MAX UNITS NOTES  
Input Capacitance: CLK  
CI1  
CI2  
CIO  
2.5  
2.5  
4.0  
3.5  
3.8  
6.0  
pF  
pF  
pF  
29  
30  
31  
Input Capacitance: All other input-only pins  
Input/Output Capacitance: DQs  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
38  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
NOTES  
t
1. All voltages referenced to VSS.  
2. This parameter is sampled. VDD, VDDQ = +3.3V;  
14. Timing actually specified by CKS; clock(s) specified  
as a reference only at minimum cycle rate.  
t
t
f = 1 MHz, T = 25°C; pin under test biased at 1.4V.  
15. Timing actually specified by WR plus RP; clock(s)  
specified as a reference only at minimum cycle rate.  
A
3. IDD is dependent on output loading and cycle rates.  
Specified values are obtained with minimum cycle  
time and the outputs open.  
4. Enables on-chip refresh and address counters.  
5. The minimum specifications are used only to  
indicate cycle time at which proper operation over  
t
16. Timing actually specified by WR.  
17. Required clocks are specified by JEDEC functionality  
and are not dependent on any timing parameter.  
18. The IDD current will increase or decrease propor-  
tionally according to the amount of frequency alter-  
ation for the test condition.  
the full temperature range (-40°C T +85°C for  
IT parts) is ensured.  
A
19. Address transitions average one transition every two  
clocks.  
6. An initial pause of 100µs is required after power-up,  
followed by two AUTO REFRESH commands, before  
proper device operation is ensured. (VDD and VDDQ  
must be powered up simultaneously. VSS and VSSQ  
mustbeatsamepotential.)ThetwoAUTOREFRESH  
command wake-ups should be repeated any time  
20. CLK must be toggled a minimum of two times during  
this period.  
t
t
21. Based on CK =8ns for -8 and CK =10ns for -10.  
22. VIH overshoot: VIH (MAX) = VDDQ + 2V for a pulse width  
3ns, and the pulse width cannot be greater than one  
third of the cycle rate. VIL undershoot: VIL (MIN) = -2V  
for a pulse width 3ns.  
t
the REF refresh requirement is exceeded.  
t
7. AC characteristics assume T = 1ns.  
8. In addition to meeting the transition rate specifica-  
tion, theclockandCKEmusttransitbetweenVIH and  
VIL (or between VIL and VIH) in a monotonic manner.  
9. Outputs measured for 3.3V at1.5V or 2.5V at 1.25V  
with equivalent load:  
23. The clock frequency must remain constant (stable  
clock is defined as a signal cycling within timing  
constraints specified for the clock pin) during access  
t
or precharge states (READ, WRITE, including WR,  
and PRECHARGE commands). CKE may be used to  
reduce the data rate.  
24. Auto precharge mode only. The precharge timing  
Q
t
budget ( RP) begins at 7ns for -8 after the first clock  
30pF  
delay, after the last WRITE is executed. May not ex-  
ceed limit set for precharge mode.  
25. Precharge mode only.  
26. JEDEC and PC100 specify three clocks.  
27. AC for -8 at CL = 3 with no load is 7ns and is guaran-  
t
10. HZ defines the time at which the output achieves the  
t
open circuit condition; it is not a reference to VOH or  
VOL. The last valid data element will meet OH before  
going High-Z.  
teed by design.  
t
28. Parameter guaranteed by design.  
29. PC100 specifies a maximum of 4pF.  
30. PC100 specifies a maximum of 5pF.  
31. PC100 specifies a maximum of 6.5pF.  
11. AC timing and IDD tests have VIL and VIH, with timing  
referenced to VIH/2 = crossover point. If the input  
transition time is longer than t (MAX), then the  
t
T
32. For -8, CL = 2 and CK = 10ns; for -10, CL = 3 and  
timing is referenced at VIL (MAX) and VIH (MIN) and  
no longer at the VIH/2 crossover point.  
12. Other input signals are allowed to transition no more  
than once every two clocks and are otherwise at valid  
VIH or VIL levels.  
t
CK =10ns.  
33. CKE is HIGH during refresh command period  
t
RFC (MIN) else CKE is LOW. The IDD6 limit is actu-  
ally a nominal value and does not result in a fail  
value.  
13. IDD specifications are tested after the device is prop-  
erly initialized.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
39  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
INITIALIZE AND LOAD MODE REGISTER1,2  
T1  
T0  
T3  
T5  
T7  
T9  
T19  
T29  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
CLK  
t
CK  
t
t
CKS CKH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
CKE  
COMMAND5  
DQML, DQMU  
t
t
CMS CMH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
4
4
3
4
4
4
ACT  
NOP  
PRE  
LMR  
LMR  
PRE  
AR  
AR  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
t
t
AS AH  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
A0-A9, A11  
A10  
CODE  
CODE  
CODE  
RA  
RA  
BA  
ALL BANKS  
ALL BANKS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
CODE  
t
AS  
t
AH  
t
t
AH  
t
AH  
t
AS  
AS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
BA0 = L,  
BA1 = H  
BA0 = L,  
BA1 = L  
BA0, BA1  
DQ  
High-Z  
( (  
) )  
((  
))  
((  
))  
((  
))  
((  
))  
((  
))  
((  
))  
T = 100µs  
t
t
t
t
RP  
t
t
RFC  
RP  
MRD  
MRD  
RFC  
Power-up:  
DD and  
CLK stable  
Load Extended  
Mode Register  
Load Mode  
Register  
V
DON’T CARE  
NOTE:  
1. The two AUTO REFRESH commands at T9 and T19 may be applied before either LOAD MODE REGISTER (LMR) command.  
2. PRE = PRECHARGE command, LMR = LOAD MODE REGISTER command, AR = AUTO REFRESH command, ACT = ACTIVE command, RA = Row Address,  
BA = Bank Address  
3. Optional refresh command.  
4. The Load Mode Register for both MR/EMR and 2 Auto Refresh commands can be in any order. However, all must occur prior to an Active command.  
5. Device timing is -10 with 100 MHz clock.  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
2.5  
3
CKS  
2.5  
1
2.5  
1
t
t
CH  
CMH  
t
t
CL  
3
3
CMS  
2.5  
2
2.5  
2
t
t
t
t
3
t
CK (3)  
8
10  
12  
25  
MRD  
RFC  
RP  
CK  
t
CK (2)  
10  
20  
80  
20  
100  
20  
ns  
ns  
t
CK (1)  
*CAS latency indicated in parentheses.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
40  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
POWER-DOWN MODE1  
T0  
T1  
T2  
Tn + 1  
Tn + 2  
( (  
t
t
) )  
CK  
CL  
CLK  
CKE  
( (  
) )  
t
CH  
t
t
CKS  
CKS  
( (  
) )  
t
t
CKS  
CKH  
t
t
CMS CMH  
PRECHARGE  
( (  
) )  
( (  
) )  
COMMAND  
NOP  
NOP  
NOP  
ACTIVE  
( (  
) )  
( (  
) )  
DQML, DQMU  
( (  
) )  
( (  
) )  
A0-A9, A11  
A10  
ROW  
ROW  
ALL BANKS  
( (  
) )  
( (  
) )  
SINGLE BANK  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
BA0, BA1  
DQ  
BANK  
BANK(S)  
High-Z  
( (  
) )  
Two clock cycles  
Input buffers gated off while in  
power-down mode  
Precharge all  
active banks  
All banks idle  
All banks idle, enter  
power-down mode  
Exit power-down mode  
DON’T CARE  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
SYMBOL*  
MIN  
MAX  
MIN  
25  
1
MAX UNITS  
t
t
AH  
ns  
ns  
ns  
ns  
ns  
ns  
CK (1)  
20  
1
ns  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
2.5  
3
CKH  
t
t
CH  
CKS  
2.5  
1
2.5  
1
t
t
CL  
3
3
CMH  
t
t
CK (3)  
8
10  
12  
CMS  
2.5  
2.5  
t
CK (2)  
10  
*CAS latency indicated in parentheses.  
NOTE: 1. Violating refresh requirements during power-down may result in a loss of data.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
41  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
CLOCK SUSPEND MODE1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
CK  
t
CL  
CLK  
CKE  
t
CH  
t
t
CKS CKH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
READ  
NOP  
NOP  
NOP  
NOP  
NOP  
WRITE  
NOP  
t
t
CMS  
CMH  
DQMU, DQML  
A0-A9, A11  
t
t
AH  
AS  
2
2
COLUMN m  
COLUMN e  
t
AS  
t
AH  
A10  
t
AS  
t
AH  
BA0, BA1  
BANK  
BANK  
t
AC  
t
AC  
t
OH  
t
HZ  
t
DS  
t
DH  
D
OUT  
m
D
OUT m + 1  
D
OUT  
e
DOUT e + 1  
DQ  
t
LZ  
DON’T CARE  
UNDEFINED  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
MAX UNITS  
SYMBOL*  
MIN  
1
MAX  
MIN  
MAX UNITS  
SYMBOL*  
MIN  
MAX  
MIN  
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
1
2.5  
1
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AC (2)  
CKS  
2.5  
1
t
t
AC (1)  
19  
22  
CMH  
t
t
AH  
1
2.5  
3
1
2.5  
3
CMS  
2.5  
1
2.5  
1
t
t
AS  
DH  
t
t
CH  
DS  
2.5  
2.5  
t
t
CL  
3
3
HZ (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
t
t
CK (3)  
8
10  
12  
HZ (2)  
t
t
CK (2)  
10  
HZ (1)  
19  
22  
t
t
LZ  
1
1
CK (1)  
20  
25  
ns  
t
OH  
2.5  
2.5  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 2, the CAS latency = 3, and auto precharge is disabled.  
2. x16: A9 and A11 = “Don’t Care”  
x32: A8, A9 and A11 = “Don’t Care”  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
42  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
AUTO REFRESH MODE  
T0  
T1  
T2  
Tn + 1  
CL  
To + 1  
( (  
) )  
( (  
) )  
t
CLK  
CKE  
t
t
( (  
( (  
CK  
CH  
) )  
) )  
( (  
) )  
( (  
) )  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
AUTO  
REFRESH  
AUTO  
REFRESH  
COMMAND  
PRECHARGE  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
( (  
( (  
) )  
) )  
( (  
) )  
( (  
) )  
DQMU, DQML  
( (  
( (  
) )  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
A0-A9, A11  
A10  
ROW  
ROW  
ALL BANKS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
SINGLE BANK  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
BANK(S)  
BA0, BA1  
DQ  
BANK  
( (  
( (  
) )  
) )  
High-Z  
( (  
) )  
( (  
) )  
t
t
t
1
RFC  
1
RP  
RFC  
Precharge all  
active banks  
DON’T CARE  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
SYMBOL*  
MIN  
20  
1
MAX  
MIN  
25  
MAX UNITS  
t
t
AH  
ns  
ns  
ns  
ns  
ns  
ns  
CK (1)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
2.5  
3
CKH  
1
t
t
CH  
CKS  
2.5  
1
2.5  
1
t
t
CL  
3
3
CMH  
t
t
CK (3)  
8
10  
12  
CMS  
2.5  
80  
20  
2.5  
100  
20  
t
t
CK (2)  
10  
RFC  
t
RP  
*CAS latency indicated in parentheses.  
NOTE: 1. Each AUTO REFRESH command performs a refresh cycle. Back-to-back commands are not required.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
43  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
SELF REFRESH MODE  
T0  
T1  
T2  
Tn + 1  
To + 1  
To + 2  
( (  
) )  
( (  
) )  
t
CL  
CLK  
CKE  
t
( (  
) )  
( (  
) )  
t
CH  
CK  
t
> t  
CKS  
RAS  
( (  
) )  
( (  
) )  
( (  
) )  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
( (  
) )  
AUTO  
REFRESH  
AUTO  
REFRESH  
COMMAND  
PRECHARGE  
NOP  
NOP  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
DQMU, DQML  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
A0-A9, A11  
A10  
ALL BANKS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
SINGLE BANK  
t
t
AH  
AS  
( (  
) )  
( (  
) )  
( (  
) )  
( (  
) )  
BA0, BA1  
DQ  
BANK(S)  
High-Z  
( (  
) )  
( (  
) )  
t
t
XSR  
RP  
Precharge all  
active banks  
Enter self refresh mode  
Exit self refresh mode  
(Restart refresh time base)  
DON’T CARE  
CLK stable prior to exiting  
self refresh mode  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
t
t
t
t
t
t
AH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
CKS  
CMH  
CMS  
RAS  
RP  
ns  
ns  
ns  
ns  
t
AS  
2.5  
3
2.5  
3
2.5  
1
2.5  
1
t
CH  
t
CL  
3
3
2.5  
48  
20  
80  
2.5  
50  
t
CK (3)  
8
10  
12  
25  
120,000  
120,000  
ns  
ns  
ns  
t
CK (2)  
10  
20  
20  
t
CK (1)  
XSR  
100  
*CAS latency indicated in parentheses.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
44  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
READ – WITHOUT AUTO PRECHARGE1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
CK  
t
CL  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS CMH  
COMMAND  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
ROW  
t
t
CMS CMH  
DQMU, DQML  
A0-A9, A11  
t
t
AH  
AS  
2
ROW  
COLUMN m  
t
AS  
t
AH  
ALL BANKS  
ROW  
ROW  
A10  
SINGLE BANKS  
BANK(S)  
DISABLE AUTO PRECHARGE  
BANK  
t
AS  
t
AH  
BA0, BA1  
BANK  
BANK  
t
AC  
t
AC  
t
AC  
t
AC  
t
OH  
t
OH  
t
OH  
t
OH  
DOUT  
m
D
OUT m+1  
D
OUT m+2  
DOUT m+3  
DQ  
t
LZ  
t
HZ  
t
t
RCD  
CAS Latency  
RP  
t
RAS  
t
RC  
DON’T CARE  
UNDEFINED  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
SYMBOL*  
MIN  
MAX  
MIN  
1
MAX UNITS  
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
1
ns  
ns  
t
t
AC (2)  
CMS  
2.5  
2.5  
t
t
AC (1)  
19  
22  
HZ (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AH  
1
2.5  
3
1
2.5  
3
HZ (2)  
t
t
AS  
HZ (1)  
19  
22  
t
t
CH  
LZ  
1
1
t
t
CL  
3
3
OH  
2.5  
48  
80  
20  
20  
2.5  
50  
t
t
CK (3)  
8
10  
12  
25  
1
RAS  
120,000  
120,000  
t
t
CK (2)  
10  
20  
1
RC  
100  
20  
t
t
CK (1)  
RCD  
t
t
CKH  
RP  
20  
t
CKS  
2.5  
2.5  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4, the CAS latency = 2, and the READ burst is followed by a “manual”  
PRECHARGE.  
2. x16: A9 and A11 = “Don’t Care”  
x32: A8, A9,and A11 = “Don’t Care”  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
45  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
READ – WITH AUTO PRECHARGE1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
CK  
t
CL  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS CMH  
COMMAND  
DQMU, DQML  
A0-A9, A11  
ACTIVE  
NOP  
READ  
t
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
t
CMS  
CMH  
t
t
AH  
AS  
2
ROW  
ROW  
COLUMN m  
t
AS  
t
AH  
ENABLE AUTO PRECHARGE  
ROW  
ROW  
A10  
t
AS  
t
AH  
BA0, BA1  
BANK  
BANK  
BANK  
t
AC  
t
AC  
t
AC  
t
AC  
t
OH  
t
OH  
t
OH  
t
OH  
DOUT  
m
DOUT  
m
+ 1  
DOUT  
m
+ 2  
DOUT m + 3  
DQ  
t
LZ  
t
HZ  
t
t
RP  
RCD  
CAS Latency  
t
RAS  
t
RC  
DON’T CARE  
UNDEFINED  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
ns  
ns  
t
t
AC (2)  
CMS  
2.5  
2.5  
t
t
AC (1)  
19  
22  
HZ (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AH  
1
2.5  
3
1
2.5  
3
HZ (2)  
t
t
AS  
HZ (1)  
19  
22  
t
t
CH  
LZ  
1
1
t
t
CL  
3
3
OH  
2.5  
48  
80  
20  
20  
2.5  
50  
70  
20  
20  
t
t
CK (3)  
8
10  
12  
25  
1
RAS  
120,000  
120,000  
t
t
CK (2)  
10  
20  
1
RC  
t
t
CK (1)  
RCD  
t
t
CKH  
RP  
t
CKS  
2.5  
2.5  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4, and the CAS latency = 2.  
2. x16: A9 and A11 = “Don’t Care”  
x32: A8, A9,and A11 = “Don’t Care”  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
46  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
SINGLE READ – WITHOUT AUTO PRECHARGE1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
CK  
t
CL  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS CMH  
3
3
COMMAND  
PRECHARGE  
ACTIVE  
NOP  
READ  
NOP  
NOP  
NOP  
ACTIVE  
ROW  
NOP  
t
t
CMS CMH  
DQMU, DQML  
A0-A9, A11  
t
t
AH  
AS  
COLUMN m2  
ROW  
t
AS  
t
AH  
ALL BANKS  
ROW  
ROW  
A10  
DISABLE AUTO PRECHARGE  
BANK  
SINGLE BANKS  
BANK(S)  
t
AS  
t
AH  
BA0, BA1  
BANK  
BANK  
t
AC  
t
OH  
D
OUT m  
DQ  
t
LZ  
t
HZ  
t
t
RCD  
CAS Latency  
RP  
t
RAS  
t
RC  
DON’T CARE  
UNDEFINED  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
t
t
t
t
t
t
t
t
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
CMS  
ns  
ns  
t
AC (2)  
2.5  
2.5  
t
AC (1)  
19  
22  
HZ (3)  
HZ (2)  
HZ (1)  
LZ  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
AH  
1
2.5  
3
1
2.5  
3
t
AS  
19  
22  
t
CH  
1
1
t
CL  
3
3
OH  
2.5  
48  
80  
20  
20  
2.5  
50  
t
CK (3)  
8
10  
12  
25  
1
RAS  
RC  
120,000  
120,000  
t
CK (2)  
10  
20  
1
100  
20  
t
CK (1)  
RCD  
RP  
t
CKH  
20  
t
CKS  
2.5  
2.5  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 1, the CAS latency = 2, and the READ burst is followed by a “manual”  
PRECHARGE.  
2. x16: A9 and A11 = “Don’t Care”  
x32: A8, A9,and A11 = “Don’t Care”  
3. PRECHARGE command not allowed or tRAS would be violated.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
47  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
SINGLE READ – WITH AUTO PRECHARGE1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
CK  
t
CL  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS CMH  
3
3
COMMAND  
DQMU, DQML  
A0-A9, A11  
ACTIVE  
NOP  
NOP  
NOP  
READ  
t
NOP  
ACTIVE  
NOP  
NOP  
t
CMS  
CMH  
t
t
AH  
AS  
2
ROW  
ROW  
COLUMN m  
t
AS  
t
AH  
ENABLE AUTO PRECHARGE  
ROW  
ROW  
A10  
t
AS  
t
AH  
BA0, BA1  
BANK  
BANK  
BANK  
t
AC  
t
OH  
D
OUT  
m
DQ  
t
CAS Latency  
t
HZ  
RCD  
t
RP  
t
RAS  
t
RC  
DON’T CARE  
UNDEFINED  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
SYMBOL*  
MIN  
MAX  
MIN  
1
MAX UNITS  
t
t
t
t
t
t
t
t
t
t
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
CMS  
HZ (3)  
HZ (2)  
HZ (1)  
LZ  
1
ns  
ns  
t
AC (2)  
2.5  
2.5  
t
AC (1)  
19  
22  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
AH  
1
2.5  
3
1
2.5  
3
t
AS  
19  
22  
t
CH  
1
1
t
CL  
3
3
OH  
2.5  
48  
80  
20  
20  
2.5  
50  
t
CK (3)  
8
10  
12  
25  
1
RAS  
RC  
120,000  
120,000  
t
CK (2)  
10  
20  
1
100  
20  
t
CK (1)  
RCD  
RP  
t
CKH  
20  
t
CKS  
2.5  
2.5  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 1, and the CAS latency = 2.  
2. x16: A9 and A11 = “Don’t Care”  
x32: A8, A9,and A11 = “Don’t Care”  
3. READ command not allowed else tRAS would be violated.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
48  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
ALTERNATING BANK READ ACCESSES1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
CK  
t
CL  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
COMMAND  
t
t
CMS  
CMH  
ACTIVE  
NOP  
READ  
t
NOP  
ACTIVE  
NOP  
READ  
NOP  
ACTIVE  
t
CMS  
CMH  
DQMU, DQML  
A0-A9, A11  
t
t
AH  
AS  
2
2
ROW  
ROW  
ROW  
ROW  
COLUMN m  
COLUMN b  
t
AS  
t
AH  
ENABLE AUTO PRECHARGE  
ENABLE AUTO PRECHARGE  
ROW  
ROW  
A10  
t
AS  
t
AH  
BA0, BA1  
BANK 0  
BANK 0  
BANK 3  
t
BANK 3  
BANK 0  
t
AC  
t
t
AC  
t
AC  
AC  
AC  
t
AC  
t
OH  
t
OH  
t
OH  
t
OH  
t
OH  
DOUT  
m
DOUT m + 1  
DOUT m + 2  
D
OUT m + 3  
DOUT b  
DQ  
t
LZ  
t
t
RCD - BANK 0  
t
RCD - BANK 0  
CAS Latency - BANK 0  
RP - BANK 0  
t
RAS - BANK 0  
t
RC - BANK 0  
t
t
RCD - BANK 3  
CAS Latency - BANK 3  
RRD  
DON’T CARE  
UNDEFINED  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
MAX UNITS  
SYMBOL*  
MIN  
2.5  
1
MAX  
MIN  
2.5  
1
MAX UNITS  
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKS  
ns  
ns  
ns  
ns  
ns  
t
t
AC (2)  
CMH  
t
t
AC (1)  
19  
22  
CMS  
2.5  
1
2.5  
1
t
t
AH  
1
2.5  
3
1
2.5  
3
LZ  
t
t
AS  
OH  
2.5  
48  
80  
20  
20  
20  
2.5  
50  
t
t
CH  
RAS  
120,000  
120,000  
ns  
ns  
ns  
ns  
ns  
t
t
CL  
3
3
RC  
100  
20  
t
t
CK (3)  
8
10  
12  
25  
1
RCD  
t
t
CK (2)  
10  
20  
1
RP  
20  
t
t
CK (1)  
RRD  
20  
t
CKH  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4, and the CAS latency = 2.  
2. x16: A9 and A11 = “Don’t Care”  
x32: A8, A9,and A11 = “Don’t Care”  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
49  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
READ – FULL-PAGE BURST1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
Tn + 1  
Tn + 2  
Tn + 3  
Tn + 4  
( (  
) )  
( (  
) )  
t
CL  
t
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
( (  
) )  
CKE  
( (  
) )  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
COMMAND  
ACTIVE  
NOP  
READ  
t
NOP  
NOP  
NOP  
NOP  
NOP  
BURST TERM  
NOP  
NOP  
t
CMS  
CMH  
( (  
) )  
DQMU, DQML  
A0-A9, A11  
( (  
) )  
t
AS  
t
AH  
( (  
) )  
( (  
) )  
2
ROW  
COLUMN m  
t
AS  
t
AH  
( (  
) )  
( (  
) )  
ROW  
A10  
t
AS  
t
AH  
( (  
) )  
( (  
) )  
BA0, BA1  
BANK  
BANK  
t
t
t
t
t
AC  
AC  
AC  
AC  
AC  
( (  
) )  
t
AC  
t
t
t
OH  
t
t
t
OH  
OH  
OH  
OH  
OH  
( (  
) )  
( (  
) )  
D
OUT  
m
D
OUT m+1  
D
OUT m+2  
D
OUT m-1  
D
OUT  
m
DOUT m+1  
DQ  
t
LZ  
t
HZ  
512 (x16) locations within same row  
t
RCD  
CAS Latency  
Full page completed  
DON’T CARE  
Full-page burst does not self-terminate.  
Can use BURST TERMINATE command. 3  
UNDEFINED  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
MAX UNITS  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
ns  
ns  
ns  
ns  
t
t
AC (2)  
CKS  
2.5  
1
2.5  
1
t
t
AC (1)  
19  
22  
CMH  
t
t
AH  
1
2.5  
3
1
2.5  
3
CMS  
2.5  
2.5  
t
t
AS  
HZ (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
t
t
CH  
HZ (2)  
t
t
CL  
3
3
HZ (1)  
19  
22  
t
t
CK (3)  
8
10  
12  
25  
LZ  
1
1
t
t
CK (2)  
10  
20  
OH  
2.5  
20  
2.5  
20  
t
t
CK (1)  
ns  
RCD  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the CAS latency = 2.  
2. x16: A9 and A11 = “Don’t Care”  
x32: A8, A9,and A11 = “Don’t Care”  
3. Page left open; no tRP.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
50  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
READ – DQM OPERATION1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
READ  
t
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
t
CMS CMH  
DQMU, DQML  
t
AS  
t
AH  
2
A0-A9, A11  
A10  
ROW  
COLUMN m  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
DISABLE AUTO PRECHARGE  
BANK  
t
AS  
t
AH  
BA0, BA1  
BANK  
t
AC  
t
t
t
t
t
OH  
AC  
OH  
AC  
OH  
D
OUT  
m
D
OUT m + 2  
DOUT m + 3  
DQ  
t
LZ  
t
t
t
HZ  
LZ  
HZ  
t
RCD  
CAS Latency  
DON’T CARE  
UNDEFINED  
TIMING PARAMETERS  
-8  
-10  
MAX UNITS  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
SYMBOL*  
MIN  
1
MAX  
MIN  
MAX UNITS  
t
t
AC (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
1
ns  
ns  
ns  
ns  
t
t
AC (2)  
CKS  
2.5  
1
2.5  
1
t
t
AC (1)  
19  
22  
CMH  
t
t
AH  
1
2.5  
3
1
2.5  
3
CMS  
2.5  
2.5  
t
t
AS  
HZ (3)  
7
8
7
8
ns  
ns  
ns  
ns  
ns  
ns  
t
t
CH  
HZ (2)  
t
t
CL  
3
3
HZ (1)  
19  
22  
t
t
CK (3)  
8
10  
12  
25  
LZ  
1
1
t
t
CK (2)  
10  
20  
OH  
2.5  
20  
2.5  
20  
t
t
CK (1)  
RCD  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4, and the CAS latency = 2.  
2. x16: A9 and A11 = “Don’t Care”  
x32: A8, A9,and A11 = “Don’t Care”  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
51  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
WRITE – WITHOUT AUTO PRECHARGE1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
NOP  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
t
t
CMS  
CMH  
DQMU, DQML  
A0-A9, A11  
t
t
t
t
AH  
AS  
3
ROW  
t
ROW  
ROW  
BANK  
COLUMN m  
AS  
AH  
ALL BANKS  
ROW  
t
A10  
DISABLE AUTO PRECHARGE  
BANK  
SINGLE BANK  
BANK  
AS  
AH  
BA0, BA1  
BANK  
t
t
t
t
t
t
t
t
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
D
IN  
m
D
IN m + 1  
D
IN m + 2  
D
IN m + 3  
DQ  
2
t
t
t
RCD  
RP  
WR  
t
RAS  
t
RC  
DON’T CARE  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MAX  
1
MIN  
MAX UNITS  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AH  
1
2.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
CMS  
2.5  
1
2.5  
1
t
t
CH  
DH  
t
t
CL  
3
3
DS  
2.5  
48  
80  
20  
20  
15  
2.5  
50  
100  
20  
20  
15  
t
t
CK (3)  
8
10  
12  
25  
1
RAS  
120,000  
120,000  
ns  
ns  
ns  
ns  
ns  
t
t
CK (2)  
10  
20  
1
RC  
t
t
CK (1)  
RCD  
t
t
CKH  
RP  
t
t
CKS  
2.5  
2.5  
WR  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4, and the WRITE burst is followed by a “manual” PRECHARGE.  
2. 15ns is required between <DIN m + 3> and the PRECHARGE command, regardless of frequency.  
3. x16: A9 and A11 = “Don’t Care”  
x32: A8, A9,and A11 = “Don’t Care”  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
52  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
WRITE – WITH AUTO PRECHARGE1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
DQMU, DQML  
A0-A9, A11  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
NOP  
NOP  
NOP  
NOP  
ACTIVE  
t
t
CMS  
CMH  
t
t
AS  
AH  
2
ROW  
ROW  
ROW  
BANK  
COLUMN m  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
t
A10  
t
AS  
AH  
BA0, BA1  
BANK  
BANK  
t
t
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
D
IN  
m
D
IN m + 1  
D
IN m + 2  
DIN m + 3  
DQ  
t
t
RP  
t
RCD  
WR  
t
RAS  
t
RC  
DON’T CARE  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
1
MAX  
MIN  
MAX UNITS  
SYMBOL*  
MIN  
2.5  
MAX  
MIN  
2.5  
MAX UNITS  
t
t
AH  
1
2.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
DH  
1
1
t
t
CH  
DS  
2.5  
2.5  
t
t
CL  
3
3
RAS  
48  
120,000  
50  
120,000  
t
t
CK (3)  
8
10  
12  
25  
1
RC  
80  
100  
20  
t
t
CK (2)  
10  
20  
1
RCD  
20  
t
t
CK (1)  
RP  
20  
20  
t
t
CKH  
WR  
1 CLK +  
7ns  
1 CLK +  
5ns  
t
CKS  
2.5  
1
2.5  
1
t
CMH  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4.  
2. x16: A9 and A11 = “Don’t Care”  
x32: A8, A9,and A11 = “Don’t Care”  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
53  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
SINGLE WRITE – WITHOUT AUTO PRECHARGE1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
4
4
COMMAND  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
PRECHARGE  
NOP  
ACTIVE  
NOP  
t
t
CMS  
CMH  
DQMU, DQML  
A0-A9, A11  
t
t
t
t
AH  
AS  
3
ROW  
t
COLUMN m  
AS  
AH  
ALL BANKS  
ROW  
t
ROW  
A10  
DISABLE AUTO PRECHARGE  
BANK  
SINGLE BANK  
BANK  
AS  
AH  
BA0, BA1  
BANK  
BANK  
t
t
DH  
DS  
DIN  
m
DQ  
t
t
RP  
2
t
RCD  
WR  
t
RAS  
t
RC  
DON’T CARE  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
t
t
t
t
t
t
t
t
AH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMH  
CMS  
DH  
ns  
ns  
ns  
ns  
t
AS  
2.5  
3
2.5  
3
2.5  
1
2.5  
1
t
CH  
t
CL  
3
3
DS  
2.5  
48  
80  
20  
20  
15  
2.5  
50  
100  
20  
20  
15  
t
CK (3)  
8
10  
12  
25  
1
RAS  
RC  
120,000  
120,000  
ns  
ns  
ns  
ns  
ns  
t
CK (2)  
10  
20  
1
t
CK (1)  
RCD  
RP  
t
CKH  
t
CKS  
2.5  
2.5  
WR  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 1, and the WRITE burst is followed by a “manual” PRECHARGE.  
2. 15ns is required between <DIN m> and the PRECHARGE command, regardless of frequency.  
3. x16: A9 and A11 = “Don’t Care”  
x32: A8, A9,and A11 = “Don’t Care”  
4. PRECHARGE command not allowed else tRAS would be violated.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
54  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
SINGLE WRITE – WITH AUTO PRECHARGE1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
3
3
3
NOP  
COMMAND  
NOP  
ACTIVE  
ACTIVE  
NOP  
NOP  
WRITE  
t
NOP  
NOP  
NOP  
t
CMS  
CMH  
DQMU, DQML  
A0-A9, A11  
t
t
AS  
AH  
2
ROW  
ROW  
ROW  
BANK  
COLUMN m  
t
t
AH  
AS  
ENABLE AUTO PRECHARGE  
ROW  
t
A10  
t
AS  
AH  
BA0, BA1  
BANK  
BANK  
t
t
DH  
DS  
D
IN m  
DQ  
t
t
RP  
t
RCD  
WR  
t
RAS  
t
RC  
DON’T CARE  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
1
MAX  
MIN  
MAX UNITS  
SYMBOL*  
MIN  
2.5  
MAX  
MIN  
2.5  
MAX UNITS  
t
t
AH  
1
2.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
DH  
1
1
t
t
CH  
DS  
2.5  
2.5  
t
t
CL  
3
3
RAS  
48  
120,000  
50  
120,000  
t
t
CK (3)  
8
10  
12  
25  
1
RC  
80  
100  
20  
t
t
CK (2)  
10  
20  
1
RCD  
20  
t
t
CK (1)  
RP  
20  
20  
t
t
CKH  
WR  
1 CLK +  
7ns  
1 CLK +  
5ns  
t
CKS  
2.5  
1
2.5  
1
t
CMH  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 1.  
2. x16: A9 and A11 = “Don’t Care”  
x32: A8, A9,and A11 = “Don’t Care”  
3. WRITE command not allowed else tRAS would be violated.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
55  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
ALTERNATING BANK WRITE ACCESSES1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
T9  
t
t
CL  
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
CKE  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
WRITE  
NOP  
ACTIVE  
NOP  
WRITE  
NOP  
NOP  
ACTIVE  
t
t
CMS  
CMH  
DQMU, DQML  
A0-A9, A11  
t
t
AH  
AS  
2
2
ROW  
ROW  
ROW  
ROW  
ROW  
COLUMN m  
COLUMN b  
t
AS  
t
AH  
ENABLE AUTO PRECHARGE  
ENABLE AUTO PRECHARGE  
ROW  
A10  
t
AS  
t
AH  
BA0, BA1  
BANK 0  
BANK 0  
BANK 1  
t
BANK 1  
BANK 0  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
D
IN  
m
D
IN m + 1  
D
IN m + 2  
D
IN m + 3  
D
IN  
b
D
IN b + 1  
D
IN b + 2  
D
IN b + 3  
DQ  
t
t
t
t
RCD - BANK 0  
WR - BANK 0  
RP - BANK 0  
RCD - BANK 0  
t
RAS - BANK 0  
t
RC - BANK 0  
t
t
WR - BANK 1  
t
RCD - BANK 1  
RRD  
DON’T CARE  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
1
MAX  
MIN  
MAX UNITS  
SYMBOL*  
MIN  
2.5  
1
MAX  
MIN  
2.5  
1
MAX UNITS  
t
t
t
t
t
t
t
t
t
t
AH  
1
2.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CMS  
DH  
ns  
ns  
ns  
t
AS  
2.5  
3
t
CH  
DS  
2.5  
48  
2.5  
50  
t
CL  
3
3
RAS  
RC  
120,000  
120,000  
ns  
ns  
ns  
ns  
ns  
t
CK (3)  
8
10  
12  
25  
1
80  
100  
20  
t
CK (2)  
10  
20  
1
RCD  
RP  
20  
t
CK (1)  
20  
20  
t
CKH  
RRD  
WR  
20  
20  
t
CKS  
2.5  
1
2.5  
1
1 CLK +  
7ns  
1 CLK +  
5ns  
t
CMH  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4.  
2. x16: A9 and A11 = “Don’t Care”  
x32: A8, A9,and A11 = “Don’t Care”  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
56  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
WRITE – FULL-PAGE BURST  
T0  
T1  
T2  
T3  
T4  
T5  
Tn + 1  
Tn + 2  
Tn + 3  
( (  
) )  
( (  
) )  
t
CL  
t
CK  
CLK  
t
CH  
t
t
CKS  
CKH  
( (  
) )  
CKE  
( (  
) )  
t
t
CMS  
CMH  
( (  
) )  
( (  
) )  
COMMAND  
ACTIVE  
NOP  
WRITE  
t
NOP  
NOP  
NOP  
NOP  
BURST TERM  
NOP  
t
CMH  
CMS  
( (  
) )  
DQMU, DQML  
A0-A9, A11  
( (  
) )  
t
AS  
t
AH  
( (  
) )  
( (  
) )  
1
ROW  
COLUMN m  
t
AS  
t
AH  
( (  
) )  
( (  
) )  
ROW  
A10  
t
AS  
t
AH  
( (  
) )  
( (  
) )  
BA0, BA1  
BANK  
BANK  
t
t
t
t
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
DS  
DH  
( (  
) )  
D
IN  
m
D
IN m + 1  
D
IN m + 2  
D
IN m + 3  
DIN m - 1  
DQ  
( (  
) )  
t
RCD  
Full-page burst does not  
self-terminate. Can use  
BURST TERMINATE  
512 (x16) locations within same row  
command to stop.2, 3  
Full page completed  
DON’T CARE  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
2.5  
3
CKS  
2.5  
1
2.5  
1
t
t
CH  
CMH  
t
t
CL  
3
3
CMS  
2.5  
1
2.5  
1
t
t
CK (3)  
8
10  
12  
25  
DH  
t
t
CK (2)  
10  
20  
DS  
2.5  
20  
2.5  
20  
t
t
CK (1)  
RCD  
*CAS latency indicated in parentheses.  
NOTE: 1. x16: A9 and A11 = “Don’t Care”  
x32: A8, A9,and A11 = “Don’t Care”  
t
2. WR must be satisfied prior to PRECHARGE command.  
3. Page left open; no tRP.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
57  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
WRITE – DQM OPERATION1  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
t
t
CL  
CK  
CLK  
CKE  
t
CH  
t
t
CKS  
CKH  
t
t
CMS  
CMH  
COMMAND  
ACTIVE  
NOP  
WRITE  
t
NOP  
NOP  
NOP  
NOP  
NOP  
t
CMS CMH  
DQMU, DQML  
t
t
t
t
AH  
AS  
2
A0-A9, A11  
ROW  
t
COLUMN m  
AS  
AH  
ENABLE AUTO PRECHARGE  
ROW  
t
A10  
DISABLE AUTO PRECHARGE  
BANK  
AS  
AH  
BA0, BA1  
BANK  
t
t
t
t
t
t
DS  
DH  
DS  
DH  
DS  
DH  
D
IN  
m
D
IN m + 2  
DIN m + 3  
DQ  
t
RCD  
DON’T CARE  
TIMING PARAMETERS  
-8  
-10  
-8  
-10  
SYMBOL*  
MIN  
MAX  
MIN  
1
MAX UNITS  
SYMBOL*  
MIN  
1
MAX  
MIN  
1
MAX UNITS  
t
t
AH  
1
2.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CKH  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
AS  
2.5  
3
CKS  
2.5  
1
2.5  
1
t
t
CH  
CMH  
t
t
CL  
3
3
CMS  
2.5  
1
2.5  
1
t
t
CK (3)  
8
10  
12  
25  
DH  
t
t
CK (2)  
10  
20  
DS  
2.5  
20  
2.5  
20  
t
t
CK (1)  
RCD  
*CAS latency indicated in parentheses.  
NOTE: 1. For this example, the burst length = 4.  
2. x16: A9 and A11 = “Don’t Care”  
x32: A8, A9,and A11 = “Don’t Care”  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
58  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
54-BALL VFBGA (8mm x 9mm)  
0.70 0.075  
SEATING PLANE  
0.08 C  
C
54X 0.35  
SOLDER BALL DIAMETER  
REFERS TO POST REFLOW  
CONDITION. THE PRE-  
REFLOW DIAMETER IS Ø 0.33  
BALL A9  
6.40  
0.80  
TYP  
1.0 MAX  
BALL A1 ID  
BALL A1  
BALL A1 ID  
0.80  
TYP  
6.40  
9.00 0.10  
C
L
3.20 0.05  
4.50 0.05  
C
L
3.20 0.05  
4.00 0.05  
8.00 0.10  
MOLD COMPOUND: EPOXY NOVOLAC  
SUBSTRATE: PLASTIC LAMINATE  
SOLDER BALL MATERIAL: EUTECTIC 63% Sn, 37% Pb or  
62% Sn, 36% Pb, 2%Ag  
SOLDER BALL PAD: Ø .27mm  
NOTE: 1. All dimensions in millimeters.  
2. Package width and length do not include mold protrusion; allowable mold protrusion is 0.25mm per side.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
59  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
90-BALL FBGA (11mm x 13mm)  
.850 .075  
.10  
C
SEATING PLANE  
C
SOLDER BALL MATERIAL: EUTECTIC 63% Sn, 37% Pb.  
Or 62% Sn, 36% Pb, 2% Ag  
SOLDER BALL PAD: Ø .33mm  
11.00 .10  
6.40  
.80  
SUBSTRATE: PLASTIC LAMINATE  
ENCAPSULATION MATERIAL: EPOXY NOVOLAC  
90X Ø 0.45  
SOLDER BALL DIAMETER REFERS  
TO POST REFLOW CONDITION.  
THE PRE-REFLOW DIAMETER IS Ø 0.40mm  
BALL A1 ID  
BALL A1 ID  
TYP  
BALL A9  
BALL A1  
6.50 .05  
13.00 .10  
C
L
11.20  
.80  
5.60 .05  
TYP  
C
L
3.20 .05  
1.20 MAX  
5.50 .05  
(Bottom View)  
NOTE: 1. All dimensions in millimeters.  
2. Recommended pad size for PCB is 0.33mm 0.025mm.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
60  
ADVANCE  
128Mb: x16, x32  
MOBILE SDRAM  
DBFCF  
FBGA DEVICE MARKING  
Due to the size of the package, Micron’s standard part  
number is not printed on the top of each device. Instead,  
an abbreviated device mark comprised of a five-digit  
alphanumericcodeisused. Theabbreviateddevicemarks  
are cross referenced to Micron part numbers in Table 1.  
Speed Grade  
B = -10  
C = -8  
Width ( I/Os)  
D = x16  
G = x32  
Device Density  
F
=
128Mb  
Product Type  
N
P
V
Z
=
=
=
=
2.5V SDR SDRAM, Low Power version (54-ball, 8 x 9)  
3.3V SDR SDRAM, Low Power version (54-ball, 8 x 9)  
2.5V SDR SDRAM, Low Power version (90-ball, 11 x 13)  
3.3V SDR SDRAM, Low Power version (90-ball, 11 x 13)  
Product Group  
D = DRAM  
Z
= DRAM ENGINEERING SAMPLE  
CROSS REFERENCE FOR FBGA OR VFBGA DEVICE MARKING  
ENGINEERING  
SAMPLE  
ZVFGC  
PRODUCTION  
PART NUMBER  
MT48V4M32LFFC-8  
MT48LC4M32LFFC-10  
MT48V8M16LFFF-10  
MT48LC8M16LFFF-8  
ARCHITECTURE  
4 Meg x 32  
4 Meg x 32  
8 Meg x 16  
8 Meg x 16  
FBGA/VFBGA  
90-pin, 11 x 13  
90-pin, 11 x 13  
54-ball, 8 x 9  
54-ball, 8 x 9  
MARKING  
DVFGC  
DZFGB  
ZZFGB  
ZNFDB  
ZPFDC  
DNFDB  
DPFDC  
DATA SHEET DESIGNATION  
Advance: This data sheet contains initial descriptions of products still under development.  
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900  
E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992  
Micron and the M logo are registered trademarks and the Micron logo is a trademark of Micron Technology, Inc.  
128Mb: x16, x32 Mobile SDRAM  
MobileY95W_3V_F.p65 – Rev. F; Pub. 9/02  
Micron Technology, Inc., reserves the right to change products or specifications without notice.  
©2002, Micron Technology, Inc.  
61  

相关型号:

MT48V8M16LFFF

SYNCHRONOUS DRAM
MICRON

MT4936

N-Channel Enhancement Mode Field Effect Transistor
ETC

MT4953

N-Channel Enhancement Mode Field Effect Transistor
ETC

MT49H16M16

REDUCED LATENCY DRAM RLDRAM
MICRON

MT49H16M16FM

REDUCED LATENCY DRAM RLDRAM
MICRON

MT49H16M18

288Mb CIO Reduced Latency
MICRON

MT49H16M18C

288Mb SIO REDUCED LATENCY(RLDRAM II)
MICRON

MT49H16M18CFM-XX

288Mb SIO REDUCED LATENCY(RLDRAM II)
MICRON

MT49H32M9

288Mb CIO Reduced Latency
MICRON

MT49H32M9C

288Mb SIO REDUCED LATENCY(RLDRAM II)
MICRON

MT49H32M9CFM-XX

288Mb SIO REDUCED LATENCY(RLDRAM II)
MICRON

MT49H8M32

REDUCED LATENCY DRAM RLDRAM
MICRON