MVTX1100AL/Q0C/TAV/1 [MICROSEMI]

Telecom Circuit, 1-Func, PQFP208, PLASTIC, QFP-208;
MVTX1100AL/Q0C/TAV/1
型号: MVTX1100AL/Q0C/TAV/1
厂家: Microsemi    Microsemi
描述:

Telecom Circuit, 1-Func, PQFP208, PLASTIC, QFP-208

电信 电信集成电路
文件: 总35页 (文件大小:401K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MVTX1100AL  
PacMON 9-Port HomePNA Packet Concentrator  
DS5438  
ISSUE 1  
February 2001  
1 Features  
Ordering Information  
MVTX1100AL/Q0C/TAV/1  
8 1/10Mbps Serial ports direct interface with  
Home PNA PHY or 8 10/100Mbps RMII ports  
Ideal for MDU (Multiple Dwelling Unit)  
application with Home PNA PHY  
1 10/100Mbps auto-negotiating MII/serial port  
(port 8) that can be used as uplink port  
Up to 8 port-based VLANs can be configured  
from EEPROM  
Internal 1k MAC address table  
Transmit delay control capabilities  
-
Provides maximum delay guarantee  
(<1ms)(Last bit in to first bit out)  
Supports mixed voice-data networks  
-
-
-
Auto address learning  
Auto address aging  
Support Concentrator mode  
Ports 0 & 1 can be trunked to provide a  
2x1/10Mbps link to another switch or server  
Leading edge QoS capabilities provided based  
on 802.1p and IP TOS/DS field  
-
-
2 queues per output port  
Packet scheduling based on Weighted  
Round-Robin (WRR)  
Weighted Random Early Detection/Drop  
(WRED) to drop packets during traffic  
congestion  
Utilizes a single low-cost external SSRAM for  
buffer memory  
-
256k bytes or 512k bytes (1 chip)  
-
2
External I C EEPROM for power-up  
configuration  
Support external parallel port for configuration  
updates  
Optimized pin-out for easy board layout  
Packaged in a 208 PQFP  
-
2 levels of packet drop provided  
Supports both Full/Half duplex ports  
Full wirespeed layer 2 switching on all ports  
Ability to support WinSock2.0 and Windows98  
& Windows2000 smart applications  
10Mbps  
Serial  
Interface  
S
S
R
A
M
10/100  
MII  
S
S
R
A
M
MVTX1100AL  
CPU  
MVTX1100AL  
MVTX1100AL  
8-port 10MB Serial  
10/100  
MII  
10/100MB  
RMII  
Interface  
To WAN  
Port  
1MB  
Serial  
Interface  
10/100  
RMII  
PHY  
10/100  
RMII  
PHY  
Home  
PNA  
PHY  
Home  
PNA  
PHY  
8-Port 10/100 RMII  
+ 1-Port MII Switch  
64+1 Port Switch  
MDU System  
Line Card  
Figure 1 - System Block Diagram  
1
MVTX1100AL  
S
S
R
A
M
10/100  
MII  
MVTX1100AL  
Switch Chip  
1-Port MII 10/100  
8-port 10MB Serial  
XF2020  
Routing Switch  
4-16 10/1000 Ports  
or  
10MB  
Serial  
8-48 10MB ports  
Interface  
Home  
PNA  
PHY  
Home  
PNA  
PHY  
Line Card  
10/100  
MII  
S
S
R
A
M
10/100  
RMII  
MVTX1100AL  
Switch Chip  
1-Port MII 10/100  
8-port 10MB Serial  
PAL  
XF2020  
Routing Switch  
24 10/100 Ports  
+
10MB  
Serial  
2 G UPlinks  
Interface  
Home  
PNA  
PHY  
Home  
PNA  
PHY  
Line Card  
Figure 2 - System Block Diagram (High Port Density MDU system)  
2
MVTX1100AL  
2 Description  
The Packet Monster (PacMON) MVTX1100AL is a  
fully integrated 8-port Ethernet packet concentrator  
designed to support Home Networking. It is ideal for  
Multiple Dwelling Units (MDU) application. PacMON  
MVTX1100AL provides features, normally not  
associated with plug-and-play technology, without  
requiring an external processor to facilitate their  
utilization.  
Service/ Differentiated Services (TOS/DS) eld. This  
priority can be dened as transmit and/or drop  
priority.  
The PacMON MVTX1100AL can be used to create  
an 8-port unmanaged switch with one WAN router  
port by adding a CPU (ARM or MPC 850) connected  
to the additional MII port (port 8). The only external  
components needed for a low cost MDU system are  
the Home PNA physical layer transceivers and a  
single SSRAM per MVTX1100AL.  
PacMON  
MVTX1100AL  
begins  
operating  
immediately at power-up, learning addresses  
automatically, and forwarding packets at full wire  
speed to any of its eight output ports or the uplink  
expansion port. At power-up, MVTX1100AL  
congures itself from the EEPROM, and can then  
provide port trunking, port-based VLANs, and Quality  
of Service (QoS) capabilities, usually associated  
only with managed switches.  
Operating at 50Mhz internally, and with a 50Mhz  
interface to the external SSRAM, the MVTX1100AL  
sustains full wire-speed switching on all nine ports.  
When the system supports 8 ports of 1M Home PNA  
PHY with the 10M Serial uplink, the system clock  
can be operated to 20Mhz and still achieve full wire  
speed switching on all nine ports.  
The proprietary built-in intelligence of the  
MVTX1100AL allows it to recognize and offer packet  
prioritization QoS. Packets are prioritized based on  
their layer 2 VLAN priority tag or layer 3 Type-Of  
The chip is packaged in a small 208 pin Plastic Quad  
Flat-Pak (PQFP) package.  
3
MVTX1100AL  
3 PacMON MVTX1100AL Block Diagram  
I2C Interface  
Registers  
Mgmt  
Xface  
MDIO  
Xface  
Switch  
Control  
Memory  
1k  
Search Engine  
SRAM  
SSRAM  
Frame Engine  
Frame  
Memory  
Interface  
Frame  
Buffer  
Memory  
Eight 1/10 Serial  
or  
10/100 RMIIMACs  
Expansion  
Port MAC  
7 wire serial interface  
MII/Serial Port  
4
MVTX1100AL  
has been completed. The Search Engine examines  
the contents of its internal Switch Database Memory  
for each valid packet received on an input port.  
4 Functional Operation  
The PacMON MVTX1100AL was designed to provide  
a cost-effective layer 2 switching solution, using  
technology from the XF2080 family to offer a highly  
integrated product for the unmanaged, DiffServ  
ready, Ethernet switching market.  
Unknown source and destination MAC addresses  
are detected when the Search Engine does not nd a  
match within its database. These unknown source  
MAC addresses are learned by creating a new entry  
in the switch database memory, and storing the  
necessary resulting information in that location.  
Subsequent searches to a learned destination MAC  
address will return the new contents of that MAC  
Control Table (MCT) entry.  
Eight 1/10 Media Access Controllers (MAC) provide  
the protocol interface into the MVTX1100AL. These  
MACs perform the required packet checks to ensure  
that each packet provided to the Frame Engine  
meets all the IEEE 802.1 standards. Data packets  
longer than 1518 (1522 with VLAN tag) bytes and  
shorter than 64 bytes are dropped, and  
MVTX1100AL has been designed to support  
minimum inter-frame gaps between incoming  
packets.  
After each source address search the MCT entry  
aging ag is updated. MCT entries that have not  
been accessed during a user congurable time  
period (2 to 67,108 seconds) will be removed. This  
aging time period can be congured using the 16-bit  
value stored in the registers MAC Address Aging  
Time Low and High (MATL[7:0], MATH[7:0]). The  
aging period is dened by the following equation:  
The Frame Engine (FE) is the primary packet  
buffering and forwarding engine within the  
MVTX1100AL. As such, the FE controls the storage  
of packets in and out of the external frame buffer  
memory, keeps track of frame buffer availability, and  
schedules output packet transmissions. While packet  
data is being buffered, the FE extracts the necessary  
information from each packet header and sends it to  
the Search Engine for processing. Search results  
returned to the FE ensue the scheduling of packet  
transmission and prioritization. When a packet is  
chosen for transmission, the FE reads the packet  
from external buffer memory and places it in the  
output FIFO of the output port.  
{MATH[7:0]&MATL[7:0]} x 1024ms = Tage  
The aging of all MCT entries is checked once during  
each time period. If the MCT entry has not been  
utilized before the end of the next time period, it will  
be deleted.  
Note that when the system clock operates at 20Mhz,  
the aging period will be increased, compared with  
50Mhz of system clock. One should adjust the MATH  
and MATHL content variable accordingly.  
5 Address Learning and Aging  
The PacMON MVTX1100AL is able to begin address  
learning and packet forwarding shortly after powerup  
5
MVTX1100AL  
threshold, it will override the WRR weights and  
transmit only high priority packets until the high  
priority packet delays are below the threshold. This  
threshold limit is set at less than 1ms (last bit in and  
rst bit out).  
6 Quality of Service  
The PacMON MVTX1100AL utilizes the CoSMOS  
architecture that provides a new level of Quality of  
Service (QoS) capability to unmanaged switch  
applications. Similar in operation to the QoS  
capabilities of the XF2080 chipset members,  
MVTX1100AL provides two transmit queues per  
output port.  
The QoS capabilities of the MVTX1100AL are  
enabled by loading the appropriate values into the  
conguration registers. QoS for packet transmission  
is enabled by performing the following four steps:  
The Frame Engine manages the output transmission  
queues for all the MVTX1100AL ports. Once the  
destination address search is complete, and the  
switch decision is passed back to the FE, the packet  
is inserted into the appropriate output queue. The  
packet entry into the high or low priority queue is  
controlled by either the VLAN tag information or the  
Type of Service/Differentiated Service (TOS/DS) eld  
in the IP header. Either of these priority elds can be  
used to select the transmission priority, and the  
mapping of the priority eld values into either the  
high or low priority queue can be congured using  
the MVTX1100AL conguration registers.  
1. Select the TOS/DS or VLAN Priority Tag eld as  
the control for IP packet transmission. The  
selection is made using bit 7 of the Flooding  
Control (FCR[7]) register.  
-
FCR[7]=0, use VLAN Priority Tag eld to map  
the transmission priority if this Tag eld exists.  
-
FCR[7]=1, use TOS/DS eld for IP packet  
transmission priority mapping.  
2. Select which TOS/DS eld to use as the control  
for packet transmission priority if the TOS/DS eld  
was selected in step 1. The selection is made  
using bit 6 of the FCB Buffer Low Threshold  
(FCBST[6]) register.  
If the system uses the TOS/DS eld to prioritize  
packets, there are two choices regarding which bits  
of the TOS/DS eld are used. Bits [0:2] of the TOS  
byte (known as the IP precedence eld) or bits [3:5]  
of the TOS byte (known as the DRT eld) can be  
used to map the transmission queue priority. Either  
bits, [0:2] or [3:5], can also be used as a packet drop  
precedence, by using bits 6 and 7 of the FCB Buffer  
Low Threshold register (FCBST).  
-
FCBST[6]=0, use DTR subeld to map the  
transmission priority.  
FCBST[6]=1, use IP precedence subeld to  
1
-
map the transmission priority.  
3. Set the transmission queue weight for the high  
priority queue in the Transmission Scheduling  
Control (AXSC[3:0]) register.  
4. Set the priority mappings from the TOS/DS or  
VLAN Priority Tag eld to the high or low priority  
output queue. The selection is made using the  
VLAN Priority Map (AVPM) and TOS Priority Map  
(TOSPML) registers.  
MVTX1100AL utilizes Weighted Round Robin (WRR)  
and Weighted Random Early Detection/Drop  
(WRED) to schedule packets for transmission. To  
enable MVTX1100ALs QoS capabilities requires the  
use of an external EEPROM to change the default  
register congurations and turn on QoS.  
Note that, for half duplex operation, the priority  
queues must be enabled using bit 7 in the  
Transmission Scheduling Control (AXSC[7]) register  
to utilize the QoS function.  
2
Weighted Round Robin is an efcient method to  
ensure that each of the transmission queues gets at  
least a minimum service level. With two output  
transmission queues, MVTX1100AL will transmit X”  
packets from the high priority queue before  
transmitting Ypackets from the low priority queue.  
MVTX1100AL allows the designer to set the high  
priority weight to a value between 0 and 16. The low  
priority weight is xed at the value 1. If the high  
priority weight is set to the value 4, then it will  
transmit 4 high priority packets before transmitting  
each low priority packet.  
1. IP precedence and DTR subelds are referred to  
as TOS/DS[0:2] and TOS/DS[3:5] in the IP TOS/DS  
byte.  
2. In Half Duplex mode, the QoS functions are  
disabled by default.  
MVTX1100AL also uses a proprietary mechanism to  
ensure the timely delivery of high priority packets.  
When the latency of high priority packets reaches a  
6
MVTX1100AL  
When QoS is enabled, MVTX1100AL will utilize  
WRR to schedule packet transmission, and will use  
Weighted Random Early Detection/Drop (WRED) to  
drop random packets in order to handle buffer  
memory congestion. In this method, only certain  
packet ows are slowed down while the remaining  
see no impact from the network trafc congestion.  
is not recommended for networks that mix voice and  
data trafc.  
WRED allows trafc to continue owing into ports on  
a switch, and randomly drops packets with different  
probabilities based upon each packets priority  
markings. As the switch congestion increases, the  
probability of dropping an input packet increases,  
and as congestion decreases, the probability of  
dropping an input packet decreases. In this manner,  
only trafc ows that have had packets dropped will  
be affected by the congestion. Other trafc ows will  
see no effect.  
Weighted Random Early Detection/Drop (WRED) is  
a method of handling trafc congestion in the  
absence of ow control mechanisms. When ow  
control is enabled, all devices that are connected to  
a switch node that is exercising ow control are  
effectively unable to transmit, including nodes that  
are not directly responsible for the congestion  
problem. This inability to transmit during ow control  
periods would play havoc with voice packets, or other  
high priority packet ows, and therefore ow control  
The following table summarizes the WRED operation  
of the MVTX1100AL. It lists the buffer thresholds at  
which each drop probability takes effect.  
WRED Threshold  
Drop Percentage  
Hi Priority  
Low Priority  
Hi Drop Priority  
Low Drop Priority  
Level 0  
Level 1  
Level 2  
total buffer space available is LPBT buffer  
50%  
75%  
0%  
24 buffers  
None  
72 buffers  
84 buffers  
25%  
50%  
100%  
The WRED packet drop capabilities of COSMOS 2  
are enabled by performing the following three steps:  
Note that to utilize the QoS function of the  
MVTX1100AL, ow control has to be disabled.  
1. Select the TOS/DS or VLAN Tag eld as the  
control for packet dropping. The selection is  
made using bit 7 of the Flooding Control (FCR[7])  
register.  
7 Buffer Management  
MVTX1100AL stores each input packet into the  
external frame buffer memory while determining the  
destination the packet is to be forwarded to. The total  
number of packets that can be stored in the frame  
buffer memory depends upon the size of the external  
SSRAM that is utilized. For a 256k byte SSRAM  
MVTX1100AL can buffer 170 packets. For a 512K  
byte SSRAM MVTX1100AL can buffer 340 packets.  
-
FCR[7]=0, use VLAN Priority Tag eld to  
map the drop priority if this Tag eld exists.  
-
FCR[7]=1, use ToS/DS eld for IP packet  
transmission priority mapping.  
2. Select which TOS/DS Tag eld to use for packet  
dropping provided that the TOS/DS eld was  
selected in step 1. The selection is made using bit  
7 of the FCB Buffer Low Threshold (FCBST[7])  
register.  
In order to provide good Quality of Service  
characteristics, MVTX1100AL must allocate the  
available buffer space to low and high priority unicast  
and multicast trafc. This can be accomplished using  
the external EEPROM to load the appropriate values  
into MVTX1100AL conguration registers. To allow  
the designer to set the minimum number of buffers  
provided for low drop priority unicast trafc, use the  
Low Drop Priority Buffer Threshold (LPBT[7:0])  
register. To set the maximum number of buffers  
allocated for all multicast packets, use the Multicast  
Buffer Control (MBCR[7:0]) register. During  
operation MVTX1100AL will continuously monitor the  
-
FCBST[7]=0, use DTR subeld to map the  
drop priority.  
-
FCBST[7]=1, use IP precedence subeld to  
map the drop priority.  
3. Set the drop mappings from the TOS/DS or VLAN  
Tag eld to the high or low drop priority output  
ag. The selection is made using the VLAN Drop  
Map (AVDM) and TOS Discard Map (TOSDML)  
registers.  
7
MVTX1100AL  
amount of frame buffer memory that is available, and  
when the unused buffer space falls below a designer  
congurable threshold, MVTX1100AL will begin to  
drop incoming packets (WRED). This threshold is set  
using the FCB Buffer Low Threshold (FCBST[5:0])  
register.  
Ports 0 and 1 can be trunked by pulling the  
TRUNK_EN pin to the high state. In this mode, the  
source MAC address of all packets received from the  
trunk are checked against the MCT database to  
ensure that they have a port ID of 0 or 1. Packets  
that have a port ID other than 0 and 1 will effect the  
MVTX1100AL to learn the new MAC address for this  
port change.  
8 Virtual LANs  
On transmission, the selected trunk port is  
determined by hashing the source and destination  
MVTX1100AL provides the designer the ability to  
dene a single port-based Virtual LAN (VLAN) for  
each of the eight ports. This VLAN is individually  
dened for each port using the Port Control  
Registers (ECR1Px[6:4]). Bits [6:4] allow the  
designer to dene a VLAN ID (value between 0 7)  
for each port.  
MAC addresses. This provides  
a
one-to-one  
mapping between the trunk port and the MAC  
addresses. Subsequent packets with the same MAC  
addresses will always utilize the same trunk port.  
MVTX1100AL also provides a safe fail-over mode for  
port trunking. If one of the two ports goes down, via  
the ports link signal, MVTX1100AL will switch all  
trafc destined to the failed port over to the  
remaining port in the trunk. Thus maintaining the  
trunk link, albeit at a lower effective bandwidth.  
When packets arrive at an input of MVTX1100AL,  
the search engine will determine the VLAN ID for that  
port, and then determine which of the other ports  
also are members of that VLAN by matching their  
assigned VLAN Id values. The packet will then be  
transmitted to each port with the same VLAN ID as  
the source port.  
9 Concentration Mode  
MVTX1100AL supports  
a Concentration Mode,  
where each of the 0-7 port is only allowed to directly  
communicate with the uplink port 8. This mode  
ensures that data from any of ports 0-7 cannot be  
directly seen by any other port. This feature is used  
in MDU applications to provide data privacy to  
subscribers.  
To use this mode, a CONC (concentration) bit in  
each ECR1 register of ports 0-8 must be enabled,  
i.e., ECR1 [7]=1, and ports 0-7 must each be set on  
a separate VLAN. Note that, in concentration mode,  
the VLAN of port 8 will be ignored.  
A more exible concentration mode can be set up.  
For this mode, ports 0 7 are partitioned into several  
groups, sharing the same VLAN ID. This will allow  
trafc within the same group to freely communicate  
with each other, while continuing to communicate  
outside the group in concentration mode.  
10 Port Trunking  
Port trunking allows the designer to congure the  
MVTX1100AL, such that ports 0 and 1 are dened  
as a logical port. This provides a 20Mb/s link to a  
switch or server using two 10Mb/s ports in parallel.  
8
MVTX1100AL  
When enabled, port mirroring will allow the user to  
monitor trafc going through the switch on output  
Port 7. If the port mirroring control pins,  
Mirror_Control[3:0], are left oating, MVTX1100AL  
will operate with the port mirroring function disabled.  
When port mirroring is enabled, the user must  
congure Port 7 to operate in the same mode as the  
port it is mirroring (autoneg, duplex, speed, ow  
control).  
11 Port Mirroring  
The port mirroring function is only supported in RMII  
mode. Using the 4 port mirroring control pins  
provides the ability to enable or disable port  
mirroring, select which of the remaining 7 ports is to  
be mirrored, and whether the received or transmitted  
data is being mirrored. The control for this function is  
shown in the following table.  
Mirrored Port  
Mirror_Control [3]  
Mirror_Control [2]  
Mirror_Control [1]  
Mirror_Control [0]  
Port 0 RCV  
Port 0 XMT  
Port 1 RCV  
Port 1 XMT  
Port 2 RCV  
Port 2 XMT  
Port 3 RCV  
Port 3 XMT  
Port 4 RCV  
Port 4 XMT  
Port 5 RCV  
Port 5 XMT  
Port 6 RCV  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
designer should use a physical layer transceiver that  
utilizes Wake-On-LANtechnology.  
12 Power Saving Mode in MAC  
The power saving mode is activated only in RMII  
mode. MVTX1100AL was designed to be power  
efcient. When the internal RMII MAC sections  
detect that the external port in not receiving or  
transmitting packets, it will shut down and conserve  
power. When new packet data is loaded into the  
output transmit FIFO of a MAC in power saving  
mode, the MAC will return to life and begin operating  
immediately.  
2
13 EEPROM I C Interface  
A simple 2 wire serial interface is provided to allow  
the conguration of the MVTX1100AL via an external  
EEPROM. MVTX1100AL utilizes a 1K bit EEPROM  
2
with an I C interface.  
14 Management Interface  
When the MAC is in power saving mode and new  
packet data is received on the RMII interface, the  
MAC will return to life and receive data normally into  
the receive FIFO. This wake up occurs when the  
MAC sees the CRS_DV signal asserted.  
MVTX1100AL uses a standard parallel port interface  
to provide external CPU access to the internal  
registers. This parallel interface consists of 3 pins:  
DATA0; STROBE; and ACK. The DATA0 pin provides  
the address and data content input to MVTX1100AL,  
while the ACK pin provides the corresponding output  
to the external CPU. The STROBE pin is provided as  
the clock for both serial data streams. Any of its  
internal registers can be modied through this  
parallel port interface.  
Using this method, the switch will turn off all MAC  
sections during periods when there is no network  
activity (at night for example), and save power. For  
large networks this power savings can be signicant.  
To achieve the maximum power efciency, the  
9
MVTX1100AL  
STROBE-  
2 Extra clocks after last  
transfer  
DATA  
A0 A1 A2 A3 A4 A5 A6  
W
D0 D1 D2 D3 D4 D5 D6 D7  
DATA  
START  
ADDRESS COMMAND  
Figure 3 - Write Command  
STROBE-  
A0 A1 A2 A3 A4 A5 A6  
START ADDRESS  
R
DATA  
COMMAND  
DATA  
D0 D1 D2 D3 D4 D5 D6 D7  
AC K -  
Figure 4 - Read Command  
Each management interface transfer consists of four  
parts:  
4. Data to be written provided on DATA0, or data to  
be read back provided on ACK.  
1. A START pulse occurs when DATA is sampled  
high when STROBE is rising followed by DATA  
being sampled low when STROBE falls.  
2. Register Address strobed into DATA0 pin by the  
high level of the STROBE pin.  
Any command can be aborted in the middle by  
sending an ABORT pulse to MVTX1100AL. An  
ABORT pulse occurs when DATA is sampled low and  
STROBE is rising, then DATA is sampled high when  
STROBE falls.  
3. Either a Read or Write Command (see waveforms  
above).  
10  
MVTX1100AL  
registers are only accessible through the parallel  
interface. The access method for each register is  
listed in the individual register denitions. Each  
register is 8-bit wide.  
15 Configuration Register Definitions  
MVTX1100AL registers can be accessed via the  
2
parallel interface and/or the I C interface. Some  
15.1 GCR - Global Control Register  
Access: parallel interface, Write Only  
Address: h30  
Bit [0]  
Bit [1]  
Bit [2]  
Bit [3]  
Store conguration (Default = 0)  
Store conguration and reset (Default = 0)  
Start BIST (Default = 0)  
Reset system (Default = 0)  
15.2 DCR0 - Device Status and Signature Register  
Access: parallel interface, Read Only  
Address: h31  
Bit 0  
Busy writing conguration from I2C  
Bit 1  
Bit 2  
Bit 3  
Busy reading conguration from I2C  
BIST in progress  
RAM Error  
Bit [5:4]  
Bit [7:6]  
Reserved  
Revision  
15.3 DA – DA Register  
Access: parallel interface, Read Only  
Address: h36  
Always returns 8-bit value hDA. Indicates the  
parallel port connection is good.  
(Default DA)  
15.4 MBCR – Multicast Buffer Control Register (Address H00)  
2
Access: parallel interface and I C, Read/Write  
Address: h00  
Bit [7:0]  
MAX_CNT_LMT  
Maximum Number of Multicast (Default = 1F)  
Frames allowed  
11  
MVTX1100AL  
15.5 FCBST – FCB Buffer Low Threshold  
Access: parallel interface and I 2 C, Read/Write  
Address: h01  
Bit [5:0]  
Bit 6  
BUF_LOW_TH  
Buffer Low Threshold number of FCB  
left before triggering WRED.  
(Default = 1F)  
(Default = 0)  
Use IP precedence eld (TOS[0:2]) for  
Priority  
Bit 7  
Use IP precedence eld (TOS[0:2]) for  
(Default = 0)  
Drop  
Note that, for Bit 6 and 7, Default=0 means to use DTR led (TOS[3:5])  
15.6 LPBT – Low Drop Priority Buffer Threshold  
2
Access: parallel interface and I C, Read/Write  
Address: h02  
Bit [7:0]:  
LOW_PRI_CNT:  
Number of frame buffers  
(Default 3F)  
reserved for low dropping trafc.  
15.7 FCR – Flooding Control Register  
Access: parallel interface and I 2 C, Read/Write  
Address: h03  
Bit [3:0]  
Bit [6:4]  
U2MR  
Unicast to Multicast Rate  
(Default = 8)  
(Default = 000)  
TimeBase: 000 = 100us  
001 = 200us  
011 = 800us  
101 = 3.2ms  
111 = 100us  
010 = 400us  
100 = 1.6ms  
110 = 6.4ms  
Bit [7]  
USE_TOS  
Pick TOS over VLAN Priority for IP  
Packet.  
(Default = 0)  
15.8 AVTCL – VLAN Type Code Register Loq  
2
Access: parallel interface and I C, Read/Write  
Address: h04  
Bit [7:0]  
VLANType_LOW  
Lower 8 bits of VLAN type code.  
(Default 00)  
12  
MVTX1100AL  
15.9 AVTCH – VLAN Type Code Register High  
2
Access: parallel interface and I C, Read/Write  
Address: h05  
Bit [7:0]  
VLANType_HIGH  
Upper 8 bits of the VLAN type code (Default 81)  
15.10 AVPM – VLAN Priority Map  
2
Access: parallel interface and I C, Read/Write  
Address: h06  
Map VLAN tag into 2 transmit queues. (0 = low priority, 1 = high priority)  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Mapped priority of tag value 0 (Default 0)  
Mapped priority of tag value 1 (Default 0)  
Mapped priority of tag value 2 (Default 0)  
Mapped priority of tag value 3 (Default 0)  
Mapped priority of tag value 4 (Default 0)  
Mapped priority of tag value 5 (Default 0)  
Mapped priority of tag value 6 (Default 0)  
Mapped priority of tag value 7 (Default 0)  
15.11 AVDM – VLAN Discard Map  
2
Access: parallel interface and I C, Read/Write  
Address: h07  
Map VLAN tag into frame discard when low priority buffer usage is above threshold  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Frame discard for tag value 0 (Default 0)  
Frame discard for tag value 1 (Default 0)  
Frame discard for tag value 2 (Default 0)  
Frame discard for tag value 3 (Default 0)  
Frame discard for tag value 4 (Default 0)  
Frame discard for tag value 5 (Default 0)  
Frame discard for tag value 6 (Default 0)  
Frame discard for tag value 7 (Default 0)  
13  
MVTX1100AL  
15.12 TOSPML – TOS/DS Priority Map Low  
2
Access: parallel interface and I C, Read/Write  
Address: h08  
Map TOS eld in IP packet into 2 transmit queues (0 = low priority, 1 = high priority)  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Mapped priority when TOS is 0  
Mapped priority when TOS is 1  
Mapped priority when TOS is 2  
Mapped priority when TOS is 3  
Mapped priority when TOS is 4  
Mapped priority when TOS is 5  
Mapped priority when TOS is 6  
Mapped priority when TOS is 7  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
3
15.13 TOSDML – TOS/DS Discard Map  
2
Access: parallel interface and I C, Read/Write  
Address: h0A  
Map TOS into frame discard when low priority buffer usage is above threshold  
Bit 0  
Bit1  
Frame discard when TOS is 0  
Frame discard when TOS is 1  
Frame discard when TOS is 2  
Frame discard when TOS is 3  
Frame discard when TOS is 4  
Frame discard when TOS is 5  
Frame discard when TOS is 6  
Frame discard when TOS is 7  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
(Default 0)  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
15.14 AXSC – Transmission Scheduling Control Register  
2
Access: parallel interface and I C, Read/Write  
Address: h0B  
Bit [3:0]:  
Transmission Queue Service Weight  
for high priority queue.  
Reserved  
Reserved  
Global Flow Control  
Half Duplex Priority Enable  
(Default F)  
Bit [4]  
Bit [5]  
Bit [6]:  
Bit [7]:  
(Default 0, enable)  
(Default 0)  
3. TOS=1 means TOS[0:2]="001"  
14  
MVTX1100AL  
15.15 MII_OP0 – MII Register Option 0  
2
Access by parallel interface and I C, Read/Write  
Address: h0C  
To provide a non-standard address for the Phy Status Register. When low and  
high Address bytes are 0, MVTX1100AL will use the standard address.  
Bit [7:0]  
Low order address byte (Default 00)  
15.16 MII_OP1 – MII Register Option 1  
2
Access: parallel interface and I C, Read/Write  
Address: h0D  
Bit [7:0]  
High order address byte (Default 00)  
15.17 AGETIME_LOW – Mac Address Aging Timer Low  
2
Access: parallel interface and I C, Read/Write  
Address: h0E  
Bit [7:0]  
Low byte of the MAC address aging (Default 25)  
timer.  
15.18 AGETIME_HIGH – Mac Address Aging Timer High  
2
Access: parallel interface and I C, Read/Write  
Address: h0F  
Bit [7:0]  
High byte of the MAC address aging (Default 01)  
timer.  
The aging time is based on the The default  
following equation: setting provides  
{AGETIME_TIME,AGETIME_LOW} X a 300 second  
1024ms aging time at  
SCLK=50Mhz.  
15  
MVTX1100AL  
15.19 ECR1P0 – Port 0 Control Register  
2
Access: parallel interface and I C, Read/Write  
Address: h10  
Bit [3:0]  
Bit [0]  
RMII Port Mode Only for RMII mode,  
Serial Mode DONT CARE  
1 Flow Control Off  
(Default 0000)  
0 Flow Control On  
Bit [1]  
Bit [2]  
Bit [3]  
1 Half Duplex  
0 Full Duplex  
1 10Mbps  
0 100Mbps  
1 Force conguration based on Bit[2:0]  
0 Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID  
Enable Concentration Mode  
(Default 000)  
(Default 0)  
15.20 ECR1P1 – Port 1 Control Register  
2
Access: parallel interface and I C, Read/Write  
Address: h11  
Bit [3:0]  
Bit [0]  
RMII Port Mode  
Only for RMII mode,  
Serial Mode DONT CARE  
1 Flow Control Off  
0 Flow Control On  
(Default 0000)  
Bit [1]  
Bit [2]  
Bit [3]  
1 Half Duplex  
0 Full Duplex  
1 10Mbps  
0 100Mbps  
1 Force conguration based on Bit[2:0]  
0 Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID  
Enable Concentration Mode  
(Default 000)  
(Default 0)  
16  
MVTX1100AL  
15.21 ECR1P2 – Port 2 Control Register  
2
Access: parallel interface and I C, Read/Write  
Address: h12  
Bit [3:0]  
Bit [0]  
Bit [1]  
Bit [2]  
Bit [3]  
RMII Port Mode  
Only for RMII mode,(Default 0000)  
Serial Mode DONT CARE  
1 Flow Control Off  
0 Flow Control On  
1 Half Duplex  
0 Full Duplex  
1 10Mbps  
0 100Mbps  
1 Force conguration based on Bit[2:0]  
0 Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID (Default 000)  
Enable Concentration Mode (Default 0)  
15.22 ECR1P3 – Port 3 Control Register  
2
Access: parallel interface and I C, Read/Write  
Address: h13  
Bit [3:0]  
Bit [0]  
Bit [1]  
Bit [2]  
Bit [3]  
RMII Port Mode  
Only for RMII mode,(Default 0000)  
Serial Mode DONT CARE  
1 Flow Control Off  
0 Flow Control On  
1 Half Duplex  
0 Full Duplex  
1 10Mbps  
0 100Mbps  
1 Force conguration based on Bit[2:0]  
0 Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID (Default 000)  
Enable Concentration Mode (Default 0)  
17  
MVTX1100AL  
15.23 ECR1P4 – Port 4 Control Register  
2
Access: parallel interface and I C, Read/Write  
Address: h14  
Bit [3:0]  
Bit [0]  
Bit [1]  
Bit [2]  
Bit [3]  
RMII Port Mode  
Only for RMII mode,  
Serial Mode DONT CARE  
(Default 0000)  
1 Flow Control Off  
0 Flow Control On  
1 Half Duplex  
0 Full Duplex  
1 10Mbps  
0 100Mbps  
1 Force conguration based on Bit[2:0]  
0 Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID  
Enable Concentration Mode  
(Default 000)  
(Default 0)  
15.24 ECR1P5 – Port 5 Control Register  
2
Access: parallel interface and I C, Read/Write  
Address: h15  
Bit [3:0]  
Bit [0]  
Bit [1]  
Bit [2]  
Bit [3]  
RMII Port Mode  
Only for RMII mode,  
Serial Mode DONT CARE  
(Default 0000)  
1 Flow Control Off  
0 Flow Control On  
1 Half Duplex  
0 Full Duplex  
1 10Mbps  
0 100Mbps  
1 Force conguration based on Bit[2:0]  
0 Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID  
Enable Concentration Mode  
(Default 000)  
(Default 0)  
18  
MVTX1100AL  
15.25 ECR1P6 – Port 6 Control Register  
2
Access: parallel interface and I C, Read/Write  
Address: h16  
Bit [3:0]  
Bit [0]  
Bit [1]  
Bit [2]  
Bit [3]  
RMII Port Mode  
Only for RMII mode,(Default 0000)  
Serial Mode DONT CARE  
1 Flow Control Off  
0 Flow Control On  
1 Half Duplex  
0 Full Duplex  
1 10Mbps  
0 100Mbps  
1 Force conguration based on Bit[2:0]  
0 Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID (Default 000)  
Enable Concentration Mode (Default 0)  
15.26 ECR1P7 – Port 7 Control Register  
2
Access: parallel interface and I C, Read/Write  
Address: h17  
Bit [3:0]  
Bit [0]  
Bit [1]  
Bit [2]  
Bit [3]  
RMII Port Mode  
Only for RMII mode,(Default 0000)  
Serial Mode DONT CARE  
1 Flow Control Off  
0 Flow Control On  
1 Half Duplex  
0 Full Duplex  
1 10Mbps  
0 100Mbps  
1 Force conguration based on Bit[2:0]  
0 Auto and advertise based on Bit[2:0]  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID (Default 000)  
Enable Concentration Mode (Default 0)  
19  
MVTX1100AL  
15.27 ECR1P8 – Port 8 Control Register  
2
Access: parallel interface and I C, Read/Write  
Address: h18  
Bit [3:0]  
Bit [3]  
Port Mode  
(Default 0000)  
1 Force conguration based on Bit[2:0]  
0 Auto and advertise based on Bit[2:0]  
Bit [2]  
Bit [1]  
Bit [0]  
1 10Mbps  
0 100Mbps  
1 Half Duplex  
0 Full Duplex  
1 Flow Control Off  
0 Flow Control On  
Bit [6:4]  
Bit [7]  
PVID  
CONC:  
Port based VLAN ID  
Enable Concentration Mode  
(Default 000)  
(Default 0)  
20  
MVTX1100AL  
16 MVTX1100AL Pin Descriptions  
Note:  
#
I
Active low signal  
Input signal  
S
Input signal with Schmitt-Trigger  
Output signal  
Open-Drain driver  
Input & Output signal  
Slew Rate Controlled  
Pulldown  
O
OD  
I/O  
SL  
D
U
Pullup  
5
5V Tolerance  
Pin No(s).  
Symbol  
Type  
Name & Functions  
201,200,199,197,196,  
195,193,192,191,190,  
188,187,186,185,183,  
182,181,179,178,177,  
176,174,173,172,170,  
169,168,167,165,164,  
163,161  
L_D[31:0]  
I/O, U, SL  
Databus to Frame Buffer Memory  
203,151,158,160,10,9,  
8,6,5,4,2,1,208,206,205,  
204, 50  
L_A[18:2]  
I/O, U, SL  
Address pins for buffer memory  
153  
L_CLK  
L_WE#  
O
Frame Buffer Memory Clock  
155  
O, SL  
O
Frame Buffer Memory Write Enable  
Frame Buffer Memory Output Enable  
156  
L_OE#  
157  
L_ADSC#  
O, SL  
MII Management Interface  
120  
122  
M_MDC  
M_MDIO  
O
MII Management Data Clock  
MII Management Data I/O  
I/O, U  
I2C Interface (Serial EEPROM Interface)  
123  
124  
SCL  
SDA  
O, U, 5  
I2C Data Clock  
I2C Data I/O  
I/O, U, OD, 5  
Parallel Port Management Interface  
127  
STROBE  
I, U, S, 5  
I, U, 5  
128  
DATA0  
ACK  
Data Pin  
129  
O, U, OD, 5  
Port 0 Serial Interface  
23  
24  
22  
20  
21  
19  
M0_RXD  
M0_RXCLK  
M0_CRS_DV  
M0_TXD  
I, U  
I, U  
I, D  
O
Port 0 Receive Data  
Port 0 Receive Clock  
Port 0 Carrier Sense and Data Valid  
Port 0 Transmit Data  
M0_TXCLK  
M0_TXEN  
I
Port 0 Transmit Clock  
O
Port 0 Transmit Enable  
21  
MVTX1100AL  
Pin No(s).  
Symbol  
Type  
Name & Functions  
Port 0 Collision Detection  
12  
M0_CLS  
M0_LINK  
I, U  
I, U  
I, U  
13  
Port 0 Link Status  
14  
M0_DUPLEX  
Port 0 Full-Duplex Select (half-duplex = 0)  
Port 1 Serial Interface  
30  
M1_RXD  
M1_RXCLK  
M1_CRS_DV  
M1_TXD  
I, U  
I, U  
I, D  
O
Port 1 Receive Data  
31  
Port 1 Receive Clock  
29  
Port 1 Carrier Sense and Data Valid  
Port 1 Transmit Data  
27  
28  
M1_TXCLK  
M1_TXEN  
M1_CLS  
I
Port 1 Transmit Clock  
26  
O
Port 1 Transmit Enable  
15  
I, U  
I, U  
I, U  
Port 1 Collision Detection  
Port 1 Link Status  
16  
M1_LINK  
17  
M1_DUPLEX  
Port 0 Full-Duplex Select (half-duplex = 0)  
Port 2 Serial Interface  
37  
M2_RXD  
M2_RXCLK  
M2_CRS_DV  
M2_TXD  
I, U Port 2  
Receive Data  
38  
I, U  
I, D  
O
Port 2 Receive Clock  
36  
Port 2 Carrier Sense and Data Valid  
Port 2 Transmit Data  
34  
35  
M2_TXCLK  
M2_TXEN  
M2_CLS  
I
Port 2 Transmit Clock  
33  
O
Port 2 Transmit Enable  
Port 2 Collision Detection  
Port 2 Link Status  
47  
I, U  
I, U  
I, U  
48  
M2_LINK  
49  
M2_DUPLEX  
Port 2 Full-Duplex Select (half-duplex = 0)  
Port 3 Serial Interface  
44  
M3_RXD  
M3_RXCLK  
M3_CRS_DV  
M3_TXD  
I, U  
I, U  
I, D  
O
Port 3 Receive Data  
45  
Port 3 Receive Clock  
43  
Port 3 Carrier Sense and Data Valid  
Port 3 Transmit Data  
41  
42  
M3_TXCLK  
M3_TXEN  
M3_CLS  
I
Port 3 Transmit Clock  
40  
O
Port 3 Transmit Enable  
50  
I, U  
I, U  
I, U  
Port 3 Collision Detection  
Port 3 Link Status  
51  
M3_LINK  
52  
M3_DUPLEX  
Port 3 Full-Duplex Select (half-duplex = 0)  
Port 4 Serial Interface  
64  
65  
63  
M4_RXD  
M4_RXCLK  
M4_CRS_DV  
I, U  
I, U  
I, D  
Port 4 Receive Data  
Port 4 Receive Clock  
Port 4 Carrier Sense and Data Valid  
22  
MVTX1100AL  
Pin No(s).  
Symbol  
Type  
Name & Functions  
Port 4 Transmit Data  
61  
62  
60  
53  
54  
55  
M4_TXD  
M4_TXCLK  
M4_TXEN  
M4_CLS  
O
I
Port 4 Transmit Clock  
O
Port 4 Transmit Enable  
I, U  
I, U  
I, U  
Port 4 Collision Detection  
Port 4 Link Status  
M4_LINK  
M4_DUPLEX  
Port 4 Full-Duplex Select (half-duplex = 0)  
Port 5 Serial Interface  
71  
M5_RXD  
M5_RXCLK  
M5_CRS_DV  
M5_TXD  
I, U  
I, U  
I, D  
O
Port 5 Receive Data  
72  
Port 5 Receive Clock  
70  
Port 5 Carrier Sense and Data Valid  
Port 5 Transmit Data  
68  
69  
M5_TXCLK  
M5_TXEN  
M5_CLS  
I
Port 5 Transmit Clock  
67  
O
Port 5 Transmit Enable  
56  
I, U  
I, U  
I, U  
Port 5 Collision Detection  
Port 5 Link Status  
57  
M5_LINK  
58  
M5_DUPLEX  
Port 5 Full-Duplex Select (half-duplex = 0)  
Port 6 Serial Interface  
78  
M6_RXD  
M6_RXCLK  
M6_CRS_DV  
M6_TXD  
I, U  
I, U  
I, D  
O
Port 6 Receive Data  
79  
Port 6 Receive Clock  
77  
Port 6 Carrier Sense and Data Valid  
Port 6 Transmit Data  
75  
76  
M6_TXCLK  
M6_TXEN  
M6_CLS  
I
Port 6 Transmit Clock  
74  
O
Port 6 Transmit Enable  
88  
I, U  
I, U  
I, U  
Port 6 Collision Detection  
Port 6 Link Status  
89  
M6_LINK  
90  
M6_DUPLEX  
Port 6 Full-Duplex Select (half-duplex = 0)  
Port 7 Serial Interface  
85  
M7_RXD  
M7_RXCLK  
M7_CRS_DV  
M7_TXD  
I, U  
I, U  
I, D  
O
Port 7 Receive Data  
86  
Port 7 Receive Clock  
84  
Port 7 Carrier Sense and Data Valid  
Port 7 Transmit Data  
82  
83  
M7_TXCLK  
M7_TXEN  
M7_CLS  
I
Port 7 Transmit Clock  
81  
O
Port 7 Transmit Enable  
91  
U
Port 7 Collision Detection  
Port 7 Link Status  
92  
M7_LINK  
I, U  
I, U  
93  
M&_DUPLEX  
Port 7 Full-Duplex Select (half-duplex = 0)  
Port 0 RMII Interface  
23  
MVTX1100AL  
Pin No(s).  
Symbol  
Type  
Name & Functions  
Port 0 Receive Data  
24, 23  
M0_RXD[1:0]  
M0_CRS_DV  
M0_TXD[1:0]  
M0_TXEN  
I, U  
I, D  
O
22  
Port 0 Carrier Sense and Data Valid  
Port 0 Transmit Data  
21, 20  
19  
O
Port 0 Transmit Enable  
Port 1 RMII Interface  
31, 30  
M1_RXD[1:0]  
M1_CRS_DV  
M1_TXD[1:0]  
M1_TXEN  
I, U  
I, D  
O
Port 1 Receive Data  
29  
Port 1 Carrier Sense and Data Valid  
Port 1 Transmit Data  
28, 27  
26  
O
Port 1 Transmit Enable  
Port 2 RMII Interface  
38, 37  
M2_RXD[1:0]  
M2_CRS_DV  
M2_TXD[1:0]  
M2_TXEN  
I, U  
I, D  
O
Port 2 Receive Data  
36  
Port 2 Carrier Sense and Data Valid  
Port 2 Transmit Data  
35, 34  
33  
O
Port 2 Transmit Enable  
Port 3 RMII Interface  
45, 44  
M3_RXD[1:0]  
M3_CRS_DV  
M3_TXD[1:0]  
M3_TXEN  
I, U  
I, D  
O
Port 3 Receive Data  
43  
Port 3 Carrier Sense and Data Valid  
Port 3 Transmit Data  
42, 41  
40  
O
Port 3 Transmit Enable  
Port 4 RMII Interface  
65, 64  
M4_RXD[1:0]  
M4_CRS_DV  
M4_TXD[1:0]  
M4_TXEN  
I, U  
I, D  
O
Port 4 Receive Data  
63  
Port 4 Carrier Sense and Data Valid  
Port 4 Transmit Data  
62, 61  
60  
O
Port 4 Transmit Enable  
Port 5 RMII Interface  
72, 71  
M5_RXD[1:0]  
M5_CRS_DV  
M5_TXD[1:0]  
M5_TXEN  
I, U  
I, D  
O
Port 5 Receive Data  
70  
Port 5 Carrier Sense and Data Valid  
Port 5 Transmit Data  
69, 68  
67  
O
Port 5 Transmit Enable  
Port 6 RMII Interface  
79, 78  
M6_RXD[1:0]  
M6_CRS_DV  
M6_TXD[1:0]  
M6_TXEN  
I, U  
I, D  
O
Port 6 Receive Data  
77  
Port 6 Carrier Sense and Data Valid  
Port 6 Transmit Data  
76, 75  
74  
O
Port 6 Transmit Enable  
Port 7 RMII Interface  
86,85  
84  
M7_RXD[1:0]  
M7_CRS_DV  
I, U  
I, D  
Port 7 Receive Data  
Port 7 Carrier Sense and Data Valid  
24  
MVTX1100AL  
Pin No(s).  
Symbol  
Type  
Name & Functions  
Port 7 Transmit Data  
83,82  
81  
M7_TXD[1:0]  
M7_TXEN  
O
O
Port 7 Transmit Enable  
Port 8 MII Interface  
105,104,103,102  
M8_RXD[3:0]  
M8_TXD[3:0]  
M8_TXEN  
I, U  
O
Port 8 Receive Data  
113,112,111,110  
Port 8 Transmit Data  
109  
97  
O
Port 8 Transmit Enable  
Port 8 Receive Data Valid  
Port 8 Receive Clock  
M8_RXDV  
I, D  
I, U  
I/O, U  
I, U  
I/O, U  
I, U  
I, U  
O, U  
100  
107  
114  
116  
115  
98  
M8_RXCLK  
M8_TXCLK  
M8_LINK  
Port 8 Transmit Clock  
Port 8 Link Status  
M8_SPEED  
M8_DUPLEX  
M8_COL  
Port 8 Speed Select (100Mb = 1)  
Port 8 Full-Duplex Select (half-duplex = 0)  
Port 8 Collision Detect  
118  
M8_REFCLK  
Port 8 Reference Clock  
M8_REFCLK=1/2 M_CLK  
Port 8 Serial Interface  
102  
S8_RXD  
S8_RXCLK  
S8_CRS_DV  
S8_TXD  
I, U  
I, U  
I, D  
O
Port 8 Serial Receive Data  
100  
Port 8 Serial Receive Clock  
Port 8 Serial Carrier Sense and Data Valid  
Port 8 Serial Transmit Data  
97  
110  
107  
S8_TXCLK  
S8_TXEN  
S8_COL  
I
Port 8 Serial Transmit Clock  
Port 8 Serial Transmit Enable  
Port 8 Serial Collision Detect  
Port 8 Link Status  
109  
O
98  
I, U  
I, U  
I, U  
114  
S8_LINK  
115  
S8_DUPLEX  
Port 8 Full-Duplex Select (half-duplex = 0)  
Miscellaneous Control Pins  
95  
M_CLK  
I
Reference Clock for Serial interface =  
50Mhz 50ppm  
148  
SCLK  
I
System Clock (50 Mhz)  
Port Trunking Enable  
126  
TRUNK_EN  
RESIN_  
I, D  
I, S  
O
142  
141  
RESETOUT_  
MIR_CTL[3:0]  
146,145,144,143  
Test Pins  
125  
I/O, U  
Port Mirroring Control (only for RMII mode)  
NO Connect  
TEST#  
139  
TMODE  
I/O, U  
O
Puts MVTX1100AL into test mode for ATE  
test  
138,137,136,135  
TSTOUT[7:4]  
Test Outputs  
25  
MVTX1100AL  
Pin No(s).  
Symbol  
Type  
Name & Functions  
Test Outputs  
134,133,132,131  
Power Pins  
TSTOUT[3:0]  
I/O, U  
3,39,73,96,130,159,184  
VDD (Core)  
VDD  
Input  
Input  
+3.3 Volt DC Supply for Core Logic  
(7 pins)  
11,25,59,87,101,108,119  
147,152,166,175, 194,  
202  
+3.3 Volt DC Supply for I/O Pads (13 pins)  
18,46,80,106,140,171,  
198  
VSS (Core)  
VSS  
Input  
Input  
Ground for Core Logic (7 pins)  
Ground for I/O Pads (13 pins)  
7,32,66,94,99,117,121,1,  
49154,162,180,189, 207  
16.1 STAP Options  
The Strap options are relevant during the initial  
power-on period, when reset is asserted. During  
reset, CoSMOS will examine the boot strap address  
pin to determine its value and modify the internal  
conguration of the chip accordingly.  
1means Pull UP  
0means Pull Down with an external 1K Ohm  
Default value is 1, (all boot strap pins have internal  
pull up resistor).  
Pin No(s).  
206 (L_A[5])  
Symbol  
Name & Functions  
Memory size  
1Memory size = 256KB,  
0 Memory size = 512KB  
208 (L_A[6])  
EEPROM  
1 NO EEPROM Installed  
0 EEPROM Installed  
1
5,4 (L_A [10:9])  
XLINK Speed  
11 100Mbps  
10 200Mbps  
01 300Mbps  
00 400Mbps (0Pull down, 1Pull up)  
151 (L_A[17])  
150 (L_A[2])  
Port  
Serial  
8
MII/ 1 MII Mode for port 8  
0 Serial mode for port 8  
Link Polarity  
FDX Polarity  
Device ID  
Link Polarity for serial interface  
1 Active Low  
0 Active High  
204 (L_A[3])  
Full/Half Duplex Polarity for serial interface  
1 Active Low  
0 Active High  
2 (L_A[8])  
Use in cascade mode only.  
2
133 (TST[2])  
SRAM Self Test For Board/System Manufacturing Test  
1 Disable  
0 Enable  
26  
MVTX1100AL  
1. If the VTX1100 is congured from EEPROM preset (L_A[6] pulled down at reset), it will try to load its  
conguration from the EEPROM. If the EEPROM is blank or not preset, it will not boot up. The parallel port can  
be used to program the EEPROM at any time.  
2. During normal power-up CoSMOS 2 will run through an external SSRAM memory test to ensure that there  
are no memory interface problems. If a problem is detected, the chip will stop functioning. To facilitate board  
debug in the event that a system stops functioning, the DS108A can be put into a continuous SSRAM self test  
mode to allow an operator to determine if there are stuck pins in the memory interface (using network  
analyzer).  
16.2 PIN Reference Table  
Pin Name  
Pin#  
Pin Name  
Pin#  
Pin Name  
Pin#  
Pin Name  
Pin#  
L_A[7]  
L_A[8]  
1
2
3
4
M4_CLS  
53 M8_RXD[3]  
54 VSS (CORE)  
105 L_ADSC#  
106 L_A[16]  
157  
158  
159  
160  
M4_LINK  
VDD (CORE)  
L_A[9]  
M4_DUPLEX  
M5_CLS  
55  
M8_TXCLK/S8_TXCLK  
107 VDD (CORE)  
108 L_A[15]  
56 VDD  
L_A[10]  
L_D[11]  
VSS  
5
6
7
8
9
M5_LINK  
57  
M8_TXEN/S8_TXEN  
109 L_D[0]  
110 VSS  
161  
162  
163  
164  
165  
166  
167  
M5_DUPLEX  
VDD  
58 M8_TXD[0]/S8_TXD  
59 M8_TXD[1]  
60 M8_TXD[2]  
61 M8_TXD[3]  
62 M8_LINK/S8_LINK  
111 L_D[1]  
112 L_D[2]  
113 L_D[3]  
114 VDD  
L_A[12]  
L_A[13]  
L_A[14]  
VDD  
M4_TXEN  
M4_TXD/(M4_TXD[0])  
10 M4_TXCLK/(M4_TXD[1])  
11 M4_CRS_DV  
63 M8_DUPLEX/  
S8_DUPLEX  
115 L_D[4]  
M0_CLS  
12 M4_RXD/(M4_RXD[0])  
13 M4_RXCLK/(M4_RXD[1])  
14 VSS  
64 M8_SPEED  
65 VSS  
116 L_D[5]  
117 L_D[6]  
118 L_D[7]  
119 VSS (CORE)  
120 L_D[8]  
121 L_D[9]  
122 L_D[10]  
123 VDD  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
M0_LINK  
M0_DUPLEX  
66 M8_REFCLK  
67 VDD  
M1_CLS  
15 M5_TXEN  
M1_LINK  
16 M5_TXD/(M5_TXD[0])  
17 M5_TXCLK/(M5_TXD[1])  
18 M5_CRS_DV  
68 M_MDC  
69 VSS  
M1_DUPLEX  
VSS (CORE)  
70 M_MDIO  
71 SCL  
M0_TXEN  
19 M5_RXD/(M5_RXD[0])  
20 M5_RXCLK/(M5_RXD[1])  
21 VDD (CORE)  
M0_TXD/(M0_TXD[0])+  
M0_TXCLK/(M0_TXD[1])  
M0_CRS_DV  
72 SDA  
124 L_D[11]  
125 L_D[12]  
126 L_D[13]  
127 L_D[14]  
128 VSS  
73 TEST#  
22 M6_TXEN  
74 TRUNK_ENABLE  
75 STROBE  
76 DATA0  
M0_RXD/(M0_RXD[0])  
M0_RXCLK/(M0_RXD[1])  
VDD  
23 M6_TXD/(M6_TXD[0])  
24 M6_TXCLK/(M6_TXD[1])  
25 M6_CRS_DV  
77 ACK  
129 L_D[15]  
130 L_D[16]  
131 L_D[17]  
132 VDD (CORE)  
133 L_D[18]  
134 L_D[19]  
135 L_D[20]  
136 L_D[21]  
M1_TXEN  
26 M6_RXD/(M6_RXD[0])  
27 M6_RXCLK/(M6_RXD[1])  
28 VSS (CORE)  
78 VDD (CORE)  
79 TSTOUT[0]  
80 TSTOUT[1]  
81 TSTOUT[2]  
82 TSTOUT[3]  
83 TSTOUT[4]  
84 TSTOUT[5]  
M1_TXD/(M1_TXD[0])  
M1_TXCLK/(M1_TXD[1])  
M1_CRS_DV  
29 M7_TXEN  
M1_RXD/(M1_RXD[0])  
M1_RXCLK/(M1_RXD[1])  
VSS  
30 M7_TXD/(M7_TXD[0])  
31 M7_TXCLK/(M7_TXD[1])  
32 M7_CRS_DV  
27  
MVTX1100AL  
Pin Name  
Pin#  
Pin Name  
Pin#  
Pin Name  
Pin#  
Pin Name  
Pin#  
M2_TXEN  
33 M7_RXD/(M7_RXD[0])  
34 M7_RXCLK/(M7_RXD[1])  
35 VDD  
85 TSTOUT[6]  
137 VSS  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
M2_TXD/(M2_TXD[0])  
M2_TXCLK/(M2_TXD[1])  
M2_CRS_DV  
86 TSTOUT[7]  
87 T_MODE  
88 VSS (CORE)  
89 RSTOUT#  
90 RSTIN#  
138 L_D[22]  
139 L_D[23]  
140 L_D[24]  
141 L_D[25]  
142 VDD  
36 M6_CLS  
M2_RXD/(M2_RXD[0])  
M2_RXCLK/(M2_RXD[1])  
VDD (CORE)  
37 M6_LINK  
38 M6_DUPLEX  
39 M7_CLS  
91 (MIRROR_CONTROL [0]) 143 L_D[26]  
92 (MIRROR_CONTROL [1]) 144 L_D[27]  
93 (MIRROR_CONTROL [2]) 145 L_D[28]  
94 (MIRROR_CONTROL [3]) 146 VSS (CORE)  
M3_TXEN  
40 M7_LINK  
M3_TXD/(M3_TXD[0])  
M3_TXCLK/(M3_TXD[1])  
M3_CRS_DV  
41 M7_DUPLEX  
42 VSS  
43 M_CLK  
95 VDD  
96 SCLK  
97 VSS  
147 L_D[29]  
148 L_D[30]  
149 L_D[31]  
150 VDD  
M3_RXD/(M3_RXD[0])  
M3_RXCLK/(M3_RXD[1])  
VSS (CORE)  
44 VDD (CORE)  
45 M8_RXDV/S8_CRS_DV  
46 M8_COL/S8_COL  
47 VSS  
98 L_A[2]  
99 L_A[17]  
100 VDD  
101 L_CLK  
102 VSS  
M2_CLS  
151 L_A[18]  
152 L_A[3]  
153 L_A[4]  
154 L_A[5]  
155 VSS  
M2_LINK  
48 M8_RXCLK/S8_RXCLK  
49 VDD  
M2_DUPLEX  
M3_CLS  
50 M8_RXD[0]/S8_RXD  
51 M8_RXD[1]  
52 M8_RXD[2]  
M3_LINK  
103 L_WE#  
104 L_OE#  
M3_DUPLEX  
156 L_A[6]  
+ : pins inside ( ) indicate for RMII pins for port 0-7.  
28  
MVTX1100AL  
16.3 MVTX1100AL Physical Pinout  
208  
157  
1
156  
L_A[7]  
L_OE#  
L_A[8]  
VDD (CORE)  
L_WE#  
VSS  
L_A[9]  
L_A[10]  
L_A[11]  
VSS  
L_A[12]  
L_CLK  
VDD  
L_A[17]  
L_A[2]  
Pin 1 I.D.  
Buffer Mem Interface  
VSS  
L_A[13]  
SCLK  
L_A[14]  
VDD  
M0_CLS  
VDD  
MIR_CTL[3]  
MIR_CTL[2]  
MIR_CTL[1]  
MIR_CTL[0]  
RSTIN#  
M0_LINK  
M0_DUPLEX  
M1_CLS  
M1_LINK  
M1_DUPLEX  
VSS (CORE)  
M0_TXEN  
M0_TXD  
M0_TXCLK  
M0_CRS_DV  
RSTOUT#  
VSS (CORE)  
T_MODE  
TSTOUT[7]  
TSTOUT[6]  
TSTOUT[5]  
TSTOUT[4]  
M0_RXD  
M0_RXCLK  
TSTOUT[3]  
TSTOUT[2]  
VDD  
M1_TXEN  
M1_TXD  
M1_TXCLK  
M1_CRS_DV  
M1_RXD  
M1_RXCLK  
VSS  
M2_TXEN  
M2_TXD  
TSTOUT[1]  
TSTOUT[0]  
VDD (VORE)  
ACK  
DATA0  
STROBE  
TRUNK_EN  
TEST#  
SDA  
SCL  
M2_TXCLK  
M2_CRS_DV  
M2_RXD  
M2_RXCLK  
VDD (CORE)  
M_MDIO  
VSS  
M_MDC  
VDD  
M8_REFCLK  
M3_TXEN  
M3_TXD  
VSS  
M8_SPEED  
M3_TXCLK  
M3_CRS_DV  
M3_RXD  
M3_RXCLK  
VSS (CORE)  
M2_CLS  
M2_LINK  
M2_DUPLEX  
M3_CLS  
M8_DUPLEX  
M8_LINK  
M8_TXD[3]  
M8_TXD[2]  
M8_TXD[1]  
M8_TXD[0]  
M8_TXEN  
VDD  
M8_TXCLK  
VSS (CORE)  
M8_RXD[3]  
RMII Port Interfaces  
M3_LINK  
M3_DUPLEX  
52  
105  
104  
53  
29  
MVTX1100AL  
17 DC Electrical Characteristics  
17.1 Absolute Maximum Ratings  
Storage Temperature  
Operating Temperature  
-65C to +150C  
0C to +70C  
Supply Voltage VDD with Respect to V  
Voltage on 5V Tolerant Input Pins  
Voltage on Other Pins  
+3.0 V to +3.6 V  
-0.5 V to (VDD + 3.3 V)  
-0.5 V to (VDD + 0.3 V)  
SS  
Caution: Stresses above those listed may cause permanent device failure. Functionality at or above these  
limits is not implied. Exposure to the Absolute Maximum Ratings for extended periods may affect device  
reliability.  
17.2 DC Electrical Characteristics  
VDD = 3.0 V to 3.6 V (3.3v +/- 10%)  
T
= 0 C to +70 C  
AMBIENT  
Preliminary  
Symbol  
Parameter Description  
Frequency of Operation  
Unit  
Min  
Typ.  
Max  
f
I
50  
66  
80  
MHz  
mA  
V
osc  
Supply Current @ 80 MHz (VDD =3.3 V)  
Output High Voltage (CMOS)  
TBD  
DD  
V
V
V
VDD - 0.5  
OH  
Output Low Voltage (CMOS)  
0.5  
V
OL  
Input High Voltage (TTL 5V tolerant)  
VDD  
x70%  
VDD +  
2.0  
V
IH-TTL  
V
I
Input Low Voltage (TTL 5V tolerant)  
VDD x  
30%  
V
IL-TTL  
Input Leakage Current (0.1 V < V < VDD)  
TBD  
µA  
IH-5VT  
IN  
(all pins except those with internal pull-up/  
pull-down resistors)  
I
I
I
Output Leakage Current (0.1 V < V  
VDD)  
<
OUT  
TBD  
TBD  
TBD  
µA  
µA  
µA  
IL-5VT  
LI  
Input Leakage Current V = VDD - 0.1 V  
IH  
(pins with internal pull-down resistors)  
Input Leakage Current V = 0.1 V (pins with  
LO  
IL  
internal pull-up resistors)  
Input Capacitance  
Output Capacitance  
I/O Capacitance  
C
C
C
5
5
7
pF  
pF  
pF  
IN  
OUT  
I/O  
30  
MVTX1100AL  
17.3 Clock Frequency Specifications  
Symbol  
Parameter  
(Hz)  
Note:  
C1  
C2  
C3  
C4  
C5  
C6  
SCLK Core System Clock Input  
M_CLK RMII Port Clock  
50M  
50M  
25M  
55M  
M8_REFCLK MII Reference Clock  
L_CLK Frame Buffer Memory Clock  
M_MDC MII Management Data Clock  
L_CLK = SCLK  
1.56M M_MDC=SCLK/32  
2
SCL I C Data Clock  
50K  
SCL=M_CLK/1000  
Suggestion Clock rate for various congurations:  
Input  
Output  
Configuration  
M_CLK  
(RMII)  
SCLK  
M8_REF  
L_CLK  
M_MDC  
SCL  
Port 0-7  
Port 8  
10M RMII  
10/100M MII  
50M  
55M  
50M  
50M  
50M  
50M  
50M  
50M  
--  
=SCLK  
=SCLK  
=SCLK  
=SCLK  
=SCLK  
=SCLK  
=SCLK/32  
=SCLK/32  
=SCLK/32  
=SCLK/32  
=SCLK/32  
=SCLK/32  
50K  
50K  
50K  
50K  
50K  
50K  
100M RMII Not Used  
100M RMII 10/100M MII  
100M RMII 200M MII  
100M RMII 300M MII  
100M RMII 400M MII  
--  
60M  
25M  
50M  
75M  
100M  
66.66M  
75M  
80M  
31  
MVTX1100AL  
17.4 AC Timing Characteristics  
17.4.1 Frame Buffer Memory Interface:  
L_CLK  
L1  
L2  
X_DCLKI  
L_CLK  
L_D[31:0]  
L_A[18:2]  
L_ADSC#  
L_WE#  
L3-max  
L3-min  
L4-max  
L4-min  
L6-max  
L6-min  
L8-max  
L8-min  
L9-max  
L9-min  
L_OE#  
17.5 Frame Buffer Memory Interface Timing  
50 MHz  
Symbol  
L1  
Parameter  
L_D[31:0] input set-up time  
Note:  
Min (ns) Max (ns)  
5
0
L2  
L3  
L4  
L6  
L8  
L9  
L_D[31:0] input hold time  
L_D[31:0] output valid delay  
L_A[18:2] output valid delay  
L_ADSC# output valid delay  
L_WE# output valid delay  
L_OE# output valid delay  
1
1
1
1
1
8
8
8
8
8
C = 30pf  
L
C = 50pf  
L
C = 50pf  
L
C = 30pf  
L
C = 30pf  
L
32  
MVTX1100AL  
17.6 Serial Timing Requirements  
50 MHz  
Symbol  
Parameter  
Note:  
Min (ns) Max (ns)  
M1  
M_CLK  
Reference Input  
Clock  
M2  
M3  
M4  
M5  
M6  
M7  
M[7:0]_RXD[1:0] Input Setup Time  
M[7:0]_RXD[1:0] Input Hold Time  
M[7:0]_CRS_DV Input Setup Time  
M[7:0]_TXEN Output Delay Time  
M[7:0]_TXD[1:0] Output Delay Time  
M[7:0]_LINK Input Setup Time  
4
1
4
1
1
11  
11  
C = 30 pF  
L
C = 30 pF  
L
17.7 RMII Timing Requirements  
50 MHz  
Symbol  
Parameter  
Note:  
Min (ns) Max (ns)  
M1  
M_CLK  
Reference Input  
Clock  
M2  
M3  
M4  
M5  
M6  
M7  
M[7:0]_RXD[1:0] Input Setup Time  
M[7:0]_RXD[1:0] Input Hold Time  
M[7:0]_CRS_DV Input Setup Time  
M[7:0]_TXEN Output Delay Time  
M[7:0]_TXD[1:0] Output Delay Time  
M[7:0]_LINK Input Setup Time  
4
1
4
1
1
11  
11  
C = 30 pF  
L
C = 30 pF  
L
33  
MVTX1100AL  
18 Packaging  
MVTX1100AL is packaged in a 208 pin PQFP (dimensions in mm).  
30.6 - 0.20  
25.2 REF  
208  
157  
156  
1
Pin 1 I.D.  
25.2 28.0 30.6  
REF - 0.20 - 0.20  
- A -  
- B -  
52  
105  
53  
104  
0.50  
typ  
0.20  
-.03/+.07  
- D -  
28.0 - 0.20  
4.10  
3.40  
MAX. - 0.20  
- C -  
0.25  
MIN.  
1.30 REF.  
0.50/0.75  
34  
For more information about all Zarlink products  
visit our Web Site at  
www.zarlink.com  
Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively Zarlink)  
is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or  
use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from  
such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or  
other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use  
of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned  
by Zarlink.  
This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part  
of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other  
information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability,  
performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee  
that such methods of use will be satisfactory in a specific piece of equipment. It is the users responsibility to fully determine the performance and suitability of any  
equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily  
include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury  
or death to the user. All products and materials are sold and services provided subject to Zarlinks conditions of sale which are available on request.  
2
2
2
Purchase of Zarlink s I C components conveys a licence under the Philips I C Patent rights to use these components in and I C System, provided  
2
that the system conforms to the I C Standard Specification as defined by Philips.  
Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.  
Copyright 2001, Zarlink Semiconductor Inc. All Rights Reserved.  
TECHNICAL DOCUMENTATION - NOT FOR RESALE  

相关型号:

MVTX2601

Unmanaged 24-Port 10/100 Mbps Ethernet Switch
ZARLINK

MVTX2601A

Unmanaged 24 port 10/100Mb Ethernet switch
ETC

MVTX2601AG

Unmanaged 24-Port 10/100 Mbps Ethernet Switch
ZARLINK

MVTX2601AG

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, MS-034, HSBGA-553
MICROSEMI

MVTX2601AG2

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, LEAD FRFEE, MS-034, HSBGA-553
MICROSEMI

MVTX2602

Managed 24 Port 10/100 Mbps Ethernet Switch
ZARLINK

MVTX2602A

MVTX260x Port Mirroring
ETC

MVTX2602AG

Managed 24 Port 10/100 Mbps Ethernet Switch
ZARLINK

MVTX2602AG2

DATACOM, LAN SWITCHING CIRCUIT, PBGA553, 37.50 X 37.50 MM, 2.33 MM HEIGHT, LEAD FREE, MS-034, HSBGA-553
MICROSEMI

MVTX2603

Unmanaged 24-Port 10/100 Mb + 2-Port 1 Gb Ethernet Switch
ZARLINK

MVTX2603A

Unmanaged 24 port 10/100Mb + 2 port 1Gb Ethernet switch
ETC

MVTX2603AG

Unmanaged 24-Port 10/100 Mb + 2-Port 1 Gb Ethernet Switch
ZARLINK