UC384XA [MICROSEMI]

CURRENT MODE PWM CONTROLLER; 电流模式PWM控制器
UC384XA
型号: UC384XA
厂家: Microsemi    Microsemi
描述:

CURRENT MODE PWM CONTROLLER
电流模式PWM控制器

控制器
文件: 总8页 (文件大小:229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LIN DOC #: 1840  
UC184xA/284xA/384xA  
C U R R E N T M O D E P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
T H E I N F I N I T E P O W E R O F I N N O V A T I O N  
DESCRIPTION  
KEY FEATURES  
LOW START-UP CURRENT. (0.5mA max.)  
TRIMMED OSCILLATOR DISCHARGE  
The UC184xA family of control ICs  
provides all the necessary features to  
implement off-line fixed-frequency,  
current-mode switching power supplies  
with a minimum of external compo-  
nents. The current mode architecture  
demonstrates improved load regulation,  
pulse-by-pulse current limiting and  
inherent protection of the power supply  
output switch. The IC includes: A  
bandgap reference trimmed to ±1%  
accuracy, an error amplifier, a current  
sense comparator with internal clamp to  
1V, a high current totem pole output  
stage for fast switching of power  
MOSFET's, and an externally program-  
mable oscillator to set frequency and  
CURRENT. (See Product Highlight)  
maximum duty cycle. The under-  
voltage lock-out is designed to operate  
with 250µA typ. start-up current,  
allowing an efficient bootstrap supply  
voltage design. Available options for  
this family of products, such as start-up  
voltage hysteresis and duty cycle, are  
summarized below in the Available  
Options section. The UC184xA family  
of control ICs is also available in 14-pin  
SOIC package which makes the Power  
Output Stage Collector and Ground pins  
available.  
p OPTIMIZED FOR OFF-LINE AND DC-TO-DC  
CONVERTERS.  
p AUTOMATIC FEED FORWARD  
COMPENSATION.  
p PULSE-BY-PULSE CURRENT LIMITING.  
p ENHANCED LOAD RESPONSE  
CHARACTERISTICS.  
p UNDER-VOLTAGE LOCKOUT WITH  
HYSTERESIS.  
p DOUBLE PULSE SUPPRESSION.  
p HIGH-CURRENT TOTEM POLE OUTPUT.  
p INTERNALLY TRIMMED BANDGAP  
REFERENCE.  
p 500KHz OPERATION.  
PRODUCT HIGHLIGHT  
p LOW RO ERROR AMPLIFIER.  
COMPARISON OF UC384XA VS. SG384X DISCHARGE CURRENT  
APPLICATIONS  
UC384xA  
ECONOMICAL OFF-LINE FLYBACK OR  
SG384x  
SG384x  
Min. Limit  
Max. Limit  
FORWARD CONVERTERS.  
TA=25°C  
DC-DC BUCK OR BOOST CONVERTERS.  
LOW COST DC MOTOR CONTROL.  
A V A  
I
L
A
B
L
E
O P  
T I O N S  
Part #  
Start-Up Hysteresis Max. Duty  
Voltage  
16V  
Cycle  
<100%  
<100%  
<50%  
<50%  
UCx842A  
6V  
0.8V  
6V  
UCx843A 8.4V  
UCx844A 16V  
UCx845A 8.4V  
7.5  
7.8  
−3σ  
8.3  
Mean  
8.8  
+3σ  
9.3  
0.8V  
Discharge Current Distribution - mA  
PACKAGE ORDER INFORMATION  
Plastic DIP  
8-pin  
Plastic SOIC  
8-pin  
Plastic SOIC  
14-pin  
Ceramic DIP  
8-pin  
TA (°C)  
M
DM  
D
Y
0 to 70  
-40 to 85  
-55 to 125  
UC384xAM  
UC284xAM  
UC384xADM  
UC284xADM  
UC384xAD  
UC284xAD  
UC284xAY  
UC184xAY  
Note: All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number. (i.e. UC3842ADMT)  
F O R F U R T H E R I N F O R M AT I O N C A L L ( 7 1 4 ) 8 9 8 - 8 1 2 1  
Copyright © 1995  
Rev. 1.2 12/95  
1
11861 WESTERN AVENUE, GARDEN GROVE, CA. 92841  
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
UC184xA/284xA/384xA  
C U R R E N T M O D E P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
PACKAGE PIN OUTS  
Supply Voltage (Low Impedance Source) (VCC) ......................................................... 30V  
Supply Voltage (ICC < 30mA).......................................................................... Self Limiting  
Output Current............................................................................................................. ±1A  
Output Energy (Capacitive Load)................................................................................. 5µJ  
Analog Inputs (VFB & ISENSE) ........................................................................ -0.3V to +6.3V  
Error Amp Output Sink Current ............................................................................... 10mA  
Power Dissipation at TA = 25°C (M Package).............................................................. 1W  
Storage Temperature Range .................................................................... -65°C to +150°C  
Lead Temperature (Soldering, 10 Seconds)............................................................. 300°C  
COMP  
VFB  
ISENSE  
RT/CT  
1
2
3
4
8
7
6
5
VREF  
VCC  
OUTPUT  
GND  
M & Y PACKAGE  
(Top View)  
1
2
3
4
8
7
6
5
COMP  
VFB  
ISENSE  
RT/CT  
VREF  
VCC  
OUTPUT  
GND  
Note 1. Exceeding these ratings could cause damage to the device. All voltages are with respect  
to Ground. Currents are positive into, negative out of the specified terminal. Pin  
numbers refer to DIL packages only.  
DM PACKAGE  
(Top View)  
THERMAL DATA  
M PACKAGE:  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
DM PACKAGE:  
95°C/W  
165°C/W  
120°C/W  
130°C/W  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
COMP  
N.C.  
VFB  
N.C.  
ISENSE  
N.C.  
RT/CT  
VREF  
N.C.  
VCC  
VC  
OUTPUT  
GND  
PWR GND  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
D PACKAGE:  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
Y PACKAGE:  
8
D PACKAGE  
(Top View)  
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θJA  
Junction Temperature Calculation: TJ = TA + (PD x θJA).  
The θ numbers are guidelines for the thermal performance of the device/pc-board system.  
All ofJtAhe above assume no ambient airflow  
Copyright © 1995  
Rev. 1.2 12/95  
2
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
UC184xA/284xA/384xA  
C U R R E N T M O D E P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified, these specifications apply over the operating ambient temperatures for UC384xA with 0°C TA 70°C, UC284xA with -40°C TA 85°C,  
UC184xA with -55°C TA 125°C; VCC=15V; RT=10K; CT=3.3nF. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal  
to the ambient temperature.)  
UC184xA/284xA  
Min. Typ. Max. Min. Typ. Max.  
UC384xA  
Parameter  
Symbol  
Test Conditions  
Units  
Reference Section  
Output Voltage  
VREF  
TJ = 25°C, IL = 1mA  
4.95 5.00 5.05 4.90 5.00 5.10  
V
Line Regulation  
12 VIN 25V  
1 IO 20mA  
6
6
20  
25  
6
6
20  
25  
mV  
mV  
Load Regulation  
0.2 0.4  
5.1 4.82  
0.2 0.4 mV/°C  
Temperature Stability (Note 2 & 7)  
Total Output Variation  
Output Noise Voltage (Note 2)  
Long Term Stability (Note 2)  
Output Short Circuit Current  
Oscillator Section  
4.9  
5.18  
V
Over Line, Load, and Temperature  
10Hz f 10kHz, TJ = 25°C  
TA = 125°C, t = 1000hrs  
50  
5
50  
5
µV  
mV  
mA  
VN  
ISC  
25  
25  
-30 -100 -180 -30 -100 -180  
Initial Accuracy (Note 6)  
Voltage Stability  
TJ = 25°C  
12 VCC 25V  
47  
52  
0.2  
5
57  
1
47  
52  
0.2  
5
57  
1
kHz  
%
Temperature Stability (Note 2)  
Amplitude (Note 2)  
Discharge Current  
TMIN TA TMAX  
%
V
mA  
mA  
1.7  
1.7  
7.8 8.3 8.8 7.8 8.3 8.8  
7.5 8.8 7.6 8.8  
TJ = 25°C, VPIN 4 = 2V  
VPIN 4 = 2V, TMIN TA TMAX  
Error Amp Section  
Input Voltage  
Input Bias Current  
VPIN 1 = 2.5V  
2.45 2.50 2.55 2.42 2.50 2.58  
V
µA  
dB  
MHz  
dB  
mA  
mA  
V
IB  
-0.3  
90  
1
-1  
-0.3  
90  
1
-2  
Open Loop Gain  
AVOL  
2 VO 4V  
65  
0.7  
60  
2
65  
0.7  
60  
2
Unity Gain Bandwidth (Note 2)  
Power Supply Rejection Ratio (Note 3)  
Output Sink Current  
Output Source Current  
Output Voltage High Level  
Output Voltage Low Level  
Current Sense Section  
UGBW Tj = 25°C  
PSRR  
IOL  
IOH  
12 VCC 25V  
70  
6
70  
6
VPIN 2 = 2.7V, VPIN 1 = 1.1V  
VPIN 2 = 2.3V, VPIN 1 = 5V  
-0.5 -0.8  
-0.5 -0.8  
5
6
5
6
VOH  
VOL  
VPIN 2 = 2.3V, RL = 15K to ground  
VPIN 2 = 2.7V, RL = 15K to VREF  
0.7 1.1  
0.7 1.1  
V
Gain (Note 3 & 4)  
AVOL  
2.85  
0.9  
3
1
70  
-2  
3.15 2.85  
1.1 0.9  
3
1
70  
-2  
3.15  
1.1  
V/V  
V
dB  
µA  
ns  
Maximum Input Signal (Note 3)  
Power Supply Rejection Ratio (Note 3)  
Input Bias Current  
VPIN 1 = 5V  
PSRR  
IB  
12 VCC 25V  
-10  
-10  
150 300  
150 300  
Delay to Output (Note 2)  
Output Section  
Tpd  
VPIN 3 = 0 to 2V  
Output Low Level  
ISINK = 20mA  
ISINK = 200mA  
0.1 0.4  
1.5 2.2  
0.1 0.4  
1.5 2.2  
V
V
VOL  
Output High Level  
ISOURCE = 20mA  
13 13.5  
12 13.5  
13 13.5  
12 13.5  
50 150  
V
V
VOH  
ISOURCE = 200mA  
TJ = 25°C, CL = 1nF  
TJ = 25°C, CL = 1nF  
VCC = 5V, ISINK = 10mA  
Rise Time (Note 2)  
Fall Time (Note 2)  
UVLO Saturation  
TR  
TF  
VSAT  
50 150  
50 150  
0.7 1.2  
ns  
ns  
V
50 150  
0.7 1.2  
(Electrical Characteristics continue next page.)  
Copyright © 1995  
Rev. 1.2 12/95  
3
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
UC184xA/284xA/384xA  
C U R R E N T M O D E P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
ELECTRICAL CHARACTERISTICS (Con't.)  
UC184xA/284xA  
Min. Typ. Max. Min. Typ. Max.  
UC384xA  
Parameter  
Symbol  
Test Conditions  
Units  
Under-Voltage Lockout Section  
Start Threshold  
x842A/4A  
x843A/5A  
x842A/4A  
x843A/5A  
15  
7.8 8.4 9.0 7.8 8.4 9.0  
10 11 8.5 10 11.5  
7.0 7.6 8.2 7.0 7.6 8.2  
16  
17 14.5 16 17.5  
V
V
V
V
Min. Operation Voltage After Turn-On  
9
PWM Section  
Maximum Duty Cycle  
x842A/3A  
x844A/5A  
94  
47  
96 100 94  
96 100  
%
%
%
48  
50  
0
47  
48  
50  
0
Minimum Duty Cycle  
Total Standby Section  
Start-Up Current  
0.3 0.5  
0.3 0.5  
mA  
mA  
V
Operating Supply Current  
Zener Voltage  
ICC  
VZ  
11  
35  
17  
11  
35  
17  
ICC = 25mA  
30  
30  
Notes: 2. These parameters, although guaranteed, are not 100% tested in  
production.  
7. "Temperature stability, sometimes referred to as average temperature  
coefficient, is described by the equation:  
3. Parameter measured at trip point of latch with VVFB = 0.  
VREF (max.) - VREF (min.)  
Temp Stability =  
VCOMP  
TJ (max.) - T (min.)  
J
4. Gain defined as: AVOL  
=
; 0 VISENSE 0.8V.  
VISENSE  
VREF (max.) & VREF (min.) are the maximum & minimum reference  
voltage measured over the appropriate temperature range. Note that  
the extremes in voltage do not necessarily occur at the extremes in  
temperature."  
5. Adjust VCC above the start threshold before setting at 15V.  
6. Output frequency equals oscillator frequency for the UC1842A  
and UC1843A. Output frequency is one half oscillator frequency  
for the UC1844A and UC1845A.  
BLOCK DIAGRAM  
*
VCC  
34V  
UVLO  
VREF  
5.0V  
50mA  
5V  
Ref  
S / R  
**  
Hysteresis  
6V (1842A/4A)  
0.8V (1843A/5A)  
GROUND  
UVLO  
16V (1842A/4A)  
8.4V (1843A/5A)  
Internal  
Bias  
2.5V  
*
VC  
VREF  
Good Logic  
RT/CT  
Oscillator  
***  
T
OUTPUT  
Error Amp  
S
R
2R  
R
VFB  
PWM  
Latch  
1V  
**  
POWER GROUND  
Current Sense  
Comparator  
COMP  
CURRENT SENSE  
- VCC and VC are internally connected for 8 pin packages.  
- POWER GROUND and GROUND are internally connected for 8 pin packages.  
- Toggle flip flop used only in x844A and x845A series.  
*
**  
***  
Copyright © 1995  
Rev. 1.2 12/95  
4
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
UC184xA/284xA/384xA  
C U R R E N T M O D E P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
CHARACTERISTIC CURVES  
FIGURE 1. — OSCILLATOR FREQUENCY vs. TIMING  
RESISTOR  
VREF  
8
CT = 1nF  
RT  
1M  
RT/CT  
4
5
CT = 2.2nF  
CT  
100k  
GROUND  
CT = 4.7nF  
10k  
0
1.72  
RT CT  
For RT > 5k, f »  
Note: Output drive frequency is half the oscillator frequency for  
the UCx844A/5A devices.  
300  
1.0k  
3.0k  
10.0k  
30.0k  
100k  
RT - (ohms)  
FIGURE 2. — MAXIMUM DUTY CYCLE vs. TIMING RESISTOR  
100.0  
80.0  
60.0  
40.0  
20.0  
0
300  
1.0k  
3.0k  
10.0k  
30.0k  
100k  
RT - (ohms)  
Copyright © 1995  
Rev. 1.2 12/95  
5
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
UC184xA/284xA/384xA  
C U R R E N T M O D E P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
TYPICAL APPLICATION CIRCUITS  
FIGURE 4. — MOSFET PARASITIC OSCILLATIONS  
FIGURE 3. — CURRENT SENSE SPIKE SUPPRESSION  
VCC DC BUS  
VCC  
DC BUS  
7
6
7
Q1  
RS  
R1  
Q1  
UCx84xA  
UCx84xA  
6
5
IPK  
CHANGE  
3
1.0V  
RS  
IPK(MAX)  
=
C
5
RS  
The RC low pass filter will eliminate the leading edge current spike  
caused by parasitics of Power MOSFET.  
A resistor (R1) in series with the MOSFET gate will reduce overshoot  
& ringing caused by the MOSFET input capacitance and any  
inductance in series with the gate drive. (Note: It is very important to  
have a low inductance ground path to insure correct operation of the  
I.C. This can be done by making the ground paths as short and as  
wide as possible.)  
FIGURE 5. — EXTERNAL DUTY CYCLE CLAMP AND MULTI-UNIT SYNCHRONIZATION  
8
4
8
4
RA  
RB  
7
6
UCx84xA  
555  
TIMER  
3
2
5
1
5
0.01  
To other  
UCx84xA devices  
1.44  
f =  
f =  
(RA + 2RB)C  
RB  
Precision duty cycle limiting as well as synchronizing several parts is  
possible with the above circuitry.  
RA + 2RB  
Copyright © 1995  
Rev. 1.2 12/95  
6
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
UC184xA/284xA/384xA  
C U R R E N T M O D E P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
TYPICAL APPLICATION CIRCUITS (continued)  
FIGURE 6. — SLOPE COMPENSATION  
VCC  
DC BUS  
UCx84xA  
7(12)  
VO  
5V  
8(14)  
RT  
UVLO  
S
5V  
REF  
R
INTERNAL  
BIAS  
2.5V  
2N222A  
VREF  
GOOD LOGIC  
7(11)  
6(10)  
RSLOPE  
4(7)  
OSCILLATOR  
Q1  
From VO  
CT  
C.S.  
COMP  
2R  
Ri  
2(3)  
RF  
1V  
ERROR  
AMP  
R
5(8)  
3(5)  
PWM  
LATCH  
Rd  
CF  
R
1(1)  
C
RS  
5(9)  
Due to inherent instability of current mode converters running above 50% duty cycle, slope compensation should be added to either  
the current sense pin or the error amplifier. Figure 6 shows a typical slope compensation technique.  
FIGURE 7. OPEN LOOP LABORATORY FIXTURE  
VREF  
RT  
VCC  
A
UCx84xA  
2N2222  
100K  
4.7K  
1K  
COMP  
VREF  
1
2
3
4
8
7
6
5
VFB  
VCC  
0.1µF  
0.1µF  
ERROR AMP  
ADJUST  
1K  
5K  
ISENSE  
ADJUST  
OUTPUT  
4.7K  
ISENSE  
OUTPUT  
GROUND  
RTCT  
GROUND  
CT  
High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be  
connected to pin 5 in a single point ground. The transistor and 5k potentiometer are used to sample the oscillator waveform and apply an  
adjustable ramp to pin 3.  
Copyright © 1995  
Rev. 1.2 12/95  
7
P R O D U C T D A T A B O O K 1 9 9 6 / 1 9 9 7  
UC184xA/284xA/384xA  
C U R R E N T M O D E P W M C O N T R O L L E R  
P R O D U C T I O N D A T A S H E E T  
TYPICAL APPLICATION CIRCUITS (continued)  
FIGURE 8. OFF-LINE FLYBACK REGULATOR  
TI  
MBR735  
4.7kW 1W  
220µF  
250V  
4.7kW  
2W  
3600pF  
400V  
1N4004  
1N4004  
5V  
2-5A  
4700µF  
10V  
140kW  
1/2W  
1N4935  
AC  
INPUT  
1N4004  
1N4004  
1N4935  
16V  
10µF  
20V  
20kW  
UC3844A  
820pF  
7
0.01µF  
VFB  
VCC  
2
2.5kW  
27kW  
150kW  
COMP  
1
OUT  
6
3
3.6kW  
100pF  
VREF  
8
4
1kW  
470pF  
CUR  
SEN  
10kW  
0.85kW  
RT/CT  
GND  
0.01µF  
.0022µF  
5
ISOLATION  
BOUNDARY  
SPECIFICATIONS  
Input line voltage:  
Input frequency:  
Switching frequency:  
Output power:  
Output voltage:  
Output current:  
Line regulation:  
Load regulation:  
Efficiency @ 25 Watts,  
VIN = 90VAC:  
90VAC to 130VAC  
50 or 60Hz  
40KHz 10%  
25W maximum  
5V +5%  
2 to 5A  
0.01%/V  
8%/A*  
* This circuit uses a low-cost feedback scheme in which the DC  
voltage developed from the primary-side control winding is  
sensed by the UC3844A error amplifier. Load regulation is  
therefore dependent on the coupling between secondary and  
control windings, and on transformer leakage inductance.  
70%  
VIN = 130VAC:  
65%  
Output short-circuit current:  
2.5Amp average  
Copyright © 1995  
Rev. 1.2 12/95  
8

相关型号:

UC384XAD

CURRENT MODEPWM CONTROLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSEMI

UC384XADM

CURRENT MODEPWM CONTROLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSEMI

UC384XAM

CURRENT MODEPWM CONTROLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MICROSEMI

UC384XBD

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MOTOROLA

UC384XBD

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UC384XBD1

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MOTOROLA

UC384XBD1

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UC384XBD1G

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UC384XBD1R2

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UC384XBD1R2G

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UC384XBDG

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UC384XBDR2

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI