W3HG64M72EER665AD7MG [MICROSEMI]

DDR DRAM Module, 64MX72, 0.45ns, CMOS, ROHS COMPLIANT, DIMM-244;
W3HG64M72EER665AD7MG
型号: W3HG64M72EER665AD7MG
厂家: Microsemi    Microsemi
描述:

DDR DRAM Module, 64MX72, 0.45ns, CMOS, ROHS COMPLIANT, DIMM-244

动态存储器 双倍数据速率
文件: 总14页 (文件大小:256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W3HG64M72EER-AD7  
White Electronic Designs  
ADVANCED*  
512MB – 64Mx72 DDR2 SDRAM REGISTERED, w/PLL,  
VLP Mini-DIMM  
DESCRIPTION  
FEATURES  
The W3HG64M72EER is a 64Mx72 Double Data Rate  
DDR2 SDRAM high density module. This memory  
module consists of nine 64Mx8 bit with 4 banks DDR2  
Synchronous DRAMs in FBGA packages, mounted on a  
244-pin DIMM FR4 substrate.  
„
244-pin, very low prole dual in-line memory  
module (VLP Mini-DIMM)  
„
Fast data transfer rates: PC2-3200, PC2-4200,  
PC2-5300*, and PC2-6400*  
„
„
„
„
„
„
„
„
„
„
„
Supports ECC error detection and correction  
V
CC = VCCQ = 1.8V ±0.1V  
CCSPD = 1.7V to 3.6V  
* This product is under development, is not qualied or characterized and is subject to  
change or cancellation without notice.  
V
Differential data strobe (DQS, DQS#) option  
Four-bit prefetch architecture  
NOTE: Consult factory for availability of:  
• Vendor source control options  
• Industrial temperature option  
• Parity option  
Programmable CAS# latency (CL)  
Posted CAS# additive latency (AL)  
On-die termination (ODT)  
Programmable burst lenghts: 4 or 8  
Serial Presence Detect (SPD) with EEPROM  
Auto and Self Refresh Capability (64ms: 8,192  
cycle refresh)  
„
„
„
„
Gold (Au) edge contacts  
RoHS compliant  
Single Rank  
Package option  
• 244 Pin Mini-DIMM  
• PCB – 18.29mm (0.72")  
OPERATING FREQUENCIES  
PC2-3200  
200MHz  
3-3-3  
PC2-4200  
266MHz  
4-4-4  
PC2-5300*  
333MHz  
5-5-5  
PC2-6400*  
400MHz  
6-6-6  
Clock Speed  
CL-tRCD-tRP  
* Contact factory for availability  
October 2006  
Rev. 2  
1
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG64M72EER-AD7  
White Electronic Designs  
ADVANCED  
PIN CONFIGURATION  
PIN NAMES  
Pin No.  
1
Symbol  
VREF  
Pin No.  
62  
Symbol  
A4  
Pin No.  
123  
Symbol  
VSS  
Pin No.  
184  
Symbol  
VCCQ  
Pin Name  
A0-A13  
Function  
Address Inputs  
SDRAM Bank Address  
Data Input/Output  
Check Bits  
2
3
VSS  
DQ0  
63  
64  
VCCQ  
A2  
124  
125  
DQ4  
DQ5  
185  
186  
A3  
A1  
BA0,BA1  
4
5
6
7
8
9
DQ1  
VSS  
DQS0#  
DQS0  
VSS  
DQ2  
DQ3  
VSS  
DQ8  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
VCC  
VSS  
VSS  
NC/PAR_IN  
VCC  
A10/AP  
BA0  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
VSS  
DM0  
NC  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
VCC  
CK0  
CK0#  
VCC  
A0  
BA1  
VCC  
RAS#  
VCCQ  
S0#  
VCCQ  
ODT0  
A13  
VCC  
NC  
VSS  
DQ36  
DQ37  
VSS  
DM4  
NC  
DQ0-DQ63  
CB0-CB7  
DQS0-DQS8  
VSS  
Data strobes  
DQ6  
DQ7  
VSS  
DQ12  
DQ13  
VSS  
DM1  
NC  
VSS  
DQS0#-DQS8#  
ODT0  
Data strobes complement  
On-die termination control  
Clock Inputs, positive line  
Clock Enables  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
VCC  
CK0,CK0#  
CKE0  
WE#  
VCCQ  
CAS#  
VCCQ  
NC  
NC  
VCCQ  
NC  
DQ9  
VSS  
S0#  
Chip Selects  
DQS1#  
DQS1  
VSS  
RESET#  
NC  
RAS#  
Row Address Strobe  
Column Address Strobe  
Write Enable  
NC  
NC  
VSS  
CAS#  
WE#  
VSS  
VSS  
DQ14  
DQ15  
VSS  
DQ20  
DQ21  
VSS  
DM2  
NC  
VSS  
DQ22  
DQ23  
VSS  
DQ28  
DQ29  
VSS  
DM3  
NC  
VSS  
DQ30  
DQ31  
VSS  
CB4  
CB5  
VSS  
DM8  
NC  
VSS  
CB6  
CB7  
VSS  
NC  
VCCQ  
NC  
RESET#  
DM (0-8)  
VCCSPD  
VCC  
Register Reset Input  
Data Masks  
DQ10  
DQ11  
VSS  
DQ16  
DQ17  
VSS  
DQS2#  
DQS2  
VSS  
DQ18  
DQ19  
VSS  
DQ32  
DQ33  
VSS  
DQS4#  
DQS4  
VSS  
DQ34  
DQ35  
VSS  
DQ40  
DQ41  
VSS  
SPD Power  
Core Power  
VSS  
DQ38  
DQ39  
VSS  
DQ44  
DQ45  
VSS  
DM5  
NC  
VSS  
DQ46  
DQ47  
VSS  
DQ52  
DQ53  
VSS  
VCCQ  
I/O Power  
A10/AP  
VSS  
Address Input/Auto Precharge  
Ground  
PAR_IN  
ERR_OUT  
Parity bit for the addess and control bus  
Parity error found on the address and  
control bus  
DQ24  
DQ25  
VSS  
DQS3#  
DQS3  
VSS  
DQ26  
DQ27  
VSS  
CB0  
CB1  
VSS  
DQS8#  
DQS8  
VSS  
CB2  
CB3  
94  
95  
96  
97  
98  
99  
DQS5#  
DQS5  
VSS  
DQ42  
DQ43  
VSS  
DQ48  
DQ49  
VSS  
SA0-SA2  
SDA  
SPD address  
SPD Data Input/Output  
Clock Input  
SCL  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
NC  
No connect  
VREF  
Input/Output Reference  
NC  
NC  
VSS  
DM6  
NC  
SA2  
NC  
VSS  
DQS6#  
DQS6  
VSS  
DQ50  
DQ51  
VSS  
DQ56  
DQ57  
VSS  
DQS7#  
DQS7  
VSS  
VSS  
DQ54  
DQ55  
VSS  
DQ60  
DQ61  
VSS  
DM7  
NC  
VSS  
VSS  
NC  
VCCQ  
CKE0  
VCC  
VCC  
NC  
NC  
VCCQ  
NC  
NC/ERR_  
OUT  
VCCQ  
A11  
A7  
VCC  
DQ62  
57  
58  
59  
60  
61  
118  
119  
120  
121  
122  
DQ58  
DQ59  
VSS  
SA0  
SA1  
179  
180  
181  
182  
183  
A12  
A9  
VCC  
A8  
240  
241  
242  
243  
244  
DQ63  
VSS  
SDA  
SCL  
VCCSPD  
A5  
A6  
October 2006  
Rev. 2  
2
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG64M72EER-AD7  
White Electronic Designs  
ADVANCED  
FUNCTIONAL BLOCK DIAGRAM  
RS0#  
DQS0  
DQS0#  
DM0  
DQS4  
DQS4#  
DM4  
DM/  
DM/  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
CS# DQS DQS#  
RDQS  
I/O0  
RDQS  
I/O0  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
DQ32  
DQ33  
DQ34  
DQ35  
DQ36  
DQ37  
DQ38  
DQ39  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
DQS1  
DQS1#  
DM1  
DQS5  
DQS5#  
DM5  
DM/  
DM/  
RDQS  
I/O0  
RDQS  
I/O0  
DQ8  
DQ9  
DQ40  
DQ41  
DQ42  
DQ43  
DQ44  
DQ45  
DQ46  
DQ47  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
DQ10  
DQ11  
DQ12  
DQ13  
DQ14  
DQ15  
DQS2  
DQS2#  
DM2  
DQS6  
DQS6#  
DM6  
DM/  
DM/  
RDQS  
I/O0  
RDQS  
I/O0  
DQ48  
DQ49  
DQ50  
DQ51  
DQ52  
DQ53  
DQ54  
DQ55  
DQ16  
DQ17  
DQ18  
DQ19  
DQ20  
DQ21  
DQ22  
DQ23  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
DQS3  
DQS3#  
DM3  
DQS7  
DQS7#  
DM7  
DM/  
DM/  
CS# DQS DQS#  
RDQS  
I/O0  
RDQS  
I/O0  
DQ56  
DQ57  
DQ58  
DQ59  
DQ60  
DQ61  
DQ62  
DQ63  
DQ24  
DQ25  
DQ26  
DQ27  
DQ28  
DQ29  
DQ30  
DQ31  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
DQS8  
DQS8#  
DM8  
V
CCSPD  
Serial PD  
DDR SDRAMs  
DM/  
V
CC/VCCQ  
RDQS  
I/O0  
CB0  
CB1  
CB2  
CB3  
CB4  
CB5  
CB6  
CB7  
V
REF  
DDR SDRAMs  
DDR SDRAMs  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
V
SS  
Serial PD  
SCL  
SDA  
WP A0 A1 A2  
SA0 SA1 SA2  
RS0#  
RBA0 - RBA1  
RA0 - RA13  
RRAS#  
RCAS#  
RWE#  
S0# DDR2 SDRAMs  
BA0 - BA1 DDR2 SDRAMs  
A0 - A13 DDR2 SDRAMs  
RAS# DDR2 SDRAMs  
RCAS# DDR2 SDRAMs  
R
S0#  
E
G
I
BA0 - BA1  
A0 - A13  
RAS#  
CAS#  
WE#  
DDR2 SDRAM  
DDR2 SDRAM  
DDR2 SDRAM  
DDR2 SDRAM  
DDR2 SDRAM  
DDR2 SDRAM  
DDR2 SDRAM  
DDR2 SDRAM  
DDR2 SDRAM  
Register  
S
T
E
R
CK0  
P
L
L
WE# DDR2 SDRAMs  
RCKE0  
RODT0  
CKE0 DDR2 SDRAMs  
ODT0 DDR2 SDRAMs  
CKE0  
ODT0  
CK0#  
OE  
RESET#  
CK#  
RST#  
RESET#  
CK  
NOTE: All resistor values are 22 ohms ±5% unless otherwise specied.  
October 2006  
Rev. 2  
3
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG64M72EER-AD7  
White Electronic Designs  
ADVANCED  
DC OPERATING CONDITIONS  
All voltages referenced to VSS  
Parameter  
Symbol  
VCC  
Min  
1 .7  
Typical  
1 .8  
Max  
1 .9  
Unit  
V
Notes  
Supply voltage  
1
4
4
2
3
I/O Supply voltage  
VCCL Supply voltage  
I/O Reference voltage  
I/O Termination voltage  
Notes:  
VCCQ  
VCCL  
VREF  
VTT  
1 .7  
1 .8  
1 .9  
V
1 .7  
1 .8  
1 .9  
V
0.49 x VCCQ  
VREF-0.04  
0.50 x VCCQ  
VREF  
0.51 x VCCQ  
VREF + 0.04  
V
V
1.  
2.  
V
V
CC and VCCQ must track each other. VCCQ must be less than or equal to VCC  
REF is expected to equal VCCQ/2 of the transmitting device and to track variations in the DC level of the same. Peak-to-peak noise on VREF may not excedd ±1 percent of the DC  
.
value. Peak-to-peak AC noise on VREF may not exceed ±2 percent of VREF (DC). This measurement is to be taken at the nearest VREF bypass capacitor.  
3.  
4.  
V
V
TT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF and must track variations in the DC level of VREF  
.
CCQ tracks with VCC; VCCL track with VCC  
.
ABSOLUTE MAXIMUM DC RATINGS  
Symbol  
VCC  
Parameter  
MIN  
-1.0  
-0.5  
-0.5  
-0.5  
-55  
0
MAX  
2.3  
2.3  
2.3  
2.3  
100  
85  
U nit  
V
Voltage on VCC pin relative to VSS  
Voltage on VCCQ pin relative to VSS  
Voltage on VCCL pin relative to VSS  
Voltage on any pin relative to VSS  
Storage temperature  
VCCQ  
VCCL  
V
V
VIN, VOUT  
TSTG  
V
°C  
°C  
°C  
TCASE  
TOPR  
Device operating temperature  
Operating temperature (ambient)  
0
55  
Command/Address,  
RAS#, CAS#, WE#,  
CS#, CKE  
-5  
5
μA  
Input leakage current; Any input 0V<VIN<VCC; VREF input  
0V<VIN<0.95V; Other pins not under test = 0V  
IL  
CK, CK#  
DM  
-5  
-5  
5
5
μA  
μA  
Output leakage current;  
0V<VOUT<VCCQ; DQs and ODT are disable  
IOZ  
DQ, DQS, DQS#  
-5  
5
μA  
μA  
IVREF  
VREF leakage current; VREF = Valid VREF level  
-18  
18  
INPUT/OUTPUT CAPACITANCE  
TA=25 0 C, f=1 00MHz  
Parameter  
Symbol  
Min  
Max  
Unit  
pF  
pF  
pF  
pF  
pF  
pF  
Input capacitance (A0 - A1 3, BA0 - BA1 ,RAS#,CAS#,WE#)  
Input capacitance ( CKE0), (ODT0)  
CIN1  
CIN2  
Input capacitance (CS0#)  
CIN3  
Input capacitance (CK0, CK0#)  
CIN4  
Input capacitance (DM0 - DM8), (DQS0 - DQS8)  
Input capacitance (DQ0 - DQ63), (CB0 - CB7)  
CIN5  
COUT1  
October 2006  
Rev. 2  
4
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG64M72EER-AD7  
White Electronic Designs  
ADVANCED  
OPERATING TEMPERATURE CONDITION  
Parameter  
Symbol  
Rating  
Units  
Notes  
Operating temperature  
TOPER  
0°C to 85°C  
°C  
V
Notes:  
1. Operating temperature is the case surface temperature on the center/top side of the DRAM. Forthe measurement conditions, please refer to JEDEC JESD51 .2  
2. At 0 - 85°C, operation temperature range, all DRAM specication will be supported.  
INPUT DC LOGIC LEVEL  
All voltages referenced to VSS  
Parameter  
Symbol  
VIH(DC)  
VIL(DC)  
Min  
VREF + 125  
-300  
Max  
Unit  
mV  
mV  
Input High (Logic 1 ) Voltage  
Input Low (Logic 0) Voltage  
VREF + 300  
VREF - 125  
INPUT AC LOGIC LEVEL  
All voltages referenced to VSS  
Parameter  
Symbol  
VIH(AC)  
VIH(AC)  
VIL(AC)  
Min  
VREF + 250  
VREF + 200  
Max  
Unit  
mV  
mV  
mV  
AC Input High (Logic 1 ) Voltage (DDR2-400/533)  
AC Input High (Logic 1) Voltage (DDR2-667)  
AC Input Low (Logic 0) Voltage  
VREF - 250  
October 2006  
Rev. 2  
5
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG64M72EER-AD7  
White Electronic Designs  
ADVANCED  
DDR2 ICC SPECIFICATIONS AND CONDITIONS  
Includes DDR2 SDRAM components only; TA = 0°C, VCC = 1.9V  
Symbol Parameter  
Operating one bank  
Condition  
tCK = tCK(I ); tRC = tRC(I ); tRAS = tRAS MIN(I ); CKE is HIGH, CS# is  
HIGH between valid commands; Address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
806  
667  
534  
403  
Unit  
CC  
CC  
CC  
ICCO*  
810  
720  
720  
mA  
TBD  
TBD  
active-precharge;  
IOUT = OmA; BL = 4; CL = CL(ICC); tCK = tCK(I ); tRC = tRC(I ); tRAS = tRAS  
CC  
CC  
Operating one  
ICC1* bank active-read-  
precharge;  
CC); CKE is HIGH, CS# is HIGH between valid commands; Address  
MIN(I  
945  
855  
810  
mA  
bus inputs are SWITCHING; Data bus inputs are SWITCHING; Data  
pattern is sames as ICC4W  
.
Precharge power-  
ICC2P**  
All banks idle; tCK = tCK(I ); CKE is LOW; Other control and address  
bus inputs are STABLE; Data bus inputs are FLOATING  
CC  
45  
450  
495  
315  
90  
45  
360  
405  
270  
90  
45  
315  
360  
225  
90  
mA  
mA  
mA  
mA  
mA  
TBD  
TBD  
TBD  
TBD  
TBD  
down current;  
Precharge quite  
ICC2Q**  
All banks idle; tCK = tCK(I ); CKE is HIGH; CS# is HIGH; Other control  
CC  
standby current;  
and address bus inputs are STABLE; Data bus inputs are FLOATING  
Precharge standby All banks idle; tCK = tCK(I ); CKE is HIGH; CS# is HIGH; Other control  
current;  
CC  
ICC2N**  
and address bus inputs are STABLE; Data bus inputs are SWITCHING  
Fast PDN Exit  
MRS(12) = 0  
All banks open; tCK = tCK(I ), CKE is LOW;  
Other control and address bus inputs are  
STABLE; Data bus inputs are FLOATING  
CC  
Active power-down  
current;  
ICC3P**  
Slow PDN Exit  
MRS(12) = 1  
All banks open; tCK = tCK(I ); tRC = tRC(I ); tRAS = tRAS MIN(I ); CKE  
is HIGH, CS# is HIGH between valid commands; Other control and  
address bus inputs are SWITCHING; Data bus inputs are SWITCHING  
CC  
CC  
CC  
Active standby  
current;  
ICC3N**  
585  
495  
405  
990  
mA  
mA  
TBD  
TBD  
All banks open; Continuous burst writes; BL = 4; CL = CL(ICC); AL =  
0; tCK = tCK(I ); tRC = tRC(I ); tRAS = tRAS MIN(I ); CKE is HIGH, CS# is  
HIGH between valid commands; Address bus inputs are SWITCHING;  
Data bus inputs are SWITCHING  
Operating burst  
write current;  
CC  
CC  
CC  
ICC4W*  
1,395  
1,170  
All banks open; Continuous burst reads; TOUT = OmA; BL = 4; CL =  
CL(ICC); AL = 0; tCK = tCK(I ); tRC = tRC(I ); tRAS = tRAS MIN(I ); CKE is  
Operating burst  
read current;  
CC  
CC  
CC  
ICC4R*  
1,575  
1,305  
1,035  
mA  
TBD  
HIGH, CS# is HIGH between valid commands; Address bus inputs are  
SWITCHING; Data pattern is same as ICC4W  
tCK = tCK(I ); Refresh command at every tRC(I ) interval; CKE is HIGH;  
.
CC  
CC  
Burst auto refresh  
current;  
ICC5**  
CS# is HIGH between valid commands; Other control and address bus  
inputs are SWITCHING; Data bus inputs are SWITCHING  
1,890  
45  
1,800  
45  
1,710  
45  
mA  
mA  
TBD  
TBD  
CK and CK# at OV; CKE < 0.2V; Other control  
ICC6** Self refresh current; and address bus inputs are FLOATING; Data  
bus inputs are FLOATING  
Normal  
All bank interleaving reads; IOUT = OmA; BL = 4; CL = CL(ICC); AL  
= tRCD(I ) - 1*tCK(I ); tCK = tCK(I ); tRC = tRC(I ); tRRD = tRRD MIN(I  
)
CC  
Operating bank  
ICC7* interleave read  
curent;  
CC  
CC  
CC  
CC  
= 1*tCK(I ); CKE is HIGH; CS# is HIGH between valid commands;  
2,520  
2,340  
2,070  
mA  
TBD  
CC  
Address bus inputs are STABLE during DESELECTs; Data bus inputs  
are SWITCHING  
Notes:  
I
CC specication is based on MICRON components. Other DRAM manufacturers specication may be different.  
* Value calculated as one module rank in this operating condition, and all other module ranks in ICC2P ( CKE LOW) mode.  
** Value calculated reects all module ranks in this operating condition.  
October 2006  
Rev. 2  
6
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG64M72EER-AD7  
White Electronic Designs  
ADVANCED  
DDR2 SDRAM COMPONENT AC TIMING PARAMETERS & SPECIFICATION  
0°C TCASE < +85°C; VCCQ = + 1.8V ± 0.1V, VCC = +1.8V ± 0.1V  
AC CHARACTERISTICS  
PARAMETER  
806  
667  
534  
403  
SYMBOL MIN  
MAX  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNIT Notes  
CL = 6  
CL = 5  
CL = 4  
CL = 3  
tCK (6)  
ps  
ps  
ps  
ps  
tCK  
tCK  
16, 24  
16, 24  
16, 24  
16, 24  
18  
TBD  
tCK (5)  
3,000 8,000  
TBD  
Clock cycle time  
tCK (4)  
3,750 8,000 3,750 8,000 5,000 8,000  
5,000 8,000 5,000 8,000 5,000 8,000  
TBD  
tCK (3)  
TBD  
CK high-level width  
CK low-level width  
tCH  
0.45  
0.45  
MIN  
0.55  
0.55  
0.45  
0.45  
MIN  
0.55  
0.55  
0.45  
0.45  
MIN  
0.55  
0.55  
TBD  
tCL  
18  
TBD  
Half clock period  
tHP  
(tCH  
,
(tCH  
,
(tCH  
,
ps  
19  
TBD  
TBD  
tCL  
)
tCL  
)
tCL  
)
DQ output access time from CK/CK#  
tAC  
-450  
+450  
-500  
+500  
-600  
+600  
ps  
ps  
TBD  
TBD  
TBD  
Data-out high-impedance window from  
CK/CK#  
tAC  
(MAX)  
tAC  
MAX  
tAC  
MAX  
tHZ  
8, 9  
TBD  
tAC  
tAC  
tAC  
tAC  
tAC  
tAC  
Data-out low-impedance window from CK/CK#  
DQ and DM input setup time relative to DQS  
DQ and DM input hold time relative to DQS  
DQ and DM input setup time relative to DQS  
DQ and DM input hold time relative to DQS  
tLZ  
ps  
ps  
ps  
tCK  
ps  
ps  
8, 10  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
(MIN) (MAX) (MIN) (MAX) (MIN) (MAX)  
7, 15,  
21  
tDSa  
300  
300  
100  
175  
0.35  
350  
350  
100  
225  
0.35  
400  
400  
150  
275  
0.35  
TBD  
7, 15,  
21  
tDHa  
TBD  
7, 15,  
21  
tDSb  
TBD  
7, 15,  
21  
tQHb  
TBD  
DQ - DQS hold, DQS to rst DQ to go  
nonvalid, per access relative to DQS  
tDIPW  
TBD  
TBD  
TBD  
TBD  
Data hold skew factor  
tQHS  
340  
400  
450  
TBD  
DQ - DQS hold, DQS to rst DQ to go  
nonvalid, per access  
tHP  
-
tHP  
-
tHP  
-
tQH  
15, 17  
15, 17  
TBD  
tQHS  
tQHS  
tQHS  
tQH  
-
tQH  
-
tQH-  
Data valid output window (DVW)  
tDVW  
TBD  
TBD  
tDQSQ  
0.35  
0.35  
-400  
tDQSQ  
0.35  
0.35  
-450  
tDQSQ  
0.35  
0.35  
-500  
DQS input high pulse width  
tDQSH  
tCK  
tCK  
ps  
TBD  
TBD  
TBD  
TBD  
DQS input low pulse width  
tDQSL  
TBD  
DQS output access time from CK/CK#  
tDQSCK  
+400  
+450  
+500  
TBD  
DQS falling edge to CK rising– setup time  
DQS falling edge from CK rising – hold time  
tDSS  
0.2  
0.2  
0.2  
0.2  
0.2  
0.2  
tCK  
TBD  
TBD  
TBD  
tDSH  
tCK  
TBD  
DQS - DQ skew, DQS to last DQ valid, per  
group, per access  
tDQSQ  
240  
1.1  
300  
1.1  
350  
1.1  
ps  
15, 17  
35  
TBD  
TBD  
TBD  
DQS read preamble  
tRPRE  
0.9  
0.9  
0.9  
tCK  
TBD  
NOTE:  
• AC specication is based on MICRON components. Other DRAM manufactures specication may be different.  
October 2006  
Rev. 2  
7
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG64M72EER-AD7  
White Electronic Designs  
ADVANCED  
DDR2 SDRAM COMPONENT AC TIMING PARAMETERS & SPECIFICATION (Continued)  
0°C TCASE < +85°C; VCCQ = + 1.8V ± 0.1V, VCC = +1.8V ± 0.1V  
AC CHARACTERISTICS  
806  
665  
534  
403  
PARAMETER  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNIT  
Notes  
DQS read preamble  
tRPST  
0.4  
0.6  
0.4  
0.6  
0.4  
0.6  
tCK  
35  
TBD  
TBD  
12, 13,  
36  
DQS write preamble setup time  
tWPRES  
0
0
0
ps  
TBD  
TBD  
DQS write preamble  
DQS write postamble  
tWPRE  
tWPST  
0.35  
0.4  
0.25  
0.4  
0.25  
0.4  
tCK  
tCK  
TBD  
TBD  
TBD  
TBD  
0.6  
0.6  
0.6  
11  
Write command to rst DQS  
WL-  
0.25  
WL+  
0.25  
WL-  
0.25  
WL+  
0.25  
WL-  
0.25  
WL+  
0.25  
tDQSS  
tIPW  
tISa  
tCK  
tCK  
ps  
ps  
ps  
ps  
tCK  
ns  
ns  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
latching transition  
Address and control input  
pulse width for each input  
0.6  
400  
400  
200  
275  
2
0.6  
500  
500  
250  
375  
2
0.6  
600  
600  
350  
475  
2
Address and control input  
setup time  
6, 21  
6, 21  
6, 21  
6, 21  
Address and control input  
hold time  
tIHa  
Address and control input  
setup time  
tISb  
Address and control input  
hold time  
tIHb  
CAS# to CAS# command  
delay  
tCCD  
tRC  
Active to Active (same bank)  
command  
55  
55  
55  
33  
27  
Active bank a to Active b bank  
command  
tRRD  
7.5  
7.5  
7.5  
Active to Read or Write delay  
Four Bank Activate period  
Active to precharge command  
tRCD  
tFAW  
tRAS  
15  
37.5  
40  
15  
37.5  
40  
15  
37.5  
40  
ns  
ns  
ns  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
30  
70,000  
70,000  
70,000  
20, 33  
Internal Read to precharge  
command delay  
tRTP  
tWR  
tDAL  
7.5  
15  
7.5  
15  
7.5  
15  
ns  
ns  
ns  
23, 27  
27  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Write recovery time  
Auto precharge wirte recovery  
and precharge time  
tWR+tRP  
tWR+tRP  
tWR+tRP  
22  
Interval Write to Read  
command delay  
tWTR  
10  
7.5  
10  
ns  
27  
TBD  
TBD  
Precharge command period  
tRP  
15  
15  
15  
ns  
ns  
31  
31  
TBD  
TBD  
TBD  
TBD  
Precharge All command period  
tRPA  
tRP+tCK  
tRP+tCK  
tRP+tCK  
Load Mode command cycle  
time  
tMRD  
2
2
2
tCK  
ns  
TBD  
TBD  
TBD  
TBD  
CKE low to CK,CK#  
uncertainty  
tDELAY  
tIS+tCK+ IH  
t
tIS+tCK+ IH  
t
tIS+tCK+ IH  
t
28  
NOTE:  
• AC specication is based on MICRON components. Other DRAM manufactures specication may be different.  
October 2006  
Rev. 2  
8
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG64M72EER-AD7  
White Electronic Designs  
ADVANCED  
DDR2 SDRAM COMPONENT AC TIMING PARAMETERS & SPECIFICATION (Continued)  
0°C TCASE < +85°C; VCCQ = + 1.8V ± 0.1V, VCC = +1.8V ± 0.1V  
AC CHARACTERISTICS  
PARAMETER  
806  
665  
534  
403  
SYMBOL  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNIT  
Notes  
Refresh to Active or Refresh to  
Refresh command interval  
tRFC  
105  
70,000  
105  
70,000  
105  
70,000  
ns  
14  
TBD  
TBD  
Average periodic refresh  
interval  
tREFI  
tXSNR  
tXSRD  
200  
tRFC  
7.8  
7.8  
7.8  
μs  
ns  
14  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Exit self refresh to non-read  
command  
tRFC  
tRFC  
(MIN)+10  
(MIN)+10  
(MIN)+10  
Exit self refresh to read  
command  
200  
200  
200  
tCK  
Exit self refresh timing  
reference  
tISXR  
tIS  
2
tIS  
2
tIS  
2
ps  
6, 29  
25  
TBD  
TBD  
TBD  
TBD  
ODT turn-on delay  
tAOND  
2
2
2
tCK  
tAC(MAX)  
+700  
tAC(MAX)  
+1,000  
tAC(MAX)  
+1,000  
ODT turn-on  
tAON  
tAOFD  
tAOF  
tAC(MIN)  
2.5  
tAC(MIN)  
2.5  
tAC(MIN)  
2.5  
ps  
tCK  
ps  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ODT turn-off delay  
ODT turn-off  
2.5  
2.5  
2.5  
tAC(MAX)  
+600  
tAC(MAX)  
+600  
tAC(MAX)  
+600  
tAC(MIN)  
tAC(MIN)  
tAC(MIN)  
26  
2x tCK  
tAC (MAX)  
+ 1,000  
+
2x tCK  
tAC (MAX)  
+ 1,000  
+
2x tCK +  
tAC (MAX)  
+ 1,000  
tAC(MIN)  
+2,000  
tAC(MIN)  
+2,000  
tAC(MIN)  
+2,000  
ODT turn-on (power-down  
mode)  
tAONPD  
ps  
TBD  
TBD  
TBD  
TBD  
2x tCK  
tAC (MAX)  
+ 1,000  
+
2x tCK  
tAC (MAX)  
+ 1,000  
+
2x tCK +  
tAC (MAX)  
+ 1,000  
tAC(MIN)  
+2,000  
tAC(MIN)  
+2,000  
tAC(MIN)  
+2,000  
ODT turn-off (power-down  
mode)  
tAOFPD  
tCK  
ODT to power-down entry  
latency  
tANPD  
tAXPD  
tXARD  
3
8
2
3
8
2
3
8
2
tCK  
tCK  
tCK  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ODT power-down exit latency  
Exit active power-down to  
READ command, MR[bit12=0]  
Exit active power-down to  
READ command, MR[bit12=1]  
tXARDS  
7-AL  
6-AL  
6-AL  
tCK  
TBD  
TBD  
Exit precharge power-down to  
any non-READ command.  
tXP  
2
3
2
3
2
3
tCK  
tCK  
TBD  
TBD  
TBD  
TBD  
CKE minimum high/low time  
tCKE  
34  
NOTE:  
• AC specication is based on MICRON components. Other DRAM manufactures specication may be different.  
October 2006  
Rev. 2  
9
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG64M72EER-AD7  
White Electronic Designs  
ADVANCED  
High-Z and that any signal transition within the input switching  
region must follow valid input requirements. That is if DQS transi-  
tions high (above VIH DC (MIN) then it must not transition low  
(below VIH (DC) prior to tDQSH (MIN).  
Notes  
1.  
All voltages referenced to VSS  
2.  
Tests for AC timing, ICC, and electrical AC and DC characteristics  
may be conducted at nominal reference/supply voltage levels, but  
the related specications and device operation are guaranteed for  
the full voltage range specied.  
12. This is not a device limit. The device will operate with a negative  
value, but system performance could be degraded due to bus turn  
around.  
3.  
4.  
Outputs measured with equivalent load:  
13. It is recommended that DQS be valid (HIGH or LOW) on or before  
the WRITE command. The case shown (DQS going from High-Z to  
logic LOW) applies when no WRITEs were previously in progress  
on the bus. If a previous WRITE was in progress, DQS could be  
HIGH during this time, depending on tDQSS.  
VTT = VCCQ/2  
25Ω  
Reference  
Point  
Output  
(VOUT)  
AC timing and ICC tests may use a VIL to VIH swing of up to 1.0V  
in the test environment parameter specications are guaranteed  
for the specied AC input levels under normal use conditions. The  
minimum slew rate for the input signals used to test the device is  
1.0V/ns for signals in the range between VIL (AC) and VIH (AC).  
Slew rates less than 1.0V/ns require the timing parameters to be  
derated as specied.  
14. The refresh period is 64ms. This equates to an average refresh  
rate of 7.8125μs. However, a REFRESH command must be  
asserted at least once every 70.3μs or tRFC (MAX). To ensure  
all rows of all banks are properly refreshed, 8192 REFRESH  
commands must be issued every 64ms.  
15. Each half-byte lane has a corresponding DQS.  
16. CK and CK# input slew rate must be 1V/ns (2V/ns if measured  
5.  
6.  
The AC and DC input level specications are as dened in the  
SSTL_18 standard (i.e., the receiver will effectively switch as a  
result of the signal crossing the AC input level and will remain in  
that state as long as the signal does not ring back above [below]  
the DC input LOW [HIGH] level).  
differentially).  
17. The data valid window is derived by achieving other specications  
- tHP. (tCK/2), tDQSQ, and tQH (tQH = tHP - tQHS). The data valid window  
derates in direct proportion to the clock duty cycle and a practical  
data valid window can be derived.  
Command/Address minimum input slew rate is at 1.0V/ns.  
18. MIN (tCL, tCH) refers to the smaller of the actual clock low time and  
the actual clock high time as provided to the device (i.e. This value  
can be greater than the minimum specication limits for tCL and  
Command/Address input timing must be derated if the slew rate is  
not 1.0V/ns. This is easily accommodated using tISb and the Setup  
and Hold Time Derating Values table. tIS timing (tISb) is referenced  
from VIH (AC) for a rising signal and VIL (AC) for a falling signal. tIH  
timming (tIHb) is referenced from VIH (AC) for a rising signal and VIL  
(DC) for a falling signal. The timing table also lists the tISb and tIHb  
values for a 1.0V/ns slew rate; these are the “base” values.  
t
CH. For example, tCL and tCH are = 50 percent of the period, less  
the half period jitter [tJIT(HP)] of the clock source, and less the half  
period jitter due to cross talk [tJIT(cross talk)] into the clock traces.  
19. tHP (MIN) is the lesser of tCL minimum and tCH minimum actually  
applied to the device CK and CK# inputs.  
7.  
Data minimum input slew rate is at 1.0V/ns. Data input timing  
must be derated if the slew rate is not 1.0V/ns. This is easily  
accommodated if the timing is referenced from the logic trip points.  
20. READs and WRITEs with auto precharge are allowed to be  
issued before tRAS (MIN) is satised since tRAS lockout feature is  
supported in DDR2 SDRAM devices.  
tDS timing (tDSb) is referenced from VIH (AC) for a rising signal and  
VIL (AC) for a falling signal. tIH timing (tIHb) is referenced from VIH  
21. VIL/VIH DDR2 overshoot/undershoot. REFER to the 512Mb DDR2  
SDRAM data sheet for more detail.  
(DC) for a risng signal and VIL (DC) for a falling signal. The timing  
table lists the tDSb and tDHb values for a 1.0V/ns slew rate. If the  
DQS/DQS# differential strobe feature is not enabled, timing is no  
longer referenced to the crosspoint of DQS/DQS#. Data timing is  
now referenced to VREF, provided the DQS slew rate is not less  
than 1.0V/ns. If the DQS slew rate is less than 1.0V/ns, then data  
timing is now referenced to VIH (AC) for a rising DQS and VIL (DC)  
for a falling DQS.  
22.  
tDAL = (nWR) + (tRP/tCK): For each of the terms above, if not already  
an integer, round to the next highest integer. tCK refers to the  
application clock period; nWR refers to the tWR parameter stored  
in the MR[11,10,9]. Example: For 534 at tCK= 3.75 ns with tWR  
programmed to four clocks. tDAL = 4 + (15 ns/3.75ns) clock = 4 +  
(4) clocks = 8 clocks.  
8.  
9.  
tHZ and tLZ transitions occur in the same access time windows as  
23. The minimum READ to internal PRECHARGE time. This  
parameter is only applicable when tRTP/2*tCK) > 1. If tRTP/2*tCK) 1,  
then equation AL + BL/2 applies. Notwithstanding, tRAS (MIN) has  
to be satised as well. The DDR2 SDRAM device will automatically  
delay the internal PRECHARGE command until tRAS (MIN) has  
been satised.  
valid data transitions. These parameters are not referenced to a  
specic voltage level, but specify when the device output is no  
longer driving (when the device output is no longer driving (tHZ) or  
begins driving (tLZ).  
This maximum value is derived from the referenced test load. tHZ  
(MAX) will prevail over tDQSCK (MAX) + tRPST (MAX) condition.  
24. Operating frequency is only allowed to change during self refresh  
mode, precharge power-down mode, and system reset condition.  
10. tLZ (MIN) tLZ will prevail over a tDQSCK (MIN) + tRPRE (MAX)  
condition.  
25. ODT turn-on time tAON (MIN) is when the device leaves high  
impedance and ODT resistance begins to turn on. ODT turn-on  
time tAON (MAX) is when the ODT resistance is fully on. Both are  
11. The intent of the Don’t Care state after completion of the  
postamble is the DQS-driven signal should either be high, low or  
measured from tAOND  
.
October 2006  
Rev. 2  
10  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG64M72EER-AD7  
White Electronic Designs  
ADVANCED  
26. ODT turn-off time tAOF (MIN) is when the device starts to turn off  
ODT resistance. ODT turn off time tAOF (MAX) is when the bus is in  
high impedance. Both are measured from tAOFD  
32. Value is minimum pulse width, not the number of clock  
registrations.  
.
33. Applicable to Read cycles only. Write cycles generally require  
additional time due to Write recovery time (tWR) during arto  
precharge.  
27. This parameter has a two clock minimum requirement at any tCK  
28. tDELAY is calculated from tIS + tCK + tIH so that CKE registration  
.
LOW is guaranteed prior to CK, CK# being removed in a system  
RESET condition.  
34.  
tCKE (MIN) of 3 clocks means CKE must be registered on three  
consecutive positive clock edges. CKE must remain at the valid  
input level the entire time it takes to achieve the 3 clocks of  
registration. Thus, after any CKE transition, CKE may not transition  
29.  
tISXR is equal to tIS and is used for CKE setup time during self  
refresh exit.  
from its valid level during the time period of tIS + 2* tCK + tIH  
.
30. No more than 4 bank ACTIVE commands may be issued in  
a given tFAW (MIN) period. tRRRD (MIN) restriction still applies.  
The tFAW (MIN) parameter applies to all 8 bank DDR2 devices,  
regardless of the number of banks already open or closed.  
35. This parameter is not referenced to a specic voltage level, but  
specied when the device output is no longer driving (tRPST) or  
beginning to drive (tRPRE).  
36. When DQS is used single-ended, the minimum limit is reduced by  
100ps.  
31.  
tRPA timing applies when the PRECHARGE(ALL) command is  
issued, regardless of the number of banks already open or closed.  
If a single-bank PRECHARGE command is issued, tRP timing  
applies. tRPA (MIN) applies to all 8-bank DDR2 devices.  
October 2006  
Rev. 2  
11  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG64M72EER-AD7  
White Electronic Designs  
ADVANCED  
ORDERING INFORMATION FOR AD7  
Part Number  
Speed/Data Rate  
400MHz/800Mb/s  
333MHz/667Mb/s  
266MHz/533Mb/s  
200MHz/400Mb/s  
CAS Latency  
tRCD  
6
tRP  
6
Height*  
W3HG64M72EER806AD7xG**  
W3HG64M72EER665AD7xG**  
W3HG64M72EER534AD7xG  
W3HG64M72EER403AD7xG  
6
5
4
3
18.29mm (0.72")  
18.29mm (0.72")  
18.29mm (0.72")  
18.29mm (0.72")  
5
5
4
4
3
3
**Contact factory for availability.  
NOTES:  
• RoHS product. (“G” = RoHS Compliant)  
• Vendor specic part numbers are used to provide memory component source control. The place holder for this is shown as a lower case "x"  
in the part numbers above and is to be replaced with respective vendors code. Consult factory for qualied sourcing options.  
(M = Micron, S = Samsung & consult factory for others)  
• Consult factory for availability of industrial temperature (-40°C to 85°C) option  
PACKAGE DIMENSIONS FOR VLP AD7  
FRONT VIEW  
82.127 (3.233)  
81.873 (3.223)  
3.80 (0.150)  
MAX  
1.00 (0.039) R  
X2  
18.45 (0.726)  
18.15 (0.715)  
1.80 (0.071) D  
X2  
10.0 (0.394)  
TYP  
6.0 (0.236)  
TYP  
1.10 (0.043)  
0.90 (0.035)  
0.50 (0.02) R  
1.0 (0.039)  
TYP  
2.0 (0.079)  
TYP  
PIN 122  
PIN 1  
42.9 (1.689)  
TYP  
3.60 (0.142)  
FULL R  
78.0 (3.071)  
TYP  
BACK VIEW  
3.80 0.10  
(0.150 0.004)  
1.30  
(0.051)  
1.00 0.05  
(0.039 0.002)  
Detail A  
0.25  
(0.010) MAX  
2.55 (0.100)  
3.3 (0.130)  
TYP  
0.60  
(0.024)  
0.45 0.03  
(0.018 0.001)  
3.6 (0.142) TYP  
PIN 123  
PIN 244  
Detail B  
33.6 (1.323)  
38.4 (1.512)  
TYP  
TYP  
3.2 (0.126)  
TYP  
Detail A  
Detail B  
Tolerances: + /- 0.13 (0.005) unless otherwise specified.  
* ALL DIMENSIONS ARE IN MILLIMETERS AND (INCHES)  
October 2006  
Rev. 2  
12  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG64M72EER-AD7  
White Electronic Designs  
ADVANCED  
PART NUMBERING GUIDE  
W 3 H G 64M 72 E E R xxx AD7 x G  
WEDC  
MEMORY (SDRAM)  
DDR 2  
GOLD  
DEPTH  
BUS WIDTH  
COMPONENT WIDTH (x8)  
1.8V  
REGISTERED  
SPEED (Mb/s)  
VLP PACKAGE 244 PIN (0.72)  
COMPONENT VENDOR  
NAME  
(M = Micron)  
(S = Samsung)  
G = RoHS COMPLIANT  
October 2006  
Rev. 2  
13  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  
W3HG64M72EER-AD7  
White Electronic Designs  
ADVANCED  
Document Title  
512MB – 64Mx72 DDR2 SDRAM REGISTERED, w/PLL, VLP Mini-DIMM  
Revision History  
Rev #  
History  
Release Date Status  
Rev 0  
Rev 1  
Created  
September 2005  
December 2005  
Advanced  
Advanced  
1.0 Updated ICC and AC specs  
Rev 2  
October 2006  
Advanced  
2.0 Updated AC title to indicate component AC specs only  
October 2006  
Rev. 2  
14  
White Electronic Designs Corporation • (602) 437-1520 • www.whiteedc.com  

相关型号:

W3HG64M72EER665AD7SG

DDR DRAM Module, 64MX72, 0.45ns, CMOS, ROHS COMPLIANT, DIMM-244
MICROSEMI

W3HG64M72EER665AD7XG

512MB - 64Mx72 DDR2 SDRAM REGISTERED, w/PLL, VLP Mini-DIMM
WEDC

W3HG64M72EER665PD4IMG

DDR DRAM Module, 64MX72, 0.45ns, CMOS, ROHS COMPLIANT, SO-RDIMM-200
WEDC

W3HG64M72EER665PD4MG

DDR DRAM Module, 64MX72, 0.45ns, CMOS, ROHS COMPLIANT, SO-RDIMM-200
WEDC

W3HG64M72EER665PD4SG

DDR DRAM Module, 64MX72, 0.45ns, CMOS, ROHS COMPLIANT, SO-RDIMM-200
WEDC

W3HG64M72EER806AD7MG

DDR DRAM Module, 64MX72, CMOS, ROHS COMPLIANT, DIMM-244
MICROSEMI

W3HG64M72EER806AD7SG

DDR DRAM Module, 64MX72, CMOS, ROHS COMPLIANT, DIMM-244
MICROSEMI

W3HG64M72EER806AD7XG

512MB - 64Mx72 DDR2 SDRAM REGISTERED, w/PLL, VLP Mini-DIMM
WEDC

W3HG64M72EER806PD4IMG

DDR DRAM Module, 64MX72, CMOS, ROHS COMPLIANT, SO-RDIMM-200
WEDC

W3HG64M72EER806PD4ISG

DDR DRAM Module, 64MX72, CMOS, ROHS COMPLIANT, SO-RDIMM-200
WEDC

W3HG64M72EER806PD4MG

DDR DRAM Module, 64MX72, CMOS, ROHS COMPLIANT, SO-RDIMM-200
WEDC

W3HG64M72EER806PD4SG

DDR DRAM Module, 64MX72, CMOS, ROHS COMPLIANT, SO-RDIMM-200
WEDC