1N5822 [MOTOROLA]

SCHOTTKY BARRIER RECTIFIERS 3.0 AMPERES 20, 30, 40 VOLTS; 肖特基势垒整流器3.0安培20 , 30 , 40伏
1N5822
型号: 1N5822
厂家: MOTOROLA    MOTOROLA
描述:

SCHOTTKY BARRIER RECTIFIERS 3.0 AMPERES 20, 30, 40 VOLTS
肖特基势垒整流器3.0安培20 , 30 , 40伏

二极管
文件: 总6页 (文件大小:172K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by 1N5820/D  
SEMICONDUCTOR TECHNICAL DATA  
. . . employing the Schottky Barrier principle in a large area metal–to–silicon  
power diode. State–of–the–art geometry features chrome barrier metal,  
epitaxial construction with oxide passivation and metal overlap contact. Ideally  
suited for use as rectifiers in low–voltage, high–frequency inverters, free  
wheeling diodes, and polarity protection diodes.  
1N5820 and 1N5822 are  
Motorola Preferred Devices  
Extremely Low v  
F
Low Power Loss/High Efficiency  
Low Stored Charge, Majority Carrier Conduction  
SCHOTTKY BARRIER  
RECTIFIERS  
Mechanical Characteristics:  
3.0 AMPERES  
Case: Epoxy, Molded  
Weight: 1.1 gram (approximately)  
Finish: All External Surfaces Corrosion Resistant and Terminal Leads are  
Readily Solderable  
20, 30, 40 VOLTS  
Lead and Mounting Surface Temperature for Soldering Purposes: 220°C  
Max. for 10 Seconds, 1/16from case  
Shipped in plastic bags, 5,000 per bag  
Available Tape and Reeled, 1500 per reel, by adding a “RL’’ suffix to the  
part number  
Polarity: Cathode indicated by Polarity Band  
Marking: 1N5820, 1N5821, 1N5822  
CASE 267–03  
PLASTIC  
MAXIMUM RATINGS  
Rating  
Symbol  
1N5820  
1N5821  
1N5822  
Unit  
Peak Repetitive Reverse Voltage  
Working Peak Reverse Voltage  
DC Blocking Voltage  
V
V
20  
30  
40  
V
RRM  
RWM  
R
V
Non–Repetitive Peak Reverse Voltage  
RMS Reverse Voltage  
V
24  
14  
36  
21  
48  
28  
V
V
A
RSM  
V
R(RMS)  
3.0  
Average Rectified Forward Current (2)  
I
O
V
0.2 V  
, T = 95°C  
L
R(equiv)  
R(dc)  
(R = 28°C/W, P.C. Board Mounting, see Note 2)  
θJA  
Ambient Temperature  
Rated V ( , P  
T
A
90  
85  
80  
°C  
= 0  
R dc) F(AV)  
= 28°C/W  
R
θJA  
Non–Repetitive Peak Surge Current  
(Surge applied at rated load conditions, half wave, single phase  
I
80 (for one cycle)  
A
FSM  
60 Hz, T = 75°C)  
L
Operating and Storage Junction Temperature Range  
(Reverse Voltage applied)  
T , T  
stg  
65 to +125  
150  
°C  
°C  
J
Peak Operating Junction Temperature (Forward Current applied)  
T
J(pk)  
*THERMAL CHARACTERISTICS (Note 2)  
Characteristic  
Symbol  
Max  
Unit  
Thermal Resistance, Junction to Ambient  
R
28  
°C/W  
θJA  
(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.  
(2) Lead Temperature reference is cathode lead 1/32from case.  
* Indicates JEDEC Registered Data for 1N5820–22.  
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit  
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.  
Preferred devices are Motorola recommended choices for future use and best overall value.  
Rev 2  
Motorola, Inc. 1996  
*ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (2)  
L
Characteristic  
Symbol  
1N5820  
1N5821  
1N5822  
Unit  
Maximum Instantaneous Forward Voltage (1)  
V
F
V
(i = 1.0 Amp)  
0.370  
0.475  
0.850  
0.380  
0.500  
0.900  
0.390  
0.525  
0.950  
F
(i = 3.0 Amp)  
F
(i = 9.4 Amp)  
F
Maximum Instantaneous Reverse Current @ Rated dc Voltage (1)  
i
R
mA  
T
L
T
L
= 25°C  
= 100°C  
2.0  
20  
2.0  
20  
2.0  
20  
(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2.0%.  
(2) Lead Temperature reference is cathode lead 1/32from case.  
* Indicates JEDEC Registered Data for 1N5820–22.  
NOTE 1 — DETERMINING MAXIMUM RATINGS  
Reverse power dissipation and the possibility of thermal runaway  
must be considered when operating this rectifier at reverse voltages  
The data of Figures 1, 2, and 3 is based upon dc conditions. For use  
in common rectifier circuits, Table 1 indicates suggested factors for  
an equivalent dc voltage to use for conservative design, that is:  
above 0.1 V  
equation (1).  
. Proper derating may be accomplished by use of  
RWM  
V
= V  
F
R(equiv)  
(FM)  
(4)  
T
where T  
T
= T  
R
P
R
P
A(max)  
A(max)  
J(max)  
J(max)  
θJA F(AV)  
θJA R(AV)  
(1)  
The factor F is derived by considering the properties of the various  
rectifier circuits and the reverse characteristics of Schottky diodes.  
= Maximum allowable ambient temperature  
= Maximum allowable junction temperature  
(125°C or the temperature at which thermal  
runaway occurs, whichever is lowest)  
EXAMPLE: Find T  
for 1N5821 operated in a 12–volt dc sup-  
ply using a bridge circuit with capacitive filter such that I = 2.0 A  
A(max)  
DC  
, R  
(I  
= 1.0 A), I  
/I  
(FM) (AV)  
= 10, Input Voltage = 10 V =  
(rms) θJA  
F(AV)  
P
P
R
= Average forward power dissipation  
= Average reverse power dissipation  
= Junction–to–ambient thermal resistance  
F(AV)  
R(AV)  
θJA  
40°C/W.  
Step 1. Find V  
Read F = 0.65 from Table 1,  
R(equiv).  
V
= (1.41) (10) (0.65) = 9.2 V.  
R(equiv)  
Figures 1, 2, and 3 permit easier use of equation (1) by taking  
reverse power dissipation and thermal runaway into consideration.  
The figures solve for a reference temperature as determined by  
equation (2).  
Step 2. Find T from Figure 2. Read T = 108°C  
R
R
θJA  
@ V = 9.2 V and R  
R
= 40°C/W.  
Step 3. Find P  
from Figure 6. **Read P  
= 0.85 W  
F(AV)  
I
F(AV)  
T
= T  
R
P
R
J(max)  
Substituting equation (2) into equation (1) yields:  
= T  
θJA R(AV)  
(2)  
(FM)  
@
I
10and I  
1.0 A.  
F(AV)  
(AV)  
Step 4. Find T  
T
from equation (3).  
T
R P  
θJA F(AV)  
A(max)  
A(max)  
A(max)  
R
(3)  
= 108  
(0.85) (40) = 74°C.  
Inspection of equations (2) and (3) reveals that T is the ambient  
R
**Values given are for the 1N5821. Power is slightly lower for the  
1N5820 because of its lower forward voltage, and higher for the  
1N5822. Variations will be similar for the MBR–prefix devices, using  
temperature at which thermal runaway occurs or where T = 125°C,  
J
when forward power is zero. The transition from one boundary condi-  
tion to the other is evident on the curves of Figures 1, 2, and 3 as a  
difference in the rate of change of the slope in the vicinity of 115°C.  
P
F(AV)  
from Figure 7.  
Table 1. Values for Factor F  
Full Wave, Bridge  
Full Wave,  
Center Tapped*†  
Circuit  
Half Wave  
Resistive  
Load  
Capacitive*  
Resistive  
0.5  
Capacitive  
Resistive  
1.0  
1.5  
Capacitive  
1.3  
1.5  
Sine Wave  
Square Wave  
0.5  
1.3  
1.5  
0.65  
0.75  
0.75  
2.0 V  
0.75  
*Note that V  
. †Use line to center tap voltage for V .  
in(PK) in  
R(PK)  
2
Rectifier Device Data  
125  
115  
105  
95  
125  
115  
105  
95  
20  
15  
20  
10  
15  
10  
8.0  
8.0  
R
(°C/W) = 70  
JA  
R
(°C/W) = 70  
JA  
50  
50  
40  
40  
10  
28  
28  
85  
75  
85  
75  
2.0  
3.0  
4.0  
5.0  
7.0  
10  
15  
20  
3.0  
4.0  
5.0  
7.0  
15  
20  
30  
V
, REVERSE VOLTAGE (VOLTS)  
V
, REVERSE VOLTAGE (VOLTS)  
R
R
Figure 1. Maximum Reference Temperature  
1N5820  
Figure 2. Maximum Reference Temperature  
1N5821  
40  
35  
30  
25  
20  
125  
115  
105  
95  
20  
15  
10  
MAXIMUM  
TYPICAL  
8.0  
R
(°C/W) = 70  
JA  
15  
10  
5.0  
0
50  
40  
85  
BOTH LEADS TO HEAT SINK,  
EQUAL LENGTH  
28  
75  
4.0  
5.0  
7.0  
10  
15  
20  
30  
40  
0
1/8  
2/8  
3/8  
4/8  
5/8  
6/8  
7/8  
1.0  
V
, REVERSE VOLTAGE (VOLTS)  
L, LEAD LENGTH (INCHES)  
R
Figure 3. Maximum Reference Temperature  
1N5822  
Figure 4. Steady–State Thermal Resistance  
Rectifier Device Data  
3
1.0  
0.5  
The temperature of the lead should be measured using a ther-  
mocoupleplaced on the lead as close as possible to the tie point.  
The thermal mass connected to the tie point is normally large  
enough so that it will not significantly respond to heat surges  
generated in the diode as a result of pulsed operation once  
steady–state conditions are achieved. Using the measured val-  
LEAD LENGTH = 1/4  
0.3  
0.2  
P
P
pk  
pk  
DUTY CYCLE = t /t  
p 1  
t
p
PEAK POWER, P , is peak of an  
pk  
ue of T , the junction temperature may be determined by:  
L
L
0.1  
TIME  
equivalent square power pulse.  
[D + (1 – D) r(t + t ) + r(t ) – r(t )] where:  
JL  
T
= T  
+
T
JL  
t
J
1
T  
= P  
R
0.05  
JL  
JL  
pk  
θ
1
p
p
1
T
= the increase in junction temperature above the lead temperature.  
0.03  
0.02  
r(t) = normalized value of transient thermal resistance at time, t, i.e.:  
r(t + t ) = normalized value of transient thermal resistance at time  
1
p
t
+ t , etc.  
1
p
0.01  
0.2  
0.5  
1.0  
2.0  
5.0  
10  
20  
50  
100  
200  
500  
1.0 k  
2.0 k  
5.0 k  
10 k  
20 k  
t, TIME (ms)  
Figure 5. Thermal Response  
NOTE 3 — APPROXIMATE THERMAL CIRCUIT MODEL  
10  
7.0  
5.0  
SINE WAVE  
R
T
R
R
R
R
R
θS(K)  
θ
S(A)  
θ
L(A)  
θ
J(A)  
θJ(K)  
θ
L(K)  
I
(FM)  
3.0  
2.0  
(Resistive Load)  
T
A(K)  
I
A(A)  
P
dc  
D
(AV)  
T
T
T
T
T
L(K)  
L(A)  
C(A)  
J
C(K)  
5.0  
10  
20  
1.0  
0.7  
0.5  
SQUARE WAVE  
Capacitive  
Loads  
Use of the above model permits junction to lead thermal resis-  
tance for any mounting configuration to be found. For a given total  
lead length, lowest values occur when one side of the rectifier is  
brought as close as possible to the heat sink. Terms in the model  
signify:  
0.3  
0.2  
T
125°C  
J
0.1  
T
= Ambient Temperature  
= Lead Temperature  
T = Case Temperature  
T = Junction Temperature  
J
0.1  
0.2 0.3  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
A
C
T
L
I
, AVERAGE FORWARD CURRENT (AMP)  
F(AV)  
R
R
R
= Thermal Resistance, Heat Sink to Ambient  
= Thermal Resistance, Lead to Heat Sink  
= Thermal Resistance, Junction to Case  
θS  
θL  
θJ  
Figure 6. Forward Power Dissipation 1N5820–22  
P
P
P
= Total Power Dissipation = P + P  
D
F
R
F
R
= Forward Power Dissipation  
= Reverse Power Dissipation  
(Subscripts (A) and (K) refer to anode and cathode sides, respec-  
tively.) Values for thermal resistance components are:  
R
R
= 42°C/W/in typically and 48°C/W/in maximum  
= 10°C/W typically and 16°C/W maximum  
θL  
θJ  
The maximum lead temperature may be found as follows:  
= T  
T
T
L
J(max)  
JL  
· P  
T
R
where  
JL  
θJL  
D
Mounting Method 3  
Mounting Method 1  
P.C. Board with  
2–1/2x 2–1/2″  
copper surface.  
P.C. Board where available  
copper surface is small.  
NOTE 2 — MOUNTING DATA  
Data shown for thermal resistance junction–to–ambient (R  
)
θJA  
L
L
for the mountings shown is to be used as typical guideline values  
for preliminary engineering, or in case the tie point temperature  
cannot be measured.  
L = 1/2  
TYPICAL VALUES FOR R  
θJA  
IN STILL AIR  
Mounting Method 2  
Lead Length, L (in)  
Mounting  
Method  
BOARD GROUND  
PLANE  
L
L
1/8  
1/4  
1/2  
3/4  
R
θJA  
1
2
3
50  
58  
51  
59  
53  
61  
55  
63  
°C/W  
°C/W  
°C/W  
VECTOR PUSH–IN  
TERMINALS T–28  
28  
4
Rectifier Device Data  
50  
100  
70  
30  
20  
50  
T
= 75°C  
L
f = 60 Hz  
T
= 100°C  
J
30  
20  
10  
1 CYCLE  
7.0  
5.0  
SURGE APPLIED AT RATED LOAD CONDITIONS  
10  
25°C  
3.0  
2.0  
1.0  
2.0 3.0  
5.0 7.0 10  
20  
30  
50 70 100  
NUMBER OF CYCLES  
Figure 8. Maximum Non–Repetitive Surge  
Current  
1.0  
100  
50  
0.7  
0.5  
T
= 125°C  
J
20  
10  
100  
°C  
0.3  
0.2  
5.0  
2.0  
1.0  
0.5  
75  
°C  
0.1  
0.2  
0.1  
0.07  
0.05  
25°C  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4  
0.05  
1N5820  
1N5821  
1N5822  
v , INSTANTANEOUS FORWARD VOLTAGE (VOLTS)  
F
0.02  
0.01  
Figure 7. Typical Forward Voltage  
0
4.0  
8.0  
12  
16  
20  
24  
28  
32  
36  
40  
V
, REVERSE VOLTAGE (VOLTS)  
R
500  
Figure 9. Typical Reverse Current  
1N5820  
300  
200  
NOTE 4 — HIGH FREQUENCY OPERATION  
1N5821  
Since current flow in a Schottky rectifier is the result of majority  
carrier conduction, it is not subject to junction diode forward and  
reverse recovery transients due to minority carrier injection and  
stored charge. Satisfactory circuit analysis work may be performed  
by using a model consisting of an ideal diode in parallel with a  
variable capacitance. (See Figure 11.)  
T
= 25°C  
J
f = 1.0 MHz  
100  
70  
1N5822  
20 30  
0.5 0.7 1.0  
2.0 3.0  
5.0 7.0 10  
V
, REVERSE VOLTAGE (VOLTS)  
R
Figure 10. Typical Capacitance  
Rectifier Device Data  
5
PACKAGE DIMENSIONS  
B
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
D
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
1
INCHES  
MILLIMETERS  
K
DIM  
A
B
D
K
MIN  
MAX  
0.380  
0.210  
0.052  
–––  
MIN  
9.40  
4.83  
1.22  
25.40  
MAX  
9.65  
5.33  
1.32  
–––  
0.370  
0.190  
0.048  
1.000  
A
STYLE 1:  
PIN 1. CATHODE  
2. ANODE  
K
2
CASE 267–03  
ISSUE C  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,  
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
INTERNET: http://Design–NET.com  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
1N5820/D  

相关型号:

1N5822-1

Rectifier Diode, Schottky, 1 Element, 3A, 40V V(RRM),
MICROSEMI

1N5822-13

Rectifier Diode, Schottky, 1 Phase, 1 Element, 3A, 40V V(RRM), Silicon, DO-201AD
DIODES

1N5822-179

SCHOTTKY RECTIFLER
NJSEMI

1N5822-3A-DO-27

3.0 AMP SCHOTTKY BARRIER RECTIFIERS
DGNJDZ

1N5822-AP

3 Amp Schottky Barrier Rectifier 20 - 40 Volts
MCC

1N5822-AP-HF

Rectifier Diode, Schottky, 1 Phase, 1 Element, 3A, 40V V(RRM), Silicon, DO-201AD,
MCC

1N5822-B

3.0A SCHOTTKY BARRIER RECTIFIERS
DIODES

1N5822-B

Rectifier Diode, Schottky, 1 Phase, 1 Element, 3A, 40V V(RRM), Silicon, DO-201AD, ROHS COMPLIANT, PLASTIC PACKAGE-2
RECTRON

1N5822-B

Rectifier Diode, Schottky, 1 Phase, 1 Element, 3A, Silicon,
FRONTIER

1N5822-BP

3 Amp Schottky Barrier Rectifier 20 - 40 Volts
MCC

1N5822-BP-HF

暂无描述
MCC

1N5822-E3

Schottky Barrier Rectifier
VISHAY