MMBZ15VALT1 [MOTOROLA]

SOT-23 COMMON ANODE DUAL ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS 24 & 40 WATTS PEAK POWER; SOT- 23共阳极双齐纳过电压瞬态抑制器24和​​40瓦峰值功率
MMBZ15VALT1
型号: MMBZ15VALT1
厂家: MOTOROLA    MOTOROLA
描述:

SOT-23 COMMON ANODE DUAL ZENER OVERVOLTAGE TRANSIENT SUPPRESSORS 24 & 40 WATTS PEAK POWER
SOT- 23共阳极双齐纳过电压瞬态抑制器24和​​40瓦峰值功率

瞬态抑制器 二极管 光电二极管 局域网
文件: 总6页 (文件大小:133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MMBZ5V6ALT1/D  
SEMICONDUCTOR TECHNICAL DATA  
Motorola Preferred Devices  
Transient Voltage Suppressors  
for ESD Protection  
These dual monolithic silicon zener diodes are designed for applications  
requiring transient overvoltage protection capability. They are intended for use  
in voltage and ESD sensitive equipment such as computers, printers, business  
machines, communication systems, medical equipment and other applications.  
Their dual junction common anode design protects two separate lines using  
only one package. These devices are ideal for situations where board space is  
at a premium.  
SOT–23 COMMON ANODE DUAL  
ZENER OVERVOLTAGE  
TRANSIENT SUPPRESSORS  
24 & 40 WATTS  
PEAK POWER  
3
Specification Features:  
SOT–23 Package Allows Either Two Separate Unidirectional  
Configurations or a Single Bidirectional Configuration  
1
2
Peak Power — 24 or 40 Watts @ 1.0 ms (Unidirectional),  
per Figure 5 Waveform  
CASE 318–08  
STYLE 12  
Maximum Clamping Voltage @ Peak Pulse Current  
Low Leakage < 5.0 µA  
LOW PROFILE SOT–23  
PLASTIC  
ESD Rating of Class N (exceeding 16 kV) per the Human Body Model  
Mechanical Characteristics:  
1
Void Free, Transfer–Molded, Thermosetting Plastic Case  
Corrosion Resistant Finish, Easily Solderable  
Package Designed for Optimal Automated Board Assembly  
Small Package Size for High Density Applications  
Available in 8 mm Tape and Reel  
3
2
PIN 1. CATHODE  
2. CATHODE  
3. ANODE  
Use the Device Number to order the 7 inch/3,000 unit reel. Replace  
the “T1” with “T3” in the Device Number to order the 13 inch/10,000 unit reel.  
THERMAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Value  
Unit  
Peak Power Dissipation @ 1.0 ms (1)  
@ T 25°C  
MMBZ5V6ALT1, MMBZ6V2ALT1  
MMBZ15VALT1, MMBZ20VALT1  
P
pk  
24  
40  
Watts  
A
Total Power Dissipation on FR–5 Board (2) @ T = 25°C  
Derate above 25°C  
°P  
D
°
225  
1.8  
°mW°  
mW/°C  
A
Thermal Resistance Junction to Ambient  
R
556  
°C/W  
θJA  
Total Power Dissipation on Alumina Substrate (3) @ T = 25°C  
Derate above 25°C  
°P  
D
°
300  
2.4  
°mW  
mW/°C  
A
Thermal Resistance Junction to Ambient  
Junction and Storage Temperature Range  
R
417  
°C/W  
°C  
θJA  
T
T
– 55 to +150  
J
stg  
Lead Solder Temperature — Maximum (10 Second Duration)  
T
L
260  
°C  
(1) Non–repetitive current pulse per Figure 5 and derate above T = 25°C per Figure 6.  
A
(2) FR–5 = 1.0 x 0.75 x 0.62 in.  
(3) Alumina = 0.4 x 0.3 x 0.024 in., 99.5% alumina  
*Other voltages may be available upon request  
Thermal Clad is a trademark of the Bergquist Company  
Preferred devices are Motorola recommended choices for future use and best overall value.  
Rev 1  
Motorola, Inc. 1996  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
UNIDIRECTIONAL (Circuit tied to Pins 1 and 3 or Pins 2 and 3)  
(V = 0.9 V Max @ I = 10 mA)  
F
F
Max Reverse  
Voltage @  
(4)  
(Clamping  
Voltage)  
Max Reverse  
Leakage Current  
Max  
Reverse  
Surge  
Breakdown Voltage  
Max Zener Impedance (5)  
Maximum  
Temperature  
Coefficient of  
I
RSM  
V
(3)  
(V)  
ZT  
Current  
@ I  
(mA)  
I
@ V  
Z
@ I  
ZT  
Z
()  
@ I  
(mA)  
V
BR  
T
R
R
ZT  
()  
ZK ZK  
I
(4)  
RSM  
(A)  
(µA)  
(V)  
(mA)  
(mV/°C)  
V
RSM  
(V)  
Min  
Nom  
Max  
5.32  
5.89  
5.6  
6.2  
5.88  
6.51  
20  
5.0  
0.5  
3.0  
3.0  
11  
1600  
0.25  
3.0  
8.0  
8.7  
1.26  
2.80  
1.0  
2.76  
(V = 1.1 V Max @ I = 200 mA)  
F
F
Breakdown Voltage  
Max Reverse  
Voltage @ I  
(Clamping Voltage) Coefficient of  
Maximum  
Temperature  
Reverse Voltage  
Working Peak  
Max Reverse  
Leakage Current  
Max Reverse  
Surge Current  
(4)  
RSM  
V (3)  
BR  
(V)  
@ I  
(mA)  
T
V
RWM  
(V)  
I
I (4)  
RSM  
(A)  
RWM  
V
V
RSM  
(V)  
BR  
I
R
(nA)  
(mV/°C)  
12.3  
Min  
14.25  
19.0  
Nom  
15  
Max  
15.75  
21.0  
1.0  
1.0  
12.0  
17.0  
50  
50  
1.9  
1.4  
21  
28  
20  
17.2  
(3) V /V  
BR  
measured at pulse test current I at an ambient temperature of 25°C.  
T
Z
(4) Surge current waveform per Figure 5 and derate per Figure 6.  
(5) Z and Z are measured by dividing the AC voltage drop across the device by the AC current supplied. The specfied limits are  
ZT  
Z(AC)  
ZK  
(5) I  
= 0.1 I , with AC frequency = 1 kHz.  
Z(DC)  
TYPICAL CHARACTERISTICS  
18  
15  
12  
9
1000  
100  
10  
1
6
0.1  
3
0
40  
0.01  
40  
0
+50  
+100  
+150  
+25  
+85  
C)  
+125  
TEMPERATURE (  
°C)  
TEMPERATURE (°  
Figure 1. Typical Breakdown Voltage  
versus Temperature  
Figure 2. Typical Leakage Current  
versus Temperature  
(Upper curve for each voltage is bidirectional mode,  
lower curve is unidirectional mode)  
MOTOROLA  
2
MMBZ5V6ALT1 MMBZ6V2ALT1 MMBZ15VALT1 MMBZ20VALT1  
320  
280  
300  
250  
200  
ALUMINA SUBSTRATE  
240  
200  
160  
120  
80  
5.6 V  
150  
100  
50  
15 V  
FR–5 BOARD  
40  
0
0
0
1
2
3
0
25  
50  
75  
100  
125  
150  
175  
BIAS (V)  
TEMPERATURE (°C)  
Figure 3. Typical Capacitance versus Bias Voltage  
(Upper curve for each voltage is unidirectional mode,  
lower curve is bidirectional mode)  
Figure 4. Steady State Power Derating Curve  
100  
90  
PULSE WIDTH (t ) IS DEFINED  
P
AS THAT POINT WHERE THE  
PEAK CURRENT DECAYS TO  
t
r
80  
PEAK VALUE — I  
RSM  
50% OF I  
.
100  
RSM  
70  
60  
50  
40  
30  
20  
10  
t
10 µs  
r
I
RSM  
2
HALF VALUE —  
50  
0
t
P
0
0
1
2
3
4
0
25  
50  
75  
100  
125  
150  
C)  
175  
200  
t, TIME (ms)  
T , AMBIENT TEMPERATURE (  
°
A
Figure 5. Pulse Waveform  
MMBZ5V6ALT1  
Figure 6. Pulse Derating Curve  
MMBZ5V6ALT1  
100  
100  
RECTANGULAR  
WAVEFORM, T = 25°C  
A
RECTANGULAR  
WAVEFORM, T = 25°C  
A
BIDIRECTIONAL  
BIDIRECTIONAL  
10  
UNIDIRECTIONAL  
10  
UNIDIRECTIONAL  
1
1
0.1  
1
10  
PW, PULSE WIDTH (ms)  
100  
1000  
0.1  
UNIDIRECTIONAL  
1
10  
PW, PULSE WIDTH (ms)  
100  
1000  
Figure 7. Maximum Non–repetitive Surge  
Power, P versus PW  
Figure 8. Maximum Non–repetitive Surge  
Power, P (NOM) versus PW  
pk  
pk  
Power is defined as V  
RSM  
x I (pk) where V  
RSM  
is  
Power is defined as V (NOM) x I (pk) where  
Z Z  
Z
the clamping voltage at I (pk).  
V (NOM) is the nominal zener voltage measured at  
Z
Z
the low test current used for voltage classification.  
MOTOROLA  
3
MMBZ5V6ALT1 MMBZ6V2ALT1 MMBZ15VALT1 MMBZ20VALT1  
TYPICAL COMMON ANODE APPLICATIONS  
A quad junction common anode design in a SOT–23 pack-  
age protects four separate lines using only one package.  
This adds flexibility and creativity to PCB design especially  
when board space is at a premium. Two simplified examples  
of TVS applications are illustrated below.  
Computer Interface Protection  
A
B
C
D
KEYBOARD  
TERMINAL  
PRINTER  
ETC.  
FUNCTIONAL  
DECODER  
I/O  
GND  
MMBZ5V6ALT1  
MMBZ6V2ALT1  
MMBZ15VALT1  
MMBZ20VALT1  
Microprocessor Protection  
V
V
DD  
GG  
ADDRESS BUS  
RAM  
ROM  
DATA BUS  
CPU  
MMBZ5V6ALT1  
MMBZ6V2ALT1  
MMBZ15VALT1  
MMBZ20VALT1  
I/O  
CLOCK  
CONTROL BUS  
GND  
MMBZ5V6ALT1  
MMBZ6V2ALT1  
MMBZ15VALT1  
MMBZ20VALT1  
MOTOROLA  
MMBZ5V6ALT1 MMBZ6V2ALT1 MMBZ15VALT1 MMBZ20VALT1  
4
INFORMATION FOR USING THE SOT–23 SURFACE MOUNT PACKAGE  
MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must  
be the correct size to insure proper solder connection  
interface between the board and the package. With the  
correct pad geometry, the packages will self align when  
subjected to a solder reflow process.  
0.037  
0.95  
0.037  
0.95  
0.079  
2.0  
0.035  
0.9  
0.031  
0.8  
inches  
mm  
SOT–23  
SOT–23 POWER DISSIPATION  
The power dissipation of the SOT–23 is a function of the  
SOLDERING PRECAUTIONS  
drain pad size. This can vary from the minimum pad size for  
soldering to a pad size given for maximum power dissipation.  
Power dissipation for a surface mount device is determined  
The melting temperature of solder is higher than the rated  
temperature of the device. When the entire device is heated  
to a high temperature, failure to complete soldering within a  
short time could result in device failure. Therefore, the  
following items should always be observed in order to  
minimize the thermal stress to which the devices are  
subjected.  
Always preheat the device.  
The delta temperature between the preheat and soldering  
should be 100°C or less.*  
by T  
, the maximum rated junction temperature of the  
, the thermal resistance from the device junction to  
J(max)  
die, R  
θJA  
ambient, and the operating temperature, T . Using the  
values provided on the data sheet for the SOT–23 package,  
A
P
can be calculated as follows:  
D
T
– T  
A
J(max)  
P
=
D
R
θJA  
When preheating and soldering, the temperature of the  
leads and the case must not exceed the maximum  
temperature ratings as shown on the data sheet. When  
using infrared heating with the reflow soldering method,  
the difference shall be a maximum of 10°C.  
The soldering temperature and time shall not exceed  
260°C for more than 10 seconds.  
When shifting from preheating to soldering, the maximum  
temperature gradient shall be 5°C or less.  
After soldering has been completed, the device should be  
allowed to cool naturally for at least three minutes.  
Gradual cooling should be used as the use of forced  
cooling will increase the temperature gradient and result  
in latent failure due to mechanical stress.  
The values for the equation are found in the maximum  
ratings table on the data sheet. Substituting these values into  
the equation for an ambient temperature T of 25°C, one can  
A
calculate the power dissipation of the device which in this  
case is 225 milliwatts.  
150°C – 25°C  
556°C/W  
P
=
= 225 milliwatts  
D
The 556°C/W for the SOT–23 package assumes the use  
of the recommended footprint on a glass epoxy printed circuit  
board to achieve a power dissipation of 225 milliwatts. There  
are other alternatives to achieving higher power dissipation  
from the SOT–23 package. Another alternative would be to  
use a ceramic substrate or an aluminum core board such as  
Thermal Clad . Using a board material such as Thermal  
Clad, an aluminum core board, the power dissipation can be  
doubled using the same footprint.  
Mechanical stress or shock should not be applied during  
cooling.  
* Soldering a device without preheating can cause excessive  
thermal shock and stress which can result in damage to the  
device.  
MOTOROLA  
5
MMBZ5V6ALT1 MMBZ6V2ALT1 MMBZ15VALT1 MMBZ20VALT1  
OUTLINE DIMENSIONS  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. MAXIUMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS OF  
BASE MATERIAL.  
A
L
STYLE 12:  
PIN 1. CATHODE  
2. CATHODE  
3. ANODE  
3
INCHES  
MIN MAX  
MILLIMETERS  
S
C
B
DIM  
A
B
C
D
G
H
J
MIN  
2.80  
1.20  
0.89  
0.37  
1.78  
0.013  
0.085  
0.35  
0.89  
2.10  
0.45  
MAX  
3.04  
1.40  
1.11  
1
2
0.1102 0.1197  
0.0472 0.0551  
0.0350 0.0440  
0.0150 0.0200  
0.0701 0.0807  
0.0005 0.0040  
0.0034 0.0070  
0.0140 0.0285  
0.0350 0.0401  
0.0830 0.1039  
0.0177 0.0236  
V
G
0.50  
2.04  
0.100  
0.177  
0.69  
1.02  
2.64  
0.60  
K
L
S
H
J
D
V
K
CASE 318–08  
ISSUE AE  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
MMBZ5V6ALT1/D  

相关型号:

MMBZ15VALT1G

24 and 40 Watt Peak Power Zener Transient Voltage Suppressors
ONSEMI

MMBZ15VALT3

24 and 40 Watt Peak Power Zener Transient Voltage Suppressors
ONSEMI

MMBZ15VALT3G

24 and 40 Watt Peak Power Zener Transient Voltage Suppressors
ONSEMI

MMBZ15VALY

MMBZ15VALY是以高抗浪涌性为特点的瞬态抑制二极管,适合电子元器件的ESD保护。
ROHM

MMBZ15VALYFH

MMBZ15VALYFH是以高抗浪涌性为特点的瞬态抑制二极管,适合电子元器件的ESD保护。是符合AEC-Q101标准的高可靠性产品。
ROHM

MMBZ15VDA

Small Signal Zener Diodes, Dual
VISHAY

MMBZ15VDA-GS08

Zener Diode, 15V V(Z), 2%, 0.3W,
VISHAY

MMBZ15VDA-GS18

Zener Diode, 15V V(Z), 2%, 0.3W,
VISHAY

MMBZ15VDA-V

Trans Voltage Suppressor Diode, 40W, 12.8V V(RWM), Unidirectional, 2 Element, Silicon, ROHS COMPLIANT, PLASTIC PACKAGE-3
VISHAY

MMBZ15VDA-V-GS08

Trans Voltage Suppressor Diode, 12.8V V(RWM), Bidirectional,
VISHAY

MMBZ15VDA-V-GS18

Trans Voltage Suppressor Diode, 12.8V V(RWM), Bidirectional,
VISHAY

MMBZ15VDA/E9

Trans Voltage Suppressor Diode, 12.8V V(RWM), Bidirectional,
VISHAY