MPC9600 [MOTOROLA]

LOW VOLTAGE 2.5 V AND 3.3 V CMOS PLL CLOCK DRIVER; 低电压2.5 V和3.3 V CMOS PLL时钟驱动器
MPC9600
型号: MPC9600
厂家: MOTOROLA    MOTOROLA
描述:

LOW VOLTAGE 2.5 V AND 3.3 V CMOS PLL CLOCK DRIVER
低电压2.5 V和3.3 V CMOS PLL时钟驱动器

时钟驱动器
文件: 总16页 (文件大小:323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
Order Number: MPC9600/D  
Rev. 2, 11/2001  
SEMICONDUCTOR TECHNICAL DATA  
The MPC9600 is a low voltage 2.5 V or 3.3 V compatible, 1:21 PLL  
based clock driver and fanout buffer. With output frequencies up to 200  
MHz and output skews of 150 ps, the device meets the needs of the most  
demanding clock tree applications.  
Features:  
Multiplication of input frequency by 2, 3, 4 and 6  
Distribution of output frequency to 21 outputs organized in three output  
banks: QA0-QA6, QB0-QB6, QC0-QC6, each fully selectable  
3.3 V OR 2.5 V  
LOW VOLTAGE CMOS  
PLL CLOCK DRIVER  
Fully integrated PLL  
Selectable output frequency range is 50 to 100 MHz and 100 to 200 MHz  
Selectable input frequency range is 16.67 to 33 MHz and 25 to 50 MHz  
LVCMOS outputs  
Outputs disable to high impedance (except QFB)  
LVCMOS or LVPECL reference clock options  
48 lead QFP packaging  
±50 ps cycle-to-cycle jitter  
150 ps maximum output-to-output skew  
200 ps maximum static phase offset window  
FA SUFFIX  
48–LEAD LQFP PACKAGE  
CASE 932–03  
The MPC9600 is a fully LVCMOS 2.5 V or 3.3 V compatible PLL clock  
driver. The MPC9600 has the capability to generate clock signals of 50 to  
200 MHz from clock sources of 16.67 to 50 MHz. The internal PLL is  
optimized for this frequency range and does not require external loop filter  
components. QFB provides an output for the external feedback path to  
the feedback input FB_IN. The QFB divider ratio is configurable and  
determines the PLL frequency multiplication factor when QFB is directly  
connected to FB_IN. The MPC9600 is optimized for minimizing the  
propagation delay between the clock input and FB_IN.  
Three output banks of 7 outputs each bank can be individually configured to divide the VCO frequency by 2 or by 4. Combining  
the feedback and output divider ratios, the MPC9600 is capable to multiply the input frequency by 2, 3, 4 and 6.  
The reference clock is selectable either LVPECL or LVCMOS. The LVPECL reference clock feature allows the designer to use  
LVPECL fanout buffers for the inner branches of the clock distribution tree. All control inputs accept LVCMOS compatible levels.  
The outputs provide low impedance LVCMOS outputs capable of driving parallel terminated 50 transmission to V =V /2.  
TT CC  
For series terminated lines the MPC9600 can drive two lines per output giving the device an effective total fanout of 1:42. With  
guaranteed maximum output-to-output skew of 150 ps, the MPC9600 PLL clock driver meets the synchronization requirements  
of the most demanding systems.  
The V  
analog power pin doubles as a PLL bypass select line for test purpose. When the V  
is driven to GND the  
CCA  
CCA  
reference clock will bypass the PLL.  
The device is packaged in a 48-lead LQFP package to provide optimum combination of board density and performance.  
For More Information On This Product,  
Motorola, Inc. 2001  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
VCCA  
VCC  
7
(pulldown)  
(pulldn)  
0
1
0
1
CCLK  
QA0  
QA1  
Bank A  
/2  
0
1
PLL  
Ref  
FB  
PCLK  
PCLK  
D
Q
/4  
/8  
QA2  
QA3  
Vcc/2  
(pullup)  
200 - 400 MHz  
REF_SEL  
FB_IN  
/12  
(pulldown)  
(pullup)  
QA4  
QA5  
FSELA  
QA6  
Bank B  
0
1
D
Q
QB0–6  
7
7
(pullup)  
(pullup)  
FSELB  
FSELC  
Bank C  
0
1
D
Q
QC0–6  
QFB  
Feedback  
0
1
D
Q
(pullup)  
FSEL_FB  
OE  
(pulldown)  
8
GND  
Figure 1. MPC9600 Logic Diagram  
For More Information On This Product,  
MOTOROLA  
2
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
PIN CONFIGURATION  
Pin  
PCLK, PCLK  
CCLK  
FB_IN  
QAn  
I/O  
Type  
PECL  
Description  
Input  
Input  
Input  
Output  
Output  
Output  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Differential reference clock frequency input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power supply  
Power supply  
Ground  
Reference clock input  
PLL feedback clock input  
Bank A outputs  
QBn  
Bank B outputs  
QCn  
Bank C outputs  
QFB  
Differential feedback output  
REF_SEL  
FSELA  
FSELB  
FSELC  
FSEL_FB  
OE  
Reference clock input select  
Selection of bank A output frequency  
Selection of bank B output frequency  
Selection of bank C output frequency  
Selection of feedback frequency  
Output enable  
VCCA  
VCC  
Analog power supply and PLL bypass. An external VCC filter is recommended for VCCA  
Core power supply  
GND  
Ground  
36 35 34 33 32 31 30 29 28 27 26 25  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GND  
QC0  
QC1  
QC2  
VCC  
QC3  
QC4  
GND  
QC5  
QC6  
OE  
VCC  
QA6  
QA5  
QA4  
GND  
QA3  
QA2  
VCC  
MPC9600  
QA1  
QA0  
FB_IN  
GND  
VCC  
1
2
3
4
5
6
7
8
9
10 11 12  
Figure 2. 48 Lead Package Pinout (Top View)  
For More Information On This Product,  
TIMING SOLUTIONS  
3
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
FUNCTION TABLE (CONTROLS)  
Control Pin  
REF_SEL  
VCCA  
0
1
CCLK  
PCLK  
1
PLL Bypass  
PLL Power  
OE  
Outputs Enabled  
Outputs Disabled (except QFB)  
Output Bank A at VCO/4  
Output Bank B at VCO/4  
Output Bank C at VCO/4  
Feedback Output at VCO/12  
FSELA  
Output Bank A at VCO/2  
Output Bank B at VCO/2  
Output Bank C at VCO/2  
Feedback Output at VCO/8  
FSELB  
FSELC  
FSEL_FB  
1..V  
CCA  
= GND, PLL off and bypassed for static test and diagnosis  
Table 1: ABSOLUTE MAXIMUM RATINGS*  
Symbol  
Parameter  
Min  
Max  
Unit  
V
V
V
V
Supply Voltage  
–0.3  
–0.3  
–0.3  
4.6  
CC  
DC Input Voltage  
V
V
+ 0.3  
V
IN  
CC  
DC Output Voltage  
DC Input Current  
+ 0.3  
V
OUT  
CC  
I
I
±20  
mA  
mA  
°C  
IN  
DC Output Current  
Storage Temperature Range  
±50  
OUT  
T
–40  
125  
Stor  
* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or  
conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is  
not implied.  
Table 2: GENERAL SPECIFICATIONS  
Symbol  
Characteristics  
Output Termination Voltage  
Min  
Typ  
Max  
Unit  
V
Condition  
V
TT  
V
2
CC  
MM  
HBM  
CDM  
LU  
ESD Protection (Machine Model)  
ESD Protection (Human Body Model)  
ESD Protection (Charged Device Model)  
Latch–Up Immunity  
400  
4000  
1500  
200  
V
V
V
mA  
pF  
pF  
C
Power Dissipation Capacitance  
Input Capacitance  
10  
Per output  
Inputs  
PD  
C
4.0  
IN  
Table 3: DC CHARACTERISTICS (V  
CC  
= 3.3 V ±5%, T = –40° to +85°C)  
A
Symbol  
Characteristics  
Input High Voltage  
Min  
Typ  
Max  
+ 0.3  
Unit  
V
Condition  
V
V
V
V
V
V
2.0  
V
LVCMOS  
IH  
CC  
Input Low Voltage  
0.8  
V
LVCMOS  
LVPECL  
LVPECL  
IL  
Peak-to-peak Input Voltage (DC)  
Common Mode Range (DC)  
Output High Voltage  
PCLK, PCLK  
PCLK, PCLK  
250  
1.0  
2.4  
mV  
V
PP  
CMR  
OH  
OL  
a
V
-0.6  
CC  
b
V
I
=-24 mA  
OH  
Output Low Voltage  
0.55  
0.30  
V
V
I
I
= 24mA  
= 12mA  
OL  
OL  
Z
Output Impedance  
14 – 17  
2.0  
OUT  
I
I
I
Input Leakage Current  
±150  
5.0  
µA  
mA  
mA  
V
V
= V  
or GND  
IN  
IN  
CC  
Pin  
Pins  
Maximum PLL Supply Current  
Maximum Quiescent Supply Current  
CCA  
CCQ  
CCA  
1.0  
All V  
CC  
a. V  
(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V range  
CMR  
CMR  
and the input swing lies within the V  
PP  
b. The MPC9600 is capable of driving 50transmission lines on the incident edge. Each output drives one 50parallel terminated  
(DC) specification.  
transmission line to a termination voltage of V . Alternatively, the device drives up to two 50series terminated transmission lines.  
TT  
For More Information On This Product,  
MOTOROLA  
4
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Table 4: DC CHARACTERISTICS (V  
CC  
= 2.5 V ±5%, T = –40° to +85°C)  
A
Symbol  
Characteristics  
Input High Voltage  
Min  
Typ  
Max  
+ 0.3  
Unit  
V
Condition  
LVCMOS  
V
V
V
V
V
V
1.7  
V
IH  
CC  
Input Low Voltage  
0.7  
V
LVCMOS  
LVPECL  
LVPECL  
IL  
Peak-to-peak input voltage (DC)  
Common Mode Range (DC)  
Output High Voltage  
PCLK, PCLK  
PCLK, PCLK  
250  
1.0  
1.8  
mV  
V
PP  
a
V
-0.6  
CMR  
OH  
OL  
CC  
b
V
I
=-15 mA  
OH  
Output Low Voltage  
0.6  
V
I = 15 mA  
OL  
Z
Output Impedance  
17 – 20  
3.0  
OUT  
I
I
I
Input Leakage Current  
±150  
5.0  
µA  
mA  
mA  
V
V
= V  
or GND  
IN  
IN  
CC  
Pin  
Pins  
Maximum PLL Supply Current  
Maximum Quiescent Supply Current  
CCA  
CCQ  
CCA  
1.0  
All V  
CC  
a. V  
(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V range  
CMR  
CMR  
and the input swing lies within the V  
PP  
b. The MPC9600 is capable of driving 50 transmission lines on the incident edge. Each output drives one 50 parallel terminated  
(DC) specification.  
transmission line to a termination voltage of V . Alternatively, the device drives up to two 50 series terminated transmission lines per  
TT  
output.  
a
Table 5: AC CHARACTERISTICS (V  
CC  
= 3.3 V ±5% or V = 2.5 V ±5%, T = –40° to +85°C)  
CC A  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
f
Input Frequency  
ref  
8 feedback (FSEL_FB=0)  
12 feedback (FSEL_FB=1)  
25  
16.67  
50  
33  
MHz  
MHz  
PLL locked  
PLL locked  
Static test mode (VCCA = GND)  
0
500  
400  
MHz  
MHz  
VCCA = GND  
f
f
VCO Frequency  
200  
VCO  
Maximum Output Frequency  
MAX  
2 outputs (FSELx=0)  
4 outputs (FSELx=1)  
100  
50  
200  
100  
MHz  
MHz  
PLL locked  
PLL locked  
f
Reference Input Duty Cycle  
Peak-to-peak Input Voltage  
Common Mode Range  
25  
75  
%
refDC  
V
PCLK, PCLK  
500  
1000  
mV  
LVPECL  
PP  
V
b
CMR  
PCLK, PCLK (VCC = 3.3 V ±5%)  
PCLK, PCLK (VCC = 2.5 V ±5%)  
1.2  
1.2  
V
V
-0.8  
-0.6  
V
V
LVPECL  
LVPECL  
CC  
CC  
t , t  
r f  
CCLK Input Rise/Fall Time  
Propagation Delay (static phase offset)  
1.0  
ns  
see Figure 12  
t
(
)
CCLK to FB_IN  
PECL_CLK to FB_IN  
–60  
+30  
+40  
+130  
+140  
+230  
ps  
ps  
PLL locked  
PLL locked  
t
Output-to-output Skew  
sk(o)  
all outputs, single frequency  
all outputs, multiple frequency  
70  
70  
150  
150  
ps  
ps  
Measured at  
coincident  
rising edge  
within QAx output bank  
within QBx outputs  
within QCx outputs  
30  
40  
30  
75  
125  
75  
ps  
ps  
ps  
DC  
t , t  
Output Duty Cycle  
Output Rise/Fall Time  
Output Disable Time  
Output Enable Time  
45  
50  
55  
1.0  
10  
10  
%
ns  
ns  
ns  
0.1  
see Figure 12  
r f  
t
PLZ, HZ  
PZL, ZH  
t
BW  
PLL Closed Loop Bandwidth  
8 feedback (FSEL_FB=0)  
12 feedback (FSEL_FB=1)  
–3 dB point of  
PLL transfer  
characteristic  
1.0 – 10  
0.6 – 4.0  
MHz  
MHz  
For More Information On This Product,  
TIMING SOLUTIONS  
5
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
a
Table 5: AC CHARACTERISTICS (V  
CC  
= 3.3 V ±5% or V = 2.5 V ±5%, T = –40° to +85°C)  
CC A  
Symbol  
Characteristics  
c
Min  
Typ  
Max  
Unit  
Condition  
t
Cycle-to-cycle Jitter  
See application  
section for  
other  
JIT(CC)  
All outputs in 2 configuration  
All outputs in 4 configuration  
40  
40  
130  
180  
ps  
ps  
configurations  
c
t
Period Jitter  
See application  
section for  
other  
JIT(PER)  
All outputs in 2 configuration  
All outputs in 4 configuration  
25  
20  
70  
100  
ps  
ps  
configurations  
d
c
t
t
I/O Phase Jitter (1  
)
V
CC  
V
CC  
= 3.3V  
= 2.5V  
17  
15  
ps  
ps  
RMS value at  
JIT(  
)
f
=400MHz  
VCO  
Maximum PLL Lock Time  
5.0  
ms  
LOCK  
a. AC characteristics are applicable over the entire ambient temperature and supply voltage range and are production tested. AC  
characteristics apply for parallel output termination of 50 to V  
.
TT  
(AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V  
b. V  
range  
CMR  
CMR  
and the input swing lies within the V  
(AC) specification. Violation of V  
or V  
impacts static phase offset t  
PP (  
PP  
CMR  
).  
c. Cycle–to–cycle and period jitter depends on output divider configuration.  
d. See applications section for max I/O phase jitter versus frequency.  
For More Information On This Product,  
MOTOROLA  
6
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
configurations, the table describes the outputs using the  
input clock frequency CLK as a reference.  
APPLICATIONS INFORMATION  
Programming the MPC9600  
The feedback divider division settings establish the output  
relationship, in addition, it must be ensured that the VCO will  
be stable given the frequency of the outputs desired. The  
feedback frequency should be used to situate the VCO into a  
frequency range in which the PLL will be stable. The design  
of the PLL supports output frequencies from 50 MHz to 200  
MHz while the VCO frequency range is specified from 200  
MHz to 400 MHz and should not be exceeded for stable  
The MPC9600 clock driver outputs can be configured into  
several divider modes. Additionally the external feedback of  
the device allows for flexibility in establishing various input to  
output frequency relationships. The selectable feedback  
divider of the three output groups allows the user to configure  
the device for 1:2, 1:3, 1:4 and 1:6 input:output frequency  
ratios. The use of even dividers ensure that the output duty  
cycle is always 50%. Table 6 illustrates the various output  
operation.  
a
Table 6: Output Frequency Relationship for QFB connected to FB_IN  
Input  
Frequency  
Range CLK  
[MHz]  
Configuration Inputs  
Output Frequency Ratio and Range  
FSEL_FB  
FSELA  
FSELB  
FSELC  
Ratio, QAx [MHz]  
Ratio, QBx [MHz]  
Ratio, QCx [MHz]  
4 CLK (100–200)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
4 CLK (100–200)  
4 CLK (100–200)  
4 CLK (100–200)  
4 CLK (100–200) 2 CLK (50.0–100)  
4 CLK (100–200) 2 CLK (50.0–100) 4 CLK (100–200)  
4 CLK (100–200) 2 CLK (50.0–100) 2 CLK (50.0–100)  
25.0–50.0  
2 CLK (50.0–100)  
4 CLK (100–200)  
4 CLK (100–200)  
2 CLK (50.0–100) 4 CLK (100–200) 2 CLK (50.0–100)  
2 CLK (50.0–100) 2 CLK (50.0–100) 4 CLK (100–200)  
2 CLK (50.0–100) 2 CLK (50.0–100) 2 CLK (50.0–100)  
6 CLK (100–200)  
6 CLK (100–200)  
6 CLK (100–200)  
6 CLK (100–200)  
6 CLK (100–200) 3 CLK (50.0–100)  
6 CLK (100–200) 3 CLK (50.0–100) 6 CLK (100–200)  
6 CLK (100–200) 3 CLK (50.0–100) 3 CLK (50.0–100)  
16.67–33.33  
3 CLK (50.0–100) 6 CLK (100–200)  
6 CLK (100–200)  
3 CLK (50.0–100) 6 CLK (100–200) 3 CLK (50.0–100)  
3 CLK (50.0–100) 3 CLK (50.0–100) 6 CLK (100–200)  
3 CLK (50.0–100) 3 CLK (50.0–100) 3 CLK (50.0–100)  
a. Output frequency relationship with respect to input reference frequency CLK. The VCO frequency range is always 200–400.  
Typical and Maximum Period Jitter Specification  
QA0 to QA6  
QB0 to QB6  
QC0 to QC6  
Device Configuration  
Typ  
Max  
Typ  
Max  
Typ  
Max  
a
All output banks in 2 or 4 divider configuration  
2 (FSELA=0 and FESLB=0 and FSELC=0)  
4 (FSELA=1 and FESLB=1 and FSELC=1)  
25  
20  
50  
70  
50  
50  
70  
100  
25  
20  
50  
70  
b
Mixed 2/ 4 divider configurations  
for output banks in 2 divider configurations  
for output banks in 4 divider configurations  
80  
25  
130  
70  
100  
60  
150  
100  
80  
25  
130  
70  
a. In this configuration, all MPC9600 outputs generate the same clock frequency. See Figure 1 for an example configuration.  
b. Multiple frequency generation. Jitter data are specified for each output divider sepeerately. See Figure 2 for an example.  
Typical and Maximum Cycle–to–cycle Jitter Specification  
QA0 to QA6  
QB0 to QB6  
QC0 to QC6  
Device Configuration  
Typ  
Max  
Typ  
Max  
Typ  
Max  
a
All output banks in 2 or 4 divider configuration  
2 (FSELA=0 and FESLB=0 and FSELC=0)  
4 (FSELA=1 and FESLB=1 and FSELC=1)  
40  
40  
90  
110  
80  
120  
130  
180  
40  
40  
90  
110  
b
Mixed 2/ 4 divider configurations  
for output banks in 2 divider configurations  
for output banks in 4 divider configurations  
150  
30  
250  
110  
200  
120  
280  
180  
150  
30  
250  
110  
a. In this configuration, all MPC9600 outputs generate the same clock frequency.  
b. Multiple frequency generation. Jitter data are specified for each output divider sepeerately.  
For More Information On This Product,  
TIMING SOLUTIONS  
7
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Figure 3. Configuration for 125 MHz clocks  
Figure 4. Configuration for 133.3/66.67 MHz clocks  
fref = 20.833 MHz  
fref = 33.33 MHz  
CCLK  
QA0–6  
QB0–6  
QC0–6  
125 MHz  
125 MHz  
125 MHz  
CCLK  
QA0–6  
QB0–6  
QC0–6  
133.3 MHz  
66.67 MHz  
66.67 MHz  
7
7
7
7
FB_IN  
FB_IN  
FSEL_FB  
FSEL_FB  
1
0
7
7
0
0
0
FSELA  
FSELB  
FSELC  
0
1
1
FSELA  
FSELB  
FSELC  
QFB  
QFB  
MPC9600  
20.833 MHz (Feedback)  
MPC9600  
33.33 MHz (Feedback)  
Frequency range  
Input  
Min  
Max  
Frequency range  
Input  
Min  
Max  
16.67 MHz  
100 MHz  
100 MHz  
100 MHz  
33.33 MHz  
200 MHz  
200 MHz  
200 MHz  
25 MHz  
100 MHz  
100 MHz  
100 MHz  
50 MHz  
200 MHz  
200 MHz  
200 MHz  
QA outputs  
QB outputs  
QC outputs  
QA outputs  
QB outputs  
QC outputs  
R = 9–10 for V = 2.5 V or V = 3.3 V  
F CC CC  
Power Supply Filtering  
The MPC9600 is a mixed analog/digital product. Its analog  
circuitry is naturally susceptible to random noise, especially if  
this noise is seen on the power supply pins. Random noise  
C = 22 µF for V = 2.5 V or V = 3.3 V  
CC CC  
F
R
F
VCCA  
VCC  
on the V  
(PLL) power supply impacts the device  
CCA  
characteristics, for instance I/O jitter. The MPC9600 provides  
separate power supplies for the output buffers (V ) and the  
C
F
10 nF  
MPC9600  
CC  
) of the device.The purpose of this  
phase-locked loop (V  
CCA  
VCC  
design technique is to isolate the high switching noise digital  
outputs from the relatively sensitive internal analog  
phase-locked loop. In a digital system environment where it  
is more difficult to minimize noise on the power supplies a  
second level of isolation may be required. The simple but  
33...100 nF  
Figure 5. V  
Power Supply Filter  
CCA  
effective form of isolation is a power supply filter on the V  
CCA  
pin for the MPC9600. Figure 5. illustrates a typical power  
supply filter scheme. The MPC9600 frequency and phase  
stability is most susceptible to noise with spectral content in  
the 100kHz to 20MHz range. Therefore the filter should be  
designed to target this range. The key parameter that needs  
to be met in the final filter design is the DC voltage drop  
As the noise frequency crosses the series resonant point  
of an individual capacitor its overall impedance begins to look  
inductive and thus increases with increasing frequency. The  
parallel capacitor combination shown ensures that a low  
impedance path to ground exists for frequencies well above  
the bandwidth of the PLL. Although the MPC9600 has  
several design features to minimize the susceptibility to  
power supply noise (isolated power and grounds and fully  
differential PLL) there still may be applications in which  
overall performance is being degraded due to system power  
supply noise. The power supply filter schemes discussed in  
this section should be adequate to eliminate power supply  
noise related problems in most designs.  
across the series filter resistor R . From the data sheet the  
F
I
current (the current sourced through the V  
pin) is  
CCA  
CCA  
typically 3 mA (5 mA maximum), assuming that a minimum of  
2.325 V (V =3.3 V or V =2.5 V) must be maintained on  
pin. The resistor R shown in Figure 5. “V  
F CCA  
Power Supply Filter” must have a resistance of 9-10  
CC  
CC  
the V  
CCA  
(V =2.5 V) to meet the voltage drop criteria.  
CC  
The minimum values for R and the filter capacitor C are  
F
F
defined by the required filter characteristics: the RC filter  
should provide an attenuation greater than 40 dB for noise  
whose spectral content is above 100 kHz. In the example RC  
filter shown in Figure 5. “V  
cut-off frequency is around 3-5 kHz and the noise attenuation  
at 100 kHz is better than 42 dB.  
Power Supply Filter”, the filter  
CCA  
For More Information On This Product,  
MOTOROLA  
8
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Using the MPC9600 in zero–delay applications  
Table 8: Confidence Facter CF  
Nested clock trees are typical applications for the  
MPC9600. For these applications the MPC9600 offers a  
differential LVPECL clock input pair as a PLL reference. This  
allows for the use of differential LVPECL primary clock  
distribution devices such as the Motorola MC100ES6111 or  
MC100ES6226, taking advantage of its superior low-skew  
performance. Clock trees using LVPECL for clock distribution  
and the MPC9600 as LVCMOS PLL fanout buffer with zero  
insertion delay will show significantly lower clock skew than  
clock distributions developed from CMOS fanout buffers.  
CF  
Probability of clock edge within the distribution  
± 1  
± 2  
± 3  
± 4  
± 5  
± 6  
0.68268948  
0.95449988  
0.99730007  
0.99993663  
0.99999943  
0.99999999  
The feedback trace delay is determined by the board  
layout and can be used to fine-tune the effective delay  
through each device. In the following example calculation a  
I/O jitter confidence factor of 99.7% (± 3 ) is assumed,  
resulting in a worst case timing uncertainty from input to any  
The external feedback option of the MPC9600 PLL allows  
for its use as a zero delay buffer. The PLL aligns the feedback  
clock output edge with the clock input reference edge and  
virtually eliminates the propagation delay through the device.  
output of -261 ps to 341 ps relative to CCLK (V =3.3V and  
CC  
The remaining insertion delay (skew error) of the  
MPC9600 in zero-delay applications is measured between  
the reference clock input and any output. This effective delay  
f
= 200 MHz):  
VCO  
t
=
=
[–60ps...140ps] + [–150ps...150ps] +  
SK(PP)  
consists of the static phase offset (SPO or t ), I/O jitter  
( )  
[(17ps –3)...(17ps 3)] + t  
PD, LINE(FB)  
(t  
, phase or long-term jitter), feedback path delay and  
JIT( )  
t
[–261ps...341ps] + t  
the output-to-output skew (t  
output.  
relative to the feedback  
SK(PP)  
PD, LINE(FB)  
SK(O)  
Above equation uses the maximum I/O jitter number  
shown in the AC characteristic table for V =3.3V (17 ps  
CC  
Calculation of part-to-part skew  
RMS). I/O jitter is frequency dependant with a maximum at  
the lowest VCO frequency (200 MHz for the MPC9600).  
Applications using a higher VCO frequency exhibit less I/O  
jitter than the AC characteristic limit. The I/O jitter  
characteristics in Figure 7. can be used to derive a smaller  
I/O jitter number at the specific VCO frequency, resulting in  
tighter timing limits in zero-delay mode and for part-to-part  
The MPC9600 zero delay buffer supports applications  
where critical clock signal timing can be maintained across  
several devices. If the reference clock inputs (CCLK or  
PCLK) of two or more MPC9600 are connected together, the  
maximum overall timing uncertainty from the common CCLK  
input to any output is:  
skew t  
.
SK(PP)  
t
= t  
+ t  
+ t  
+ t  
CF  
This maximum timing uncertainty consist of 4  
SK(PP)  
( )  
SK(O)  
PD, LINE(FB)  
JIT( )  
components: static phase offset, output skew, feedback  
board trace delay and I/O (phase) jitter:  
TCLK  
Common  
t
PD,LINE(FB)  
–t  
(
)
QFB  
Device 1  
t
JIT(  
)
Any Q  
Device 1  
+t  
SK(O)  
Figure 7. Max. I/O Jitter versus VCO frequency for  
=2.5V and V =3.3V  
+t  
(
)
V
CC  
CC  
Driving Transmission Lines  
QFB  
Device2  
t
JIT(  
)
The MPC9600 clock driver was designed to drive high  
speed signals in a terminated transmission line environment.  
To provide the optimum flexibility to the user the output  
drivers were designed to exhibit the lowest impedance  
possible. With an output impedance of less than 20 the  
drivers can drive either parallel or series terminated  
transmission lines. For more information on transmission  
lines the reader is referred to Motorola application note  
AN1091. In most high performance clock networks  
point-to-point distribution of signals is the method of choice.  
In a point-to-point scheme either series terminated or parallel  
Any Q  
Device 2  
+t  
SK(O)  
Max. skew  
t
SK(PP)  
Figure 6. MPC9600 max. device-to-device skew  
Due to the statistical nature of I/O jitter a RMS value (1 )  
is specified. I/O jitter numbers for other confidence factors  
(CF) can be derived from Table 8.  
For More Information On This Product,  
TIMING SOLUTIONS  
9
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
terminated transmission lines can be used. The parallel  
technique terminates the signal at the end of the line with a  
Z
R
R
= 50 || 50 Ω  
= 36 || 36 Ω  
= 14 Ω  
= 3.0 ( 25 ÷ (18+17+25)  
= 1.31 V  
0
S
0
50resistance to V ÷2.  
CC  
V
L
This technique draws a fairly high level of DC current and  
thus only a single terminated line can be driven by each  
output of the MPC9600 clock driver. For the series  
terminated case however there is no DC current draw, thus  
the outputs can drive multiple series terminated lines.  
Figure 8. “Single versus Dual Transmission Lines” illustrates  
an output driving a single series terminated line versus two  
series terminated lines in parallel. When taken to its extreme  
the fanout of the MPC9600 clock driver is effectively doubled  
due to its capability to drive multiple lines.  
At the load end the voltage will double due to the near unity  
reflection coefficient, to 2.6 V. It will then increment towards  
the quiescent 3.0 V in steps separated by one round trip  
delay (in this case 4.0 ns).  
3.0  
OutA  
= 3.8956  
OutB  
t
D
2.5  
2.0  
1.5  
1.0  
0.5  
0
t
D
= 3.9386  
MPC9600  
OUTPUT  
BUFFER  
In  
Z
O
= 50 Ω  
R = 36 Ω  
S
14Ω  
IN  
IN  
OutA  
MPC9600  
OUTPUT  
BUFFER  
Z
= 50 Ω  
= 50 Ω  
O
R = 36 Ω  
S
OutB0  
OutB1  
14Ω  
2
4
6
8
10  
12  
14  
Z
O
R = 36 Ω  
S
TIME (nS)  
Figure 9. Single versus Dual Waveforms  
Since this step is well above the threshold region it will not  
cause any false clock triggering, however designers may be  
uncomfortable with unwanted reflections on the line. To  
better match the impedances when driving multiple lines the  
situation in Figure 10. “Optimized Dual Line Termination”  
should be used. In this case the series terminating resistors  
are reduced such that when the parallel combination is added  
to the output buffer impedance the line impedance is  
perfectly matched.  
Figure 8. Single versus Dual Transmission Lines  
The waveform plots in Figure 9. “Single versus Dual Line  
Termination Waveforms” show the simulation results of an  
output driving a single line versus two lines. In both cases the  
drive capability of the MPC9600 output buffer is more than  
sufficient to drive 50 transmission lines on the incident  
edge. Note from the delay measurements in the simulations a  
delta of only 43 ps exists between the two differently loaded  
outputs. This suggests that the dual line driving need not be  
used exclusively to maintain the tight output-to-output skew  
of the MPC9600. The output waveform in Figure 9. “Single  
versus Dual Line Termination Waveforms” shows a step in  
the waveform, this step is caused by the impedance  
mismatch seen looking into the driver. The parallel  
combination of the 36series resistor plus the output  
impedance does not match the parallel combination of the  
line impedances. The voltage wave launched down the two  
lines will equal:  
MPC9600  
OUTPUT  
BUFFER  
Z
= 50 Ω  
= 50 Ω  
O
R = 22 Ω  
S
14Ω  
Z
O
R = 22 Ω  
S
14 + 22 22 = 50 50 Ω  
25 = 25 Ω  
Figure 10. Optimized Dual Line Termination  
V
= V ( Z ÷ (R +R +Z ))  
S 0 S 0 0  
L
For More Information On This Product,  
MOTOROLA  
10  
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
The Following Figures Illustrate the Measurement Reference for the MPC9600 Clock Driver Circuit  
MPC9600 DUT  
Pulse  
Generator  
Z = 50  
Z
O
= 50 Ω  
Z = 50 Ω  
O
R = 50 Ω  
T
R = 50 Ω  
T
V
TT  
V
TT  
Figure 11. CCLK MPC9600 AC test reference  
MPC9600 DUT  
Z
O
= 50 Ω  
Differential  
Pulse Generator  
Z = 50  
Z
O
= 50 Ω  
R = 50 Ω  
T
R = 50 Ω  
T
V
TT  
V
TT  
Figure 12. PCLK MPC9600 AC test reference  
V
PCLK  
PCLK  
CC  
CCLK  
FB_IN  
V
CC  
GND  
2
2
V
CMR  
V
PP  
V
CC  
V
CC  
V
CC  
V
2
CC  
GND  
FB_IN  
GND  
t
(
)
t
(
)
Figure 13. Propagation delay t , static phase  
(
)
Figure 14. Propagation delay t  
test reference  
)
(
offset) test reference  
V
V
CC  
CC  
V
CC  
GND  
2
V
CC  
GND  
2
2
t
P
V
CC  
V
CC  
GND  
T
0
DC = t /T x 100%  
P 0  
t
SK(O)  
The time from the PLL controlled edge to the non controlled  
edge, divided by the time between PLL controlled edges,  
expressed as a percentage  
The pin–to–pin skew is defined as the worst case difference in  
propagation delay between any similar delay path within a  
single device  
Figure 15. Output Duty Cycle (DC)  
Figure 16. Output–to–output Skew t  
SK(O)  
For More Information On This Product,  
TIMING SOLUTIONS  
11  
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
T
= |T –T  
N+1  
|
T
= |T –1/f |  
JIT(CC)  
N
JIT(P) N 0  
T
N
T
N+1  
T
0
The variation in cycle time of a signal between adjacent cycles, over a  
random sample of adjacent cycle pairs  
The deviation in cycle time of a signal with respect to the ideal period over  
a random sample of cycles  
Figure 17. Cycle–to–cycle Jitter  
Figure 18. Period Jitter  
CCLK  
(PCLK)  
V =3.3V  
CC  
V =2.5 V  
CC  
2.4  
0.55  
1.8 V  
0.6 V  
FB_IN  
T
JIT(  
= |T –T mean|  
0 1  
)
t
F
t
R
The deviation in t for a controlled edge with respect to a t mean in a  
0
0
random sample of cycles  
Figure 19. I/O Jitter  
Figure 20. Output Transition Time Test Reference  
For More Information On This Product,  
MOTOROLA  
12  
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
OUTLINE DIMENSIONS  
FA SUFFIX  
LQFP PACKAGE  
CASE 932–03  
4X  
ISSUE F  
NOTES:  
0.200 AB TU Z  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3.DATUM PLANE AB IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4.DATUMS T, U, AND Z TO BE DETERMINED AT  
DATUM PLANE AB.  
DETAIL Y  
9
A
P
A1  
48  
37  
5.DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE AC.  
1
36  
6.DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE AB.  
7.DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.350.  
T
U
B
V
AE  
AE  
B1  
V1  
8.MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076.  
12  
25  
9.EXACT SHAPE OF EACH CORNER IS OPTIONAL.  
MILLIMETERS  
13  
24  
DIM MIN  
MAX  
7.000 BSC  
3.500 BSC  
Z
A
A1  
B
B1  
C
D
E
F
G
H
J
K
L
M
N
P
S1  
7.000 BSC  
3.500 BSC  
T, U, Z  
1.400  
1.600  
0.270  
1.450  
0.230  
S
0.170  
1.350  
0.170  
DETAIL Y  
4X  
0.200 AC TU Z  
0.500 BSC  
0.050  
0.090  
0.500  
0
0.150  
0.200  
0.700  
7
0.080 AC  
12 REF  
G
AB  
AC  
0.090  
0.150  
0.160  
0.250 BSC  
R
0.250  
S
9.000 BSC  
S1  
V
V1  
W
AA  
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
AD  
M
BASE METAL  
TOP & BOTTOM  
R
N
J
E
C
H
F
D
M
0.080  
AC TU Z  
SECTION AE–AE  
W
L
K
DETAIL AD  
AA  
For More Information On This Product,  
TIMING SOLUTIONS  
13  
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
NOTES  
For More Information On This Product,  
MOTOROLA  
14  
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
NOTES  
For More Information On This Product,  
TIMING SOLUTIONS  
15  
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
MOTOROLA and the  
logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners.  
Motorola, Inc. 2001.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334  
Technical Information Center: 1–800–521–6274  
HOME PAGE: http://www.motorola.com/semiconductors/  
MPC9600/D  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

MPC9600AE

Low Voltage, 2.5V and 3.3V LVCMOS PLL Clock Driver
IDT

MPC9600FA

LOW VOLTAGE 2.5V AND 3.3 V CMOS PLL CLOCK DRIVER
FREESCALE

MPC9600FAR2

PLL Based Clock Driver, 21 True Output(s), 0 Inverted Output(s), CMOS, PQFP48, PLASTIC, LQFP-48
MOTOROLA

MPC9600FAR2

9600 SERIES, PLL BASED CLOCK DRIVER, 21 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP48, PLASTIC, LQFP-48
NXP

MPC9608

1:10 LVCMOS Zero Delay Clock Buffer
MOTOROLA

MPC9608AC

PLL BASED CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, 7 X 7 MM, LEAD FREE, LQFP-32
MOTOROLA

MPC9608AC

9608 SERIES, PLL BASED CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, 7 X 7 MM, LEAD FREE, PLASTIC, LQFP-32
NXP

MPC9608ACR2

PLL Based Clock Driver, 9608 Series, 10 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, LEAD FREE, PLASTIC, LQFP-32
IDT

MPC9608ACR2

9608 SERIES, PLL BASED CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, 7 X 7 MM, LEAD FREE, PLASTIC, LQFP-32
NXP

MPC9608FA

PLL Based Clock Driver, 10 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, LQFP-32
MOTOROLA

MPC9608FA

IC,1:10 OUTPUT,LV-CMOS,QFP,32PIN,PLASTIC
NXP

MPC9608FAR2

PLL Based Clock Driver, 9608 Series, 10 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, LQFP-32
IDT