MRFIC1807 [MOTOROLA]

1.8 GHz POWER AMPLIFIER AND TRANSMIT/RECEIVE SWITCH GaAs MONOLITHIC INTEGRATED CIRCUIT; 1.8 GHz功率放大器和发射/接收开关砷化镓单片集成电路
MRFIC1807
型号: MRFIC1807
厂家: MOTOROLA    MOTOROLA
描述:

1.8 GHz POWER AMPLIFIER AND TRANSMIT/RECEIVE SWITCH GaAs MONOLITHIC INTEGRATED CIRCUIT
1.8 GHz功率放大器和发射/接收开关砷化镓单片集成电路

开关 放大器 功率放大器
文件: 总8页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by MRFIC1807/D  
SEMICONDUCTOR TECHNICAL DATA  
The MRFIC Line  
Designed primarily for use in DECT, Japan Personal Handy System (PHS)  
and other wireless Personal Communication Systems (PCS) applications.  
The MRFIC1807 includes a single–stage power amplifier and transmit/receive  
switch in a low–cost SOIC–16 package. The amplifier portion employs a  
depletion mode power GaAs MESFET and produces up to +27 dBm output  
with +19 dBm input. On–chip power control circuitry allows bias adjustment for  
optimum performance. The T/R switch is capable of handling up to +28 dBm  
through the transmit path without significant increase in insertion loss. The  
switch is controlled by CMOS logic level signals — no negative control voltage  
required. The MRFIC1807 is sized to be driven by the MRFIC1806 Driver/  
Ramp IC.  
1.8 GHz POWER AMPLIFIER  
AND TRANSMIT/RECEIVE  
SWITCH  
GaAs MONOLITHIC  
INTEGRATED CIRCUIT  
Together with the rest of the MRFIC1800 GaAs ICs, this family offers the  
complete transmit and receive functions, less LO and filters, needed for a  
typical 1.8 GHz cordless telephone.  
Usable 15002200 MHz  
8.0 dB Gain Including Switch  
+26 dBm Minimum Output Power at Antenna Port  
1.0 dB Typ RX Path Insertion Loss  
Simple Off–Chip Matching for Maximum Flexibility  
3.0 to 5.0 V Supply  
CASE 751B–05  
(SO–16)  
No Spurious Outputs for Load VSWR up to 8:1  
CMOS Level Switching Signal for T/R Switch  
Order MRFIC1807R2 for Tape and Reel.  
R2 Suffix = 2,500 Units per 16 mm, 13 inch Reel.  
Device Marking = M1807  
ANTENNA  
GND  
1
2
3
4
5
6
7
8
16 REG V  
DD  
15 GND  
TX IN  
14 RX OUT  
PA OUT  
GND  
13 V  
SS  
REG V  
DD  
12 GND  
11 GND  
10 TX/RX  
GND  
GATE  
BIAS  
RF IN  
GND  
9
PCNTRL  
Figure 1. Pin Connection and Functional Block Diagram  
REV 2  
Motorola, Inc. 1997  
ABSOLUTE MAXIMUM RATINGS (T = 25°C Unless Otherwise noted)  
A
Rating  
Symbol  
Limit  
6.0  
Unit  
Vdc  
Vdc  
Vdc  
dBm  
Vdc  
Vdc  
°C  
PA Supply Voltage  
Supply Voltage  
V
DD  
REG V  
4.5  
DD  
SS  
Supply Voltage  
V
4.0  
RF Input Power  
P
+25  
in  
Switch Control Voltage  
PA Control Voltage  
TX/RX  
6.0  
PCNTRL  
3.0  
Ambient Operating Temperature  
Storage Temperature Range  
T
A
–10 to +70  
65 to +150  
24  
T
stg  
°C  
Thermal Resistance, Junction to Case  
θ
°C/W  
JC  
RECOMMENDED OPERATING RANGES  
Parameter  
Symbol  
Value  
1.5 to 2.2  
Unit  
GHz  
Vdc  
Vdc  
Vdc  
dBm  
Vdc  
Vdc  
Vdc  
RF Input Frequency  
f
RF  
PA Supply Voltage  
V
DD  
3.0 to 5.0  
Supply Voltage  
REG V  
2.9 to 3.1  
DD  
SS  
Supply Voltage  
V
2.75 to 2.25  
+5.0 to +23  
2.8 to 3.5  
RF Input Power  
P
IN  
Switch Control Voltage, High (TX Mode)  
Switch Control Voltage, Low (RX Mode)  
PA Control Voltage  
TX/RX  
TX/RX  
0.2 to 0.2  
0.0 to 2.5  
PCNTRL  
ELECTRICAL CHARACTERISTICS (1)  
Transmit Mode (V  
DD  
= 3.5 V, REG V  
DD  
= 3.0 V, T = 25°C, V  
= 2.5 V, PCNTRL 0 V to 2.5 V, P = 20 dBm @ 1.9 GHz,  
SS IN  
A
TX/RX = 3 V, P  
Measured at ANT Port)  
OUT  
Characteristic  
Min  
7.0  
26  
Typ  
8.0  
26.8  
25  
Max  
Unit  
Small Signal Gain (P = 0 dBm, PCNTRL set for I  
IN DDQ  
= 180 mA)  
dB  
dBm  
dBm  
dBc  
µsec  
mA  
Output Power (PCNTRL adjusted for efficiency 35%)  
Output 1.0 dB Compression (PCNTRL set for I = 180 mA)  
DDQ  
= 26 dBm)  
Harmonic Output (PCNTRL set for P  
Switch RX to TX Switching Time  
TX/RX Control Input Current, Pin 10  
40  
0.1  
0.2  
40  
OUT  
Drain Efficiency (P  
= 26 dBm) (2)  
%
out  
Supply Current, I  
SS  
0.8  
0.8  
15  
1.2  
1.2  
mA  
Supply Current, REG I  
mA  
DD  
PCNTRL Control Input Current (Pin 9)  
Leakage Power at RX Port  
µA  
–1  
+ 6  
dBm  
Receive Mode (V  
= 0 V, REG V  
= 3.0 V, V  
= 2.5 V, TX/RX = 0 V, T = 25°C, Freq = 1.9 GHz)  
SS A  
DD  
DD  
Characteristic  
Min  
Typ  
1.0  
1.0  
60  
Max  
1.3  
Unit  
dB  
ANT to RX Insertion Loss  
Switch TX to RX Switching Time  
Supply Current, REG I  
µsec  
µA  
250  
250  
DD  
Supply Current, I  
SS  
60  
µA  
NOTES:  
1. Measured with circuit configuration shown in Figure 2.  
2. Includes switch loss.  
MRFIC1807  
2
MOTOROLA RF DEVICE DATA  
C5  
4.7 pF  
ANT  
REG V  
3 V  
DD  
50 OHM  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
V
3.5 V  
ANT  
DD  
REG V  
DD  
C7  
22 pF  
GND  
GND  
C5  
T1 (FR4)  
= 100  
L = 22 mm  
.01 µF  
RX OUT  
50 OHM  
Z
o
TX IN  
RX OUT  
C4  
C3  
V
SS  
– 2.5 V  
100 pF 22 pF  
PA  
OUT  
C2  
2.2 pF  
V
SS  
C6  
1.8 pF  
REG V  
DD  
GND  
GND  
GND  
GND 11  
GATE  
BIAS  
RF IN  
50 OHM  
3 V (TX)  
0 V (RX)  
10  
TX/RX  
RF IN  
GND  
C1  
2.2 pF  
TX/RX  
9
PCNTRL  
MRFIC1807  
T2 (FR4)  
= 70  
Z
o
L = 2 mm  
PCNTRL  
1 V TYP  
Figure 2. 1.9 GHz Applications Circuit Configuration  
Table 1. Small Signal SParameters  
(V  
DD  
= 3.5 V, I  
= 180 mA, T = 25°C, no input or output matching)  
DDQ A  
S
11  
S
21  
S
12  
S
22  
Freq (GHz)  
1.5  
Mag  
Angle  
–171.5  
175.7  
167.3  
160.3  
154.2  
148.3  
142.5  
137.0  
131.4  
126.6  
121.7  
Mag  
Angle  
82.6  
71.7  
63.4  
56.2  
49.2  
43.0  
36.8  
31.2  
26.4  
21.1  
16.0  
Mag  
0.104  
0.110  
0.108  
0.106  
0.120  
0.118  
0.114  
0.120  
0.127  
0.124  
0.126  
Angle  
74.5  
69.2  
64.0  
58.7  
54.0  
49.6  
45.2  
40.6  
37.0  
33.8  
30.4  
Mag  
Angle  
0.614  
0.695  
0.747  
0.777  
0.799  
0.814  
0.826  
0.835  
0.842  
0.856  
0.870  
2.203  
1.871  
1.647  
1.473  
1.341  
1.230  
1.128  
1.041  
0.959  
0.895  
0.840  
0.741  
0.746  
0.745  
0.746  
0.753  
0.758  
0.764  
0.767  
0.780  
0.796  
0.808  
175.4  
171.5  
167.4  
163.0  
158.9  
154.8  
150.6  
146.7  
143.4  
139.8  
136.4  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
MOTOROLA RF DEVICE DATA  
MRFIC1807  
3
30  
25  
20  
400  
350  
300  
250  
200  
V
= 3.5 V  
DD  
f = 1.9 GHz  
= 180 mA  
f = 1.9 GHz  
–10°C  
V
= 3.5 V  
= 180 mA  
DD  
I
DDQ  
I
DDQ  
–10°C  
70°C  
25°C  
15  
10  
5
T
= 25°C  
A
25°C  
150  
100  
–10°C  
T
= 70°C  
A
–3  
0
3
6
9
12  
15  
18  
21  
24  
–3  
0
3
6
9
12  
15  
18  
21  
24  
P
, INPUT POWER (dBm)  
P
, INPUT POWER (dBm)  
IN  
IN  
Figure 3. Output Power versus Input Power  
Figure 4. Supply Current versus Input Power  
30  
25  
20  
15  
500  
5 V  
f = 1.9 GHz  
450  
400  
350  
300  
250  
200  
150  
100  
T
= 25°C  
A
PCNTRL Set For  
= 180 mA @ 3.5 V  
3.5 V  
I
DDQ  
V
= 3 V  
DD  
5 V  
T
= 25°C  
f = 1.9 GHz  
PCNTRL Set For  
A
10  
5
3.5 V  
V
= 3 V  
DD  
I
= 180 mA @ 3.5 V  
DDQ  
15  
–3  
0
3
6
9
12  
18  
21  
24  
–3  
0
3
6
9
12  
P , INPUT POWER (dBm)  
IN  
15  
18  
21  
24  
P
, INPUT POWER (dBm)  
IN  
Figure 5. Output Power versus Input Power  
Figure 6. Supply Current versus Input Power  
30  
25  
350  
300  
2 V  
20  
15  
10  
5
250  
200  
PCNTRL = 2 V  
0 V  
150  
100  
50  
V
= 3.5 V  
DD  
f = 1.9 GHz  
= 25  
V
= 3.5 V  
DD  
= 25°C  
1 V  
T
A
T
°C  
A
f = 1.9 GHz  
1 V  
0
PCNTRL = 0 V  
–5  
0
–3  
0
3
6
9
12  
15  
18  
21  
24  
–3  
0
3
6
9
12  
15  
18  
21  
24  
P
, INPUT POWER (dBm)  
P
, INPUT POWER (dBm)  
IN  
IN  
Figure 7. Output Power versus Input Power  
Figure 8. Supply Current versus Input Power  
MRFIC1807  
4
MOTOROLA RF DEVICE DATA  
350  
325  
300  
275  
250  
225  
200  
175  
150  
27.5  
27  
–10  
°
C
–10°C  
70°C  
26.5  
26  
T
= 25°C  
A
T
= 25°C  
A
70°  
C
25.5  
25  
70°C  
P
V
= 20 dBm  
24.5  
24  
P
V
= 20 dBm  
in  
in  
= 3.5 V  
= 180 mA  
= 3.5 V  
= 180 mA  
DD  
DD  
I
I
DDQ  
DDQ  
23.5  
1.5  
1.6  
1.7  
1.8  
1.9  
2
2.1  
2.2  
1.5  
1.6  
1.7  
1.8  
1.9  
2
2.1  
2.2  
f, FREQUENCY (GHz)  
f, FREQUENCY (GHz)  
Figure 9. Supply Current versus Frequency  
Figure 10. Output Power versus Frequency  
600  
500  
400  
300  
200  
100  
0
10  
9
V
= 3.5 V  
DD  
–10°C  
8
7
6
5
T
= 25°C  
A
70°C  
70°C  
T
= 25°C  
A
–10°C  
P
V
= 0 dBm  
in  
= 3.5 V  
= 180 mA  
DD  
4
3
I
DDQ  
0
2.5  
0.5  
1
1.5  
2
1.5  
1.6  
1.7  
1.8  
1.9  
2
2.1  
2.2  
PCNTRL (VOLTS)  
f, FREQUENCY (GHz)  
Figure 11. Quiescent Supply Current versus PCNTRL  
Figure 12. Small Signal Gain versus Frequency  
1.5  
1.4  
1.3  
1.2  
3
–10°C  
T
= 25°C  
A
2
1
P
V
= 26 dBm  
= 3.5 V  
= 180 mA  
REG V  
= 3 V  
out  
DD  
DD  
TX/RX = 0 V  
I
DDQ  
0
T
= 25°C  
A
70°C  
–1  
–2  
–3  
–4  
1.1  
1
1.5  
1.6  
1.7  
1.8  
1.9  
2
2.1  
2.2  
1.5  
1.6  
1.7  
1.8  
1.9  
2
2.1  
2.2  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 13. Leakage Power at RX Port in TX  
Mode versus Frequency  
Figure 14. RX Path Insertion Loss in RX Mode  
versus Frequency  
MOTOROLA RF DEVICE DATA  
MRFIC1807  
5
425  
400  
375  
350  
325  
300  
275  
27.5  
27.4  
27.3  
27.2  
27.1  
27.0  
26.9  
26.8  
26.7  
26.6  
26.5  
f = 1.9 GHz  
V
P
= 3.5 V  
DD  
= 20 dBm  
in  
–10°C  
70°C  
25°C  
T
= 70°C  
A
f = 1.9 GHz  
–10°C  
V
P
= 3.5 V  
DD  
= 20 dBm  
T
= 25°C  
A
in  
0
0.5  
1
1.5  
2
2.5  
0
0.5  
1
1.5  
2
2.5  
PCNTRL (VOLTS)  
PCNTRL (VOLTS)  
Figure 15. Supply Current versus PCNTRL  
Figure 16. Output Power versus PCNTRL  
28  
40  
V
= 3.5 V  
P
out  
DD  
f = 1.9 GHz  
26  
24  
22  
20  
45  
Mod = 384 kb/s  
π
/4 DQPSK  
T
I
= 25°C  
A
50  
= 180 mA  
DDQ  
600 kHz OFFSET  
900 kHz OFFSET  
55  
60  
18  
16  
65  
70  
10  
12  
14  
16  
18  
20  
22  
P
, INPUT POWER (dBm)  
IN  
Figure 17. Output Power and Adjacent Channel  
Power Ratio versus Input Power  
MRFIC1807  
6
MOTOROLA RF DEVICE DATA  
DESIGN AND APPLICATIONS INFORMATION  
DESIGN PHILOSOPHY  
The MRFIC1807 is designed to operate with the MRFIC1806  
Driver/Ramp IC in 1.9 GHz Personal Communication System  
(PCS) applications such as Europe’s DECT and Japan’s PHS.  
The design incorporates a depletion mode GaAs power MES-  
FET with a high–power transmit/receive switch and  
associated bias circuitry in one low–cost SOIC–16 package.  
The power MESFET is sized to produce at least 27 dBm  
saturated output power, including switch loss, from a 3.5 V  
supply, but the output power can be controlled using the  
PCNTRL input. This control voltage also allows setting of the  
quiescent current of the FET. PCNTRL can be set to give  
best efficiency or linearity for the particular system application.  
The TX/RX control pin allows fast switching of the T/R switch  
for TDMA applications. When switching from transmit to  
receive, the battery supply voltage should be removed from  
the PA (Pin 4), to avoid excessive current drain. This is usu-  
ally accomplished using an external pass transistor con-  
trolled by the TX/RX signal. Alternatively, if PCNTRL is  
reduced to 0 V during RX mode, the bias current is reduced  
to nearly zero.  
2.0 sec has been shown to give adequate adjacent channel  
power performance. Most DECT realizations have the modu-  
lation applied to the transmit VCO so the most straight for-  
ward way of implementing this ramping function is at the  
power amplifier. The MRFIC1806 Driver/Ramp IC has an  
on–chip ramping circuit specifically designed for DECT.  
When ramped in this manner, the MRFIC1806 will supply the  
appropriately ramped RF signal to the MRFIC1807 which  
only has to be turned on and off with TX/RX. Alternate off–  
chip ramping can be implemented either with external com-  
ponents or at baseband. Consult the MRFIC1806 datasheet  
for more information.  
PHS APPLICATIONS  
For Japan’s Personal Handy System applications, the  
modulation is /4 DQPSK. When amplified with a non–linear  
amplifier, the signal will regrow the sidebands which have  
been carefully filtered at baseband, resulting in adjacent  
channel interference. To avoid this spectral regrowth, the  
amplifier must be operated “backed off” from saturation. The  
amount of backoff required has been shown to be a function  
of amplifier saturated output capability and may be as high  
as 5.0 dB. The PHS specification calls for a maximum aver-  
age power during a burst to be 19 dBm. This is consistent  
with 5.0 dB backoff from the DECT operating point so the  
same DECT operating condition could be used. Alternatively,  
PCNTRL can be adjusted for a lower bias point to improve  
efficiency or higher bias for better linearity. With /4 DQPSK  
modulation, ramping can be accomplished in the encoder so  
no external ramp circuit is needed. See the MRFIC1806 data  
sheet for further details.  
The Transmit/Receive switch is a reflective MESFET  
design which is optimized for low loss and power handling in  
transmit mode. The design can handle 28 dBm of transmit  
power without significant increase in insertion loss. A regu-  
lated 3.0 Volt supply is required at pin 16 for the T/R switch  
and the bias and control circuitry.  
DECT APPLICATIONS  
Figure 2 shows the component values for a DECT imple-  
mentation of the MRFIC1807. For use in equipment designed  
for DECT, the power amplifier is operated close to saturation  
to improve device efficiency. Maximum power output at the  
antenna connector is 24 dBm during a burst. The constant en-  
velope characteristics of the GMSK modulation allow non–lin-  
ear amplification without spectral regrowth. The transmit  
signal must be shaped or “ramped” to meet system transmit  
turn on time requirements of 10 sec minimum while not splat-  
tering into adjacent channels. A turn on time on greater than  
EVALUATION BOARDS  
Evaluation boards are available for RF Monolithic Inte-  
grated Circuits by adding a “TF” suffix to the device type.  
For a complete list of currently available boards and ones  
in development for newly introduced product, please con-  
tact your local Motorola Distributor or Sales Office.  
MOTOROLA RF DEVICE DATA  
MRFIC1807  
7
PACKAGE DIMENSIONS  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
1
9
8
–B–  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
S
0.25 (0.010)  
B
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
9.80  
3.80  
1.35  
0.35  
0.40  
MAX  
10.00  
4.00  
1.75  
0.49  
1.25  
MIN  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
F
0.386  
0.150  
0.054  
0.014  
0.016  
R X 45  
K
C
F
G
J
K
M
P
R
1.27 BSC  
0.050 BSC  
–T–  
SEATING  
PLANE  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
J
M
D
16 PL  
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
M
S
S
0.25 (0.010)  
T
B
A
CASE 751B–05  
ISSUE J  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,  
Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
INTERNET: http://motorola.com/sps  
MRFIC1807/D  

相关型号:

MRFIC1807R1

1500 MHz - 2200 MHz RF/MICROWAVE WIDE BAND MEDIUM POWER AMPLIFIER
MOTOROLA

MRFIC1807R2

Narrow Band Medium Power Amplifier, 1500MHz Min, 2200MHz Max, 1 Func, GAAS, PLASTIC, SOIC-16, 16 PIN
MOTOROLA

MRFIC1808

1.9 GHz GaAs LOW NOISE AMPLIFIER
MOTOROLA

MRFIC1808DMR2

1700 MHz - 2100 MHz RF/MICROWAVE NARROW BAND LOW POWER AMPLIFIER, PLASTIC, CASE 846A-02, MICRO-8, 8 PIN
NXP

MRFIC1813

1.9 GHz UPMIXER AND EXCITER AMPLIFIER
MOTOROLA

MRFIC1813

IC,UPCONVERTER,GAAS,TSSOP,16PIN,PLASTIC
NXP

MRFIC1813R2

1700 MHz - 2500 MHz RF/MICROWAVE UP CONVERTER, PLASTIC, TSSOP-16
MOTOROLA

MRFIC1813R2

1700MHz - 2500MHz RF/MICROWAVE UP CONVERTER, PLASTIC, TSSOP-16
ROCHESTER

MRFIC1813R2

1700 MHz - 2500 MHz RF/MICROWAVE UP CONVERTER, PLASTIC, CASE 948C-03, TSSOP-16
NXP

MRFIC1814

1.8 GHz LOW NOISE AMPLIFIER AND DOWNMIXER
MOTOROLA

MRFIC1814R2

RF and Baseband Circuit, PDSO16, PLASTIC, TSSOP-16
MOTOROLA

MRFIC1817

1700-1900 MHz MMIC DCS1800/PCS1900 INTEGRATED POWER AMPLIFIER GaAs MONOLITHIC INTEGRATED CIRCUIT
MOTOROLA