MX25L1636D [Macronix]

16M-BIT [x 1/x 2/x 4] CMOS MXSMIOTM (SERIAL MULTI I/O) FLASH MEMORY;
MX25L1636D
型号: MX25L1636D
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

16M-BIT [x 1/x 2/x 4] CMOS MXSMIOTM (SERIAL MULTI I/O) FLASH MEMORY

IOT
文件: 总48页 (文件大小:2156K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MX25L1636D  
MX25L1636D  
DATASHEET  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
1
MX25L1636D  
Contents  
FEATURES ..................................................................................................................................................................5  
GENERAL.................................................................................................................................................................5  
PERFORMANCE......................................................................................................................................................5  
SOFTWARE FEATURES..........................................................................................................................................5  
HARDWARE FEATURES.........................................................................................................................................6  
GENERAL DESCRIPTION .........................................................................................................................................7  
Table 1. Additional Feature Comparison...................................................................................................................7  
PIN CONFIGURATIONS .............................................................................................................................................8  
PIN DESCRIPTION......................................................................................................................................................8  
BLOCK DIAGRAM.......................................................................................................................................................9  
DATA PROTECTION..................................................................................................................................................10  
Table 2. Protected Area Sizes................................................................................................................................. 11  
Table 3. 512-bit Secured OTP Definition ................................................................................................................ 11  
Memory Organization...............................................................................................................................................12  
Table 4. Memory Organization (16Mb) ..................................................................................................................12  
DEVICE OPERATION................................................................................................................................................13  
Figure 1. Serial Modes Supported..........................................................................................................................13  
COMMAND DESCRIPTION.......................................................................................................................................14  
Table 5. Command Set ...........................................................................................................................................14  
(1) Write Enable (WREN) .......................................................................................................................................16  
(2) Write Disable (WRDI)........................................................................................................................................16  
(3) Read Identification (RDID) ................................................................................................................................16  
(4) Read Status Register (RDSR)...........................................................................................................................17  
(5) Write Status Register (WRSR)..........................................................................................................................18  
Table 6. Protection Modes ......................................................................................................................................18  
(6) Read Data Bytes (READ)..................................................................................................................................19  
(7) Read Data Bytes at Higher Speed (FAST_READ)............................................................................................19  
(8) Dual Read Mode (DREAD) ...............................................................................................................................19  
(9) Quad Read Mode (QREAD)..............................................................................................................................20  
(10) Sector Erase (SE) ...........................................................................................................................................20  
(11) Block Erase (BE) .............................................................................................................................................20  
(12) Chip Erase (CE) ..............................................................................................................................................21  
(13) Page Program (PP).........................................................................................................................................21  
(14) 4 x I/O Page Program (4PP) ...........................................................................................................................21  
(15) Continuously program mode (CP mode).........................................................................................................22  
(16) Deep Power-down (DP) ..................................................................................................................................22  
(17) Release from Deep Power-down (RDP), Read Electronic Signature (RES)................................................... 23  
(18) Read Electronic Manufacturer ID & Device ID (REMS), (REMS2), (REMS4)................................................. 23  
Table 7. ID Definitions ............................................................................................................................................24  
(21) Enter Secured OTP (ENSO) ...........................................................................................................................24  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
2
MX25L1636D  
(22) Exit Secured OTP (EXSO) ..............................................................................................................................24  
(23) Read Security Register (RDSCUR).................................................................................................................24  
Table 8. Security Register Definition.......................................................................................................................25  
(24) Write Security Register (WRSCUR)................................................................................................................25  
POWER-ON STATE...................................................................................................................................................26  
ELECTRICAL SPECIFICATIONS..............................................................................................................................27  
ABSOLUTE MAXIMUM RATINGS .........................................................................................................................27  
Figure 2. Maximum Negative Overshoot Waveform...............................................................................................27  
CAPACITANCE TA = 25°C, f = 1.0 MHz.................................................................................................................27  
Figure 3. Maximum Positive Overshoot Waveform.................................................................................................27  
Figure 4. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL.................................................................. 28  
Figure 5. OUTPUT LOADING................................................................................................................................28  
Table 9. DC CHARACTERISTICS (Temperature = -40 C to 85 C for Industrial grade, VCC = 2.7V ~ 3.6V) ....... 29  
°
°
Table 10. AC CHARACTERISTICS (Temperature = -40°C to 85°C for Industrial grade, VCC = 2.7V ~ 3.6V) ..... 30  
Timing Analysis........................................................................................................................................................31  
Figure 6. Serial Input Timing...................................................................................................................................31  
Figure 7. Output Timing ..........................................................................................................................................31  
Figure 8. WP# Setup Timing and Hold Timing during WRSR when SRWD=1 ....................................................... 32  
Figure 9. Write Enable (WREN) Sequence (Command 06) ...................................................................................32  
Figure 10. Write Disable (WRDI) Sequence (Command 04)..................................................................................32  
Figure 11. Read Identification (RDID) Sequence (Command 9F) .......................................................................... 33  
Figure 12. Read Status Register (RDSR) Sequence (Command 05)..................................................................... 33  
Figure 13. Write Status Register (WRSR) Sequence (Command 01)................................................................... 33  
Figure 14. Read Data Bytes (READ) Sequence (Command 03)........................................................................... 34  
Figure 15. Read at Higher Speed (FAST_READ) Sequence (Command 0B)....................................................... 34  
Figure 16. Dual Read Mode Sequence (Command 3B).........................................................................................35  
Figure 17. Quad Read Mode Sequence (Command 6B)........................................................................................35  
Figure 18. Page Program (PP) Sequence (Command 02)....................................................................................36  
Figure 19. 4 x I/O Page Program (4PP) Sequence (Command 38) ...................................................................... 36  
Figure 20. Continously Program (CP) Mode Sequence with Hardware Detection (Command AD) ....................... 37  
Figure 21. Sector Erase (SE) Sequence (Command 20) ......................................................................................37  
Figure 22. Block Erase (BE) Sequence (Command D8) .......................................................................................37  
Figure 23. Chip Erase (CE) Sequence (Command 60 or C7) ...............................................................................38  
Figure 24. Deep Power-down (DP) Sequence (Command B9)............................................................................. 38  
Figure 25. Release from Deep Power-down and Read Electronic Signature (RES) Sequence (Command AB) .. 38  
Figure 26. Release from Deep Power-down (RDP) Sequence (Command AB).................................................... 39  
Figure 27. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90 or EF or DF) .............. 39  
Figure 28. Power-up Timing....................................................................................................................................40  
Table 11. Power-Up Timing ....................................................................................................................................40  
INITIAL DELIVERY STATE.....................................................................................................................................40  
RECOMMENDED OPERATING CONDITIONS.........................................................................................................41  
ERASE AND PROGRAMMING PERFORMANCE....................................................................................................42  
Data Retention........................................................................................................................................................42  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
3
MX25L1636D  
LATCH-UP CHARACTERISTICS..............................................................................................................................42  
ORDERING INFORMATION......................................................................................................................................43  
PART NAME DESCRIPTION.....................................................................................................................................44  
PACKAGE INFORMATION........................................................................................................................................45  
REVISION HISTORY .................................................................................................................................................47  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
4
MX25L1636D  
16M-BIT [x 1/x 2/x 4] CMOS MXSMIOTM (SERIAL MULTI I/O) FLASH MEMORY  
FEATURES  
GENERAL  
• Serial Peripheral Interface compatible -- Mode 0 and Mode 3  
16M:16,777,216 x 1 bit structure or 8,388,608 x 2 bits (two I/O read mode) structure or 4,194,304 x 4 bits (four  
I/O read mode) structure  
• 512 Equal Sectors with 4K byte each  
- Any Sector can be erased individually  
• 32 Equal Blocks with 64K byte each  
- Any Block can be erased individually  
• Single Power Supply Operation  
- 2.7 to 3.6 volt for read, erase, and program operations  
• Latch-up protected to 100mA from -1V to Vcc +1V  
PERFORMANCE  
• High Performance  
- Fast read  
- 1 I/O: 86MHz with 8 dummy cycles  
- 4 I/O: 75MHz with 6 dummy cycles  
- 2 I/O: 75MHz with 4 dummy cycles  
- Fast access time: 86MHz serial clock  
- Serial clock of four I/O read mode : 75MHz, which is equivalent to 300MHz  
- Fast program time: 1.4ms(typ.) and 5ms(max.)/page (256-byte per page)  
- Byte program time: 9us (typical)  
- Continuously program mode (automatically increase address under word program mode)  
- Fast erase time: 60ms (typ.)/sector (4K-byte per sector) ; 0.7s(typ.) /block (64K-byte per block); 14s(typ.) /chip  
• Low Power Consumption  
- Low active read current: 25mA(max.) at 86MHz and 10mA(max.) at 33MHz  
- Low active programming current: 20mA (max.)  
- Low active erase current: 20mA (max.)  
- Low standby current: 20uA (max.)  
• Typical 100,000 erase/program cycles  
• 20 years of data retention  
SOFTWARE FEATURES  
• Input Data Format  
- 1-byte Command code  
• Advanced Security Features  
- Block lock protection  
The BP0-BP3 status bit defines the size of the area to be software protection against program and erase  
instructions  
- Additional 512-bit secured OTP for unique identifier  
• Auto Erase and Auto Program Algorithm  
- Automatically erases and verifies data at selected sector  
- Automatically programs and verifies data at selected page by an internal algorithm that automatically times the  
program pulse widths (Any page to be programed should have page in the erased state first)  
Status Register Feature  
Electronic Identification  
- JEDEC 1-byte manufacturer ID and 2-byte device ID  
- RES command for 1-byte Device ID  
- Both REMS,REMS2 and REMS4 commands for 1-byte manufacturer ID and 1-byte device ID  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
5
MX25L1636D  
HARDWARE FEATURES  
SCLK Input  
- Serial clock input  
• SI/SO0  
- Serial Data Input or Serial Data Multiple Output for 2 x I/O read mode and 4 x I/O read mode  
• SO/SO1  
- Serial Data Output or Serial Data Multiple Output for 2 x I/O read mode and 4 x I/O read mode  
• WP#/SO2  
- Hardware write protection or serial data Multiple Output for 4 x I/O read mode  
• NC/SO3  
- NC pin or serial data Multiple Output for 4 x I/O read mode  
• PACKAGE  
- 16-pin SOP (300mil)  
- 8-pin SOP (200mil)  
- All Pb-free devices are RoHS Compliant  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
6
MX25L1636D  
GENERAL DESCRIPTION  
The MX25L1636D are 16,777,216 bit serial Flash memory, which is configured as 2,097,152 x 8 internally. When it  
is in two or four I/O read mode, the structure becomes 8,388,608 bits x 2 or 4,194,304 bits x 4. The MX25L1636D  
feature a serial peripheral interface and software protocol allowing operation on a simple 3-wire bus. The three bus  
signals are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). Serial access to the device  
is enabled by CS# input.  
When it is in two I/O read mode, the SI pin and SO pin become SO0 pin and SO1 pin for data output. When it is in  
four I/O read mode, the SI pin, SO pin, WP# pin and NC pin become SO0 pin, SO1 pin, SO2 pin and SO3 pin for  
data output.  
The MX25L1636D provides sequential read operation on whole chip.  
After program/erase command is issued, auto program/ erase algorithms which program/ erase and verify the  
specified page or sector/block locations will be executed. Program command is executed on byte basis, or page (256  
bytes) basis, or word basis for Continuously program mode, and erase command is executes on sector (4K-byte),  
or block (64K-byte), or whole chip basis.  
To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read  
command can be issued to detect completion status of a program or erase operation via WIP bit.  
Advanced security features enhance the protection and security functions, please see security features section for  
more details.  
When the device is not in operation and CS# is high, it is put in standby mode and draws less than 20uA DC cur-  
rent.  
The MX25L1636D utilizes Macronix's proprietary memory cell, which reliably stores memory contents even after  
100,000 program and erase cycles.  
Table 1. Additional Feature Comparison  
Protection and  
Read Performance  
Identifier  
Additional  
Features  
Security  
Flexible  
Block  
Protection  
(BP0-BP3)  
512-bit  
secured  
OTP  
2 I/O  
4 I/O  
RES  
REMS  
REMS2  
REMS4  
RDID  
Part  
Read  
Read  
(command: (command: (command: (command: (command:  
Name  
(75 MHz) (75 MHz)  
AB hex)  
90 hex)  
EF hex)  
DF hex)  
9F hex)  
C2 24 (hex) C2 24 (hex) C2 24 (hex) C2 24 15  
(if ADD=0) (if ADD=0) (if ADD=0) (hex)  
MX25L1636D  
V
V
V
V
24 (hex)  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
7
MX25L1636D  
PIN CONFIGURATIONS  
16-PIN SOP (300mil)  
8-PIN SOP (200mil)  
1
2
3
4
5
6
7
8
SCLK  
SI/SO0  
NC  
NC/SO3  
VCC  
NC  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
CS#  
SO/SO1  
WP#/SO2  
GND  
VCC  
8
7
6
5
NC/SO3  
SCLK  
NC  
NC  
SI/SO0  
NC  
NC  
NC  
NC  
GND  
WP#/SO2  
CS#  
SO/SO1  
PIN DESCRIPTION  
SYMBOL DESCRIPTION  
CS#  
Chip Select  
Serial Data Input (for 1 x I/O)/ Serial  
Data Input & Output (for 2xI/O or 4xI/O  
read mode)  
SI/SO0  
Serial Data Output (for 1 x I/O)/ Serial  
Data Input & Output (for 2xI/O or 4xI/O  
read mode)  
SO/SO1  
SCLK  
Clock Input  
Write protection: connect to GND or  
WP#/SO2 Serial Data Input & Output (for 4xI/O  
read mode)  
NC pin (Not connect) or Serial Data  
Input & Output (for 4xI/O read mode)  
NC/SO3  
VCC  
GND  
+ 3.3V Power Supply  
Ground  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
8
MX25L1636D  
BLOCK DIAGRAM  
Address  
Generator  
Memory Array  
Page Buffer  
Data  
Register  
SI/SO0  
Y-Decoder  
SRAM  
Buffer  
Sense  
Amplifier  
CS#  
WP#/SO2  
NC/SO3  
Mode  
Logic  
State  
Machine  
HV  
Generator  
SCLK  
Clock Generator  
Output  
Buffer  
SO/SO1  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
9
MX25L1636D  
DATA PROTECTION  
The MX25L1636D is designed to offer protection against accidental erasure or programming caused by spurious  
system level signals that may exist during power transition. During power up the device automatically resets the  
state machine in the standby mode. In addition, with its control register architecture, alteration of the memory con-  
tents only occurs after successful completion of specific command sequences. The device also incorporates sev-  
eral features to prevent inadvertent write cycles resulting from VCC power-up and power-down transition or system  
noise.  
Valid command length checking: The command length will be checked whether it is at byte base and completed  
on byte boundary.  
• Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before  
other command to change data. The WEL bit will return to reset stage under following situation:  
- Power-up  
- Write Disable (WRDI) command completion  
- Write Status Register (WRSR) command completion  
- Page Program (PP) command completion  
- Continuously Program mode (CP) instruction completion  
- Sector Erase (SE) command completion  
- Block Erase (BE) command completion  
- Chip Erase (CE) command completion  
Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from  
writing all commands except Release from deep power down mode command (RDP) and Read Electronic Sig-  
nature command (RES).  
Advanced Security Features: there are some protection and securuity features which protect content from inad-  
vertent write and hostile access.  
I. Block lock protection  
- The Software Protected Mode (SPM) use (BP3, BP2, BP1, BP0) bits to allow part of memory to be protected  
as read only. The proected area definition is shown as table of "Protected Area Sizes", the protected areas are  
more flexible which may protect various area by setting value of BP0-BP3 bits.  
Please refer to table of "protected area sizes".  
- The Hardware Proteced Mode (HPM) use WP#/SO2 to protect the (BP3, BP2, BP1, BP0) bits and SRWD bit. If  
the system goes into four I/O read mode, the feature of HPM will be disabled.  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
10  
MX25L1636D  
Table 2. Protected Area Sizes  
Status bit  
Protect Level  
BP0 16Mb  
BP3  
0
BP2  
0
BP1  
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0 (none)  
0
0
0
1 (1block, block 31th)  
2 (2blocks, block 30th-31th)  
3 (4blocks, block 28th-31th)  
4 (8blocks, block 24th-31th)  
5 (16blocks, block 16th-31th)  
6 (32blocks, all)  
0
0
1
0
0
1
0
1
0
0
1
0
0
1
1
0
1
1
7 (32blocks, all)  
1
0
0
8 (32blocks, all)  
1
0
0
9 (32blocks, all)  
1
0
1
10 (16blocks, block 0th-15th)  
11 (24blocks, block 0th-23th)  
12 (28blocks, block 0th-27th)  
13 (30blocks, block 0th-29th)  
14 (31blocks, block 0th-30th)  
15 (32blocks, all)  
1
0
1
1
1
0
1
1
0
1
1
1
1
1
1
II. Additional 512-bit secured OTP for unique identifier: to provide 512-bit one-time program area for setting  
device unique serial number - Which may be set by factory or system customer. Please refer to table 3. 512-bit  
secured OTP definition.  
- Security register bit 0 indicates whether the chip is locked by factory or not.  
- To program the 512-bit secured OTP by entering 512-bit secured OTP mode (with ENSO command), and going  
through normal program procedure, and then exiting 512-bit secured OTP mode by writing EXSO command.  
- Customer may lock-down the customer lockable secured OTP by writing WRSCUR(write security register)  
command to set customer lock-down bit1 as "1". Please refer to table of "security register definition" for security  
register bit definition and table of "512-bit secured OTP definition" for address range definition.  
- Note: Once lock-down whatever by factory or customer, it cannot be changed any more. While in 512-bit se-  
cured OTP mode, array access is not allowed.  
Table 3. 512-bit Secured OTP Definition  
Address range  
xxxx00~xxxx0F  
xxxx10~xxxx3F  
Size  
Standard Factory Lock  
ESN (electrical serial number)  
N/A  
Customer Lock  
128-bit  
384-bit  
Determined by customer  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
11  
MX25L1636D  
Memory Organization  
Table 4. Memory Organization (16Mb)  
Block  
Sector  
255  
:
Address Range  
0FF000h 0FFFFFh  
Block  
Sector  
511  
:
Address Range  
1FF000h 1FFFFFh  
15  
:
:
31  
:
:
240  
239  
:
224  
223  
:
208  
207  
:
192  
191  
:
176  
175  
:
160  
159  
:
144  
143  
:
128  
127  
:
112  
111  
:
96  
95  
:
80  
79  
:
64  
63  
:
48  
47  
:
32  
31  
:
16  
15  
:
0F0000h  
0EF000h  
:
0E0000h  
0DF000h  
:
0D0000h  
0CF000h  
:
0C0000h  
0BF000h  
:
0B0000h  
0AF000h  
:
0A0000h  
09F000h  
:
090000h  
08F000h  
:
080000h  
07F000h  
:
070000h  
06F000h  
:
060000h  
05F000h  
:
050000h  
04F000h  
:
040000h  
03F000h  
:
030000h  
02F000h  
:
020000h  
01F000h  
:
010000h  
00F000h  
:
0F0FFFh  
0EFFFFh  
:
0E0FFFh  
0DFFFFh  
:
0D0FFFh  
0CFFFFh  
:
0C0FFFh  
0BFFFFh  
:
0B0FFFh  
0AFFFFh  
:
0A0FFFh  
09FFFFh  
:
090FFFh  
08FFFFh  
:
080FFFh  
07FFFFh  
:
070FFFh  
06FFFFh  
:
060FFFh  
05FFFFh  
:
050FFFh  
04FFFFh  
:
040FFFh  
03FFFFh  
:
030FFFh  
02FFFFh  
:
020FFFh  
01FFFFh  
:
010FFFh  
00FFFFh  
:
496  
495  
:
480  
479  
:
464  
463  
:
448  
447  
:
432  
431  
:
416  
415  
:
400  
399  
:
384  
383  
:
368  
367  
:
352  
351  
:
336  
335  
:
320  
319  
:
304  
303  
:
288  
287  
:
272  
271  
:
1F0000h  
1EF000h  
:
1E0000h  
1DF000h  
:
1D0000h  
1CF000h  
:
1C0000h  
1BF000h  
:
1B0000h  
1AF000h  
:
1A0000h  
19F000h  
:
190000h  
18F000h  
:
180000h  
17F000h  
:
170000h  
16F000h  
:
160000h  
15F000h  
:
150000h  
14F000h  
:
140000h  
13F000h  
:
130000h  
12F000h  
:
120000h  
11F000h  
:
110000h  
10F000h  
:
1F0FFFh  
1EFFFFh  
:
1E0FFFh  
1DFFFFh  
:
1D0FFFh  
1CFFFFh  
:
1C0FFFh  
1BFFFFh  
:
1B0FFFh  
1AFFFFh  
:
1A0FFFh  
19FFFFh  
:
190FFFh  
18FFFFh  
:
180FFFh  
17FFFFh  
:
170FFFh  
16FFFFh  
:
160FFFh  
15FFFFh  
:
150FFFh  
14FFFFh  
:
140FFFh  
13FFFFh  
:
130FFFh  
12FFFFh  
:
120FFFh  
11FFFFh  
:
110FFFh  
10FFFFh  
:
14  
13  
12  
11  
10  
9
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
8
7
6
5
4
3
2
1
0
2
1
0
002000h  
001000h  
000000h  
002FFFh  
001FFFh  
000FFFh  
256  
100000h  
100FFFh  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
12  
MX25L1636D  
DEVICE OPERATION  
1. Before a command is issued, status register should be checked to ensure device is ready for the intended op-  
eration.  
2. When incorrect command is inputted to this LSI, this LSI becomes standby mode and keeps the standby mode  
until next CS# falling edge. In standby mode, SO pin of this LSI should be High-Z.  
3. When correct command is inputted to this LSI, this LSI becomes active mode and keeps the active mode until  
next CS# rising edge.  
4. Input data is latched on the rising edge of Serial Clock(SCLK) and data shifts out on the falling edge of SCLK.  
The difference of Serial mode 0 and mode 3 is shown as Figure 2.  
5. For the following instructions: RDID, RDSR, RDSCUR, READ, FAST_READ, 2READ, 4READ,RES, REMS,  
REMS2 and REMS4 the shifted-in instruction sequence is followed by a data-out sequence. After any bit of data  
being shifted out, the CS# can be high. For the following instructions: WREN, WRDI, WRSR, SE, BE, CE, PP,  
4PP, CP, RDP, DP, ENSO, EXSO,and WRSCUR, the CS# must go high exactly at the byte boundary; otherwise,  
the instruction will be rejected and not executed.  
6. During the progress of Write Status Register, Program, Erase operation, to access the memory array is neglect-  
ed and not affect the current operation of Write Status Register, Program, Erase.  
Figure 1. Serial Modes Supported  
CPOL CPHA  
shift in  
shift out  
SCLK  
SCLK  
(Serial mode 0)  
(Serial mode 3)  
0
1
0
1
SI  
MSB  
SO  
MSB  
Note:  
CPOL indicates clock polarity of Serial master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not  
transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which Serial mode is  
supported.  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
13  
MX25L1636D  
COMMAND DESCRIPTION  
Table 5. Command Set  
RDID  
(read  
identific-  
ation)  
DREAD (1I  
2O read  
command)  
RDSR  
WRSR  
FAST READ  
(fast read  
data)  
Command WREN (write WRDI (write  
READ (read  
data)  
(read status (write status  
(byte)  
enable)  
disable)  
register)  
05 (hex)  
register)  
01 (hex)  
Values  
1st byte  
2nd byte  
06 (hex)  
04 (hex)  
9F (hex)  
03 (hex)  
0B (hex)  
AD1  
3B (hex)  
AD1  
AD1  
(A23-A16)  
AD2  
(A15-A8)  
AD3  
3rd byte  
AD2  
AD2  
AD3  
4th byte  
5th byte  
AD3  
(A7-A0)  
Dummy  
Dummy  
n bytes read  
out by Dual  
output until  
CS# goes  
high  
sets the  
resets the  
outputs  
JEDEC  
to read out to write new n bytes read n bytes read  
the values values of out until CS# out until CS#  
(WEL) write (WEL) write  
enable latch enable latch ID: 1-byte of the status the status  
goes high  
goes high  
Action  
bit  
bit  
Manufact-  
urer ID &  
2-byte Device  
ID  
register  
register  
CP  
QREAD (1I QPP (1I4P  
4PP (quad  
page  
program)  
Command  
(byte)  
SE (sector  
erase)  
BE (block  
erase)  
CE (chip  
erase)  
PP (page (continuously  
4O read  
Page  
program)  
program  
mode)  
AD (hex)  
AD1  
AD2  
AD3  
command)  
Program)  
1st byte  
2nd byte  
3rd byte  
4th byte  
5th byte  
6B (hex)  
AD1  
32 (hex)  
AD1  
38 (hex)  
AD1  
20 (hex)  
AD1  
AD2  
D8 (hex) 60 or C7 (hex) 02 (hex)  
AD1  
AD2  
AD3  
AD1  
AD2  
AD3  
AD2  
AD2  
AD3  
AD3  
AD3  
Dummy  
n bytes read  
out by Quad  
output until  
CS# goes  
high  
Single  
quad input to erase the to erase the  
to erase  
to program continously  
Address  
and Quad the selected  
to program  
selected  
sector  
selected  
block  
whole chip the selected  
page  
program  
whole  
Data input  
to program  
the selected  
page  
page  
chip, the  
Action  
address is  
automatically  
increase  
RDP  
(Release  
REMS (read  
electronic  
REMS2 (read REMS4 (read ENSO (enter  
Command  
(byte)  
DP (Deep  
RES (read  
EXSO (exit  
secured OTP)  
ID for 2x I/O ID for 4x I/O  
secured  
OTP)  
power down) from deep electronic ID) manufacturer  
mode)  
mode)  
power down)  
& device ID)  
1st byte  
2nd byte  
3rd byte  
4th byte  
B9 (hex)  
AB (hex)  
AB (hex)  
90 (hex)  
EF (hex)  
DF (hex)  
B1 (hex)  
C1 (hex)  
x
x
x
x
x
x
x
x
x
ADD (Note 2) ADD (Note 2) ADD (Note 2)  
enters deep release from  
to read  
output the output the output the  
to enter  
to exit the  
512-bit  
power down deep power out 1-byte Manufacturer Manufacturer Manufacturer the 512-bit  
mode  
down mode Device ID ID & Device ID & Device ID & Device secured OTP secured OTP  
ID  
ID  
ID  
mode  
mode  
Action  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
14  
MX25L1636D  
ESRY  
DSRY  
RDSCUR  
(read security (write security  
WRSCUR  
Command  
(byte)  
(enable SO (disable SO  
to output RY/ to output RY/  
BY#)  
70 (hex)  
register)  
2B (hex)  
register)  
2F (hex)  
BY#)  
80 (hex)  
1st byte  
2nd byte  
3rd byte  
4th byte  
to read value  
to set the  
to enable SO to disable SO  
of security lock-down bit to output RY/ to output RY/  
register  
as "1" (once BY# during  
BY# during  
CP mode  
lock-down,  
cannot be  
update)  
CP mode  
Action  
Note 1: The count base is 4-bit for ADD(2) and Dummy(2) because of 2 x I/O. And the MSB is on SI/SO1 which is different from  
1 x I/O condition.  
Note 2: ADD=00H will output the manufacturer ID first and ADD=01H will output device ID first.  
Note 3: It is not recommended to adopt any other code not in the command definition table, which will potentially enter the hid-  
den mode.  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
15  
MX25L1636D  
(1) Write Enable (WREN)  
The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, 4PP,  
CP, SE, BE, CE, and WRSR, which are intended to change the device content, should be set every time after the  
WREN instruction setting the WEL bit.  
The sequence of issuing WREN instruction is: CS# goes low→ sending WREN instruction code→ CS# goes high. (see  
Figure 9)  
(2) Write Disable (WRDI)  
The Write Disable (WRDI) instruction is for resetting Write Enable Latch (WEL) bit.  
The sequence of issuing WRDI instruction is: CS# goes low-> sending WRDI instruction code→CS# goes high. (see  
Figure 10)  
The WEL bit is reset by following situations:  
- Power-up  
- Write Disable (WRDI) instruction completion  
- Write Status Register (WRSR) instruction completion  
- Page Program (PP) instruction completion  
- Quad Page Program (4PP) instruction completion  
- Sector Erase (SE) instruction completion  
- Block Erase (BE) instruction completion  
- Chip Erase (CE) instruction completion  
- Continuously program mode (CP) instruction completion  
(3) Read Identification (RDID)  
The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The MXIC  
Manufacturer ID is C2(hex), the memory type ID is 24(hex) as the first-byte device ID, and the individual device ID  
of second-byte ID are listed as table of "ID Definitions". (see table 7 in page 23)  
The sequence of issuing RDID instruction is: CS# goes low→ sending RDID instruction code→24-bits ID data out  
on SO→ to end RDID operation can use CS# to high at any time during data out. (see Figure 11.)  
While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the cy-  
cle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby stage.  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
16  
MX25L1636D  
(4) Read Status Register (RDSR)  
The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even in  
program/erase/write status register condition) and continuously. It is recommended to check the Write in Progress (WIP)  
bit before sending a new instruction when a program, erase, or write status register operation is in progress.  
The sequence of issuing RDSR instruction is: CS# goes low→ sending RDSR instruction code→ Status Register  
data out on SO (see Figure 12)  
The definition of the status register bits is as below:  
WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write  
status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status  
register progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status  
register cycle.  
WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable  
latch. When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/  
erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the de-  
vice will not accept program/erase/write status register instruction. The program/erase command will be ignored and  
not affect value of WEL bit if it is applied to a protected memory area.  
BP3, BP2, BP1, BP0 bits. The Block Protect (BP3, BP2, BP1, BP0) bits, non-volatile bits, indicate the protected  
area(as defined in table 1) of the device to against the program/erase instruction without hardware protection mode  
being set. To write the Block Protect (BP3, BP2, BP1, BP0) bits requires the Write Status Register (WRSR) instruc-  
tion to be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector  
Erase (SE), Block Erase (BE) and Chip Erase(CE) instructions (only if all Block Protect bits set to 0, the CE instruc-  
tion can be executed).  
QE bit. The Quad Enable (QE) bit, non-volatile bit, performs Quad when it is reset to "0" (factory default) to enable  
WP# or is set to "1" to enable Quad SO2 and SO3.  
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, is operated together with Write Protec-  
tion (WP#/SO2) pin for providing hardware protection mode. The hardware protection mode requires SRWD sets  
to 1 and WP#/SO2 pin signal is low stage. In the hardware protection mode, the Write Status Register (WRSR)  
instruction is no longer accepted for execution and the SRWD bit and Block Protect bits (BP3, BP2, BP1, BP0) are  
read only.  
Status Register  
bit7  
bit6  
bit5  
BP3  
(level of  
protected  
block)  
bit4  
BP2  
(level of  
protected  
block)  
bit3  
BP1  
(level of  
protected  
block)  
bit2  
BP0  
(level of  
protected  
block)  
bit1  
bit0  
SRWD (status  
register write  
protect)  
QE  
(Quad  
Enable)  
WEL  
(write enable  
latch)  
WIP  
(write in  
progress bit)  
1=Quad  
Enable  
0=not Quad  
Enable  
1=write  
enable  
0=not write 0=not in write  
1=write  
operation  
1=status  
register write  
disable  
(note 1)  
(note 1)  
(note 1)  
(note 1)  
enable  
operation  
Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile  
bit bit bit bit bit bit  
volatile bit  
volatile bit  
Note 1: see the table 2 "Protected Area Size" in page 11.  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
17  
MX25L1636D  
(5) Write Status Register (WRSR)  
The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the  
Write Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in ad-  
vance. The WRSR instruction can change the value of Block Protect (BP3, BP2, BP1, BP0) bits to define the pro-  
tected area of memory (as shown in table 1). The WRSR also can set or reset the Quad enable (QE) bit and set or  
reset the Status Register Write Disable (SRWD) bit in accordance with Write Protection (WP#/SO2) pin signal, but  
has no effect on bit1(WEL) and bit0 (WIP) of the statur register. The WRSR instruction cannot be executed once the  
Hardware Protected Mode (HPM) is entered.  
The sequence of issuing WRSR instruction is: CS# goes low→ sending WRSR instruction code→ Status Register  
data on SI→ CS# goes high. (see Figure 13)  
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write  
in Progress (WIP) bit still can be check out during the Write Status Register cycle is in progress. The WIP sets 1  
during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL)  
bit is reset.  
Table 6. Protection Modes  
Mode  
Status register condition  
WP# and SRWD bit status  
Memory  
Status register can be written  
in (WEL bit is set to "1") and  
the SRWD, BP0-BP3  
WP#=1 and SRWD bit=0, or  
WP#=0 and SRWD bit=0, or  
WP#=1 and SRWD=1  
The protected area  
cannot  
be program or erase.  
Software protection  
mode (SPM)  
bits can be changed  
The SRWD, BP0-BP3 of  
status register bits cannot be  
changed  
The protected area  
cannot  
be program or erase.  
Hardware protection  
mode (HPM)  
WP#=0, SRWD bit=1  
Note:  
1. As defined by the values in the Block Protect (BP3, BP2, BP1, BP0) bits of the Status Register, as shown in Table 1.  
As the above table showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode (HPM).  
Software Protected Mode (SPM):  
-
When SRWD bit=0, no matter WP#/SO2 is low or high, the WREN instruction may set the WEL bit and can  
change the values of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1,  
BP0, is at software protected mode (SPM).  
-
When SRWD bit=1 and WP#/SO2 is high, the WREN instruction may set the WEL bit can change the values of  
SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1, BP0, is at software pro-  
tected mode (SPM)  
Note:  
If SRWD bit=1 but WP#/SO2 is low, it is impossible to write the Status Register even if the WEL bit has previously  
been set. It is rejected to write the Status Register and not be executed.  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
18  
MX25L1636D  
Hardware Protected Mode (HPM):  
-
When SRWD bit=1, and then WP#/SO2 is low (or WP#/SO2 is low before SRWD bit=1), it enters the hardware  
protected mode (HPM). The data of the protected area is protected by software protected mode by BP3, BP2,  
BP1, BP0 and hardware protected mode by the WP#/SO2 to against data modification.  
Note:  
To exit the hardware protected mode requires WP#/SO2 driving high once the hardware protected mode is entered.  
If the WP#/SO2 pin is permanently connected to high, the hardware protected mode can never be entered; only can  
use software protected mode via BP3, BP2, BP1, BP0.  
If the system goes into four I/O read mode, the feature of HPM will be disabled.  
(6) Read Data Bytes (READ)  
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on  
the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address  
is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can  
be read out at a single READ instruction. The address counter rolls over to 0 when the highest address has been  
reached.  
The sequence of issuing READ instruction is: CS# goes low→ sending READ instruction code→ 3-byte address on  
SI→ data out on SO→ to end READ operation can use CS# to high at any time during data out. (see Figure 14)  
(7) Read Data Bytes at Higher Speed (FAST_READ)  
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and  
data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at  
any location. The address is automatically increased to the next higher address after each byte data is shifted out,  
so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when  
the highest address has been reached.  
The sequence of issuing FAST_READ instruction is: CS# goes low→ sending FAST_READ instruction code→3-  
byte address on SI→ 1-dummy byte (default) address on SI→data out on SO→ to end FAST_READ operation can  
use CS# to high at any time during data out. (see Figure 15)  
While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any im-  
pact on the Program/Erase/Write Status Register current cycle.  
(8) Dual Read Mode (DREAD)  
The DREAD instruction enable double throughput of Serial Flash in read mode. The address is latched on rising  
edge of SCLK, and data of every two bits(interleave on 2 I/O pins) shift out on the falling edge of SCLK at a maxi-  
mum frequency fT. The first address byte can be at any location. The address is automatically increased to the next  
higher address after each byte data is shifted out, so the whole memory can be read out at a single DREAD instruc-  
tion. The address counter rolls over to 0 when the highest address has been reached. Once writing DREAD instruc-  
tion, the following data out will perform as 2-bit instead of previous 1-bit.  
The sequence of issuing DREAD instruction is: CS# goes low  
sending DREAD instruction 3-byte address on  
SO0  
8-bit dummy cycle on SO0  
data out interleave on SO1 & SO0  
to end 2READ operation can use CS#  
to high at any time during data out (see Figure 16 for Dual Read Mode Timing Waveform).  
While Program/Erase/Write Status Register cycle is in progress, DREAD instruction is rejected without any impact  
on the Program/Erase/Write Status Register current cycle.  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
19  
MX25L1636D  
(9) Quad Read Mode (QREAD)  
The QREAD instruction enable quad throughput of Serial Flash in read mode. A Quad Enable (QE) bit of status  
Register must be set to "1" before seding the QREAD instruction.The address is latched on rising edge of SCLK,  
and data of every four bits(interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum frequency  
fQ. The first address byte can be at any location. The address is automatically increased to the next higher address  
after each byte data is shifted out, so the whole memory can be read out at a single QREAD instruction. The ad-  
dress counter rolls over to 0 when the highest address has been reached. Once writing QREAD instruction, the fol-  
lowing data out will perform as 4-bit instead of previous 1-bit.  
The sequence of issuing QREAD instruction is: CS# goes low  
sending QREAD instruction  
24-bit address on  
SO0  
8 dummy cycles  
data out interleave on SO3, SO2, SO1 & SO0  
to end QREAD operation can use  
CS# to high at any time during data out (see Figure 17 for Quad Read Mode Timing Waveform).  
While Program/Erase/Write Status Register cycle is in progress, QREAD instruction is rejected without any impact  
on the Program/Erase/Write Status Register current cycle.  
(10) Sector Erase (SE)  
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". The instruction is used for  
any 4K-byte sector. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit be-  
fore sending the Sector Erase (SE). Any address of the sector (see table 3) is a valid address for Sector Erase (SE)  
instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in);  
otherwise, the instruction will be rejected and not executed.  
Address bits [Am-A12] (Am is the most significant address) select the sector address.  
The sequence of issuing SE instruction is: CS# goes low→sending SE instruction code→ 3-byte address on SI  
→CS# goes high. (see Figure 21)  
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the  
tSE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the  
page is protected by BP3, BP2, BP1, BP0 bits, the Sector Erase (SE) instruction will not be executed on the page.  
(11) Block Erase (BE)  
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". The instruction is used for  
64K-byte block erase operation. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL)  
bit before sending the Block Erase (BE). Any address of the block (see table 3) is a valid address for Block Erase (BE)  
instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in);  
otherwise, the instruction will be rejected and not executed.  
The sequence of issuing BE instruction is: CS# goes low→sending BE instruction code→ 3-byte address on SI  
→CS# goes high. (see Figure 22)  
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the  
tBE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the  
page is protected by BP3, BP2, BP1, BP0 bits, the Block Erase (BE) instruction will not be executed on the page.  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
20  
MX25L1636D  
(12) Chip Erase (CE)  
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruc-  
tion must execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). The CS# must go  
high exactly at the byte boundary( the latest eighth of address byte been latched-in); otherwise, the instruction will  
be rejected and not executed.  
The sequence of issuing CE instruction is: CS# goes low→ sending CE instruction code→CS# goes high. (see Fig-  
ure 23)  
The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be check out during the Chip Erase cycle is in progress. The WIP sets 1 during the tCE  
timing, and sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the chip is  
protected by BP3, BP2, BP1, BP0 bits, the Chip Erase (CE) instruction will not be executed. It will be only executed  
when BP3, BP2, BP1, BP0 all set to "0".  
(13) Page Program (PP)  
The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction  
must execute to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). The device programs  
only the last 256 data bytes sent to the device. If the entire 256 data bytes are going to be programmed, A7-A0  
(The eight least significant address bits) should be set to 0. If the eight least significant address bits (A7-A0) are not  
all 0, all transmitted data going beyond the end of the current page are programmed from the start address of the  
same page (from the address A7-A0 are all 0). If more than 256 bytes are sent to the device, the data of the last  
256-byte is programmed at the request page and previous data will be disregarded. If less than 256 bytes are sent  
to the device, the data is programmed at the requested address of the page without effect on other address of the  
same page.  
The sequence of issuing PP instruction is: CS# goes low→sending PP instruction code→ 3-byte address on SI→ at  
least 1-byte on data on SI→ CS# goes high. (see Figure 18)  
The CS# must be kept to low during the whole Page Program cycle; The CS# must go high exactly at the byte  
boundary( the latest eighth bit of data being latched in), otherwise the instruction will be rejected and will not be ex-  
ecuted.  
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be check out during the Page Program cycle is in progress. The WIP sets 1 during the  
tPP timing, and sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the  
page is protected by BP3, BP2, BP1, BP0 bits, the Page Program (PP) instruction will not be executed.  
(14) 4 x I/O Page Program (4PP)  
The Quad Page Program (4PP) instruction is for programming the memory to be "0". A Write Enable (WREN) in-  
struction must execute to set the Write Enable Latch (WEL) bit and Quad Enable (QE) bit must be set to "1" before  
sending the Quad Page Program (4PP). The Quad Page Programming takes four pins: SO0, SO1, SO2, and SO3,  
which can raise programer performance and and the effectiveness of application of lower clock less than 20MHz.  
For system with faster clock, the Quad page program cannot provide more actual favors, because the required in-  
ternal page program time is far more than the time data flows in. Therefore, we suggest that while executing this  
command (especially during sending data), user can slow the clock speed down to 20MHz below. The other func-  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
21  
MX25L1636D  
tion descriptions are as same as standard page program.  
The sequence of issuing 4PP instruction is: CS# goes low→ sending 4PP instruction code→ 3-byte address on  
SO[3:0]→at least 1-byte on data on SO[3:0]→CS# goes high. (see Figure 19)  
(15) Continuously program mode (CP mode)  
The CP mode may enhance program performance by automatically increasing address to the next higher address  
after each byte data has been programmed.  
The Continuously program (CP) instruction is for multiple byte program to Flash. A write Enable (WREN) instruction  
must execute to set the Write Enable Latch(WEL) bit before sending the Continuously program (CP) instruction.  
CS# requires to go high before CP instruction is executing. After CP instruction and address input, two bytes of  
data is input sequentially from MSB(bit7) to LSB(bit0). The first byte data will be programmed to the initial address  
range with A0=0 and second byte data with A0=1. If only one byte data is input, the CP mode will not process. If  
more than two bytes data are input, the additional data will be ignored and only two byte data are valid. The CP  
program instruction will be ignored and not affect the WEL bit if it is applied to a protected memory area. Any byte to  
be programmed should be in the erase state (FF) first. It will not roll over during the CP mode, once the last unpro-  
tected address has been reached, the chip will exit CP mode and reset write Enable Latch bit (WEL) as "0" and CP  
mode bit as "0". Please check the WIP bit status if it is not in write progress before entering next valid instruction.  
During CP mode, the valid commands are CP command (AD hex), WRDI command (04 hex), RDSR command (05  
hex), and RDSCUR command (2B hex). And the WRDI command is valid after completion of a CP programming  
cycle, which means the WIP bit=0.  
The sequence of issuing CP instruction is : CS# high to low→ sending CP instruction code→ 3-byte address on  
SI→ Data Byte on SI→CS# goes high to low→ sending CP instruction......→ last desired byte programmed or send-  
ing Write Disable (WRDI) instruction to end CP mode-> sending RDSR instruction to verify if CP mode is ended. (see  
Figure 20 of CP mode timing waveform)  
Three methods to detect the completion of a program cycle during CP mode:  
1) Software method-I: by checking WIP bit of Status Register to detect the completion of CP mode.  
2) Software method-II: by waiting for a tBP time out to determine if it may load next valid command or not.  
3) Hardware method: by writing ESRY (enable SO to output RY/BY#) instruction to detect the completion of a  
program cycle during CP mode. The ESRY instruction must be executed before CP mode execution. Once it is  
enable in CP mode, the CS# goes low will drive out the RY/BY# status on SO, "0" indicates busy stage, "1" indi-  
cates ready stage, SO pin outputs tri-state if CS# goes high. DSRY (disable SO to output RY/BY#) instruction to  
disable the SO to output RY/BY# and return to status register data output during CP mode. Please note that the  
ESRY/DSRY command are not accepted unless the completion of CP mode.  
(16) Deep Power-down (DP)  
The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to enter-  
ing the Deep Power-down mode), the standby current is reduced from ISB1 to ISB2). The Deep Power-down mode  
requires the Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is not ac-  
tive and all Write/Program/Erase instruction are ignored. When CS# goes high, it's only in standby mode not deep  
power-down mode. It's different from Standby mode.  
The sequence of issuing DP instruction is: CS# goes low→ sending DP instruction code→ CS# goes high. (see  
Figure 24)  
Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP)  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
22  
MX25L1636D  
and Read Electronic Signature (RES) instruction. (those instructions allow the ID being reading out). When Power-  
down, the deep power-down mode automatically stops, and when power-up, the device automatically is in standby  
mode. For RDP instruction the CS# must go high exactly at the byte boundary (the latest eighth bit of instruction  
code been latched-in); otherwise, the instruction will not executed. As soon as Chip Select (CS#) goes high, a delay  
of tDP is required before entering the Deep Power-down mode and reducing the current to ISB2.  
(17) Release from Deep Power-down (RDP), Read Electronic Signature (RES)  
The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When Chip  
Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the  
Deep Power-down mode, the transition to the Stand-by Power mode is immediate. If the device was previously in  
the Deep Power-down mode, though, the transition to the Stand-by Power mode is delayed by tRES2, and Chip  
Select (CS#) must remain High for at least tRES2(max), as specified in Table 6. Once in the Stand-by Power mode,  
the device waits to be selected, so that it can receive, decode and execute instructions.  
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as table of  
ID Definitions. This is not the same as RDID instruction. It is not recommended to use for new design. For new  
design, please use RDID instruction. Even in Deep power-down mode, the RDP and RES are also allowed to be  
executed, only except the device is in progress of program/erase/write cycle; there's no effect on the current pro-  
gram/erase/write cycle in progress.  
The sequence is shown as Figure 25, 26.  
The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeat-  
edly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously  
in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously in  
Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at  
least tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and  
execute instruction.  
The RDP instruction is for releasing from Deep Power Down Mode.  
(18) Read Electronic Manufacturer ID & Device ID (REMS), (REMS2), (REMS4)  
The REMS, REMS2 & REMS4 instruction is an alternative to the Release from Power-down/Device ID instruction  
that provides both the JEDEC assigned manufacturer ID and the specific device ID.  
The REMS, REMS2 & REMS4 instruction is very similar to the Release from Power-down/Device ID instruction.  
The instruction is initiated by driving the CS# pin low and shift the instruction code "90h" or "EFh" or "DFh"followed  
by two dummy bytes and one bytes address (A7~A0). After which, the Manufacturer ID for MXIC (C2h) and the De-  
vice ID are shifted out on the falling edge of SCLK with most significant bit (MSB) first as shown in figure 27. The  
Device ID values are listed in Table of ID Definitions. If the one-byte address is initially set to 01h, then the device  
ID will be read first and then followed by the Manufacturer ID. The Manufacturer and Device IDs can be read con-  
tinuously, alternating from one to the other. The instruction is completed by driving CS# high.  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
23  
MX25L1636D  
Table 7. ID Definitions  
manufacturer ID  
C2  
memory type  
memory density  
15  
RDID Command  
24  
electronic ID  
24  
RES Command  
manufacturer ID  
C2  
device ID  
24  
REMS/REMS2/REMS4/  
Command  
(21) Enter Secured OTP (ENSO)  
The ENSO instruction is for entering the additional 512-bit secured OTP mode. The additional 512-bit secured OTP  
is independent from main array, which may use to store unique serial number for system identifier. After entering the  
Secured OTP mode, and then follow standard read or program, procedure to read out the data or update data. The  
Secured OTP data cannot be updated again once it is lock-down.  
The sequence of issuing ENSO instruction is: CS# goes low→sending ENSO instruction to enter Secured OTP  
mode→CS# goes high.  
Please note that WRSR/WRSCUR commands are not acceptable during the access of secure OTP region, once se-  
curity OTP is lock down, only read related commands are valid.  
(22) Exit Secured OTP (EXSO)  
The EXSO instruction is for exiting the additional 512-bit secured OTP mode.  
The sequence of issuing EXSO instruction is: CS# goes low→sending EXSO instruction to exit Secured OTP  
mode→ CS# goes high.  
(23) Read Security Register (RDSCUR)  
The RDSCUR instruction is for reading the value of Security Register bits. The Read Security Register can be read  
at any time (even in program/erase/write status register/write security register condition) and continuously.  
The sequence of issuing RDSCUR instruction is : CS# goes low→ send ing RDSCUR instruction→Security Register  
data out on SO→ CS# goes high.  
The definition of the Security Register bits is as below:  
Secured OTP Indicator bit. The Secured OTP indicator bit shows the chip is locked by factory before ex- factory or  
not. When it is "0", it indicates non- factory lock; "1" indicates factory- lock.  
Lock-down Secured OTP (LDSO) bit. By writing WRSCUR instruction, the LDSO bit may be set to "1" for custom-  
er lock-down purpose. However, once the bit is set to "1" (lock-down), the LDSO bit and the 512-bit Secured OTP  
area cannot be update any more. While it is in 512-bit secured OTP mode, array access is not allowed.  
Continuously Program Mode( CP mode) bit. The Continuously Program Mode bit indicates the status of CP  
mode, "0" indicates not in CP mode; "1" indicates in CP mode.  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
24  
MX25L1636D  
Table 8. Security Register Definition  
bit7  
bit6  
bit5  
bit4  
bit3  
bit2  
bit1  
bit0  
Continuously  
Program mode  
(CP mode)  
LDSO  
(indicate if  
lock-down  
Secrured OTP  
indicator bit  
x
x
x
x
x
0 = not lock-  
down  
1 = lock-down  
(cannot  
program/erase  
OTP)  
0=normal  
Program mode  
1=CP mode  
(default=0)  
0 = non-factory  
lock  
reserved  
reserved  
reserved  
reserved  
reserved  
1 = factory  
lock  
volatile bit volatile bit volatile bit  
volatile bit  
volatile bit  
volatile bit non-volatile bit non-volatile bit  
(24) Write Security Register (WRSCUR)  
The WRSCUR instruction is for changing the values of Security Register Bits. Unlike write status register, the WREN  
instruction is not required before sending WRSCUR instruction. The WRSCUR instruction may change the values  
of bit1 (LDSO bit) for customer to lock-down the 512-bit Secured OTP area. Once the LDSO bit is set to "1", the Se-  
cured OTP area cannot be updated any more.  
The sequence of issuing WRSCUR instruction is :CS# goes low→ sending WRSCUR instruction→CS# goes high.  
The CS# must go high exactly at the boundary; otherwise, the instruction will be rejected and not executed.  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
25  
MX25L1636D  
POWER-ON STATE  
The device is at below states when power-up:  
- Standby mode ( please note it is not deep power-down mode)  
- Write Enable Latch (WEL) bit is reset  
The device must not be selected during power-up and power-down stage unless the VCC achieves below correct  
level:  
- VCC minimum at power-up stage and then after a delay of tVSL  
- GND at power-down  
Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.  
An internal power-on reset (POR) circuit may protect the device from data corruption and inadvertent data change  
during power up state.  
For further protection on the device, if the VCC does not reach the VCC minimum level, the correct operation is not  
guaranteed. The read, write, erase, and program command should be sent after the below time delay:  
- tVSL after VCC reached VCC minimum level  
The device can accept read command after VCC reached VCC minimum and a time delay of tVSL.  
Please refer to the figure of "power-up timing".  
Note:  
- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is recommend-  
ed.(generally around 0.1uF)  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
26  
MX25L1636D  
ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS  
RATING  
VALUE  
Industrial grade  
-40°C to 85°C  
-55°C to 125°C  
-0.5V to 4.6V  
-0.5V to 4.6V  
-0.5V to 4.6V  
Ambient Operating Temperature  
Storage Temperature  
Applied Input Voltage  
Applied Output Voltage  
VCC to Ground Potential  
NOTICE:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage  
to the device. This is stress rating only and functional operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended period may affect reliability.  
2. Specifications contained within the following tables are subject to change.  
3. During voltage transitions, all pins may overshoot Vss to -2.0V and Vcc to +2.0V for periods up to 20ns, please  
refer to Figure 2 and 3.  
Figure 3. Maximum Positive Overshoot Waveform  
Figure 2. Maximum Negative Overshoot Waveform  
20ns  
20ns  
20ns  
Vss  
Vcc + 2.0V  
Vss-2.0V  
Vcc  
20ns  
20ns  
20ns  
CAPACITANCE TA = 25°C, f = 1.0 MHz  
SYMBOL PARAMETER  
MIN.  
TYP  
MAX.  
UNIT  
pF  
CONDITIONS  
VIN = 0V  
CIN  
Input Capacitance  
6
8
COUT Output Capacitance  
pF  
VOUT = 0V  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
27  
MX25L1636D  
Figure 4. INPUT TEST WAVEFORMS AND MEASUREMENT LEVEL  
Input timing referance level  
Output timing referance level  
0.8VCC  
0.2VCC  
0.7VCC  
0.3VCC  
AC  
Measurement  
Level  
0.5VCC  
Note: Input pulse rise and fall time are <5ns  
Figure 5. OUTPUT LOADING  
DEVICE UNDER  
TEST  
2.7K ohm  
+3.3V  
CL  
6.2K ohm  
DIODES=IN3064  
OR EQUIVALENT  
CL=30pF Including jig capacitance  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
28  
MX25L1636D  
Table 9. DC CHARACTERISTICS (Temperature = -40 C to 85 C for Industrial grade, VCC = 2.7V ~ 3.6V)  
°
°
SYMBOL PARAMETER  
NOTES  
MIN.  
TYP.  
MAX.  
UNITS TEST CONDITIONS  
VCC = VCC Max,  
uA  
ILI  
Input Load Current  
1
± 2  
VIN = VCC or GND  
VCC = VCC Max,  
uA  
ILO  
Output Leakage Current  
1
1
± 2  
20  
20  
VIN = VCC or GND  
VIN = VCC or GND,  
CS# = VCC  
ISB1 VCC Standby Current  
uA  
Deep Power-down  
Current  
VIN = VCC or GND,  
CS# = VCC  
ISB2  
uA  
f=86MHz,  
fQ=75MHz (4 x I/O read)  
SCLK=0.1VCC/0.9VCC,  
25  
mA  
SO=Open  
fT=75MHz (2 x I/O read)  
mA SCLK=0.1VCC/0.9VCC,  
SO=Open  
ICC1 VCC Read  
1
1
20  
10  
f=33MHz,  
mA SCLK=0.1VCC/0.9VCC,  
SO=Open  
VCC Program Current  
Program in Progress,  
CS# = VCC  
ICC2  
(PP)  
20  
20  
20  
20  
mA  
VCC Write Status  
ICC3  
Program status register in  
mA  
Register (WRSR) Current  
progress, CS#=VCC  
VCC Sector Erase  
Current (SE)  
Erase in Progress,  
CS#=VCC  
ICC4  
1
1
mA  
VCC Chip Erase Current  
Erase in Progress,  
CS#=VCC  
ICC5  
(CE)  
mA  
VIL  
VIH  
VOL  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
-0.5  
0.3VCC  
VCC+0.4  
0.4  
V
V
0.7VCC  
V
V
IOL = 1.6mA  
IOH = -100uA  
VOH Output High Voltage  
VCC-0.2  
Notes :  
1. Typical values at VCC = 3.3V, T = 25 C. These currents are valid for all product versions (package and speeds).  
°
2. Typical value is calculated by simulation.  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
29  
MX25L1636D  
Table 10. AC CHARACTERISTICS (Temperature = -40°C to 85°C for Industrial grade, VCC = 2.7V ~ 3.6V)  
Symbol Alt. Parameter  
Min.  
Typ.  
Max.  
Unit  
Clock Frequency for the following instructions:  
D.C.  
86  
MHz  
fSCLK  
fC FAST_READ, PP, SE, BE, CE, DP, RES,RDP  
WREN, WRDI, RDID, RDSR, WRSR  
D.C.  
66  
MHz  
fRSCLK  
fTSCLK  
fR Clock Frequency for READ instructions  
fT Clock Frequency for DREAD instructions  
fQ Clock Frequency for QREAD instructions  
33  
75  
75  
MHz  
MHz  
MHz  
ns  
fC=86MHz  
fR=33MHz  
fC=86MHz  
fR=33MHz  
5.5  
13  
5.5  
13  
0.1  
0.1  
5
5
2
5
5
tCH(1) tCLH Clock High Time  
ns  
tCL(1)  
tCLL Clock Low Time  
Clock Rise Time (3) (peak to peak)  
Clock Fall Time (3) (peak to peak)  
tCLCH(2)  
tCHCL(2)  
V/ns  
V/ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
us  
tSLCH tCSS CS# Active Setup Time (relative to SCLK)  
tCHSL CS# Not Active Hold Time (relative to SCLK)  
tDVCH tDSU Data In Setup Time  
tCHDX  
tCHSH  
tSHCH  
tDH Data In Hold Time  
CS# Active Hold Time (relative to SCLK)  
CS# Not Active Setup Time (relative to SCLK)  
Read  
5
15  
50  
tSHSL(3) tCSH CS# Deselect Time  
Write/Erase/Program  
2.7V-3.6V  
3.0V-3.6V  
10  
8
tSHQZ(2) tDIS Output Disable Time  
Clock Low to Output Valid  
2.7V-3.6V  
10/8  
8/6  
tCLQV  
tV  
Loading: 30pF/15pF  
tHO Output Hold Time  
Write Protect Setup Time  
Write Protect Hold Time  
3.0V-3.6V  
tCLQX  
tWHSL  
tSHWL  
tDP(2)  
0
20  
100  
CS# High to Deep Power-down Mode  
CS# High to Standby Mode without Electronic  
Signature Read  
CS# High to Standby Mode with Electronic Signature  
Read  
10  
tRES1(2)  
tRES2(2)  
8.8  
us  
us  
8.8  
tC  
Chip Unlock Cycle Time  
Byte-Program  
Page Program Cycle Time  
Sector Erase Cycle Time  
Block Erase Cycle Time  
40  
9
1.4  
60  
0.7  
14  
100  
300  
5
300  
2
ms  
us  
ms  
ms  
s
tBP  
tPP  
tSE  
tBE  
tCE  
Chip Erase Cycle Time  
30  
s
Notes:  
1. tCH + tCL must be greater than or equal to 1/ f (fC or fR)  
2. Value guaranteed by characterization, not 100% tested in production.  
3. tSHSL=15ns from read instruction, tSHSL=50ns from Write/Erase/Program instruction.  
4. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1.  
5. Test condition is shown as Figure 4, 5.  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
30  
MX25L1636D  
Timing Analysis  
Figure 6. Serial Input Timing  
tSHSL  
tSHCH  
tCHCL  
CS#  
tCHSL  
tSLCH  
tCHSH  
SCLK  
tDVCH  
tCHDX  
tCLCH  
MSB  
LSB  
SI  
High-Z  
SO  
Figure 7. Output Timing  
CS#  
tCH  
SCLK  
tCLQV  
tCLQV  
tCL  
tSHQZ  
tCLQX  
SO  
tCLQX  
LSB  
tQLQH  
tQHQL  
ADDR.LSB IN  
SI  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
31  
MX25L1636D  
Figure 8. WP# Setup Timing and Hold Timing during WRSR when SRWD=1  
WP#  
tSHWL  
tWHSL  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12  
13 14  
15  
SCLK  
01  
SI  
High-Z  
SO  
Figure 9. Write Enable (WREN) Sequence (Command 06)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
06  
SI  
High-Z  
SO  
Figure 10. Write Disable (WRDI) Sequence (Command 04)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
04  
SI  
High-Z  
SO  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
32  
MX25L1636D  
Figure 11. Read Identification (RDID) Sequence (Command 9F)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
28 29 30 31  
SCLK  
SI  
Command  
9F  
Manufacturer Identification  
Device Identification  
15 14 13  
High-Z  
SO  
7
6
5
3
2
1
0
3
2
1
0
MSB  
MSB  
Figure 12. Read Status Register (RDSR) Sequence (Command 05)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SCLK  
SI  
command  
05  
Status Register Out  
Status Register Out  
High-Z  
SO  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
MSB  
MSB  
Figure 13. Write Status Register (WRSR) Sequence (Command 01)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
SCLK  
command  
01  
Status  
Register In  
SI  
7
6
5
4
3
2
0
1
MSB  
High-Z  
SO  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
33  
MX25L1636D  
Figure 14. Read Data Bytes (READ) Sequence (Command 03)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
command  
03  
24-Bit Address  
23 22 21  
MSB  
3
2
1
0
SI  
Data Out 1  
Data Out 2  
High-Z  
2
7
6
5
4
3
1
7
0
SO  
MSB  
Figure 15. Read at Higher Speed (FAST_READ) Sequence (Command 0B)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31  
SCLK  
Command  
0B  
24 BIT ADDRESS  
SI  
23 22 21  
3
2
1
0
High-Z  
SO  
CS#  
47  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
SCLK  
Configurable  
Dummy Cycle  
7
6
5
4
3
2
0
1
SI  
DATA OUT 2  
DATA OUT 1  
7
6
5
4
3
2
1
0
7
7
6
5
4
3
2
0
1
SO  
MSB  
MSB  
MSB  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
34  
MX25L1636D  
Figure 16. Dual Read Mode Sequence (Command 3B)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11  
30 31 32  
39 40 41 42 43  
SCLK  
8 dummy  
cycle  
8 Bit Instruction  
24 BIT Address  
Data Output  
data  
address  
bit23, bit22, bit21...bit0  
3B(hex)  
dummy  
SI/SO0  
bit6, bit4, bit2...bit0, bit6, bit4....  
High Impedance  
data  
SO/SO1  
bit7, bit5, bit3...bit1, bit7, bit5....  
Figure 17. Quad Read Mode Sequence (Command 6B)  
CS#  
0
1
2
3
4
5
6
7
8
9
30 31 32 33  
38 39 40 41 42 43  
SCLK  
8 dummy  
cycle  
8 Bit Instruction  
24 Bit Address  
Data Output  
data  
bit4, bit0, bit4....  
address  
bit23, bit22..bit0  
6B(hex)  
dummy  
SI/SO0  
High Impedance  
High Impedance  
High Impedance  
data  
SO/SO1  
WP#/SO2  
NC/SO3  
bit5 bit1, bit5....  
data  
bit6 bit2, bit6....  
data  
bit7 bit3, bit7....  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
35  
MX25L1636D  
Figure 18. Page Program (PP) Sequence (Command 02)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Command  
02  
24-Bit Address  
Data Byte 1  
23 22 21  
MSB  
3
2
1
0
7
6
5
4
3
2
0
1
SI  
MSB  
CS#  
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  
SCLK  
Data Byte 2  
Data Byte 3  
Data Byte 256  
7
6
5
4
3
2
0
7
6
5
4
3
2
0
7
6
5
4
3
2
0
1
1
1
SI  
MSB  
MSB  
MSB  
Figure 19. 4 x I/O Page Program (4PP) Sequence (Command 38)  
CS#  
10 11 12 13 14 15 16 17 18 19 20 21  
Data Data Data Data  
0
1
2
3
4
5
6
7
8
9
SCLK  
Command  
38  
6 Address cycle  
Byte 1 Byte 2 Byte 3 Byte 4  
16 12  
8
9
4
0
20  
4
0
4
0
4
0
4
0
SI/SO0  
21 17 13  
5
6
7
1
2
3
SO/SO1  
WP#/SO2  
NC/SO3  
5
6
7
1
2
3
5
6
7
1
2
3
5
6
7
1
2
3
5
6
7
1
2
3
22 18 14 10  
23 19 15 11  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
36  
MX25L1636D  
Figure 20. Continously Program (CP) Mode Sequence with Hardware Detection (Command AD)  
CS#  
SCLK  
SI  
20 2122 23 24  
0
1
30 31 31 32  
47 48  
0
7
7
8
0
6
7 8  
0
1
6 7 8 9  
Command  
AD (hex)  
data in  
Byte n-1, Byte n  
Valid  
Command (1)  
data in  
04 (hex)  
05 (hex)  
24-bit address  
Byte 0, Byte1  
high impedance  
status (2)  
S0  
Note: (1) During CP mode, the valid commands are CP command (AD hex), WRDI command (04 hex), RDSR com-  
mand (05 hex), and RDSCUR command (2B hex).  
(2) Once an internal programming operation begins, CS# goes low will drive the status on the SO pin and  
CS# goes high will return the SO pin to tri-state.  
(3) To end the CP mode, either reaching the highest unprotected address or sending Write Disable (WRDI)  
command (04 hex) may achieve it and then it is recommended to send RDSR command (05 hex) to verify if  
CP mode is ended  
Figure 21. Sector Erase (SE) Sequence (Command 20)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
Command  
20  
24 Bit Address  
SI  
7
6
2
1
0
MSB  
Note: SE command is 20(hex).  
Figure 22. Block Erase (BE) Sequence (Command D8)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
Command  
D8  
24 Bit Address  
SI  
23 22  
MSB  
2
0
1
Note: BE command is D8(hex).  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
37  
MX25L1636D  
Figure 23. Chip Erase (CE) Sequence (Command 60 or C7)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
60 or C7  
Note: CE command is 60(hex) or C7(hex).  
Figure 24. Deep Power-down (DP) Sequence (Command B9)  
CS#  
t
DP  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
B9  
Stand-by Mode  
Deep Power-down Mode  
Figure 25. Release from Deep Power-down and Read Electronic Signature (RES) Sequence (Command AB)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38  
SCLK  
Command  
AB  
t
3 Dummy Bytes  
RES2  
SI  
23 22 21  
MSB  
3
2
1
0
Electronic Signature Out  
High-Z  
7
6
5
4
3
2
0
1
SO  
MSB  
Deep Power-down Mode  
Stand-by Mode  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
38  
MX25L1636D  
Figure 26. Release from Deep Power-down (RDP) Sequence (Command AB)  
CS#  
t
RES1  
0
1
2
3
4
5
6
7
SCLK  
Command  
AB  
SI  
High-Z  
SO  
Deep Power-down Mode  
Stand-by Mode  
Figure 27. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90 or EF or DF)  
CS#  
0
1
2
3
4
5
6
7
8
9 10  
SCLK  
Command  
90  
2 Dummy Bytes  
SI  
15 14 13  
3
2
1
0
High-Z  
SO  
CS#  
47  
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
SCLK  
ADD (1)  
7
6
5
4
3
2
0
1
SI  
Manufacturer ID  
Device ID  
7
6
5
4
3
2
1
0
7
7
6
5
4
3
2
0
1
X
SO  
MSB  
MSB  
MSB  
Notes:  
(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first  
(2) Instruction is either 90(hex) or EF(hex) or DF(hex).  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
39  
MX25L1636D  
Figure 28. Power-up Timing  
V
CC  
V
(max)  
CC  
Chip Selection is Not Allowed  
V
(min)  
CC  
tVSL  
Device is fully  
accessible  
time  
Note: VCC (max.) is 3.6V and VCC (min.) is 2.7V.  
Table 11. Power-Up Timing  
Symbol  
Parameter  
Min.  
Max.  
Unit  
tVSL(1)  
VCC(min) to CS# low  
200  
us  
Note: 1. The parameter is characterized only.  
INITIAL DELIVERY STATE  
The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status  
Register contains 00h (all Status Register bits are 0).  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
40  
MX25L1636D  
RECOMMENDED OPERATING CONDITIONS  
At Device Power-Up  
AC timing illustrated in Figure A is recommended for the supply voltages and the control signals at device power-up.  
If the timing in the figure is ignored, the device may not operate correctly.  
VCC(min)  
VCC  
GND  
tSHSL  
tVR  
CS#  
tCHSL  
tSLCH  
tCHSH  
tSHCH  
SCLK  
tDVCH  
tCHCL  
tCHDX  
tCLCH  
MSB IN  
LSB IN  
SI  
High Impedance  
SO  
Figure A. AC Timing at Device Power-Up  
Symbol  
tVR  
Parameter  
VCC Rise Time  
Notes  
Min.  
20  
Max.  
500000  
Unit  
us/V  
1
Notes :  
1. Sampled, not 100% tested.  
2. For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to  
"AC CHARACTERISTICS" table.  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
41  
MX25L1636D  
ERASE AND PROGRAMMING PERFORMANCE  
PARAMETER  
Min.  
TYP. (1)  
40  
Max. (2)  
100  
300  
2
UNIT  
ms  
ms  
s
Write Status Register Cycle Time  
Sector Erase Cycle Time  
60  
Block Erase Cycle Time  
0.7  
Chip Erase Cycle Time  
14  
30  
s
Byte Program Time (via page program command)  
Page Program Cycle Time  
9
300  
5
us  
1.4  
ms  
cycles  
Erase/Program Cycle  
100,000  
Note:  
1. Typical program and erase time assumes the following conditions: 25 C, 3.3V, and checker board pattern.  
°
2. Under worst conditions of 85 C and 2.7V.  
°
3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming com-  
mand.  
4. The maximum chip programming time is evaluated under the worst conditions of 0C, VCC=3.0V, and 100K cycle  
with 90% confidence level.  
Data Retention  
PARAMETER  
Condition  
Min.  
Max.  
UNIT  
Data retention  
55˚C  
20  
years  
LATCH-UP CHARACTERISTICS  
MIN.  
MAX.  
Input Voltage with respect to GND on all power pins, SI, CS#  
Input Voltage with respect to GND on SO  
Current  
-1.0V  
-1.0V  
2 VCCmax  
VCC + 1.0V  
+100mA  
-100mA  
Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time.  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
42  
MX25L1636D  
ORDERING INFORMATION  
OPERATING  
CURRENT  
MAX. (mA)  
25  
STANDBY  
CURRENT  
MAX. (uA)  
20  
CLOCK  
(MHz)  
PART NO.  
TEMPERATURE PACKAGE  
Remark  
MX25L1636DMI-12G  
MX25L1636DM2I-12G  
86  
-40 C~85 C  
16-SOP  
8-SOP  
Pb-free  
Pb-free  
°
°
86  
25  
20  
-40 C~85 C  
° °  
(200mil)  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
43  
MX25L1636D  
PART NAME DESCRIPTION  
MX 25 L 1636D  
M
I
12 G  
OPTION:  
G: Pb-free  
SPEED:  
12: 86MHz  
TEMPERATURE RANGE:  
I: Industrial (-40C to 85C)  
PACKAGE:  
M: 300mil 16-SOP  
M2: 200mil 8-SOP  
DENSITY & MODE:  
1636D: 16Mb standard type  
TYPE:  
L: 3V  
DEVICE:  
25: Serial Flash  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
44  
MX25L1636D  
PACKAGE INFORMATION  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
45  
MX25L1636D  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
46  
MX25L1636D  
REVISION HISTORY  
Revision No. Description  
Page  
Date  
1.0  
1. Revised sector erase time spec from 90ms(typ.) to 60ms(typ.)  
P5,44  
OCT/14/2008  
2. Revised sector erase time spec from 120ms(max.) to 300ms(max.) P30  
3. Revised block erase time spec from 1s(typ.) to 0.7s(typ.)  
4. Removed "Preliminary"  
P30  
P5  
5. Removed 8-WSON & 8-SOP(150mil) package option  
6. Rewrite 4xI/O Read performance enhance mode process flow  
description  
P6,8,45,46  
P19,20  
7. Added "Release Read Enhance mode" in command table  
1. Removed "Low Vcc write inhibit is from 1.5V to 2.5V."  
2. Revised Maximum Negative and Positive overshoot waveform  
3. Revised the NOTICE of absolute maximum ratings  
1. Revised 1406-8SOP (mil) package information  
2. Removed loading condition  
3. Revised data retention as 20 years and added the condition  
4. Removed 20mA low active current (VCC Read) condition  
5. Revised pin symbol: SIO into SO  
P14  
1.1  
1.2  
P1,10,26,40 FEB/23/2009  
P27  
P27  
P46  
P5,28,30  
P5,42  
JUL/03/2009  
P5,29  
P6-10,15,  
17-22,35,36  
P6  
6. Revised data input as data multiple  
7. Revised wording: 2READ into DREAD, 4READ into QREAD  
and removed 2READ/4READ command  
8. Added the fC/fR condition of tCH/tCL  
9. Removed Release Read Enhanced command  
10. Added MXSMIO trademark  
P14,20,21,22  
23,30,35,36  
P30  
P14  
P5,48  
P/N: PM1372  
REV. 1.2, JUL. 06, 2009  
47  
MX25L1636D  
Macronix's products are not designed, manufactured, or intended for use for any high risk applications in which  
the failure of a single component could cause death, personal injury, severe physical damage, or other substan-  
tial harm to persons or property, such as life-support systems, high temperature automotive, medical, aircraft  
and military application. Macronix and its suppliers will not be liable to you and/or any third party for any claims,  
injuries or damages that may be incurred due to use of Macronix's products in the prohibited applications.  
Copyright Macronix International Co., Ltd. 2008~2009. All Rights Reserved. Macronix, MXIC, MXIC Logo, MX  
and MXSMIO Logo, are trademarks or registered trademarks of Macronix International Co., Ltd.. The names  
and brands of other companies are for identification purposes only and may be claimed as the property of the  
respective companies.  
ACRONIX NTERNATIONAL O., TD.  
M
I
C L  
Macronix Offices : Taiwan  
Headquarters, FAB2  
Macronix, International Co., Ltd.  
16, Li-Hsin Road, Science Park, Hsinchu,  
Taiwan, R.O.C.  
Macronix Offices : Japan  
Macronix Asia Limited.  
NKF Bldg. 5F, 1-2 Higashida-cho,  
Kawasaki-ku Kawasaki-shi,  
Kanagawa Pref. 210-0005, Japan  
Tel: +81-44-246-9100  
Tel: +886-3-5786688  
Fax: +886-3-5632888  
Fax: +81-44-246-9105  
Taipei Office  
Macronix Offices : Korea  
Macronix Asia Limited.  
#906, 9F, Kangnam Bldg., 1321-4, Seocho-Dong, Seocho-Ku,  
135-070, Seoul, Korea  
Tel: +82-02-588-6887  
Fax: +82-02-588-6828  
Macronix, International Co., Ltd.  
19F, 4, Min-Chuan E. Road, Sec. 3, Taipei,  
Taiwan, R.O.C.  
Tel: +886-2-2509-3300  
Fax: +886-2-2509-2200  
Macronix Offices : China  
Macronix Offices : Singapore  
Macronix Pte. Ltd.  
1 Marine Parade Central, #11-03 Parkway Centre,  
Macronix (Hong Kong) Co., Limited.  
702-703, 7/F, Building 9, Hong Kong Science Park,  
5 Science Park West Avenue, Sha Tin,  
N.T.  
Tel: +86-852-2607-4289  
Fax: +86-852-2607-4229  
Singapore 449408  
Tel: +65-6346-5505  
Fax: +65-6348-8096  
Macronix Offices : Europe  
Macronix Europe N.V.  
Koningin Astridlaan 59, Bus 1 1780  
Macronix (Hong Kong) Co., Limited,  
SuZhou Office  
No.5, XingHai Rd, SuZhou Industrial Park,  
SuZhou China 215021  
Tel: +86-512-62580888 Ext: 3300  
Fax: +86-512-62586799  
Wemmel Belgium  
Tel: +32-2-456-8020  
Fax: +32-2-456-8021  
Macronix Offices : USA  
Macronix (Hong Kong) Co., Limited,  
Shenzhen Office  
Room 1401 & 1404, Block A, TianAN Hi-Tech PLAZA Tower,  
Che Gong Miao, FutianDistrict, Shenzhen PRC 518040  
Tel: +86-755-83433579  
Macronix America, Inc.  
680 North McCarthy Blvd. Milpitas, CA 95035,  
U.S.A.  
Tel: +1-408-262-8887  
Fax: +1-408-262-8810  
Fax: +86-755-83438078  
http : //www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  
48  

相关型号:

MX25L1636DM2I-12G

Flash, 4MX4, PDSO8, 0.200 INCH, ROHS COMPLIANT, SOP-8
Macronix

MX25L1636DM2I12G

16M-BIT [x 1/x 2/x 4] CMOS MXSMIOTM (SERIAL MULTI I/O) FLASH MEMORY
Macronix

MX25L1636DMI-12G

Flash, 4MX4, PDSO16, 0.300 INCH, ROHS COMPLIANT, MS-013, SOP-16
Macronix

MX25L1636DMI12G

16M-BIT [x 1/x 2/x 4] CMOS MXSMIOTM (SERIAL MULTI I/O) FLASH MEMORY
Macronix

MX25L1636E

16M-BIT [x 1/x 2/x 4] CMOS SERIAL FLASH
Macronix

MX25L1636EM2I-08G

Flash, 4MX4, PDSO8, 0.200 INCH, ROHS COMPLIANT, SOP-8
Macronix

MX25L1636EM2I08G

16M-BIT [x 1/x 2/x 4] CMOS SERIAL FLASH
Macronix

MX25L1655DM21-12G

Flash, 4MX4, PDSO8, 0.200 INCH, ROHS COMPLIANT, SOP-8
Macronix

MX25L1655DM2I-12G

Flash, 4MX4, PDSO8, 0.200 INCH, ROHS COMPLIANT, SOP-8
Macronix

MX25L1655DXCI-10G

Flash, 4MX4, PBGA24, 6 X 8 MM, 1.20 MM HEIGHT, 1 MM PITCH, ROHS COMPLIANT, MO-216, TFBGA-24
Macronix

MX25L1673E

16M-BIT [x 1/x 2/x 4] CMOS MXSMIO® (SERIAL MULTI I/O) FLASH MEMORY
Macronix

MX25L1673EM2I-10G

Flash, 4MX4, PDSO8, 0.200 INCH, HALOGEN FREE AND ROHS COMPLIANT, SOP-8
Macronix