MX25L6436EM2I-10 [Macronix]

Flash, 16MX4, PDSO8, 0.200 INCH, ROHS COMPLIANT, SOP-8;
MX25L6436EM2I-10
型号: MX25L6436EM2I-10
厂家: MACRONIX INTERNATIONAL    MACRONIX INTERNATIONAL
描述:

Flash, 16MX4, PDSO8, 0.200 INCH, ROHS COMPLIANT, SOP-8

时钟 光电二极管 内存集成电路
文件: 总68页 (文件大小:3231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MX25L6436E  
MX25L12836E  
MX25L6436E/MX25L12836E  
HIGH PERFORMANCE  
SERIAL FLASH SPECIFICATION  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
1
MX25L6436E  
MX25L12836E  
Contents  
FEATURES ..................................................................................................................................................................5  
GENERAL DESCRIPTION .........................................................................................................................................7  
Table 1. Additional Features ..............................................................................................................................7  
PIN CONFIGURATION ................................................................................................................................................8  
PIN DESCRIPTION......................................................................................................................................................8  
BLOCK DIAGRAM.......................................................................................................................................................9  
DATA PROTECTION..................................................................................................................................................10  
Table 2. Protected Area Sizes.......................................................................................................................... 11  
Table 3. 4K-bit Secured OTP Definition............................................................................................................ 11  
Memory Organization...............................................................................................................................................12  
Table 4-1. Memory Organization for MX25L6436E.........................................................................................12  
Table 4-2. Memory Organization for MX25L12836E.......................................................................................13  
DEVICE OPERATION................................................................................................................................................14  
Figure 1. Serial Modes Supported (for Normal Serial mode)........................................................................... 14  
COMMAND DESCRIPTION.......................................................................................................................................15  
Table 5. Command Sets...................................................................................................................................15  
(1) Write Enable (WREN).................................................................................................................................17  
(2) Write Disable (WRDI)..................................................................................................................................17  
(3) Read Identification (RDID)..........................................................................................................................17  
(4) Read Status Register (RDSR)....................................................................................................................18  
(5) Write Status Register (WRSR)....................................................................................................................19  
Protection Modes .............................................................................................................................................19  
(6) Read Data Bytes (READ) ...........................................................................................................................20  
(7) Read Data Bytes at Higher Speed (FAST_READ) .....................................................................................20  
(8) Dual Read Mode (DREAD).........................................................................................................................20  
(9) Quad Read Mode (QREAD) .......................................................................................................................20  
(10) Sector Erase (SE).....................................................................................................................................21  
(11) Block Erase (BE).......................................................................................................................................21  
(12) Block Erase (BE32K)................................................................................................................................21  
(13) Chip Erase (CE)........................................................................................................................................22  
(14) Page Program (PP)...................................................................................................................................22  
(15) 4 x I/O Page Program (4PP).....................................................................................................................23  
Program/Erase Flow(1) with read array data ...................................................................................................24  
Program/Erase Flow(2) without read array data ..............................................................................................25  
(16) Continuously program mode (CP mode) ..................................................................................................26  
(17) Parallel Mode (Highly recommended for production throughputs increasing).......................................... 26  
(18) Deep Power-down (DP)............................................................................................................................27  
(19) Release from Deep Power-down (RDP), Read Electronic Signature (RES) ............................................ 27  
(20) Read Electronic Manufacturer ID & Device ID (REMS), (REMS2), (REMS4) .......................................... 27  
Table 6. ID Definitions .....................................................................................................................................28  
(21) Enter Secured OTP (ENSO).....................................................................................................................28  
(22) Exit Secured OTP (EXSO)........................................................................................................................28  
(23) Read Security Register (RDSCUR) ..........................................................................................................28  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
2
MX25L6436E  
MX25L12836E  
Security Register Definition..............................................................................................................................29  
(24) Write Security Register (WRSCUR)..........................................................................................................29  
(25) Write Protection Selection (WPSEL).........................................................................................................30  
BP and SRWD if WPSEL=0 .............................................................................................................................30  
The individual block lock mode is effective after setting WPSEL=1................................................................. 31  
WPSEL Flow ....................................................................................................................................................32  
(26) Single Block Lock/Unlock Protection (SBLK/SBULK)............................................................................... 33  
Block Lock Flow ...............................................................................................................................................33  
Block Unlock Flow............................................................................................................................................34  
(27) Read Block Lock Status (RDBLOCK).......................................................................................................35  
(28) Gang Block Lock/Unlock (GBLK/GBULK).................................................................................................35  
(29) Clear SR Fail Flags (CLSR)......................................................................................................................35  
(30) Enable SO to Output RY/BY# (ESRY)......................................................................................................35  
(31) Disable SO to Output RY/BY# (DSRY).....................................................................................................35  
(32) Read DMC mode (RDDMC) .....................................................................................................................36  
Discoverable Memory Capabilities (DMC) Signature and Parameter Identification Data Values (Advanced  
Information)......................................................................................................................................................36  
Parameter ID (0) (Advanced Information).......................................................................................................37  
Parameter ID (1) (Advanced Information)........................................................................................................38  
Parameter ID (2) (Advanced Information)........................................................................................................38  
POWER-ON STATE...................................................................................................................................................39  
ELECTRICAL SPECIFICATIONS..............................................................................................................................40  
ABSOLUTE MAXIMUM RATINGS...................................................................................................................40  
Figure 2. Maximum Negative Overshoot Waveform ........................................................................................40  
CAPACITANCE TA = 25°C, f = 1.0 MHz...........................................................................................................40  
Figure 3. Maximum Positive Overshoot Waveform..........................................................................................40  
Figure 4. OUTPUT LOADING .........................................................................................................................41  
Table 7-1. MX25L6436E DC CHARACTERISTICS .........................................................................................42  
Table 7-2. MX25L12836E DC CHARACTERISTICS .......................................................................................43  
Table 8-1. MX25L6436E AC CHARACTERISTICS ........................................................................................44  
Table 8-2. MX25L12836E AC CHARACTERISTICS ......................................................................................45  
Timing Analysis........................................................................................................................................................47  
Figure 5. Serial Input Timing ............................................................................................................................47  
Figure 6. Output Timing....................................................................................................................................47  
Figure 7. WP# Setup Timing and Hold Timing during WRSR when SRWD=1................................................. 48  
Figure 8. Write Enable (WREN) Sequence (Command 06)............................................................................. 48  
Figure 9. Write Disable (WRDI) Sequence (Command 04).............................................................................. 48  
Figure 10. Read Identification (RDID) Sequence (Command 9F).................................................................... 49  
Figure 11. Read Status Register (RDSR) Sequence (Command 05) .............................................................. 49  
Figure 12. Write Status Register (WRSR) Sequence (Command 01)............................................................. 49  
Figure 13. Read Data Bytes (READ) Sequence (Command 03) .................................................................... 50  
Figure 14. Read at Higher Speed (FAST_READ) Sequence (Command 0B) ................................................ 50  
Figure 15. Dual Read Mode Sequence (Command 3B)...................................................................................50  
Figure 16. Quad Read Mode Sequence (Command 6B).................................................................................51  
Figure 17. Sector Erase (SE) Sequence (Command 20)................................................................................51  
Figure 18. Block Erase (BE/EB32K) Sequence (Command D8/52)................................................................ 51  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
3
MX25L6436E  
MX25L12836E  
Figure 19. Chip Erase (CE) Sequence (Command 60 or C7)......................................................................... 52  
Figure 20. Page Program (PP) Sequence (Command 02).............................................................................. 52  
Figure 21. 4 x I/O Page Program (4PP) Sequence (Command 38)................................................................ 52  
Figure 22. Continuously Program (CP) Mode Sequence with Hardware Detection (Command AD)............... 53  
Figure 23-1. Enter Parallel Mode (ENPLM) Sequence (Command 55) .......................................................... 54  
Figure 23-2. Exit Parallel Mode (EXPLM) Sequence (Command 45)............................................................. 54  
Figure 23-3. Parallel Mode Read Identification (Parallel RDID) Sequence (Command 9F) ........................... 54  
Figure 23-4. Parallel Mode Read Electronic Manufacturer & Device ID (Parallel REMS) Sequence (Command  
90)....................................................................................................................................................................55  
Figure 23-5. Parallel Mode Release from Deep Power-down (RDP) and Read Electronic Signature (RES)  
Sequence.........................................................................................................................................................55  
Figure 23-6. Parallel Mode Read Array (Parallel READ) Sequence (Command 03) ...................................... 56  
Figure 23-7. Parallel Mode Page Program (Parallel PP) Sequence (Command 02) ...................................... 56  
Figure 24. Deep Power-down (DP) Sequence (Command B9)....................................................................... 56  
Figure 25. Release from Deep Power-down and Read Electronic Signature (RES) Sequence (Command AB)  
.........................................................................................................................................................................57  
Figure 26. Release from Deep Power-down (RDP) Sequence (Command AB) .............................................57  
Figure 27. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90 or EF or DF or CF)..  
.........................................................................................................................................................................58  
Figure 28. Write Protection Selection (WPSEL) Sequence (Command 68).................................................... 58  
Figure 29. Single Block Lock/Unlock Protection (SBLK/SBULK) Sequence (Command 36/39)..................... 59  
Figure 30. Read Block Protection Lock Status (RDBLOCK) Sequence (Command 3C)................................ 59  
Figure 31. Gang Block Lock/Unlock (GBLK/GBULK) Sequence (Command 7E/98)...................................... 59  
Figure 32. Power-up Timing.............................................................................................................................60  
Table 9. Power-Up Timing ...............................................................................................................................60  
INITIAL DELIVERY STATE...............................................................................................................................60  
RECOMMENDED OPERATING CONDITIONS.........................................................................................................61  
ERASE AND PROGRAMMING PERFORMANCE....................................................................................................62  
DATA RETENTION ....................................................................................................................................................62  
LATCH-UP CHARACTERISTICS..............................................................................................................................62  
ORDERING INFORMATION......................................................................................................................................63  
PART NAME DESCRIPTION.....................................................................................................................................64  
PACKAGE INFORMATION........................................................................................................................................65  
REVISION HISTORY .................................................................................................................................................67  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
4
MX25L6436E  
MX25L12836E  
64/128M-BIT [x 1/x 2/x 4] CMOS MXSMIOTM (SERIAL MULTI I/O) FLASH MEMORY  
FEATURES  
GENERAL  
• Serial Peripheral Interface compatible -- Mode 0 and Mode 3  
64Mb: 67,108,864 x 1 bit structure or 33,554,432 x 2 bits (2 x I/O mode) structure or 16,777,216 x 4 bits (4 x I/O  
mode) structure  
128Mb: 134,217,728 x 1 bit structure or 67,108,864 x 2 bits (2 x I/O mode) structure or 33,554,432 x 4 bits (4 x I/  
O mode) structure  
• 2048 Equal Sectors with 4K bytes each (64Mb)  
4096 Equal Sectors with 4K bytes each (128Mb)  
- Any Sector can be erased individually  
• 256 Equal Blocks with 32K bytes each (64Mb)  
512 Equal Blocks with 32K bytes each (128Mb)  
- Any Block can be erased individually  
• 128 Equal Blocks with 64K bytes each (64Mb)  
256 Equal Blocks with 64K bytes each (128Mb)  
- Any Block can be erased individually  
• Power Supply Operation  
- 2.7 to 3.6 volt for read, erase, and program operations  
• Latch-up protected to 100mA from -1V to Vcc +1V  
PERFORMANCE  
• High Performance  
VCC = 2.7~3.6V  
- Normal read  
- 50MHz  
- Fast read (Normal Serial Mode)  
- 1 x I/O: 104MHz with 8 dummy cycles  
- 2 x I/O: 70MHz with 8 dummy cycles  
- 4 x I/O: 70MHz with 8 dummy cycles  
- Fast program time: 1.4ms(typ.) and 5ms(max.)/page (256-byte per page)  
- Byte program time: 9us (typical)  
- Continuously Program mode (automatically increase address under word program mode)  
- Fast erase time: 60ms (typ.)/sector (4K-byte per sector) ; 0.7s(typ.) /block (64K-byte per block); 50s(typ.) /chip  
for 64Mb, 80s(typ.) /chip for 128Mb  
• Low Power Consumption  
- Low active read current: 45mA(max.) at 104MHz and 30mA(max.) at 33MHz  
- Low active programming current: 25mA (max.)  
- Low active erase current: 25mA (max.)  
- Low standby current: 100uA (max.)  
- Deep power down current: 128Mb is 40uA (max.), 64Mb is 30uA (max.)  
• Typical 100,000 erase/program cycles  
• 20 years data retention  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
5
MX25L6436E  
MX25L12836E  
SOFTWARE FEATURES  
• Input Data Format  
- 1-byte Command code  
• Advanced Security Features  
- BP0-BP3 block group protect  
- Flexible individual block protect when OTP WPSEL=1  
- Additional 4K bits secured OTP for unique identifier  
• Auto Erase and Auto Program Algorithms  
Automatically erases and verifies data at selected sector  
-
-
Automatically programs and verifies data at selected page by an internal algorithm that automatically times the  
program pulse width (Any page to be programed should have page in the erased state first.)  
Status Register Feature  
Electronic Identification  
JEDEC 1-byte Manufacturer ID and 2-byte Device ID  
- RES command for 1-byte Device ID  
-
- Both REMS, REMS2 and REMS4 commands for 1-byte Manufacturer ID and 1-byte Device ID  
Support Discoverable Memory Capabilities (DMC) Signature  
HARDWARE FEATURES  
SCLK Input  
Serial clock input  
• SI/SO0  
-
Serial Data Input or Serial Data Multiple Output for 2 x I/O mode and 4 x I/O mode  
• SO/SO1/PO7  
-
Serial Data Output or Serial Data Multiple Output for 2 x I/O mode and 4 x I/O mode or Parallel Data  
• WP#/SO2  
-
Hardware write protection or serial data Multiple Output for 4 x I/O mode  
• NC/SO3  
-
NC pin or serial data Multiple Output for 4 x I/O mode  
• PO0~PO6  
-
For parallel mode data (only 128Mb provide parallel mode)  
• PACKAGE  
-
16-pin SOP (300mil) only for MX25L12836E  
-
-
8-pin SOP (200mil) only for MX25L6436E  
- All Pb-free devices are RoHS Compliant  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
6
MX25L6436E  
MX25L12836E  
GENERAL DESCRIPTION  
MX25L6436E is 67,108,864 bits serial Flash memory, which is configured as 8,388,608 x 8 internally. When it is  
in 2 x I/O or 4 x I/O mode, the structure becomes 33,554,432 bits x 2 or 16,777,216 bits x 4. MX25L12836E is  
134,217,728 bits serial Flash memory, which is configured as 16,777,216 x 8 internally. When it is in two or 4 x I/O  
mode, the structure becomes 67,108,864 bits x 2 or 33,554,432 bits x 4. The MX25L6436E/12836E features a se-  
rial peripheral interface and software protocol allowing operation on a simple 3-wire bus. The three bus signals are  
a clock input (SCLK), a serial data input (SI), and a serial data output (SO). Serial access to the device is enabled  
by CS# input.  
MX25L6436E/12836E provides high performance read mode, which may latch address and data on both rising and  
falling edge of clock. By using this high performance read mode, the data throughput may be doubling. Moreover,  
the performance may reach direct code execution, the RAM size of the system may be reduced and further saving  
system cost.  
MX25L6436E/12836E, MXSMIOTM (Serial Multi I/O) flash memory, provides sequential read operation on whole  
chip and multi-I/O features.  
When it is in dual I/O mode, the SI/SO0 pin is for address/dummy bits input and data output, and the SO pin be-  
come SO1 pin for data output. When it is in quad I/O mode, the SI/SO0 pin is for address/dummy bits input and data  
output, and the SO pin, WP# pin, NC pin become SO1 pin, SO2 pin and SO3 pin for data output. Parallel mode is  
also provided in this device. It features 8 bit input/output for increasing throughputs. This feature is recommended to  
be used for factory production purpose.  
After program/erase command is issued, auto program/erase algorithms which program/erase and verify the speci-  
fied page or sector/block locations will be executed. Program command is executed on byte basis, or page (256  
bytes) basis, or word basis for Continuously Program mode, and erase command is executes on sector (4K-byte),  
block (32K-byte/64K-byte), or whole chip basis.  
To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read  
command can be issued to detect completion status of a program or erase operation via WIP bit.  
When the device is not in operation and CS# is high, it is put in standby mode and draws less than 100uA DC cur-  
rent.  
The MX25L6436E/12836E utilizes Macronix's proprietary memory cell, which reliably stores memory contents even  
after 100,000 program and erase cycles.  
Table 1. Additional Features  
Additional  
Features  
Protection and Security  
Read Performance  
1 I/O Read (104 Dual Read (70 Quad Read  
Flexible or  
Individual block (or  
sector) protection  
8 I/O Parallel  
Mode  
4K-bit  
Part  
secured OTP  
MHz)  
MHz)  
(70 MHz)  
Name  
(6 MHz)  
MX25L6436E  
MX25L12836E  
V
V
V
V
V
V
(Note 1)  
Additional  
Features  
Identifier  
RES  
REMS  
REMS2  
REMS4  
RDID  
Part  
Name  
(command: AB hex) (command: 90 hex) (command: EF hex) (command: DF hex) (command: 9F hex)  
MX25L6436E  
MX25L12836E  
16 (hex)  
17 (hex)  
C2 16 (hex)  
C2 17 (hex)  
C2 16 (hex)  
C2 17 (hex)  
C2 16 (hex)  
C2 17 (hex)  
C2 20 17 (hex)  
C2 20 18 (hex)  
Note 1: Only MX25L12836E provide parallel mode.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
7
MX25L6436E  
MX25L12836E  
PIN CONFIGURATION  
16-PIN SOP (300mil) for MX25L12836E  
8-PIN SOP (200mil) for MX25L6436E  
1
2
3
4
5
6
7
8
SCLK  
SI/SO0  
PO6  
NC/SO3  
VCC  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
CS#  
SO/SO1  
WP#/SO2  
GND  
VCC  
8
7
6
5
NC/SO3  
SCLK  
NC  
PO5  
PO2  
PO4  
PO1  
SI/SO0  
PO3  
PO0  
GND  
CS#  
WP#/SO2  
SO/SO1/PO7  
PIN DESCRIPTION  
SYMBOL  
DESCRIPTION  
CS#  
Chip Select  
Serial Data Input / Serial Data Multiple  
Output (for 2 x I/O or 4 x I/O mode)  
Serial Data Output (for 1 x I/O) /Serial  
Data Multiple Output (for 2 x I/O or 4 x I/  
O mode) / Parallel Data Output/Input  
Clock Input  
SI/SO0  
SO/SO1/  
PO7  
SCLK  
Write protection: connect to GND or  
WP#/SO2 Serial Data Multiple Output (for 4 x I/O  
mode)  
NC pin (Not connect) or Serial Data  
Multiple Output (for 4 x I/O mode)  
NC/SO3  
VCC  
GND  
+ 3.3V Power Supply  
Ground  
Parallel data output/input (PO0~PO6 can  
PO0~PO6 be connected to NC in Serial Mode), NC  
on MX25L6436E  
NC  
No Connection  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
8
MX25L6436E  
MX25L12836E  
BLOCK DIAGRAM  
Address  
Generator  
Memory Array  
Page Buffer  
Y-Decoder  
Data  
Register  
SI/SO0  
SRAM  
Buffer  
Sense  
Amplifier  
CS#  
WP#/SO2  
NC/SO3  
Mode  
Logic  
State  
Machine  
HV  
Generator  
SCLK  
Clock Generator  
Output  
Buffer  
SO/SO1  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
9
MX25L6436E  
MX25L12836E  
DATA PROTECTION  
MX25L6436E/12836E is designed to offer protection against accidental erasure or programming caused by spuri-  
ous system level signals that may exist during power transition. During power up the device automatically resets  
the state machine in the standby mode. In addition, with its control register architecture, alteration of the memory  
contents only occurs after successful completion of specific command sequences. The device also incorporates  
several features to prevent inadvertent write cycles resulting from VCC power-up and power-down transition or sys-  
tem noise.  
• Valid command length checking: The command length will be checked whether it is at byte base and completed  
on byte boundary.  
• Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before  
other command to change data. The WEL bit will return to reset stage under following situation:  
- Power-up  
- Write Disable (WRDI) command completion  
- Write Status Register (WRSR) command completion  
- Page Program (PP, 4PP) command completion  
- Continuously Program mode (CP) instruction completion  
- Sector Erase (SE) command completion  
- Block Erase (BE, BE32K) command completion  
- Chip Erase (CE) command completion  
- Single Block Lock/Unlock (SBLK/SBULK) instruction completion  
- Gang Block Lock/Unlock (GBLK/GBULK) instruction completion  
Deep Power Down Mode: By entering deep power down mode, the flash device also is under protected from  
writing all commands except Release from Deep Power Down mode command (RDP) and Read Electronic Sig-  
nature command (RES).  
I. Block lock protection  
- The Software Protected Mode (SPM) uses (BP3, BP2, BP1, BP0) bits to allow part of memory to be protected  
as read only. The protected area definition is shown as table of "Protected Area Sizes", the protected areas are  
more flexible which may protect various area by setting value of BP0-BP3 bits. Please refer to table of "Protect-  
ed Area Sizes".  
- The Hardware Protected Mode (HPM) use WP#/SO2 to protect the (BP3, BP2, BP1, BP0) bits and SRWD bit.  
If the system goes into 4 x I/O mode, the feature of HPM will be disabled.  
- MX25L6436E/12836E provide individual block (or sector) write protect & unprotect. User may enter the mode  
with WPSEL command and conduct individual block (or sector) write protect with SBLK instruction, or SBULK  
for individual block (or sector) unprotect. Under the mode, user may conduct whole chip (all blocks) protect with  
GBLK instruction and unlock the whole chip with GBULK instruction.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
10  
MX25L6436E  
MX25L12836E  
Table 2. Protected Area Sizes  
Status bit  
Protection Area  
BP3 BP2 BP1 BP0 64Mb  
128Mb  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0 (none)  
0 (none)  
1 (2 blocks, block 126th-127th)  
2 (4 blocks, block 124th-127th)  
3 (8 blocks, block 120th-127th)  
4 (16 blocks, block 112nd-127th)  
5 (32 blocks, block 96th-127th)  
6 (64 blocks, block 64th-127th)  
7 (128 blocks, all)  
1 (2 blocks, block 254th-255th)  
2 (4 blocks, block 252nd-255th)  
3 (8 blocks, block 248th-255th)  
4 (16 blocks, block 240th-255th)  
5 (32 blocks, block 224th-255th)  
6 (64 blocks, block 192nd-255th)  
7 (128 blocks, block 128th-255th)  
8 (256 blocks, all)  
8 (128 blocks, all)  
9 (128 blocks, all)  
9 (256 blocks, all)  
10 (128 blocks, all)  
10 (256 blocks, all)  
11 (128 blocks, all)  
11 (256 blocks, all)  
12 (128 blocks, all)  
12 (256 blocks, all)  
13 (128 blocks, all)  
13 (256 blocks, all)  
14 (128 blocks, all)  
14 (256 blocks, all)  
15 (128 blocks, all)  
15 (256 blocks, all)  
Note: The device is ready to accept a Chip Erase instruction if, and only if, all Block Protect (BP3, BP2, BP1, BP0) are 0.  
II. Additional 4K-bit secured OTP for unique identifier: to provide 4K-bit One-Time Program area for setting de-  
vice unique serial number - Which may be set by factory or system maker. Please refer to Table 3. 4K-bit Se-  
cured OTP Definition.  
- Security register bit 0 indicates whether the chip is locked by factory or not.  
- To program the 4K-bit secured OTP by entering 4K-bit secured OTP mode (with ENSO command), and going  
through normal program procedure, and then exiting 4K-bit secured OTP mode by writing EXSO command.  
- Customer may lock-down the customer lockable secured OTP by writing WRSCUR (write security register)  
command to set customer lock-down bit1 as "1". Please refer to table of "Security Register Definition" for secu-  
rity register bit definition and table of "4K-bit Secured OTP Definition" for address range definition.  
- Note: Once lock-down whatever by factory or customer, it cannot be changed any more. While in 4K-bit Se-  
cured OTP mode, array access is not allowed.  
Table 3. 4K-bit Secured OTP Definition  
Address range  
xxx000~xxx00F  
xxx010~xxx1FF  
Size  
Standard Factory Lock  
ESN (electrical serial number)  
N/A  
Customer Lock  
128-bit  
3968-bit  
Determined by customer  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
11  
MX25L6436E  
MX25L12836E  
Memory Organization  
Table 4-1. Memory Organization for MX25L6436E  
Block(64K-byte) Block(32K-byte) Sector (4K-byte)  
Address Range  
2047  
7FF000h  
7FFFFFh  
255  
individual 16 sectors  
lock/unlock unit:4K-byte  
2040  
2039  
7F8000h  
7F7000h  
7F8FFFh  
7F7FFFh  
127  
254  
253  
252  
251  
250  
2032  
2031  
7F0000h  
7EF000h  
7F0FFFh  
7EFFFFh  
2024  
2023  
7E8000h  
7E7000h  
7E8FFFh  
7E7FFFh  
126  
individual block  
lock/unlock unit:64K-byte  
2016  
2015  
7E0000h  
7DF000h  
7E0FFFh  
7DFFFFh  
2008  
2007  
7D8000h  
7D7000h  
7D8FFFh  
7D7FFFh  
125  
2000  
7D0000h  
7D0FFFh  
individual block  
lock/unlock unit:64K-byte  
47  
02F000h  
02FFFFh  
5
4
3
2
1
0
40  
39  
028000h  
027000h  
028FFFh  
027FFFh  
2
1
individual block  
lock/unlock unit:64K-byte  
32  
31  
020000h  
01F000h  
020FFFh  
01FFFFh  
24  
23  
018000h  
017000h  
018FFFh  
017FFFh  
16  
15  
010000h  
00F000h  
010FFFh  
00FFFFh  
8
7
008000h  
007000h  
008FFFh  
007FFFh  
individual 16 sectors  
lock/unlock unit:4K-byte  
0
0
000000h  
000FFFh  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
12  
MX25L6436E  
MX25L12836E  
Table 4-2. Memory Organization for MX25L12836E  
Block(64K-byte) Block(32K-byte)  
Sector  
4095  
Address Range  
FFF000h  
FFFFFFh  
511  
individual 16 sectors  
lock/unlock unit:4K-byte  
4088  
4087  
FF8000h  
FF7000h  
FF8FFFh  
FF7FFFh  
255  
510  
4080  
4079  
FF0000h  
FEF000h  
FF0FFFh  
FEFFFFh  
509  
4072  
4071  
FE8000h  
FE7000h  
FE8FFFh  
FE7FFFh  
254  
508  
individual block  
lock/unlock unit:64K-byte  
4064  
4063  
FE0000h  
FDF000h  
FE0FFFh  
FDFFFFh  
507  
4056  
4055  
FD8000h  
FD7000h  
FD8FFFh  
FD7FFFh  
253  
506  
4048  
FD0000h  
FD0FFFh  
individual block  
lock/unlock unit:64K-byte  
47  
02F000h  
02FFFFh  
5
40  
39  
028000h  
027000h  
028FFFh  
027FFFh  
2
4
individual block  
32  
31  
020000h  
01F000h  
020FFFh  
01FFFFh  
lock/unlock unit:64K-byte  
3
24  
23  
018000h  
017000h  
018FFFh  
017FFFh  
1
2
16  
15  
010000h  
00F000h  
010FFFh  
00FFFFh  
1
individual 16 sectors  
lock/unlock unit:4K-byte  
8
7
008000h  
007000h  
008FFFh  
007FFFh  
0
0
0
000000h  
000FFFh  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
13  
MX25L6436E  
MX25L12836E  
DEVICE OPERATION  
1. Before a command is issued, status register should be checked to ensure device is ready for the intended op-  
eration.  
2. When incorrect command is inputted to this LSI, this LSI becomes standby mode and keeps the standby mode  
until next CS# falling edge. In standby mode, SO pin of this LSI should be High-Z.  
3. When correct command is inputted to this LSI, this LSI becomes active mode and keeps the active mode until  
next CS# rising edge.  
4. For standard single data rate serial mode, input data is latched on the rising edge of Serial Clock (SCLK) and  
data shifts out on the falling edge of SCLK. The difference of Serial mode 0 and mode 3 is shown as Figure 1-1.  
5. For the following instructions: RDID, RDSR, RDSCUR, READ, FAST_READ, DREAD, QREAD, RDBLOCK, RES,  
REMS, REMS2, REMS4 and RDDMC the shifted-in instruction sequence is followed by a data-out sequence.  
After any bit of data being shifted out, the CS# can be high. For the following instructions: WREN, WRDI, WRSR,  
SE, BE, BE32K, CE, PP, CP, 4PP, RDP, DP, WPSEL, SBLK, SBULK, GBLK, GBULK, ENSO, EXSO, WRSCUR,  
ENPLM, EXPLM, ESRY, DSRY and CLSR the CS# must go high exactly at the byte boundary; otherwise, the in-  
struction will be rejected and not executed.  
6. During the progress of Write Status Register, Program, Erase operation, to access the memory array is neglect-  
ed and not affect the current operation of Write Status Register, Program, Erase.  
Figure 1. Serial Modes Supported (for Normal Serial mode)  
CPOL CPHA  
shift in  
shift out  
SCLK  
SCLK  
(Serial mode 0)  
(Serial mode 3)  
0
1
0
1
SI  
MSB  
SO  
MSB  
Note:  
CPOL indicates clock polarity of Serial master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not  
transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which Serial mode is  
supported.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
14  
MX25L6436E  
MX25L12836E  
COMMAND DESCRIPTION  
Table 5. Command Sets  
RDSR  
WRSR  
FAST READ  
(fast read  
data)  
COMMAND WREN (write WRDI (write RDID (read  
READ  
(read data)  
DREAD  
(1I 2O read)  
(read status (write status  
(byte)  
enable)  
disable)  
identification)  
register)  
05  
register)  
01  
Command  
(hex)  
06  
04  
9F  
03  
0B  
ADD(24)  
8
3B  
ADD(24)  
8
Input  
Data(8)  
ADD(24)  
Cycles  
Dummy  
Cycles  
sets the  
(WEL) write (WEL) write  
resets the  
outputs  
JEDEC  
to read out to write new n bytes read n bytes read n bytes read  
the values values to out until CS# out until CS# out by Dual  
enable latch enable latch ID: 1-byte of the status the status  
goes high  
goes high  
output until  
CS# goes  
high  
bit  
bit  
Manufacturer  
ID & 2-byte  
Device ID  
register  
register  
Action  
CP  
(Continuously  
program  
mode)  
4PP  
(quad page  
program)  
SE  
(sector  
erase)  
PP  
(Page  
program)  
COMMAND  
(byte)  
QREAD  
(1I 4O read)  
BE (block BE 32K (block  
erase 64KB) erase 32KB) (chip erase)  
CE  
Command  
(hex)  
6B  
ADD(24)  
8
38  
20  
D8  
52  
60 or C7  
02  
AD  
Input  
ADD(6)+  
Data(512)  
ADD(24)+  
Data(2048)  
ADD(24)+  
Data(16)  
ADD(24)  
ADD(24)  
ADD(24)  
Cycles  
Dummy  
Cycles  
n bytes read quad input to erase the to erase the to erase the  
to erase  
to program continously  
out by Quad to program  
output until the selected  
selected  
sector  
selected  
64KB block 32KB block  
selected  
whole chip the selected  
page  
program  
whole  
Action  
CS# goes  
high  
page  
chip, the  
address is  
automatically  
increase  
RDP  
(Release  
REMS (read  
electronic  
REMS2 (read REMS4 (read ENSO (enter EXSO (exit  
COMMAND DP (Deep  
RES (read  
ID for 2x I/O ID for 4x I/O  
secured  
OTP)  
secured  
OTP)  
(byte)  
power down) from deep electronic ID) manufacturer  
mode)  
mode)  
power down)  
& device ID)  
Command  
(hex)  
B9  
AB  
AB  
90  
EF  
DF  
B1  
C1  
Input  
ADD(24)  
ADD(24)  
ADD(24)  
Cycles  
Dummy  
Cycles  
24  
enters deep release from to read out  
output the  
output the  
output the  
to enter  
the 4K-bit  
to exit the 4K-  
bit Secured  
power down deep power 1-byte Device Manufacturer Manufacturer Manufact-  
mode down mode ID ID & Device ID & Device  
ID ID  
urer ID & Secured OTP OTP mode  
device ID mode  
Action  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
15  
MX25L6436E  
MX25L12836E  
ESRY  
DSRY  
ENPLM  
(Enter  
Parallel  
Mode)  
EXPLM (EXIT  
Parallel  
RDSCUR  
(read security (write security  
WRSCUR  
CLSR (Clear WPSEL (write  
COMMAND  
(byte)  
(enable SO (disable SO  
to output RY/ to output RY/  
SR Fail  
Flags)  
protection  
selection)  
register)  
2B  
register)  
2F  
Mode)  
BY#)  
BY#)  
Command  
(hex)  
70  
80  
55  
45  
30  
68  
Input  
Cycles  
Dummy  
Cycles  
to read value to set the to enable SO to disable SO 8xI/O parallel to exit 8xI/ clear security  
to enter  
of security lock-down bit to output RY/ to output RY/ program-  
register bit 6 and enable  
O parallel  
program-  
ming mode  
register  
as "1" (once BY# during BY# during ming mode  
and bit 5  
individal  
block protect  
mode  
lock-down,  
cannot be  
updated)  
CP mode  
CP mode  
Action  
SBLK (single  
block lock) (single block (block protect  
SBULK  
RDBLOCK  
RDDMC  
(Read  
DMC)  
COMMAND  
(byte)  
GBLK (gang GBULK (gang  
block lock) block unlock)  
*Note 2  
unlock)  
read)  
Command  
(hex)  
36  
39  
3C  
7E  
98  
5A  
ADD(24)  
8
Input  
ADD(24)  
individual  
ADD(24)  
individual  
ADD(24)  
Cycles  
Dummy  
Cycles  
Action  
read  
individual  
block or  
whole chip  
write protect  
whole  
chip  
unprotect  
Read DMC  
mode  
block (64K- block (64K-  
byte) or  
sector (4K-  
byte) write  
protect  
byte) or  
sector  
(4K-byte) protect status  
unprotect  
sector write  
Note 1: It is not recommended to adopt any other code not in the command definition table, which will potentially  
enter the hidden mode.  
Note 2: In individual block write protection mode, all blocks/sectors is locked as defualt.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
16  
MX25L6436E  
MX25L12836E  
(1) Write Enable (WREN)  
The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, 4PP,  
CP, SE, BE, BE32K, CE, WRSR, SBLK, SBULK, GBLK and GBULK, which are intended to change the device con-  
tent, should be set every time after the WREN instruction setting the WEL bit.  
The sequence of issuing WREN instruction is: CS# goes low→ sending WREN instruction code→ CS# goes high.  
(Please refer to Figure 8)  
(2) Write Disable (WRDI)  
The Write Disable (WRDI) instruction is for resetting Write Enable Latch (WEL) bit.  
The sequence of issuing WRDI instruction is: CS# goes low→ sending WRDI instruction code→ CS# goes high. (Please  
refer to Figure 9)  
The WEL bit is reset by following situations:  
- Power-up  
- Write Disable (WRDI) instruction completion  
- Write Status Register (WRSR) instruction completion  
- Page Program (PP, 4PP) instruction completion  
- Sector Erase (SE) instruction completion  
- Block Erase (BE, BE32K) instruction completion  
- Chip Erase (CE) instruction completion  
- Continuously Program mode (CP) instruction completion  
- Single Block Lock/Unlock (SBLK/SBULK) instruction completion  
- Gang Block Lock/Unlock (GBLK/GBULK) instruction completion  
(3) Read Identification (RDID)  
The RDID instruction is for reading the Manufacturer ID of 1-byte and followed by Device ID of 2-byte. The MXIC  
Manufacturer ID is C2(hex), the memory type ID is 20(hex) as the first-byte Device ID, and the individual Device ID  
of second-byte ID are listed as table of "ID Definitions". (Please refer to Table 6)  
The sequence of issuing RDID instruction is: CS# goes low→ sending RDID instruction code → 24-bits ID data out  
on SO→ to end RDID operation can use CS# to high at any time during data out. (Please refer to Figure 10)  
While Program/Erase operation is in progress, it will not decode the RDID instruction, so there's no effect on the cy-  
cle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby stage.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
17  
MX25L6436E  
MX25L12836E  
(4) Read Status Register (RDSR)  
The RDSR instruction is for reading Status Register. The Read Status Register can be read at any time (even in  
program/erase/write status register condition) and continuously. It is recommended to check the Write in Progress (WIP)  
bit before sending a new instruction when a program, erase, or write status register operation is in progress.  
The sequence of issuing RDSR instruction is: CS# goes low→ sending RDSR instruction code→ Status Register  
data out on SO (Please refer to Figure 11).  
The definition of the status register bits is as below:  
WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write  
status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status  
register progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status  
register cycle.  
WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable  
latch. When WEL bit sets to "1", which means the internal write enable latch is set, the device can accept program/  
erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the de-  
vice will not accept program/erase/write status register instruction. The program/erase command will be ignored and  
will reset WEL bit if it is applied to a protected memory area.  
BP3, BP2, BP1, BP0 bits. The Block Protect (BP3, BP2, BP1, BP0) bits, non-volatile bits, indicate the protected area (as  
defined in Table 2) of the device to against the program/erase instruction without hardware protection mode being  
set. To write the Block Protect (BP3, BP2, BP1, BP0) bits requires the Write Status Register (WRSR) instruction to  
be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector Erase (SE),  
Block Erase (BE) and Chip Erase (CE) instructions (only if all Block Protect bits set to 0, the CE instruction can be  
executed).  
QE bit. The Quad Enable (QE) bit, non-volatile bit, while it is "0" (factory default), it performs non-Quad and WP# is  
enable. While QE is "1", it performs Quad I/O mode and WP# is disabled. In the other word, if the system goes into  
4 x I/O mode (QE=1), the feature of HPM will be disabled.  
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, default value is "0". SRWD bit is operat-  
ed together with Write Protection (WP#/SO2) pin for providing hardware protection mode. The hardware protection  
mode requires SRWD sets to 1 and WP#/SO2 pin signal is low stage. In the hardware protection mode, the Write  
Status Register (WRSR) instruction is no longer accepted for execution and the SRWD bit and Block Protect bits (BP3,  
BP2, BP1, BP0) are read only.  
Status Register  
bit7  
bit6  
bit5  
BP3  
(level of  
protected  
block)  
bit4  
BP2  
(level of  
protected  
block)  
bit3  
BP1  
(level of  
protected  
block)  
bit2  
BP0  
(level of  
protected  
block)  
bit1  
bit0  
SRWD (status  
register write  
protect)  
QE  
(Quad  
Enable)  
WEL  
(write enable  
latch)  
WIP  
(write in  
progress bit)  
1= Quad  
Enable  
0=not Quad  
Enable  
1=write  
enable  
0=not write 0=not in write  
1=write  
operation  
1=status  
register write  
disable  
(note 1)  
(note 1)  
(note 1)  
(note 1)  
enable  
operation  
Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile Non-volatile  
bit bit bit bit bit bit  
volatile bit  
volatile bit  
Note 1: see the Table 2 "Protected Area Size" in page 11.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
18  
MX25L6436E  
MX25L12836E  
(5) Write Status Register (WRSR)  
The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the  
Write Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in ad-  
vance. The WRSR instruction can change the value of Block Protect (BP3, BP2, BP1, BP0) bits to define the pro-  
tected area of memory (as shown in Table 2). The WRSR also can set or reset the Quad enable (QE) bit and set or  
reset the Status Register Write Disable (SRWD) bit in accordance with Write Protection (WP#/SO2) pin signal, but  
has no effect on bit1(WEL) and bit0 (WIP) of the status register. The WRSR instruction cannot be executed once the  
Hardware Protected Mode (HPM) is entered.  
The sequence of issuing WRSR instruction is: CS# goes low→ sending WRSR instruction code→ Status Register  
data on SI→ CS# goes high. (Please refer to Figure 12)  
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes high. The Write  
in Progress (WIP) bit still can be check out during the Write Status Register cycle is in progress. The WIP sets 1  
during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable Latch (WEL)  
bit is reset.  
Protection Modes  
Mode  
Status register condition  
WP# and SRWD bit status  
Memory  
Status register can be written  
in (WEL bit is set to "1") and  
the SRWD, BP0-BP3  
Software protection  
mode (SPM)  
WP#=1 and SRWD bit=0, or  
WP#=0 and SRWD bit=0, or  
WP#=1 and SRWD=1  
The protected area  
cannot  
be program or erase.  
bits can be changed  
The SRWD, BP0-BP3 of  
status register bits cannot be  
changed  
The protected area  
cannot  
be program or erase.  
Hardware protection  
mode (HPM)  
WP#=0, SRWD bit=1  
Note: As defined by the values in the Block Protect (BP3, BP2, BP1, BP0) bits of the Status Register, as shown in Table 2.  
As the above table showing, the summary of the Software Protected Mode (SPM) and Hardware Protected Mode (HPM).  
Software Protected Mode (SPM):  
-
When SRWD bit=0, no matter WP#/SO2 is low or high, the WREN instruction may set the WEL bit and can  
change the values of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1,  
BP0, is at software protected mode (SPM).  
-
When SRWD bit=1 and WP#/SO2 is high, the WREN instruction may set the WEL bit can change the values of  
SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1, BP0, is at software pro-  
tected mode (SPM)  
Hardware Protected Mode (HPM):  
-
When SRWD bit=1, and then WP#/SO2 is low (or WP#/SO2 is low before SRWD bit=1), it enters the hardware  
protected mode (HPM). The data of the protected area is protected by software protected mode by BP3, BP2,  
BP1, BP0 and hardware protected mode by the WP#/SO2 to against data modification.  
Note:  
To exit the hardware protected mode requires WP#/SO2 driving high once the hardware protected mode is entered.  
If the WP#/SO2 pin is permanently connected to high, the hardware protected mode can never be entered; only can  
use software protected mode via BP3, BP2, BP1, BP0.  
If the system goes into 4 x I/O mode, the feature of HPM will be disabled.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
19  
MX25L6436E  
MX25L12836E  
(6) Read Data Bytes (READ)  
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on  
the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address  
is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can  
be read out at a single READ instruction. The address counter rolls over to 0 when the highest address has been  
reached.  
The sequence of issuing READ instruction is: CS# goes low → sending READ instruction code→3-byte address on  
SI → data out on SO → to end READ operation can use CS# to high at any time during data out. (Please refer to  
Figure 13)  
(7) Read Data Bytes at Higher Speed (FAST_READ)  
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and  
data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at  
any location. The address is automatically increased to the next higher address after each byte data is shifted out,  
so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when  
the highest address has been reached.  
The sequence of issuing FAST_READ instruction is: CS# goes low→sending FAST_READ instruction code →  
3-byte address on SI→ 1-dummy byte (default) address on SI → data out on SO → to end FAST_READ operation  
can use CS# to high at any time during data out. (Please refer to Figure 14)  
While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any im-  
pact on the Program/Erase/Write Status Register current cycle.  
(8) Dual Read Mode (DREAD)  
The DREAD instruction enable double throughput of Serial Flash in read mode. The address is latched on rising  
edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a maxi-  
mum frequency fT. The first address byte can be at any location. The address is automatically increased to the next  
higher address after each byte data is shifted out, so the whole memory can be read out at a single DREAD instruc-  
tion. The address counter rolls over to 0 when the highest address has been reached. Once writing DREAD instruc-  
tion, the following data out will perform as 2-bit instead of previous 1-bit.  
The sequence of issuing DREAD instruction is: CS# goes low  
sending DREAD instruction  
3-byte address on  
SI  
8-bit dummy cycle  
data out interleave on SO1 & SO0  
to end DREAD operation can use CS# to high at  
any time during data out (Please refer to Figure 15 for Dual Read Mode Timing Waveform).  
While Program/Erase/Write Status Register cycle is in progress, DREAD instruction is rejected without any impact  
on the Program/Erase/Write Status Register current cycle.  
(9) Quad Read Mode (QREAD)  
The QREAD instruction enable quad throughput of Serial Flash in read mode. The address is latched on rising edge  
of SCLK, and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum  
frequency fQ. The first address byte can be at any location. The address is automatically increased to the next high-  
er address after each byte data is shifted out, so the whole memory can be read out at a single QREAD instruction.  
The address counter rolls over to 0 when the highest address has been reached. Once writing QREAD instruction,  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
20  
MX25L6436E  
MX25L12836E  
the following data out will perform as 4-bit instead of previous 1-bit.  
The sequence of issuing QREAD instruction is: CS# goes low  
sending QREAD instruction → 3-byte address on  
SI  
8-bit dummy cycle  
data out interleave on SO3, SO2, SO1 & SO0  
to end QREAD operation can use  
CS# to high at any time during data out (Please refer to Figure 16 for Quad Read Mode Timing Waveform).  
While Program/Erase/Write Status Register cycle is in progress, QREAD instruction is rejected without any impact  
on the Program/Erase/Write Status Register current cycle.  
(10) Sector Erase (SE)  
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". The instruction is used for  
any 4K-byte sector. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before  
sending the Sector Erase (SE). Any address of the sector (Table 4-1 & 4-2) is a valid address for Sector Erase (SE)  
instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in);  
otherwise, the instruction will be rejected and not executed.  
The sequence of issuing SE instruction is: CS# goes low → sending SE instruction code→ 3-byte address on SI  
→CS# goes high. (Please refer to Figure 17)  
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the  
tSE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the  
sector is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no  
change) and the WEL bit still be reset.  
(11) Block Erase (BE)  
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". The instruction is used for  
64K-byte block erase operation. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL)  
bit before sending the Block Erase (BE). Any address of the block (Table 4-1 & 4-2) is a valid address for Block Erase (BE)  
instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in);  
otherwise, the instruction will be rejected and not executed.  
The sequence of issuing BE instruction is: CS# goes low → sending BE instruction code → 3-byte address on SI  
→ CS# goes high. (Please refer to Figure 18)  
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the  
tBE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If  
the block is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no  
change) and the WEL bit still be reset.  
(12) Block Erase (BE32K)  
The Block Erase (BE32) instruction is for erasing the data of the chosen block to be "1". The instruction is used for  
32K-byte block erase operation. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL)  
bit before sending the Block Erase (BE32). Any address of the block (Table 4-1 & 4-2) is a valid address for Block  
Erase (BE32) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
21  
MX25L6436E  
MX25L12836E  
been latched-in); otherwise, the instruction will be rejected and not executed.  
The sequence of issuing BE32 instruction is: CS# goes low → sending BE32 instruction code → 3-byte address on  
SI → CS# goes high. (Please refer to Figure 18)  
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be check out during the Sector Erase cycle is in progress. The WIP sets 1 during the  
tBE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If  
the block is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no  
change) and the WEL bit still be reset.  
(13) Chip Erase (CE)  
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruc-  
tion must execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). The CS# must go  
high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
The sequence of issuing CE instruction is: CS# goes low → sending CE instruction code → CS# goes high. (Please  
refer to Figure 19)  
The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be check out during the Chip Erase cycle is in progress. The WIP sets 1 during the tCE  
timing, and sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the chip is  
protected the Chip Erase (CE) instruction will not be executed, but WEL will be reset.  
(14) Page Program (PP)  
The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction  
must execute to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). The device programs  
only the last 256 data bytes sent to the device. If the entire 256 data bytes are going to be programmed, A7-A0  
(The eight least significant address bits) should be set to 0. If the eight least significant address bits (A7-A0) are not  
all 0, all transmitted data going beyond the end of the current page are programmed from the start address of the  
same page (from the address A7-A0 are all 0). If more than 256 bytes are sent to the device, the data of the last  
256-byte is programmed at the request page and previous data will be disregarded. If less than 256 bytes are sent  
to the device, the data is programmed at the requested address of the page without effect on other address of the  
same page.  
The sequence of issuing PP instruction is: CS# goes low→ sending PP instruction code→ 3-byte address on SI→ at  
least 1-byte on data on SI→ CS# goes high. (Please refer to Figure 20)  
The CS# must be kept to low during the whole Page Program cycle; The CS# must go high exactly at the byte  
boundary( the latest eighth bit of data being latched in), otherwise, the instruction will be rejected and will not be  
executed.  
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in  
Progress (WIP) bit still can be check out during the Page Program cycle is in progress. The WIP sets 1 during the  
tPP timing, and sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If  
the page is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no  
change) and the WEL bit will still be reset.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
22  
MX25L6436E  
MX25L12836E  
(15) 4 x I/O Page Program (4PP)  
The Quad Page Program (4PP) instruction is for programming the memory to be "0". A Write Enable (WREN)  
instruction must execute to set the Write Enable Latch (WEL) bit and Quad Enable (QE) bit must be set to "1"  
before sending the Quad Page Program (4PP). The Quad Page Programming takes four pins: SO0, SO1, SO2,  
and SO3, which can raise programer performance and and the effectiveness of application of lower clock less  
than 20MHz. For system with faster clock, the Quad page program cannot provide more actual favors, because  
the required internal page program time is far more than the time data flows in. Therefore, we suggest that while  
executing this command (especially during sending data), user can slow the clock speed down to 20MHz below.  
The other function descriptions are as same as standard page program.  
The sequence of issuing 4PP instruction is: CS# goes low→ sending 4PP instruction code→ 3-byte address on  
SO[3:0]→ at least 1-byte on data on SO[3:0]→ CS# goes high. (Please refer to Figure 21)  
If the page is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no  
change) and the WEL bit will still be reset.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
23  
MX25L6436E  
MX25L12836E  
The Program/Erase function instruction function flow is as follows:  
Program/Erase Flow(1) with read array data  
Start  
WREN command  
RDSR command*  
No  
WREN=1?  
Yes  
Program/erase command  
Write program data/address  
(Write erase address)  
RDSR command  
No  
WIP=0?  
Yes  
Read array data  
(same address of PGM/ERS)  
No  
Verify OK?  
Yes  
Program/erase fail  
Program/erase successfully  
CLSR(30h) command  
Program/erase  
another block?  
Yes  
* Issue RDSR to check BP[3:0].  
* If WPSEL=1, issue RDBLOCK to check the block status.  
No  
Program/erase completed  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
24  
MX25L6436E  
MX25L12836E  
Program/Erase Flow(2) without read array data  
Start  
WREN command  
RDSR command*  
No  
WREN=1?  
Yes  
Program/erase command  
Write program data/address  
(Write erase address)  
RDSR command  
No  
WIP=0?  
Yes  
RDSCUR command  
Yes  
REGPFAIL/REGEFAIL=1?  
No  
Program/erase fail  
Program/erase successfully  
CLSR(30h) command  
Program/erase  
another block?  
Yes  
* Issue RDSR to check BP[3:0].  
* If WPSEL=1, issue RDBLOCK to check the block status.  
No  
Program/erase completed  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
25  
MX25L6436E  
MX25L12836E  
(16) Continuously program mode (CP mode)  
The CP mode may enhance program performance by automatically increasing address to the next higher address  
after each byte data has been programmed.  
The Continuously program (CP) instruction is for multiple byte program to Flash. A write Enable (WREN) instruction  
must execute to set the Write Enable Latch (WEL) bit before sending the Continuously program (CP) instruction.  
CS# requires to go high before CP instruction is executing. After CP instruction and address input, two bytes of  
data is input sequentially from MSB(bit7) to LSB(bit0). The first byte data will be programmed to the initial address  
range with A0=0 and second byte data with A0=1. If only one byte data is input, the CP mode will not process. If  
more than two bytes data are input, the additional data will be ignored and only two byte data are valid. Any byte to  
be programmed should be in the erase state (FF) first. It will not roll over during the CP mode, once the last unpro-  
tected address has been reached, the chip will exit CP mode and reset write Enable Latch bit (WEL) as "0" and CP  
mode bit as "0". Please check the WIP bit status if it is not in write progress before entering next valid instruction.  
During CP mode, the valid commands are CP command (AD hex), WRDI command (04 hex), RDSR command (05  
hex), and RDSCUR command (2B hex). And the WRDI command is valid after completion of a CP programming cy-  
cle, which means the WIP bit=0.  
The sequence of issuing CP instruction is : CS# goes low → sending CP instruction code → 3-byte address on SI  
pin → two data bytes on SI → CS# goes high to low → sending CP instruction and then continue two data bytes  
are programmed → CS# goes high to low -> till last desired two data bytes are programmed → CS# goes high to  
low →sending WRDI (Write Disable) instruction to end CP mode → send RDSR instruction to verify if CP mode  
word program ends, or send RDSCUR to check bit4 to verify if CP mode ends. (Please refer to Figure 22 of CP  
mode timing waveform)  
Three methods to detect the completion of a program cycle during CP mode:  
1) Software method-I: by checking WIP bit of Status Register to detect the completion of CP mode.  
2) Software method-II: by waiting for a tBP time out to determine if it may load next valid command or not.  
3) Hardware method: by writing ESRY (enable SO to output RY/BY#) instruction to detect the completion of a  
program cycle during CP mode. The ESRY instruction must be executed before CP mode execution. Once it is  
enable in CP mode, the CS# goes low will drive out the RY/BY# status on SO, "0" indicates busy stage, "1" indi-  
cates ready stage, SO pin outputs tri-state if CS# goes high. DSRY (disable SO to output RY/BY#) instruction to  
disable the SO to output RY/BY# and return to status register data output during CP mode. Please note that the  
ESRY/DSRY command are not accepted unless the completion of CP mode.  
If the page is protected by BP3~0 (WPSEL=0) or by individual lock (WPSEL=1), the array data will be protected (no  
change) and the WEL bit will still be reset.  
(17) Parallel Mode (Highly recommended for production throughputs increasing)  
The parallel mode provides 8 bit inputs/outputs for increasing throughputs of factory production purpose. The  
parallel mode requires 55h command code, after writing the parallel mode command and then CS# going high,  
after that, the Memory can be available to accept RDID/RES & REMS/READ/PP command as the normal writing  
command procedure. To exit parallel mode, it requires 45h command code, or power-off/on sequence. The  
sequence of issuing Paralle Mode instruction is : CS# goes low→sending Parallel Mode Code→CS# goes high (Please  
refer to Figure 23-1, Other parallel mode please refer to Figure 23-2~23-7).  
a. For normal write command (by SI), No effect  
b. Under parallel mode, the fastest access clock freq. will be changed to 6MHz (SCLK pin clock freq.)  
c. For parallel mode, the tV will be changed to 70ns.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
26  
MX25L6436E  
MX25L12836E  
(18) Deep Power-down (DP)  
The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to enter-  
ing the Deep Power-down mode), the standby current is reduced from ISB1 to ISB2). The Deep Power-down mode  
requires the Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is not ac-  
tive and all Write/Program/Erase instruction are ignored. When CS# goes high, it's only in standby mode not deep  
power-down mode. It's different from Standby mode.  
The sequence of issuing DP instruction is: CS# goes low→ sending DP instruction code→ CS# goes high. (Please  
refer to Figure 24)  
Once the DP instruction is set, all instruction will be ignored except the Release from Deep Power-down mode (RDP)  
and Read Electronic Signature (RES) instruction. (those instructions allow the ID being reading out). When Power-  
down, the deep power-down mode automatically stops, and when power-up, the device automatically is in standby  
mode. For RDP instruction the CS# must go high exactly at the byte boundary (the latest eighth bit of instruction  
code been latched-in); otherwise, the instruction will not executed. As soon as Chip Select (CS#) goes high, a delay  
of tDP is required before entering the Deep Power-down mode and reducing the current to ISB2.  
(19) Release from Deep Power-down (RDP), Read Electronic Signature (RES)  
The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When Chip  
Select (CS#) is driven High, the device is put in the standby Power mode. If the device was not previously in the  
Deep Power-down mode, the transition to the standby Power mode is immediate. If the device was previously in the  
Deep Power-down mode, though, the transition to the standby Power mode is delayed by tRES2, and Chip Select (CS#)  
must remain High for at least tRES2(max), as specified in Table 10. Once in the standby mode, the device waits to  
be selected, so that it can receive, decode and execute instructions.  
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as table of  
ID Definitions. This is not the same as RDID instruction. It is not recommended to use for new design. For new  
design, please use RDID instruction. Even in Deep power-down mode, the RDP and RES are also allowed to be  
executed, only except the device is in progress of program/erase/write cycles; there's no effect on the current pro-  
gram/erase/write cycles in progress. The sequence is shown as Figure 25, 26.  
The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeat-  
edly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously  
in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously in  
Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at  
least tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and  
execute instruction.  
The RDP instruction is for releasing from Deep Power-down Mode.  
(20) Read Electronic Manufacturer ID & Device ID (REMS), (REMS2), (REMS4)  
The REMS, REMS2 and REMS4 instruction provides both the JEDEC assigned Manufacturer ID and the specific  
Device ID.  
The instruction is initiated by driving the CS# pin low and shift the instruction code "90h", "CFh", "DFh" or "EFh" fol-  
lowed by two dummy bytes and one bytes address (A7~A0). After which, the Manufacturer ID for MXIC (C2h) and  
the Device ID are shifted out on the falling edge of SCLK with most significant bit (MSB) first as shown in Figure 27.  
The Device ID values are listed in table of ID Definitions. If the one-byte address is initially set to 01h, then the De-  
vice ID will be read first and then followed by the Manufacturer ID. The Manufacturer and Device IDs can be read  
continuously, alternating from one to the other. The instruction is completed by driving CS# high.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
27  
MX25L6436E  
MX25L12836E  
Table 6. ID Definitions  
Command Type  
MX25L6436E  
MX25L12836E  
manufacturer ID memory type memory density manufacturer ID memory type memory density  
RDID  
RES  
C2  
20  
electronic ID  
16  
17  
C2  
20  
electronic ID  
17  
18  
manufacturer ID  
C2  
device ID  
16  
manufacturer ID  
C2  
device ID  
17  
REMS/REMS2/  
REMS4  
(21) Enter Secured OTP (ENSO)  
The ENSO instruction is for entering the additional 4K-bit Secured OTP mode. The additional 4K-bit Secured OTP  
is independent from main array, which may use to store unique serial number for system identifier. After entering  
the Secured OTP mode, and then follow standard read or program, procedure to read out the data or update data.  
The Secured OTP data cannot be updated again once it is lock-down.  
The sequence of issuing ENSO instruction is: CS# goes low → sending ENSO instruction to enter Secured OTP  
mode → CS# goes high.  
Please note that WRSR/WRSCUR/WPSEL/SBLK/GBLK/SBULK/GBULK/CE/BE/SE/BE32K commands are not ac-  
ceptable during the access of secure OTP region, once Security OTP is lock down, only read related commands  
are valid.  
(22) Exit Secured OTP (EXSO)  
The EXSO instruction is for exiting the additional 4K-bit Secured OTP mode.  
The sequence of issuing EXSO instruction is: CS# goes low→ sending EXSO instruction to exit Secured OTP  
mode→ CS# goes high.  
(23) Read Security Register (RDSCUR)  
The RDSCUR instruction is for reading the value of Security Register. The Read Security Register can be read at  
any time (even in program/erase/write status register/write security register condition) and continuously.  
The sequence of issuing RDSCUR instruction is : CS# goes low → sending RDSCUR instruction → Security Regis-  
ter data out on SO → CS# goes high.  
The definition of the Security Register is as below:  
Secured OTP Indicator bit. The Secured OTP indicator bit shows the chip is locked by factory before ex- factory  
or not. When it is "0", it indicates non-factory lock; "1" indicates factory-lock.  
Lock-down Secured OTP (LDSO) bit. By writing WRSCUR instruction, the LDSO bit may be set to "1" for cus-  
tomer lock-down purpose. However, once the bit is set to "1" (lock-down), the LDSO bit and the 4K-bit Secured  
OTP area cannot be update any more. While it is in 4K-bit Secured OTP mode, array access is not allowed.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
28  
MX25L6436E  
MX25L12836E  
Continuously Program Mode( CP mode) bit. The Continuously Program Mode bit indicates the status of CP  
mode, "0" indicates not in CP mode; "1" indicates in CP mode.  
Program Fail Flag bit. While a program failure happened, the Program Fail Flag bit would be set. This bit will also  
be set when the user attempts to program a protected main memory region or a locked OTP region. This bit can in-  
dicate whether one or more of program operations fail, and can be reset by command CLSR (30h).  
Erase Fail Flag bit. While a erase failure happened, the Erase Fail Flag bit would be set. This bit will also be set  
when the user attempts to erase a protected main memory region or a locked OTP region. This bit can indicate  
whether one or more of erase operations fail, and can be reset by command CLSR (30h).  
Write Protection Select bit. The Write Protection Select bit indicates that WPSEL has been executed successfully.  
Once this bit has been set (WPSEL=1), all the blocks or sectors will be write-protected after the power-on every  
time. Once WPSEL has been set, it cannot be changed again, which means it's only for individual WP mode.  
Under the individual block protection mode (WPSEL=1), hardware protection is performed by driving WP#=0. Once  
WP#=0 all array blocks/sectors are protected regardless of the contents of SRAM lock bits.  
Security Register Definition  
bit7  
bit6  
bit5  
bit4  
bit3  
x
bit2  
x
bit1  
bit0  
Continuously  
Program  
mode  
(CP mode)  
LDSO  
(lock-down  
4K-bit Se- Secured OTP  
cured OTP)  
4K-bit  
WPSEL  
E_FAIL  
P_FAIL  
0 = not  
0=normal  
Erase  
succeed  
1=indicate  
Erase failed  
(default=0)  
0=normal  
Program  
succeed  
1=indicate  
Program  
failed  
0=normal  
WP mode  
1=individual  
WP mode  
(default=0)  
lockdown  
1 = lock-  
down  
(cannot  
program/  
erase  
0 =  
nonfactory  
lock  
1 = factory  
lock  
0=normal  
Program  
mode  
1=CP mode  
(default=0)  
reserved  
reserved  
(default=0)  
OTP)  
non-volatile  
bit  
non-volatile non-volatile  
volatile bit  
Read Only  
volatile bit  
Read Only  
volatile bit  
Read Only  
volatile bit  
Read Only  
volatile bit  
Read Only  
bit  
bit  
OTP  
OTP  
Read Only  
(24) Write Security Register (WRSCUR)  
The WRSCUR instruction is for changing the values of Security Register Bits. Unlike write status register, the WREN  
instruction is not required before sending WRSCUR instruction. The WRSCUR instruction may change the values  
of bit1 (LDSO bit) for customer to lock-down the 4K-bit Secured OTP area. Once the LDSO bit is set to "1", the Se-  
cured OTP area cannot be updated any more.  
The sequence of issuing WRSCUR instruction is :CS# goes low→ sending WRSCUR instruction → CS# goes high.  
The CS# must go high exactly at the boundary; otherwise, the instruction will be rejected and not executed.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
29  
MX25L6436E  
MX25L12836E  
(25) Write Protection Selection (WPSEL)  
There are two write protection methods, (1) BP protection mode (2) individual block protection mode. If WPSEL=0,  
flash is under BP protection mode . If WPSEL=1, flash is under individual block protection mode. The default value  
of WPSEL is “0”. WPSEL command can be used to set WPSEL=1. Please note that WPSEL is an OTP bit. Once  
WPSEL is set to 1, there is no chance to recovery WPSEL back to “0”. If the flash is put on BP mode, the indi-  
vidual block protection mode is disabled. Contrarily, if flash is on the individual block protection mode, the BP mode  
is disabled.  
Every time after the system is powered-on, and the Security Register bit 7 is checked to be WPSEL=1, all  
the blocks or sectors will be write protected by default. User may only unlock the blocks or sectors via SBULK  
and GBULK instruction. Program or erase functions can only be operated after the Unlock instruction is conducted.  
BP protection mode, WPSEL=0:  
ARRAY is protected by BP3~BP0 and BP3~BP0 bits are protected by “SRWD=1 and WP#=0”, where SRWD is bit 7  
of status register that can be set by WRSR command.  
Individual block protection mode, WPSEL=1:  
Blocks are individually protected by their own SRAM lock bits which are set to “1” after power up. SBULK and SBLK  
command can set SRAM lock bit to “0” and “1”. When the system accepts and executes WPSEL instruction, the bit  
7 in security register will be set. It will activate SBLK, SBULK, RDBLOCK, GBLK, GBULK etc instructions to conduct  
block lock protection and replace the original Software Protect Mode (SPM) use (BP3~BP0) indicated block meth-  
ods.Under the individual block protection mode (WPSEL=1), hardware protection is performed by driving WP#=0.  
Once WP#=0 all array blocks/sectors are protected regardless of the contents of SRAM lock bits.  
The sequence of issuing WPSEL instruction is: CS# goes low → sending WPSEL instruction to enter the individual  
block protect mode → CS# goes high. (Figure 28)  
WPSEL instruction function flow is as follows:  
BP and SRWD if WPSEL=0  
WPB pin  
BP3 BP2 BP1 BP0  
SRWD  
64KB  
64KB  
64KB  
(1) BP3~BP0 is used to define the protection group region.  
(The protected area size see Table2)  
(2) “SRWD=1 and WPB=0” is used to protect BP3~BP0. In this  
case, SRWD and BP3~BP0 of status register bits can not  
be changed by WRSR  
.
.
.
64KB  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
30  
MX25L6436E  
MX25L12836E  
The individual block lock mode is effective after setting WPSEL=1  
4KB  
4KB  
SRAM  
SRAM  
• Power-Up: All SRAM bits=1 (all blocks are default protected).  
All array cannot be programmed/erased  
TOP 4KBx16  
Sectors  
• SBLK/SBULK(36h/39h):  
- SBLK(36h) : Set SRAM bit=1 (protect) : array can not be  
programmed /erased  
4KB  
SRAM  
SRAM  
- SBULK(39h): Set SRAM bit=0 (unprotect): array can be  
programmed /erased  
64KB  
- All top 4KBx16 sectors and bottom 4KBx16 sectors  
and other 64KB uniform blocks can be protected and  
unprotected SRAM bits individually by SBLK/SBULK  
command set.  
SRAM  
Uniform  
64KB blocks  
• GBLK/ GBULK(78h/98h):  
- GBLK(78h):Set all SRAM bits=1,whole chip are protected  
and cannot be programmed / erased.  
- GBULK(98h):Set all SRAM bits=0,whole chip are  
unprotected and can be programmed / erased.  
- All sectors and blocks SRAM bits of whole chip can be  
protected and unprotected at one time by GBLK/GBULK  
command set.  
64KB  
4KB  
SRAM  
SRAM  
Bottom  
4KBx16  
Sectors  
• RDBLOCK(3Ch):  
- use RDBLOCK mode to check the SRAM bits status after  
SBULK /SBLK/GBULK/GBLK command set.  
4KB  
SBULK / SBLK / GBULK / GBLK / RDBLOCK  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
31  
MX25L6436E  
MX25L12836E  
WPSEL Flow  
start  
RDSCUR(2Bh) command  
Yes  
WPSEL=1?  
No  
WPSEL disable,  
block protected by BP[3:0]  
WPSEL(68h) command  
RDSR command  
No  
WIP=0?  
Yes  
RDSCUR(2Bh) command  
No  
WPSEL=1?  
Yes  
WPSEL set successfully  
WPSEL set fail  
WPSEL enable.  
Block protected by individual lock  
(SBLK, SBULK, … etc).  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
32  
MX25L6436E  
MX25L12836E  
(26) Single Block Lock/Unlock Protection (SBLK/SBULK)  
These instructions are only effective after WPSEL was executed. The SBLK instruction is for write protection a spec-  
ified block (or sector) of memory, using A23-A16 or (A23-A12) address bits to assign a 64Kbyte block (or 4K bytes  
sector) to be protected as read only. The SBULK instruction will cancel the block (or sector) write protection state.  
This feature allows user to stop protecting the entire block (or sector) through the chip unprotect command (GBULK).  
The WREN (Write Enable) instruction is required before issuing SBLK/SBULK instruction.  
The sequence of issuing SBLK/SBULK instruction is: CS# goes low → send SBLK/SBULK (36h/39h) instruction →  
send 3 address bytes assign one block (or sector) to be protected on SI pin → CS# goes high. (Figure 29)  
The CS# must go high exactly at the byte boundary, otherwise the instruction will be rejected and not be executed.  
SBLK/SBULK instruction function flow is as follows:  
Block Lock Flow  
Start  
RDSCUR(2Bh) command  
No  
WPSEL=1?  
WPSEL command  
Yes  
WREN command  
SBLK command  
( 36h + 24bit address )  
RDSR command  
No  
WIP=0?  
Yes  
RDBLOCK command  
( 3Ch + 24bit address )  
No  
Data = FFh ?  
Yes  
Block lock successfully  
Block lock fail  
Yes  
Lock another block?  
No  
Block lock completed  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
33  
MX25L6436E  
MX25L12836E  
Block Unlock Flow  
start  
RDSCUR(2Bh) command  
No  
WPSEL=1?  
Yes  
WPSEL command  
WREN command  
SBULK command  
( 39h + 24bit address )  
RDSR command  
WIP=0?  
No  
Yes  
Yes  
Unlock another block?  
Unlock block completed?  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
34  
MX25L6436E  
MX25L12836E  
(27) Read Block Lock Status (RDBLOCK)  
This instruction is only effective after WPSEL was executed. The RDBLOCK instruction is for reading the status of  
protection lock of a specified block (or sector), using A23-A16 (or A23-A12) address bits to assign a 64K bytes block (4K  
bytes sector) and read protection lock status bit which the first byte of Read-out cycle. The status bit is"1" to indicate  
that this block has be protected, that user can read only but cannot write/program /erase this block. The status bit is  
"0" to indicate that this block hasn't be protected, and user can read and write this block.  
The sequence of issuing RDBLOCK instruction is: CS# goes low → send RDBLOCK (3Ch) instruction → send 3 ad-  
dress bytes to assign one block on SI pin → read block's protection lock status bit on SO pin → CS# goes high. (Please  
refer to Figure 30)  
(28) Gang Block Lock/Unlock (GBLK/GBULK)  
These instructions are only effective after WPSEL was executed. The GBLK/GBULK instruction is for enable/disable  
the lock protection block of the whole chip.  
The WREN (Write Enable) instruction is required before issuing GBLK/GBULK instruction.  
The sequence of issuing GBLK/GBULK instruction is: CS# goes low → send GBLK/GBULK (7Eh/98h) instruction →  
CS# goes high. (Please refer to Figure 31)  
The CS# must go high exactly at the byte boundary, otherwise, the instruction will be rejected and not be executed.  
(29) Clear SR Fail Flags (CLSR)  
The CLSR instruction is for resetting the Program/Erase Fail Flag bit of Security Register. It should be executed be-  
fore program/erase another block during programming/erasing flow without read array data.  
The sequence of issuing CLSR instruction is: CS# goes low → send CLSR instruction code → CS# goes high.  
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
(30) Enable SO to Output RY/BY# (ESRY)  
The ESRY instruction is for outputing the ready/busy status to SO during CP mode.  
The sequence of issuing ESRY instruction is: CS# goes low → sending ESRY instruction code → CS# goes high.  
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
(31) Disable SO to Output RY/BY# (DSRY)  
The DSRY instruction is for resetting ESRY during CP mode. The ready/busy status will not output to SO after  
DSRY issued.  
The sequence of issuing DSRY instruction is: CS# goes low → send DSRY instruction code → CS# goes high.  
The CS# must go high exactly at the byte boundary; otherwise, the instruction will be rejected and not executed.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
35  
MX25L6436E  
MX25L12836E  
(32) Read DMC mode (RDDMC)  
MX25L6436E/12836E features DMC mode. Host system can retrieve the operating characteristics, structure and  
vendor-specified information such as identifying information, memory size, operating voltages and timing informa-  
tion of this device by DMC mode. Writes the DMC Query command "5AH". The system can read DMC information  
at the addresses given. A reset command is required to exit DMC mode and go back to ready array mode. The sys-  
tem can write the DMC Query command only when the device is in read mode.  
The identification data values in under DMC table. The sequence of issuing RDDMC instruction is CS# goes low  
→ send RDDMC (5A) instruction → send 3 address bytes on SI pin → send 1 dummy byte on SI pin → read DMC  
code → CS# goes high.  
Discoverable Memory Capabilities (DMC) Signature and Parameter Identification Data Values (Advanced  
Information)  
Address (h)  
Description  
Address (Bit)  
Data  
Comment  
(Byte Mode)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
7:0  
15:8  
23:16  
31:24  
7:0  
15:8  
23:16  
31:24  
7:0  
15:8  
23:16  
31:24  
7:0  
15:8  
23:16  
31:24  
7:0  
15:8  
23:16  
31:24  
7:0  
15:8  
23:16  
31:24  
7:0  
15:8  
23:16  
31:24  
7:0  
15:8  
23:16  
31:24  
53h  
46h  
44h  
50h  
00h  
Discoverable Memory Capabilities  
Signature  
Hex: 50444653  
Minor Revision  
Major Revision  
Start from 0x00  
Start from 0x01  
DMC Revision  
01h  
02h  
Number of Parameter Header  
Reserved  
Parameter ID(0)  
Parameter Minor Revision  
Parameter Major Revision  
Parameter Length (in DW)  
Reserved  
00h  
00h  
01h  
02h  
Start from 0x00  
Start from 0x01  
Based on Intel draft  
Parameter Table Pointer  
20h  
Reserved  
Parameter ID(1)  
Parameter Minor Revision  
Parameter Major Revision  
Parameter Length (in DW)  
Reserved  
01h  
00h  
01h  
00h  
Start from 0x00  
Start from 0x01  
Reserved  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
Parameter Table Pointer  
00h  
Address reserved  
Reserved  
Parameter ID(2)  
Parameter Minor Revision  
Parameter Major Revision  
Parameter Length (in DW)  
Reserved  
02h  
00h  
01h  
02h  
Start from 0x00  
Start from 0x01  
Parameter Table Pointer  
Reserved  
28h  
Reserved  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
36  
MX25L6436E  
MX25L12836E  
Parameter ID (0) (Advanced Information)  
Description  
Address (h)  
(Byte Mode)  
Address (Bit)  
Data  
Comment  
00=reserved  
01=4KB erase  
10=reserved  
00  
Minimum Block/Sector Erase sizes  
Write Granularity  
01  
01  
11=64KB erase  
02  
03  
1
0= 1Byte 1=64Byte  
20h  
00=N/A  
01=use 50h opcode  
11=use 06h opcode  
Write Enable Command Required for  
Writing to Volatile Status Registers  
00  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
Reserved  
Reserved  
Reserved  
4KB Erase Support  
(00h=not supported)  
4KB Erase Opcode  
21h  
20h  
Supports Single Input Address Dual Output  
Fast read  
0=not supported  
1=support  
16  
17  
18  
19  
20  
21  
1
00=3Byte 01=4Byte  
10=reserved  
Number of bytes used in addressing for  
flash array read, write and erase  
00  
11=reserved  
0=not supported  
1=support  
0=not supported  
1=support  
0=not supported  
1=support  
Supports Double Transfer Rate Clocking  
0
0
0
22h  
Supports Dual Input Address Dual Output  
Fast read  
Supports Quad Input Address Quad Output  
Fast read  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Reserved  
Reserved  
Reserved  
23h  
07FFFFFFh  
03FFFFFFh  
128Mbits  
64Mbits  
Flash Size in bits  
24h to 27h  
31:00  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
37  
MX25L6436E  
MX25L12836E  
Parameter ID (1) (Advanced Information)  
Address (h)  
(Byte Mode)  
Undefined.  
Description  
Address (Bit)  
Data  
Comment  
Reserved  
31:00  
0000h  
Reserved  
Parameter ID (2) (Advanced Information)  
Description  
Address (h)  
(Byte Mode)  
Address (Bit)  
Data  
Comment  
2000h=2.00V  
2800h=2.80V  
3600h=3.60V  
1650h=1.65V  
2250h=2.25V  
2350h=2.35V  
2700h=2.70V  
00=not supported  
00=not supported  
0=not supported  
1=support  
Vcc Supply Maximum Voltage  
Vcc Supply Minimum Voltage  
31h:30h  
15:00  
3600h  
33h:32h  
31:16  
2700h  
Vpp Supply Maximum Voltage  
Vpp Supply Minimum Voltage  
01:00  
03:02  
00  
00  
Supports Vio Function  
04  
0
34h  
0=not supported  
1=support  
reserved  
0=not supported  
1=support  
Supports HOLD# Function  
Reserved  
05  
07:06  
08  
0
Reserved  
1
Parallel Mode Capable (Note1)  
Supports Single Input Address Quad Output  
Fast read  
0=not supported  
1=support  
0=not supported  
1=support  
0=not supported  
1=support  
0=not supported  
1=support  
0=not supported  
1=support  
0=not supported  
1=support  
0=not supported  
1=support  
0=not supported  
1=support  
09  
10  
11  
12  
13  
14  
15  
16  
17  
1
1
1
1
1
1
1
1
1
Supports Continuous Program Mode  
Supports Deep Power Down Mode  
OTP Capable  
35h  
Supports Sector Group Protect  
Supports 64KB Block Protect  
Supports 4KB Sector Protect  
Supports 64KB Block Erase  
Supports 32KB Block Erase  
36h  
37h  
0=not supported  
1=support  
Reserved  
Reserved  
23:18  
31:24  
Reserved  
Reserved  
Reserved  
Reserved  
Note1: Parallel Mode is only available on 16SOP package.  
8SOP do not supprot it,so the value will be set to "0".  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
38  
MX25L6436E  
MX25L12836E  
POWER-ON STATE  
The device is at below states when power-up:  
- Standby mode ( please note it is not Deep Power-down mode)  
- Write Enable Latch (WEL) bit is reset  
The device must not be selected during power-up and power-down stage unless the VCC achieves below correct  
level:  
- VCC minimum at power-up stage and then after a delay of tVSL  
- GND at power-down  
Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.  
An internal Power-on Reset (POR) circuit may protect the device from data corruption and inadvertent data change  
during power up state.  
For further protection on the device, if the VCC does not reach the VCC minimum level, the correct operation is not  
guaranteed. The read, write, erase, and program command should be sent after the time delay:  
- tVSL after VCC reached VCC minimum level  
The device can accept read command after VCC reached VCC minimum and a time delay of tVSL.  
Please refer to the figure of "Power-up Timing".  
Note:  
- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is recommended.  
(generally around 0.1uF)  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
39  
MX25L6436E  
MX25L12836E  
ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS  
RATING  
VALUE  
Industrial grade  
-40°C to 85°C  
-55°C to 125°C  
-0.5V to 4.6V  
-0.5V to 4.6V  
-0.5V to 4.6V  
Ambient Operating Temperature  
Storage Temperature  
Applied Input Voltage  
Applied Output Voltage  
VCC to Ground Potential  
NOTICE:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the  
device. This is stress rating only and functional operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended period may affect reliability.  
2. Specifications contained within the following tables are subject to change.  
3. During voltage transitions, all pins may overshoot Vss to -2.0V and Vcc to +2.0V for periods up to 20ns, see Figure 2, 3.  
Figure 3. Maximum Positive Overshoot Waveform  
Figure 2. Maximum Negative Overshoot Waveform  
20ns  
20ns  
20ns  
Vss  
Vcc + 2.0V  
Vcc  
Vss-2.0V  
20ns  
20ns  
20ns  
CAPACITANCE TA = 25°C, f = 1.0 MHz  
SYMBOL PARAMETER  
MIN.  
TYP  
MAX.  
UNIT  
pF  
CONDITIONS  
VIN = 0V  
CIN  
Input Capacitance  
6
8
COUT Output Capacitance  
pF  
VOUT = 0V  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
40  
MX25L6436E  
MX25L12836E  
Figure 4. OUTPUT LOADING  
DEVICE UNDER  
TEST  
2.7K ohm  
+3.3V  
CL  
6.2K ohm  
DIODES=IN3064  
OR EQUIVALENT  
CL=30/15pF Including jig capacitance  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
41  
MX25L6436E  
MX25L12836E  
Table 7-1. MX25L6436E DC CHARACTERISTICS  
(Temperature = -40°C to 85°C for Industrial grade, VCC = 2.7V ~ 3.6V)  
SYMBOL PARAMETER  
NOTES  
MIN.  
MAX.  
± 2  
UNITS TEST CONDITIONS  
ILI  
Input Load Current  
1
1
1
uA VCC = VCC Max, VIN = VCC or GND  
uA VCC = VCC Max, VIN = VCC or GND  
uA VIN = VCC or GND, CS# = VCC  
ILO  
Output Leakage Current  
± 2  
ISB1 VCC Standby Current  
100  
Deep Power-down  
Current  
ISB2  
30  
45  
40  
30  
25  
uA VIN = VCC or GND, CS# = VCC  
f=104MHz, fQ=70MHz (4 x I/O read)  
mA  
SCLK=0.1VCC/0.9VCC, SO=Open  
fT=70MHz (2 x I/O read)  
mA  
ICC1 VCC Read  
1
1
SCLK=0.1VCC/0.9VCC, SO=Open  
f=33MHz, SCLK=0.1VCC/0.9VCC,  
SO=Open  
mA  
VCC Program Current  
ICC2  
(PP)  
mA Program in Progress, CS# = VCC  
VCC Write Status  
ICC3  
Program status register in progress,  
CS#=VCC  
20  
25  
mA  
Register (WRSR) Current  
VCC Sector Erase  
Current (SE)  
ICC4  
1
1
mA Erase in Progress, CS#=VCC  
mA Erase in Progress, CS#=VCC  
VCC Chip Erase Current  
ICC5  
(CE)  
20  
VIL  
VIH  
VOL  
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
-0.5  
0.8  
V
V
0.7VCC VCC+0.4  
0.4  
V
V
IOL = 1.6mA  
IOH = -100uA  
VOH Output High Voltage  
VCC-0.2  
Notes :  
1. Typical values at VCC = 3.3V, T = 25°C. These currents are valid for all product versions (package and speeds).  
2. Typical value is calculated by simulation.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
42  
MX25L6436E  
MX25L12836E  
Table 7-2. MX25L12836E DC CHARACTERISTICS  
(Temperature = -40°C to 85°C for Industrial grade, VCC = 2.7V ~ 3.6V)  
SYMBOL PARAMETER  
NOTES  
MIN.  
MAX.  
± 2  
UNITS TEST CONDITIONS  
ILI  
Input Load Current  
1
1
1
uA VCC = VCC Max, VIN = VCC or GND  
uA VCC = VCC Max, VIN = VCC or GND  
uA VIN = VCC or GND, CS# = VCC  
ILO  
Output Leakage Current  
± 2  
ISB1 VCC Standby Current  
100  
Deep Power-down  
Current  
ISB2  
40  
45  
40  
30  
25  
uA VIN = VCC or GND, CS# = VCC  
f=104MHz, fQ=70MHz (4 x I/O read)  
mA  
SCLK=0.1VCC/0.9VCC, SO=Open  
fT=70MHz (2 x I/O read)  
mA  
ICC1 VCC Read  
1
1
SCLK=0.1VCC/0.9VCC, SO=Open  
f=33MHz, SCLK=0.1VCC/0.9VCC,  
SO=Open  
mA  
VCC Program Current  
ICC2  
(PP)  
mA Program in Progress, CS# = VCC  
VCC Write Status  
ICC3  
Program status register in progress,  
CS#=VCC  
20  
25  
mA  
Register (WRSR) Current  
VCC Sector Erase  
Current (SE)  
ICC4  
1
1
mA Erase in Progress, CS#=VCC  
mA Erase in Progress, CS#=VCC  
VCC Chip Erase Current  
ICC5  
(CE)  
20  
VIL  
Input Low Voltage  
Input High Voltage  
-0.5  
0.8  
V
V
VIH  
0.7VCC VCC+0.4  
IOL = 1.6mA;  
IOL = 140uA for parallel mode  
VOL  
Output Low Voltage  
0.4  
V
IOH = -100uA;  
IOH = 65uA for parallel mode  
VOH Output High Voltage  
VCC-0.2  
V
Notes :  
1. Typical values at VCC = 3.3V, T = 25°C. These currents are valid for all product versions (package and speeds).  
2. Typical value is calculated by simulation.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
43  
MX25L6436E  
MX25L12836E  
Table 8-1. MX25L6436E AC CHARACTERISTICS  
(Temperature = -40°C to 85°C for Industrial grade, VCC = 2.7V ~ 3.6V)  
Symbol Alt. Parameter  
Min.  
Typ.  
Max.  
Unit  
Clock Frequency for the following instructions:  
fSCLK  
fC FAST_READ, PP, SE, BE, CE, DP, RES,RDP  
WREN, WRDI, RDID, RDSR, WRSR  
104  
MHz  
fRSCLK  
fTSCLK  
f4PP  
fR Clock Frequency for READ instructions  
fT Clock Frequency for DREAD instructions  
fQ Clock Frequency for QREAD instructions  
Clock Frequency for 4PP (Quad page program)  
50  
70  
70  
20  
MHz  
MHz  
MHz  
MHz  
ns  
Fast_Read  
Read  
4.5  
9
tCH(1) tCLH Clock High Time  
ns  
Fast_Read  
Read  
4.5  
9
0.1  
0.1  
8
ns  
ns  
V/ns  
V/ns  
ns  
tCL(1)  
tCLL Clock Low Time  
Clock Rise Time (3) (peak to peak)  
Clock Fall Time (3) (peak to peak)  
tCLCH(2)  
tCHCL(2)  
tSLCH tCSS CS# Active Setup Time (relative to SCLK)  
tCHSL CS# Not Active Hold Time (relative to SCLK)  
tDVCH tDSU Data In Setup Time  
5
2
ns  
ns  
tCHDX  
tCHSH  
tSHCH  
tDH Data In Hold Time  
5
5
8
ns  
ns  
ns  
CS# Active Hold Time (relative to SCLK)  
CS# Not Active Setup Time (relative to SCLK)  
Read  
15  
ns  
tSHSL(3) tCSH CS# Deselect Time  
Write/Erase/  
Program  
2.7V-3.6V  
3.0V-3.6V  
50  
ns  
10  
8
ns  
ns  
ns  
tSHQZ(2) tDIS Output Disable Time  
Clock Low to Output Valid  
1 I/O  
9
Loading: 15pF  
tCLQV  
tV  
2 I/O & 4 I/O  
Loading: 30pF 2 I/O & 4 I/O  
9.5  
12  
ns  
ns  
ns  
ns  
ns  
us  
VCC=2.7V~3.6V  
tCLQX  
tWHSL(4)  
tSHWL(4)  
tDP(2)  
tHO Output Hold Time  
Write Protect Setup Time  
Write Protect Hold Time  
2
20  
100  
CS# High to Deep Power-down Mode  
CS# High to Standby Mode without Electronic Signature  
Read  
10  
tRES1(2)  
100  
us  
tRES2(2)  
tW  
CS# High to Standby Mode with Electronic Signature Read  
Write Status Register Cycle Time  
Byte-Program  
100  
100  
300  
5
300  
2
2
80  
1
us  
ms  
us  
ms  
ms  
s
s
s
ms  
ms  
40  
9
tBP  
tPP  
tSE  
tBE  
tBE  
tCE  
tWPS  
tWSR  
Page Program Cycle Time  
1.4  
60  
0.5  
0.7  
50  
Sector Erase Cycle Time (4KB)  
Block Erase Cycle Time (32KB)  
Block Erase Cycle Time (64KB)  
Chip Erase Cycle Time  
Write Protection Selection Time  
Write Security Register Time  
1
Notes:  
1. tCH + tCL must be greater than or equal to 1/ f (fC or fR).  
2. Value guaranteed by characterization, not 100% tested in production.  
3. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
44  
MX25L6436E  
MX25L12836E  
Table 8-2. MX25L12836E AC CHARACTERISTICS  
(Temperature = -40°C to 85°C for Industrial grade, VCC = 2.7V ~ 3.6V)  
Symbol Alt. Parameter  
Min.  
Max.  
Unit  
Clock Frequency for the following  
Serial  
104  
MHz  
instructions:  
fSCLK  
fC  
FAST_READ, PP, SE, BE, CE, DP, RES,  
RDP, WREN, WRDI, RDID, RDSR, WRSR  
Parallel  
6
MHz  
fRSCLK  
fTSCLK  
f4PP  
fR Clock Frequency for READ instructions  
fT Clock Frequency for DREAD instructions  
fQ Clock Frequency for QREAD instructions  
50  
70  
70  
20  
MHz  
MHz  
MHz  
MHz  
Clock Frequency for 4PP (Quad page program)  
4.5  
(Fast_Read)  
Serial  
ns  
tCH(1) tCLH Clock High Time  
Serial  
Parallel  
9 (Read)  
ns  
ns  
30  
4.5  
(Fast_Read)  
Serial  
ns  
tCL(1)  
tCLL Clock Low Time  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Parallel  
9 (Read)  
ns  
ns  
30  
0.1  
0.25  
0.1  
0.25  
8
V/ns  
V/ns  
V/ns  
V/ns  
ns  
tCLCH(2)  
tCHCL(2)  
Clock Rise Time (3) (peak to peak)  
Clock Fall Time (3) (peak to peak)  
tSLCH tCSS CS# Active Setup Time (relative to SCLK)  
tCHSL CS# Not Active Hold Time (relative to SCLK)  
5
ns  
Serial  
Parallel  
Serial  
Parallel  
Serial  
Parallel  
2
10  
5
10  
5
30  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDVCH tDSU Data In Setup Time  
tCHDX  
tDH Data In Hold Time  
tCHSH  
tSHCH  
CS# Active Hold Time (relative to SCLK)  
CS# Not Active Setup Time (relative to SCLK)  
Read  
15  
ns  
tSHSL(3) tCSH CS# Deselect Time  
tSHQZ(2) tDIS Output Disable Time  
Write/Erase/  
Program  
2.7V-3.6V  
Serial  
3.0V-3.6V  
Serial  
50  
ns  
ns  
ns  
10  
8
Parallel  
20  
9
ns  
ns  
ns  
ns  
ns  
1 I/O  
Loading: 15pF  
Loading: 30pF  
Clock Low to Output Valid  
VCC=2.7V~3.6V  
2 I/O & 4 I/O  
2 I/O & 4 I/O  
Parallel  
9.5  
12  
70  
tCLQV  
tV  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
45  
MX25L6436E  
MX25L12836E  
Symbol Alt. Parameter  
Min.  
2
20  
Typ.  
Max.  
Unit  
ns  
ns  
ns  
us  
tCLQX  
tWHSL(4)  
tSHWL(4)  
tDP(2)  
tHO Output Hold Time  
Write Protect Setup Time  
Write Protect Hold Time  
CS# High to Deep Power-down Mode  
CS# High to Standby Mode without Electronic  
Signature Read  
100  
10  
tRES1(2)  
tRES2(2)  
100  
us  
us  
CS# High to Standby Mode with Electronic Signature  
Read  
100  
tW  
tBP  
tPP  
tSE  
tBE  
tBE  
tCE  
tWPS  
tWSR  
Write Status Register Cycle Time  
Byte-Program  
Page Program Cycle Time  
Sector Erase Cycle Time (4KB)  
Block Erase Cycle Time (32KB)  
Block Erase Cycle Time (64KB)  
Chip Erase Cycle Time  
Write Protection Selection Time  
Write Security Register Time  
40  
9
100  
300  
5
300  
2
2
200  
1
ms  
us  
ms  
ms  
s
s
s
ms  
ms  
1.4  
60  
0.5  
0.7  
80  
1
Notes:  
1. tCH + tCL must be greater than or equal to 1/ f (fC or fR).  
2. Value guaranteed by characterization, not 100% tested in production.  
3.Only applicable as a constraint for a WRSR instruction when SRWD is set at 1.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
46  
MX25L6436E  
MX25L12836E  
Timing Analysis  
Figure 5. Serial Input Timing  
tSHSL  
tSHCH  
tCHCL  
CS#  
tCHSL  
tSLCH  
tCHSH  
SCLK  
tDVCH  
tCHDX  
tCLCH  
MSB  
LSB  
SI  
High-Z  
SO  
Figure 6. Output Timing  
CS#  
tCH  
SCLK  
tCLQV  
tCLQV  
tCL  
tSHQZ  
tCLQX  
SO  
tCLQX  
LSB  
tQLQH  
tQHQL  
ADDR.LSB IN  
SI  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
47  
MX25L6436E  
MX25L12836E  
Figure 7. WP# Setup Timing and Hold Timing during WRSR when SRWD=1  
WP#  
CS#  
tSHWL  
tWHSL  
0
1
2
3
4
5
6
7
8
9
10 11 12  
13 14  
15  
SCLK  
01  
SI  
High-Z  
SO  
Figure 8. Write Enable (WREN) Sequence (Command 06)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
06  
SI  
High-Z  
SO  
Figure 9. Write Disable (WRDI) Sequence (Command 04)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
04  
SI  
High-Z  
SO  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
48  
MX25L6436E  
MX25L12836E  
Figure 10. Read Identification (RDID) Sequence (Command 9F)  
CS#  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
28 29 30 31  
SCLK  
SI  
Command  
9F  
Manufacturer Identification  
Device Identification  
High-Z  
SO  
D7 D6 D5 D4 D3 D2 D1 D0 D15 D14 D13  
D3 D2 D1 D0  
MSB  
MSB  
Figure 11. Read Status Register (RDSR) Sequence (Command 05)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SCLK  
SI  
command  
05  
Status Register Out  
High-Z  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
SO  
Figure 12. Write Status Register (WRSR) Sequence (Command 01)  
CS#  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SCLK  
Status  
Register In  
command  
01  
SI  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
High-Z  
SO  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
49  
MX25L6436E  
MX25L12836E  
Figure 13. Read Data Bytes (READ) Sequence (Command 03)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Command  
03  
24 ADD Cycles  
A23 A22 A21  
MSB  
A3 A2 A1 A0  
SI  
Data Out 2  
Data Out 1  
High-Z  
D7 D6 D5 D4 D3 D2 D1 D0 D7  
MSB MSB  
SO  
Figure 14. Read at Higher Speed (FAST_READ) Sequence (Command 0B)  
CS#  
47  
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
28 29 30 31  
0
1
2
3
4
5
6
7
8
9
10  
SCLK  
Command  
0B  
8 Dummy Cycles  
24 ADD Cycles  
SI  
A23 A22 A21  
A3 A2 A1 A0  
Data Out 1  
Data Out 2  
High-Z  
SO  
D7 D6 D5 D4 D3 D2 D1 D0 D7  
MSB  
Figure 15. Dual Read Mode Sequence (Command 3B)  
CS#  
30 31 32  
39 40 41 42 43 44 45  
0
1
2
3
4
5
6
7
8
9
SCLK  
Data Out  
2
Data Out  
1
8 dummy  
cycle  
Command  
24 ADD Cycle  
A22 A21  
A2 A0  
D4 D2  
D6 D4  
D0  
3B  
D6  
D7  
SI/SIO0  
High Impedance  
D7 D5  
D1  
D5 D3  
SO/SIO1  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
50  
MX25L6436E  
MX25L12836E  
Figure 16. Quad Read Mode Sequence (Command 6B)  
CS#  
29 30 31 32 33  
38 39 40 41 42  
0
1
2
3
4
5
6
7
8
9
SCLK  
Data  
Out 2  
Data  
Out 3  
Command  
6B  
8 dummy cycles  
24 ADD Cycles  
Data  
Out 1  
A23A22  
A2 A1 A0  
D4 D0 D4 D0 D4  
SI/SO0  
High Impedance  
High Impedance  
High Impedance  
SO/SO1  
WP#/SO2  
NC/SO3  
D5 D1 D5 D1 D5  
D6 D2 D6 D2 D6  
D7 D3 D7 D3 D7  
Figure 17. Sector Erase (SE) Sequence (Command 20)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
24 ADD Cycles  
Command  
20  
A23 A22  
A2 A1 A0  
SI  
MSB  
Figure 18. Block Erase (BE/EB32K) Sequence (Command D8/52)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
24 ADD Cycles  
Command  
D8/52  
A23 A22  
A2 A1 A0  
SI  
MSB  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
51  
MX25L6436E  
MX25L12836E  
Figure 19. Chip Erase (CE) Sequence (Command 60 or C7)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
60 or C7  
Figure 20. Page Program (PP) Sequence (Command 02)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Command  
02  
24 ADD Cycles  
Data Byte 1  
Data Byte 256  
A23 A22 A21  
MSB  
A3 A2 A1 A0  
D7 D6 D5 D4 D3 D2  
MSB  
D0  
D1  
D7 D6 D5 D4 D3 D2 D1 D0  
SI  
Figure 21. 4 x I/O Page Program (4PP) Sequence (Command 38)  
CS#  
524 525  
10 11 12 13 14 15 16 17  
0
1
2
3
4
5
6
7
8
9
SCLK  
Data  
Byte 256  
Data Data  
Byte 1 Byte 2  
Command  
38  
6 ADD cycles  
D4 D0 D4 D0  
D4 D0  
A20 A16 A12 A8 A4 A0  
SI/SIO0  
D5 D1 D5 D1  
D6 D2 D6 D2  
D7 D3 D7 D3  
D5 D1  
D6 D2  
D7 D3  
SO/SIO1  
WP#/SIO2  
A21 A17 A13 A9 A5 A1  
A22 A18 A14 A10 A6 A2  
NC/SIO3  
A23 A19 A15 A11 A7 A3  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
52  
MX25L6436E  
MX25L12836E  
Figure 22. Continuously Program (CP) Mode Sequence with Hardware Detection (Command AD)  
CS#  
SCLK  
SI  
20 2122 23 24  
0
1
30 31 31 32  
47 48  
0
7
7
8
0
6
7 8  
0
1
6 7 8 9  
Command  
AD (hex)  
data in  
Byte n-1, Byte n  
Valid  
Command (1)  
data in  
04 (hex)  
05 (hex)  
24-bit address  
Byte 0, Byte1  
high impedance  
status (2)  
S0  
Note:  
(1) During CP mode, the valid commands are CP command (AD hex), WRDI command (04 hex), RDSR command  
(05 hex), and RDSCUR command (2B hex).  
(2) Once an internal programming operation begins, CS# goes low will drive the status on the SO pin and CS#  
goes high will return the SO pin to tri-state.  
(3) To end the CP mode, either reaching the highest unprotected address or sending Write Disable (WRDI) com-  
mand (04 hex) may achieve it and then it is recommended to send RDSR command (05 hex) to verify if CP  
mode is ended.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
53  
MX25L6436E  
MX25L12836E  
Figure 23-1. Enter Parallel Mode (ENPLM) Sequence (Command 55)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
55  
SI  
High-Z  
SO  
Figure 23-2. Exit Parallel Mode (EXPLM) Sequence (Command 45)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
Command  
45  
SI  
High-Z  
SO  
Figure 23-3. Parallel Mode Read Identification (Parallel RDID) Sequence (Command 9F)  
CS#  
1
3
4
5
6
7
8
9
10  
0
2
SCLK  
SI  
Command  
9F  
Device Identification  
High-Z  
PO7~0  
Manufacturer Identification  
Notes :  
1. There are 3 data bytes which would be output sequentially for Manufacturer and Device ID 1'st byte (Memory  
Type) and Device ID 2'nd byte (Memory Density).  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
54  
MX25L6436E  
MX25L12836E  
Figure 23-4. Parallel Mode Read Electronic Manufacturer & Device ID (Parallel REMS) Sequence (Command  
90)  
CS#  
0
1
2
3
4
5
6
7
8
9 10  
28  
30 31 32 33  
29  
SCLK  
Command  
90  
24 ADD Cycles  
SI  
A0  
A1  
A3 A2  
A23 A22 A21  
Device Identification  
High-Z  
PO7~0  
Manufacturer Identification  
Notes :  
1. A0=0 will output the Manufacturer ID first and A0=1 will output Device ID first. A1~A23 don't care.  
Figure 23-5. Parallel Mode Release from Deep Power-down (RDP) and Read Electronic Signature (RES) Se-  
quence  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38  
SCLK  
24 ADD Cycles  
t
RES2  
Instruction  
AB  
SI  
A23 A22 A21  
A3 A2 A1 A0  
Electronic Signature Out  
High Impedance  
PO7~0  
Byte Output  
Deep Power-down Mode  
Stand-by Mode  
Notes :  
1. Under parallel mode, the fastest access clock freg. will be changed to 6MHz(SCLK pin clock freg.)  
To release from Deep Power-down mode and read ID in parallel mode, which requires a parallel mode com-  
mand (55h) before the read status register command.  
To exit parallel mode, it requires a (45h) command or power-off/on sequence.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
55  
MX25L6436E  
MX25L12836E  
Figure 23-6. Parallel Mode Read Array (Parallel READ) Sequence (Command 03)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33  
n-1 n  
SCLK  
Command  
03  
24 ADD Cycles  
SI  
A23 A22 A21  
MSB  
A3 A2 A1 A0  
High-Z  
PO7~0  
D0~D7 D0~D7  
Byte n-1 Byte n  
D0~D7  
Byte 2  
D0~D7  
Byte 1  
Figure 23-7. Parallel Mode Page Program (Parallel PP) Sequence (Command 02)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34  
286 287  
SCLK  
Command  
02  
24 ADD Cycles  
A23 A22 A21  
A3 A2 A1 A0  
SI  
MSB  
High-Z  
PO7~0  
MSB  
Data Byte1  
Data Byte2  
Data Byte3  
Data Byte255  
Data Byte256  
Figure 24. Deep Power-down (DP) Sequence (Command B9)  
CS#  
t
DP  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
B9  
Stand-by Mode  
Deep Power-down Mode  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
56  
MX25L6436E  
MX25L12836E  
Figure 25. Release from Deep Power-down and Read Electronic Signature (RES) Sequence (Command AB)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38  
39  
SCLK  
Command  
AB  
24 ADD Cycles  
t
RES2  
SI  
A23 A22 A21  
MSB  
A3 A2 A1 A0  
Electronic Signature Out  
High-Z  
D7  
D1  
D0  
D6 D5 D4 D3 D2  
SO  
MSB  
Deep Power-down Mode  
Stand-by Mode  
Figure 26. Release from Deep Power-down (RDP) Sequence (Command AB)  
CS#  
t
RES1  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
AB  
High-Z  
SO  
Deep Power-down Mode  
Stand-by Mode  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
57  
MX25L6436E  
MX25L12836E  
Figure 27. Read Electronic Manufacturer & Device ID (REMS) Sequence (Command 90 or EF or DF or CF)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
47  
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  
28  
29  
SCLK  
Command  
90  
24 ADD Cycles  
SI  
A0  
A1  
A3 A2  
A23 A22 A21  
Manufacturer ID  
Device ID  
High-Z  
SO  
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
MSB  
MSB  
Notes:  
1. A0=0 will output the Manufacturer ID first and A0=1 will output Device ID first. A1~A23 is don't care.  
2. Instruction is either 90(hex) or EF(hex) or DF(hex) or CF(hex).  
Figure 28. Write Protection Selection (WPSEL) Sequence (Command 68)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
68  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
58  
MX25L6436E  
MX25L12836E  
Figure 29. Single Block Lock/Unlock Protection (SBLK/SBULK) Sequence (Command 36/39)  
CS#  
0
1
2
3
4
5
6
7
8
9
29 30 31  
SCLK  
Command  
36/39  
24 Bit Address  
Cycles  
A23 A22  
A2 A1 A0  
SI  
MSB  
Figure 30. Read Block Protection Lock Status (RDBLOCK) Sequence (Command 3C)  
CS#  
0
1
2
3
4
5
6
7
8
9
10  
28 29 30 31 32 33 34 35 36 37 38 39  
SCLK  
Command  
3C  
24 ADD Cycles  
SI  
A23 A22 A21  
MSB  
A3 A2 A1 A0  
Block Protection Lock status out  
High-Z  
D7 D6 D5 D4 D3 D2 D1 D0  
MSB  
SO  
Figure 31. Gang Block Lock/Unlock (GBLK/GBULK) Sequence (Command 7E/98)  
CS#  
0
1
2
3
4
5
6
7
SCLK  
SI  
Command  
7E/98  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
59  
MX25L6436E  
MX25L12836E  
Figure 32. Power-up Timing  
V
CC  
V
(max)  
CC  
Chip Selection is Not Allowed  
V
(min)  
CC  
Device is fully accessible  
tVSL  
time  
Note: VCC (max.) is 3.6V and VCC (min.) is 2.7V.  
Table 9. Power-Up Timing  
Symbol  
Parameter  
Min.  
Max.  
Unit  
tVSL(1)  
VCC(min) to CS# low  
300  
us  
Note: 1. The parameter is characterized only.  
INITIAL DELIVERY STATE  
The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status  
Register contains 00h (all Status Register bits are 0).  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
60  
MX25L6436E  
MX25L12836E  
RECOMMENDED OPERATING CONDITIONS  
At Device Power-Up  
AC timing illustrated in Figure A is recommended for the supply voltages and the control signals at device power-up. (e.g.  
Vcc and CS# ramp up simultaneously) If the timing in the figure is ignored, the device may not operate correctly.  
VCC(min)  
VCC  
GND  
tSHSL  
tVR  
CS#  
tCHSL  
tSLCH  
tCHSH  
tSHCH  
SCLK  
tDVCH  
tCHCL  
tCHDX  
tCLCH  
MSB IN  
LSB IN  
SI  
High Impedance  
SO  
Figure A. AC Timing at Device Power-Up  
Symbol  
tVR  
Parameter  
VCC Rise Time  
Notes  
Min.  
20  
Max.  
500000  
Unit  
us/V  
1
Notes :  
1. Sampled, not 100% tested.  
2. For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to  
"AC CHARACTERISTICS" table.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
61  
MX25L6436E  
MX25L12836E  
ERASE AND PROGRAMMING PERFORMANCE  
PARAMETER  
TYP. (1)  
40  
Max. (2)  
100  
300  
2
UNIT  
ms  
ms  
s
Write Status Register Cycle Time  
Sector Erase Time (4KB)  
Block Erase Time (64KB)  
Block Erase Time (32KB)  
60  
0.7  
0.5  
2
s
64Mb  
50  
80  
s
Chip Erase Time  
128Mb  
80  
200  
300  
5
s
Byte Program Time (via page program command)  
Page Program Time  
9
us  
1.4  
ms  
cycles  
Erase/Program Cycle  
100,000  
Note:  
1. Typical program and erase time assumes the following conditions: 25°C, 3.3V, and checker board pattern.  
2. Under worst conditions of 85°C and 2.7V.  
3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming com-  
mand.  
4. The maximum chip programming time is evaluated under the worst conditions of 0°C, VCC=3.0V, and 100K cy-  
cle with 90% confidence level.  
DATA RETENTION  
PARAMETER  
Condition  
Min.  
Max.  
UNIT  
Data retention  
55˚C  
20  
years  
LATCH-UP CHARACTERISTICS  
MIN.  
MAX.  
Input Voltage with respect to GND on all power pins, SI, CS#  
Input Voltage with respect to GND on SO  
Current  
-1.0V  
-1.0V  
-100mA  
2 VCCmax  
VCC + 1.0V  
+100mA  
Includes all pins except VCC. Test conditions: VCC = 3.0V, one pin at a time.  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
62  
MX25L6436E  
MX25L12836E  
ORDERING INFORMATION  
64Mb  
OPERATING  
CURRENT  
MAX. (mA)  
STANDBY  
CURRENT  
MAX. (uA)  
CLOCK  
(MHz)  
PART NO.  
TEMPERATURE PACKAGE  
Remark  
8-SOP  
-40°C~85°C  
MX25L6436EM2I-10G  
104  
45  
100  
Pb-free  
(200mil)  
128Mb  
OPERATING  
CURRENT  
MAX. (mA)  
STANDBY  
CURRENT  
MAX. (uA)  
CLOCK  
(MHz)  
PART NO.  
TEMPERATURE PACKAGE  
Remark  
16-SOP  
-40°C~85°C  
MX25L12836EMI-10G  
104  
45  
100  
Pb-free  
(300mil)  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
63  
MX25L6436E  
MX25L12836E  
PART NAME DESCRIPTION  
MX 25 L 12836E  
M
I
10 G  
OPTION:  
G: Pb-free  
SPEED:  
10: 104MHz  
TEMPERATURE RANGE:  
I: Industrial (-40° C to 85° C)  
PACKAGE:  
M: 300mil 16-SOP  
M2: 200mil 8-SOP  
DENSITY & MODE:  
12836E: 128Mb standard type  
6436E: 64Mb standard type  
TYPE:  
L: 3V  
DEVICE:  
25: Serial Flash  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
64  
MX25L6436E  
MX25L12836E  
PACKAGE INFORMATION  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
65  
MX25L6436E  
MX25L12836E  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
66  
MX25L6436E  
MX25L12836E  
REVISION HISTORY  
Revision No. Description  
Page  
Date  
1.1  
1. Added 64Mb general feature description.  
P5  
NOV/18/2009  
2. Aligned pin name.  
P7,10,18,19,  
P23,48,50  
P5  
P6,14,16,36  
P36~38  
P37  
3. Update dummy cycle at 2 x I/O, 4 x I/O read mode.  
4. Rename CFI to DMC.  
5. Added DMC contents.  
6. Revised Address 19 Data.  
7. Revised Address 09 Data.  
P38  
P/N: PM1514  
REV. 1.1, NOV. 18, 2009  
67  
MX25L6436E  
MX25L12836E  
Macronix's products are not designed, manufactured, or intended for use for any high risk applications in which  
the failure of a single component could cause death, personal injury, severe physical damage, or other substan-  
tial harm to persons or property, such as life-support systems, high temperature automotive, medical, aircraft  
and military application. Macronix and its suppliers will not be liable to you and/or any third party for any claims,  
injuries or damages that may be incurred due to use of Macronix's products in the prohibited applications.  
Copyright© Macronix International Co., Ltd. 2009. All Rights Reserved. Macronix, MXIC, MXIC Logo, MX Logo,  
MXSMIO, are trademarks or registered trademarks of Macronix International Co., Ltd.. The names and brands  
of other companies are for identification purposes only and may be claimed as the property of the respective  
companies.  
ACRONIX NTERNATIONAL O., TD.  
M
I
C L  
Macronix Offices : Taiwan  
Headquarters, FAB2  
Macronix, International Co., Ltd.  
16, Li-Hsin Road, Science Park, Hsinchu,  
Taiwan, R.O.C.  
Macronix Offices : Japan  
Macronix Asia Limited.  
NKF Bldg. 5F, 1-2 Higashida-cho,  
Kawasaki-ku Kawasaki-shi,  
Kanagawa Pref. 210-0005, Japan  
Tel: +81-44-246-9100  
Tel: +886-3-5786688  
Fax: +886-3-5632888  
Fax: +81-44-246-9105  
Taipei Office  
Macronix Offices : Korea  
Macronix Asia Limited.  
#906, 9F, Kangnam Bldg., 1321-4, Seocho-Dong, Seocho-Ku,  
135-070, Seoul, Korea  
Tel: +82-02-588-6887  
Fax: +82-02-588-6828  
Macronix, International Co., Ltd.  
19F, 4, Min-Chuan E. Road, Sec. 3, Taipei,  
Taiwan, R.O.C.  
Tel: +886-2-2509-3300  
Fax: +886-2-2509-2200  
Macronix Offices : China  
Macronix Offices : Singapore  
Macronix Pte. Ltd.  
1 Marine Parade Central, #11-03 Parkway Centre,  
Macronix (Hong Kong) Co., Limited.  
702-703, 7/F, Building 9, Hong Kong Science Park,  
5 Science Park West Avenue, Sha Tin,  
N.T.  
Tel: +86-852-2607-4289  
Fax: +86-852-2607-4229  
Singapore 449408  
Tel: +65-6346-5505  
Fax: +65-6348-8096  
Macronix Offices : Europe  
Macronix Europe N.V.  
Koningin Astridlaan 59, Bus 1 1780  
Macronix (Hong Kong) Co., Limited,  
SuZhou Office  
No.5, XingHai Rd, SuZhou Industrial Park,  
SuZhou China 215021  
Tel: +86-512-62580888 Ext: 3300  
Fax: +86-512-62586799  
Wemmel Belgium  
Tel: +32-2-456-8020  
Fax: +32-2-456-8021  
Macronix Offices : USA  
Macronix (Hong Kong) Co., Limited,  
Shenzhen Office  
Room 1401 & 1404, Block A, TianAN Hi-Tech PLAZA Tower,  
Che Gong Miao, FutianDistrict, Shenzhen PRC 518040  
Tel: +86-755-83433579  
Macronix America, Inc.  
680 North McCarthy Blvd. Milpitas, CA 95035,  
U.S.A.  
Tel: +1-408-262-8887  
Fax: +1-408-262-8810  
Fax: +86-755-83438078  
http : //www.macronix.com  
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.  
68  

相关型号:

MX25L6436EM2I-10G

Flash, 16MX4, PDSO8, 0.200 INCH, ROHS COMPLIANT, SOP-8
Macronix

MX25L6436EM2I10G

64M-BIT [x 1/x 2/x 4] CMOS MXSMIOTM (SERIAL MULTI I/O) FLASH MEMORY
Macronix

MX25L6436EMI10G

64M-BIT [x 1/x 2/x 4] CMOS MXSMIOTM (SERIAL MULTI I/O) FLASH MEMORY
Macronix

MX25L6436EZNI10G

64M-BIT [x 1/x 2/x 4] CMOS MXSMIOTM (SERIAL MULTI I/O) FLASH MEMORY
Macronix

MX25L6436FM2I-08G

Flash, 16MX4, PDSO8, SOP-8
Macronix

MX25L6439E

64M-BIT [x 1 / x 4] CMOS MXSMIO® (SERIAL MULTI I/O) FLASH MEMORY
Macronix

MX25L6439EM2I10G

64M-BIT [x 1 / x 4] CMOS MXSMIO® (SERIAL MULTI I/O) FLASH MEMORY
Macronix

MX25L6439EMBI-10G

Flash, 16MX4, PDSO8, 0.200 INCH, HALOGEN FREE AND ROHS COMPLIANT, VSOP-8
Macronix

MX25L6439EMBI10G

64M-BIT [x 1 / x 4] CMOS MXSMIO® (SERIAL MULTI I/O) FLASH MEMORY
Macronix

MX25L6445E

64M-BIT [x 1/x 2/x 4] CMOS MXSMIOTM (SERIAL MULTI I/O) FLASH MEMORY
Macronix

MX25L6445EM

HIGH PERFORMANCE SERIAL FLASH SPECIFICATION
Macronix

MX25L6445EM2

HIGH PERFORMANCE SERIAL FLASH SPECIFICATION
Macronix