UPD160062N [NEC]

420-OUTPUT TFT-LCD SOURCE DRIVER; 420输出TFT -LCD源极驱动器
UPD160062N
型号: UPD160062N
厂家: NEC    NEC
描述:

420-OUTPUT TFT-LCD SOURCE DRIVER
420输出TFT -LCD源极驱动器

驱动器 输出元件 CD
文件: 总18页 (文件大小:212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µ PD160062  
420-OUTPUT TFT-LCD SOURCE DRIVER  
(COMPATIBLE WITH 64-GRAY SCALE)  
DESCRIPTION  
The µ PD160062 is a source driver for TFT-LCDs capable of dealing with displays with 64-gray scale. Data input is  
based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors  
by output of 64 values γ -corrected by an internal D/A converter and 5-by-2 external power modules.  
Because the output dynamic range is as large as VSS2 +0.1 V to VDD2 –0.1 V, level inversion operation of the LCD’s  
common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and  
column line inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter  
circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity.  
Assuring a clock frequency of 45 MHz when driving at 2.3 V, this driver is applicable to SXGA+ standard TFT-LCD  
panels.  
FEATURES  
• CMOS level input (2.3 to 3.6 V)  
• 420 outputs  
• Input of 6 bits (gray scale data) by 6 dots  
• Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter (R-DAC)  
• Logic power supply voltage (VDD1) : 2.3 to 3.6 V  
• Driver power supply voltage (VDD2) : 8.0 to 9.0 V  
• High-speed data transfer: fCLK = 45 MHz (internal data transfer speed when operating at VDD1 = 2.3 V)  
• Output dynamic range VSS2 +0.1 V to VDD2 –0.1 V  
• Apply for dot-line inversion, n-line inversion and column line inversion  
• Output voltage polarity inversion function (POL)  
• Input data inversion function (capable of controlling by each input port) (POL21, POL22)  
• Current consumption control function (LPC, HPC, Bcont)  
• Slim chip  
ORDERING INFORMATION  
Part Number  
Package  
µ PD160062N-×××  
TCP (TAB package)  
Remark The TCP’s external shape is customized. To order the required shape, please contact one of our sales  
representatives.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
Document No. S16449EJ1V0DS00 (1st edition)  
Date Published July 2003 NS CP(K)  
Printed in Japan  
2002  
µ PD160062  
1. BLOCK DIAGRAM  
STHR  
R,/L  
CLK  
STB  
STHL  
VDD1  
70-bit bidirectional shift register  
VSS1  
C1  
C2  
C69  
C70  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
Data register  
D40 to D45  
D50 to D55  
POL21, POL22  
POL  
Latch  
VDD2  
VSS2  
Level shifter  
V0 to V9  
D/A converter  
HPC  
LPC  
Voltage follower output  
Bcont  
S1  
S2  
S3  
S420  
Remark /xxx indicates active low signal.  
2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER  
S
1
S
2
S
419  
S
420  
5
5
V
0
V
4
Multi-  
plexer  
6-bit D/A converter  
V
5
V
9
POL  
Data Sheet S16449EJ1V0DS  
2
µ PD160062  
3. PIN CONFIGURATION (µ PD160062N-xxx: TCP) (Copper Foil Surface, Face-up)  
S
420  
S
419  
S
418  
S
417  
STHL  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
55  
54  
53  
52  
51  
50  
45  
44  
43  
42  
41  
40  
35  
34  
33  
32  
31  
30  
V
DD1  
R,/L  
V
V
V
V
V
9
8
7
6
5
V
DD2  
SS2  
Copper Foil  
Surface  
V
Bcont  
V
V
V
V
V
4
3
2
1
0
HPC  
V
SS1  
LPC  
CLK  
STB  
POL  
POL21  
POL22  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
25  
24  
23  
22  
21  
20  
15  
14  
13  
12  
11  
10  
05  
04  
03  
02  
01  
00  
S
4
3
2
1
S
S
S
STHR  
Remark This figure does not specify the TCP package.  
Data Sheet S16449EJ1V0DS  
3
µ PD160062  
4. PIN FUNCTIONS  
(1/2)  
Pin Symbol  
S1 to S420  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
R,/L  
Pin Name  
I/O  
Description  
Driver  
Output  
Input  
The D/A converted 64-gray-scale analog voltage is output.  
Display data  
The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by  
6 dots (2 pixels).  
DX0: LSB, DX5: MSB  
Shift direction  
control  
Input  
The shift direction control pin of shift register. The shift directions of the shift  
registers are as follows.  
R,/L = H (right shift) : STHR input, S1 S420, STHL output  
R,/L = L (left shift) : STHL input, S420 S1, STHR output  
STHR  
STHL  
CLK  
Right shift start  
pulse  
I/O  
I/O  
These refer to the start pulse I/O pins when driver ICs are connected in cascade.  
Fetching of display data starts when H is read at the rising edge of CLK.  
R,/L = H (right shift) : STHR input, STHL output  
R,/L = L (left shift) : STHL input, STHR output  
Left shift start  
pulse  
A H level should be input as the pulse of one cycle of the clock signal.  
If the start pulse input is more than 2 CLK, the first 1 CLK of the H level input is  
valid.  
Shift clock  
Input  
Refers to the shift register’s shift clock input. The display data is incorporated into  
the data register at the rising edge. At the rising edge of the 70th clock after the  
start pulse input, the start pulse output reaches the high level, thus becoming the  
start pulse of the next-level driver. If 72 clock pulses are input after input of the  
start pulse, input of display data is halted automatically. The contents of the shift  
register are cleared at the STB’s rising edge.  
STB  
POL  
Latch  
Input  
Input  
The contents of the data register are transferred to the latch circuit at the rising  
edge. And, at the falling edge, the gray scale voltage is supplied to the driver. It is  
necessary to ensure input of one pulse per horizontal period.  
POL = L: The S2n–1 output uses V0 to V4 as the reference supply. The S2n output  
uses V5 to V9 as the reference supply.  
Polarity input  
POL = H: The S2n–1 output uses V5 to V9 as the reference supply. The S2n output  
uses V0 to V4 as the reference supply.  
S2n1 indicates the odd output and S2n indicates the even output. Input of the POL  
signal is allowed the setup time (tPOL-STB) with respect to STB’s rising edge.  
Data inversion can invert when display data is loaded.  
POL21,  
POL22  
Data inversion  
Input  
POL21: Invert/not invert of display data D00 to D05, D10 to D15, D20 to D25  
POL22: Invert/not invert of display data D30 to D35, D40 to D45, D50 to D55  
POL21, POL22 = H: Data inversion loads display data after inverting it.  
POL21, POL22 = L: Data inversion does not invert input data.  
Controls the write function of the driver section by digitally controlling the bypass  
current of the output amplifier. Refer to 9. CURRENT CONSUMPTION  
CONTROL FUNCTION for details.  
LPC  
HPC  
Bcont  
Low power control  
High power control  
Bias control  
Input  
Input  
Input  
This pin is pulled up to the VDD1 power supply inside the IC.  
This pin can be used to finely control the bias current inside the output amplifier.  
Refer to 9. CURRENT CONSUMPTION CONTROL FUNCTION for details.  
When this fine-control function is not required, leave this pin open.  
Data Sheet S16449EJ1V0DS  
4
µ PD160062  
(2/2)  
Pin Symbol  
V0 to V9  
Pin Name  
I/O  
Description  
γ -corrected power  
Input the γ -corrected power supplies from outside by using operational amplifier.  
supplies  
Make sure to maintain the following relationships. During the gray scale voltage  
output, be sure to keep the gray scale level power supply at a constant level.  
VDD2 0.1 V V0 > V1 > V2 > V3 > V4 0.5 VDD2  
0.5 VDD2 V5 > V6 > V7 > V8 > V9 VSS2 +0.1 V  
VDD1  
VDD2  
VSS1  
VSS2  
Logic power supply  
Driver power supply  
Logic ground  
2.3 to 3.6 V  
8.0 to 9.0 V  
Grounding  
Grounding  
Driver ground  
Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0 to V9 in that order. Reverse  
this sequence to shut down.  
2. To stabilize the supply voltage, please be sure to insert a 0.1 µF bypass capacitor between  
V
DD1-VSS1 and VDD2-VSS2. Furthermore, for increased precision of the D/A converter, insertion of a  
bypass capacitor of about 0.01 µF is also recommended between the γ -corrected power supply  
terminals (V , V , V , ···, V  
0
1
2
9) and VSS2.  
Data Sheet S16449EJ1V0DS  
5
µ PD160062  
5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE  
The µ PD160062 incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively  
gray scale voltages of differing polarity with respect to the LCD’s counter electrode (common electrode) voltage. The  
D/A converter consists of ladder resistors and switches.  
The ladder resistors (r0 to r62) are designed so that the ratio of LCD panel γ -compensated voltages to V0’ to V63’  
and V0” to V63” is almost equivalent. For the 2 sets of five γ -compensated power supplies, V0 to V4 and V5 to V9,  
respectively, input gray scale voltages of the same polarity with respect to the common voltage. When fine gray scale  
voltage precision is not necessary, there is no need to connect a voltage follower circuit to the γ -compensated power  
supplies V1 to V3 and V6 to V8.  
Figure 51 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2 and VSS2,  
common electrode potential VCOM, and γ -corrected voltages V0 to V9 and the input data. Be sure to maintain the  
voltage relationships of  
VDD2 0.1 V V0 > V1 > V2 > V3 > V4 0.5 VDD2  
0.5 VDD2 V5 > V6 > V7 > V8 > V9 VSS2 +0.1 V  
Figures 52 shows γ -corrected power supply voltage and ladder resistors ratio and figure 53 shows the relationship  
between the input data and the output voltage.  
Figure 51. Relationship between Input Data and γ -corrected Power Supplies  
VDD2  
0.1 V  
Split interval  
16  
V0  
V1  
16  
16  
15  
V
2
3
V
V4  
V
COM  
0.5 VDD2  
V5  
15  
V
6
16  
16  
V
7
V8  
16  
V9  
0.1 V  
VSS2  
00  
10  
20  
30  
3F  
Input data (HEX)  
Data Sheet S16449EJ1V0DS  
6
µ PD160062  
Figure 52. γ -corrected Voltages and Ladder Resistors Ratio  
V
5
V
63’’  
V
0
V
0
rn  
Ratio 1  
8.00  
7.50  
7.00  
6.50  
6.00  
5.50  
5.50  
5.00  
5.00  
4.00  
4.00  
3.50  
3.50  
3.50  
3.00  
3.00  
3.00  
2.50  
2.50  
2.50  
2.00  
2.00  
2.00  
1.50  
1.50  
1.50  
1.50  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.00  
1.50  
1.50  
1.50  
2.00  
2.00  
2.50  
2.50  
3.00  
5.00  
8.00  
Ratio 2  
0.0505  
0.0473  
0.0442  
0.0410  
0.0379  
0.0347  
0.0347  
0.0315  
0.0315  
0.0252  
0.0252  
0.0221  
0.0221  
0.0221  
0.0189  
0.0189  
0.0189  
0.0158  
0.0158  
0.0158  
0.0126  
0.0126  
0.0126  
0.0095  
0.0095  
0.0095  
0.0095  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0063  
0.0095  
0.0095  
0.0095  
0.0126  
0.0126  
0.0158  
0.0158  
0.0189  
0.0315  
0.0505  
Value (
)  
r0  
544  
510  
476  
442  
408  
374  
374  
340  
340  
272  
272  
238  
238  
238  
204  
204  
204  
170  
170  
170  
136  
136  
136  
102  
102  
102  
102  
68  
r0  
r1  
r2  
r3  
r62  
r61  
r60  
r59  
r1  
V1  
V62’’  
V61’’  
V60’’  
r2  
r3  
r4  
V
2
3
r5  
r6  
V
r7  
r8  
r9  
r10  
r11  
r12  
r13  
r14  
r15  
r16  
r17  
r18  
r19  
r20  
r21  
r22  
r23  
r24  
r25  
r26  
r27  
r28  
r29  
r30  
r31  
r32  
r33  
r34  
r35  
r36  
r37  
r38  
r39  
r40  
r41  
r42  
r43  
r44  
r45  
r46  
r47  
r48  
r49  
r50  
r51  
r52  
r53  
r54  
r55  
r56  
r57  
r58  
r59  
r60  
r61  
r62  
r49  
r48  
r47  
r46  
r14  
r15  
r16  
r17  
V15  
V16  
V17  
V
V
V
49’’  
48’’  
47’’  
V1  
V6  
68  
68  
68  
68  
68  
68  
68  
68  
68  
68  
68  
68  
68  
68  
68  
68  
68  
r46  
r47  
r48  
r49  
r17  
r16  
r15  
r14  
68  
V47  
V
17’’  
16’’  
68  
68  
V48  
V
V
3
V8  
68  
68  
V49  
V15’’  
68  
68  
68  
102  
102  
102  
136  
136  
170  
170  
204  
340  
544  
10778  
68  
r60  
r2  
r1  
r0  
V2  
’’  
’’  
V
V
V
61  
r61  
r62  
62  
V1  
V9  
V4  
63  
V0’’  
Total resistance  
Minimum resistance value  
Remark The resistance ratio1 is a relative ratio in the case of setting the minimum resistance value to 1.  
The resistance ratio2 is a relative ratio in the case of setting the total resistance to 1.  
Caution There is no connection between V4 and V5 terminal in the chip.  
Data Sheet S16449EJ1V0DS  
7
µ PD160062  
Figure 53. Relationship between Input Data and Output Voltage (POL21, POL22 = L)  
(Output Voltage 1) VDD2 0.1 V V0 > V1 > V2 > V3 > V4 0.5 VDD2  
(Output Voltage 2) 0.5 VDD2 V5 > V6 > V7 > V8 > V9 VSS2 +0.1 V  
Input Data  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
Output Voltage 1  
Output Voltage 2  
V0'  
V1'  
V2'  
V3'  
V4'  
V5'  
V6'  
V7'  
V8'  
V9'  
V
V0''  
V
V0+(V -V )×  
V1+(V0-V1)×  
V1+(V0-V1)×  
V1+(V0-V1)×  
4930  
4420  
3944  
3502  
3094  
2720  
2346  
2006  
1666  
1394  
1122  
884  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
5474 V1'' V9+(V -V )×  
5474 V2'' V9+(V8-V9)×  
5474 V3'' V9+(V8-V9)×  
5474 V4'' V9+(V8-V9)×  
544  
1054  
1530  
1972  
2380  
2754  
3128  
3468  
3808  
4080  
4352  
4590  
4828  
5066  
5270  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
5474  
5474  
5474  
5474  
5474  
5474  
5474  
5474  
5474  
5474  
5474  
5474  
5474  
5474  
5474  
V1  
1
+(V0  
0
-V1  
1
)×  
5474 V5'' V9  
9
+(V8  
8
-V9  
9
)×  
V
V
1+(V  
0
-V  
1
)×  
5474 V6''  
5474 V7''  
V
V
9+(V  
8
-V  
9
)×  
+(V -V )×  
+(V -V )×  
V1+(V0-V1)×  
5474 V8'' V9+(V8-V9)×  
5474 V9'' V9+(V8-V9)×  
5474 V10'' V9+(V8-V9)×  
V1+(V0-V1)×  
V10' V1+(V0-V1)×  
V11' V1  
1
+(V0  
0
-V1  
1
)×  
5474 V11'' V9  
9
+(V8  
8
-V9  
9
)×  
V12'  
V13'  
V
V
1+(V  
0-V  
1
)×  
5474 V12''  
5474 V13''  
V
V
9+(V  
8-V  
9
)×  
+(V -V )×  
V14' V1+(V0-V1)×  
646  
+(V -V )×  
5474 V14'' V9+(V8-V9)×  
408  
V15' V1+(V0  
0
-V1  
1
)×  
204  
5474 V15'' V9+(V8  
8
-V9  
9
)×  
V16' V1  
V16'' V9  
V17' V1  
2
+(V  
1
-V  
-V  
2
)×  
1666  
1496  
1326  
1156  
1020  
884  
748  
646  
544  
442  
340  
272  
204  
136  
68  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
1870 V17'' V8  
8
+(V  
7
-V  
-V  
8
)×  
204  
374  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
1870  
1870  
1870  
1870  
1870  
1870  
1870  
1870  
1870  
1870  
1870  
1870  
1870  
1870  
1870  
V18'  
V19'  
V
V
2+(V  
1
2)×  
1870 V18''  
1870 V19''  
V
V
8+(V  
7
8)×  
+(V -V )×  
+(V -V )×  
544  
V20' V2+(V1-V2)×  
V21' V2+(V1-V2)×  
V22' V2+(V1-V2)×  
V23' V2+(V1-V2)×  
1870 V20'' V8+(V7-V8)×  
1870 V21'' V8+(V7-V8)×  
1870 V22'' V8+(V7-V8)×  
1870 V23'' V8+(V7-V8)×  
714  
850  
986  
1122  
1224  
1326  
1428  
1530  
1598  
1666  
1734  
1802  
V24' V2  
2
+(V1  
1
-V2  
2
)×  
1870 V24'' V8  
8
+(V7  
7
-V8  
8
)×  
V25'  
V
+(V -V )×  
1870 V25''  
V
+(V -V )×  
V26' V2+(V1-V2)×  
V27' V2+(V1-V2)×  
V28' V2+(V1-V2)×  
V29' V2+(V1-V2)×  
1870 V26'' V8+(V7-V8)×  
1870 V27'' V8+(V7-V8)×  
1870 V28'' V8+(V7-V8)×  
1870 V29'' V8+(V7-V8)×  
V30' V2  
2
+(V1  
1
-V2  
2
)×  
1870 V30'' V8  
8
+(V7  
7
-V8  
8
)×  
V31'  
V
+(V  
1
-V  
2
)×  
1870 V31''  
V
+(V  
7
-V  
8
)×  
V32' V2  
V32'' V8  
V33' V2+(V -V )×  
V34' V3+(V2-V3)×  
V35' V3+(V2-V3)×  
1020  
952  
884  
816  
748  
680  
612  
544  
476  
408  
340  
272  
204  
136  
68  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
1088 V33'' V7+(V -V )×  
1088 V34'' V7+(V6-V7)×  
1088 V35'' V7+(V6-V7)×  
68  
136  
204  
272  
340  
408  
476  
544  
612  
680  
748  
816  
884  
952  
1020  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
1088  
1088  
1088  
1088  
1088  
1088  
1088  
1088  
1088  
1088  
1088  
1088  
1088  
1088  
1088  
V36' V3  
3
+(V2  
2
-V3  
3
)×  
1088 V36'' V7  
7
+(V6  
6
-V7  
7
)×  
V37'  
V
+(V -V )×  
1088 V37''  
V
+(V -V )×  
V38' V3+(V2-V3)×  
V39' V3+(V2-V3)×  
V40' V3+(V2-V3)×  
V41' V3+(V2-V3)×  
1088 V38'' V7+(V6-V7)×  
1088 V39'' V7+(V6-V7)×  
1088 V40'' V7+(V6-V7)×  
1088 V41'' V7+(V6-V7)×  
V42' V3  
3
+(V2  
2
-V3  
3
)×  
1088 V42'' V7  
7
+(V6  
6
-V7  
7
)×  
V43'  
V44'  
V
V
3+(V  
2-V  
3)×  
1088 V43''  
1088 V44''  
V
V
7+(V  
6-V  
7)×  
+(V -V )×  
+(V -V )×  
V45' V3+(V2-V3)×  
1088 V45'' V7+(V6-V7)×  
V46' V3+(V2-V3)×  
1088 V46'' V7+(V6-V7)×  
V47' V3+(V2  
2
-V3  
3
)×  
1088 V47'' V7+(V6  
6
-V7  
7
)×  
V48' V3  
3
V48'' V7  
6
V49'  
V50'  
V
V
4+(V  
3
-V  
4
)×  
2278  
2210  
2142  
2074  
2006  
1904  
1802  
1700  
1564  
1428  
1258  
1088  
884  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2346 V49''  
2346 V50''  
V
V
6+(V  
5
-V  
6
)×  
68  
136  
/
/
/
/
/
/
/
/
/
/
/
/
/
/
2346  
2346  
2346  
2346  
2346  
2346  
2346  
2346  
2346  
2346  
2346  
2346  
2346  
2346  
+(V -V )×  
+(V -V )×  
V51' V4+(V3-V4)×  
V52' V4+(V3-V4)×  
V53' V4+(V3-V4)×  
2346 V51'' V6+(V5-V6)×  
2346 V52'' V6+(V5-V6)×  
2346 V53'' V6+(V5-V6)×  
204  
272  
340  
V54' V4  
4
+(V3  
3
-V4  
4
)×  
2346 V54'' V6  
6
+(V5  
5
-V6  
6
)×  
442  
V55'  
V56'  
V
V
4+(V  
3-V  
4)×  
2346 V55''  
2346 V56''  
V
V
6+(V  
5-V  
6)×  
544  
+(V -V )×  
+(V -V )×  
646  
V57' V4+(V3-V4)×  
V58' V4+(V3-V4)×  
V59' V4+(V3-V4)×  
V60' V4+(V3-V4)×  
2346 V57'' V6+(V5-V6)×  
2346 V58'' V6+(V5-V6)×  
2346 V59'' V6+(V5-V6)×  
2346 V60'' V6+(V5-V6)×  
782  
918  
1088  
1258  
1462  
1802  
V61' V4  
4
+(V3  
3
-V4  
4
)×  
2346 V61'' V6  
6
+(V5  
5
-V6  
6
)×  
V62'  
V
+(V  
3
-V  
4
)×  
544  
2346 V62''  
V
+(V  
5
-V  
6
)×  
V63' V4  
4
V63'' V6  
5
Data Sheet S16449EJ1V0DS  
8
µ PD160062  
6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN  
Data format: 6 bits × 2 RGBs (6 dots)  
Input width: 36 bits (2-pixel data)  
(1) R,/L = H (right shift)  
Output  
Data  
S1  
S2  
S3  
S4  
xxx  
xxx  
S419  
S420  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
(2) R,/L = L (left shift)  
Output  
Data  
S1  
S2  
S3  
S4  
xxx  
xxx  
S419  
S420  
D00 to D05  
D10 to D15  
D20 to D25  
D30 to D35  
D40 to D45  
D50 to D55  
Note  
Note  
S2n1  
S2n  
POL  
L
V0 to V4  
V5 to V9  
V5 to V9  
V0 to V4  
H
Note S2n1 (odd output), S2n (even output)  
7. RELATIONSHIP BETWEEN STB, POL AND OUTPUT WAVEFORM  
The output voltage is written to the LCD panel synchronized with the STB falling edge.  
STB  
POL  
S
2n-1  
Selected voltage V  
0
to V  
4
Selected voltage V  
5
to V  
9
Selected voltage V  
0
to V  
4
S
2n  
Selected voltage V  
0
to V  
4
Selected voltage V  
5
to V  
9
Selected voltage V  
5
to V  
9
Hi-Z  
Hi-Z  
Hi-Z  
Remark Hi-Z: High impedance  
Data Sheet S16449EJ1V0DS  
9
µ PD160062  
8. RELATIONSHIP BETWEEN STB, CLK AND OUTPUT WAVEFORM  
The output voltage is written to the LCD panel synchronized with the STB falling edge.  
Figure 81. Output Circuit Block Diagram  
Output Amp.  
DAC  
+
S
n
SW1  
(V  
X)  
V
AMP(IN)  
Figure 82. Output Circuit Timing Waveform  
[1] [2]  
CLK  
(External input)  
STB  
(External input)  
SW1: ON  
SW1: OFF  
SW1: ON  
VAMP(IN)  
S
n
(VOUT: External output)  
Output  
Output  
Hi-Z  
Remarks 1. STB = L: SW1 = ON, STB = H: SW1 = OFF  
2. STB = H is acknowledged at timing [1] .  
3. The display data latch is completed at timing [2] and the input voltage (VAMP(IN): gray-scale level  
voltage) of the output amplifier changes.  
Data Sheet S16449EJ1V0DS  
10  
µ PD160062  
9. CURRENT CONSUMPTION CONTROL FUNCTION  
The µ PD160062 has a power control function which can switch the bias current of the output amplifier between four  
levels and a bias control function (Bcont) which can be used to finely control the bias current.  
< Power control function (LPC, HPC) >  
The bias current of the output amplifier can be switched between four levels using LPC (Low Power Control) pins  
and HPC (High Power Control) pins (show in below table).  
Power Mode  
LPC  
HPC  
High  
L
L
Middle  
Normal  
Low  
H or open  
L
L
H or open  
H or open  
H or open  
Following graph shows the relationship between each power modes and bias current.  
High  
Middle  
Normal  
Low  
6.00  
7.00  
8.00  
9.00  
VDD2  
Remark This relationship is founded on results of simulation and don’t assuring a characteristics of this product.  
Data Sheet S16449EJ1V0DS  
11  
µ PD160062  
< Bias Current Control Function (Bcont) >  
It is possible to fine-control the current consumption by using the bias current control function (Bcont pin). When  
using this function, connect this pin to the stabilized ground potential (VSS2) via an external resistor (REXT). When not  
using this function, leave this pin open.  
Figure 91. Bias Current Control Function (Bcont)  
HPC  
LPC  
H/L  
H/L  
µ
PD160062  
B
cont  
REXT  
VSS2  
Refer to the table below for the percentage of current regulation when using the bias current control function.  
Table 91. Current Consumption Regulation Percentage Compared to Normal Mode (VDD1 = 3.3 V, VDD2 = 8.7 V)  
Current Consumption Regulation Percentage (%)  
REXT (k)  
LPC = L  
100  
LPC = H/open  
(Open)  
65  
70  
80  
85  
50  
20  
10  
110  
115  
120  
Remark The above current consumption regulation percentages are founded on  
results of simulation and don’t assuring a characteristics of this product.  
Caution Because the power and bias-current control functions control the bias current in the output amplifier  
and regulate the over-all current consumption of the driver IC, when this occurs, the characteristics  
of the output amplifier will simultaneously change. Therefore, when using these functions, be sure  
to sufficiently evaluate the picture quality.  
Data Sheet S16449EJ1V0DS  
12  
µ PD160062  
10. ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings (TA = 25°C, VSS1 = VSS2 = 0 V)  
Parameter  
Symbol  
Rating  
Unit  
V
0.5 to +4.0  
Logic Part Supply Voltage  
Driver Part Supply Voltage  
Logic Part Input Voltage  
Driver Part Input Voltage  
Logic Part Output Voltage  
Driver Part Output Voltage  
Operating Ambient Temperature  
Storage Temperature  
VDD1  
0.5 to +10.0  
0.5 to VDD1 +0.5  
0.5 to VDD2 +0.5  
0.5 to VDD1 +0.5  
0.5 to VDD2 +0.5  
10 to +75  
VDD2  
VI1  
V
V
VI2  
V
VO1  
VO2  
TA  
V
V
°C  
°C  
55 to +125  
Tstg  
Caution Product qualify may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter/ That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
Recommended Operating Range (TA = 10 to +75°C, VSS1 = VSS2 = 0 V)  
Parameter  
Symbol  
Conditions  
MIN.  
TYP.  
8.5  
MAX.  
Unit  
V
Logic Part Supply Voltage  
Driver Part Supply Voltage  
High-Level Input Voltage  
Low-Level Input Voltage  
γ -corrected Voltage  
VDD1  
2.3  
8.0  
3.6  
9.0  
VDD2  
VIH  
V
0.7 VDD1  
0
VDD1  
V
VIL  
0.3 VDD1  
VDD2 0.1  
V
V0 to V4  
V5 to V9  
VO  
0.5 VDD2  
VSS2 +0.1  
VSS2 +0.1  
V
0.5 VDD2  
V
VDD2 0.1  
Driver Part Output Voltage  
Maximum Clock Frequency  
V
VDD1 = 2.3 V  
fCLK  
45  
MHz  
Data Sheet S16449EJ1V0DS  
13  
µ PD160062  
Electrical Characteristics (TA = 10 to +75°C, VDD1 = 2.3 to 3.6 V, VDD2 = 8.0 to 9.0 V, VSS1 = VSS2 = 0 V,  
unless otherwise specified, power mode = normal, Bcont = open.)  
Parameter  
Symbol  
IIL  
Conditions  
MIN.  
VDD1 0.1  
5.4  
TYP.  
MAX.  
1.0  
Unit  
µA  
V
Input Leak Current  
High-Level Output Voltage  
Low-Level Output Voltage  
γ -corrected Resistance  
VOH  
VOL  
STHR (STHL), IOH = 0 mA  
STHR (STHL), IOL = 0 mA  
VDD2 = 8.5 V, V0 to V4 = V5 to V9 =  
4.0 V  
0.1  
V
kΩ  
Rγ  
10.8  
21.6  
Note  
30  
µA  
µA  
VX = 7.0 V, VOUT = 6.5 V  
Driver Output Current  
IVOH  
IVOL  
VO  
Note  
VX = 1.0 V, VOUT = 1.5 V  
30  
7
2
20  
15  
Output Voltage Deviation  
TA = 25°C, VDD1 = 3.3 V,  
VDD2 = 8.5 V,  
mV  
VP–P  
IDD1  
Output swing difference  
deviation  
mV  
mA  
mA  
VOUT = 2.0 V, 4.25 V, 6.5 V  
Logic Part Dynamic Current  
Consumption  
VDD1  
1.0  
3.0  
6.5  
6.5  
Driver Part Dynamic  
Current Consumption  
IDD2  
VDD2, with no load  
Note VX refers to the output voltage of analog output pins S1 to S420. VOUT refers to the voltage applied to analog  
output pins S1 to S420.  
Cautions 1. fSTB = 64 kHz, fCLK = 40 MHz  
2. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the  
measured values in the dot checkerboard input pattern.  
3. Refers to the current consumption per driver when cascades are connected under the  
assumption of SXGA+ single-sided mounting (10 units).  
Switching Characteristics (TA = 10 to +75°C, VDD1 = 2.3 to 3.6 V, VDD2 = 8.0 to 9.0 V, VSS1 = VSS2 = 0 V,  
unless otherwise specified, power mode = normal, Bcont = open.)  
Parameter  
Symbol  
Conditions  
CL = 10 pF  
MIN.  
TYP.  
10  
2.5  
5
MAX.  
Unit  
Start Pulse Delay Time  
Driver Output Delay Time  
tPLH1  
20  
5
ns  
µs  
µs  
µs  
µs  
pF  
CL = 75 pF, RL = 5 kΩ  
tPLH2  
tPLH3  
tPHL2  
tPHL3  
CI1  
8
2.5  
5
5
8
Input Capacitance  
STHR (STHL) excluded,  
TA = 25°C  
10  
CI2  
STHR (STHL), TA = 25°C  
10  
pF  
Data Sheet S16449EJ1V0DS  
14  
µ PD160062  
Timing Requirement (TA = 10 to +75°C, VDD1 = 2.3 to 3.6 V, VSS1 = 0 V, tr = tf = 5.0 ns)  
Parameter  
Clock Pulse Width  
Symbol  
Conditions  
MIN.  
22  
4
TYP.  
MAX.  
Unit  
ns  
PWCLK  
Clock Pulse High Period  
Clock Pulse Low Period  
Data Setup Time  
PWCLK(H)  
PWCLK(L)  
tSETUP1  
tHOLD1  
ns  
4
ns  
4
ns  
Data Hold Time  
0
ns  
Start Pulse Setup Time  
Start Pulse Hold Time  
POL21, POL22 Setup Time  
POL21, POL22 Hold Time  
STB Pulse Width  
tSETUP2  
tHOLD2  
4
ns  
0
ns  
tSETUP3  
tHOLD3  
4
ns  
0
ns  
PWSTB  
tLDT  
2
CLK  
CLK  
ns  
Last Data Timing  
2
CLK ↑ → STB ↑  
CLK-STB Time  
tCLK-STB  
tSTB-CLK  
tSTB-STH  
tPOL-STB  
tSTB-POL  
6
STB ↑ → CLK ↑  
STB-CLK Time  
9
ns  
STB ↑ → STHR(STHL) ↑  
POL or ↓ → STB ↑  
STB ↓ → POL or ↑  
Time Between STB and Start Pulse  
POL-STB Time  
2
CLK  
ns  
–5  
6
STB-POL Time  
ns  
Remark Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.  
Data Sheet S16449EJ1V0DS  
15  
PWCLK(L) PWCLK  
PWCLK(H)  
tr  
tf  
1
2
V
DD1  
SS1  
90%  
1
2
3
70  
71  
72  
513  
514  
CLK  
V
10%  
tSETUP2  
tHOLD2  
tSTB-CLK  
tCLK-STB  
V
DD1  
SS1  
STHR  
(1st Dr.)  
V
tSETUP1  
tHOLD1  
tSTB-STH  
V
DD1  
SS1  
D
409 to  
414  
D
415 to  
420  
D
421 to  
426  
D
3067 to  
D
n0 to Dn5  
INVALID  
INVALID  
D
1
to D  
6
D
7
to D12  
INVALID  
D
1
to D  
6
D7 to D12  
D
D
D
D
3072  
V
tSETUP3  
tHOLD3  
V
DD1  
SS1  
POL21,  
POL22  
INVALID  
V
t
PLH1  
V
DD1  
SS1  
STHL  
(1st Dr.)  
V
tLDT  
PWSTB  
V
DD1  
SS1  
STB  
POL  
V
tPOL-STB  
t
STB-POL  
V
DD1  
SS1  
V
tPLH3  
Hi-Z  
tPLH2  
S
n
Target voltage 0.1 VDD2  
6-bit accuracy  
(VX)  
t
PHL2  
PHL3  
t
µ PD160062  
11. RECOMMENDED MOUNTING CONDITIONS  
The following conditions must be met for soldering conditions of the µ PD160062.  
For more details, refer to the Semiconductor Device Mount Manual  
(http://www.necel.com/pkg/en/mount/index.html).  
Please consult with our sales offices in case other soldering process is used, or in case the soldering is done under  
different conditions.  
µ PD160062N-×××: TCP (TAB package)  
Mounting Condition  
Thermocompression  
Mounting Method  
Soldering  
Condition  
Heating tool 300 to 350°C, heating for 2 to 3 seconds, pressure 100g (per  
solder)  
ACF  
Temporary bonding 70 to 100°C, pressure 3 to 8 kg/cm2, time 3 to 5 seconds.  
Real bonding 165 to 180°C, pressure 25 to 45 kg/cm2, time 30 to 40 seconds.  
(When using the anisotropy conductive film SUMIZAC1003 of Sumitomo  
Bakelite, Ltd.)  
(Adhesive Conductive  
Film)  
Caution To find out the detailed conditions for packaging the ACF part, please contact the ACF  
manufacturing company. Be sure to avoid using two or more packaging methods at a time.  
Data Sheet S16449EJ1V0DS  
17  
µ PD160062  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
Data Sheet S16449EJ1V0DS  
18  

相关型号:

UPD160062N-XXX

420-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD160081

UPD160081 Data Sheet | Data Sheet[06/2003]
ETC

UPD160082NL-XXX

Liquid Crystal Driver, 384-Segment, DIE
NEC

UPD160083

480-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD160083N

480-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD160083N-XXX

480-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD160083NL

480-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD160083NL-XXX

480-OUTPUT TFT-LCD SOURCE DRIVER
NEC

UPD160903

UPD160903 Data Sheet | Data Sheet[06/2001]
ETC

UPD160903N-XXX

Liquid Crystal Driver, 402-Segment, MOS, TCP
NEC

UPD160970

8-ch level shift driver IC
NEC

UPD160970MA

8-ch level shift driver IC
NEC