UPD16510 [NEC]

VERTICAL DRIVER FOR CCD SENSOR; 垂直驱动器,用于CCD传感器
UPD16510
型号: UPD16510
厂家: NEC    NEC
描述:

VERTICAL DRIVER FOR CCD SENSOR
垂直驱动器,用于CCD传感器

驱动器 传感器 CD
文件: 总16页 (文件大小:72K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µ PD16510  
VERTICAL DRIVER FOR CCD SENSOR  
The µPD16510 is a vertical driver dedicated for CCD area image sensors that incorporates a level conversion  
circuit and a three-level output function. It contains a CCD vertical register driver (4 channels) and a VOD shutter  
driver (1 channel).  
The µPD16510, which uses the CMOS process, provides optimum transmission delay and output ON resistance  
characteristics for the vertical drive of CCD sensors. It can be used for low-voltage logic (logic power-supply voltage:  
2.0 to 5.5 V).  
FEATURES  
CCD vertical register driver : 4 channels, VOD shutter driver: 1 channel  
Small package  
: 20-pin plastic shrink SOP (225 mil)  
: 33 V MAX.  
High breakdown voltage  
Low output ON resistance : 30 TYP.  
Low voltage operation (logic power-supply voltage: 2.0 to 5.5 V)  
Latch-up free  
Pin-compatible with µPD16506 (CCD driver)  
APPLICATIONS  
Camcorders  
ORDERING INFORMATION  
Part Number  
Package  
µ PD16510GR-8JG  
20-pin plastic shrink SOP (225 mil)  
The information in this document is subject to change without notice.  
Document No. S12191EJ2V0DS00 (2nd edition)  
(Previous No. IC-3448)  
The mark  
shows major revised points.  
Date Published May 1997 N  
Printed in Japan  
1994  
µPD16510  
BLOCK DIAGRAM  
V
sb  
20  
16  
2
4
V
V
DD2a  
DD2b  
V
DD1  
19  
V
DD1  
V
DD2a  
V
SS  
Three  
5
3
TO  
1
level  
TI  
1
7
V
SS  
V
DD2b  
PG  
BI  
1
1
8
9
Two  
level  
BO  
1
V
SS  
V
DD1  
Input interface  
(2.0 to 5.5 V)  
V
DD2a  
TI  
2
14  
13  
12  
Three  
level  
17 TO  
2
PG  
2
2
V
SS  
V
DD2b  
BI  
Two  
level  
18 BO  
2
SUBI 10  
NC 11  
V
SS  
sb  
V
Two  
level  
1
SUBO  
V
CC  
6
V
SS  
GND 15  
2
µPD16510  
PIN CONFIGURATION  
20-pin plastic shrink SOP (225 mil)  
SUBO  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
sb  
VSS  
VDD2b  
BO  
1
3
BO  
TO  
2
VDD2a  
4
2
TO  
1
5
VDD1  
VCC  
6
GND  
TI  
PG  
BI  
NC  
TI  
1
1
1
7
2
PG  
BI  
8
2
9
2
SUBI  
10  
Remark The µPD16510 is pin-compatible with the µPD16506 (CCD driver).  
However, the VOD shutter drive pulse input polarity switching pin (SSP) of the µPD16506 corresponds  
to the GND pin in the µPD16510 (pin 15).  
PIN FUNCTIONS  
No.  
1
Symbol  
SUBO  
VSS  
I/O  
O
O
O
I
Pin Function  
VOD shutter drive pulse output  
2
VL power supply  
3
BO1  
VDD2a  
TO1  
VCC  
Two-level pulse output  
4
VMa (Three-level driver) power supply  
Three-level pulse output  
5
6
Logic power supply  
7
TI1  
Three-level driver input (See Functions table on p. 4)  
8
PG1  
BI1  
I
9
I
Two-level driver input (See Functions table on p. 4)  
VOD shutter drive pulse input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SUBI  
NC  
I
I
Non connect  
BI2  
Two-level driver input (See Functions table on p. 4)  
Three-level driver input (See Functions table on p. 4)  
PG2  
TI2  
I
I
GND  
VDD1  
TO2  
BO2  
VDD2b  
Vsb  
O
O
Ground  
VH power supply  
Three-level pulse output  
Two-level pulse output  
VMb (Two-level driver) power supply  
VHH (for SUB drive) power supply  
3
µPD16510  
FUNCTIONS  
VL = VSS, VMa = VDD2a, VMb = VDD2b, VH = VDD1, VHH = Vsb  
Pin TO1  
Pin TO2  
Input  
Input  
Output (TO1)  
Output (TO2)  
TI1  
L
PG1  
L
TI2  
L
PG2  
L
VH  
VMa  
VL  
VH  
VMa  
VL  
L
H
L
H
H
H
L
H
H
L
H
H
Pin BO1  
Pin BO2  
Input  
Pin SUBO  
Input  
BI1  
L
Input  
SUBI  
L
Output (BO1)  
Output (BO2)  
Output (SUBO)  
BI2  
L
VMb  
VL  
VMb  
VL  
VHH  
VL  
H
H
H
Usage Caution  
Because the µPD16510 contains a PN junction (diode) between VDD2 VDD1, if the voltage is VDD2 > VDD1, an  
abnormal current will result.  
Therefore, apply power in the sequence VDD1 VDD2, or apply power simultaneously to VDD1 and VDD2.  
4
µPD16510  
ELECTRICAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS (Unless otherwise specified, TA = 25 ˚C, GND = 0 V)  
Parameter  
Power supply voltage  
Power supply voltage  
Power supply voltage  
Power supply voltage  
Input voltage  
Symbol  
VCC  
VDD1  
VDD2  
Vsb  
Conditions  
Rating  
Unit  
VSS–0.3 to VSS+20.0  
VSS–0.3 to VSS+33.0  
VSS–0.3 to VSS+33.0  
VSS–0.3 to VSS+33.0  
VSS–0.3 to VCC+0.3  
–25 to +85  
V
V
V
V
VI  
V
Operating ambient temperature  
Storage temperature  
Power dissipation  
TA  
°C  
°C  
mW  
Tstg  
Pd  
–40 to +125  
TA = 85 °C  
260  
Caution Exposure to Absolute Maximum Rating for extended periods may affect device reliability;  
exceeding the ratings could cause permanent damage. The parameters apply independently.  
RECOMMENDED OPERATING CONDITIONS (TA = 25 ˚C, GND = 0 V)  
Parameter  
Power supply voltage  
Power supply voltage  
Power supply voltage  
Power supply voltage  
Power supply voltage  
Power supply voltage  
Power supply voltage  
Input voltage, high  
Symbol  
VCC  
Conditions  
MIN.  
2.0  
TYP.  
15.0  
MAX.  
5.5  
Unit  
V
VDD1  
Note  
Note  
10.5  
20.5  
–1.0  
–1.0  
–10.0  
21.0  
31.0  
+4.0  
+4.0  
–6.0  
31.0  
VCC  
V
VDD1–VSS  
VDD2a  
VDD2b  
VSS  
V
V
V
Note  
V
Vsb–VSS  
VIH  
V
–0.8 VCC  
V
Input voltage, low  
VIL  
0
0.3 VCC  
+70  
V
Operating ambient temperature  
TA  
–20  
°C  
Note Set the values of VDD1 and VSS to conform to VDD1–VSS specification value.  
5
µPD16510  
ELECTRICAL CHARACTERISTICS  
(Unless otherwise specified, VDD1 = +15 V, VDD2a = 0 V, VDD2b = +1.0 V, Vsb = +21.5 V, VCC = +2.5 V,  
VSS = –7.0 V, TA = 25 °C, GND = 0 V)  
Parameter  
Symbol  
VH  
Conditions  
MIN.  
TYP.  
MAX.  
VDD1  
VDD2a  
VDD2b  
VSS  
Vsb  
Unit  
V
Output voltage, high  
Output voltage, middle  
Output voltage, middle  
Output voltage, low  
Output voltage, sub high  
Output voltage, sub low  
Output ON resistance  
Output ON resistance  
Output ON resistance  
Output ON resistance  
Transmission delay time 1  
Transmission delay time 2  
Transmission delay time 3  
Rise/Fall time 1  
IO = –20 µA  
IO = 20 µA  
VDD1–0.1  
VDD2a–0.1  
VDD2b–0.1  
VSS+0.1  
Vsb–0.1  
VSS+0.1  
VMa  
VMb  
VL  
V
V
V
VsubH  
VsubL  
RL  
IO = –20 µA  
IO = 20 µA  
V
VSS  
30  
V
IO = 10 mA  
IO = ±10 mA  
IO = –10 mA  
20  
30  
30  
30  
RM  
45  
RH  
40  
Rsub  
TD1  
TD2  
TD3  
TP1  
40  
No load, see Figure 2. Timing Chart.  
200  
200  
200  
500  
500  
200  
1.0  
ns  
ns  
ns  
ns  
ns  
ns  
mA  
mA  
mA  
mA  
mA  
See Figure 1. Output Load Circuit.  
See Figure 2. Timing Chart.  
Rise/Fall time 2  
TP2  
Rise/Fall time 3  
TP3  
Consumption Current  
Consumption Current  
Consumption Current  
Consumption Current  
Consumption Current  
ICC  
See Figure 1. Output Load Circuit.  
See Figure 3. Input Waveform.  
0.5  
3.0  
3.0  
1.5  
1.2  
IDD2a  
IDD2b  
lDD1  
Isb  
5.0  
5.0  
3.0  
1.8  
Figure 1. Output Load Circuit  
2000 pF  
2000 pF  
1000 pF  
TO1  
BO1  
BO2  
3000 pF  
2000 pF  
3000 pF  
1000 pF  
SUBO  
TO2  
1600 pF  
2000 pF  
6
µPD16510  
Figure 2. Timing Chart  
BI  
1
, BI  
2
2
TI  
1
, TI  
T
D1  
T
D1  
V
V
Mb  
Ma  
BO  
1
, BO  
2
2
TO  
1
, TO  
V
L
T
P1  
T
P1  
PG  
1, PG  
2
T
D2  
T
D2  
V
V
H
TO  
1, TO  
2
Ma  
T
P2  
T
P2  
SUBI  
T
D3  
T
D3  
V
V
HH  
SUBO  
L
T
P3  
T
P3  
7
µPD16510  
Figure 3. Input Waveform  
Input pulse timing diagram  
63.5 µs  
127 µs  
2 µs  
Tl2  
Tl1  
Bl1  
Bl2  
PG1  
2.5 µs  
PG2  
63.5µs  
2.5 µs  
16.7 ms  
2 µs  
SUBI  
Overlap section enlarged diagram  
Tl1  
Bl1  
Tl2  
Bl2  
µs  
4.9  
0
0.7  
1.4  
2.1  
2.8  
3.5  
4.2  
8
µPD16510  
APPLICATION CIRCUIT EXAMPLE  
VSS  
VCC  
VDD1  
VSUB (substrate voltage)  
CCD  
SUB  
0.1 µF  
1 M  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SUBO  
V
sb  
0.1 µF  
0.1 µF  
VSS  
V
DD2b  
V1  
V2  
V3  
V4  
3
BO  
1
BO  
2
2
4
VDD2a  
TO  
µ
SSG  
5
TO1  
VDD1  
0.1 µF  
SUB  
TG  
V1  
0.1 µF  
6
VCC  
GND  
7
Tl1  
Tl  
PG  
Bl  
2
2
2
V2  
8
PG  
1
V3  
V4  
9
Bl1  
10  
SUBI  
NC  
9
µPD16510  
PACKAGE DRAWING  
20 PIN PLASTIC SHRINK SOP (225mil)  
20  
11  
detail of lead end  
H
I
1
10  
A
J
N
B
L
C
M
M
D
NOTE  
ITEM MILLIMETERS  
INCHES  
Each lead centerline is located within 0.10 mm (0.004 inch) of  
its true position (T.P.) at maximum material condition.  
A
B
C
7.00 MAX.  
0.575 MAX.  
0.65 (T.P.)  
0.276 MAX.  
0.023 MAX.  
0.026 (T.P.)  
+0.10  
0.22  
+0.004  
0.009  
D
–0.05  
–0.003  
E
F
0.1±0.1  
0.004±0.004  
0.057 MAX.  
1.45 MAX.  
+0.005  
0.045  
G
H
I
1.15±0.1  
6.4±0.2  
4.4±0.1  
–0.004  
0.252±0.008  
+0.005  
0.173  
–0.004  
+0.009  
0.039  
J
K
L
1.0±0.2  
–0.008  
+0.10  
0.15  
+0.004  
0.006  
–0.05  
–0.002  
+0.008  
0.020  
0.5±0.2  
–0.009  
M
N
0.10  
0.10  
0.004  
0.004  
+7˚  
3˚  
+7˚  
3˚  
P
–3˚  
–3˚  
P20GR-65-225C-1  
10  
µPD16510  
RECOMMENDED SOLDERING CONDITIONS  
When soldering this product, it is highly recommended to observe the conditions as shown below. If other soldering  
processes are used, or if the soldering is performed under different conditions, please make sure to consult with our  
sales offices.  
For more details, refer to our document “SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL”  
(C10535E).  
Surface mount device  
µPD16510GR-8JG: 20-pin plastic shrink SOP (225 mil)  
Process  
Conditions  
Symbol  
Infrared ray reflow  
Peak temperature: 235 °C or below (Package surface temperature),  
Reflow time: 30 seconds or less (at 210 °C or higher),  
Maximum number of reflow processes: 3 times.  
IR35-00-3  
VPS  
Peak temperature: 215 °C or below (Package surface temperature),  
Reflow time: 40 seconds or less (at 200 °C or higher),  
Maximum number of reflow processes: 3 times.  
VP15-00-3  
WS60-00-1  
Wave soldering  
Solder temperature: 260 °C or below, Flow time: 10 seconds or less,  
Maximum number of flow processes: 1 time,  
Pre-heating temperature: 120 °C or below (Package surface temperature).  
Partial heating method Pin temperature: 300 °C or below,  
Heat time: 3 seconds or less (Per each side of the device).  
Caution Apply only one kind of soldering condition to a device, except for “partial heating method”, or the  
device will be damaged by heat stress.  
11  
µPD16510  
[MEMO]  
12  
µPD16510  
[MEMO]  
13  
µPD16510  
[MEMO]  
14  
µPD16510  
NOTES FOR CMOS DEVICES  
1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note: Strong electric field, when exposed to a MOS device, can cause destruction  
of the gate oxide and ultimately degrade the device operation. Steps must  
be taken to stop generation of static electricity as much as possible, and  
quickly dissipate it once, when it has occurred. Environmental control must  
be adequate. When it is dry, humidifier should be used. It is recommended  
to avoid using insulators that easily build static electricity. Semiconductor  
devices must be stored and transported in an anti-static container, static  
shielding bag or conductive material. All test and measurement tools  
including work bench and floor should be grounded. The operator should  
be grounded using wrist strap. Semiconductor devices must not be touched  
with bare hands. Similar precautions need to be taken for PW boards with  
semiconductor devices on it.  
2 HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note: No connection for CMOS device inputs can be cause of malfunction. If no  
connection is provided to the input pins, it is possible that an internal input  
level may be generated due to noise, etc., hence causing malfunction. CMOS  
device behave differently than Bipolar or NMOS devices. Input levels of  
CMOS devices must be fixed high or low by using a pull-up or pull-down  
circuitry. Each unused pin should be connected to VDD or GND with a  
resistor, if it is considered to have a possibility of being an output pin. All  
handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note: Power-on does not necessarily define initial status of MOS device. Produc-  
tion process of MOS does not define the initial operation status of the device.  
Immediately after the power source is turned ON, the devices with reset  
function have not yet been initialized. Hence, power-on does not guarantee  
out-pin levels, I/O settings or contents of registers. Device is not initialized  
until the reset signal is received. Reset operation must be executed imme-  
diately after power-on for devices having reset function.  
15  
µPD16510  
[MEMO]  
The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
Anti-radioactive design is not implemented in this product.  
M4 96.5  

相关型号:

UPD16510AGR-8JG-E1-A

SPECIALTY INTERFACE CIRCUIT, PDSO20, 5.72 MM, LEAD FREE, PLASTIC, SSOP-20
RENESAS
RENESAS

UPD16510GR-8JG

VERTICAL DRIVER FOR CCD SENSOR
NEC

UPD16520

VERTICAL DRIVER FOR CCD SENSORS
NEC

UPD16520A

VERTICAL DRIVER FOR CCD SENSORS
NEC

UPD16520AFH-2Q1

VERTICAL DRIVER FOR CCD SENSORS
NEC

UPD16520AFH-2Q1-E4-A

IC,CCD DRIVER,CMOS,BGA,42PIN,PLASTIC
RENESAS

UPD16520GS-BGG

VERTICAL DRIVER FOR CCD SENSORS
NEC

UPD166007T1F

Buffer/Inverter Based Peripheral Driver, 130A, TO-252, 5 PIN
NEC

UPD16601

MOS Integrated Circuit
NEC

UPD166010T1F-E1-AY

UPD166010T1F-E1-AY
RENESAS

UPD166011T1J

INTELLIGENT POWER DEVICE
RENESAS