UPD16680P [NEC]

1/53, 1/40 DUTY, LCD CONTROLLER/DRIVER WITH BUILT-IN RAM; 1/53 , 1/40 DUTY , LCD控制器/驱动器,具有内置RAM
UPD16680P
型号: UPD16680P
厂家: NEC    NEC
描述:

1/53, 1/40 DUTY, LCD CONTROLLER/DRIVER WITH BUILT-IN RAM
1/53 , 1/40 DUTY , LCD控制器/驱动器,具有内置RAM

驱动器 控制器 CD
文件: 总44页 (文件大小:284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µ
PD16680  
1/53, 1/40 DUTY, LCD CONTROLLER/DRIVER WITH BUILT-IN RAM  
DESCRIPTION  
The µPD16680 is a driver which contains a RAM capable of full - dot LCD display. The single µPD16680 IC chip can  
operate a full - dot (up to 100 by 51 dots) LCD and pictographs (100 pictographs).  
The µPD16680 can operate on single 3 V-power supply, is suitable for graphic pagers and cellular.  
FEATURES  
LCD driver with a built-in display RAM  
Can operate on single 3 V-power supply  
Booster circuit incorporated : Switchable 3 or 4 folds  
Dot display RAM : 100 x 51 bits  
Pictographic display RAM : 100 bits  
Pictographic display's duty changeable : 1/53 or 1/40 duty  
Output for full-dot : 100 segments and 52 commons  
Data input based on serial & 4-bit / 8-bit parallel switch over  
String resister to output bias level incorporated  
Selectable LCD driving bias level (select from 1/8 bias, 1/7 bias, 1/6 bias)  
Oscillation circuit incorporated  
D/A converter incorporated (for LCD driving voltage adjustment)  
ORDERING INFORMATION  
Part number  
Package  
µPD16680W/P  
Wafer/Chip(Matched COG mounting)  
Remark Purchasing the above products in term of chips per requires an exchange of other documents as well,  
including a memorandum on the product quality. Therefore those who are interested in this regard are  
advised to contact an NEC salesperson for further details.  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all devices/types available in every country. Please check with local NEC representative for  
availability and additional information.  
Document No.  
Date Published July 1999 NS CP(K)  
Printed in Japan  
S12694EJ2V0DS00(2nd edition)  
The mark shows major revised points.  
1997, 1999  
©
µPD16680  
1. BLOCK DIAGRAM  
Remark /xxx indicates active low signals.  
2
Data Sheet S12694EJ2V0DS00  
µPD16680  
2. PIN CONFIGURATION (Top view)  
Chip Size : 12.5 mm x 1.89 mm  
249  
115  
250  
114  
Y
X
264  
100  
1
99  
3
Data Sheet S12694EJ2V0DS00  
µPD16680  
Table 2-1. Pad Layout (1/2)  
Pin No.  
Pin Name  
Pin No.  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
Pin Name  
X(µm)  
–5883.2  
–5763.2  
–5643.2  
–5523.2  
–5403.2  
–5283.2  
–5163.2  
–5043.2  
–4923.2  
–4803.2  
–4683.2  
–4563.2  
–4443.2  
–4323.2  
–4203.2  
–4083.2  
–3963.2  
–3843.2  
–3723.2  
–3603.2  
–3483.2  
–3363.2  
–3243.2  
–3123.2  
–3003.2  
–2883.2  
–2763.2  
–2643.2  
–2523.2  
–2403.2  
–2283.2  
–2163.2  
–2043.2  
–1923.2  
–1803.2  
–1683.2  
–1563.2  
–1443.2  
–1323.2  
–1203.2  
–1083.2  
–963.2  
–843.2  
–723.2  
–603.2  
–483.2  
–363.2  
–243.2  
–123.2  
–3.2  
Y(µm)  
–811.0  
X(µm)  
2036.8  
Y(µm)  
–811.0  
+
1
2
3
4
5
6
7
8
Dummy  
Dummy  
Dummy  
VLCBS1  
VLCBS1  
Dummy  
VLCBS2  
VLCBS2  
Dummy  
VLCBS3  
VLCBS3  
Dummy  
AMPOUT  
AMPOUT  
Dummy  
AMPIN(-)  
AMPIN(-)  
Dummy  
AMPIN(+)  
AMPIN(+)  
Dummy  
VDD  
VDD  
Dummy  
VLC5  
VLC5  
VLC5  
Dummy  
VLC4  
VLC4  
VLC4  
Dummy  
VLC3  
VLC3  
VLC3  
Dummy  
VLC2  
VLC2  
VLC2  
Dummy  
VLC1  
VLC1  
VLC1  
Dummy  
VLCD  
VLCD  
VLCD  
VDD  
VDD  
VDD  
VSS  
VSS  
C3  
+
+
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
C3  
C3  
C3  
C3  
C3  
2156.8  
2276.8  
2396.8  
2516.8  
2636.8  
2756.8  
2876.8  
2996.8  
3116.8  
3236.8  
3356.8  
3476.8  
3596.8  
3716.8  
3836.8  
3956.8  
4076.8  
4196.8  
4316.8  
4436.8  
4556.8  
4676.8  
4796.8  
4916.8  
5036.8  
5156.8  
5276.8  
5396.8  
5516.8  
5636.8  
5756.8  
5876.8  
6112.0  
6112.0  
6112.0  
6112.0  
6112.0  
6112.0  
6112.0  
6112.0  
6112.0  
6112.0  
6112.0  
6112.0  
6112.0  
6112.0  
6112.0  
6030.0  
5940.0  
5850.0  
5760.0  
5670.0  
5580.0  
5490.0  
5400.0  
5310.0  
5220.0  
5130.0  
5040.0  
4950.0  
4860.0  
4770.0  
4680.0  
4590.0  
4500.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–811.0  
–682.2  
–592.2  
–502.2  
–412.2  
–322.2  
–232.2  
–142.2  
–52.2  
37.8  
127.8  
217.8  
307.8  
397.8  
487.8  
577.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
VDD  
VDD  
VDD  
Dummy  
VEXT  
DACHA  
AMPCHA  
OSCIN  
OSCOUT  
VDD  
OSCBRI  
D0(DATA)  
D1  
D2  
D3  
D4  
D5  
D6  
D7(NS)  
WS  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
STB  
E(SCK)  
/RESET  
VDD  
TESTOUT  
Dummy  
Dummy  
Dummy  
Dummy  
COM27  
COM28  
COM29  
COM30  
COM31  
COM32  
COM33  
COM34  
COM35  
COM36  
COM37  
Dummy  
Dummy  
Dummy  
Dummy  
COM38  
COM39  
COM40  
COM41  
COM42  
COM43  
COM44  
COM45  
COM46  
COM47  
COM48  
COM49  
COM50  
COM51  
PCOM  
SEG100  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
116.8  
236.8  
356.8  
476.8  
596.8  
716.8  
836.8  
956.8  
1076.8  
1196.8  
1316.8  
1436.8  
1556.8  
1676.8  
1796.8  
1916.8  
VSS  
Dummy  
+
C1  
+
C1  
+
C1  
C1  
C1  
C1  
+
C2  
+
C2  
+
C2  
C2  
C2  
C2  
817.8  
4
Data Sheet S12694EJ2V0DS00  
µPD16680  
Table 2-1. Pad Layout (2/2)  
Pin No.  
Pin Name  
Pin No.  
Pin Name  
X(µm)  
4410.0  
Y(µm)  
817.8  
X(µm)  
–1530.0  
–1620.0  
–1710.0  
–1800.0  
–1890.0  
–1980.0  
–2070.0  
–2160.0  
–2250.0  
–2340.0  
–2430.0  
–2520.0  
–2610.0  
–2700.0  
–2790.0  
–2880.0  
–2970.0  
–3060.0  
–3150.0  
–3240.0  
–3330.0  
–3420.0  
–3510.0  
–3600.0  
–3690.0  
–3780.0  
–3870.0  
–3960.0  
–4050.0  
–4140.0  
–4230.0  
–4320.0  
–4410.0  
–4500.0  
–4590.0  
–4680.0  
–4770.0  
–4860.0  
–4950.0  
–5040.0  
–5130.0  
–5220.0  
–5310.0  
–5400.0  
–5490.0  
–5580.0  
–5670.0  
–5760.0  
–5850.0  
–5940.0  
–6030.0  
–6112.0  
–6112.0  
–6112.0  
–6112.0  
–6112.0  
–6112.0  
–6112.0  
–6112.0  
–6112.0  
–6112.0  
–6112.0  
–6112.0  
–6112.0  
–6112.0  
–6112.0  
Y(µm)  
817.8  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
SEG99  
SEG98  
SEG97  
SEG96  
SEG95  
SEG94  
SEG93  
SEG92  
SEG91  
SEG90  
SEG89  
SEG88  
SEG87  
SEG86  
SEG85  
SEG84  
SEG83  
SEG82  
SEG81  
SEG80  
SEG79  
SEG78  
SEG77  
SEG76  
SEG75  
SEG74  
SEG73  
SEG72  
SEG71  
SEG70  
SEG69  
SEG68  
SEG67  
SEG66  
SEG65  
SEG64  
SEG63  
SEG62  
SEG61  
SEG60  
SEG59  
SEG58  
SEG57  
SEG56  
SEG55  
SEG54  
SEG53  
SEG52  
SEG51  
SEG50  
SEG49  
SEG48  
SEG47  
SEG46  
SEG45  
SEG44  
SEG43  
SEG42  
SEG41  
SEG40  
SEG39  
SEG38  
SEG37  
SEG36  
SEG35  
SEG34  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
SEG33  
SEG32  
SEG31  
SEG30  
SEG29  
SEG28  
SEG27  
SEG26  
SEG25  
SEG24  
SEG23  
SEG22  
SEG21  
SEG20  
SEG19  
SEG18  
SEG17  
SEG16  
SEG15  
SEG14  
SEG13  
SEG12  
SEG11  
SEG10  
SEG9  
4320.0  
4230.0  
4140.0  
4050.0  
3960.0  
3870.0  
3780.0  
3690.0  
3600.0  
3510.0  
3420.0  
3330.0  
3240.0  
3150.0  
3060.0  
2970.0  
2880.0  
2790.0  
2700.0  
2610.0  
2520.0  
2430.0  
2340.0  
2250.0  
2160.0  
2070.0  
1980.0  
1890.0  
1800.0  
1710.0  
1620.0  
1530.0  
1440.0  
1350.0  
1260.0  
1170.0  
1080.0  
990.0  
900.0  
810.0  
720.0  
630.0  
540.0  
450.0  
360.0  
270.0  
180.0  
90.0  
0.0  
–90.0  
–180.0  
–270.0  
–360.0  
–450.0  
–540.0  
–630.0  
–720.0  
–810.0  
–900.0  
–990.0  
–1080.0  
–1170.0  
–1260.0  
–1350.0  
–1440.0  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
817.8  
577.8  
487.8  
397.8  
307.8  
217.8  
127.8  
37.8  
SEG8  
SEG7  
SEG6  
SEG5  
SEG4  
SEG3  
SEG2  
SEG1  
COM26  
COM25  
COM24  
COM23  
COM22  
COM21  
COM20  
COM19  
COM18  
COM17  
COM16  
COM15  
COM14  
COM13  
COM12  
COM11  
Dummy  
Dummy  
Dummy  
Dummy  
COM10  
COM9  
COM8  
COM7  
COM6  
COM5  
COM4  
COM3  
COM2  
COM1  
PCOM  
Dummy  
Dummy  
-52.2  
-142.2  
-232.2  
-322.2  
-412.2  
-502.2  
-592.2  
-682.2  
5
Data Sheet S12694EJ2V0DS00  
µPD16680  
3. PIN DESCRIPTIONS  
3.1 Power System Pins  
Pin Symbol  
VDD  
Pin Name  
Pin No.  
I/O  
-
Function Description  
Logic and booster power  
supply pin  
22, 23,  
48 to 50,  
73 to 75,  
82, 96  
Power supply pin for logic and booster circuit.  
VSS  
Logic and driver ground  
pin  
51 to 53  
-
-
Ground pin for logic and driver circuit.  
VLCD  
Driver power supply pin  
45 to 47  
Driver power supply pin. Output pin of internal booster circuit.  
Please connect with a 1 µF booster capacitor to ground.  
When not using the internal booster circuit, the driver power  
can be turned on directly.  
VLC1 to VLC5  
Driver reference power  
supply  
25 to 27,  
29 to 31,  
33 to 35,  
37 to 39,  
41 to 43  
4, 5, 7,  
-
Reference power supply pin for LCD drive.  
When the internal bias is selected, be sure to leave it open.  
When display contrast is bad, connect a capacitor between  
these pins and ground.  
VLCBS1 to  
VLCBS3  
Bias level select pin  
-
-
When the internal bias is selected, Connecting these pins  
outside the IC, the bias level can be changed.  
Capacitor connection pins for booster circuit. When using  
internal booster circuit, connect a 1µF capacitor between  
these pins.  
8, 10, 11  
55 to 72  
C1+, C1  
Capacitor connection pins  
C2+, C2  
C3+, C3  
6
Data Sheet S12694EJ2V0DS00  
µPD16680  
3.2 Logic System Pins (1/2)  
Pin Symbol  
WS  
Pin Name  
Pin No.  
92  
I/O  
I
Function Description  
This pin selects the word length.  
At High level, it become an 8-bit parallel interface.  
Word length select pin  
(Word Select)  
At Low level, when D7(NS) is High level, it become a serial  
interface.  
When the word length is 4 bits, data is transferred in the  
upper-to-low sequence by mean of data busses D0 to D3.  
The word length cannot be changed after power-on.  
This pin selects whether to use the internal D/A converter for  
LCD driving voltage adjustment or not.  
DACHA  
STB  
D/A converter select pin  
Strobe  
78  
93  
I
I
At High level, D/A converter is used. At Low level, unused.  
This pin is select signal of device, strobe signal for data  
transfer. Data transfer is initialized at falling/rising edge of  
STB.  
Data can be input/output at Low level either in parallel  
interface or serial interface mode.  
When STB is High level, Enable/shift clock is bypassed.  
When using parallel interface mode, this pin becomes the  
data enable input. In reading-in, data is fetched into the  
interface buffer at rising edge. In reading-out, data is fetched  
from interface buffer at falling edge.  
E(SCK)  
Enable(shift clock)  
94  
I
When using serial interface mode, this pin becomes the data  
shit clock.  
In reading-in, data is fetched into the interface buffer at rising  
edge.  
In reading-out, data is fetched from interface buffer at falling  
edge.  
D0(DATA)  
Data-bus(data)  
84  
I/O  
When using parallel interface mode, this pin becomes the D0  
bit of data-bus.  
When using serial interface mode, this pin becomes the  
input/output pin of the command and display data (3 states).  
When using parallel interface mode, these pin becomes the  
D1 to D3 bits of data-bus. When using serial interface mode,  
keep them H or L.  
D1 to D3  
D4 to D6  
D7(NS)  
Data-bus  
85 to 87  
88 to 90  
91  
I/O  
I/O  
I/O  
Data-bus  
When using parallel interface mode, these pin become the D4  
to D6 bits of data-bus. When using serial interface mode, keep  
them H or L.  
Data-bus(nibble select)  
When word select (WS) is High level, this pin becomes the D7  
bit of data-bus.  
When word select (WS) is Low level, This pin becomes nibble  
select pin. At High level, selected 4-bit parallel interface.  
At Low level, selected serial interface.  
TESTOUT  
/RESET  
TEST signal output  
Reset  
97  
95  
O
I
When to do test, this pin is output for test signal.  
When using in normal operation, this pin leave open.  
At Low level, the µPD16680 is initialized.  
7
Data Sheet S12694EJ2V0DS00  
µPD16680  
3.2 Logic System Pins (2/2)  
Pin Symbol  
AMPCHA  
Pin Name  
Pin No.  
79  
I/O  
I
Function Description  
Select operational amplifier mode.  
Amp mode select pin  
At High level, “Level capacitor mode”.  
At Low level, “LCD driving mode”.  
VEXT  
LCD reference supply  
switching  
77  
I
Select the method for supplying LCD power circuit. At High  
level, LCD driving voltage is supplied external circuit. At Low  
level, it is supplied internal circuit.  
These pins are connected with the 1 Mresistor. When using  
external oscillation, input into the OSCIN , and leaving the  
OSCOUT open.  
OSCIN  
Oscillation pin  
Blinking Clock  
80  
81  
83  
I
O
I
OSCOUT  
OSCBRI  
This pin is oscillation input for Blinking. To input 2 Hz external  
clock, when to use Blinking by external clock mode.  
When not to use this pin, keep it H or L.  
8
Data Sheet S12694EJ2V0DS00  
µPD16680  
3.3 Driver System Pins  
Pin Symbol  
Pin Name  
Pin No.  
I/O  
O
Function Description  
SEG1 to  
SEG100  
COM1 to  
COM51  
Segment  
132 to 231  
Segment output pins.  
Common  
102 to 112,  
117 to 130,  
232 to 247,  
252 to 261  
131, 262  
O
Common output pins  
PCOM  
Pictographic common  
O
I
Common output pins for pictograph.  
(Same waveform output from these pins.)  
AMPIN(+)  
Operational amplifier input  
19, 20  
These pins are the input pins of operational amplifier for LCD  
driving voltage adjustment.  
When using the internal D/A converter, leave AMPIN(+) open.  
When not using the internal D/A converter, it is necessary to  
input the reference voltage.  
AMPIN(-)  
AMPOUT  
16,17  
13,14  
AMPIN(–) is connected to the resister for LCD driving voltage  
adjustment.  
See 4. LCD DRIVING VOLTAGE CONTROL CIRCUIT.  
This is the input pin of operational amplifier for LCD driving  
voltage adjustment. Normally it is connected to the resister for  
LCD driving voltage adjustment. See 4. LCD DRIVING  
VOLTAGE CONTROL CIRCUIT. It recommends to connect to  
this pin a 0.1 to 1 µF capacitor to make the output of the  
internal operational amplifier be stable.  
Operational amplifier  
output  
O
Dummy  
Dummy pad  
1, 2, 3, 9, 12,  
15, 18, 21,  
24, 28, 32,  
33, 40, 44,  
54, 76,  
-
Dummy pins are not connected to the internal circuit. Leave  
open if they are not used.  
98 to 101,  
113 to 116,  
248 to 251,  
263, 264  
4. LCD DRIVING VOLTAGE CONTROL CIRCUIT  
DACHA  
D/A  
Converter  
V
EXT  
Reference power circuit  
+
AMPIN(+)  
VLCBS1  
AMPIN()  
AMPout  
VLC1  
V
LC2  
V
LC3  
V
LCBS3  
VLC4  
VLC5  
VSS  
VLCBS2  
R2  
C1  
R1  
9
Data Sheet S12694EJ2V0DS00  
µPD16680  
5. POWER CIRCUIT  
The µPD16680 incorporate the booster circuit is switchable between 3 and 4 folds. The boosting magnitude of  
internal booster circuit is selected by the capacitor connection.  
The reference power circuit is switchable between internal driving circuit and external driving circuit. The method  
for supplying the reference circuit selected by VEXT pin (H : External, L : Internal ).  
5.1 Booster circuit  
Using Internal driving circuit, to connect condenser for boosting between C1+ and C1 , C2+ and C2 , C3+ and C3, to  
connect condenser between VLCD and VDD to be stable boosting voltage. And to set VEXT pin to low level, internal  
booster circuit boost voltage between VDD and VSS to 3 or 4 folds.  
The booster circuit is using clock made by internal oscillation circuit. It is necessary that oscillation to be operated.  
+
+
C1 , C1,C2+ ,C2,C3 ,C3 , V are pins for booster circuit. To use the wire that have low register value to connect  
DD  
these pins.  
Figure 5-1 3x and 4x Booster Circuits  
VLCD = 4VDD = 12 V  
(4-fold boost)  
VLCD = 3VDD = 9 V  
(3-fold boost)  
VDD = 3 V  
VSS = 0 V  
Remarks 1. When to use 3-fold booster circuit, not to connect condenser between C3+ and C2 , C1+ and C1 , leave  
open C2+ and C3 .  
2. When to use external power supply circuit, booster circuit is not operating.  
10  
Data Sheet S12694EJ2V0DS00  
µPD16680  
5.2 LCD driving circuit  
5.2.1 To use internal driving circuit, not to use D/A converter ( VEXT = L , DACHA = L )  
When to internal driving circuit is chosen, boosted voltage be used for power of internal operational amplifier  
1
2
(+)  
adjusting LCD driving voltage. To connect external resister R , R , and input reference voltage to AMPIN pin. It is  
possible to adjust LCD driving voltage of VLC1 . If using thermistor to adjust LCD driving voltage according to the  
2
temperature characteristic of LCD panel, we recommend connecting it with R in parallel.  
The value of VLC1 can be computed by the following formula.  
Equation 5-1  
R2  
R1  
VLC1 = AMPIN(+) = (1+  
) VREF  
2
th  
R x R  
Remark R2=  
2
th  
R + R  
Figure 5-2 When not using Internal power supply select or D/A converter  
DACHA  
D/A  
Converter  
VREF  
to Internal driving circuit  
+
AMPIN(+)  
AMPIN(-)  
AMPout  
VLC1  
Rth  
R2  
R1  
C1  
11  
Data Sheet S12694EJ2V0DS00  
µPD16680  
5.2.2 To use internal driving circuit and D/A converter ( VEXT = L , DACHA = H )  
(+)  
To use D/A converter, it is possible to adjust reference voltage VREF inputted to AMPIN pin for LCD driving by  
command.  
To set 6-bit data to D/A converter register, reference voltage VREF is choose one level from 64 level in 1/2 VDD to VDD  
.
The formula of VLC1 is as same written in Equation 5-1.  
Figure 5-3 Using internal power supply select and D/A converter  
VDD  
VDD  
D/A  
Converter  
DACHA  
to Internal driving circuit  
VREF  
+
AMPIN(+)  
Open  
AMPIN(-)  
AMPout  
VLC1  
Rth  
R2  
R1  
C1  
.
5.2.3 To use external driving circuit ( VEXT = H )  
When external voltage supply circuit for LCD driving is chosen, operational amplifier incorporated IC is off.  
Therefore, it is impossible to use operational amplifier for LCD driving and D/A converter function. LCD driving  
voltage is adjust by the voltage inputted to VLCD and VLC1 pins directly.  
Remarks 1. Set VLCD VLC1.  
2. DACHA , AMPIN(+), AMPIN(-) are CMOS input. Set H level or L level.  
3. Set AMPOUT pin "open".  
12  
Data Sheet S12694EJ2V0DS00  
µPD16680  
5.3 REFERENCE VOLTAGE CIRCUIT  
5.3.1 To use internal reference voltage circuit ( VEXT = L )  
When internal driving circuit is chosen, 6 levels for LCD reference voltage (VLC1, VLC2, VLC3, VLC4, VLC5, VSS) is  
generate by internal breeder resister.  
5.3.2 To use external driving circuit ( VEXT = H )  
When external driving circuit is chosen, operational amplifier incorporated IC is Off. It is necessary to input voltage  
to VLC1, VLC2, VLC3, VLC4 and VLC5 directly.  
Generally, These levels are made by external breeder resister. The display dignity of LCD declines when these  
resistance values are big, it is necessary to choose the resistance value which corresponds with the LCD panel.  
There is an effect that improves display dignity when connecting a capacitor with each level pins and the ground. It is  
necessary to choose the condenser value which corresponds with the LCD panel.  
Figure 5-3. Reference voltage circuit  
AMPOUT  
V
LC1  
+
to SEG, COM Outputs  
R
R
V
LC2  
+
to COM Output  
V
LC3  
+
to SEG Output  
VLCBS1  
Voltage follower for level voltage  
R
R
R
V
LCBS2  
VLCBS3  
V
LC4  
+
to SEG Output  
R
R
V
LC5  
+
to COM Output  
V
SS  
to SEG, COM Output  
13  
Data Sheet S12694EJ2V0DS00  
µPD16680  
5.4 Setting BIAS value  
When internal driving circuit chosen, by connecting the interval of the pin VLCBS1, VLCBS2, VLCBS3 outside the IC, the  
bias value can be set from the 1/6 bias, the 1/7 bias, the 1/8 bias.  
Bias value  
1/8 bias  
Pin connection  
LCBS1, VLCBS2, VLCBS3 All open  
V
1/7 bias  
1/6 bias  
To connect VLCBS1 and VLCBS2, or VLCBS2 and VLCBS3  
To connect VLCBS1 and VLCBS3, VLCBS2 is open.  
5.5 Voltage followers for level power supply  
CHA  
By the input of AMP  
pin, it controls voltage follower for the LCD drive level power supply.  
LCD driving mode ( AMPCHA = L )  
When this mode is chosen, The voltage follower maximizes electric current supply ability for LCD drive. It  
doesn't need to connect the external capacitor for the level stability.  
Level capacitor mode ( AMPCHA = H )  
When this mode is chosen, The voltage follower maximizes electric current supply ability for the external  
condenser charging. In this mode, it needs to connect the external capacitor ( 0.1 to 1.0 µF ) for the level stability.  
Caution When using this mode without connecting capacitor, the display dignity will be bad.  
14  
Data Sheet S12694EJ2V0DS00  
µPD16680  
5.6 Application circuit example  
5.6.1 To use internal driving circuit, LCD driving mode  
A) Boost 4folds (not to use D/A converter)  
B) Boost 3 folds  
V
DD  
Note1  
AMPIN(+)  
V
V
DD  
V
DD  
Rth(Thermistor)  
R1  
R2  
AMPIN()  
LCD  
V
LCD  
+
+
+
C
C
C
C
2
C2  
AMPOUT  
+
C +  
1
+
V
LC1  
C1  
+
+
+
1
1
1
C1  
V
LC2  
C
1
2
C1  
+
C
+ Note2  
Open  
C
2
Open  
V
LC3  
C2  
C
2
3
+
C
C1  
+
+
V
V
LC4  
LC5  
C
3
C −  
3
Note2  
Open  
C
3
V
V
EXT  
SS  
AMPCHA  
V
V
EXT  
SS  
Notes 1.  
IN(+)  
When to use D/A converter, AMP  
is open.  
+
C , C are open.  
2.  
2
3
Remark  
µ
C1 = C2 = 1.0 m  
15  
Data Sheet S12694EJ2V0DS00  
µPD16680  
5.6.2 To use internal driving circuit, LCD driving mode  
A) Boost 4folds(not to use D/A converter)  
B) Boost 3 folds  
VDD  
Note1  
V
V
DD  
AMPIN(+)  
V
DD  
Rth(Thermistor)  
R2  
AMPIN()  
LCD  
VLCD  
+
+
+
R1  
C
C
C
C
2
C
2
AMPOUT  
+
+
C +  
1
VLC1  
C
1
+
+
+
1
1
1
+
C1  
VLC2  
C
1
2
C
1
+
+
C
V
LC3  
LC4  
Note2  
+
Open  
+
C2  
+
V
C2  
C
2
3
+
C
C1  
+
VLC5  
+
C
3
+
C −  
3
Note2  
Open  
C3  
V
DD  
V
V
EXT  
SS  
AMPCHA  
V
EXT  
SS  
V
Notes 1.  
2.  
IN(+)  
When to use D/A converter, AMP  
is open.  
+
C , C are open.  
2
3
Remark  
µ
C1 = C2 = 1.0 m  
16  
Data Sheet S12694EJ2V0DS00  
µPD16680  
5.6.3 To use external driving circuit  
To use 1/6 bias  
AMPIN(+)  
AMPIN()  
AMPOUT  
V
DD  
Open  
External power supply  
VLCD  
C +  
1
V
LC1  
R
R
C
1
2
V
V
V
LC2  
LC3  
+
C
Open  
C
2
3
+
C
2R  
R
LC4  
LC5  
C −  
3
V
V
DD  
R
V
EXT  
V
SS  
17  
Data Sheet S12694EJ2V0DS00  
µPD16680  
6. LCD DRIVING  
The µPD16680 is able to choose duty 1/53 duty or 140 duty.  
6.1 1/53 duty driving  
When 1/53 duty is chosen, the µPD16680 outputs a choice signal once at 1 frame from the dot part common  
1
51  
outputs (COM to COM ), the pictograph part common outputs (PCOM).  
1 Frame  
1
2
3
4
5
6
7
8
51 52 53  
1
2
3
4
5
6
7
8
51 52 53  
VLC1  
VLC2  
VLC3  
SEG1  
VLC4  
VLC5  
VSS  
VLC1  
VLC2  
VLC3  
COM1  
VLC4  
VLC5  
VSS  
VLC1  
VLC2  
VLC3  
COM2  
VLC4  
VLC5  
VSS  
VLC1  
VLC2  
VLC3  
PCOM  
VLC4  
VLC5  
VSS  
18  
Data Sheet S12694EJ2V0DS00  
µPD16680  
6.2 1/40 duty driving  
When 1/40 duty is chosen, the µPD16680 outputs a choice signal once at 1 frame from the dot part common outputs  
1
19  
27  
45  
(COM to COM , COM to COM ), the pictograph part common outputs (PCOM ).  
1 Frame  
1
2
3
4
5
6
7
8
38 39 40  
1
2
3
4
5
6
7
8
38 39 40  
VLC1  
VLC2  
VLC3  
SEG1  
VLC4  
VLC5  
VSS  
VLC1  
VLC2  
VLC3  
COM1  
VLC4  
VLC5  
VSS  
VLC1  
VLC2  
VLC3  
COM2  
VLC4  
VLC5  
VSS  
VLC1  
VLC2  
VLC3  
PCOM  
VLC4  
VLC5  
VSS  
19  
Data Sheet S12694EJ2V0DS00  
µPD16680  
7. LCD DISPLAY  
The µPD16680 can display 100 by 51 dots (called full-dot display) LCD display and 100 pictographs.  
Figure 7-1 LCD matrix  
2
4
6
8
10  
12  
14  
16  
18  
90  
92  
94  
96  
98  
100  
1
3
5
7
9
11  
13  
15  
17  
89  
91  
93  
95  
97  
99  
PCOM  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
COM16  
COM17  
COM18  
COM19  
COM47  
COM48  
COM49  
COM50  
COM51  
20  
Data Sheet S12694EJ2V0DS00  
µPD16680  
8. GROUP ADDRESSES  
8.1 Dot display  
The group addresses of dot display are assigned as follows.  
To be chosen the address is increment, when X address goes to 0CH, next address is 00H. At this time, Y address  
goes to next address. When Y address goes to 33H, next address is 00H, too.  
X address  
02H  
01H  
0BH  
0CH  
00H  
00H  
01H  
02H  
03H  
32H  
33H  
X
X
X
X
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4  
Remark Data of X address = 0CH : b7 to b4 are data, b3 to b0 are don't care.  
When 1/53 duty and using 1/40 duty are used, the RAM addresses and the common pins used are as follows.  
Use RAM  
Don’t use RAM  
Y addresses  
Use common pins  
Don’t use common  
pins  
Duty  
Y addresses  
1/53 duty  
1/40 duty  
00H to 33H  
00H to 12H  
1AH to 2CHNote  
-
COM1 to COM51  
COM1 to COM19  
COM27 to COM45  
-
13H to 19H  
2DH to 33H  
COM20 to COM26  
COM46 to COM51  
Note If address incrementation is set when 1/40 duty is used, the X address value following 0CH is 00H. At the  
same time the Y address is incremented by 1. The Y address value following 12H is 1AH, and the value  
following 2CH is 00H.  
21  
Data Sheet S12694EJ2V0DS00  
µPD16680  
8.2 Pictograph  
The group addresses of pictograph are assigned as follows.  
To be chosen the address is increment, X address goes to 0CH, next address is 00H.  
X address  
00H 01H 02H 03H  
0BH 0CH  
00H  
(PCOM)  
b0  
b5  
b3  
b2 b1  
b7 b6  
b4  
8 bits  
Table 8-1 PCOM (Y address = 00H)  
Segment output No.  
X address  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
7
b0  
8
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
1
2
3
4
5
6
9
17  
25  
33  
41  
49  
57  
65  
73  
81  
89  
97  
10  
18  
26  
34  
42  
50  
58  
66  
74  
82  
90  
98  
11  
19  
27  
35  
43  
51  
59  
67  
75  
83  
91  
99  
12  
20  
28  
36  
44  
52  
60  
68  
76  
84  
92  
100  
13  
21  
29  
37  
45  
53  
61  
69  
77  
85  
93  
X
14  
22  
30  
38  
46  
54  
62  
70  
78  
86  
94  
X
15  
23  
31  
39  
47  
55  
63  
71  
79  
87  
95  
X
16  
24  
32  
40  
48  
56  
64  
72  
80  
88  
96  
X
Remark Data of X address = 0CH :b7 to b4 are data, b3 to b0 are don’t care.  
22  
Data Sheet S12694EJ2V0DS00  
µPD16680  
8.3 Blink data  
The group addresses of brink data are assigned as follows.  
To be chosen the address is increment, when X address goes to 0CH, next address is 00H.  
X address  
00H 01H 02H 03H  
0BH 0CH  
00H  
(PCOM)  
b0  
b5  
b3  
b2 b1  
b7 b6  
b4  
8 bits  
Table 8-2 PCOM (Y address = 00H)  
Segment output No.  
X address  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
7
b0  
8
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
1
2
3
4
5
6
9
17  
25  
33  
41  
49  
57  
65  
73  
81  
89  
97  
10  
18  
26  
34  
42  
50  
58  
66  
74  
82  
90  
98  
11  
19  
27  
35  
43  
51  
59  
67  
75  
83  
91  
99  
12  
20  
28  
36  
44  
52  
60  
68  
76  
84  
92  
100  
13  
21  
29  
37  
45  
53  
61  
69  
77  
85  
93  
X
14  
22  
30  
38  
46  
54  
62  
70  
78  
86  
94  
X
15  
23  
31  
39  
47  
55  
63  
71  
79  
87  
95  
X
16  
24  
32  
40  
48  
56  
64  
72  
80  
88  
96  
X
Remark Data of X address = 0CH :b7 to b4 are data, b3 to b0 are don’t care.  
23  
Data Sheet S12694EJ2V0DS00  
µPD16680  
9. COMMAND  
9.1 Basic form  
Command Register (CR)  
Command Register (CR)  
Address Register (CR)  
Extend Select Register (ESR)  
+
+
+
X address (XAD)  
Data 1 (DT1)  
Y address (YAD)  
+
.....  
+
Command Register (CR)  
9.2 Command register  
The command register’s basic configuration is as follows.  
LSB  
MSB  
b7 b6 b5 b4 b3 b2 b1 b0  
Choices  
Command Type (0 x H to B x H)  
Table 7-1 Command Table  
Register  
D4 D3  
Command  
D7  
0
D6  
D5  
1
D2  
1
D1  
1
D0  
1
Reset  
0
0
0
0
0
1
0
0
0
0
Display ON/OFF  
Standby  
0
0
0
1
0
1
0
1
1
1
0
1
1
0
0
1
b2  
b2  
0
b1  
b1  
0
b0  
b0  
0
0
0
D/A converter setting  
Duty setting  
Blink setting  
Data R/W mode  
Test mode  
0
1
0
0
b3  
b2  
b2  
b2  
b2  
b1  
b1  
b1  
b0  
b0  
b0  
b0  
0
0
1
1
1
1
24  
Data Sheet S12694EJ2V0DS00  
µPD16680  
9.2.1 Reset  
The all IC's commands are initialized.  
LSB  
1
MSB  
0
0
1
1
1
0
0
9.2.2 Display ON/OFF  
ON/OFF of the display is controlled.  
LSB  
MSB  
0
0
0
0
1
b2 b1 b0  
Choices  
000 : LCD OFF (SEG  
001 : LCD OFF (SEG  
111 : LCD ON  
n
, COM  
n
, PCOM  
n
n
= Vss)  
n, COM  
n
, PCOM  
= non-serective output)  
9.2.3 Standby  
The DC/DC converter is stopped, thus reducing the supply current. This display is placed in the OFF state (SEGn,  
COMn = VSS).  
Even at Standby, it is possible to write command and data.  
LSB  
MSB  
0
0
0
b2 b1 b0  
1
0
Cohices  
000 : Nomal operation  
001 : Standby (DC/DC converter halt, all display OFFNote, OSC halt)  
Note SEGn, COMn, PCOM = VSS  
25  
Data Sheet S12694EJ2V0DS00  
µPD16680  
9.2.4 D/A converter setting  
The internal D/A converter is set. D/A converter output voltage is controlled from 1/2V to V  
DD  
DD  
.
LSB  
0
MSB  
0
LSB  
MSB  
0
0
1
0
0
0
b5 b4 b3 b2 b1 b0  
0
1
+
Extend Choices  
D/A Converter output voltage  
00H(MIN.) to 3FH(MAX.)  
Caution After resetting, it is set to 20H.  
9.2.5 Duty setting  
The duty is set.  
LSB  
MSB  
0
0
0
b2 b1 b0  
1
1
Choices  
000 : 1/53 duty  
001 : 1/40 duty Note  
Note If the duty cycle is 1/40, leave open from COM39 to COM51.  
9.2.6 Blink setting  
The blinks of the pictograph of the address whose blink data is “1” are controlled.  
LSB  
MSB  
0
1
0
b2 b1 b0  
0
0
Choices  
000 : Blink halt  
001 : Blink start (Blink frequency = fOSC/32768)  
010 : Blink start (Blink frequency = fBRI Note /2)  
Note This refers to the frequency of the external clock which is input from the OSCBR1 pin.  
26  
Data Sheet S12694EJ2V0DS00  
µPD16680  
9.2.7 Data R/W mode  
Data Read/Write (R/W), increment, address counter resetting, etc. are set in this mode.  
DATA  
LSB  
LSB  
MSB  
1
MSB  
. . .  
0
1
b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
1
0
+
+
Choices 1  
00 : The address is incremented starting from the current one Note1  
01 : Current address retained  
Choices 2  
0 : Data writing  
1 : Data reading Note2  
Notes 1. When X address and Y address goes to last address, next address is 00H.  
2. The data read mode is canceled at STB's rising edge (Switched to data write mode).  
Remark When using serial data transfer, it is necessary to write 8-bit data. No assurance is IC's operation when  
STB is rising during data transfer.  
9.2.8 Test mode  
The test mode is set. The test mode is for checking IC’s operation, and no assurance is made for its regular use or  
continued operation.  
LSB  
MSB  
1
0
1
b2 b1 b0  
1
1
000 : Nomal Operation  
001 to 111 : Test mode  
27  
Data Sheet S12694EJ2V0DS00  
µPD16680  
9.3 Address register  
Selects the address type and specifies the address.  
MSB  
1
LSB  
0
MSB  
0
LSB  
MSB  
0
LSB  
1
b5  
0
0
0
0
0
b3 b2 b1 b0  
0
b5 b2 b1 b0  
b4 b3  
b4  
0
+
+
Y address  
Dot display group address : 00H to 33H  
Pictograph group address : 00H  
Blink group address : 00H  
X address  
Dot display group address : 00H to 0CH  
Pictograph group address : 00H to 0CH  
Blink group address : 00H to 0CH  
Choice1  
00 : Dot address  
01 : Pictograph group address  
10 : Blink data group address  
Caution If unspecified addresses have been set, operation is not assured.  
10. RESETTING  
When reset (command reset, hardware (terminal) reset), the contents of each register are as follows.  
Register contents  
Register name  
Status  
b7 b6 b5 b4 b3 b2 b1 b0  
Display ON / OFF  
0
0
0
1
0
1
0
0
0
0
1
0
0
0
0
0
0
1
0
1
1
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LCD OFF (SEGn, COMn, PCOM = VSS)  
Standby  
Normal operation  
Duty setting  
1/53 duty  
D/A converter setting  
Blink setting  
To set 20H  
Blink halt  
Data R/W mode  
Data write, the address is incremented(+1) starting  
from current address.  
Test mode  
1
0
1
1
1
0
0
0
Normal operation  
28  
Data Sheet S12694EJ2V0DS00  
µPD16680  
11. COMMUNICATION FORMAT  
11.1 serial  
11.1.1 Reception 1 (Command/Data write : 1 byte)  
STB  
DATA  
SCK  
b7  
b6  
b5  
b2  
b1  
b0  
1
2
3
6
7
8
11.1.2 Reception 2 (Command/Data write : 2 bytes or more)  
STB  
b7  
b6  
b5  
b2  
b1  
b0  
b6  
b5  
b4  
b3  
DATA  
SCK  
b7  
6
7
8
1
2
4
5
3
1
2
3
Command 1  
Command 2/Data  
11.1.3 Transmission (Command/Data read)  
STB  
b7  
b6  
b5  
b2  
b1  
b0  
b7  
2
b6  
3
b5  
4
b4  
5
b3  
DATA  
SCK  
6
7
8
1
6
1
2
3
Data Read Command  
Wait time : tWAIT  
Data read  
29  
Data Sheet S12694EJ2V0DS00  
µPD16680  
11.2 Parallel  
11.2.1 8-bit parallel interface  
STB  
D0  
to D  
7
E
11.2.2 4-bit parallel interface  
STB  
D0  
to D  
7
Upper  
Lower  
Upper  
Lower  
Upper  
Lower  
E
30  
Data Sheet S12694EJ2V0DS00  
µPD16680  
12 CPU ACCESS EXAMPLE  
12.1 Initialize and write data  
Command / Data  
Item  
STB  
Explanation  
b7 b6 b5 b4 b3 b2 b1 b0  
Start  
H
L
x
0
x
0
x
1
0
0
x
x
0
x
0
x
1
0
0
x
x
1
x
0
x
0
0
0
x
x
0
x
1
x
0
0
0
x
x
0
x
1
x
0
0
0
x
x
1
x
0
x
0
0
0
x
x
1
x
0
x
0
0
0
x
x
1
x
0
x
0
0
0
x
Reset  
H
L
Duty setting  
1/53 duty  
H
L
Address Register 1  
Address Register 2  
Address Register 3  
Dot address  
L
X address = 00H  
Y address = 00H  
L
H
Data write,  
Data R/W mode  
L
L
1
0
1
1
0
0
0
0
The address is incremented starting from the current one.  
Dot display Data 1  
D
D
D
D
D
D
D
D
Dot data  
(63 bytes)  
Dot display Data 663  
L
H
L
D
x
D
x
D
x
D
x
D
x
D
x
D
x
D
x
Address Register 1  
Address Register 2  
Address Register 3  
1
0
0
x
1
0
0
x
0
0
0
x
1
0
0
x
0
0
0
x
0
0
0
x
0
0
0
x
0
0
0
x
Pictograph group address  
X address = 00H  
L
L
Y address = 00H  
H
Data write,  
Data R/W mode  
L
L
1
0
1
1
0
0
0
0
The address is incremented starting from the current one.  
Pictograph Data 1  
D
D
D
D
D
D
D
D
Pictograph data  
(13 bytes)  
Pictograph Data 13  
L
H
L
D
x
D
x
D
x
D
x
D
x
D
x
D
x
D
x
Display ON / OFF  
End  
0
x
0
x
0
x
0
x
1
x
1
x
1
x
1
x
LCD ON  
H
Remark x = Don't Care, D = data  
31  
Data Sheet S12694EJ2V0DS00  
µPD16680  
12.2 Change display data and pictograph data (All data are changed)  
Command / Data  
Item  
STB  
Explanation  
b7 b6 b5 b4 b3 b2 b1 b0  
Start  
H
L
x
1
0
0
x
x
1
0
0
x
x
0
0
0
x
x
0
0
0
x
x
0
0
0
x
x
0
0
0
x
x
0
0
0
x
x
0
0
0
x
Address Register 1  
Address Register 2  
Address Register 3  
Dot address  
L
X address = 00H  
Y address = 00H  
L
H
Data write,  
Data R/W mode  
L
L
1
0
1
1
0
0
0
0
The address is incremented starting from the current one.  
Dot display Data 1  
D
D
D
D
D
D
D
D
Dot data  
(663 bytes)  
Dot display Data 663  
L
H
L
D
x
D
x
D
x
D
x
D
x
D
x
D
x
D
x
Address Register 1  
Address Register 2  
Address Register 3  
1
0
0
x
1
0
0
x
0
0
0
x
1
0
0
x
0
0
0
x
0
0
0
x
0
0
0
x
0
0
0
x
Pictograph group address  
X address = 00H  
L
L
Y address = 00H  
H
Data write,  
Data R/W mode  
L
L
1
0
1
1
0
0
0
0
The address is incremented starting from the current one.  
Pictograph Data 1  
D
D
D
D
D
D
D
D
Pictograph data  
(13 bytes)  
Pictograph Data 13  
End  
L
D
x
D
x
D
x
D
x
D
x
D
x
D
x
D
x
H
Remark x = Don't Care, D = data  
32  
Data Sheet S12694EJ2V0DS00  
µPD16680  
12.3 Read display data and pictograph data (All data are read)  
Command / Data  
Item  
STB  
Explanation  
b7 b6 b5 b4 b3 b2 b1 b0  
Start  
H
L
x
1
0
0
x
x
1
0
0
x
x
0
0
0
x
x
0
0
0
x
x
0
0
0
x
x
0
0
0
x
x
0
0
0
x
x
0
0
0
x
Address Register 1  
Address Register 2  
Address Register 3  
Dot address  
L
X address = 00H  
Y address = 00H  
L
H
Data read,  
Data R/W mode  
L
L
1
0
1
1
0
1
0
0
The address is incremented starting from the current one.  
Dot display Data 1  
D
D
D
D
D
D
D
D
Dot data  
(663 bytes)  
Dot display Data 663  
L
H
L
D
x
D
x
D
x
D
x
D
x
D
x
D
x
D
x
Address Register 1  
Address Register 2  
Address Register 3  
1
0
0
x
1
0
0
x
0
0
0
x
1
0
0
x
0
0
0
x
0
0
0
x
0
0
0
x
0
0
0
x
Pictograph group address  
X address = 00H  
L
L
Y address = 00H  
H
Data read,  
Data R/W mode  
L
L
1
0
1
1
0
1
0
0
The address is incremented starting from the current one.  
Pictograph Data 1  
D
D
D
D
D
D
D
D
Pictograph data  
(13 bytes)  
Pictograph Data 13  
End  
L
D
x
D
x
D
x
D
x
D
x
D
x
D
x
D
x
H
Remark x = Don't Care, D = data  
33  
Data Sheet S12694EJ2V0DS00  
µPD16680  
12.4 Blink data setting  
Command / Data  
Item  
STB  
Explanation  
b7 b6 b5 b4 b3 b2 b1 b0  
Start  
H
L
x
1
0
0
x
x
1
0
0
x
x
1
0
0
x
x
0
0
0
x
x
0
0
0
x
x
0
0
0
x
x
0
0
0
x
X
0
0
0
x
Address Register 1  
Address Register 2  
Address Register 3  
Blink group address  
X address = 00H  
Y address = 00H  
L
L
H
Data write,  
Data R/W mode  
Blink Data 1  
L
L
1
0
1
1
0
0
0
0
The address is incremented starting from the current one.  
D
D
D
D
D
D
D
D
Blink data  
(13 bytes)  
Blink Data 13  
L
H
L
D
x
D
x
D
x
D
x
D
x
D
x
D
x
D
x
Blink setting  
End  
0
x
1
x
0
x
0
x
0
x
0
x
1
x
0
x
Blink start, blink frequency = fBRI/2  
H
Remark x= Don't Care, D = data  
34  
Data Sheet S12694EJ2V0DS00  
µPD16680  
13. ELECTRICAL SPECIFICATIONS  
Absolute maximum ratings (TA =+25°C, VSS =0 V)  
Parameter  
Supply voltage (4-fold voltage mode)  
Supply voltage (3-fold voltage mode)  
Driver supply voltage  
Symbol  
Ratings  
–0.3 to +3.75  
Unit  
V
VDD  
VDD  
–0.3 to +5.0  
V
VLCD  
–0.3 to +15.0, VDD VLCD  
–0.3 to VLCD+0.3  
–0.3 to VDD+0.3  
–0.3 to VDD+0.3  
–0.3 to VDD+0.3  
–0.3 to VLCD+0.3  
–0.3 to VLCD+0.3  
–40 to +85  
V
Driver reference supply input voltage  
Logic system input voltage  
Logic system output voltage  
Logic system input/output voltage  
Driver system input voltage  
Driver system output voltage  
Operating temperature  
VLC1 to VLC5  
VIN1  
V
V
VOUT1  
VI/01  
V
V
VIN2  
V
VOUT2  
TA  
V
°C  
°C  
Storage temperature  
Tstg  
–55 to +150  
Caution If the absolute maximum rating of even one of the above parameters is exceeded even  
momentarily, the quality of the product may be degraded. Absolute maximum ratings, therefore,  
specify the values exceeding which the product may be physically damaged. Be sure to use the  
product within the range of the absolute maximum ratings.  
Recommended operating range  
Parameter  
Symbol  
VDD  
MIN.  
2.4  
2.4  
5.0  
0
TYP.  
10  
MAX.  
3.0  
Unit  
V
Supply voltage (4-fold voltage mode)  
Supply voltage (3-fold voltage mode)  
VDD  
4.0  
V
Note  
Driver supply voltage  
VLCD  
VIN  
12  
V
Logic system input voltage  
Driver system input voltage  
VDD  
V
VLC1 to VLC5  
0
VLCD  
V
Note  
When to use external LCD driving, this parameter is recommended.  
Remarks1. When to use external LCD driving, keep VSS < VLC5 < VLC4 < VLC3 < VLC2 < VLC1 VLCD  
2. When power on or power off moment, keep VDD VLCD  
3. When to use internal LCD driving circuit and not to use D/A converter, keep voltage inputted to  
IN(+)  
AMP  
DD  
pin to 1.0V to V .  
35  
Data Sheet S12694EJ2V0DS00  
µPD16680  
Electrical characteristics (Unless otherwise specified, TA = –40 to +85°C, 4-fold voltage mode : VDD = 2.7 to 3.0V or  
3-fold voltage mode : VDD = 2.7 to 4.0 V)  
Parameter  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
High-level output voltage  
Low-level output voltage  
High-level leakage current  
Symbol  
Conditions  
MIN.  
TYP.  
MAX.  
Unit  
VIH  
V
0.8 VDD  
VIL  
V
0.2 VDD  
1
IIH1  
Except DO/DATA, D1 to D7  
Except DO/DATA, D1 to D7  
IOUT = –1.5 mA, Except OSCOUT  
IOUT = 4 mA, Except OSCOUT  
µA  
µA  
V
IIL1  
–1  
VOH  
VOL  
ILOH  
VDD–0.5  
0.5  
10  
V
µA  
DO/DATA, D1 to D7  
VIN/OUT = VDD  
Low -level leakage current  
ILOL  
RCOM  
RSEG  
VLCD  
IDD11  
–10  
2
µA  
kΩ  
kΩ  
DO/DATA, D1 to D7  
VIN/OUT = VSS  
Common output ON resistance  
Segment output ON resistance  
Driver voltage (Booster voltage)  
VLCn COMn, VLCD 3VDD  
lIOl = 50 µA  
4
VLCnSEGn, VLCD 3VDD  
lIOl = 50 µA  
3-fold voltage mode  
V
V
2.7 VDD  
3.6 VDD  
3.0 VDD  
4.0 VDD  
4-fold voltage mode  
Current consumption (VDD)  
Level condenser mode  
fOSC = 32 kHz, Display-off data output  
VDD = 3.0 V,3-fold voltage mode  
Not to access to RAM.  
95  
µA  
µA  
µA  
fOSC = 32 kHz, Display-off data output  
VDD = 3.0 V,4-fold voltage mode  
Not to access to RAM.  
125  
160  
Current consumption (VDD)  
LCD driving mode  
IDD12  
fOSC = 32 kHz, Display-off data output  
VDD = 3.0 V,3-fold voltage mode  
Not to access to RAM.  
fOSC = 32 kHz, Display-off data output  
VDD = 3.0 V,4-fold voltage mode  
Not to access to RAM.  
250  
10  
µA  
µA  
Driver current consumption  
(VDD, Standby)  
IDD21  
VDD = 3.0 V  
36  
Data Sheet S12694EJ2V0DS00  
µPD16680  
Switching characteristics (Unless otherwise specified, TA = –40 to +85°C, VDD = 2.7 to 3.3 V)  
Parameter  
Oscillation frequency  
Transfer delay time 1  
Transfer delay time 2  
Symbol  
FOSC  
tPHL  
Conditions  
MIN.  
TYP.  
MAX.  
38  
Unit  
kHz  
ns  
Self-oscillation  
25  
32  
SCK↓ → DATA↓  
SCK↓ → DATA↑  
100  
300  
tPLH  
ns  
Remarks 1. The TYP. value is a reference value when TA =+25°C.  
2. The time for one frame is found from the following formula.  
1 frame = 1/fosc x 8 x number of duties  
(Example)  
OSC  
f
= 32 kHz, 1/53, then the result is :  
1 frame = 33 µs x 8 x 53 = 13.25 ms 75.5 Hz  
37  
Data Sheet S12694EJ2V0DS00  
µPD16680  
Required conditions for timing (Unless otherwise specified, TA = –40 to +85°C, VDD = 2.7 to 3.3 V)  
1. Common  
Parameter  
Symbol  
fOSC  
Conditions  
OSCIN external clock  
MIN.  
20  
TYP.  
32  
MAX.  
50  
Unit  
kHz  
µs  
Clock frequency  
tWHC1  
tWLC1  
tWHC2  
tWLC2  
tr, tf  
OSCIN external clock  
OSCIN external clock  
OSCBRI external clock  
OSCBRI external clock  
OSCBRI external clock  
/RESET pin  
10  
25  
High-level clock pulse width  
Low -level clock pulse width  
High-level clock pulse width  
10  
25  
µs  
400  
400  
ns  
ns  
Low -level clock pulse width  
Rise/Fall time  
100  
ns  
Reset pulse width  
tWRE  
50  
µs  
Remark The TYP. value is a reference value when TA =+25°C.  
2. Serial interface  
Parameter  
Shift clock cycle  
Synbol  
tCYK  
Conditions  
MIN.  
900  
295  
295  
400  
40  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCK  
SCK  
SCK  
tWHK  
High-level shift clock pulse width  
Low-level shift clock pulse width  
tWLK  
tHSTBK  
tDS1  
STB↓ → SCK↓  
DATA SCK↑  
SCK↑ → DATA  
SCK↑ → STB↑  
Shift clock hold time  
Data setup time  
Data hold time  
STB hold time  
STB pulse width  
Wait timeNote  
tDH1  
40  
tHKSTB  
tWSTB  
tWAIT  
400  
210  
100  
8th CLK↑ →1st CLK↓  
Note See 11.1.3 Transmission (Command/Data read).  
3. Parallel interface  
Parameter  
Symbol  
tCYCE  
tWHE  
Conditions  
MIN.  
900  
295  
295  
210  
400  
400  
40  
TYP.  
MAX.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
E↑ → E↑  
Enable cycle time  
E
E
High-level enable pulse width  
tWLE  
Low-level enable pulse width  
STB pulse width  
tWSTB  
tHKSTB  
tHSTBK  
tDS2  
STB hold time  
Enable hold time  
Data setup time  
Data hold time  
D0 to D7 E↑  
D0 to D7 E↓  
tDH2  
40  
38  
Data Sheet S12694EJ2V0DS00  
µPD16680  
Switching characteristics waveforms  
AC measurement point  
V
V
IH  
Input  
V
IL  
OH  
Output  
VOL  
AC characteristics waveform  
OSCIN  
t
WHC1  
t
WLC1  
1/fOSC  
t
f
t
r
OSCBR1  
t
WHC2  
t
WLC2  
Serial interface (Input)  
STB  
t
CYK  
t
WSTB  
t
HSTBK  
t
HKSTB  
t
WHK  
SCK  
t
DS1  
t
DH1  
DATA  
Serial interface (Output)  
SCK  
t
PHL  
t
PLH  
DATA  
39  
Data Sheet S12694EJ2V0DS00  
µPD16680  
4-bit parallel interface  
STB  
t
CYCE  
t
HSTBK  
t
WHE  
t
WLE  
E
t
DH2  
t
DS2  
Dn  
Upper bit  
Lower bit  
Upper bit  
STB  
t
WSTB  
t
HKSTB  
E
Dn  
Upper bit  
Upper bit  
Lower bit  
8-bit parallel interface  
STB  
t
WSTB  
t
CYCE  
t
HSTBK  
t
HKSTB  
t
WHE  
t
WLE  
E
t
DH2  
t
DS2  
Dn  
Reset  
/RESET  
t
WRE  
40  
Data Sheet S12694EJ2V0DS00  
µPD16680  
[MEMO]  
41  
Data Sheet S12694EJ2V0DS00  
µPD16680  
[MEMO]  
42  
Data Sheet S12694EJ2V0DS00  
µPD16680  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
43  
Data Sheet S12694EJ2V0DS00  
µPD16680  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
No part of this document may be copied or reproduced in any form or by any means without the prior written  
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in  
this document.  
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property  
rights of third parties by or arising from use of a device described herein or any other liability arising from use  
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other  
intellectual property rights of NEC Corporation or others.  
Descriptions of circuits, software, and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these circuits,  
software, and information in the design of the customer's equipment shall be done under the full responsibility  
of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third  
parties arising from the use of these circuits, software, and information.  
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,  
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or  
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety  
measures in its design, such as redundancy, fire-containment, and anti-failure features.  
NEC devices are classified into the following three quality grades:  
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a  
customer designated "quality assurance program" for a specific application. The recommended applications of  
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device  
before using it in a particular application.  
Standard: Computers, office equipment, communications equipment, test and measurement equipment,  
audio and visual equipment, home electronic appliances, machine tools, personal electronic  
equipment and industrial robots  
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support)  
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems or medical equipment for life support, etc.  
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.  
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,  
they should contact an NEC sales representative in advance.  
M7 98. 8  

相关型号:

UPD16680W

1/53, 1/40 DUTY, LCD CONTROLLER/DRIVER WITH BUILT-IN RAM
NEC

UPD16680W

LIQUID CRYSTAL DISPLAY DRIVER, UUC, WAFER
RENESAS

UPD16681

LCD CONTROLLER/DRIVER FOR DOT MATRIX DISPLAY OF JIS LEVEL 1 AND JIS LEVEL 2 KANJI SETS
NEC

UPD16681A

LCD CONTROLLER/DRIVER FOR DOT MATRIX DISPLAY OF JIS LEVEL 1 AND JIS LEVEL 2 KANJI SETS
NEC

UPD16681A-001

LCD CONTROLLER/DRIVER FOR DOT MATRIX DISPLAY OF JIS LEVEL 1 AND JIS LEVEL 2 KANJI SETS
NEC

UPD16681AP-001

LCD CONTROLLER/DRIVER FOR DOT MATRIX DISPLAY OF JIS LEVEL 1 AND JIS LEVEL 2 KANJI SETS
NEC

UPD16681P-011

LCD CONTROLLER/DRIVER FOR DOT MATRIX DISPLAY OF JIS LEVEL 1 AND JIS LEVEL 2 KANJI SETS
NEC

UPD16681W-011

LCD CONTROLLER/DRIVER FOR DOT MATRIX DISPLAY OF JIS LEVEL 1 AND JIS LEVEL 2 KANJI SETS
NEC

UPD16682

1/65 DUTY LCD CONTROLLER/DRIVER WITH ON-CHIP RAM
NEC

UPD16682A

1/65 DUTY LCD CONTROLLER/DRIVER WITH ON-CHIP RAM
NEC

UPD16682AP

1/65 DUTY LCD CONTROLLER/DRIVER WITH ON-CHIP RAM
NEC

UPD16682AW

1/65 DUTY LCD CONTROLLER/DRIVER WITH ON-CHIP RAM
NEC