UPD8880 [NEC]

(10680 ®10680) PIXELS x 3 COLOR CCD LINEAR IMAGE SENSOR; ( 10680 ®10680 )像素× 3彩色CCD线性图像传感器
UPD8880
型号: UPD8880
厂家: NEC    NEC
描述:

(10680 ®10680) PIXELS x 3 COLOR CCD LINEAR IMAGE SENSOR
( 10680 ®10680 )像素× 3彩色CCD线性图像传感器

传感器 图像传感器 CD
文件: 总24页 (文件大小:194K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
MOS INTEGRATED CIRCUIT  
µPD8880  
(10680 × 10680) PIXELS × 3 COLOR CCD LINEAR IMAGE SENSOR  
DESCRIPTION  
The µPD8880 is a color CCD (Charge Coupled Device) linear image sensor which changes optical images to  
electrical signal and has the function of color separation.  
The µPD8880 has 3 rows of (10680+10680) staggered pixels, and each row has a dual-sided readout type of  
charge transfer register. And it has reset feed-through level clamp circuits and voltage amplifiers. Therefore, it is  
suitable for 2400 dpi/A4 color image scanners, color facsimiles and so on.  
FEATURES  
Valid photocell  
: (10680+10680) pixels × 3  
Photocell pitch : 4 µm  
Line spacing  
: 64 µm (16 lines) Red line - Green line, Green line - Blue line  
8 µm (2 lines) Odd line – Even line (for each color)  
Color filter  
: Primary colors (red, green and blue), pigment filter (with light resistance 107 lx•hour)  
: 96 dot/mm A4 (210 × 297 mm) size (shorter side)  
Resolution  
:
2400 dpi US letter (8.5” × 11”) size (shorter side)  
Drive clock level : CMOS output under 5 V operation  
Data rate  
: 8 MHz Max.  
: +12 V  
Power supply  
On-chip circuits : Reset feed-through level clamp circuits  
:: Voltage amplifiers  
ORDERING INFORMATION  
Part Number  
Package  
CCD linear image sensor 32-pin plastic DIP (10.16 mm (400))  
µPD8880CY  
The information in this document is subject to change without notice. Before using this document, please  
confirm that this is the latest version.  
Not all products and/or types are available in every country. Please check with an NEC Electronics  
sales representative for availability and additional information.  
The mark  
shows major revised points.  
Document No. S16032EJ3V0DS00 (3rd edition)  
Date Published July 2003 NS CP (K)  
Printed in Japan  
2002  
µPD8880  
BLOCK DIAGRAM  
φ
φ
φ
1
GND  
1
2L  
2
V
OD  
GND  
16  
29  
20  
13  
19  
CCD analog shift register  
Transfer gate  
φ
TG1  
(Blue)  
18  
17  
15  
V
(Blue)  
OUT  
1
30  
31  
32  
Photocell  
(Blue)  
····  
····  
····  
Transfer gate  
CCD analog shift register  
CCD analog shift register  
Transfer gate  
φ
TG2  
(Green)  
VOUT  
2
Photocell  
(Green)  
(Green)  
Transfer gate  
CCD analog shift register  
CCD analog shift register  
Transfer gate  
φ
TG3  
(Red)  
VOUT  
3
Photocell  
(Red)  
(Red)  
Transfer gate  
CCD analog shift register  
3
2
14  
5
4
φ
φ
1
φ
φ
1L  
2
φ
RB  
CLB  
2
Data Sheet S16032EJ3V0DS  
µPD8880  
PIN CONFIGURATION (Top View)  
CCD linear image sensor 32-pin plastic DIP (10.16 mm (400))  
µPD8880CY  
Ground  
GND  
RB  
1
2
3
4
5
6
7
8
9
32  
31  
30  
29  
V
V
V
V
OUT  
OUT  
OUT  
OD  
3
2
1
Output signal 3 (Red)  
Reset gate clock  
φ
Output signal 2 (Green)  
Output signal 1 (Blue)  
Output drain voltage  
No connection  
Reset feed-through level  
clamp clock  
φ
CLB  
Shift register clock 1  
Shift register clock 2  
Internal connection  
Internal connection  
No connection  
φ
φ
1
2
28 NC  
27 IC  
26 IC  
25 NC  
24 NC  
23 NC  
22 IC  
21 IC  
IC  
IC  
Internal connection  
Internal connection  
No connection  
NC  
NC  
No connection  
No connection  
No connection  
NC 10  
IC 11  
IC 12  
No connection  
Internal connection  
Internal connection  
Shift register clock 1  
Last stage shift register clock 1  
Internal connection  
Internal connection  
Shift register clock 2  
Last stage shift register clock 2  
φ
1
13  
14  
15  
20  
19  
18  
17  
φ
φ
φ
φ
2
φ
2L  
1L  
TG3  
Transfer gate clock 3  
(for Red)  
Transfer gate clock 1  
(for Blue)  
φ
TG1  
TG2  
Transfer gate clock 2  
(for Green)  
GND 16  
Ground  
Cautions 1. Leave pins 6 , 7, 11, 12, 21, 22, 26, 27 (IC) unconnected.  
2. Connect the No connection pins (NC) to GND.  
3
Data Sheet S16032EJ3V0DS  
µPD8880  
PHOTOCELL STRUCTURE DIAGRAM  
2
µ
m
2 µm  
µ
Channel stopper  
Aluminum  
shield  
PHOTOCELL ARRAY STRUCTURE DIAGRAM (Line spacing)  
4 µm  
4 µm  
4 µm  
Blue photocell array  
Blue photocell array  
2 lines  
(8 m)  
µ
16 lines  
(64 m)  
µ
14 lines  
(56 m)  
µ
4 µm  
4 µm  
4 µm  
Green photocell array  
Green photocell array  
2 lines  
(8 m)  
µ
16 lines  
(64 m)  
µ
14 lines  
(56 m)  
µ
4
4
4
µ
µ
µ
m
m
m
Red photocell array  
Red photocell array  
2 lines  
(8 m)  
µ
4
Data Sheet S16032EJ3V0DS  
µPD8880  
ABSOLUTE MAXIMUM RATINGS (TA = +25°C)  
Parameter  
Output drain voltage  
Symbol  
Ratings  
0.3 to +15  
0.3 to +8  
0.3 to +8  
0.3 to +8  
Unit  
V
VOD  
Shift register clock voltage  
Reset gate clock voltage  
Vφ 1, Vφ 2, Vφ 1L, Vφ 2L  
V
Vφ RB  
V
Reset feed-through level clamp  
clock voltage  
Vφ CLB  
V
Transfer gate clock voltage  
Operating ambient temperature Note  
Storage temperature  
Vφ TG1 to Vφ TG3  
0.3 to +8  
0 to +60  
V
TA  
°C  
°C  
Tstg  
40 to +70  
Note Use at the condition without dew condensation.  
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any  
parameter. That is, the absolute maximum ratings are rated values at which the product is on the  
verge of suffering physical damage, and therefore the product must be used under conditions that  
ensure that the absolute maximum ratings are not exceeded.  
RECOMMENDED OPERATING CONDITIONS (TA = +25°C)  
Parameter  
Output drain voltage  
Symbol  
Min.  
11.4  
4.8  
Typ.  
12.0  
5.0  
0
Max.  
12.6  
5.5  
Unit  
V
VOD  
Shift register clock high level  
Shift register clock low level  
Reset gate clock high level  
Reset gate clock low level  
Vφ 1_H, Vφ 2_H, Vφ 1LH, Vφ 2LH  
V
Vφ 1_L, Vφ 2_L, Vφ 1LL, Vφ 2LL  
0.3  
4.5  
+0.2  
5.5  
V
Vφ RBH  
Vφ RBL  
Vφ CLBH  
5.0  
0
V
0.3  
4.5  
+0.5  
5.5  
V
Reset feed-through level clamp clock  
high level  
5.0  
V
Reset feed-through level clamp clock  
low level  
Vφ CLBL  
0.3  
0
+0.5  
V
Note  
Note  
Transfer gate clock high level  
Transfer gate clock low level  
CCD Transfer speed  
Data rate  
Vφ TG1H to Vφ TG3H  
Vφ TG1L to Vφ TG3L  
fφ 1, fφ 2  
4.8  
0.3  
Vφ 1_H  
Vφ 1_H  
V
0
1
2
+0.15  
V
6
8
MHz  
MHz  
fφ RB  
Note When Transfer gate clock high level (Vφ TG1H to Vφ TG3H) is higher than Shift register clock high level (Vφ 1_H),  
Image lag can increase.  
5
Data Sheet S16032EJ3V0DS  
µPD8880  
ELECTRICAL CHARACTERISTICS  
TA = +25°C, VOD = 12 V, data rate (fφ RB) = 2 MHz, storage time = 11.0 ms, input signal clock = 5 Vp-p,  
light source : 3200 K halogen lamp + C-500S (infrared cut filter, t = 1 mm) + HA-50 (heat absorbing filter, t = 3 mm)  
Parameter  
Saturation voltage 1  
Symbol  
Vsat1  
Vsat2  
PRNU  
ADS  
DSNU  
PW  
Test Conditions  
Min.  
Typ.  
3.5  
Max.  
Unit  
V
Note 1  
Note 2  
2.5  
Saturation voltage 2  
1.5  
2.5  
V
Photo response non-uniformity  
Average dark signal  
VOUT = 1.0 V  
6
20  
4.0  
8.0  
450  
1
%
Light shielding  
Light shielding  
0.4  
mV  
mV  
mW  
kΩ  
Dark signal non-uniformity  
Power consumption  
2.0  
290  
0.3  
Output impedance  
ZO  
2.52  
2.31  
1.26  
Response  
Red  
RR  
3.60  
3.30  
1.80  
1.0  
4.68  
4.29  
2.34  
7.0  
7.5  
V/lx•s  
V/lx•s  
V/lx•s  
%
Green  
Blue  
RG  
RB  
Image lag  
Offset level Note 3  
Output fall delay time Note 4  
Total transfer efficiency  
Register imbalance  
Response peak  
IL  
VOUT = 1.0 V  
VOS  
td  
4.5  
6.0  
V
VOUT = 1.0 V  
25  
ns  
TTE  
RI  
VOUT = 1.0 V, fφ 1, fφ 2 = 6 MHz  
VOUT = 1.0 V  
92  
98  
%
1.0  
4.0  
%
Red  
630  
540  
460  
1750  
3500  
500  
1.0  
nm  
nm  
nm  
times  
times  
mV  
mV  
Green  
Blue  
Dynamic range  
DR1  
Vsat1/DSNU, Note 1  
Vsat1/σ CDS, Note 1  
Light shielding  
DR2  
Reset feed-through noise Note 3  
Random noise (CDS)  
RFTN  
σ CDS  
2000  
+500  
Light shielding  
Notes 1. Vsat1: fφ 1, fφ 2 4 MHz, fφ RB 8 MHz  
2. Vsat2: 4 MHz < (fφ 1, fφ 2) < 6 MHz, fφ RB 8 MHz (refer to TIMING CHART 3)  
3. Refer to TIMING CHART 2.  
4. When the fall time of φ 1L (t1’) is the Typ. value (refer to TIMING CHART 2).  
6
Data Sheet S16032EJ3V0DS  
µPD8880  
INPUT PIN CAPACITANCE (TA = +25°C, VOD = 12 V)  
Parameter  
Symbol Pin name Pin No.  
Min.  
Typ.  
1100  
1100  
2200  
1100  
1100  
2200  
70  
Max.  
Unit  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
pF  
Shift register clock pin capacitance 1  
Cφ 1  
φ 1  
4
13  
φ 1 total capacitance  
φ 2  
Shift register clock pin capacitance 2  
Cφ 2  
5
20  
φ 2 total capacitance  
Last stage shift register clock pin capacitance 1  
Last stage shift register clock pin capacitance 2  
Reset gate clock pin capacitance  
Cφ 1L  
Cφ 2L  
Cφ RB  
Cφ CLB  
Cφ TG  
φ 1L  
14  
19  
2
φ 2L  
70  
φ RB  
20  
Reset feed-through level clamp clock pin capacitance  
Transfer gate clock pin capacitance  
φ CLB  
φ TG1  
φ TG2  
φ TG3  
3
20  
18  
17  
15  
200  
200  
200  
Remarks 1. Pins 4 and 13 (φ 1), 5 and 20 (φ 2) are each connected inside of the device.  
2. Cφ 1 and Cφ 2 show the equivalent capacity of the real drive including the capacity of between φ 1 and  
φ 2.  
7
Data Sheet S16032EJ3V0DS  
TIMING CHART 1-1 (Bit clamp mode, for each color)  
φ
TG1 to  
φ
1,  
2,  
TG3  
φ
φ
φ
φ
1L  
2L  
φ
RB  
Note  
Note  
φ
CLB  
VOUT1 to VOUT3  
Optical black  
(48 pixels)  
Valid photocell  
(21360 pixels)  
Invalid photocell  
(4 pixels)  
Invalid photocell  
(4 pixels)  
µ
Note Set the φ RB and φ CLB to high level during this period.  
TIMING CHART 1-2 (Line clamp mode, for each color)  
φ
TG1 to  
φ
1,  
2,  
TG3  
φ
φ
φ
φ
1L  
2L  
φ
RB  
Note  
Note  
φ
CLB  
(φTG1 toφ TG3)  
VOUT1 to VOUT3  
Optical black  
(48 pixels)  
Valid photocell  
(21360 pixels)  
Invalid photocell  
(4 pixels)  
Invalid photocell  
(4 pixels)  
µ
Note Set the φ RB to high level during this period.  
Remark Inverse pulse of the φ TG1 to φ TG3 can be used as φ CLB.  
µPD8880  
TIMING CHART 2-1 (Bit clamp mode, for each color)  
t1  
t2  
90%  
φ
φ
1
2
10%  
90%  
10%  
t1’  
t2’  
90%  
10%  
φ
φ
1L  
2L  
90%  
10%  
t5  
t6  
t5  
t6  
t3  
t4  
t3  
t4  
90%  
10%  
φ
RB  
t9  
t10  
t9  
t10  
t7  
t8  
t11  
t7  
t8  
t11  
90%  
10%  
φ
CLB  
t
d
t
d
RFTN  
VOUT  
VOS  
10%  
Symbol  
t1, t2  
Min.  
Typ.  
30  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0
0
t1’, t2’  
t3  
5
20  
75  
0
100  
200  
10  
t4  
t5, t6  
t7  
30  
20  
0
100  
100  
10  
t8  
t9, t10  
t11  
5
25  
10  
Data Sheet S16032EJ3V0DS  
µPD8880  
TIMING CHART 2-2 (Line clamp mode, for each color)  
t2  
t1  
90%  
φ
φ
1
2
10%  
90%  
10%  
t2’  
t1’  
90%  
10%  
φ
1L  
90%  
10%  
φ
2L  
t5  
t6  
t5  
t6  
t3  
t4  
t3  
t4  
90%  
10%  
φ
RB  
“H”  
φ
CLB  
t
d
t
d
RFTN  
VOUT  
VOS  
10%  
Symbol  
t1, t2  
Min.  
0
Typ.  
30  
Max.  
Unit  
ns  
t1’, t2’  
t3  
0
5
ns  
20  
75  
0
100  
200  
10  
ns  
t4  
ns  
t5, t6  
ns  
TIMING CHART 3 (Sift Register Pulse φ 1, φ 2 = 6 MHz (Max.))  
φ
1
2
4.8 V or more  
30 ns or more  
0.2 V or less  
φ
30 ns or more  
11  
Data Sheet S16032EJ3V0DS  
µPD8880  
φ TG1 to φ TG3, φ 1, φ 2 TIMING CHART  
t13  
90%  
10%  
t15  
t14  
t12  
φ
TG1 to φ TG3  
t16  
90%  
φ
φ
1
2
t17  
90%  
t7  
Note 1  
t18  
φ
RB  
90%  
φ
CLB  
(Bit clamp mode)  
t20  
t21  
t22  
Note 2  
t23  
90%  
10%  
φ
CLB  
(Line clamp mode)  
t9  
t19  
t10  
Symbol  
Min.  
Typ.  
100  
10  
Max.  
Unit  
t7  
30  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t9, t10  
t12  
5000  
0
10000  
50  
50000  
t13, t14  
t15, t16  
t17, t18  
t19  
900  
200  
t12  
0
1000  
400  
t12  
50000  
t20, t21  
t22, t23  
50  
30  
350  
Notes 1. Set the φ RB and φ CLB to high level during this period.  
2. Set the φ RB to high level during this period.  
Remark Inverse pulse of the φ TG1 to φ TG3 can be used as φ CLB.  
12  
Data Sheet S16032EJ3V0DS  
µPD8880  
φ 1, φ 2 cross points  
φ 1, φ 2L cross points  
φ
φ
2
1
1.5 V to 3.5 V  
1.5 V to 3.5 V  
φ
1
2 V or more  
0.5 V or more  
φ
2L  
φ 2, φ 1L cross points  
φ
2
2 V or more  
0.5 V or more  
φ
1L  
Remark Adjust cross points (φ 1, φ 2), (φ 1, φ 2L) and (φ 2, φ 1L) with input resistance of each pin.  
13  
Data Sheet S16032EJ3V0DS  
µPD8880  
DEFINITIONS OF CHARACTERISTIC ITEMS  
1. Saturation voltage : Vsat  
Output signal voltage at which the response linearity is lost.  
2. Saturation exposure : SE  
Product of intensity of illumination (lx) and storage time (s) when saturation of output voltage occurs.  
3. Photo response non-uniformity : PRNU  
The output signal non-uniformity of all the valid pixels when the photosensitive surface is applied with the light  
of uniform illumination. This is calculated by the following formula.  
x
PRNU (%) =  
× 100  
x
x : maximum of x  
j
x   
21360  
x
j
Σ
j = 1  
21360  
: Output voltage of valid pixel number j  
x =  
xj  
VOUT  
x
Register Dark  
DC level  
x
4. Average dark signal : ADS  
Average output signal voltage of all the valid pixels at light shielding. This is calculated by the following  
formula.  
21360  
d
j
Σ
j = 1  
21360  
ADS (mV) =  
d
j
: Dark signal of valid pixel number j  
14  
Data Sheet S16032EJ3V0DS  
µPD8880  
5. Dark signal non-uniformity : DSNU  
Absolute maximum of the difference between ADS and voltage of the highest or lowest output pixel of all the  
valid pixels at light shielding. This is calculated by the following formula.  
DSNU (mV) : maximum of d  
j
ADS j = 1 to 21360  
d
j
: Dark signal of valid pixel number j  
VOUT  
ADS  
Register Dark  
DC level  
DSNU  
6. Output impedance : ZO  
Impedance of the output pins viewed from outside.  
7. Response : R  
Output voltage divided by exposure (lx•s).  
Note that the response varies with a light source (spectral characteristic).  
8. Image lag : IL  
The rate between the last output voltage and the next one after read out the data of a line.  
φ
TG  
Light  
ON  
OFF  
V
OUT  
V1  
VOUT  
V
1
IL (%) =  
× 100  
OUT  
V
15  
Data Sheet S16032EJ3V0DS  
µPD8880  
9. Register Imbalance : RI  
The rate of the difference between the averages of the output voltage of Odd and Even bits, against the  
average output voltage of all the valid pixels.  
n
2
2
n
(V2j –1 – V2j  
n
)
j = 1  
RI (%) =  
× 100  
1
n
V
j
j = 1  
n
V
: Number of valid pixels  
: Output voltage of each pixel  
j
10. Random noise (CDS) : σ CDS  
Random noise σ CDS is defined as the standard deviation of a valid pixel output signal with 100 times (=100  
lines) data sampling at dark (light shielding). σ CDS is calculated by the following procedure.  
1. One valid photocell in one reading is fixed as measurement point.  
2. The output level is measured during the reset feed-through period which is averaged over 100 ns to get  
“VDi”.  
3. The output level is measured during the Video Output time averaged over 100 ns to get “VOi”.  
4. The correlated double sampling output is defined by VCDSi = VDi – VOi  
5. Repeat the above procedure (1 to 4) for 100 times (= 100 lines).  
6. Calculate the standard deviation σ CDS using the following formula equation.  
100  
100  
(VCDS  
100  
i
– V)2  
1
Σ
σ
CDS (mV) =  
, V =  
VCDS  
i
100 Σ  
i = 1  
i = 1  
Video Output  
Reset feed-through  
16  
Data Sheet S16032EJ3V0DS  
µPD8880  
STANDARD CHARACTERISTIC CURVES (Reference Value)  
DARK OUTPUT TEMPERATURE  
CHARACTERISTIC  
STORAGE TIME OUTPUT VOLTAGE  
CHARACTERISTIC (T = +25°C)  
A
8
2
1
4
2
1
0.5  
0.2  
0.1  
0.25  
0.1  
0
10  
20  
30  
40  
50  
1
5
10  
Operating Ambient Temperature TA (°C)  
Storage Time (ms)  
TOTAL SPECTRAL RESPONSE CHARACTERISTICS  
(without infrared cut filter and heat absorbing filter ) (T = +25°C)  
A
100  
80  
R
B
G
60  
40  
20  
G
B
0
400  
500  
600  
700  
800  
Wavelength (nm)  
17  
Data Sheet S16032EJ3V0DS  
µPD8880  
APPLICATION CIRCUIT EXAMPLE  
+5 V  
+
µ
PD8880  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
10  
µ
F/16 V  
0.1 µF  
GND  
V
OUT  
OUT  
OUT  
3
2
1
B3  
B2  
B1  
200  
47  
+12 V  
φ
φ
φ
φ
V
V
RB  
RB  
CLB  
1
3
φ
CLB  
+
1
1
4
φ
φ
VOD  
1
2
5
0.1  
µ
µ
F
47  
µ
F/25 V  
φ
NC  
IC  
2
+5 V  
6
IC  
7
+
IC  
IC  
8
NC  
NC  
NC  
IC  
NC  
NC  
NC  
IC  
10 µF/16 V  
0.1  
F
9
10  
11  
12  
13  
14  
15  
16  
φ
TG  
IC  
IC  
1
1
φ
φ
φ
φ
φ
2
φ
2
1
1
100  
4.7  
100  
4.7 Ω  
4.7 Ω  
φ
1L  
TG3  
φ
2L  
φ
2L  
1L  
φ
φ
TG1  
TG2  
GND  
Cautions 1. Leave pins 6, 7, 11, 12, 21, 22, 26, 27 (IC) unconnected.  
2. Connect the No connection pins (NC) to GND.  
Remarks 1. The inverters shown in the above application circuit example are the 74HC04 (fφ RB < 2 MHz, (fφ 1, fφ 2)  
< 1 MHz) or 74AC04 (2 MHz fφ RB 8 MHz, 1 MHz (fφ 1, fφ 2) 6 MHz).  
2. The input clock register of φ RB (2 pin) shown in the above application circuit example are the 200 Ω  
(74HC04) or 300 (74AC04).  
3. Inverters B1 to B3 in the above application circuit example are shown in the figure blow.  
B1 to B3 EQUIVALENT CIRCUIT  
+12 V  
+
µ
47 F/25 V  
100  
2SC945  
2 kΩ  
100 Ω  
CCD  
VOUT  
18  
Data Sheet S16032EJ3V0DS  
µPD8880  
PACKAGE DRAWING  
µ
PD8880CY  
CCD LINEAR IMAGE SENSOR 32-PIN PLASTIC DIP (10.16 mm (400) )  
(Unit : mm)  
55.2 0.5  
54.8 0.5  
1st valid pixel  
1
5.9 0.3  
32  
17  
1
16  
46.7  
2.0  
12.6 0.5  
4.1 0.5  
10.16 0.20  
4.55 0.5  
1.02 0.15  
2
(1.80)  
3
2.58 0.3  
0.46 0.1  
2.54 0.25  
0.25 0.05  
(5.42)  
+0.7  
10.16  
0.2  
4.21 0.5  
Name  
Dimensions  
Refractive index  
Plastic cap  
52.2×6.4×0.7  
1.5  
1 1st valid pixel  
The center of the pin1  
2 The surface of the CCD chip  
3 The bottom of the package  
The top of the cap  
The surface of the CCD chip  
32C-1CCD-PKG4-2  
19  
Data Sheet S16032EJ3V0DS  
µPD8880  
RECOMMENDED SOLDERING CONDITIONS  
When soldering this product, it is highly recommended to observe the conditions as shown below.  
If other soldering processes are used, or if the soldering is performed under different conditions, please make sure  
to consult with our sales offices.  
Type of Through-hole Device  
µPD8880CY : CCD linear image sensor 32-pin plastic DIP (10.16 mm (400))  
Process  
Conditions  
Partial heating method  
Pin temperature : 300°C or below, Heat time : 3 seconds or less (per pin)  
Cautions1. During assembly care should be taken to prevent solder or flux from contacting the plastic  
cap. The optical characteristics could be degraded by such contact.  
2. Soldering by the solder flow method may have deleterious effects on prevention of plastic cap  
soiling and heat resistance. So the method cannot be guaranteed.  
20  
Data Sheet S16032EJ3V0DS  
µPD8880  
NOTES ON HANDLING THE PACKAGES  
1
DUST AND DIRT PROTECTING  
The optical characteristics of the CCD will be degraded if the cap is scratched during cleaning. Don’t either  
touch plastic cap surface by hand or have any object come in contact with plastic cap surface. Should dirt  
stick to a plastic cap surface, blow it off with an air blower. For dirt stuck through electricity ionized air is  
recommended. And if the plastic cap surface is grease stained, clean with our recommended solvents.  
CLEANING THE PLASTIC CAP  
Care should be taken when cleaning the surface to prevent scratches.  
We recommend cleaning the cap with a soft cloth moistened with one of the recommended solvents below.  
Excessive pressure should not be applied to the cap during cleaning. If the cap requires multiple cleanings it is  
recommended that a clean surface or cloth be used.  
RECOMMENDED SOLVENTS  
The following are the recommended solvents for cleaning the CCD plastic cap.  
Use of solvents other than these could result in optical or physical degradation in the plastic cap.  
Please consult your sales office when considering an alternative solvent.  
Solvents  
Ethyl Alcohol  
Symbol  
EtOH  
MeOH  
IPA  
Methyl Alcohol  
Isopropyl Alcohol  
N-methyl Pyrrolidone  
NMP  
2
MOUNTING OF THE PACKAGE  
The application of an excessive load to the package may cause the package to warp or break, or cause chips  
to come off internally. Particular care should be taken when mounting the package on the circuit board. Don't  
have any object come in contact with plastic cap. You should not reform the lead frame. We recommended to  
use a IC-inserter when you assemble to PCB.  
Also, be care that the any of the following can cause the package to crack or dust to be generated.  
1. Applying heat to the external leads for an extended period of time with soldering iron.  
2. Applying repetitive bending stress to the external leads.  
3. Rapid cooling or heating  
3
4
OPERATE AND STORAGE ENVIRONMENTS  
Operate in clean environments. CCD image sensors are precise optical equipment that should not be subject  
to mechanical shocks. Exposure to high temperatures or humidity will affect the characteristics. So avoid  
storage or usage in such conditions.  
Keep in a case to protect from dust and dirt. Dew condensation may occur on CCD image sensors when the  
devices are transported from a low-temperature environment to a high-temperature environment. Avoid such  
rapid temperature changes.  
For more details, refer to our document "Review of Quality and Reliability Handbook" (C12769E)  
ELECTROSTATIC BREAKDOWN  
CCD image sensor is protected against static electricity, but destruction due to static electricity is sometimes  
detected. Before handling be sure to take the following protective measures.  
1. Ground the tools such as soldering iron, radio cutting pliers of or pincer.  
2. Install a conductive mat or on the floor or working table to prevent the generation of static electricity.  
3. Either handle bare handed or use non-chargeable gloves, clothes or material.  
4. Ionized air is recommended for discharge when handling CCD image sensor.  
5. For the shipment of mounted substrates, use box treated for prevention of static charges.  
6. Anyone who is handling CCD image sensors, mounting them on PCBs or testing or inspecting PCBs on  
which CCD image sensors have been mounted must wear anti-static bands such as wrist straps and ankle  
straps which are grounded via a series resistance connection of about 1 M.  
21  
Data Sheet S16032EJ3V0DS  
µPD8880  
[MEMO]  
22  
Data Sheet S16032EJ3V0DS  
µPD8880  
NOTES FOR CMOS DEVICES  
1
PRECAUTION AGAINST ESD FOR SEMICONDUCTORS  
Note:  
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and  
ultimately degrade the device operation. Steps must be taken to stop generation of static electricity  
as much as possible, and quickly dissipate it once, when it has occurred. Environmental control  
must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using  
insulators that easily build static electricity. Semiconductor devices must be stored and transported  
in an anti-static container, static shielding bag or conductive material. All test and measurement  
tools including work bench and floor should be grounded. The operator should be grounded using  
wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need  
to be taken for PW boards with semiconductor devices on it.  
2
HANDLING OF UNUSED INPUT PINS FOR CMOS  
Note:  
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided  
to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence  
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels  
of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused  
pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of  
being an output pin. All handling related to the unused pins must be judged device by device and  
related specifications governing the devices.  
3
STATUS BEFORE INITIALIZATION OF MOS DEVICES  
Note:  
Power-on does not necessarily define initial status of MOS device. Production process of MOS  
does not define the initial operation status of the device. Immediately after the power source is  
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does  
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the  
reset signal is received. Reset operation must be executed immediately after power-on for devices  
having reset function.  
23  
Data Sheet S16032EJ3V0DS  
µPD8880  
The information in this document is current as of July, 2003. The information is subject to change  
without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or  
data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all  
products and/or types are available in every country. Please check with an NEC Electronics sales  
representative for availability and additional information.  
No part of this document may be copied or reproduced in any form or by any means without the prior  
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may  
appear in this document.  
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual  
property rights of third parties by or arising from the use of NEC Electronics products listed in this document  
or any other liability arising from the use of such products. No license, express, implied or otherwise, is  
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.  
Descriptions of circuits, software and other related information in this document are provided for illustrative  
purposes in semiconductor product operation and application examples. The incorporation of these  
circuits, software and information in the design of a customer's equipment shall be done under the full  
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by  
customers or third parties arising from the use of these circuits, software and information.  
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,  
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To  
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC  
Electronics products, customers must incorporate sufficient safety measures in their design, such as  
redundancy, fire-containment and anti-failure features.  
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and  
"Specific".  
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-  
designated "quality assurance program" for a specific application. The recommended applications of an NEC  
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of  
each NEC Electronics product before using it in a particular application.  
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio  
and visual equipment, home electronic appliances, machine tools, personal electronic equipment  
and industrial robots.  
"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster  
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed  
for life support).  
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life  
support systems and medical equipment for life support, etc.  
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC  
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications  
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to  
determine NEC Electronics' willingness to support a given application.  
(Note)  
(1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its  
majority-owned subsidiaries.  
(2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as  
defined above).  
M8E 02. 11-1  

相关型号:

UPD8880CY

Analog Circuit, 1 Func, MOS, PDIP32, 10.16 MM, PLASTIC, DIP-32
NEC

UPD8882

(10680 + 10680) PIXELS ?3 COLOR CCD LINEAR IMAGE SENSOR
NEC

UPD8882CY-A

(10680 + 10680) PIXELS ?3 COLOR CCD LINEAR IMAGE SENSOR
NEC

UPD8884A

(10680 PIXELS x 4 LINES) x 3 COLOR CCD LINEAR IMAGE SENSOR
NEC

UPD8884ACY-A

(10680 PIXELS x 4 LINES) x 3 COLOR CCD LINEAR IMAGE SENSOR
NEC

UPD8891

(5340 x 5340) PIXELS x 3 + 2670 PIXELS x 3 COLOR CCD LINEAR IMAGE SENSOR
NEC

UPD8891CY

(5340 x 5340) PIXELS x 3 + 2670 PIXELS x 3 COLOR CCD LINEAR IMAGE SENSOR
NEC

UPD8891CY-A

暂无描述
NEC

UPD8894CY-A

CCD Sensor, 5340 Horiz pixels, 5340 Vert pixels, 2.50-2.80V, Rectangular, Through Hole Mount, PLASTIC, DIP-32
NEC

UPD91000

Microcontroller
ETC

UPD92000

Microcontroller
ETC

UPD93000

Microcontroller
ETC