NJU6678VAH [NJRC]

Liquid Crystal Driver, 236-Segment, CMOS, TCP;
NJU6678VAH
型号: NJU6678VAH
厂家: NEW JAPAN RADIO    NEW JAPAN RADIO
描述:

Liquid Crystal Driver, 236-Segment, CMOS, TCP

驱动器 CD
文件: 总45页 (文件大小:401K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NJU6678  
PRELIMINARY  
104-common x 132-segment  
BIT MAP LCD DRIVER  
GENERAL DESCRIPTION  
PACKAGE OUTLINE  
The NJU6678 is a bit map LCD driver to display graphics or charac-  
ters. It contains 21,120 bits display data RAM, microprocessor inter-  
face circuits, instruction decoder, 132-segment and 104-common driv-  
ers.  
The bit image display data is transferred to the display data RAM by  
serial or 8-bit parallel interface.  
The NJU6678 displays 104 x 132 dots graphics or 8-character 6-line  
by 16 x 16 dots character.  
NJU6678CL  
It oscillates by built-in OSC circuit without any external components.  
Furthermore, the NJU6678 features Partial Display Function which  
creates up to 2 blocks of active display area and optimizes duty cycle  
ratio. This function sets optimum boosted voltage by the combination  
with both of programmable 5-time voltage booster circuit and 201-  
step electrical variable resistor. As result, it reduces the operating cur-  
rent.  
The operating voltage from 2.5V to 3.3V and low operating current are  
useful for small size battery operating items.  
FEATURES  
Direct Correspondence between Display Data RAM and LCD Pixel  
Display Data RAM - 21,120 bits (1.5 times over than display size)  
236 LCD Drivers - 104-common and 132-segment  
Direct Microprocessor Interface for both of 68 and 80 type MPU  
Serial Interface  
Partial Display Function  
(2 blocks of active display area and automatic duty cycle ratio selection)  
Easy Vertical Scroll by the variable start line address and over size display data RAM  
Programmable Bias selection ; 1/4,1/5,1/6,1/7,1/8,1/9,1/10,1/11 bias  
Common Driver Order Assignment by mask option  
Version  
C0 to C103(Pin name)  
NJU6678A Com0 to Com103  
NJU6678B Com103 to Com0  
Useful Instruction Set  
Display Data Read/Write, Display ON/OFF Cont, Inverse Display, Page Address Set,  
Display Start Line Set, Partial Display, Bias Select, Column Address Set, Status Read,  
All On/Off, Voltage Booster Circuits Multiple Select(Maximum 5-time), n-Line Inverse,  
Read Modify Write, Power Saving, ADC Select, etc.  
Power Supply Circuits for LCD; Programmable Voltage Booster Circuits(5-time Maximum),  
Regulator, Voltage Follower x 4  
Precision Electrical Variable Resistance  
Low Power Consumption  
Operating Voltage  
--- 2.5V to 3.3V  
LCD Driving Voltage --- 6.0V to 17V  
Mar.2000  
Ver.2.1  
Package Outline  
--- COF / TCP / Bumped Chip  
C-MOS Technology  
NJU6678  
PAD LOCATION  
S27  
S26  
S104  
S105  
Y
S130  
S131  
C103  
C102  
S1  
S0  
C5 1  
C5 0  
X
C53  
C52  
C1  
C0  
Chip Center  
Chip Size  
Chip Thickness  
Bump Size  
Pad pitch  
: X=0um,Y=0um  
: X=5.36mm,Y=5.31mm  
: 675um + 30um  
: 45um x 83um  
: 60um(Min)  
Bump Height  
Bump Material  
: 15um TYP.  
: Au  
NJU6678  
TERMINAL DESCRIPTION  
Chip Size 5.36 x 5.31mm (Chip Center X=0um,Y=0um)  
PAD No.  
1
Terminal  
DUMMY0  
DUMMY1  
DUMMY2  
DUMMY3  
DUMMY4  
DUMMY5  
DUMMY6  
DUMMY7  
V D D  
X= um  
-2250  
-2190  
-2130  
-2070  
-2010  
-1950  
-1890  
-1830  
-1747  
-1666  
-1596  
-1487  
-1417  
-1347  
-1238  
-1168  
-1049  
-979  
Y= um  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2497  
-2370  
-2310  
-2250  
-2190  
PAD No.  
5 1  
5 2  
5 3  
5 4  
5 5  
5 6  
5 7  
5 8  
5 9  
6 0  
6 1  
6 2  
6 3  
6 4  
6 5  
6 6  
6 7  
6 8  
6 9  
7 0  
7 1  
7 2  
7 3  
7 4  
7 5  
7 6  
7 7  
7 8  
7 9  
8 0  
8 1  
8 2  
8 3  
8 4  
8 5  
8 6  
8 7  
8 8  
8 9  
9 0  
9 1  
9 2  
9 3  
9 4  
9 5  
9 6  
9 7  
9 8  
9 9  
100  
Terminal  
C 4  
X= um  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
2523  
Y= um  
-2130  
-2070  
-2010  
-1950  
-1890  
-1830  
-1770  
-1710  
-1650  
-1590  
-1530  
-1470  
-1410  
-1350  
-1290  
-1230  
-1170  
-1110  
-1050  
-990  
-930  
-870  
-810  
-750  
-690  
-630  
-570  
-510  
-450  
-390  
-330  
-270  
-210  
-150  
-90  
2
C 5  
3
C 6  
4
C 7  
5
C 8  
6
C 9  
7
C 10  
C 11  
C 12  
C 13  
C 14  
C 15  
C 16  
C 17  
C 18  
C 19  
C 20  
C 21  
C 22  
C 23  
C 24  
C 25  
C 26  
C 27  
C 28  
C 29  
C 30  
C 31  
C 32  
C 33  
C 34  
C 35  
C 36  
C 37  
C 38  
C 39  
C 40  
C 41  
C 42  
C 43  
C 44  
C 45  
C 46  
C 47  
C 48  
C 49  
C 50  
C 51  
S 0  
8
9
1 0  
11  
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  
1 9  
2 0  
2 1  
2 2  
2 3  
2 4  
2 5  
2 6  
2 7  
2 8  
2 9  
3 0  
3 1  
3 2  
3 3  
3 4  
3 5  
3 6  
3 7  
3 8  
3 9  
4 0  
4 1  
4 2  
4 3  
4 4  
4 5  
4 6  
4 7  
4 8  
4 9  
5 0  
P/S  
CEL68  
RES  
V SS  
T2  
T1  
OSC 1  
OSC2  
C S  
A0  
-861  
W R  
-791  
RD  
-667  
D 0  
-510  
D 1  
-289  
D 2  
-69  
D 3  
152  
D 4  
372  
D 5  
592  
D 6(SCL)  
D 7(SI)  
V SS  
813  
1033  
1191  
1261  
1331  
1401  
1471  
1541  
1611  
1681  
1751  
1821  
1891  
1961  
2031  
2101  
2171  
2241  
2311  
2523  
2523  
2523  
2523  
V OUT  
C 4 +  
C 4 -  
C 3 +  
C 3 -  
C 2 +  
C 2 -  
C 1 +  
C 1 -  
-30  
3 0  
9 0  
150  
V R  
210  
V 5  
270  
V 4  
330  
V 3  
390  
V 2  
450  
V 1  
510  
V D D  
570  
C 0  
630  
C 1  
690  
C 2  
750  
C 3  
S 1  
810  
NJU6678  
P A D N o .  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
T erminal  
X = u m  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 5 2 3  
2 2 5 0  
2 1 9 0  
2 1 3 0  
2 0 7 0  
2 0 1 0  
1 9 5 0  
1 8 9 0  
1 8 3 0  
1 7 7 0  
1 7 1 0  
1 6 5 0  
1 5 9 0  
1 5 3 0  
1 4 7 0  
1 4 1 0  
1 3 5 0  
1 2 9 0  
1 2 3 0  
1170  
1110  
1 0 5 0  
990  
Y = u m  
870  
P A D N o .  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
T erminal  
S 52  
X = u m  
Y = u m  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
S 2  
S 3  
S 4  
S 5  
S 6  
S 7  
810  
750  
930  
S 53  
990  
S 54  
690  
1 0 5 0  
1110  
1170  
1 2 3 0  
1 2 9 0  
1 3 5 0  
1 4 1 0  
1 4 7 0  
1 5 3 0  
1 5 9 0  
1 6 5 0  
1 7 1 0  
1 7 7 0  
1 8 3 0  
1 8 9 0  
1 9 5 0  
2 0 1 0  
2 0 7 0  
2 1 3 0  
2 1 9 0  
2 2 5 0  
2 3 1 0  
2 3 7 0  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
2 4 9 7  
S 55  
630  
S 56  
570  
S 57  
510  
8
58  
S
S
450  
S 9  
S 59  
S 60  
S 61  
S 62  
S 63  
S 64  
S 65  
S 66  
S 67  
S 68  
S 69  
S 70  
S 71  
S 72  
S 73  
S 74  
S 75  
S 76  
S 77  
S 78  
S 79  
S 80  
S 81  
S 82  
S 83  
S 84  
S 85  
S 86  
S 87  
S 88  
S 89  
S 90  
S 91  
S 92  
S 93  
S 94  
S 95  
S 96  
S 97  
S 98  
S 99  
S 100  
S 101  
390  
S 10  
S 11  
S 12  
S 13  
S 14  
S 15  
S 16  
S 17  
S 18  
S 19  
S 20  
S 21  
S 22  
S 23  
S 24  
S 25  
S 26  
S 27  
S 28  
S 29  
S 30  
S 31  
S 32  
S 33  
S 34  
S 35  
S 36  
S 37  
S 38  
S 39  
S 40  
S 41  
S 42  
S 43  
S 44  
S 45  
S 46  
S 47  
S 48  
S 49  
S 50  
S 51  
330  
270  
210  
150  
9 0  
3 0  
- 3 0  
- 9 0  
-150  
-210  
-270  
-330  
-390  
-450  
-510  
-570  
-630  
-690  
-750  
-810  
-870  
-930  
-990  
- 1 0 5 0  
-1110  
-1170  
- 1 2 3 0  
- 1 2 9 0  
- 1 3 5 0  
- 1 4 1 0  
- 1 4 7 0  
- 1 5 3 0  
- 1 5 9 0  
- 1 6 5 0  
- 1 7 1 0  
- 1 7 7 0  
- 1 8 3 0  
- 1 8 9 0  
- 1 9 5 0  
- 2 0 1 0  
- 2 0 7 0  
- 2 1 3 0  
930  
870  
NJU6678  
P A D N o .  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
T erminal  
S 102  
S 103  
S 104  
S 105  
S 106  
S 107  
S 108  
S 109  
S 110  
S 111  
S 112  
S 113  
S 114  
S 115  
S 116  
S 117  
S 118  
S 119  
S 120  
S 121  
S 122  
S 123  
S 124  
S 125  
S 126  
S 127  
S 128  
S 129  
S 130  
S 131  
C 103  
C 102  
C 101  
C 100  
C 99  
X = u m  
- 2 1 9 0  
- 2 2 5 0  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
Y = u m  
2 4 9 7  
2 4 9 7  
2 3 7 0  
2 3 1 0  
2 2 5 0  
2 1 9 0  
2 1 3 0  
2 0 7 0  
2 0 1 0  
1 9 5 0  
1 8 9 0  
1 8 3 0  
1 7 7 0  
1 7 1 0  
1 6 5 0  
1 5 9 0  
1 5 3 0  
1 4 7 0  
1 4 1 0  
1 3 5 0  
1 2 9 0  
1 2 3 0  
1170  
1110  
1 0 5 0  
990  
P A D N o .  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
T erminal  
C 83  
C 82  
C 81  
C 80  
C 79  
C 78  
C 77  
C 76  
C 75  
C 74  
C 73  
C 72  
C 71  
C 70  
C 69  
C 68  
C 67  
C 66  
C 65  
C 64  
C 63  
C 62  
C 61  
C 60  
C 59  
C 58  
C 57  
C 56  
C 55  
C 54  
C 53  
C 52  
X = u m  
Y = u m  
-510  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
- 2 5 2 4  
-570  
-630  
-690  
-750  
-810  
-870  
-930  
-990  
- 1 0 5 0  
-1110  
-1170  
- 1 2 3 0  
- 1 2 9 0  
- 1 3 5 0  
- 1 4 1 0  
- 1 4 7 0  
- 1 5 3 0  
- 1 5 9 0  
- 1 6 5 0  
- 1 7 1 0  
- 1 7 7 0  
- 1 8 3 0  
- 1 8 9 0  
- 1 9 5 0  
- 2 0 1 0  
- 2 0 7 0  
- 2 1 3 0  
- 2 1 9 0  
- 2 2 5 0  
- 2 3 1 0  
- 2 3 7 0  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
930  
870  
810  
750  
690  
630  
570  
510  
450  
C 98  
390  
C 97  
330  
C 96  
270  
C 95  
210  
C 94  
150  
C 93  
9 0  
C 92  
3 0  
C 91  
- 3 0  
C 90  
- 9 0  
C 89  
-150  
-210  
-270  
-330  
-390  
-450  
C 88  
C 87  
C 86  
C 85  
C 84  
NJU6678  
BLOCK DIAGRAM  
C0  
C51 S0  
S131 C103  
C52  
VSS  
VDD  
5
C O M  
S E G  
C O M  
V1 to V5  
D r i v e r  
D r i v e r  
D r i v e r  
C1+  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
C4-  
S h i f t  
S h i f t  
R e g i s t e r  
R e g i s t e r  
COM SEG  
Voltage  
Timing  
Generator  
Generator  
D i s p l a y D a t a L a t c h  
VR  
T1,T2  
Display Data RAM  
160 x 132  
Culumn Address Decoder  
Culumn Address Counter  
Display  
Timing  
Generator  
Culumn Address Register  
M u l t i p l e x e r  
OSC1  
OSC2  
OSC.  
Instruction Decoder  
B F  
B u s H o l d e r  
S t a t u s  
I n t e r n a l B u s  
R e s e t  
M P U I n t e r f a c e  
CEL68  
RD  
RES  
D0 to D7 (SI,SCL)  
CS  
WR  
A0  
P/S  
NJU6678  
TERMINAL DESCRIPTION  
No.  
Symbol I/O  
F u n c t i o n  
DUMMY0  
to  
1 to 8  
Dummy Terminals.  
These terminals are insulated.  
DUMMY7  
Power  
VDD  
9,46  
VDD=+3V  
13,30  
VSS  
GND VSS=0V  
Power  
45  
44  
43  
42  
41  
V1  
V2  
V3  
V4  
V5  
LCD Driving Voltage Supplying Terminal. When the internal voltage booster is  
not used, supply each level of LCD driving voltage from outside with following  
relation.  
VDD>V1>V2>V3>V4>V5  
When the internal power supply is on, the internal circuits generate and supply  
following LCD bias voltage from V1 to V4 terminals.  
Bias  
V1  
V2  
V3  
V4  
1/4Bias  
1/5Bias  
1/6Bias  
1/7Bias  
1/8Bias  
1/9Bias  
1/10Bias  
1/11Bias  
V5+3/4VLCD  
V5+4/5VLCD  
V5+5/6VLCD  
V5+6/7VLCD  
V5+7/8VLCD  
V5+8/9VLCD  
V5+9/10V LCD  
V5+2/4VLCD  
V5+3/5VLCD  
V5+4/6VLCD  
V5+5/7VLCD  
V5+6/8VLCD  
V5+7/9VLCD  
V5+2/4VLCD  
V5+2/5VLCD  
V5+2/6VLCD  
V5+2/7VLCD  
V5+2/8VLCD  
V5+2/9VLCD  
V5 +1/4VLCD  
V5 +1/5VLCD  
V5 +1/6VLCD  
V5 +1/7VLCD  
V5 +1/8VLCD  
V5 +1/9VLCD  
V5+8/10V LCD V5 +2/10V LCD V5+1/10V LCD  
V5+2/11V LCD V5 +1/11V LCD  
V5+10/11VLCD V5+9/11V LCD  
(VLCD=VDD-V5)  
38,39  
36,37  
34,35  
32,33  
C1+,C1-  
C2+,C2-  
C3+,C3-  
C4+,C4-  
O
Step up capacitor connecting terminals.  
Voltage booster circuit (Maximum 5-time)  
31  
VOUT  
O
I
Step up voltage output terminal. Connect the step up capacitor between this  
terminal and VSS.  
40  
VR  
Voltage adjust terminal. V5 level is adjusted by external bleeder resistance  
connecting between VDD and V5 terminal.  
15  
14  
T1  
T2  
I
LCD bias voltage control terminals. ( *:Don't Care)  
V o l t a g e  
T 1  
T 2  
V o l t a g e A d j .  
V / F C i r .  
b o o s t e r C i r .  
L
H
H
*
L
A v a i l a b l e  
A v a i l a b l e  
A v a i l a b l e  
N o t A v a i l .  
A v a i l a b l e  
A v a i l a b l e  
A v a i l a b l e  
N o t A v a i l .  
N o t A v a i l .  
H
22 to 29  
D0 to  
D7  
I/O P/S="H" : Tri-state bi-directional Data I/O terminal in 8-bit parallel operation.  
P/S="L" : D7=Serial data input terminal. D 6=Serial data clock signal input  
(SI)  
terminal.  
(SCL)  
Data from SI is loaded at the rising edge of SCL and latched as the  
parallel  
data at 8th rising edge of SCL.  
19  
A0  
I
Connect to the Address bus of MPU. The data on the D 0 to D7 is  
distinguished between Display data and Instruction by status of A0.  
A0  
H
L
Distin.  
Display Data  
Instruction  
12  
18  
RES  
CS  
I
I
Reset terminal. When the RES terminal goes to "L", the initialization is  
performed. Reset operation is executing during "L" state of RES.  
Chip select terminal. Data Input/Output are available during CS ="L".  
NJU6678  
No  
Symbol  
RD(E)  
I/O  
I
F u n c t i o n  
21  
20  
<In case of 80 Type MPU>  
RD signal of 80 type MPU input terminal. Active "L"  
During this signal is "L" , D0 to D7 terminals are output.  
<In case of 68 Type MPU>  
Enable signal of 68 type MPU input terminal. Active "H"  
WR(RW)  
I
<In case of 80 Type MPU>  
Connect to the 80 type MPU WR signal. Actie "L".  
The data on the data bus input syncronizing the rise edge of this signal.  
<In case of 68 Type MPU>  
The read/write control signal of 68 type MPU input terminal.  
R/W  
H
L
State  
Read  
Write  
11  
10  
CEL68  
I
I
MPU interface type selection terminal.  
CEL68  
State  
H
L
68 Type  
80 Type  
P/S  
serial or parallel interface selection terminal.  
Chip Select Data/Command  
Read/Write  
serial Clock  
P/S  
"H"  
"L"  
Data  
CS  
CS  
A
D 0 to D 7  
SI(D7)  
RD,WR  
-
A0  
Write Only SCL(D6)  
RAM data and status read operation do not work in mode of  
the serial interface.  
In case of the serial interface (P/S="L"),RD and WR must be fixed  
"H" or "L", and D0 to D5 are high impedance.  
16  
17  
OSC1  
OSC2  
I
System clock input terminal for Maker testing.(This terminal should be Open)  
For external clock operation, the clock shoud be input to OSC1 terminal.  
47 to 98  
C0 to C51  
O
LCD driving signal output terminals.  
Segmet output terminals:S 0 to S131  
Common output terminals:C 0 to C103  
Segment output terminal  
The following output voltages are selected by the combination of FR and data in the  
RAM.(non of the n-line inverse functions)  
Output Voltage  
R A M  
F R  
D a t a  
N o r m a l  
V DD  
V 5  
R e v e r s e  
99 to 230  
S0 toS131  
O
H
L
V 2  
H
L
V 3  
H
L
V 2  
V DD  
V 5  
V 3  
Common output terminal  
The following output voltages are selected by the combination of FR and status of  
282 to 231  
C52 to  
C103  
O
common.  
Scan data  
H
F R  
H
Output Voltage  
V 5  
VDD  
V 1  
L
H
L
L
V 4  
NJU6678  
Functional Description  
(1) Description for each blocks  
(1-1) Busy Flag (BF)  
While the internal circuits are operating, the busy flag (BF) is "1" and any instruction excepting for the status  
read are inhibited .  
The busy flag goes to “1” from D7 terminal when status read instruction is executed.  
When enough cycle time over than tCYC indicated in “ BUS TIMING CHARACTERISTICS” is ensured, no  
need to check the busy flag for reduction of the MPU loads.  
(1-2)Display Start Line Register  
The Display start Line Register is a pointer register which indicates the address in the Display Data RAM  
corresponding with COM0(normally it display the top line in the LCD Panel). This register also operates for  
vertical display scroll, the display page change and so on. The Display Start Line Set instruction sets the  
display start address of the Display Data RAM represented in 8-bit to this register.  
(1-3) Line Counter  
The Line Counter generates the line address of display data RAM by the count up operation synchronizing the  
common cycle after the reset operation at the status change of internal FR signal.  
(1-4) Column Address Counter  
The column address counter is 8-bit pre-settable counter addressing the column address of display data RAM  
as shown in Fig. 1. It is incremented (+1) up to (84)H by the Display Data Read/Write instruction execution.  
It stops the count up operation at (84)H, and it does not count up non existing address area over than (84)H by  
the count lock function. This count lock is released by new column address set.  
The column address counter is independent of the Page Register.  
By the Address Inverse Instruction, the column address decoder inverse the column address of Display Data  
RAM corresponding to the Segment Driver.  
(1-5) Page Register  
The page register gives a page address of Display Data RAM as shown in Fig. 1. When the MPU accesses  
the data with the page change, the page address set instruction is required.  
(1-6) Display Data RAM  
Display Data RAM is the bit map RAM consisting of 21,120 bits to memorize the display data corresponding to  
each pixel of LCD panel. The each bit in the Display Data RAM corresponds to the each pixel of the LCD  
panel and controls the display by following bit data.  
When Normal Display : On="1" , Off="0"  
When Inverse Display : On="0" , Off="1"  
The Display Data RAM outputs 132-bit parallel data in the area addressed by the line counter, and these data  
are set into the Display Data Latch.  
The access operation from MPU to the display data RAM and the data output from the display data RAM are  
so controlled to operate independently that the data rewriting does not influence with any malfunctions to the  
display.The relation between column address and segment output can inverse by the Address Inverse Instruc-  
tion ADC as shown in Fig.1.  
(1-7) Common Driver Assignment  
The scanning order can be assigned by mask option as shown on Table 1.  
Table 1  
C O M O u t p u t s T e r m i n a l s  
47  
98  
2 3 1  
2 8 2  
P A D N o .  
P i n n a m e  
Ver.A  
C 0  
C 5 1  
C O M 5 1  
C O M 5 2  
C 1 0 3  
C 5 2  
C O M 5 2  
C O M 5 1  
C O M 0  
C O M 1 0 3  
C O M 1 0 3  
C O M 0  
Ver.B  
NJU6678  
F o r e x a m p l e t h e  
Line  
P a g e A d d r e s s  
D A T A  
Display Pattern  
Display start line  
Address  
is 10 H  
D 0  
D 1  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
D 0  
D 1  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
D 0  
D 1  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
D 0  
D 1  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0 A  
0 B  
0C  
0D  
0 E  
D 4 , D 3 , D 2 , D 1 , D 0  
(0,0,0,0,0)  
P e g e  
P e g e  
P e g e  
0
1
2
D 4 , D 3 , D 2 , D 1 , D 0  
(0,0,0,0,1)  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
C n O u t  
C 0  
C 1  
C 2  
D 4 , D 3 , D 2 , D 1 , D 0  
(0,0,0,1,0)  
C 3  
C 4  
C 5  
C 6  
C 7  
C 8  
C 9  
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
D 6  
D 7  
D 0  
D 1  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
D 0  
D 1  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
D 0  
D 1  
6 E  
6F  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
7 A  
7 B  
7C  
7D  
7 E  
7F  
80  
81  
C 9 4  
C 6 5  
C 9 6  
C 9 7  
C 9 8  
D 4 , D 3 , D 2 , D 1 , D 0  
(0,1,1,1,0)  
C 9 9  
P e g e 1 4  
C 1 0 0  
C 1 0 1  
C 1 0 2  
C 1 0 3  
D 4 , D 3 , D 2 , D 1 , D 0  
(0,1,1,1,1)  
P e g e 1 5  
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
D 6  
D 7  
D 0  
D 1  
D 2  
D 3  
D 4  
D 5  
D 6  
D 7  
96  
97  
98  
99  
9 A  
9 B  
9C  
9D  
9 E  
9F  
D 4 , D 3 , D 2 , D 1 , D 0  
(1,0,0,1,1)  
P e g e 1 9  
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D 0= " 0 "  
D 0= " 1 "  
00 01 02 03 04 05 06 07 08 09  
83 82 81 80 7F 7E 7D 7C 7B 7A  
7A 7B 7C 7D 7E 7F 80 81 82 83  
09 08 07 06 05 04 03 02 01 00  
A
D
C
Column  
Address  
1 2 2  
1 2 3  
1 2 4  
1 2 5  
1 2 6  
1 2 7  
1 2 8  
1 2 9  
1 3 0  
1 3 1  
0
1
2
3
4
5
6
7
8
9
S e g m e n t O u t p u t  
Fig.1 Correspondence with Display Data RAM Address  
NJU6678  
(1-8) Reset Circuit  
Reset circuit operates the following initializations when the condition of RES terminal goes to "L" level.  
Initialization  
1
2
3
Display Off  
Normal Display (Non-inverse display)  
ADC Select : Normal (ADC Instruction D0 =”0”)  
Read Modify Write Mode Off  
4
5
6
Internal Power supply (Voltage Booster) circuits Off  
Static Drive Off  
7
Driver Output Off  
8
Clear the serial interface register  
9
Set the address(00)H to the Column Address Counter  
Set the 1st Line in the Display Start Line Register.page (00)H to the Page Address Register  
Set the page “0” to the Page Address Register  
Set the EVR register to (FF)H  
Set the All display(1/104 duty)  
Set the Bias select(1/11 Bias)  
10  
11  
12  
13  
14  
15  
16  
Set the 5-Time Voltage Booster  
Set the n line turn over register (0)H  
The RES terminal should be connected to the Reset terminal of MPU for the initialization at the mean time  
with MPU as shown in "MPU Interface Example". The period of reset signal requires over than 10us RES="L"  
level input as shown in "Electrical Characteristics". After 1us from the rise edge of RES signal, the operation  
goes to normal.  
When the internal LCD power supply is not used, the external LCD power supply into the NJU6678 must be  
turned on during RES = "L". Although the condition of RES="L" clear each registers and initialize as above, the  
oscillation circuit and the output terminal conditions (D0 to D7) are not influenced. The initialization must be  
performed using RES terminal at the power on, to prevent hung up or any incorrect operations. The reset  
Instruction performs the initialization procedures from No.8 to No.16 as shown in above.  
Note) The noise into the RES terminal should be eliminated to avoid the error on the application with the  
careful design.  
(1-9) LCD Driving  
(a) LCD Driving Circuits  
LCD driving circuits are consisted of 236 multiplexers which operate as 132 Segment drivers and 104 Com-  
mon drivers. 104 Common drivers with the shift register scan the common display signal. The combination of  
the Display data, COM scan signal and FR signal form into the LCD driving output voltage. The output wave  
form is shown in the Fig. 7.  
(b) Display Data Latch Circuits  
Display Data Latch stores 132-bit display data temporarily which is output to LCD driver circuits at a common  
cycle from Display Data RAM addressed by Line Counter. The instructions of Display On/Off, Display inverse  
ON/OFF and Static Drive On/Off control only the data in Display Data Latch, therefore, the data in the Display  
Data RAM is not changed.  
(c) Line Counter and Latch signal of Latch Circuits  
The clock to Line Counter and latch signal to the Latch Circuits are generated from the internal display clock  
(CL). The line address of Display Data RAM is renewed synchronizing with display clock(CL). 132 bits display  
data are latched in display latch circuits synchronizing with display clock, and then output to the LCD driving  
circuits. The display data transfer to the LCD driving circuits is executed independently with RAM access by  
the MPU.  
(d) Display Timing Generator  
Display Timing Generator generates the timing signal for the display system by combination of the master  
clock CL and Driving Signal FR ( refer to Fig.2 ). The Frame Signal FR and LCD alternative signal generate  
LCD driving waveform of the two frame alternative driving method or n-Line inverse driving method.  
NJU6678  
(e)Common Timing Generation  
The common timing is generated by display clock.  
-Waveform of Display Timing(without the n-line inverse functions, the line inverse register in set to 0)  
103 104 1  
2
3
4
5
6
7
8
101 102 103 104 1  
2
3
4
5
CL  
FR  
VDD  
V
1
C0  
C1  
V4  
V5  
VDD  
V1  
V4  
V5  
AMDATA  
Sn  
VDD  
V
2
V
3
V
5
Fig.2  
-Waveform of Display Timing(with the n-line inverse function, n=7, the line inverse register in set to 6)  
103 104 1 101 102 103 104 1  
2
3
4
5
6
7
8
2
3
4
5
CL  
FR  
VDD  
V
1
C0  
C1  
V4  
V5  
VDD  
V1  
V4  
V5  
RAMDATA  
Sn  
VDD  
V
2
V
3
V
5
Fig.3  
NJU6678  
(f) Oscillation Circuit  
The Oscillation Circuit is a low power CR oscillator incorporating with Resistor and Capacitor. It generates  
clocks for display timing signal source and voltage booster circuits. The oscillation circuit output frequency is  
divided as shown in below for display clock CL.  
-The relation between duty and divide  
Duty  
1/8  
1/16  
1/25  
1/24  
1/16  
1/32  
1/12  
1/40  
1/10  
1/48,56  
1/8  
1/64,72  
1/6  
1/80,88  
1/5  
1/96,104  
1/4  
Divide  
1/50  
(g) Power Supply Circuit  
Internal Power Supply Circuit generate the High voltage and Bias voltage for the LCD. The power Supply  
Circuit consists of Voltage Booster (5-Time maximum) Circuits, Regulator Circuits, and Voltage Followers.  
The internal Power Supply is designed for small size LCD panel, therefore it is not suitable for the large size  
LCD panel application. If the contrast is not good in the large size LCD panel application, please supply the  
external.  
The suitable values of the capacitors connecting to the V1 to V5 terminals and the voltage booster circuit, and  
the feedback resistors for V5 operational amplifier depend on the LCD panel. And the power consumption with  
the LCD panel is depending on the display pattern. Please evaluate with actual LCD module.  
The operation of internal Power Supply Circuits is controlled by the Internal Power Supply On/Off Instruction.  
When the Internal Power Supply Off Instruction is executed, all of the voltage booster circuits, regulator  
circuits, voltage follower circuits are turned off. In this time, the bias voltage of V1, V2, V3, V4, and V5 for the  
LCD should be supplied from outside, terminals C1+, C1-, C2+, C2-, and VR should be open. The status of  
internal power supply is selected by T1 and T2 terminal. Furthermore the external power supply operates with  
some of internal power supply function.  
Voltage  
Booster  
C1+,C1- to  
T1  
T2  
Voltage Adj.  
Buffer(V/F)  
Ext.Pow Supply  
VR Term.  
4
4-  
C +,C  
L
H
H
L/H  
L
ON  
ON  
ON  
ON  
ON  
ON  
-
OFF  
OFF  
VOUT  
Open  
Open  
H
OFF  
V5,VOUT  
Open  
When (T1, T2)=(H, L), C1+, C1-, C2+, C2-,C3+, C3-, C4+, C4- terminals for voltage booster circuits are open  
because the voltage booster circuits doesn't operate. Therefore LCD driving voltage to the VOUT terminal  
should be supplied from outside.  
When (T1, T2)=(H, H), terminals for voltage booster circuits and VR are open, because the voltage booster  
circuits and Voltage adjust circuits do not operate.  
NJU6678  
Power Supply applications  
(1)External power supply operation.  
(2)Internal power supply operation.  
(Voltage Booster, Voltage Adj., Buffer(V/F))  
Internal power supply ON (instruction) (T1,T2)=(L,L)  
V
DD  
V
DD  
T1  
T2  
T1  
T2  
+
+
+
+
+
+
V1  
V1  
V2  
V3  
V2  
V3  
C1+  
C1-  
C2+  
V4  
V4  
C2-  
C3+  
V5  
V5  
C3-  
C4+  
VOUT  
VOUT  
C4-  
VSS  
VSS  
V
DD  
VR  
V
5
(3)External power supply operation with  
Voltage Adjustment,3 Buffer(V/F)  
(4)External power supply operation adjusted  
Voltage to V5.  
Internal power supply ON (Instruction) (T1,T2) = (H,L)  
Internal power supply (Instruction) (T1,T2) =(H,H)  
VDD  
VDD  
T1  
T2  
T1  
T2  
+
+
+
+
+
+
+
+
+
V
1
V
1
V2  
V3  
V
2
V
3
V4  
V4  
V5  
V5  
VOUT  
VOUT  
VSS  
VSS  
V
DD  
VR  
V5  
: These switches should be open during the power save mode.  
NJU6678  
(2) Instruction  
The NJU6678 distinguishes the signal on the data bus by combination of A0, RD and WR. The decode of the  
instruction and execution performs depending on the internal timing only neither the external clock. In case of  
serial interface, the data input as MSB first serially.  
The Table. 4 shows the instruction codes of the NJU6678.  
(*:Don't Care)  
Table 4. Instruction Code  
C o d e  
I n s t r u c t i o n  
D e s c r i p t i o n  
A 0  
0
R D  
1
W R  
0
D 7  
1
D 6  
0
D 5  
1
D 4  
0
D 3  
1
D 2  
1
D 1  
1
D 0  
( 1 )  
( 2 )  
D i s p l a y O N / O F F  
0
1
L C D D i s p l a y O N / O F F  
0 : O F F 1 : O N  
D i s p l a y S t a r t L i n e S e t  
H i g h O r d e r 4 b i t s  
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
0
1
0
0
1
0
0
0
H i g h O r d e r  
A d d r e s s  
D e t e r m i n e t h e D i s p l a y L i n e o f  
R A M t o t h e C O M 0 .  
( S e t t h e H i g h e r o r d e r 4 b i t s )  
D i s p l a y S t a r t L i n e S e t  
L o w e r O r d e r 4 b i t s  
L o w e r O r d e r  
A d d r e s s  
D e t e r m i n e t h e D i s p l a y L i n e o f  
R A M t o t h e C O M 0 .  
( S e t t h e L o w e r o r d e r 4 b i t s )  
Hi.  
( 3 )  
P a g e A d d r e s s S e t  
H i g h O r d e r 1 b i t s  
*
*
*
S e t t h e H i g h e r o r d e r 1 b i t p a g e o f  
D D R A M t o t h e P a g e A d d r e s s  
R e g i s t e r  
P a g e A d d r e s s S e t  
L o w e r O r d e r 4 b i t s  
L o w e r O r d e r  
S e t t h e L o w e r o r d e r  
4 b i t p a g e o f  
P a g e A d d r e s s  
D D R A M t o t h e P a g e A d d r e s s  
R e g i s t e r  
( 4 )  
C o l u m n A d d r e s s S e t  
H i g h O r d e r 4 b i t s  
0
0
0
1
1
0
0
0
1
1
0
1
0
1
1
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
1
0
H i g h O r d e r  
S e t t h e H i g h e r o r d e r  
C o l u m n A d d r e s s t o t h e R e g .  
S e t t h e L o w e r o r d e r b i t s  
4 b i t s  
C o l u m n A d d .  
C o l u m n A d d r e s s S e t  
L o w e r O r d e r 4 b i t s  
L o w e r O r d e r  
C o l u m n A d d .  
4
C o l u m n A d d r e s s t o t h e R e g .  
( 5 )  
S t a t u s R e a d  
S t a t u s  
0
0
0
0
R e a d o u t t h e i n t e r n a l S t a t u s  
( 6 )  
W r i t e D i s p l a y D a t a  
R e a d D i s p l a y D a t a  
W r i t e D a t a  
R e a d D a t a  
W r i t e t h e d a t a i n t o t h e D i s p l a y  
D a t a R A M  
( 7 )  
R e a d t h e d a t a f r o m t h e D i s p l a y  
D a t a R A M  
( 8 )  
N o r m a l o r I n v e r s e o f  
O N / O F F S e t  
1
1
0
0
0
1
1
1
1
0
0
1
0
0
0
1
1
0
1
0
0
0
1
I n v e r s e t h e O N a n d O F F D i s p l a y  
0 : N o r m a l 1 : I n v e r s e  
( 9 )  
W h o l e D i s p l a y O N  
/ N o r m a l D i s p l a y  
0
1
W h o l e D i s p l a y T u r n s O N  
0 : N o r m a l 1 : W h o l e D i s p . O N  
( 1 0 )  
( 1 1 )  
S u b i n s t r u c t i o n t a b l e  
m o d e  
0
S e t t h e S u b i n s t r u c t i o n t a b l e .  
P a r t i a l D i s p l a y  
1 s t B l o c k , S e t S t a r t  
d i s p l a y u n i t  
0
0
1
1
0
0
0
0
0
0
0
0
0
1
S t a r t d i s p l a y u n i t  
S e t t h e S t a r t d i s p l a y u n i t o f 1 s t  
B l o c k .  
1 s t B l o c k ,  
S e t T h e n u m b e r o f  
d i s p l a y u n i t s  
n u m b e r o f  
d i s p l a y u n i t s  
S e t t h e n u m b e r o f d i s p l a y u n i t s o f  
1 s t B l o c k .  
2 n d B l o c k , S e t S t a r t  
d i s p l a y u n i t  
0
0
1
1
0
0
0
0
0
0
1
1
0
1
S t a r t d i s p l a y u n i t  
S e t t h e S t a r t d i s p l a y u n i t o f 2 n d  
B l o c k .  
2 n d B l o c k ,  
S e t T h e n u m b e r o f  
d i s p l a y u n i t s  
n u m b e r o f  
d i s p l a y u n i t s  
S e t t h e n u m b e r o f d i s p l a y u n i t s o f  
2 n d B l o c k .  
P a r t i a l d i s p l a y o n  
0
1
0
0
1
0
0
0
*
0
*
0
0
I t c o m e s o f f t h e m o d e t o s e t a n d  
d i s p l a y i s e x e c u t e d .  
a
( 1 2 )  
( 1 3 )  
( 1 4 )  
n - l i n e I n v e r s e D r i v e S e t  
R e g i s t e r S e t  
0
0
0
1
1
1
0
0
0
0
0
0
1
1
1
0
1
1
1
0
1
h i g h e r  
o r d e r  
S e t t h e n u m b e r o f i n v e r s e d r i v e  
l i n e .  
H i g h e r o r d e r  
2
b i t s  
R e g i s t e r S e t  
L o w e r o r d e r  
L o w e r o r d e r  
S e t t h e n u m b e r o f i n v e r s e d r i v e  
l i n e .  
4
b i t s  
n - l i n e I n v e r s e D r i v e  
S e t i s e x e c u t e d .  
0
0
0
0
T h e e x e c u t i o n o f t h e l i n e i n v e r s e  
d r i v e .  
E V R R e g i s t e r S e t  
E V R R e g i s t e r S e t  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
0
0
1
0
0
1
1
0
1
0
1
E V R D a t a  
S e t t h e V 5 o u t p u t l e v e l t o t h e E V R  
H i g h e r o r d e r  
E V R R e g i s t e r S e t  
L o w e r o r d e r b i t s  
4
b i t s  
H i g h e r o r d e r  
r e g i s t e r . ( H i g h e r o r d e r  
S e t t h e V 5 o u t p u t l e v e l t o t h e E V R  
r e g i s t e r . ( L o w e r o r d e r b i t s )  
4 b i t s )  
E V R D a t a  
4
L o w e r o r d e r  
4
E V R R e g i s t e r S e t i s  
e x e c u t e d .  
0
0
0
0
0
1
T h e e x e c u t i o n o f t h e E V R .  
E n d o f s u b i n s t r u c t i o n  
t a b l e m o d e  
0
0
I t e n d s t h e s e t t i n g o f s u b  
i n s t r u c t i o n t a b l e .  
NJU6678  
(*:Don't Care)  
Code  
Instruction  
Description  
A0 RD W R D 7 D 6 D 5 D 4 D 3 D 2 D 1 D 0  
(15) Bias Select  
0
0
0
1
1
1
0
0
0
1
0
1
0
0
1
1
1
1
1
1
0
*
Bias  
Select the bias  
(8 Patterns)  
Voltage Booster Circuits  
Multiple Select  
Boost  
Multiple  
(16)  
0
0
0
0
Set the Booster circuits  
(17) Read Modify Write  
/End  
0
0
1
Read Modify Write mode  
D 0=0:On D0=1:End  
(18) Reset  
0
0
1
1
0
0
1
0
1
0
1
1
0
0
0
0
0
0
1
0
Initialize the internal Circuits  
(19) Internal Power Supply  
ON/OFF  
0
0
1
0:Int. Power Supply OFF  
1:Int. Power Supply ON  
(20) LCD Driving Voltage  
Set  
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
0
1
Set LCD Driving Voltage after  
the internal (external) power  
supply is turned on  
(21) Power Save  
(Dual Command)  
Set the Power Save Mode  
(LCD Display OFF  
+Whole Display Turns  
ON)  
(22) ADC Select  
1
0
0
1
Set the DD RAM vs Segment  
D 0=0:Normal D0=1:Inverse  
NJU6678  
(3) Explanation of Instruction Code  
(3-1) Display On/Off  
This instruction executes whole display On/Off without relationship of the data in the Display Data RAM and  
internal conditions.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
1
D 6  
0
D 5  
1
D 4  
0
D 3  
1
D 2  
1
D 1  
1
D 0  
D
0
D 0:Display Off  
1:Display On  
(3-2) Display Start Line  
This instruction sets the line address of Display Data RAM corresponding the COM0 terminal (the highest  
position line of display in normal application). The display area is fixed automatically by number of display line  
which corresponds the display duty ratio from the pointed line address as the start line. This instruction realizes  
the vertical smooth scroll with extra display RAM or the page address change by dynamic line addressing. In  
this time, the contents of RAM are not changed.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
0
D 6  
1
D 5  
0
D 4  
1
D 3  
A 7  
D 2  
A 6  
D 1  
A 5  
D 0  
A 4  
0
0
1
0
0
1
1
0
A 3  
A 2  
A 1  
A 0  
A7  
0
A6  
A5  
A4  
0
A3  
0
A2  
0
A1  
0
A0  
Line Address(HEX)  
0
0
0
0
0
0
1
0
0
0
0
0
1
:
:
:
:
1
0
0
1
1
1
1
1
9F  
(3-3) Page Address Set  
When MPU accesses the Display Data RAM, the page address must be selected before the data writing. The  
access to the Display Data RAM is available by the page and column address set (Refer the Fig. 1). The page  
address change does not influence with the display.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
0
D 6  
1
D 5  
0
D 4  
0
D 3  
*
D 2  
*
D 1  
*
D 0  
4
0
A
0
1
0
1
1
0
0
A 3  
A 2  
A 1  
A 0  
(*:Don't Care)  
A4  
A3  
0
A2  
0
A1  
0
A0  
0
Page  
0
0
0
1
0
0
0
1
:
:
:
:
1
0
0
1
1
19  
NJU6678  
(3-4) Column Address  
When MPU accesses the Display Data RAM, the page address (refer(3-3) ) and column address set are  
required before the data writing. The column address set requires twice address set which are higher order 4  
bits address set and lower order 4 bits. When the MPU accesses the Display Data RAM sequentially, the  
column address is increase one by one automatically, therefore, the MPU can access only the data sequen-  
tially without address set.  
After writing 1page data, page address setting is required due to page address doesn't increase automatically.  
The increment of the column address is stopped at the address of (83)H automatically, and the page address is  
not changed even if the column address increase to (83)H and stop. In this time the page address is not  
changed.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
0
D 6  
0
D 5  
0
D 4  
1
D 3  
A 7  
D 2  
A 6  
D 1  
A 5  
D 0  
A 4  
Higher Order  
Lower Order  
0
0
1
0
0
0
0
0
A 3  
A 2  
A 1  
A 0  
A7  
A6  
A5  
0
A4  
0
A3  
A2  
0
A1  
A0  
0
Column Address(HEX)  
0
0
0
0
0
0
:
0
0
0
1
0
0
0
1
:
:
:
1
0
0
0
0
0
1
1
83  
(3-5) Status Read  
This instruction reads out the internal status of "BUSY", “ADC", "ON/OFF" and "RESET".  
R/W  
A 0  
0
R D  
0
W R  
D 7  
D 6  
D 5  
D 4  
D 3  
0
D 2  
0
D 1  
0
D 0  
0
O N / O F F  
R E S E T  
1
B U S Y A D C  
BUSY : BUSY=1 indicate the operating or the Reset cycle.  
The instruction can be input after the BUSY status change to "0".  
ADC  
: Indicate the output correspondence of column (segment) address and segment driver.  
0 :Counterclockwise Output (Inverse) Column Address 131-n <---> Segment Driver n  
1 :Clockwise Output  
(Normal) Column Address n  
<---> Segment Driver n  
(Note) The data "0=Inverse" and "1=Normal" of ADC is inverted with the ADC select  
Instruction of "1=Inverse" and "0=Normal".  
ON/OFF : Indicate the whole display On/Off status.  
0 : Whole Display "On  
1 : Whole Display "Off"  
(Note) The data "0=On" and "1=Off" of Display On/Off status read out is inverted with the  
Display On/Off instruction data of "1=On" and "0=Off".  
RESET : Indicate the initializing by RES signal or reset instruction.  
0 :  
-
1 : Initialization Period  
NJU6678  
(3-6) Write Display Data  
This instruction writes the 8-bit data on the data bus into the Display Data RAM. The column address in-  
creases "1" automatically after data writing, therefore, the MPU can write the 8-bit data into the Display Data  
RAM continuously without any address setting after the start address setting.  
R/W  
A 0  
1
R D  
1
W R  
D 7  
D 6  
D 5  
D 4  
D 3  
D 2  
D 1  
D 0  
0
W R I T E D A T A  
(3-7) Read Display Data  
This instruction reads out the 8-bit data from Display Data RAM addressed by the column and page address.  
The column address increase "1" automatically after data reading out, therefore, the MPU can read out the 8-  
bit data from the Display Data RAM without any address setting after the start address setting. One time of  
dummy read must operate after column address set as the explanation in "(5-4) Access to the Display Data  
RAM and Internal Register". In the serial interface mode, the display data is not read out.  
R/W  
A 0  
1
R D  
0
W R  
D 7  
D 6  
D 5  
D 4  
D 3  
D 2  
D 1  
D 0  
1
R E A D D A T A  
(3-8) Normal or Inverse On/Off Set  
This instruction changes the condition of display turn on and off as normal or inverse. The contents of Display  
Data RAM is not changed by this instruction execution.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
1
D 6  
0
D 5  
1
D 4  
0
D 3  
0
D 2  
1
D 1  
1
D 0  
D
0
D 0 : Normal  
1 : Inverse  
RAM data "1" correspond to "On"  
RAM data "0" correspond to "On"  
(3-9) Whole Display On  
This instruction turns on the all pixels independent of the contents of Display Data RAM. In this time, the  
contents of Display Data RAM is not changed and kept. This instruction takes precedence over the "Normal or  
Inverse On/Off Set Instruction".  
R/W  
A 0  
0
R D  
1
W R  
D 7  
1
D 6  
0
D 5  
1
D 4  
0
D 3  
0
D 2  
1
D 1  
0
D 0  
D
0
D 0 : Normal Display  
1 : Whole Display turn on  
When Whole Display On Instruction is executed in the Display Off status, the internal circuits go  
to the power save mode (refer to the (s) Power Save).  
NJU6678  
(3-10) Sub Instruction table mode  
This instruction switches the instruction table from the main to the sub. The sub instruction table contains  
instructions of partial display, n-line inverse drive set and EVR register set as mentioned in (11), (12) and (13).  
The instruction of sub instruction table mode must be executed before above 3 sub instructions execution. The  
instruction of end of sub instruction table mode (14) switches the instruction table from the sub to the main. If  
any main instructions are written in the sub instruction mode, the NJU6678 will malfunction.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
0
D 6  
1
D 5  
1
D 4  
1
D 3  
0
D 2  
0
D 1  
0
D 0  
0
0
-Set sub Instruction table flow is shown below:  
Sub Instruction table  
mode  
Switches to Sub instruction table mode.  
Set sub instructions.  
End of Sub Instruction  
table mode.  
Switches to Main instruction mode.  
NJU6678  
(3-11) Partial Display  
This instruction divides the active display area in a LCD panel to 13 units consisting of 8 commons per unit  
and displays one or two blocks of active display area consisting of a unit or more. In the partial display mode,  
the display duty ratio is set automatically according to the number of unit in a block or two.  
Therefore, the partial display function realizes to go down the LCD driving voltage according to the display  
duty ratio. As a result, the operation current of display system is much saved against the full display mode.  
The display units  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
UNIT  
0
(8 commons)  
1
2
3
4
5
6
104-common  
7
8
9
10  
11  
12  
(8 commons)  
132-segment  
Partial display instruction  
The partial display operates by the combination of instructions which area unit number of start position start  
unit block in the display area and a number of display unit from start position to end as a block. The number of  
block is set up to two.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
0
D 6  
0
D 5  
0
D 4  
0
D 3  
D
D 2  
D
D 1  
D
D 0  
D
Start display  
unit  
0
1st Block  
2nd Block  
The number of  
display units  
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
D
D
D
D
D
D
D
D
D
D
D
D
Start display  
unit  
The number of  
display units  
After execution of the next instruction, the display mode is changed to the  
partial display and the duty is changed automatically.  
Partial display  
on  
0
1
0
0
1
0
0
0
0
0
0
D :unit number (Hex.)  
In case of full display (1/104 duty), all of units on the display are selected when the first  
start unit is set to “0” (0,0,0,0) and the second number of display unit is set to “13”  
(1,1,0,1). In this time, the second block settings are ignored.  
Note)  
In case of only one block display, the second block settings are ignored when the  
second start unit is set to “0” (0,0,0,0) and the second display unit number is set to “0”  
(0,0,0,0).  
Keep the order of partial display instruction sequence.  
Do not set over “UNIT 12” the display data in DD RAM are assigned continuously from  
page 0 for all of display block, even if non-display area is existed between the first  
block and the second.  
NJU6678  
The example of partial display setting  
UNIT 0  
1st Block  
UNIT 1  
UNIT 2  
UNIT 3  
UNIT 4  
UNIT 5  
UNIT 6  
UNIT 7  
UNIT 8  
UNIT 9  
UNIT 10  
UNIT 11  
UNIT 12  
2nd Block  
active display-block  
The above partial display condition is set as follows:  
1)Set sub instruction mode  
R/W  
A 0  
0
R D  
1
W R  
D 7  
0
D 6  
1
D 5  
1
D 4  
1
D 3  
0
D 2  
0
D 1  
D 0  
0
Set sub instruction  
mode.  
0
0
2)Set partial display conditions  
R/W  
A 0  
0
R D  
1
W R  
D 7  
0
D 6  
0
D 5  
0
D 4  
0
D 3  
0
D 2  
0
D 1  
0
D 0  
0
1st Block, Set start  
display unit to ”0”  
0
1st Block, Set the number  
of display units to ”2”  
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
1
0
1
0
0
0
0
0
0
1
1
0
1
0
0
0
0
0
1
0
2nd Block, Set start  
display unit to ”4”  
2nd Block, Set the number  
of display units to ”5”  
Partial display on.  
In this case, 1/56 duty. (Duty=1/(number of display units x 8))  
3)End sub instruction mode  
R/W  
A 0  
0
R D  
1
W R  
D 7  
0
D 6  
1
D 5  
1
D 4  
1
D 3  
0
D 2  
0
D 1  
0
D 0  
1
End sub instruction  
mode. Back to main  
instruction mode.  
0
Although the partial display instruction changes duty cycle ratio automatically and display area, LCD driving  
voltage, Bias and others are not changed. Therefore, the instruction of LCD driving voltage “OFF” (D=0) must  
be set before partial display operation, and the other instructions such as the n-line inverse drive set, EVR  
register set, bias select and voltage booster select should be set for optimum display-contrast. The “End of sub  
instruction mode” is required before these instructions in order to prevent momentary flickering.  
NJU6678  
-Set Partial Display flow is shown below:  
Internal Power Supply OFF  
Sub Instruction Table Mode  
Partial Display  
n-line Inverse Drive Set  
EVR Register Set  
End Sub Instruction Table  
Mode  
Bias Select  
Voltage Booster Times Select  
Wait Time  
Internal Power Supply ON  
(3-12) n-line Inverse Drive Mode  
This instruction sets a line number for inversion of LCD driving signal levels between “1” and “0”. It reduces  
the stripe shadow(crosstalk) and stabilizes display quality. The n-line inverse number is set according to the  
result of actual LCD panel display.  
The instructions must be input in order of followings. These instructions are sub instruction sets and must be  
set after (3-10)Sub instruction table mode.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
0
D 6  
1
D 5  
0
D 4  
1
D 3  
*
D 2  
*
D 1  
A 5  
D 0  
A 4  
Higher order  
0
0
1
0
0
1
1
0
A 3  
A 2  
A 1  
A 0  
Low order  
(*:Don't Care)  
A5  
0
0
A4  
0
0
A3  
0
0
A2  
0
A1  
0
A0  
0
Inverse line  
-
0
0
1
2
:
:
:
:
1
1
1
1
1
1
64  
The actual operation starts after following instruction.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
0
D 6  
1
D 5  
1
D 4  
1
D 3  
0
D 2  
0
D 1  
0
D 0  
0
0
NJU6678  
(3-13) EVR Register Set  
This instruction controls voltage adjustment circuits of internal LCD power supply and changes LCD driving  
voltage “V5”. Finally, it adjusts the contrast of LCD display. By setting a data into EVR register, V5 output  
voltage selects one condition out of 201-voltage conditions. The range of V5 voltage is adjusted by setting  
external resistors as mentioned in "(4)(b) Voltage Adjust Circuits".  
This instruction is sub instruction and it must be set after (3-10) Sub instruction table mode.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
1
D 6  
0
D 5  
0
D 4  
0
D 3  
A 7  
D 2  
A 6  
D 1  
A 5  
D 0  
A 4  
0
0
1
0
1
0
0
1
A 3  
A 2  
A 1  
A 0  
A7  
0
A6  
0
A5  
1
A4  
1
A3  
0
A2  
1
A1  
A0  
VLCD  
1
1
Low  
:
:
:
:
1
1
1
1
1
1
1
1
High  
VLCD=VDD-V5  
When EVR doesn't use, set the EVR register to (1,1,1,1,1,1,1,1).  
The actual operation starts after following instruction.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
1
D 6  
0
D 5  
1
D 4  
0
D 3  
0
D 2  
0
D 1  
0
D 0  
0
0
(3-14) End of Sub instruction table mode  
"End of sub instruction table mode" instruction switches instruction table from sub to main.  
(11)Partial display, (12)n-line inverse drive mode, and (13)EVR are sub instruction sets on the sub instruction  
table. The instruction of “END of sub instruction mode” must be set after these sub instruction sets. The  
NJU6678 may occur incorrect operation if any main instructions on the main instruction table are input in mode  
of sub instruction table.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
0
D 6  
1
D 5  
1
D 4  
1
D 3  
0
D 2  
0
D 1  
0
D 0  
1
0
NJU6678  
(3-15) Bias Select  
This instruction decides the value of LCD driving voltage bias ratio.  
Especially, the bias should be selected for display quality in partial mode.  
R/W  
A 0  
0
R D  
1
W R  
0
D 7  
1
D 6  
0
D 5  
1
D 4  
1
D 3  
*
D 2  
A 2  
D 1  
A 1  
D 0  
A0  
(*:Don't Care)  
A2  
A1  
0
A0  
Bias  
1/4  
0
0
0
0
1
1
1
1
0
1
0
1
0
1
0
1
0
1/5  
1
1/6  
1
1/7  
0
1/8  
0
1/9  
1
1/10  
1/11  
1
(3-16) Voltage Booster Circuit Multiple Select  
This instruction Selects a voltage boost time.  
The multiple must be selected the voltage boost times according to the maximum boost times by the external  
capacitors connections or less. Especially, the multiple should be selected for display quality and saving  
operation current in partial display mode.  
R/W  
A 0  
0
R D  
1
W R  
0
D 7  
0
D 6  
0
D 5  
1
D 4  
1
D 3  
0
D 2  
0
D 1  
A 1  
D 0  
A0  
Command  
Booster Multiple  
5times external 4times external 3times external 2times external  
A1  
A0  
capacitors  
capacitors  
capacitors  
capacitors  
connections  
connections  
connections  
connections  
0
0
1
1
0
1
0
1
2-time  
3-time  
4-time  
5-time  
2-time  
3-time  
4-time  
2-time  
3-time  
2-time  
NJU6678  
(3-17) Read Modify Write/End  
This instruction sets the Read Modify Write Mode for the column address increment control. In mode of the  
Read Modify Write, the column address increases "1" automatically when the Display Data Write Instruction is  
executed, but the address does not change when the Display Data Read Instruction is executed. This status is  
continued until End instruction execution. When the End instruction (D=1) is input, the column address goes  
back to the start address before the Read Modify Write instruction input. This function reduces the load of  
MPU for repeating the display data change in the fixed area (ex. cursor blink).  
D=”1” to release the Read Modify Write mode and the column address back to the address where the read  
modify write mode setting.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
1
D 6  
1
D 5  
1
D 4  
0
D 3  
0
D 2  
0
D 1  
0
D 0  
D
0
D 0 : Read Modify Write On  
1 : End  
Note) In mode of the Read Modify Write, any instructions except for Column Address Set can  
execute.  
- Sequence of cursor blink display  
P a g e A d d r e s s S e t  
Set to the Start  
Address of Cursor  
Display  
C o l u m n A d d r e s s S e t  
Start the  
Read Modify Write  
Read Modify Write  
D u m m y R e a d  
D a t a R e a d  
R e a d t h e D a t a a s d u m m y  
D a t a i n v e r s e b y M P U  
D a t a W r i t e  
D u m m y R e a d  
D a t a R e a d  
D a t a W r i t e  
End the  
E n d  
Read Modify Write  
N O  
Finish?  
Y E S  
NJU6678  
(3-18) Reset  
This instruction executes the following initialization.  
Initialization  
(1) Set the Address (00)H into the Column Address Counter.  
(2) Set the Address (00)H into the Display Start Line Register.  
(3) Set the page "0" into the Page Address Register.  
(4) Set 0 to the EVR Register to (FF)H.  
(5) Set the All display(1/104 duty)  
(6) Set the Bias select(1/11 Bias)  
(7) Set the 5-Time Voltage Booster.  
(8) Set the n-line inverse register (0)H  
In this time, the Display Data RAM is not influenced.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
1
D 6  
1
D 5  
1
D 4  
0
D 3  
0
D 2  
0
D 1  
1
D 0  
0
0
The reset signal input to the RES terminal (hardware reset) must be input for the power on initialization. Reset  
instruction does not perform completely in stead of hardware reset using the RES terminal.  
(3-19) Internal Power Supply ON/OFF  
This instruction set the condition of internal Power Supply On/Off. Voltage Booster circuits, Voltage Regulator  
and Voltage Follower operate at On. To operate the voltage booster circuits, the oscillation circuits must be  
operating.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
0
D 6  
0
D 5  
1
D 4  
0
D 3  
0
D 2  
0
D 1  
0
D 0  
D
0
D 0 : Internal Power Supply Off  
1 : Internal Power Supply On  
The internal Power Supply must be Off when external power supply using.  
*1 The set up period of internal power supply On depends on the step up capacitors, voltage stabilizer  
capacitors, VDD and VLCD.  
Therefore it requires the actual evaluation using the LCD module to get the correct time. (Refer to the  
(4)(d) Fig.4)  
NJU6678  
(3-20) LCD Driving Voltage Set  
This instruction controls LCD driving waveform output through the COM/SEG terminals.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
0
D 6  
0
D 5  
1
D 4  
0
D 3  
0
D 2  
0
D 1  
1
D 0  
0
D
D 0 : LCD driving waveform output Off  
1 : LCD driving waveform output On  
The NJU6678 contains low power LCD driving voltage generator circuit reducing own operation current.  
Therefore, it requires the following sequence procedures at power on for the power source stabilized operation.  
- LCD driving power supply ON/OFF sequences  
The following sequences are required when the power supply is turned On/Off.  
When the power supply is turned on again after the turn off (by the power save instruction), the power save  
release sequence ((3-21) Power Save) is required.  
Turn ON sequence  
Turn OFF sequence  
Display OFF  
Output Assign. Register Set  
EVR Register Set  
Whole Display ON  
Internal Power Supply OFF  
or  
Internal Power Supply ON  
or  
External Power Supply OFF  
External Power supply ON  
LCD Driving Voltage  
Set to OFF  
(Wait Time) *1  
LCD Driving Voltage  
Set to ON  
*1 The wait time depends on the C1 to C9, COUT capacitors (refer (4) (d)Fig.4), VDD and VLCD voltage.  
Therefore it requires the actual evaluation using the LCD module to get the correct time. (Refer to the  
following graph.)  
The wait time [Typical performance]  
100  
80  
60  
40  
T.B.D.  
20  
Cout=1 to 4.7[uF]  
0
0
0.2  
0.4  
0.6  
0.8  
1
1.2  
C3 to C7[uF]  
VDD=2.7V,VLCD=7V,Ta=25C  
NJU6678  
(3-21) Power Save(Dual Command)  
When both of Display Off and Whole Display On are executed, the internal circuits go to the power save mode  
and the operating current is reduced as some as the stand by current.  
The internal status in the Power Save Mode is shown in follows;  
(1) Stop the Oscillation Circuits and Internal Power Supply Circuits operation.  
(2) Stop the LCD driving. Segment and Common drivers output VDD level.  
(3) Keep the display data and operating mode just before the power save mode.  
(4) All of LCD driving bias voltage fix to the VDD level.  
The power save and its release perform according to the following sequences.  
Power Save Sequence  
Power Save Release Sequence  
D i s p l a y O F F  
Normal Display  
(Whole Display OFF)  
W h o l e D i s p l a y O N  
Display ON  
(Wait Time)  
LCD Driving Voltage  
Set to OFF  
LCD Driving Voltage  
Set to ON  
*1 In the power save sequence, the power save mode is started after the second instruction "whole Display  
ON".  
*2 In the power save release sequence, the power save mode is released after the Normal Display instruction  
(Whole display OFF).  
The instruction of display ON is input at any timing after the instruction of normal display in power save  
release sequence.  
*3 Until "LCD driving voltage set to ON" execution, NJU6678 operating current is higher than usual state and  
all COM/SEG terminals output VDD level continuously.  
*4 In case of the external power supply for LCD driving, it should be turned off and made condition like as  
unconnection or connected to VDD before the power save mode or at the same time. In this time, VOUT  
terminal should be made condition like as disconnection or connected to the lowest voltage of the system  
(V5 level from the external power supply).  
(3-22) ADC Select  
This instruction set the correspondence of column address in the Display Data RAM and segment driver  
output. (See Fig. 1.) By this instruction, the order of segment output can be changed by the software, and no  
restriction of the LSI placement against the LCD panel.  
R/W  
A 0  
0
R D  
1
W R  
D 7  
1
D 6  
0
D 5  
1
D 4  
0
D 3  
0
D 2  
0
D 1  
0
D 0  
D
0
D 0 : Clockwise Output (Normal)  
1 : Counterclockwise Output (Inverse)  
NJU6678  
(4) Internal Power Supply  
(a) 5-time voltage booster circuits  
5-time voltage booster circuits connecting five capacitors between C1+ and C1-, C2+ and C2-, C3+ and C3-, C4+  
and C4-, VSS and VOUT boost the voltage of VDD - VSS to negative voltage (VDD Common) and output the  
boosted voltage from the VOUT terminal. It selects one of boost time from 2 to 5 times by external capacitors  
connection. Furthermore, it also selects one of boost time by ”Voltage Booster circuits multiple select” instruc-  
tion. The boost voltage and the voltage booster circuits are shown in below. Voltage Booster circuits requires  
the clock signals from internal oscillation circuit, therefore, the oscillation circuits must be operating when  
voltage boost operation. The boost voltage times are shown in below. When 5-time voltage boost operation,  
the operation voltage of VDD-VOUT should be less than 17V.  
VDD=+3V  
VSS=+0V  
VOUT=-VDD=-3V  
VOUT=-2VDD=-6V  
VOUT=-3VDD=-9V  
VOUT=-4VDD=-12V  
2-time voltage  
3-time voltage  
4-time voltage  
4-time voltage  
5-time voltage  
Examples for connecting the capacitors  
5-time voltage  
VSS  
+
VSS  
+
C1  
C1  
+
+
+
C1  
+
+
+
C1  
-
-
C2  
C2  
C3+  
C3  
C4  
C4  
+
C2  
C2  
C3+  
C3  
C4  
C4  
+
+
+
-
-
-
-
+
+
+
-
-
VOUT  
VOUT  
3-time voltage  
2-time voltage  
VSS  
+
VSS  
+
C1  
C1  
+
+
C1  
+
C1  
-
-
C2  
C2  
C3+  
C3  
C4  
C4  
+
C2  
C2  
C3+  
C3  
C4  
C4  
+
+
+
-
-
-
-
+
+
-
-
VOUT  
VOUT  
NJU6678  
(b)Voltage Adjust Circuits  
The boosted voltage of VOUT output from V5 through the voltage adjust circuits for LCD driving. The output  
voltage of V5 is adjusted by changing the Ra and Rb within the range of | V5 | < | VOUT |. The output voltage  
is calculated by the following formula.  
VLCD = VDD-V5 = (1+Rb/Ra)VREG  
(1)  
VDD  
VREG  
Ra  
R1  
R2  
VR  
V
5
R3  
Rb  
Fig. 3  
The voltage of VREG is a standard voltage produced from built-in bleeder resistance. VREG is possible to be  
fine-adjusted by EVR functions mentioned in (c).  
For fine-adjustment of V5, R2 as variable resistor, R1 and R3 as fixed constant should be connected to VDD  
terminal, VR and V5, as shown in Fig.3.  
[ Design example for R1, R2 and R3 / Reference ]  
- R1+R2+R3=5MW• (Determined by the current flown between VDD-V5)  
- Variable voltage range by the R2. -6V to -7.5V (VLCD=VDD-V5 --> 9.0V to 10.5V)  
(Determined by the LCD electrical characteristics)  
- VREG=3V(In case of EVR=(FF)H)  
- R1, R2 and R3 are calculated by above conditions and the formula of (1) to below;  
R1=2.0MW, R2=0.5MW, R3=2.5MW  
* If the power supply voltage between VDD and VSS changes, V5 changes too. Therefore the power supply  
voltage should be stabilized for V5 stable operation.  
NJU6678  
(c) Contrast Adjustment by the EVR function  
The EVR controls voltage of VREG by instruction and changes voltage of V5.  
As result, LCD display contrast is adjusted by V5. The EVR selects a voltage of VREG in the following 201  
conditions by setting 6bits data into the EVR register.  
In case of EVR operation, T1 terminal and T2 require to set couples of value as (L,L),(L,H) and (H,L) excepting  
for (H,H) and the internal power supply must turn on by instruction.  
(37)H to (4F)H available for use. If keeping 3% precision set EVR over (4F)H.  
EVR register  
V REG[V]  
V LCD  
Low  
:
:
:
:
:
:
:
:
:
:
:
:
(4F)H  
(0,1,0,0,1,1,1,1)  
(124/300) x (VDD -VSS)  
:
:
:
:
:
:
(FD)H  
(FE)H  
(FF)H  
(1,1,1,1,1,1,0,1)  
(1,1,1,1,1,1,1,0)  
(1,1,1,1,1,1,1,1)  
(298/300) x (VDD -VSS)  
(299/300) x (VDD -VSS)  
(300/300) x (VDD -VSS)  
High  
Adjustable range of the LCD driving voltage by EVR function  
The adjustable range is decided by the power supply voltage VDD and the ratio of external resistors  
Ra and Rb.  
[ Design example for the adjustable range / Reference ]  
- Condition VDD=3.0V, VSS=0V  
Ra=1MW, Rb=4MW ( Ra:Rb=1:4 )  
The adjustable range and the step voltage are calculated as follows in the above condition.  
In case of setting (4F)H in the EVR register,  
VLCD = ((Ra+Rb)/Ra)VREG  
= (5/1) x [(124/300) x 3.0]  
= 6.2V  
In case of setting (FF)H in the EVR register,  
VLCD = ((Ra+Rb)/Ra)VREG  
= (5/1) x [(300/300) x 3.0]  
= 15.0V  
Min.(4F)H  
6.2 - - - - - - - - - - - - - - - - - - -  
50  
Max.(FF)H  
15.0 [V]  
Adjustable Range  
Step Voltagre  
[mV]  
* In case of VDD=3V  
NJU6678  
*) The VLCD operating temperature. Please refer to the following graphs.  
(conditions) VDD = 3V  
Ra=1MW, Rb=4MW ( Ra:Rb = 1:4 )  
Five times voltage  
VLCD vs. Temperature (Typical Performance)  
16  
14  
12  
VLCD  
EVR=(FF)H  
T.B.D.  
10  
8
6
4
2
0
VLCD  
EVR=(4F)H  
-30 -20 -10  
0
10 20 30 40 50 60 70 80  
o
Ta [ C]  
NJU6678  
(d) LCD Driving Voltage Generation Circuits  
The LCD driving bias voltage of V1,V2,V3,V4 are generated internally by dividing the V5 voltage with the  
internal bleeder resistance. And it is supplied to the LCD driving circuits after the impedance conversion with  
voltage follower circuit.  
As shown in Fig. 4, Five capacitors are required to connect to each LCD driving voltage terminal for voltage  
stabilizing. And the value of capacitors C5, C6, C7, C8 and C9 are determined depending on the actual LCD  
panel display evaluation.  
Using the internal Power Supply  
Using the external Power Supply  
VSS  
VSS  
C1+  
C1-  
C1+  
+
C1  
C1-  
C2+  
C2-  
C3+  
C3-  
C4+  
+
C
OUT  
C2+  
+
C2  
C2-  
C3+  
C3-  
+
+
C3  
C4+  
C4  
C4-  
C4-  
VOUT  
VOUT  
NJU6678  
NJU6678  
R3  
V5  
VR  
V5  
R2  
VR  
R1  
VDD  
VDD  
V1  
C5  
C6  
+
+
V1  
V2  
V3  
V4  
V5  
External  
V2  
V3  
V4  
V5  
C7  
C8  
+
+
+
Voltage  
Generator  
C9  
Reference set up value  
VLCD=VDD-V5 = 9.0 to 10.5V  
COUT  
C1 to C4, C9  
C5 to C8  
R1  
to 1uF  
to 1uF  
0.1 to 0.47uF  
2.0MW  
R2  
0.5MW  
R3  
2.5MW  
Fig.4  
*1 Short wiring or sealed wiring to the VR terminal is required due to the high impedance of VR terminal.  
*2 Following connection of VOUT is required when external power supply using.  
When VSS > V5 --- VOUT=V5  
When VSS < V5 --- VOUT=VSS  
NJU6678  
(5) MPU Interface  
(5-1) Interface type selection  
NJU6678 interfaces with MPU by 8-bit bidirectional data bus (D7 to D0) or serial (SI:D7). The 8 bit parallel or  
serial interface is determined by a condition of the P/S terminal connecting to "H" or "L" level as shown in  
Table 5. In case of the serial interface, status and RAM data read out operation is impossible.  
Table 5  
P/S  
H
Type  
Parallel  
Serial  
CS  
CS  
CS  
A0  
A0  
A0  
RD  
RD  
-
WR  
WR  
-
CEL68  
CEL68  
-
D7  
D7  
SI  
D6  
D6  
D0 to D5  
D0 to D5  
Hi-Z  
L
SCL  
(5-2) Parallel Interface  
The NJU6678 interfaces to 68 or 80 type MPU directly when the parallel interface (P/S="H") is selected.  
68 type MPU or 80 is determined by the condition of CEL68 terminal connecting to "H" or "L" as shown in  
table 6.  
Table 6  
CEL68  
Type  
CS  
CS  
CS  
A0  
A0  
A0  
RD  
E
WR  
R/W  
WR  
D0 to D7  
D0 to D7  
D0 to D7  
H
L
68 type MPU  
80 type MPU  
RD  
(5-3) Discrimination of Data Bus Signal  
The NJU6678 discriminates the mean of signal on the data bus by the combination of A0, E, R/W, and  
(RD,WR) signals as shown in Table 7.  
Table 7  
Common  
68 type  
80 type  
Function  
Read Display Data  
A0  
1
R/W  
RD  
0
W R  
1
1
0
1
0
1
1
0
Write Display Data  
0
0
1
Status Read  
0
1
0
Write into the Register(Instruction)  
(5-4) Serial Interface.(P/S="L")  
Serial interface circuits consist of 8 bits shift register and 3 bits counter. SI and SCL input are activated when  
the chip select terminal CS set to "L"and P/S terminal set to "L". The 8 bits shift register and 3 bits counter are  
reset to the initial condition when the chip is not selected. The data input from SI terminal is MSB first like as  
the order of D7,D6,- - - - D0, and the data are entered into the shift register synchronizing with the rise edge of  
the serial clock SCL. The data in the shift register are converted to parallel data at the 8th serial clock rise  
edge input. Discrimination of the display data or instruction of the serial input data is executed by the condi-  
tion of A0 at the 8th serial clock rise edge. A0="H" is display data and A0="L" is instruction. When RES  
terminal becomes "L" or CS terminal becomes "H" before 8th serial clock rise edge, NJU6678 recognizes  
them as a instruction data incorrectly. Therefore a unit of serial data must be structured by 8-bit. The time  
chart for the serial interface is shown in Fig. 5. To avoid the noise trouble, the short wiring is required for the  
SCL input.  
Note) The read out function, such as the status or RAM data read out, is not supported in this serial interface  
.CS  
SI  
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
D
7
D
6
1
2
3
4
5
6
7
8
9
10  
SCL  
A0  
Fig. 5  
NJU6678  
(5-5) Access to the Display Data RAM and Internal Register.  
The NJU6678 is operating as one of pipe-line processor by the bus-holder connecting to the internal data bus  
to adjust the operation frequency between MPU and the Display Data RAM or Internal Register.  
For example, when the MPU reads out the data from the Display Data RAM, the read out data in the data read  
cycle (dummy read) is held in the bus-holder, then it is read out from the bus-holder to the system bus at the  
next data read cycle. When the MPU writes the data into the Display Data RAM, the data is held in the bus-  
holder, then it is written into the Display Data RAM by the next data write cycle.  
Therefore high speed data transmission between MPU and NJU6678 is available because of it is not limited by  
the tACC and tDS as display data RAM access time and is limited by the system cycle time (R) or (W).  
If the cycle time is not be kept in the MPU operation, NOP should be inserted to the system instead of the  
waiting operation.  
The read out operation does not read out the data in the pointed address just after the address set operation.  
And second read out operation can read out the data correctly from the pointed address.  
Therefore, one dummy read operation is required after address setting or write cycle as shown in FIG. 6.  
Write Operation  
MPU  
WR  
DATA  
N
N+1  
N+2  
N+3  
Internal  
Timing  
I/OBuffer  
WR  
N+1  
N+2  
N+3  
N
Read Operation  
MPU  
WR  
RD  
N
n
n+1  
DATA  
N
Address Set N  
Data Read n  
Data Read n+1  
Dummy Read  
Internal  
Timing  
WR  
RD  
Column Address  
I/O Buffer  
N+1  
N+2  
n+1  
N
n
N
n+2  
Fig.6  
(5-6) Chip Select  
CS is Chip Select terminal. In case of CS="L", the interface with MPU is available. In case of CS=”H”, the D0  
to D7 are high impedance and A0, RD, WR, D7(SI) and D6(SCL) inputs are ignored. If the serial interface is  
selected when CS=”H”,the shift register and the counter are reset. However, the reset is always operated in  
any conditions of CS.  
NJU6678  
ABSOLUTE MAXIMUM RATINGS  
P A R A M E T E R  
(Ta=25°C)  
SYMBOL  
VDD  
R A T I N G S  
-0.3 to +5.0  
UNIT  
Supply Voltage (1)  
V
Supply Voltage (2)  
Supply Voltage (3)  
Input Voltage  
V5  
V1 to V4  
VIN  
VDD-17.0 to VDD+0.3  
V5 to VDD+0.3  
V
V
-0.3 to VDD+0.3  
-30 to +80  
V
Operating Temperature  
Topr  
°C  
-55 to +125 (Chip)  
-55 to +100 (TCP)  
Storage Temperature  
T stg  
°C  
Note 1) If the LSI are used on condition above the absolute maximum ratings, the LSI may be destroyed.  
Using the LSI within electrical characteristics is strongly recommended for normal operation. Use  
beyond the electric characteristics conditions will cause malfunction and poor reliability.  
Note 2) All voltage values are specified as VSS=0 V.  
Note 3) The relation : VDD > V1 > V2 > V3 > V4 > V5 ; VDD > VSS > VOUT must be maintained.  
Note 4) Decoupling capacitor should be connected between VDD and VSS due to the stabilized operation for  
the voltage converter.  
ELECTRICAL CHARACTERISTICS (1)  
(VDD=2.5V to 3.3V, VSS=0V, Ta=-30 to +80°C)  
SYMB-  
Note  
5
P A R A M E T E  
OL  
C O N D I T I O N S  
MIN.  
2.5  
TYP.  
MAX.  
UNIT  
V
Operating Voltage(1)  
V DD  
V5  
3.3  
VDD -17.0  
VDD-0.5VLCD  
V 5  
VDD -6.0  
OperatingVoltage(2)  
V
V 1,V 2 VLCD = VDD -V5  
V DD  
VDD-0.5VLCD  
V 3,V 4  
High Level  
Low Level  
V IHC1 D0...D7,A0, CS,RES,RD,WR,CEL68,  
0.8VDD  
V SS  
V DD  
0.2VDD  
V DD  
V
V
V
V
Input  
Voltage  
P/S Terminals  
VILC1  
High Level VOHC11 D0...D7  
Terminals  
IOH=-0.5mA  
IOL= 0.5mA  
0.8VDD  
V SS  
Output  
Voltage  
Low Level VOLC11  
0.2VDD  
All Input terminals  
Input Leakage  
ILIO  
- 1.0  
1.0  
uA  
6
7
Current  
RON1  
RON2  
IDDQ  
VLCD =15.0V  
VLCD =8.0V  
2.0  
3.0  
0.05  
15  
3.0  
4.5  
5
Ta=25°C  
Driver On-resistance  
Stand-by Current  
Operating Current  
kW  
uA  
uA  
during Power save Mode  
8
9
IDD12 Display V LCD=12.0V  
40  
800  
IDD21 Accessing f CYC =200kHz  
600  
NJU6678  
SYMBOL  
CIN  
Note  
P A R A M E T E R  
C O N D I T I O N S  
MIN  
TYP  
10  
MAX  
UNIT  
A0,CS,RES,RD,WR,CEL68,  
P/S,T1,T2,D 0...D 7  
Input Terminal  
Capacitance  
pF  
Ta=25°C  
Oscillation Frequency  
Output Volt.  
fOSC  
26  
32  
38  
kHz  
V
Ta=25°C  
V SS-Vout, 5-time voltage booster,  
V D D=3V  
V OUT1  
VD D-15.0V  
V D D-14.5V  
V D D=3V;COUT=4.7uF  
5-time voltage booster  
On-resistance  
RTRI  
VOUT2  
V5  
2000  
4000  
W
V
Adjustment  
range of  
LCD  
Voltage Booster Circuit "OFF"  
VD D-17.0V  
VD D-17.0V  
VD D-6.0V  
Voltage  
10  
Driving Volt.  
Booster  
Voltage  
Voltage Adjustment Circuit "OFF"  
VD D-6.0V  
V
Follower  
V D D=3V, VLCD =12V  
COM/SEG Terminals Open  
No Access  
IOUT1  
IOUT2  
160  
35  
320  
70  
50  
3
Operating  
Current  
uA  
%
11  
12  
IOUT3  
25  
Display Checkered pattern  
Voltage Reg.  
V REG%  
V D D=3V,Ta=25°C, V REG=4F to FFH  
Note 5) NJU6678 can operate wide operating range, but it is not guarantee immediate voltage changing during  
the accessing of the MPU.  
Note 6) Apply to the High-impedance state of the D0 to D7 terminals.  
Note 7) RON is the resistance values between power supply terminals(V1, V2, V3, V4) and each output  
terminals of common and segment supplied by 0.1V. This is specified within the range of supply  
voltage (2).  
Note 8,9,11) Apply to current after "LCD Driving Voltage Set".  
Note 8) Apply to the external display clock operation in no access from the MPU and no use internal power  
supply circuits.  
Note 9) Apply to the condition of cyclic (tcyc) inverted data input continuously in no use internal power supply  
circuits. The operating current during the accessing is proportionate to the access frequency. In the no  
accessing period, it is as same as IDD1X.  
Note 10) LCD driving voltage V5 can be adjusted within the voltage follower operating range.  
Note 11) Each operating current of voltage supply circuits block is specified under below table conditions.  
Status  
Operating Condition  
External  
SYMBOL  
Voltage Supply  
(Input Terminal)  
Internal  
Voltage  
Voltage  
Voltage  
T1  
T2  
Oscillator  
Booster  
Validity  
Adjustment  
Follower  
IOUT1  
IOUT2  
IOUT3  
L
*
L
Validity  
Validity  
Validity  
Validity  
Validity  
Validity  
Validity  
Validity  
Unuse  
H
H
Invalidity  
Invalidity  
Use(V OUT)  
Use(V OUT,V5)  
H
Invalidity  
(* = Don’t Care)  
Note 12) Apply to the precision of the voltage between VDD and V5 with EVR function.  
NJU6678  
MEASUREMENT BLOCK DIAGRAM  
:IOUT1  
VR  
V5  
VDD  
T1  
A
NJU6678  
T2  
C1-C2+ C2- C3+ C3-C4+ C4- VOUT  
VSS C1+  
+
+
+
+
+
:IOUT2  
VR  
V5  
VDD  
T1  
T2  
A
NJU6678  
VOUT  
VSS C1+ C1- C2+ C2- C3+ C3-C4+ C4-  
:IOUT3  
VR  
V5  
VDD  
T1  
T2  
A
NJU6678  
VOUT  
VSS C1+ C1- C2+ C2- C3+ C3-C4+ C4-  
ELECTRICAL CHARACTERISTICS (2)  
(VDD=2.5V to 3.3V, VSS=0V, Ta=-30 to +80°C)  
P A R A M E T E R  
Reset time  
SYMBOL  
tR  
C O N D I T I O N S  
RES Terminal  
MIN  
1.0  
TYP  
MAX  
UNIT Note  
us  
13  
Reset "L" Level Pulse  
tRW  
RES Terminal  
10  
us  
14  
Width  
Note 13) Specified from the rising edge of RES to finish the internal circuit reset.  
Note 14) Specified minimum pulse width of RES signal. Over than tRW "L" input should be required for correct  
reset operation.  
NJU6678  
BUS TIMING CHARACTERISTICS  
- Read/Write operation sequence (80 Type MPU)  
tCYC8  
A0,CS  
t
AW8  
tAH8  
tCCL  
WR,RD  
tCCH  
tDH8  
tDS8  
0 toD  
(Write)  
7
tf  
tr  
tACC  
tCH8  
D0 toD  
(Read)  
7
(VDD=2.5V to 3.3V,Ta=-30 to +80°C)  
SYMBO-  
L
P A R A M E T E R  
MIN.  
TYP.  
MAX.  
CONDITION UNIT  
Address Hold Time  
Address Set Up Time  
System Cycle WR  
tAH8  
tAW8  
10  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
A0,CS  
Terminals  
tCYC8 (W)  
tCYC8 (R)  
tCCL(W)  
tCCL(R)  
tCCH(W)  
tCCH(R)  
tDS8  
270  
350  
50  
200  
220  
150  
35  
220  
Time  
RD  
WR,"L"  
WR,RD  
RD,"L" Terminals  
WR,"H"  
Control  
Pulse Width  
160  
RD,"H"  
Data Set Up Time  
Data Hold Time  
tDH8  
15  
D0 to D7  
Terminals  
RD Access Time  
Output Disable Time  
tACC8  
120  
50  
ns  
CL=100pF  
ns  
tCH8  
0
CS, WR, RD,  
A0, D0 to D7  
Terminals  
Rise Time, Fall Time  
tr,tf  
15  
ns  
Note 15) Rise time (tr) and fall time (tf) of input signal should be less than 15ns.  
Note 16) Each timing is specified based on 0.2xVDD and 0.8xVDD.  
NJU6678  
- Read/Write operation sequence (68 Type MPU)  
tCYC6  
tEWL  
E
tAW6  
tEWH  
t
f
R/W  
tr  
tAH6  
A0,CS  
tDH6  
tDS6  
D0 to D  
(Write)  
7
tOH6  
tACC6  
D0 toD7  
(Read)  
(VDD=2.5V to 3.3V,Ta=-30 to +80°C)  
SYMBOL  
CONDITION  
P A R A M E T E R  
MIN.  
10  
TYP.  
MAX.  
UNIT  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Hold Time  
Address Set Up Time  
System Cycle Time(W)  
tAH6  
tAW6  
0
A0,CS,R/W  
Terminals  
tCYC6(W)  
tCYC6(R)  
270  
350  
200  
50  
220  
System Cycle Time(R)  
Read"H"  
tEWH  
tEWL  
Write"H"  
Enable  
E Terminal  
Pulse Width  
Read"L"  
Write"L"  
220  
150  
35  
160  
Data Set Up Time  
Data Hold Time  
Access Time  
tDS6  
tDH6  
15  
D0 to D7  
Terminals  
tACC6  
tOH6  
200  
50  
CL=100pF  
Output Disable Time  
0
A0, CS, R/W,  
E, D0 to D7  
Terminals  
Rise Time, Fall Time  
tr,tf  
15  
ns  
Note 17) tCYC6 indicates the E signal cycle during the CS activation period. The System Cycle Time must be  
required after CS becomes active.  
Note 18) Rise time (tr) and fall time (tf) of input signal should be less than 15ns.  
Note 19) Each timing is specified based on 0.2xVDD and 0.8xVDD.  
NJU6678  
- Write operation sequence (Serial Interface)  
t
CSS  
tCSH  
CS  
A0  
tSAS  
tSAH  
tSCYC  
t
SLW  
SCL  
SI  
t
SHW  
tSDS  
tSDH  
tf  
tr  
(VDD=2.5V to 3.3V,Ta=-30 to +80°C)  
P A R A M E T E R  
SYMBOL  
tSCYC  
tSHW  
tSLW  
MIN.  
120  
40  
TYP.  
MAX.  
CONDITION UNIT  
Serial Clock cycle  
SCL "H" pulse width  
SCL "L" pulse width  
Address Set Up Time  
Address Hold Time  
Data Set Up Time  
Data Hold Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCL  
Terminal  
80  
tSAS  
0
A0 Terminal  
SI Terminal  
CS Terminal  
tSAH  
150  
25  
tSDS  
tSDH  
10  
tCSS  
10  
CS-SCL Time  
tCSH  
300  
SCL, A0,  
CS, SI  
Rise Time, Fall Time  
tr,tf  
15  
ns  
Terminals  
Note 20) Rise time (tr) and fall time (tf) of input signal should be less than 15ns.  
Note 21) Each timing is specified based on 0.2xVDD and 0.8xVDD.  
Note 22) In case of instruction set continuously, it is required to wait more than 450ns between the instruction  
and next as follows.  
SCL 8th clock  
SCL 1st clock  
SCL  
450 ns  
SCL"L"pulse width  
(Between the  
Instruction N+1  
Instruction N  
instruction and next)  
NJU6678  
LCD DRIVING WAVEFORM  
103  
102  
102  
103  
0
1
2
3
4
0
1 2 3 4 5  
VDD  
FR  
VSS  
VDD  
COM0  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
V1  
V2  
V3  
V4  
V5  
COM0  
VDD  
V1  
V2  
V3  
V4  
V5  
COM1  
COM8  
COM9  
COM10  
COM11  
COM12  
COM13  
COM14  
COM15  
VDD  
V1  
V2  
V3  
V4  
V5  
COM2  
VDD  
V1  
V2  
V3  
V4  
V5  
SEG  
0
VDD  
V1  
V2  
V3  
V4  
V5  
SEG  
1
V5  
V4  
V3  
V2  
V1  
VDD  
V1  
V2  
V3  
V4  
V5  
COM0-SEG  
0
-
-
-
-
-
V5  
V4  
V3  
V2  
V1  
COM0-SEG VDD  
1
V
-
-
1
V2  
V
-
-
3
V4  
V5  
-
Fig.7  
NJU6678  
APPLICATION CIRCUIT  
- Microprocessor Interface Example  
The NJU6678 interfaces to 80 type or 68 type MPU directly.  
And the serial interface also communicate with MPU.  
- 80 Type MPU  
VDD  
VCC  
A0  
A0  
CS  
CEL68  
A0 to A7  
IORQ  
Decoder  
MPU  
NJU6678  
D0 to D7  
RD  
D0 to D7  
RD  
WR  
WR  
P/S  
RES  
RES  
GND  
VSS  
RESET  
- 68 Type MPU  
VCC  
VDD  
A0  
A0  
CS  
CEL68  
A0 to A15  
VMA  
Decoder  
NJU6678  
MPU  
D0 to D7  
D0 to D7  
E
E
R/W  
R/W  
RES  
P/S  
RES  
GND  
VSS  
RESET  
- Serial Interface  
VCC  
VDD  
A0  
A0  
CS  
CEL68  
A1 to A7  
Decoder  
VDD  
OR GND  
MPU  
NJU6678  
SI  
Port1  
Port2  
SCL  
P/S  
RES  
RES  
GND  
VSS  
RESET  
NJU6678  
LCD Panel Interface Example  
LCD Panel  
(104 x 132)  
NJU6678  
BOTTOM VIEW  
CAUTION  
The specifications on this databook are only  
given for information , without any guarantee  
as regards either mistakes or omissions. The  
application circuits in this databook are  
described only to show representative usages  
of the product and not intended for the  
guarantee or permission of any right including  
the industrial rights.  

相关型号:

NJU6678VAT

暂无描述
NJRC

NJU6678VBCL

Liquid Crystal Driver, 236-Segment, CMOS, DIE-282
NJRC

NJU6678VBCL-G

Liquid Crystal Driver, 236-Segment, CMOS, BUMP, DIE-282
NJRC

NJU6678VCL

暂无描述
NJRC

NJU6679

128-common x 132-segment BIT MAP LCD DRIVER
NJRC

NJU6679ACH

Liquid Crystal Driver, 260-Segment, CMOS, BUMP, DIE-321
NJRC

NJU6679BCH

Liquid Crystal Driver, 260-Segment, CMOS, BUMP, DIE-321
NJRC

NJU6679BH

Liquid Crystal Driver, 260-Segment, CMOS, TCP-321
NJRC

NJU6679CJ

Interface Circuit, CMOS
NJRC

NJU6679CL

128-common x 132-segment BIT MAP LCD DRIVER
NJRC

NJU6680

128-common x 128-segment 4-level Gray Scale BITMAP LCD DRIVER
NJRC

NJU6680CL

128-common x 128-segment 4-level Gray Scale BITMAP LCD DRIVER
NJRC