SM5844AF [NPC]

Asynchronous Sample Rate Converter; 异步采样率转换器
SM5844AF
型号: SM5844AF
厂家: NIPPON PRECISION CIRCUITS INC    NIPPON PRECISION CIRCUITS INC
描述:

Asynchronous Sample Rate Converter
异步采样率转换器

转换器 消费电路 商用集成电路
文件: 总26页 (文件大小:279K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SM5844AF  
NIPPON PRECISION CIRCUITS LTD.  
Asynchronous Sample Rate Converter  
OVERVIEW  
APPLICATIONS  
The SM5844AF is  
a
digital audio signal,  
Digital audio equipment, sample rate conversion  
(audiovisual amplifiers, CD-R, DAT, MD and 8  
mm VTRs)  
Commercial recording/editing equipment, sample  
rate conversion  
asynchronous sample rate converter LSI. It reads 16  
or 20-bit word length input data, and writes 16, 18,  
or 20-bit word length output data. It also features a  
built-in digital deemphasis filter and digital  
attenuator.  
Input data jitter elimination  
The SM5844AF operates from a 5 V supply, and is  
available in 44-pin QFPs.  
PINOUT  
FEATURES  
Functions  
Left/right-channel processing (stereo)  
Input sample rate (fsi) ranges  
• 24 to 48 kHz (256fsi mode)  
• 27 to 55 kHz (384fsi mode)  
Output sample rate (fso) range  
• 20 to 100 kHz  
DI  
VSS  
BCKI  
RSTN  
LRCI  
TST2N  
TST1N  
STATE  
ICLK  
ICKSL  
IFM1  
IFM2  
IISN  
OW20N  
Sample rate conversion ratio (fso/fsi)  
• 0.5 to 2.0 times  
Asynchronous input and output timing (clock  
inputs)  
System clock inputs (input and output clocks  
independent)  
• 256fsi or 384fsi input system clock  
• 256fso or 384fso output system clock  
Deemphasis filter  
PACKAGE DIMENSIONS  
Unit: mm  
• IIR-type filter  
44-pin QFP  
• 44.1, 48 or 32 kHz  
Digital attenuator  
• 11-bit data for 1025 levels  
• Smooth, incremental attenuation change  
• +12 dB gain shift function  
Direct mute function  
+
12.80 0.30  
-
10.00  
Through mode operation  
• Input to output direct  
Output data clocks (LRCO, BCKO)  
• External input (slave mode)  
• Output system clock generated internally  
(master mode)  
CMOS-level input/outputs  
5 V (standard) single supply  
44-pin QFP  
+
0.60 0.20  
-
+
0.35 0.10  
0.80  
-
Molybdenum-gate CMOS process  
NIPPON PRECISION CIRCUITS—1  
SM5844AF  
Filter Characteristics and Converter  
Efficiency  
Interfaces  
Input data format  
• 2s-complement, L/R alternating, serial  
• Normal format (non IIS)  
20-bit internal data word length  
Deemphasis filter characteristics (IIR filter)  
• ±0.03 dB gain deviation from ideal filter  
characteristics  
Front/rear  
packing  
Data  
Mo d e  
Word length  
s equence  
Converter noise levels  
≤ −110 dB internally-generated noise  
98 dB (16-bit output), 110 dB (18-bit output)  
and 122 dB (20-bit output) word rounding  
noise  
Anti-aliasing LPF characteristics (4 FIR filters)  
with automatic output/input sample rate  
conversion ratio selection  
• Up converter LPF (1.0 to 2.0 times)  
• Down converter LPF 1 (48.0 to 44.1 kHz or  
0.92 times)  
• Down converter LPF 2 (44.1 to 32.0 kHz or  
0.73 times)  
1
2
3
4
16 bits  
Rear  
MSB rst  
LSB rst  
20 bits  
Front  
Rear  
Output data format  
• 2s-complement, MSB first, L/R alternating,  
serial  
• Continuous bit clock  
Front/rear  
packing  
Mo d e  
Word length  
IIS selection  
• Down converter LPF 3 (48.0 to 32.0 kHz or  
0.67 times)  
1
2
3
4
5
6
7
16 bits  
18 bits  
20 bits  
20 bits  
16 bits  
18 bits  
20 bits  
Output S/N ratio (theoretical values)  
Rear  
Normal (non  
IIS)  
S/N ratio  
Output s ignal word  
16-bit input word  
length  
20-bit input word  
length  
length  
16 bits  
18 bits  
20 bits  
94.8 dB  
97.5 dB  
97.7 dB  
97 dB  
106 dB  
109 dB  
Front  
IIS  
NIPPON PRECISION CIRCUITS—2  
SM5844AF  
BLOCK DIAGRAM  
IFM1  
IFM2  
BCKI  
DI  
MCOM  
MDT/FSI1  
MCK/FSI2  
Input data  
interface  
Deemphasis and  
attenuator setup  
MLEN/DEEM  
Arithmetic  
operations  
ICLK  
Input-stage  
divider  
Deemphasis  
operation  
ICKSL  
LRCI  
Input timing  
controller  
Attenuator  
RSTN  
Filter characteristic  
select  
Interpolation  
filter operation  
TST1N  
TST2N  
Output operation  
timing controller  
Output  
operation  
OW18N  
OW20N  
IISN  
Dither  
Output format  
controller  
Output data  
interface  
Output-stage  
clock select  
SLAVE  
LRCI BCKI  
DI  
OCLK  
Output-stage  
divider  
Through mode  
switching  
OCKSL  
THRUN  
DMUTE  
Mute  
generator  
Direct mute  
STATE  
LRCO  
BCKO  
DOUT  
NIPPON PRECISION CIRCUITS—3  
SM5844AF  
PIN DESCRIPTION  
1
2
Nu mb e r  
Na me  
DI  
I/O  
Ip  
Ip  
Ip  
I
Des cription  
1, 2  
3, 4  
5
Data input  
BCKI  
Input bit clock  
3
LRCI  
Input word clock (fsi)  
6
ICLK  
Input system clock input  
7
ICKSL  
Ip  
Input system clock (ICLK) select. 384fsi when HIGH, and 256fsi when LOW.  
Input format select  
IFM1  
LOW  
LOW  
HIGH  
HIGH  
IFM2  
LOW  
HIGH  
LOW  
HIGH  
Word length  
Data s equence  
Data pos ition  
8, 9  
IFM1  
IFM2  
Ip  
Ip  
16 bits  
Rear packed  
MSB rst  
20 bits  
Front packed  
Rear packed  
10, 11  
LSB rst  
12, 13  
14, 15  
VDD  
5 V supply pin  
Direct mute pin  
DMUTE  
Ip  
Interface switch control pin. MDT, MCK and MLEN control when HIGH. FSI1, FSI2 and DEEM  
control when LOW.  
16  
MCOM  
Ip  
Ip  
When MCOM is LOW: Deemphasis frequency  
set pins  
When MCOM is HIGH: Microcontroller interface  
data input (MDT)  
17  
MDT/FSI1  
FSI1  
FSI2  
HIGH  
LOW  
HIGH  
fsi  
LOW  
×
48.0 kHz  
44.1 kHz  
32.0 kHz  
When MCOM is HIGH: Microcontroller interface  
bit clock (MCK)  
18  
MCK/FSI2  
Ip  
Ip  
HIGH  
When MCOM is HIGH: Microcontroller data word latch clock (MLEN)  
When MCOM is LOW: Deemphasis ON/OFF control (DEEM)  
19, 20  
MLEN/DEEM  
Output format select  
When IISN = HIGH (normal mode)  
OW20N  
LOW  
OW18N  
LOW  
Word length  
Data pos ition  
Front packed  
21, 22  
OW18N  
Ip  
20 bits  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
18 bits  
16 bits  
Rear packed  
HIGH  
When IISN = LOW (IIS mode)  
OW20N  
LOW  
OW18N  
LOW  
Word length  
Data pos ition  
20 bits  
23, 24  
OW20N  
Ip  
LOW  
HIGH  
LOW  
IIS mode  
Front packed  
HIGH  
HIGH  
18 bits  
16 bits  
HIGH  
25, 26  
27  
IISN  
Ip  
O
Ip  
Ip  
IIS output mode select. Normal mode when HIGH, and IIS mode when LOW.  
Internal operation status output (for operation check)  
STATE  
TST1N  
TST2N  
28  
Output dither control. Dither ON when LOW, and OFF when HIGH.  
Test pin. Test mode when LOW. Normal operating mode when HIGH.  
29  
NIPPON PRECISION CIRCUITS—4  
SM5844AF  
1
2
Nu mb e r  
30, 31  
Na me  
RS TN  
VS S  
I/O  
Des cription  
Ip  
Reset pin  
32, 33  
0 V ground pin  
BCKO and LRCO mode set. Outputs (master mode) when LOW, and inputs (slave mode) when  
HIGH.  
34, 35  
SLAVE  
Ip  
36, 37  
38  
THRUN  
OCKS L  
OCLK  
Ip  
Ip  
I
DOUT through mode set. Normal mode when HIGH, and through mode when LOW.  
Output system clock (OCLK) select. 384fso when HIGH, and 256fso when LOW.  
Output system clock input  
39  
3
40  
LRCO  
I/O  
I/O  
O
Output word clock input/output (fso). Input/output mode set by the level on SLAVE.  
Output bit clock input/output. Input/output mode set by the level on SLAVE.  
Data output  
41, 42  
43, 44  
BCKO  
DOUT  
1. Pins which have the same name are connected internally. Accordingly, circuit connections can be made to either pin or to both pins.  
2. I = input, Ip = Input with pull-up resistor (HIGH-level pins can be left open), O = output, I/O = input/output  
3. fsi is the input word clock (LRCI) frequency, and fso is the output word clock (LRCO) frequency.  
SPECIFICATIONS  
Absolute Maximum Ratings  
V
= 0 V  
SS  
Parameter  
Symbol  
Rating  
Unit  
V
Supply voltage range  
Input voltage range  
V
0.3 to 7.0  
DD  
V
0.3 to V  
+
0.3  
V
IN  
DD  
Storage temperature range  
Power dissipation  
T
40 to 125  
550  
°C  
stg  
P
m W  
D
Soldering temperature  
Soldering time  
T
255  
°C  
sld  
t
10  
s
sld  
Recommended Operating Conditions  
V
= 0 V  
SS  
Parameter  
Symbol  
Rating  
Unit  
Supply voltage range  
Operating temperature range  
V
4.75 to 5.5  
20 to 70  
V
DD  
T
°C  
opr  
NIPPON PRECISION CIRCUITS—5  
SM5844AF  
DC Electrical Characteristics  
V
= 4.75 to 5.5 V, V = 0 V, T = 20 to 70 °C  
DD  
SS  
a
Rating  
Parameter  
Symbol  
Condition  
Unit  
min  
typ  
ma x  
80  
1
Current consumption  
I
V
= 5.0 V  
mA  
V
DD  
DD  
2,3  
HIGH-level input voltage  
V
0.7V  
IH  
DD  
2,3  
2
LOW -level input voltage  
V
0.3V  
V
IL  
DD  
AC-coupled input voltage  
V
0.3V  
V
p-p  
ACI  
DD  
4
HIGH-level output voltage  
V
I
=
1.0 mA  
= 1.0 mA  
OL  
V −  
DD  
0.5  
V
OH  
OH  
4
LOW -level output voltage  
V
I
0.4  
20  
V
OL  
2
HIGH-level input current  
I
V
V
V
= V  
DD  
10  
10  
µA  
µA  
µA  
IH  
IN  
IN  
IN  
2,3  
LOW -level input current  
I
= 0 V  
= V  
20  
IL  
3
Input leakage current  
I
1.0  
1000  
LH  
DD  
3
Pull-up resistance  
R
250  
500  
kΩ  
IH  
1. ICKSL = LOW, OCKSL = LOW, f  
= 13.0 MHz, f  
= 13.0 MHz, no output load  
ICLK  
OCLK  
2. Pins ICLK and OCLK.  
3. Pins DI, BCKI, LRCI, ICKSL, IFM1, IFM2, DMUTE, MCOM, MDT/FSI1, MCK/FSI2, MLEN/DEEM, OW18N, OW20N, IISN, TST1N, TST2N, RSTN,  
THRUN, OCKSL and SLAVE.  
4. Pins DOUT, BCKO, LRCO and STATE.  
AC Electrical Characteristics  
V
= 4.75 to 5.5 V, V = 0 V, T = 20 to 70 °C  
SS a  
DD  
ICLK input  
Condition  
Sys tem clock  
Rating  
Parameter  
Symbol  
Unit  
ns  
ICKSL  
LOW  
min  
30  
10  
30  
10  
80  
47  
typ  
ma x  
256fsi  
384fsi  
256fsi  
384fsi  
256fsi  
384fsi  
LOW -level clock  
pulsewidth  
t
CWL  
HIGH  
LOW  
HIGH-level clock  
pulsewidth  
t
ns  
CWH  
HIGH  
LOW  
162  
106  
Clock pulse cycle  
t
ns  
CY  
HIGH  
OCLK input  
Condition  
Rating  
Parameter  
Symbol  
Unit  
ns  
OCKS L  
LOW  
Sys tem clock  
256fso  
min  
15  
10  
15  
10  
39  
26  
typ  
ma x  
LOW -level clock  
pulsewidth  
t
CWL  
HIGH  
LOW  
384fso  
256fso  
HIGH-level clock  
pulsewidth  
t
ns  
CWH  
HIGH  
LOW  
384fso  
256fso  
200  
130  
Clock pulse cycle  
t
ns  
CY  
HIGH  
384fso  
ICLK and OCLK timing  
>0.7V  
0.5V  
DD  
DD  
DD  
ICLK  
OCLK  
<0.3V  
t
t
CWL  
CWH  
t
CY  
NIPPON PRECISION CIRCUITS—6  
SM5844AF  
BCKI, DI, LRCI inputs  
Rating  
Parameter  
Symbol  
Unit  
min  
50  
typ  
ma x  
BCKI LOW-level pulsewidth  
BCKI HIGH-level pulsewidth  
BCKI pulse cycle  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BCWL1  
t
50  
BCWH1  
t
100  
50  
BCY1  
DI setup time  
t
DS  
DI hold time  
t
50  
DH  
Last BCKI rising edge to LRCI edge  
LRCI edge to rst BCKI rising edge  
t
50  
BL1  
t
50  
LB1  
BCKI, DI, LRCI timing  
t
BCY1  
t
t
BCWL1  
BCWH1  
BCKI  
0.5V  
DD  
t
t
DH  
DS  
0.5V  
DD  
DI  
t
t
LB1  
BL1  
LRCI  
0.5V  
DD  
BCKO, LRCO (Inputs when SLAVE = HIGH)  
Rating  
Parameter  
Symbol  
Unit  
min  
typ  
ma x  
BCKO LOW -level pulsewidth  
BCKO HIGH-level pulsewidth  
t
78  
78  
ns  
ns  
ns  
ns  
ns  
BCWL2  
t
BCWH2  
1
BCKO pulse cycle  
t
156  
78  
BCY2  
Last BCKO rising edge to LRCO edge  
LRCO edge to rst BCKO rising edge  
t
BL2  
t
78  
LB2  
1. BCKO clock inputs exceeding 64fso cannot be detected, and will cause incorrect operation.  
NIPPON PRECISION CIRCUITS—7  
SM5844AF  
BCKO, LRCO timing  
t
BCY2  
t
t
BCWL2  
BCWH2  
BCKO  
LRCO  
0.5V  
DD  
t
t
LB2  
BL2  
0.5V  
DD  
MDT, MCK, MLEN inputs  
Rating  
Parameter  
Symbol  
Unit  
min  
typ  
ma x  
1
MCK and MLEN rise time  
t
100  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
r
1
MCK and MLEN fall time  
t
f
MDT setup time  
t
50  
50  
50  
50  
50  
50  
MDS  
MDT hold time  
t
MDH  
MLEN setup time  
t
MCS  
MLEN hold time  
t
MCH  
MLEN LOW-level pulsewidth  
MLEN HIGH-level pulsewidth  
t
MEWL  
t
ME WH  
1. t and t are the input waveform transition times measured between 0.1V and 0.9V levels.  
r
f
DD  
DD  
MDT, MCK, MLEN timing  
MDT  
0.5V  
DD  
t
t
t
MDS  
MDH  
0.5V  
DD  
MCK  
t
MCS  
MCH  
MLEN  
0.5V  
DD  
t
t
MEWH  
MEWL  
NIPPON PRECISION CIRCUITS—8  
SM5844AF  
DEEM, DMUTE inputs  
Rating  
Parameter  
Symbol  
Unit  
min  
typ  
ma x  
100  
100  
Rise time  
Fall time  
t
ns  
ns  
r
t
f
DOUT, BCKO, LRCO input/outputs  
SLAVE = LOW (outputs), C = 15 pF  
L
Rating  
typ  
Parameter  
Symbol  
Condition  
Unit  
min  
ma x  
LRCO pulse cycle  
t
1/fso  
ns  
ns  
ns  
LOCY  
LRCO LOW-level pulsewidth  
LRCO HIGH-level pulsewidth  
t
1/2fso  
LOCL  
t
1/2fso  
LOCH  
OCKSL = LOW  
OCKSL = HIGH  
OCKSL = LOW  
OCKSL = HIGH  
OCKSL = LOW  
OCKSL = HIGH  
1/64fso  
1/48fso  
1/128fso  
1/96fso  
1/128fso  
1/96fso  
BCKO pulse cycle  
t
ns  
ns  
ns  
BOCY  
BCKO LOW -level pulsewidth  
BCKO HIGH-level pulsewidth  
t
BOWL  
t
BOWH  
From OCLK fall to BCKO  
rise  
t
10  
10  
15  
15  
0
70  
70  
80  
80  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
s bH1  
OCLK to BCKO delay time  
(OCKSL = LOW)  
From OCLK fall to BCKO  
fall  
t
sbL1  
From OCLK fall to BCKO  
rise  
t
s bH2  
OCLK to BCKO delay time  
(OCKSL = HIGH)  
From OCLK fall to BCKO  
fall  
t
sbL2  
From BCKO fall to DOUT  
rise  
t
bdH1  
BCKO to DOUT and LRCO delay  
time  
From BCKO fall to DOUT  
fall  
t
0
bdL1  
SLAVE = HIGH (inputs), C = 15 pF  
L
Rating  
typ  
Parameter  
Symbol  
Condition  
Unit  
min  
ma x  
From BCKO fall to DOUT  
rise  
t
10  
100  
ns  
ns  
bdH2  
BCKO to DOUT delay time  
From BCKO fall to DOUT  
fall  
t
10  
100  
bdL2  
NIPPON PRECISION CIRCUITS—9  
SM5844AF  
DOUT, BCKO, LRCO timing  
OCLK  
BCKO  
t
, t  
sbL1 sbL2  
t
, t  
sbH1 sbH2  
t
t
BOWL  
BOWH  
t
BOCY  
BCKO  
DOUT  
LRCO  
t
t
, t  
bdH bdL  
t
bdH  
bdL  
t
t
LOCL  
LOCH  
t
LROOY  
NIPPON PRECISION CIRCUITS—10  
SM5844AF  
Filter Characteristics  
Anti-aliasing filter frequency characteristic  
0
48k  
44.1k  
20  
48k  
32k  
40  
60  
44.1k  
32k  
Up conversion  
80  
100  
120  
140  
0.250  
0.300  
0.350  
0.400  
0.450  
Frequency (fs)  
0.500  
0.550  
0.600  
0.650  
Deemphasis filter frequency characteristic  
0
2
0
48.0 kHz  
44.1 kHz  
32 kHz  
–20  
4
–40  
–60  
6
48.0, 44.1 and 32 kHz  
8
10  
Phase  
50  
Attenuation  
12  
10  
20  
100  
200  
500  
1k  
2K  
5k  
10k  
20k  
Frequency (Hz)  
NIPPON PRECISION CIRCUITS—11  
SM5844AF  
FUNCTIONAL DESCRIPTION  
Input Data Interface (DI, LRCI, BCKI, IFM1, IFM2)  
Data  
s equence  
Mo d e  
IFM1  
IFM2  
Word length  
Data pos ition  
Common features  
1
2
3
4
LOW  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
16 bits  
Rear packed  
Non IIS  
L/R alternating  
Bit serial  
MSB rst  
LSB rst  
20 bits  
Front packed  
Rear packed  
Attenuator and Deemphasis Selection  
The attenuator is set using the microcontroller  
interface. When the attenuator is used, deemphasis  
settings also need to be set using the microcontroller  
interface. The microcontroller interface comprises  
MDT, MCK and MLEN, and is used to receive all  
input serial data.  
Table 1. Attenuator and deemphasis function  
selection  
Function s et method  
Microcontroller  
interface flags  
(MCOM = HIGH)  
Function  
External pins  
(MCOM = LOW)  
Deemphasis  
ON/OFF  
DEEM  
FDEEM  
Deemphasis  
frequency (fsi)  
select  
FSI1, FSI2  
FFSI1, FFSI2  
Attenuator data set  
Test mode select  
N/A (no attenuation)  
11 bits (a1 to a11)  
FTST1, FTST2  
Irreversible  
(test mode 1)  
When MCOM is HIGH, serial data received on  
MDT, MCK and MLEN sets the attenuation data and  
control flag data.  
When MCOM is LOW, the logic levels on FSI1,  
FSI2 and DEEM select the device function.  
NIPPON PRECISION CIRCUITS—12  
SM5844AF  
Microcontroller Interface (MCOM, MDT, MCK, MLEN)  
When MCOM is HIGH, MDT (data), MCK (clock)  
and MLEN (latch enable clock) interface pins are  
used.  
latched into the mode register on the rising edge of  
the latch enable clock MLEN.  
The mode register addressed is determined by the 1st  
bit of the 12 data bits before MLEN goes HIGH. If  
this bit is LOW, then the data is read into the  
attenuation data register as shown in figure 1. If this  
bit is HIGH, then the data is read into the mode flag  
register as shown in figure 2. The function of each bit  
in the mode flag register is described in table 1.  
Input data on MDT is synchronized to the MCK  
clock. Data is read into the input stage shift register  
on the rising edge of MCK. Accordingly, the input  
data should change on the falling edge of MCK.  
Input data enters an internal SIPO (serial-to-parallel  
converter register), and then the parallel data is  
B1  
B2  
a0  
B3  
a1  
B4  
a2  
B8  
a6  
B9  
a7  
B10  
a8  
B11  
a9  
B12  
a10  
LSB  
LOW  
MDT  
MCK  
MSB  
MLEN  
MCK and MLEN can also follow the dotted lines.  
Figure 1. Attenuation data format (B1 = LOW)  
B1  
B2 * * B5  
Not used  
B6  
B7  
B8  
B9  
B10  
B11  
B12  
HIGH  
FTST1  
FTST2  
FRATE  
F12DB  
FFSI1  
FFSI2  
FDEEM  
MDT  
MCK  
MLEN  
MCK and MLEN can also follow the dotted lines.  
Figure 2. Mode flag data format (B1 = HIGH)  
NIPPON PRECISION CIRCUITS—13  
SM5844AF  
Table 2. Mode flag description  
Mode function s elect  
Res et  
mo d e  
B1  
Bit  
Mode flag  
Parameter  
Not used  
LOW/HIGH  
Select  
B2 to B5  
TST2N = LOW  
FTST2  
LOW  
FTST1  
LOW  
Mo d e  
B6  
B7  
FTST1  
FTST2  
Test mode select 1  
Test mode select 2  
LOW  
LOW  
0
1
2
3
LOW  
HIGH  
LOW  
HIGH  
HIGH  
HIGH  
Input/output sample rate ratio check after every  
output  
LOW  
B8  
FRATE  
Input/output rate  
Attenuator  
LOW  
Input/output sample rate ratio check for high  
accuracy after every 2048 outputs  
HIGH  
HIGH  
LOW  
Normal operation (no shift)  
+12 dB gain shift  
B9  
F12DB  
FFSI1  
LOW  
LOW  
HIGH  
Deemphasis lter fs  
select 1  
FFSI2  
LOW  
LOW  
HIGH  
HIGH  
FFSI1  
LOW  
HIGH  
LOW  
HIGH  
fsi  
B10  
44.1 kHz  
48.0 kHz  
32.0 kHz  
Deemphasis lter fs  
select 2  
B11  
B12  
FFSI2  
LOW  
LOW  
LOW  
Deemphasis lter OFF  
Deemphasis lter ON  
Deemphasis control  
ON/OFF  
FDEEM  
HIGH  
Deemphasis (DEEM, FSI1, FSI2 pins or FDEEM, FFSI1, FFSI2 flags)  
Table 4. Deemphasis fs select (FSI1, FSI2 pins or  
FFSI1, FFSI2 flags)  
The digital deemphasis filter is an IIR filter with var-  
iable coefficients to faithfully reproduce the gain and  
phase characteristics of standard analog deemphasis  
filters.  
MCOM = LOW (MCOM = HIGH)  
fs  
FSI1 (FFSI1)  
FSI2 (FFSI2)  
The filter coefficients are selected by FSI1 (or FFSI1  
flag) and FSI2 (or FFSI2 flag) to correspond to the  
sampling frequencies fs = 44.1, 48.0 and 32.0 kHz.  
LOW  
LOW  
44.1 kHz  
HIGH  
LOW  
Table 3. Deemphasis ON/OFF  
LOW  
HIGH  
48.0 kHz  
32.0 kHz  
Whe n MCOM = LOW  
DEEM = HIGH  
Whe n MCOM = HIGH  
FDEEM = HIGH  
Deemphas is  
ON  
HIGH  
HIGH  
DEEM = LOW  
FDEEM = LOW  
OFF  
NIPPON PRECISION CIRCUITS—14  
SM5844AF  
Attenuation (MDT, MCK, MLEN)  
The digital attenuator coefficients are read in as  
serial data on the microcontroller interface. Data on  
MDT is read into the internal shift register on the  
rising edge of MCK, and then 12 bits are latched  
internally on the rising edge of MLEN.  
When the leading bit is 0 (B1 = LOW), the following  
11 bits are read into the attenuation register and used  
as an unsigned integer in MSB first format. See  
figure 3.  
B1  
B2  
a0  
B3  
a1  
B4  
a2  
B8  
a6  
B9  
a7  
B10  
a8  
B11  
a9  
B12  
a10  
LSB  
LOW  
MDT  
MCK  
MSB  
MLEN  
MCK and MLEN can also follow the dotted lines.  
Figure 3. Attenuation data format (microcontroller interface)  
Although the attenuation data comprises 11 bits,  
only 1025 levels are valid as given by the following.  
DATT  
---------------  
1024  
Gain = 20 × log  
[dB]  
10  
when F12DB = LOW  
(10 – i)  
DATT =  
a × 2  
i
i = 0  
DATT  
256  
---------------  
= 20 × log  
[dB]  
The gain of the attenuator for values of DATT from  
001H to 400H are given by the following equations.  
Note that when the F12DB flag is HIGH, the gain is  
shifted by +12.0412 dB.  
when F12DB = HIGH  
After a system reset initialization, DATT is set to  
400H and the F12DB flag is LOW, corresponding to  
0 dB gain. (The F12DB flag is described in table 2.)  
Table 5. Attenuator settings  
F12DB = LOW (default)  
Attenuation data DATT  
F12DB = HIGH  
Gain (dB)  
Linear expres s ion  
Gain (dB)  
Linear expres s ion  
000H  
−∞  
0.0  
1/1024  
−∞  
0.0  
1/256  
001H  
60.206  
48.165  
100H  
0.0  
12.041  
256/1024  
256/256  
3FFH  
0.0085  
0
1023/1024  
1.0  
12.032  
12.041  
1023/256  
4.0  
400H (to 7FFH)  
NIPPON PRECISION CIRCUITS—15  
SM5844AF  
Attenuator operation  
A change in the attenuation data DATT causes the  
gain to change smoothly from its previous value  
towards the new setting. The new attenuation data is  
stored in the attenuation data register and the current  
attenuation level is stored in a temporary register.  
Consequently, if a new attenuation level is read in  
before the previously set level is reached, the gain  
changes smoothly from the current value towards the  
latest setting as shown in figure 4.  
The attenuation counter output changes, and hence  
the gain changes, by 1 step every output sample. The  
time taken to reduce the gain from 0 dB (or 12 dB) to  
−∞ dB is (1024/fso), which corresponds to  
approximately 23.2 ms when fso = 44.1 kHz.  
Level 1  
Level 5  
0 dB  
Level 3  
Gain  
Level 2  
− ∞  
t  
Level 4  
Time  
Figure 4. Attenuator operation example  
NIPPON PRECISION CIRCUITS—16  
SM5844AF  
Direct Mute (DMUTE)  
Direct mute ON/OFF  
Table 6. DMUTE operation  
DMUTE  
Function  
Normal data is output from the next output word (mute  
OFF)  
LOW  
HIGH  
0 data is output from the next output word (mute ON)  
Reset mute  
Table 7. RSTN mute operation  
RS TN  
Function  
LOW  
0 data is output from the next output word (mute ON)  
Normal data is output from the 3073rd output word  
(mute OFF)  
HIGH  
Internal operating status (STATE)  
Internally, all functions are performed using 20-bit  
serial data, and the conversion rate and filter type are  
automatically selected for output. Output data is in  
20-bit front-packed format.  
Table 8. Bit function  
Output bit pos ition  
Content  
(Output data cycle/input data cycle)  
Ex.  
9  
1st  
18th  
1st to 18th  
19th  
00.1111111111110111  
01.1111111111110111  
00.0111111111110111  
1.0 times  
2.0 times (1/2 conversion rate ratio)  
0.5 times (2.0 conversion rate ratio)  
DA1  
Selected lter type  
DA1  
DA0  
Filter  
Mo d e  
0
1
0
1
0
0
1
1
Up converter  
1
2
3
4
44.1 to 48 kHz  
32 to 44.1 kHz  
32 to 48 kHz  
20th  
DA0  
Note that when THRUN is LOW, LRCO and BCKO are not guaranteed to be synchronized to the STATE  
output.  
NIPPON PRECISION CIRCUITS—17  
SM5844AF  
System Clock  
Input system clock (ICLK, ICKSL)  
Output system clock (OCLK, OCKSL)  
The input system clock can be set to run at either  
256fsi or 384fsi, where fsi is the input frequency on  
LRCI.  
The output system clock can be set to run at either  
256fso or 384fso, where fso is the input frequency on  
LRCO. In through mode, OCLK and OCKSL have  
no function and are not used.  
Note that ICLK and LRCI should be divided from a  
common clock source or PLL to maintain  
synchronism.  
Note that in slave mode, a suitable clock must be  
input on OCLK. The clock on OCLK should ideally  
have a protection circuit to prevent incorrect  
operation for times when the clock on ICLK is  
halted.  
Table 9. ICLK system clock  
ICKSL  
HIGH  
LOW  
ICLK s ys tem clock rate  
Table 10. OCLK system clock  
384fsi  
256fsi  
S LAVE  
OCKS L  
HIGH  
LOW  
×
OCLK s ys tem clock rate  
384fso  
256fso  
LOW  
HIGH  
Not used  
Output data interface and output clock selection (LRCO, BCKO, DOUT, SLAVE)  
Table 11. Output mode description  
Function  
THRUN  
HIGH  
LOW  
S LAVE  
Mo d e  
Des cription  
LRCO, BCKO s tate  
Output word clock (LRCO) and output bit clock  
(BCKO) are divided from OCLK.  
LOW  
Master mode  
Outputs  
Output word clock (LRCO) and output bit clock  
(BCKO) are supplied externally.  
1
HIGH  
Slave mode  
Inputs  
Output word clock (LRCO), output bit clock  
(BCKO) and output data (DOUT) are the  
same as LRCI, BCKI and DI, respectively.  
×
Through mode  
Outputs  
1. The number of BCKO input clock cycles should not exceed 64 per word. Correct operation is not guaranteed beyond these limits.  
System Reset (RSTN)  
Through Mode (THRUN)  
At power-ON, all device functions must be reset. The  
device is reset by applying a LOW-level pulse on  
RSTN. At system reset, the internal arithmetic  
operation, output timing counter and internal flag  
register operation are synchronized on the next LRCI  
rising edge. Note that all flags are set to their defaults  
(all LOW).  
Table 12. THRUN operation  
THRUN  
Mo d e  
Des cription  
Direct connections are made: LRCI  
to LRCO, BCKI to BCKO, and DI to  
DOUT.  
LOW  
Through mode  
Normal mode  
HIGH  
Sample rate converter operation  
A power-ON reset signal can be applied from an  
external microcontroller. For systems where ICLK  
and LRCI are stable at power ON, initialization can  
be performed by connecting a 0.001 µF capacitor  
between RSTN and VSS. Otherwise, a capacitor  
value should be chosen such that RSTN does not go  
HIGH until after LRCI and ICLK have stabilized.  
NIPPON PRECISION CIRCUITS—18  
SM5844AF  
Internal Arithmetic Timing Auto-reset  
Output Timing Calculation  
The clock on LRCI should pass through 1 cycle for  
every 384 (ICKSL = HIGH) or 256 (ICKSL = LOW)  
ICLK clock cycles to maintain correct internal  
arithmetic sequence. If the number of ICLK cycles is  
different, increases or decreases, or any jitter is  
present, device operation could be affected.  
The output timing is calculated to maintain the  
desired ratio between the output data cycle and the  
input data cycle.  
Filter Characteristic Selection  
Conversion rates from 0.5 to 2.0 times are supported  
using the following 4 filter types.  
There is a fixed-value tolerance within which the  
internal sequence and LRCI clock timing are not  
adversely affected.  
The ratio between the output sample rate and input  
sample rate is measured automatically and the most  
suitable filter type for this ratio is selected  
automatically.  
Table 13. Clock tolerance  
ICKSL  
Allowa ble clock variation  
Table 15. fs ratio and filter selection  
HIGH (384fs mode)  
LOW (256fs mode)  
+8/  
+4/  
6 cycles  
3 cycles  
Mo d e  
Filter  
fs ratio (fso/fsi)  
1.0 to 2.0  
0.91875  
Selects range  
0.97  
1
2
3
4
Up converter  
Whenever the allowable tolerance is exceeded, the  
internal sequence is automatically reset so that the  
internal sequence matches the LRCI clock. When  
this occurs, there is a possibility that click noise will  
be generated.  
48.0 to 44.1 kHz  
44.1 to 32.0 kHz  
48.0 to 32.0 kHz  
0.865 to 0.97  
0.711 to 0.865  
0.711  
0.72562  
0.66667  
When the selected fs conversion ratio and the actual  
sample rate conversion ratio do not coincide, the  
following phenomenon are generated.  
Output Format Control (OW18N,  
OW20N, IISN)  
The output is in MSB-first, 2s-complement, L/R  
alternating, bit serial format with a continuous bit  
clock.  
Table 16. fs ratio mismatch  
Condition  
Affect  
Actual sample rate conversion  
ratio is lower than the selected  
filter conversion ratio  
Table 14. Output format selection  
The audio band high-pass  
develops aliasing noise.  
Inputs  
Output format  
IIS Front/rear  
Mo d e  
Word  
length s election  
IISN OW20N OW18N  
Actual sample rate conversion  
ratio is higher than the selected  
filter conversion ratio  
packing  
The audio band high-pass is cut  
off.  
1
2
3
4
5
6
7
HIGH  
HIGH  
LOW  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
×
16 bits  
18 bits  
Non IIS  
20 bits  
Rear  
Note: An output noise may be generated if the fs conversion ratio  
changes at a rate greater than 0.057%/sec.  
HIGH  
LOW  
20 bits  
16 bits  
Front  
18 bits  
20 bits  
IIS  
NIPPON PRECISION CIRCUITS—19  
SM5844AF  
TIMING DIAGRAMS  
Input Timing Examples (DI, BCKI, LRCI)  
Audio data input timing (rear-packed 16-bit word, IFM1 = LOW, IFM2 = LOW)  
1/fs  
Left-channel data  
Right-channel data  
MSB  
1
LSB  
MSB  
1
LSB  
DI  
BCKI  
LRCI  
2
14 15 16  
2
14 15 16  
Audio data input timing (rear-packed 20-bit word, IFM1 = LOW, IFM2 = HIGH)  
1/fs  
Left-channel data  
Right-channel data  
MSB  
1
LSB  
MSB  
1
LSB  
DI  
BCKI  
LRCI  
2
18 19 20  
2
18 19 20  
Audio data input timing (front-packed 20-bit word, IFM1 = HIGH, IFM2 = LOW)  
1/fs  
Left-channel data  
Right-channel data  
MSB  
1
LSB  
MSB  
1
LSB  
DI  
BCKI  
LRCI  
2
3
19 20  
2
3
19 20  
1
All data bits after the LSB (20th bit) are ignored. Accordingly, more than 20 BCKI cycles are required.  
NIPPON PRECISION CIRCUITS—20  
SM5844AF  
Audio data input timing (rear-packed 20-bit word, LSB first, IFM1 = HIGH, IFM2 = HIGH)  
1/fs  
Left-channel data  
Right-channel data  
LSB  
1
MSB  
LSB  
1
MSB  
DI  
BCKI  
LRCI  
2
18 19 20  
2
18 19 20  
Output Timing Examples (DOUT, BCKO, LRCO)  
Audio data output timing (rear-packed 16-bit word)  
1/fso  
1/fso  
1/fso  
Left-channel data  
Right-channel data  
Right-channel data  
Right-channel data  
MSB  
1
LSB  
16  
MSB  
1
LSB  
16  
DOUT  
BCKO  
LRCO  
2
15  
2
2
2
15  
17  
19  
Audio data output timing (rear-packed 18-bit word)  
Left-channel data  
MSB  
1
LSB  
18  
MSB  
1
LSB  
18  
DOUT  
BCKO  
LRCO  
2
17  
Audio data output timing (rear-packed 20-bit word)  
Left-channel data  
MSB  
1
LSB  
20  
MSB  
1
LSB  
20  
DOUT  
BCKO  
LRCO  
2
19  
NIPPON PRECISION CIRCUITS—21  
SM5844AF  
Audio data output timing (front-packed 20-bit word, OW18N = LOW, OW20N = LOW)  
1/fso  
Left-channel data  
Right-channel data  
MSB  
1
LSB  
20  
MSB  
1
LSB  
20  
DOUT  
BCKO  
LRCO  
2
19  
2
19  
Audio data output timing (IIS mode, front-packed 16/18/20-bit word selected by OW18N and  
OW20N)  
1/fso  
Left-channel data  
Right-channel data  
MSB  
1
LSB  
20  
MSB  
1
LSB  
20  
DOUT  
BCKO  
LRCO  
2
16  
17  
18  
19  
2
16  
17  
18  
19  
Data is output in 20-bit units.  
State Data Output Timing  
State data output timing (IISN = HIGH)  
1/fso  
State data  
MSB  
LSB  
20  
STATE  
BCKO  
LRCO  
1
2
19  
State data output timing (IISN = LOW)  
1/fso  
State data  
MSB  
LSB  
20  
STATE  
BCKO  
LRCO  
1
2
19  
NIPPON PRECISION CIRCUITS—22  
SM5844AF  
Delay Time  
t
is the time when the serial input data has been  
been read out completely (on the rising edge of  
LRCO). The delay between input and output is given  
INPUT  
read in completely (on the rising edge of LRCI).  
t
is the time when the serial output data has  
by t  
t  
= (49 ± 2)/fsi.  
OUTPUT  
OUTPUT  
INPUT  
1/fs  
LRCI  
Serial data input  
49 ±2  
t
input  
LRCO  
Serial data output  
1/fso  
t
output  
t
INPUT  
t
– t  
INPUT  
OUTPUT  
t
OUTPUT  
NIPPON PRECISION CIRCUITS—23  
SM5844AF  
TYPICAL APPLICATIONS  
Input Interface Circuits  
Digital audio interface receiver (PD0052)  
384fs  
VCOOUT  
ICLK  
ICKSL  
LRCI  
BCKI  
DI  
LRCK  
BCK  
DIR  
PD0052  
DATA  
SM5844AF  
MODE  
EMP  
MCOM  
MLEN/DEEM  
MDT/FSI1  
1FM1  
1FM2  
MCK/FSI2  
32k  
44.1k  
48k  
Digital audio interface transceiver(YM3613)  
OCKSL  
384fs 16.9344 MHz  
OCLK  
LRCO  
øA  
WCI  
BCI  
DIN  
BCKO  
DOUT  
IISN  
DIT  
YM3613  
SM5844AF  
OW18N  
OW20N  
THRUN  
SLAVE  
SEL  
NIPPON PRECISION CIRCUITS—24  
SM5844AF  
APPLICATION NOTE  
Delay in the slave mode  
When tbdH2, tbdL2 is maximum 100ns, ideal timing  
may not be attained for the following devise,  
depending on the OCLK cycle (example 1).  
In the slave mode , the delay (tbdH2, tbdL2)of  
DUOT from BCKO is MIN= 10ns, MAX= 100ns  
which is ratter wide width.  
Please use considering the timing in the following  
examples in the slave mode.  
As specified in AC Electrical Characteristics, and  
BCKO is prohibited from inputting longer than  
64fso.  
(example 1) OCLK= 39ns(fs= 99.84kHz), OCKSL= L(256fs), BCKO(64fso)= 156ns, OW20N= L, OW18N= H  
LRCO  
BCKO  
(LSB)  
L1  
DOUT  
L2  
100ns  
156ns  
100ns  
(example 2) OCLK= 59ns(fs= 44.1kHz), OCKSL= H(384fs), BCKO(64fso)= 354ns, OW20N= L, OW18N= H  
LRCO  
BCKO  
(LSB)  
DOUT  
L2  
L1  
100ns  
354ns  
100ns  
NIPPON PRECISION CIRCUITS—25  
SM5844AF  
NIPPON PRECISION CIRCUITS INC. reserves the right to make changes to the products described in this data sheet in order to  
improve the design or performance and to supply the best possible products. Nippon Precision Circuits Inc. assumes no responsibility for  
the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits  
are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision  
Circuits Inc. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification.  
The products described in this data sheet are not intended to use for the apparatus which influence human lives due to the failure or  
malfunction of the products. Customers are requested to comply with applicable laws and regulations in effect now and hereinafter,  
including compliance with export controls on the distribution or dissemination of the products. Customers shall not export, directly or  
indirectly, any products without first obtaining required licenses and approvals from appropriate government agencies.  
NIPPON PRECISION CIRCUITS INC.  
4-3, Fukuzumi 2 chome  
Koto-ku, Tokyo 135-8430, Japan  
Telephone: 03-3642-6661  
Facsimile: 03-3642-6698  
NIPPON PRECISION CIRCUITS LTD.  
NC9308DE 2000.09  
NIPPON PRECISION CIRCUITS—26  

相关型号:

SM5846AP

Multi-function Digital Filter
NPC

SM5846AP_06

Multi-function Digital Filter
NPC

SM5847

High-fidelity Digital Audio, Multi-function Digital Filter
NPC

SM5847AF

High-fidelity Digital Audio, Multi-function Digital Filter
NPC

SM5849

Asynchronous Sample Rate Converter
NPC

SM5849AF

Asynchronous Sample Rate Converter
NPC

SM5849BF

Asynchronous Sample Rate Converter
NPC

SM5849F

Asynchronous Sample Rate Converter
NPC

SM5851AF

DOLBY PROLOGIC DECODER
NPC

SM5852

Amplified Pressure Sensor
ETC

SM5852-001-A-3-L

Amplified Pressure Sensor
ETC

SM5852-001-A-3-N

Amplified Pressure Sensor
ETC