CLC5665IM [NSC]

Low Distortion Amplifier with Disable; 低失真放大器具有禁用
CLC5665IM
型号: CLC5665IM
厂家: National Semiconductor    National Semiconductor
描述:

Low Distortion Amplifier with Disable
低失真放大器具有禁用

放大器 光电二极管
文件: 总8页 (文件大小:123K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
June 1999  
N
CLC5665  
Low Distortion Amplifier with Disable  
General Description  
The CLC5665 is a low-cost, wideband amplifier that provides very  
Features  
0.1dB gain flatness to 20MHz (A = +2)  
v
90MHz bandwidth (A = +1)  
Large signal BW 25MHz  
1800V/µs slew rate  
0.05%/0.05° differential gain/phase  
±5V, ±15V or single supplies  
200ns disable to high-impedance output  
Wide gain range  
low 2nd and 3rd harmonic distortion at 1MHz (-89/-92dBc). The  
v
great slew rate of 1800V/µs, bandwidth of 90MHz (A = +1) and  
v
fast disable make it an excellent choice for many high speed  
multiplexing applications. Like all current feedback op amps, the  
CLC5665 allows the frequency response to be optimized  
(or adjusted) by the selection of the feedback resistor. For  
demanding video applications, the 0.1dB bandwidth to 20MHz  
and differential gain/phase of 0.05%/0.05° make the CLC5665  
the preferred component for broadcast quality NTSC and PAL  
video systems.  
-89/-92dBc HD2/HD3 (R = 500Ω)  
L
Low cost  
Applications  
xDSL driver  
Twisted pair driver  
Cable driver  
Video distribution  
CCD clock driver  
The large voltage swing (28V ), continuous output current  
pp  
(85mA) and slew rate (1800V/µs) provide high-fidelity signal  
conditioning for applications such as CCDs, transmission lines  
and low impedance circuits.  
Multimedia systems  
DAC output buffers  
xDSL, video distribution, multimedia and general purpose  
applications will benefit from the CLC5665’s wide bandwidth and  
disable feature. Power is reduced and the output becomes a high  
impedance when disabled. The wide gain range of the CLC5665  
makes this general purpose op amp an improved solution for  
circuits such as active filters, single-to-differential-ended drivers,  
DAC transimpedance amplifiers and MOSFET drivers.  
Imaging systems  
Non-Inverting Frequency Response  
Av = 1  
Rf = 698  
Gain  
Av = 10  
Rf = 100  
Av = 2  
Rf = 604  
Phase  
0
Av = 1  
-45  
-90  
-135  
-180  
Av = 50  
Av = 2  
Av = 50  
Rf = 500  
Av = 10  
1
10  
100  
Frequency (MHz)  
DIS  
Typical Application  
Differential Line Driver for xDSL  
Pinout  
+
DIP & SOIC  
+
CLC5665  
-
Ro  
NC  
Vinv  
1
2
3
4
8
7
6
5
DIS  
Rf1  
1:n  
604  
-
+Vcc  
Vout  
NC  
Rg  
1.2kΩ  
RL  
Vin (Vpp  
)
Vo = 2Vin  
nVo  
Rf2  
+
Vnon-inv  
-Vcc  
604Ω  
Ro  
-
Note: Supply and Bypassing not shown.  
CLC5665  
-
+
DIS  
© 1999 National Semiconductor Corporation  
Printed in the U.S.A.  
http://www.national.com  
(VCC = ±15V, Av = +2V/V; Rf = 604, RL = 100; unless specified)  
CLC5665 Electrical Characteristics  
PARAMETERS  
CONDITIONS  
V
cc  
TYP  
MIN/MAX RATINGS  
+25°C 0 to 70°C -40 to 85°C  
UNITS NOTES  
Ambient Temperature  
CLC5665  
+25°C  
FREQUENCY DOMAIN RESPONSE  
small-signal bandwidth (Av = +1) Vout < 1.0Vpp  
±15  
±15  
±5  
±15  
±5  
90  
70  
50  
20  
15  
25  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
small-signal bandwidth  
V
V
V
V
V
V
out < 1.0Vpp  
out < 1.0Vpp  
out < 1.0Vpp  
out < 1.0Vpp  
out = 10Vpp  
out < 1.0Vpp  
0.1dB bandwidth  
large-signal bandwidth  
gain flatness  
peaking  
rolloff  
DC to 10MHz  
DC to 20MHz  
0.03  
0.1  
dB  
dB  
linear phase deviation  
differential gain  
DC to 20MHz  
0.7  
deg  
%
%
deg  
deg  
4.43MHz, RL = 150  
4.43MHz, RL = 150Ω  
4.43MHz, RL = 150Ω  
4.43MHz, RL = 150Ω  
±15  
±5  
±15  
±5  
0.05  
0.05  
0.05  
0.1  
differential phase  
TIME DOMAIN RESPONSE  
rise and fall time  
2V step  
10V step  
2V step  
2V step  
20V step  
5
10  
35  
5
1800  
ns  
ns  
ns  
%
V/µs  
settling time to 0.05%  
overshoot  
slew rate  
DISTORTION AND NOISE RESPONSE  
2nd harmonic distortion  
3rd harmonic distortion  
input voltage noise  
1Vpp,1MHz, RL = 500Ω  
1Vpp,1MHz, RL = 500Ω  
>1MHz  
-89  
-92  
3.0  
3.2  
15  
dBc  
dBc  
nV/Hz  
pA/Hz  
pA/Hz  
non-inverting input current noise >1MHz  
inverting input current noise  
>1MHz  
DC PERFORMANCE  
input offset voltage  
average drift  
input bias current  
average drift  
input bias current  
average drift  
power-supply rejection ratio  
common-mode rejection ratio  
supply current  
±15  
1.0  
25  
3
10  
3
10  
60  
60  
7.5  
20  
20  
55  
55  
12  
2.5  
9.0  
20  
20  
10.0  
20  
mV  
µV/°C  
µA  
nA/°C  
µA  
nA/°C  
dB  
dB  
A
A
A
non-inverting  
inverting  
±15, ±5  
±15, ±5  
20  
DC  
DC  
RL =  
RL = ∞  
50  
50  
14  
2.5  
50  
50  
15  
2.5  
±15, ±5 11, 8.5  
±15, ±5  
mA  
mA  
A
A
disabled  
1.5  
SWITCHING PERFORMANCE  
turn on time  
turn off time  
off isolation  
high input voltage  
400  
200  
59  
11.8  
1.8  
500  
800  
56  
12.5  
2.5  
550  
800  
56  
12.7  
2.7  
550  
800  
56  
ns  
ns  
dB  
V
(Note 2)  
10MHz  
VIH  
±15  
±5  
V
low input voltage  
VIL  
±15  
±5  
10.8  
0.8  
10.5  
0.6  
10.0  
0.1  
V
V
MISCELLANEOUS PERFORMANCE  
non-inverting input resistance  
8.0  
0.5  
±12.5  
±2.5  
±14  
±4.0  
±85  
3.0  
1.0  
±12.3  
±2.3  
±13.7  
±3.9  
±60  
2.5  
1.0  
±12.1  
±2.2  
±13.7  
±3.8  
±50  
1.7  
1.0  
±11.8  
±1.9  
±13.6  
±3.7  
±45  
MΩ  
pF  
V
V
V
V
mA  
non-inverting input capacitance  
input voltage range  
output voltage range  
output current  
common mode  
±15  
±5  
±15  
±5  
common mode  
RL = ∞  
RL = ∞  
Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are  
determined from tested parameters.  
Absolute Maximum Ratings  
Notes  
supply voltage  
short circuit current  
common-mode input voltage  
maximum junction temperature  
storage temperature range  
lead temperature (soldering 10 sec)  
±
16V  
(see note 1)  
VCC  
A) J-level: spec is 100% tested at +25°C.  
1) Output is short circuit protected to ground, however  
maximum reliability is obtained if output current does not  
exceed 125mA.  
±
+150°C  
-65°C to +150°C  
+300°C  
2) To >50dB attenuation @ 10MHz.  
http://www.national.com  
2
(VCC = ±15V, Av = +2V/V; Rf = 604, RL = 100; unless specified)  
CLC5665 Typical Performance  
Inverting Frequency Response  
Frequency Response vs. Load  
Non-Inverting Frequency Response  
Gain  
Av = -1  
Rf = 500  
Av = 1  
Rf = 698  
RL = 1k  
Gain  
Gain  
RL = 50  
Av = -10  
Rf = 500  
Av = 10  
Rf = 100  
RL = 100  
RL = 1k  
Av = 2  
Phase  
Av = -2  
Rf = 500  
Rf = 604  
Phase  
Phase  
0
0
0
Av = 1  
-45  
-90  
-135  
-180  
-45  
-90  
-135  
-180  
-45  
-90  
-135  
-180  
RL = 50  
RL = 100  
Av = -50  
Av = 50  
Av = -10  
Av = -2  
Av = 2  
Av = -50  
Rf = 2.5k  
Av = 50  
Rf = 500  
Av = 10  
Av = -1  
1
10  
100  
1
10  
100  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Frequency (MHz)  
Open-Loop Transimpedance Gain (Zs)  
Flatness Gain and Linear Phase  
Equivalent Input Noise  
130  
120  
100  
10  
1
Gain  
0
Gain  
110  
100  
90  
20  
40  
60  
80  
Inverting Current 14.8pA/Hz  
Phase  
80  
Phase  
70  
60  
50  
100  
120  
140  
Non-Inverting Current 3.2pA/Hz  
Voltage 3.0nV/Hz  
40  
30  
160  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
0
4
8
12  
16  
20  
0.1k  
1k  
10k  
100k  
1M  
10M  
100M  
Frequency (MHz)  
Frequency (MHz)  
Frequency (MHz)  
Differential Gain and Phase (3.58MHz)  
PSRR, CMRR and Closed Loop Ro  
Signal Pulse Response  
1
0.08  
0.06  
0.30  
0.24  
0.18  
70  
60  
30  
20  
Large Signal  
Small Signal  
Gain Negative Sync  
CMRR  
PSRR  
50  
40  
30  
20  
10  
0
10  
Phase  
Positive Sync  
0
-10  
-20  
-30  
-40  
0.04  
0.02  
0.12  
0.06  
Phase Negative Sync  
20 log Ro  
Gain Positive Sync  
0
0.03  
1
2
3
4
0.01  
0.10  
1
10  
100  
Time (20ns/div)  
Number of 150Loads  
Frequency (MHz)  
Short Term Settling Time  
IBI, IBN. VOS vs. Temperature  
2-Tone, 3rd Order Intermodulation Intercept  
0.2  
7.0  
6.0  
60  
50  
40  
5.0  
4.5  
2V output step  
0.15  
5.0  
4.0  
3.0  
2.0  
4.0  
3.5  
3.0  
2.5  
0.1  
0.05  
0
Short Term  
IBN  
IBI  
1.0  
0
2.0  
1.5  
1.0  
30  
20  
-0.05  
VOS  
50  
Pout  
-0.1  
-0.15  
-0.2  
50Ω  
750Ω  
-1.0  
750Ω  
-2.0  
-3.0  
0.5  
0
10  
Time (10ns/div)  
-60  
-20  
20  
60  
100  
140  
106  
107  
Temperature (°C)  
Frequency (MHz)  
-1dBm Compression to Load  
Harmonic Distortion vs. Frequency  
Harmonic Distortion vs. Frequency  
26  
24  
22  
20  
18  
16  
0
-10  
-20  
-30  
-40  
-50  
0
-10  
-20  
-30  
-40  
-50  
RL = 100Ω  
Vout = 2Vpp  
RL = 500Ω  
Vout = 2Vpp  
2nd  
VCC = ±5V  
2nd  
VCC = ±5V  
2nd  
VCC = ±15V  
2nd  
VCC = ±15V  
3rd  
VCC = ±15V  
14  
12  
-60  
-70  
-60  
-70  
Load  
3rd  
VCC = ±15V  
50Ω  
Vin  
50Ω  
10  
8
-80  
-90  
-80  
-90  
698Ω  
698Ω  
3rd  
VCC = ±5V  
3rd  
VCC = ±5V  
6
-100  
-100  
0
5
10 15 20 25 30 35 40 45 50  
1
10  
100  
1
10  
100  
Frequency (MHz)  
Frequency (MHz)  
Frequency (MHz)  
3
http://www.national.com  
V
±15V  
>12.7V  
<10.0V  
±5V  
>2.7V  
<0.8V  
CC  
CLC5665 Design Considerations  
Enable  
Disable  
The CLC5665 is a general purpose current-feedback  
amplifier for use in a variety of small- and large-signal  
applications. Use the feedback resistor to fine tune the  
gain flatness and -3dB bandwidth for any gain setting.  
National provides information for the performance at a  
gain of +2 for small and large signal bandwidths. The  
plots show feedback resistor values for selected gains.  
The amplifier is enabled with pin 8 left open due to the  
2kpull-up resistor, shown in Figure 2.  
+Vcc  
2k  
Gain  
To CLC5665  
Bias network  
Use the following equations to set the CLC5665’s non-  
inverting or inverting gain:  
R
f
NonInverting Gain = 1 +  
8kΩ  
R
g
-Vcc  
-R  
Pin 8 DISABLE  
f
Inverting Gain =  
R
g
Figure 2: Pin 8 Equivalent Disable Circuit  
Choose the resistor values for non-inverting or inverting  
gain by the following steps.  
Open-collector or CMOS interfaces are recommended to  
drive pin 8. The turn-on and off time depends on the  
speed of the digital interface.  
Vin  
+
Rs  
Vo  
CLC5665  
Rin  
The equivalent output impedance when disabled is  
-
shown in Figure 3. With R connected to ground, the sum  
g
of R and R dominates and reduces the disabled output  
f
g
Rf  
impedance. To raise the output impedance in the dis-  
abled state, connect the CLC5665 as a unity-gain  
Rg  
voltage follower by removing R . Current-feedback  
g
op-amps need the recommended R in a unity-gain  
Figure 1: Component Identification  
f
follower circuit. For high density circuit layouts consider  
using the dual CLC431 (with disable) or the dual CLC432  
(without disable).  
1) Select the recommended feedback resistor R .  
f
2) Choose the value of R to set gain.  
g
3) Select R to set the circuit output impedance.  
s
Equivalent Impedance  
in Disable  
4) Select R for input impedance and input bias.  
in  
Vin  
+
High Gains  
300k  
Current feedback closed-loop bandwidth is independent  
of gain-bandwidth-product for small gain changes. For  
Vout  
8pF  
larger gain changes the optimum feedback register R is  
-
f
derived by the following:  
R = 724– 60(A )  
f
v
Rf  
Rg  
As gain is increased, the feedback resistor allows band-  
width to be held constant over a wide gain range. For a  
more complete explanation refer to application note OA-25:  
Stability Analysis of Current-Feedback Amplifiers.  
1M  
100k  
10k  
1k  
Resistors have varying parasitics that affect circuit  
performance in high-speed design. For best results, use  
leaded metal-film resistors or surface mount resistors. A  
SPICE model for the CLC5665 is available to simulate  
overall circuit performance.  
100  
10  
Enable/Disable Function  
The CLC5665 amplifier features an enable/disable  
function that changes the output and inverting input from  
low to high impedance. The pin 8 enable/disable logic  
levels are as follows:  
1
1
10  
100  
Frequency (MHz)  
Figure 3: Equivalent Disabled Output Impedance  
http://www.national.com  
4
2nd and 3rd Harmonic Distortion  
+
Vin  
AC  
To meet low distortion requirements, recognize the effect  
of the feedback resistor. Increasing the feedback  
resistor will decrease the loop gain and increase  
distortion. Decreasing the load impedance increases 3rd  
harmonic distortion more than 2nd.  
Vout  
C
Rin  
CLC5665  
-
Vin  
DC  
Rf  
R2  
Rg  
Differential Gain and Differential Phase  
The CLC5665 has low DG and DP errors for video  
applications. Add an external pulldown resistor to the  
CLC5665’s output to improve DG and DP as seen in  
Figure 5: Level Shifting Circuit  
Multiplexing  
Figure 4. A 604R will improve DG and DP to 0.01%  
p
Multiple signal switching is easily handled with the dis-  
able function of the CLC5665. Board trace capacitance  
at the output pin will affect the frequency response and  
switching transients. To lessen the effects of output  
and 0.02°.  
Add Rp to  
improve  
DG and DP  
Vin  
capacitance place a resistor (R ) within the feedback  
o
+
loop to isolate the outputs as shown in Figure 6.To match  
the mux output impedance to a transmission line, add a  
Vout  
Rin  
CLC5665  
Rs  
-
resistor (R ) in series with the output.  
s
Rp  
Rf  
Rg  
Rf  
Rg  
-
Ro  
-Vcc  
CLC5665  
Vin1  
+
Figure 4: Improved DG and DP Video Amplifier  
Vout  
Rs  
DIS1  
DIS2  
Vin2  
Rin  
Printed Circuit Layout  
+
Ro  
RL  
To get the best amplifier performance careful placement  
of the amplifier, components and printed circuit traces  
must be observed. Place the 0.1µF ceramic decoupling  
capacitors less than 0.1” (3mm) from the power supply  
pins. Place the 6.8µF tantalum capacitors less than  
0.75” (20mm) from the power supply pins. Shorten traces  
between the inverting pin and components to less  
than 0.25” (6mm). Clear ground plane 0.1” (3mm) away  
from pads and traces that connect to the inverting, non-  
inverting and output pins. Do not place ground or power  
plane beneath the op-amp package. National provides  
literature and evaluation boards CLC730013 DIP or  
CLC730027 SOIC illustrating the recommended op-amp  
layout.  
CLC5665  
-
Rin  
Rf  
Rg  
Figure 6: Output Connection for  
Multiplexing Circuits  
Differential Line Driver With Load  
Impedance Conversion  
The circuit shown in Figure 7, operates as a differential  
line driver. The transformer converts the load impedance  
to a value that best matches the CLC5665’s output  
capabilities. The single-ended input signal is converted  
to a differential signal by the CLC5665. The line’s  
characteristic impedance is matched at both the input  
and the output.The schematic shows Unshielded Twisted  
Pair for the transmission line; other types of lines can also  
be driven.  
Applications Circuits  
Level Shifting  
The circuit shown in Figure 5 implements level shifting by  
AC coupling the input signal and summing a DC voltage.  
The resistor R and the capacitor C set the high-pass  
in  
break frequency. The amplifier closed-loop bandwidth is  
fixed by the selection of R . The DC and AC gains for  
Rg2  
Rf2  
f
circuit of Figure 5 are different. The AC gain is set by the  
Vd/2  
Vin  
Rt1  
+
ratio of R and R . And the DC gain is set by the parallel  
f
g
Rm/2  
Req  
Io  
CLC5665  
-
1:n  
-Vd/2  
+
Vo  
-
combination of R and R .  
Zo  
g
2
-
CLC5665  
RL  
Rf1  
+
UTP  
Rt2  
Rm/2  
Rg1  
R
R
f
f
V
= V  
1+  
V  
inDC  
out  
inac  
R
R
R
g
2
2
Figure 7: Differential Line Driver with  
Load Impedance Conversion  
5
http://www.national.com  
Set up the CLC5665 as a difference amplifier. V is  
determined by:  
d
VinA  
Rt1  
VinB  
Rt1  
+
+
Z0  
Rm1  
Rm1  
CLC5665  
CLC5665  
-
-
V
R
R
R
R
d
f1  
f2  
Rf1  
Rf2  
Rf1  
Rf2  
= 2 1+  
= 2  
Rg2  
Rg2  
V
in  
g1  
g2  
-
-
Make the best use of the CLC5665’s output drive  
capability as follows:  
VoB  
VoA  
CLC5665  
CLC5665  
Rt2  
Rt2  
+
+
2 V  
max  
R
+R  
=
eq  
m
I
Figure 8: Full Duplex Cable Driver  
is used to match the transmission line. R and R  
g2  
max  
where R is the transformed value of the load imped-  
R
eq  
m1  
f2  
ance, V  
is the Output Voltage Range, and I  
is the  
set the DC gain of the CLC5665, which is used in a  
max  
max  
maximum Output Current.  
difference mode. R provides good CMRR and DC  
t2  
offset. The transmitting CLC5665’s are shown in a unity  
gain configuration because they consume the least  
power of any gain, for a given load. For proper operation  
we need R = R .  
Match the line’s characteristic impedance:  
R = Z  
L
o
f2  
g2  
R
= R  
eq  
m
The receiver output voltages are:  
R
L
n =  
V
Z
(jω)  
o(5665)  
R
R
inB(A)  
eq  
f2  
V
V  
A +  
1−  
+
outA(B)  
inA(B)  
2
R
R
m1  
g2  
Select the transformer so that it loads the line with a  
where A is the attenuation of the cable, Z  
(jω) is  
value very near Z over frequency range. The output  
o(5665)  
o
the output impedance of the CLC5665, and |Z  
(jω)|  
impedance of the CLC5665 also affects the match. With  
an ideal transformer we obtain:  
o(5665)  
<< R  
.
m1  
We selected the component values as follows:  
2
n
Z
jω  
o 5665  
(
)
(
)
ReturnLoss = −20 log  
,dB  
10  
R = 1.2k, the recommended value for  
f1  
Z
o
CLC5665 at unity gain  
R
= Z = 50, the characteristic impedance  
o
m1  
where Z  
(jω) is the output impedance of the  
o(5665)  
of the transmission line  
CLC5665 and |Z  
(jω)| << R .  
m
o(5665)  
R = R = 750R , the recommended  
f2 g2 m1  
value for the CLC5665 at A = 2  
v
The load voltage and current will fall in the ranges:  
n V  
R
m1  
R = (R ||R ) –  
= 25Ω  
t2  
f2  
g2  
V
2
o
max  
These values give excellent isolation from the other input:  
I
max  
I
o
n
V
oA(B)  
≈ −38dB, f = 5.0MHz  
The CLC5665’s high output drive current and low  
distortion make it a good choice for this application.  
V
inB(A)  
The CLC5665 provides large output current drive, while  
consuming little supply current, at the nominal bias point.  
It also produces low distortion with large signal swings  
and heavy loads. These features make the CLC5665 an  
excellent choice for driving transmission lines.  
Full Duplex Cable Driver  
The circuit shown in Figure 8 below, operates as a full  
duplex cable driver which allows simultaneous transmis-  
sion and reception of signals on one transmission line.  
The circuit on either side of the transmission line uses are  
CLC5665 as a cable driver, and the second CLC5665 as  
a receiver. V is an attenuated version of V , while V  
oA  
inA  
oB  
is an attenuated version of V  
.
inB  
http://www.national.com  
6
CCD Clock Driver  
Reliability Information  
Transistor Count  
38  
Vin  
+
Rs  
Vo  
CL  
CLC5665  
RT  
Package Thermal Resistance  
Package  
-
θJC  
θJA  
Voffset  
Plastic (IN)  
Surface Mount (IM)  
65°C/W  
50°C/W  
130°C/W  
145°C/W  
R
Rf  
Rg  
Ordering Information  
14  
10  
6
Model  
Temperature Range  
Description  
CLC5665IN  
CLC5665IM  
CLC5665IMX  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
8-pin PDIP  
8-pin SOIC  
8-pin SOIC tape and reel  
2
-2  
-6  
-10  
-14  
0
50  
100  
150  
200  
Frequency (ns)  
Figure 9: CCD Clock Driver  
7
http://www.national.com  
Customer Design Applications Support  
National Semiconductor is committed to design excellence. For sales, literature and technical support, call the  
National Semiconductor Customer Response Group at 1-800-272-9959 or fax 1-800-737-7018.  
Life Support Policy  
National’s products are not authorized for use as critical components in life support devices or systems without the express written approval of  
the president of National Semiconductor Corporation. As used herein:  
1. Life support devices or systems are devices or systems which, a) are intended for surgical implant into the body, or b) support or  
sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can  
be reasonably expected to result in a significant injury to the user.  
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its safety or effectiveness.  
National Semiconductor  
Corporation  
1111 West Bardin Road  
Arlington, TX 76017  
Tel: 1(800) 272-9959  
Fax: 1(800) 737-7018  
National Semiconductor  
Europe  
National Semiconductor  
Hong Kong Ltd.  
2501 Miramar Tower  
1-23 Kimberley Road  
Tsimshatsui, Kowloon  
Hong Kong  
National Semiconductor  
Japan Ltd.  
Tel: 81-043-299-2309  
Fax: (+49) 0-180-530 85 86  
E-mail: europe.support.nsc.com  
Deutsch Tel: (+49) 0-180-530 85 85  
English Tel: (+49) 0-180-532 78 32  
Francais Tel: (+49) 0-180-532 93 58  
Italiano Tel: (+49) 0-180-534 16 80  
Fax: 81-043-299-2408  
N
Tel: (852) 2737-1600  
Fax: (852) 2736-9960  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said  
circuitry and specifications.  
http://www.national.com  
8

相关型号:

CLC5665IMX

Low Distortion Amplifier with Disable
NSC

CLC5665IN

Low Distortion Amplifier with Disable
NSC

CLC5801

High Speed Low Noise Voltage Feedback Amplifier
NSC

CLC5801IM

High Speed Low Noise Voltage Feedback Amplifier
NSC

CLC5801IM5

High Speed Low Noise Voltage Feedback Amplifier
NSC

CLC5801IM5X

High Speed Low Noise Voltage Feedback Amplifier
NSC

CLC5801IMX

High Speed Low Noise Voltage Feedback Amplifier
NSC

CLC5802

Dual Low-Noise, Voltage Feedback Op Amp
NSC

CLC5802IM

Dual Low-Noise, Voltage Feedback Op Amp
NSC

CLC5802IMX

Dual Low-Noise, Voltage Feedback Op Amp
NSC

CLC5902

Dual Digital Tuner/AGC
NSC

CLC5902VLA

Dual Digital Tuner/AGC
NSC