NAU8220WG [NUVOTON]

2Vrms Audio Line Driver;
NAU8220WG
型号: NAU8220WG
厂家: NUVOTON    NUVOTON
描述:

2Vrms Audio Line Driver

文件: 总19页 (文件大小:399K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NAU8220  
2Vrms Audio Line Driver  
1 General Description  
The NAU8220 is a high quality 2Vrms analog input and output line driver. This device  
includes an integrated charge pump enabling true ground referenced inputs and outputs and  
full 5.6Vpp output levels, while operating from only a single 3.3V positive supply voltage.  
Additionally, the NAU8220 includes pop/click elimination features and high immunity to  
power supply and other system noise. This enables fast and efficient system integration  
while minimizing external component costs.  
The NAU8220 is specified for operation from -40°C to +85°C, It is packaged in a cost-  
effective and space-saving 14-lead SOP and TSSOP packages.  
2 Features  
Operating voltage: 3.0-3.6V  
Full 2Vrms output using only 3.3Vdc supply  
True Ground Referenced analog outputs  
Low cost, small footprint package  
Automatic pop/click elimination and output muting for power-on  
108dB SNR A-weighted performance  
>90dB THD+N  
114dB Mute Attenuation  
< 1mV Output Offset  
110dB channel separation at 1kHz  
Low external parts count  
High system noise immunity  
Packages: Pb free 14-pin SOP and TSSOP  
Operating temperature range: -40 to +85°C  
8 kV HBM protection on line outputs  
Datasheet Revision 2.0  
Page 1 of 19  
NAU8220  
3 Block diagram  
4 Pin Configuration  
Datasheet Revision 2.0  
Page 2 of 19  
NAU8220  
5 Pin Description  
Description  
Pin No.  
Pin Name  
Type  
AI  
Right Channel Positive Input  
Right Channel Negative Input  
Right Channel Line Output  
1
2
3
RINP  
RINN  
AI  
ROUT  
O
Ground  
4
5
GND  
MUTEB  
VEE  
CN  
P
I
Mute Bar  
Charge Pump Decoupling Output (Negative Voltage)  
Charge Pump Capacitor Negative Node  
Charge Pump Capacitor Positive Node  
Positive Voltage Supply  
6
IO  
IO  
IO  
P
7
8
CP  
9
VDD  
GND  
UVP  
LOUT  
LINN  
LINP  
Ground  
10  
11  
12  
13  
14  
P
Under Voltage Protection  
I
Left Channel Line Output  
O
AI  
AI  
Left Channel Negative Input  
Left Channel Positive Input  
Table 1 Pin Description  
Datasheet Revision 2.0  
Page 3 of 19  
NAU8220  
6 Table of Contents  
1
GENERAL DESCRIPTION .................................................................................................................................1  
FEATURES.........................................................................................................................................................1  
BLOCK DIAGRAM .............................................................................................................................................2  
PIN CONFIGURATION .......................................................................................................................................2  
PIN DESCRIPTION.............................................................................................................................................3  
TABLE OF CONTENTS......................................................................................................................................4  
ABSOLUTE MAXIMUM RATINGS.....................................................................................................................5  
RECOMMENDED OPERATING CONDITIONS..................................................................................................5  
ELECTRICAL CHARACTERISTICS ..................................................................................................................6  
FUNCTIONAL DESCRIPTION............................................................................................................................7  
AMPLIFIER CIRCUITS .......................................................................................................................................8  
LOW PASS FILTER CIRCUIT ............................................................................................................................9  
TYPICAL APPLICATION DIAGRAM................................................................................................................12  
TYPICAL CHARACTERISTICS........................................................................................................................14  
PACKAGE SPECIFICATION............................................................................................................................17  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
15.1  
15.2  
SOP-14 Package .......................................................................................................................................17  
TSSOP-14 Package (14L 4.4X5.0 MM^2)..................................................................................................18  
16  
ORDERING INFORMATION.............................................................................................................................19  
Datasheet Revision 2.0  
Page 4 of 19  
NAU8220  
7 Absolute Maximum Ratings  
DESCRIPTION  
SYMBOL  
CONDITION  
MINIMUM  
MAXIMUM  
UNIT  
VDD supply voltage  
Digital Input Voltage  
range  
VDD  
-0.3  
+4.0  
VDD + 0.30  
VDD + 0.30  
+85  
V
VDDGND  
DVIN  
AVIN  
TA  
GND – 0.3  
VEE – 0.3  
-40  
V
V
DVINGND  
AVINVEE  
Analog Input Voltage  
Operating  
Temperature  
°C  
°C  
Storage Temperature  
Tst  
-65  
+150  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such  
Conditions may adversely influence product reliability and result in failures not covered by warranty. Follow IC  
handling procedures to avoid ESD damage.  
8 Recommended Operating Conditions  
DESCRIPTION  
Supply voltage  
Ground  
SYMBOL  
MINIMUM  
TYPICAL  
MAXIMUM  
UNIT  
VDD  
GND  
3.0  
3.3  
0
3.6  
V
V
Datasheet Revision 2.0  
Page 5 of 19  
NAU8220  
9 Electrical Characteristics  
Test Conditions VDD = 3.3V, TA = +25°C, 1 V rms 1 kHz signal, R1 (IN) = 15k, R2 (FB) =  
30k, CP = 1µF, RL = 10kunless otherwise stated.  
Parameter  
Sym  
Vout  
SNR  
Test Conditions  
Min  
2.0  
90  
Typ  
Max  
Unit  
Vrms  
dB  
Full Scale Output Voltage  
Signal to Noise Ratio  
-
-
A-weighted  
108  
108  
Dynamic Range  
DNR  
A-weighted  
90  
90  
-
-
dB  
dB  
Total Harmonic Distortion +  
Noise  
THD+N  
20 kHz LPF  
102  
Power Supply Rejection Ratio  
PSRR  
AC  
VDD = 3.0 V to 3.6 V  
100Hz  
100  
90  
dB  
dB  
dB  
dB  
dB  
µV  
-
-
-
-
-
-
1
Power Supply Rejection Ratio  
1kHz  
75  
PSRR  
20kHz  
-
-
-
60  
Channel Separation  
Noise Voltage  
1kHZ  
-110  
8
VN  
VN  
A-weighted  
Mute Noise Voltage  
A-weighted  
MUTEB=GND  
-
4
-
µV  
Output Offset  
-1  
0.5  
0.6  
+1  
mV  
Output Impedance when muted  
ZM  
MUTEB = GND  
MUTEB = GND  
Input to output attenuation  
when muted  
MdB  
114  
dB  
UVP detect voltage  
VUVP  
IUVP  
1.2  
5
Volts  
µA  
UVP feedback current  
Current Limit  
ILIMIT  
IDD  
Output = GND  
VDD = 3.3 Volts  
Pin CP  
30  
15  
mA AC  
mA  
Supply Current  
Charge pump switching  
frequency  
FCP  
300  
kHz  
Low input level  
High input level  
Input current  
VIL  
VIH  
IIN  
MUTEB  
MUTEB  
40  
60  
% VDD  
% VDD  
µA  
MUTEB GND or VDD  
-1  
+1  
Load Resistance  
Load Capacitance  
RL  
Maximum signal  
LOUT,R OUT  
600  
0
10k  
-
Cload  
200  
pF  
Notes  
1. The performance of AC PSRR depends upon the board layout.  
Datasheet Revision 2.0  
Page 6 of 19  
NAU8220  
10 Functional Description  
The NAU8220 uses charge pump mechanism to get the full output signal swing. The charge pump uses  
the charge pump capacitor to put a negative voltage onto VEE, the charge pump decoupling node. An  
additional capacitor is needed from VDD to GND, pin 10. A low resistance one micro-farad capacitor is  
recommended for each of these capacitors. All of these connections need to be short. The negative  
voltage developed on pin 6 VEE enables the outputs to swing both positive and negative from GND.  
Signal gain is set by the ratio of external resistors. The input signal can be either single ended or  
differential. The typical single ended application diagram is shown in figure 1 and differential in figure 2.  
For single ended inputs, the signal polarity of the output is inverted. A gain of two using R1 = 15 K Ohms  
and R2 = 30 K Ohms is recommended for good performance. R3 of 10 K Ohms helps to reject unwanted  
signals by balancing the inputs. For larger gains, R2 can be increased. R1 can also be decreased, but 10  
K Ohms is the minimum recommended. For example, a gain of three could use R1 = 10 K Ohms, R2 = 30  
K Ohms, and R3 = 7.5 K Ohms. For better performance R3 and R6 should be approximately equal to  
R1||R2 and R4||R5. Gains larger than ten are not recommended. Large gains will have more noise and  
distortion than the nominal gain of two. The following table shows the R1 and R2 resistance values for  
different gain settings.  
Gain  
-1  
-2  
Input Resistance, R1  
10k Ohms  
15k Ohms  
Feedback Resistance, R2  
10k Ohms  
30k Ohms  
-3  
-10  
10k Ohms  
10k Ohms  
30k Ohms  
100k Ohms  
Table 2 Recommended resistor values for different gain settings  
Load of the line driver outputs is from 600 Ohms minimum to 10 K Ohms nominal. With VDD at 3.3 Volts,  
the maximum output signal is 2 Volts RMS. Capacitive loads up to 200 pF can be driven. If larger  
capacitive loads such as 2.2 nF (CPC) need to be driven, then a resistance of at least 33 Ohms (RPC)  
should be added in series to provide both stability and protection. RPC and CPC are resistance and  
capacitance of the protection circuit as shown in Figure 1 and Figure2. If this resistor and capacitor are  
added for protection, then the components need to be properly rated. For example, 100 volts rating for  
the capacitor may be needed to survive an output surge.  
For best output offset voltages, the inputs can be AC coupled.  
Upon the application of power to the VDD pin, the part will enter into a pop reduction mode which applies  
a resistive loading to the two outputs. After the VEE pin reaches more than about 1.5 Volts, a power up  
sequence begins that places the outputs into the Mute condition. This condition is held until both the  
MUTEB pin is held high and the UVP pin exceeds about 1.25 Volts. When the MUTEB pin rises, the  
outputs will follow the input signals. This pin should not be raised until a valid signal is available. The  
MUTEB pin is driven by a logic signal to GND or VDD.  
The MUTE condition can be entered from normal operation by pulling MUTEB low. If power is interrupted,  
the UVP pin can be used to force the part into the MUTE condition.  
Datasheet Revision 2.0  
Page 7 of 19  
NAU8220  
The UVP pin can force the part into the Mute condition when the power supply voltage drops below the  
desired voltage. If this function is not needed, the UVP pin should be connected to VDD. Feed back is  
provided by a nominal 5 µA current developed across the external resistors applied. The turn on voltage  
sets the ratio of R11 and R12 compared to the internal 1.22 Volt reference. The formula for turn ON  
voltage is VON = 1.22V * (R11 + R12)/R11 and the formula for the turn off voltage is VOFF= VON - (5uA *  
R12).  
For example, for a turn on voltage of 3.0 Volts and a turn off voltage of 2.5 volts, the calculated resistors  
are R11 = 68.5kand R12 = 100k, or using standard values, R11 = 68kand R12 = 100k.  
Important note: When using a LDO, the turn-on and turn-off voltages for the UVP should be set higher  
than the sum of 3.3V and the minimum required voltage drop across the LDO, to ensure proper operation.  
11 Amplifier circuits  
NAU8220 can be used to implement the amplifier configurations in single ended and differential mode.  
The following diagram shows the NAU8220 in single ended (inverting) and differential amplifier  
configuration modes. Notice the similarities between these two configurations. The differential input  
function is accomplished by duplicating the values used in single ended configuration. The required gain  
can be achieved by properly selecting the R1 and R2 values as per the Table 2.  
An ac coupling capacitor (Cin) is used to block the dc content from the input source. The input resistance  
of the amplifier (Rin) together with the Cin will act as a high pass filter. So depending on the required cut  
off frequency the Cin can be calculated by using the following formula  
̽͢͝ Ɣ 1/2ꢀ͚͌͗͢͝ where ͚͗ is the desired cut off frequency of the High pass filter.  
Inverting Amplifier Configuration  
Datasheet Revision 2.0  
Page 8 of 19  
NAU8220  
Differential Amplifier Configuration  
12 Low Pass Filter Circuit  
Many of the today’s Digital to Analog Converters (DACs) requires low pass filter circuit to remove the out  
of band noise produced by the sigma-delta modulator. Most commonly used filter is multiple feedback  
(MFB) 2nd order low pass filter. The advantage of the MFB filter is, it requires fewer components  
compared to the other filter configurations. The following diagrams show the 2nd order Low pass filter in  
single ended and differential mode.  
The transfer function for the MFB filter (single ended mode) is  
ͥ
͐ͣ  
ꢁͥꢁͦꢂͥꢂͧ  
Ɣ Ǝ  
ͥ
ͥ
ͥ
ͥ
ͥ
͐͝  
͍² ƍ ͍ ʠꢁͦʡ ʠꢂͥ ƍ ꢂͦ ƍ ꢂͧʡ ƍ ʚꢁͥꢁͦꢂͧꢂͦ  
ʛ
By comparing this equation with following the standard 2nd order Low pass filter equation, the component  
values can be calculated for a given cut off frequency (͚͗ʛ and  
͋
(Quality factor) value.  
Datasheet Revision 2.0  
Page 9 of 19  
NAU8220  
ͦ
ʚ
ʛ
2ꢀ͚͗ ͅ  
͐ͣ  
͐͝  
Ɣ
ͦ
ʚ
ʛ
͍ ƍ 2ꢃ 2ꢀ͚͗ ͍ ƍ ʚ2ꢀ͚͗ʛ²  
Where ͋ʚ͕͋ͩͨͭ͠͝ ͚͕͗ͨͣꢄʛ Ɣ 1/2ꢃʚ͕̾ͤ͛͢͡͝ ꢄ͕ͨͣ͝ʛ  
ꢂͦ  
ͅʚ͕́͢͝ʛ Ɣ Ǝ  
ꢂͥ  
Single ended 2nd order Low pass filter  
Example1: Design a second order single ended MFB Low pass filter with following specifications. Cut off  
Frequency = 50 kHz, Quality factor, Q= 0.707 and Gain, K = -2.  
Step 1: Find R1 and R2 depending on the gain. By assuming R1 = 10kOhms and using the equation  
ꢂͦ  
ͅ Ɣ Ǝ  
the value of the R2 = 20kOhms.  
ꢂͥ  
Datasheet Revision 2.0  
Page 10 of 19  
NAU8220  
ͦ_!ꢅ  
ͥ
ͥ
ͥ
ͥ
Step2: Using the equation  
Ɣ ʚꢁͦʛʚꢂͥ ƍ ꢂͦ ƍ ꢂͧʛ , Calculate R3 by assuming C2 = 1000pF  
R3 = 3.3kOhms  
ͥ
ꢁͥꢁͦꢂͧꢂͦ  
ͦ
ʚ
ʛ
Ɣ
Step3: Using the equation 2ꢀ͚͗  
, the C1 = 150pF  
Example2: Design a second order differential mode MFB Low pass filter with following specifications. Cut  
off Frequency = 50 kHz, Quality factor, Q= 0.707 and Gain, K = -2.  
The differential mode configuration can be achieved by duplicating the above example 1 values except  
the C2. The C2 value in this configuration is half of the value of the single ended configuration.  
Differential 2nd order Low pass filter  
Datasheet Revision 2.0  
Page 11 of 19  
NAU8220  
13 Typical Application Diagram  
Left  
Input  
Right  
Input  
R3  
R6  
C1  
C2  
RINP  
RINN  
1
2
14  
13  
LINP  
R1  
R2  
R4  
R5  
LINN  
LOUT  
3
4
12  
11  
ROUT  
GND  
2.2 nF (Cpc)  
Left Output  
2.2 nF(Cpc)  
Right Output  
33 (Rpc)  
33 (Rpc)  
1uF  
UVP  
NAU8220  
5
6
10  
9
MUTEB  
VEE  
GND  
VDD  
R11  
MUTEB  
1uF  
R12  
logic input  
CP  
8
7
CN  
Linear low  
Dropout  
Regulator  
System  
Supply  
10 uF  
1uF  
R1 = R4 = 15 KOhms  
R2 = R5 = 30 KOhms  
R3 = R6 = 10 Kohms  
C1 = C2 = 2.2 uF  
Figure 1 Single Input Amplifier Configuration  
Datasheet Revision 2.0  
Page 12 of 19  
NAU8220  
Right  
Input  
Left  
Input  
-
+
+
-
C4  
R5  
C3  
R7  
C1  
R1  
C2  
R3  
R8  
R4  
RINP  
RINN  
1
2
14  
13  
LINP  
LINN  
R6  
R2  
LOUT  
3
4
12  
11  
ROUT  
GND  
2.2 nF (Cpc)  
Right Output  
2.2 nF (Cpc)  
Left Output  
33 (Rpc)  
33 (Rpc)  
UVP  
NAU8220  
5
6
10  
9
MUTEB  
VEE  
GND  
VDD  
R11  
MUTEB Logic  
Input  
1uF  
1uF  
R12  
CP  
8
7
CN  
System  
Supply  
Linear low  
Dropout  
Regulator  
10 uF  
1uF  
R1 = R3 = R5 = R7= 15 KOhms  
R2 = R4 = R6 = R8 = 30 KOhms  
C1 = C2 = C3 = C4 = 2.2 uF  
Figure 2 Differential Input Amplifier Configuration  
Datasheet Revision 2.0  
Page 13 of 19  
NAU8220  
14 Typical Characteristics  
Test Conditions VDD = 3.3V, TA = +25°C, 1kHz signal, R1 (IN) = 15k, R2 (FB) = 30k, CP =  
1µF, RL = 10k, CPC = 2200pF, RPC= 33 Ohms unless otherwise stated.  
Total Harmonic Distortion + Noise Vs Frequency  
RL = 10k Ohms  
RL= 600 Ohms With out RPC and CPC  
0.01  
2V RMS  
0.01  
0.008  
0.006  
0.004  
0.002  
2V RMS  
1V RMS  
1V RMS  
0.008  
0.006  
0.004  
0.002  
0
0
10  
100  
1000  
Frequency (Hz)  
10000  
100000  
10  
100  
1000  
Frequency (Hz)  
10000 100000  
Total Harmonic Distortion + Noise Vs Output Voltage  
RL=10k Ohms, F = 100 Hz  
RL=600 Ohms, F= 100 Hz  
10  
1
10  
1
0.1  
0.1  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
0
1
2
3
0
1
2
3
Vout RMS (V)  
Vout RMS (V)  
Datasheet Revision 2.0  
Page 14 of 19  
NAU8220  
RL=10k Ohms, F = 1kHz  
RL=600 Ohms, F = 1kHz  
10  
1
10  
1
0.1  
0.1  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
0
1
2
3
0
1
2
3
Vout RMS (V)  
Vout RMS (V)  
RL=10k Ohms, F = 10kHz  
RL=600 Ohms, F = 10kHz  
10  
1
10  
1
0.1  
0.1  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
0
1
2
3
0
1
2
3
Vout RMS (V)  
Vout RMS (V)  
Datasheet Revision 2.0  
Page 15 of 19  
NAU8220  
Cross talk Vs Frequency  
Crosstalk  
0
-20  
Right->Left  
Left -> Right  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
10  
100  
1000  
10000  
100000  
Frequency (Hz)  
Datasheet Revision 2.0  
Page 16 of 19  
                                   
NAU8220  
15 Package Specification  
15.1 SOP-14 PACKAGE  
c
8
14  
E
H
L
7
O
D
0.25  
A
Y
SEATING PLANE  
e
GAUGE PLANE  
A1  
b
DIMENSION IN MM  
DIMENSION IN INCH  
SYMBOL  
MIN.  
1.35  
MAX.  
MIN.  
MAX.  
0.053  
0.069  
0.010  
0.020  
A
A1  
b
1.75  
0.10  
0.33  
0.19  
0.004  
0.013  
0.25  
0.51  
c
0.25  
0.008  
0.150  
0.337  
0.010  
0.157  
0.344  
3.80  
8.55  
E
D
4.00  
8.75  
e
0.050 BSC  
1.27 BSC  
6.20  
0.10  
1.27  
8
H
Y
5.80  
0.228  
0.244  
0.004  
0.40  
0
0.016  
0
0.050  
8
L
θ
Datasheet Revision 2.0  
Page 17 of 19  
NAU8220  
15.2 TSSOP-14 PACKAGE (14L 4.4X5.0 MM^2)  
Datasheet Revision 2.0  
Page 18 of 19  
NAU8220  
16 Ordering Information  
Nuvoton Part Number Description  
NAU8220_ _  
Package Material:  
Pb-free Package / Green  
G
=
Package Type:  
S
=
=
14-Pin SOP Package  
W
14-Pin TSSOP Package  
Version History  
VERSION  
DATE  
PAGE  
DESCRIPTION  
Added application circuit diagram with differential  
configuration.  
1.8  
1.9  
Feb 2012  
9
Added TSSOP package dimensions information  
1. Corrected Application circuit diagram. Changed value of  
input DC blocking capacitors to 2.2 uF.  
March 2012  
14  
6,8-  
11,12,13  
2.0  
June, 2012  
2.Added Load resistance and Load capacitance column in  
the Electrical characteristics table  
3.Added amplifier circuit and 2nd order LPF circuit  
Important Notice  
Nuvoton products are not designed, intended, authorized or warranted for use as components in systems or  
equipment intended for surgical implantation, atomic energy control instruments, airplane or spaceship  
instruments, transportation instruments, traffic signal instruments, combustion control instruments, or for  
other applications intended to support or sustain life. Furthermore, Nuvoton products are not intended for  
applications wherein failure of Nuvoton products could result or lead to a situation wherein personal injury,  
death or severe property or environmental damage could occur.  
Nuvoton customers using or selling these products for use in such applications do so at their own risk and  
agree to fully indemnify Nuvoton for any damages resulting from such improper use or sales.  
Datasheet Revision 2.0  
Page 19 of 19  

相关型号:

NAU8223

3.1W Stereo Filter-Free Class-D Audio Amplifier
NUVOTON

NAU8223WG

3.1W Stereo Filter-Free Class-D Audio Amplifier
NUVOTON

NAU8223YG

3.1W Stereo Filter-Free Class-D Audio Amplifier
NUVOTON

NAU8315

Pin Selectable Gain Setting
NUVOTON

NAU8315A31VG

Pin Selectable Gain Setting
NUVOTON

NAU8315B31VG

Pin Selectable Gain Setting
NUVOTON

NAU8315YG

Pin Selectable Gain Setting
NUVOTON

NAU8502

24-bit Stereo Audio ADC with Differential Microphone Inputs
NUVOTON

NAU8502YG

24-bit Stereo Audio ADC with Differential Microphone Inputs
NUVOTON

NAU8812

Mono Audio Codec with Speaker Driver
NUVOTON

NAU8812RG

Mono Audio Codec with Speaker Driver
NUVOTON

NAU8812YG

Mono Audio Codec with Speaker Driver
NUVOTON