NAU8315 [NUVOTON]

Pin Selectable Gain Setting;
NAU8315
型号: NAU8315
厂家: NUVOTON    NUVOTON
描述:

Pin Selectable Gain Setting

文件: 总43页 (文件大小:1051K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NAU8315 Datasheet  
Revision 1.5  
NAU8315 Datasheet Rev1.5  
Page 1 of 43  
Mar 30, 2020  
This page is intentionally left blank  
NAU8315 Datasheet Rev1.5  
Page 2 of 43  
Mar 30, 2020  
1 Contents  
1
CONTENTS.................................................................................................................................... 3  
1.1  
1.2  
List of Figures.........................................................................................................................................5  
List of Tables ..........................................................................................................................................5  
GENERAL DESCRIPTION ............................................................................................................ 6  
PIN CONFIGURATIONS................................................................................................................ 7  
PIN DESCRIPTIONS ................................................................................................................... 10  
SYSTEM DIAGRAM..................................................................................................................... 11  
Reference System Diagram..................................................................................................................11  
BLOCK DIAGRAM ....................................................................................................................... 12  
ELECTRICAL CHARACTERISTICS............................................................................................ 13  
Absolute Maximum Ratings..................................................................................................................13  
Operating Conditions............................................................................................................................13  
Electrical Parameters............................................................................................................................13  
Digital Input Parameters.......................................................................................................................15  
Typical Operating Plots.........................................................................................................................16  
FUNCTIONAL DESCRIPTION..................................................................................................... 20  
Inputs....................................................................................................................................................20  
Outputs.................................................................................................................................................21  
Digital Interfaces...................................................................................................................................22  
Power Supply .......................................................................................................................................22  
Power-On-and-Off Reset......................................................................................................................23  
Power Up & Down Sequence ...............................................................................................................23  
Clocking and Sample Rates .................................................................................................................24  
2
3
4
5
5.1  
6
7
7.1  
7.2  
7.3  
7.4  
7.5  
8
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.7.1  
Clock Control and Detection..........................................................................................................24  
Automatic Power Control and Mute...............................................................................................24  
Input Clock Rates..........................................................................................................................25  
Sample and Over Sampling Rates ................................................................................................26  
Automatic Level Control........................................................................................................................28  
ALC Operation...............................................................................................................................28  
ALC Parameter Definitions............................................................................................................28  
Device Protection .................................................................................................................................30  
Power-up and Power-Down Control .....................................................................................................30  
Bypass Capacitors................................................................................................................................30  
Printed Circuit Board Layout Considerations........................................................................................30  
8.7.2  
8.7.3  
8.7.4  
8.8  
8.8.1  
8.8.2  
8.9  
8.10  
8.11  
8.12  
8.12.1  
PCB Layout Notes.........................................................................................................................31  
8.13  
Filters....................................................................................................................................................31  
8.13.1  
Class D without Filters...................................................................................................................31  
NAU8315 Datasheet Rev1.5  
Page 3 of 43  
Mar 30, 2020  
 
8.13.2  
Class D with Filters........................................................................................................................31  
9
CONTROL.................................................................................................................................... 34  
Digital Audio Interface...........................................................................................................................34  
9.1  
9.1.1  
9.1.2  
9.2  
I2S Audio Data ..............................................................................................................................34  
PCM Time Slot Audio Data............................................................................................................34  
Digital Audio Interface Timing Diagrams...............................................................................................35  
I2S Audio Interface........................................................................................................................35  
PCM Audio ....................................................................................................................................35  
9.2.1  
9.2.2  
10  
11  
12  
PACKAGE SPECIFICATION ....................................................................................................... 38  
ORDERING INFORMATION........................................................................................................ 41  
REVISION HISTORY................................................................................................................... 42  
IMPORTANT NOTICE........................................................................................................................... 43  
NAU8315 Datasheet Rev1.5  
Page 4 of 43  
Mar 30, 2020  
1.1 List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Pin Configuration of WLCSP12 NAU8315 (TOP VIEW).......................................................................7  
Pin Configuration of WLCSP9 NAU8315 (TOP VIEW).........................................................................8  
Pin Configuration of QFN20 NAU8315.................................................................................................9  
NAU8315 Simplified System Diagram................................................................................................11  
NAU8315 Block Diagram ...................................................................................................................12  
NAU8315 Power Up & Down Sequence ............................................................................................23  
NAU8315 Clock Detection Circuit ......................................................................................................24  
PWRUPEN startup sequence. ...........................................................................................................25  
ALC Control Loop Block Diagram ......................................................................................................28  
Figure 10 NAU8315 Speaker Connections without Filter...................................................................................31  
Figure 11 NAU8315 Speaker Connections with Ferrite Bead Filters..................................................................32  
Figure 12 NAU8315 Speaker Connections with LC Filters.................................................................................32  
Figure 13 NAU8315 Speaker Connections with Low-Pass Filters......................................................................32  
Figure 14 I2S Audio Data...................................................................................................................................34  
Figure 15 PCM Time Slot Audio Data ................................................................................................................35  
Figure 16 I2S Audio Interface.............................................................................................................................35  
Figure 17 PCM Audio Interface..........................................................................................................................36  
1.2 List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Pin Descriptions for the NAU8315.......................................................................................................10  
GAIN Configurations for the NAU8315................................................................................................20  
Audio Interface Configurations for the NAU8315.................................................................................21  
Range of Input Clocks .........................................................................................................................25  
BCLK/FS ratios and Over Sampling Rates..........................................................................................26  
Ranges of Sampling Frequencies and BCLK Rates............................................................................26  
Digital Audio Interface Timing Parameter..........................................................................................36  
NAU8315 Datasheet Rev1.5  
Page 5 of 43  
Mar 30, 2020  
 
 
2 GENERAL DESCRIPTION  
The NAU8315 is a mono high efficiency filter-free Class-D audio amplifier, which is capable of driving a  
4Ω load with up to 3.2W output power. This device provides Enable control and I2S audio input with low  
standby current and fast start-up time.  
The NAU8315 is ideal for the portable applications, as it has advanced features like 80dB PSRR, 91%  
efficiency, ultra-low quiescent current and superior EMI performance. NAU8315 is available in a 12 ball  
Miniature WLCSP package, a 9 ball Miniature WLCSP package and a 20-pin QFN package.  
Key Features  
3.2W (4Ω @ 5V, 10% THD+N)  
1.76W (4Ω @ 4.2V, 1% THD+N)  
1.8W (8Ω @ 5V, 10% THD+N)  
1.0W (8Ω @ 4.2V, 1% THD+N)  
Pin Selectable Gain Setting  
Pin Selectable I2S Left or Right Channel  
selection  
Pin Selectable PCM time slot  
Low Output Noise: 12 µVRMS  
80dB PSRR @217Hz  
Low Current Shutdown and Standby Modes  
Click-and Pop Suppression: 26 µVRMS  
Sampling rate from 8K to 96 KHz  
Package: 9 or 12 ball WLCSP & 20-pin QFN  
Powerful Mono Class-D Amplifier:  
Applications  
Gaming Controllers  
Wireless (VR) Headset  
Smart Remote Controller  
Notebooks / Tablet PCs  
Personal Media Players  
Ultrasonic speakers  
NAU8315 Datasheet Rev1.5  
Page 6 of 43  
Mar 30, 2020  
 
3 PIN CONFIGURATIONS  
The NAU8315 12 Ball WLCSP package is shown in Figure 1.  
TOP VIEW  
3
1
2
VSS  
OUTN  
OUTP  
A
B
C
VDD  
GAIN  
FSL  
EN  
FSR  
VDD  
VDD  
BCLK  
DACIN  
D
Package  
Material  
Part Number  
Dimension  
Package  
12-bump  
WLCSP  
1.18mm x  
1.95mm  
NAU8315B31VG  
Green  
(0.4 mm pitch)  
Figure 1  
Pin Configuration of WLCSP12 NAU8315 (TOP VIEW)  
NAU8315 Datasheet Rev1.5  
Page 7 of 43  
Mar 30, 2020  
 
 
The NAU8315 9 Ball WLCSP package is shown in Figure 1.  
TOP VIEW  
3
1
2
VSS  
OUTN  
OUTP  
A
B
C
FSL  
FSR  
VDD  
NC  
BCLK  
DACIN  
Package  
Material  
Part Number  
Dimension  
Package  
9-bump  
WLCSP  
1.18mm x  
1.95mm  
NAU8315A31VG  
Green  
(0.4 mm pitch)  
Figure 2  
Pin Configuration of WLCSP9 NAU8315 (TOP VIEW)  
NAU8315 Datasheet Rev1.5  
Page 8 of 43  
Mar 30, 2020  
 
The NAU8315 20-pin QFN package is shown in Figure 1.  
QFN exposed thermal pad must be connected to VSS  
Package  
Material  
Part Number  
Dimension  
Package  
QFN-20  
NAU8315YG  
4mm x 4mm  
Green  
Figure 3  
Pin Configuration of QFN20 NAU8315  
NAU8315 Datasheet Rev1.5  
Page 9 of 43  
Mar 30, 2020  
 
4 PIN DESCRIPTIONS  
Pin descriptions for the NAU8315 are provided in Table 1.  
Table 1  
Pin Descriptions for the NAU8315  
12 Ball  
9 Ball**  
20-pin  
Name  
Type  
Description  
WLCSP#  
WLCSP#  
QFN* #  
D1  
C1  
B1  
A1  
B2  
C2  
D2  
A2  
C1  
B1  
NA  
A1  
B2  
NA  
NA  
A2  
9
DACIN  
FSL  
Digital Input  
Digital Input  
Analog IO  
Analog Output  
Supply  
I2S I/F DAC digital audio data  
I2S I/F Left Channel Frame clock  
Gain Selection  
8
13  
16  
2
GAIN  
OUTN  
VDD  
Speaker negative output  
Power Supply  
11  
14  
VDD  
Supply  
Power Supply  
VDD  
Supply  
Power Supply  
4,12,17,  
18,19  
VSS  
Supply  
Ground  
D3  
C3  
B3  
A3  
C3  
B3  
NA  
A3  
6
7
BCLK  
FSR  
Digital Input  
Digital Input  
Digital Input  
Analog Output  
I2S I/F bit clock  
I2S I/F Right Channel Frame clock  
Device Enable Input  
3
EN  
20  
OUTP  
Speaker positive output  
**Note: For WLCSP9 the NC ball C2 can be tied to VDD for convenient PCB layout.  
*Note: For 20 pin QFN the NC pins can be tied to VSS for convenient PCB layout.  
NAU8315 Datasheet Rev1.5  
Page 10 of 43  
Mar 30, 2020  
 
 
5 SYSTEM DIAGRAM  
5.1 Reference System Diagram  
A basic system reference diagram for stereo I2S is provided in Figure 4.  
Figure 4  
NAU8315 Simplified System Diagram  
NAU8315 Datasheet Rev1.5  
Page 11 of 43  
Mar 30, 2020  
 
 
 
6 BLOCK DIAGRAM  
A Block Diagram for the NAU8315 is provided in Figure 5.  
Talarm  
UVLO  
Bandgap  
EN  
Shutdown  
Control  
VDD  
FSL  
Digital Core Supply  
FSR  
BCLK  
Clock  
Detection  
Clock  
Doubler  
GAIN  
VDD  
ADC  
Clip  
Soft-  
unmute  
& Gain  
DACIN  
Slew  
Rate  
Control  
Interpolation  
Filter  
Class-D  
Modulator  
OUTP  
DAC  
Short  
Circuit  
Protection  
VSS  
VDD  
pseudo  
random  
Slew  
Rate  
Ramp  
OUTN  
VSS  
Control  
Analog  
Short  
Circuit  
Protection  
Digital  
Figure 5  
NAU8315 Block Diagram  
NAU8315 Datasheet Rev1.5  
Page 12 of 43  
Mar 30, 2020  
 
 
7 Electrical Characteristics  
The tables in this chapter provide the various electrical parameters for the NAU8315 and their values.  
7.1  
Absolute Maximum Ratings  
Parameter  
Min  
Max  
Units  
VDD Battery Supply Range  
Voltage Input I/O Range  
Junction Temperature, TJ  
Storage Temperature  
-0.3  
VSS - 0.3  
-40  
6.0  
VDD + 0.3  
+150  
V
V
°C  
°C  
-65  
+150  
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure  
to such conditions may adversely influence product reliability and result in failures not  
covered by the warranty.  
7.2 Operating Conditions  
Recommended Operating Conditions  
Condition  
Symbol  
Min  
Typical  
Max  
Units  
Battery Supply Range  
Digital IO Range  
VDD  
2.50  
1.8  
4.2  
5.25  
VDD  
V
Ground  
VSS  
0
V
Industrial Operating Temperature  
-40  
+85  
°C  
7.3 Electrical Parameters  
Conditions: VDD= 4.2V. RL = 8 Ω + 33 µH, f = 1kHz, 48kHz sample rate, BCLK=12.288MHz, gain=12dB, unless  
otherwise specified. Limits apply for TA = 25°C  
Symbol  
Parameter  
Conditions  
Typical  
Limit  
Units  
ISD  
ISB  
IDD  
Shutdown Supply Current  
VDD, all clocks off  
0.3  
0.3  
4.0  
16  
µA  
µA  
Standby Mode Supply Current  
Operating Mode Supply Current  
VDD, clocks off, EN=VDD  
VDD, idle Channel  
Class-D Channel  
mA  
VDD=4.2V RL = 8 Ohm + 33 µH and  
Total Harmonic Distortion+Noise  
(THD+N) = 1%, Gain=12dB, QFN-20  
0.98  
1.0  
W
W
PO  
Output Power  
VDD=4.2V RL = 8 Ohm + 33 µH and  
Total Harmonic Distortion+Noise  
(THD+N) = 1%, Gain=12dB, WLCSP-  
12  
NAU8315 Datasheet Rev1.5  
Page 13 of 43  
Mar 30, 2020  
 
 
 
 
Symbol  
Parameter  
Conditions  
Typical  
Limit  
Units  
VDD=5V RL = 8 Ohm + 33 µH and  
Total Harmonic Distortion+Noise  
(THD+N) = 10%, Gain=12dB, QFN-20  
1.73  
W
VDD=5V RL = 8 Ohm + 33 µH and  
Total Harmonic Distortion+Noise  
(THD+N) = 10%, Gain=12dB, WLCSP-  
12  
1.8  
1.69  
1.76  
3.03  
3.2  
W
W
W
W
W
VDD=4.2V RL = 4 Ohm + 33 µH and  
Total Harmonic Distortion+Noise  
(THD+N) = 1%, Gain=12dB, QFN-20  
VDD=4.2V RL = 4 Ohm + 33 µH and  
Total Harmonic Distortion+Noise  
(THD+N) = 1%, Gain=12dB, WLCSP-  
12  
VDD=5V RL = 4 Ohm + 33 µH and  
Total Harmonic Distortion+Noise  
(THD+N) = 10%, Gain=12dB, QFN-20  
VDD=5V RL = 4 Ohm + 33 µH and  
Total Harmonic Distortion+Noise  
(THD+N) = 10%, Gain=12dB, WLCSP-  
12  
Total Harmonic Distortion +  
Noise  
RL = 8 Ω + 33 µH, f=1kHz, PO = 0.15  
W, Gain=12dB  
THD+N  
eOS  
0.017  
11.8  
85  
%
µVrms  
dB  
A-Weighted, 20Hz-20kHz, no DAC  
input signal  
Output Noise  
DC, VDD = 3.2V – 4.2V, amplifier  
voltage GAIN = 6dB  
Power Supply Rejection Ratio  
(Note 1)  
fRIPPLE = 1020Hz, VRIPPLE = 100mVP_P  
amplifier voltage GAIN = 6dB  
PSRR  
82  
60  
dB  
fRIPPLE = 4kHz, VRIPPLE = 100mVP_P  
amplifier voltage GAIN = 6dB  
77  
dB  
+0.06/  
-0.06  
F = 20Hz ~ 20KHz, 1Watt, RL = 8 Ω +  
33 µH  
Fres  
VOS  
Frequency Response  
Output Offset Voltage  
dB  
Idle Channel, Gain= 6dB  
±1  
±5  
mV  
A-weighted, Idle DAC input, toggling  
clocks on/off, Gain= 6dB  
0.026  
mVrms  
Kpop  
Fsw  
Neff  
Pop and Click Noise  
Switching Frequency  
Power Efficiency  
A-weighted, Idle DAC input, toggling  
EN pin with clocks running, Gain= 6dB  
0.019  
300  
mVrms  
kHz  
Average  
400  
Class-D  
Output Power = 1.48W, VDD = 4.2 V  
91  
%
NAU8315 Datasheet Rev1.5  
Page 14 of 43  
Mar 30, 2020  
Note 1 : PSRR = 20 x LOG10(GAIN x VDD/(SPKP-SPKN)) dB  
7.4 Digital Input Parameters  
Digital Inputs FS, BCLK, DACIN & EN.  
Parameter  
Input LOW level  
Symbol  
VIL  
Comments/Conditions  
VDD = 2.5V – 5.25V  
VDD = 2.5V – 5.25V  
VDD = 2.5V – 5.25V  
Min  
Max  
Units  
V
0.4  
Input HIGH level  
VIH  
1.4*  
V
Input Leakage Current  
IIL  
-0.001  
+0.001  
mA  
Note: I2S signals can be 1.8V  
NAU8315 Datasheet Rev1.5  
Page 15 of 43  
Mar 30, 2020  
 
7.5 Typical Operating Plots  
Conditions: VDD= 4.2V. RL = 8 Ω + 33 µH, f = 1kHz, 48kHz sample rate, BCLK=12.288MHz, TA = 25°C,  
gain=12dB, unless otherwise specified.  
Normalised Frequency Response  
Normalised Frequency Response Sample  
Rate=96kHz  
1
0.5  
0
1
0.5  
0
-0.5  
-1  
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
3.7V  
4.2V  
5V  
3.7V  
4.2V  
5V  
-2.5  
-3  
-2.5  
-3  
10  
100  
1000  
10000  
100000  
10  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
THDN vs Frequency Vdd=5.0V Rl=8 Ohms  
THDN vs Frequency Vdd=5.0V Rl=4 Ohms  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100mW  
500mW  
100mW  
500mW  
10  
100  
1000  
10000  
100000  
10  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
THDN vs Frequency Vdd=4.2V Rl=8 Ohms  
THDN vs Frequency Vdd=4.2V Rl=4 Ohms  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100mW  
500mW  
100mW  
500mW  
10  
100  
1000  
10000  
100000  
10  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
Conditions: VDD= 4.2V. RL = 8 Ω + 33 µH, f = 1kHz, 48kHz sample rate, BCLK=12.288MHz, TA = 25°C,  
gain=12dB, unless otherwise specified.  
NAU8315 Datasheet Rev1.5  
Page 16 of 43  
Mar 30, 2020  
 
THDN vs Frequency Vdd=3.7V Rl=8 Ohms  
THDN vs Frequency Vdd=3.7V Rl=4 Ohms  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100mW  
500mW  
100mW  
500mW  
10  
100  
1000  
10000  
100000  
10  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
QFN package  
QFN package  
THDN vs Output Power Vdd=5.0V Rl=8 Ohms  
THDN vs Output Power Vdd=5.0V Rl=4 Ohms  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100Hz  
100Hz  
1kHz  
6kHz  
1kHz  
6kHz  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Power (W)  
Output Power (W)  
QFN package  
QFN package  
THDN vs Output Power Vdd=4.2V Rl=8 Ohms  
THDN vs Output Power Vdd=4.2V Rl=4 Ohms  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100Hz  
100Hz  
1kHz  
6kHz  
1kHz  
6kHz  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Power (W)  
Output Power (W)  
Conditions: VDD= 4.2V. RL = 8 Ω + 33 µH, f = 1kHz, 48kHz sample rate, BCLK=12.288MHz, TA = 25°C,  
gain=12dB, unless otherwise specified.  
NAU8315 Datasheet Rev1.5  
Page 17 of 43  
Mar 30, 2020  
QFN package  
QFN package  
THDN vs Output Power Vdd=3.7V Rl=8 Ohms  
THDN vs Output Power Vdd=3.7V Rl=4 Ohms  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Power (W)  
Output Power (W)  
QFN package  
QFN package  
Efficiency vs Output Power Rl=8 Ohms  
Efficiency vs Output Power Rl=4 Ohms  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3V7  
4V2  
5V0  
3V7  
4V2  
5V0  
0
0.5  
1
1.5  
2
0
1
2
3
4
Output Power (W)  
Output Power (W)  
WLCSP package  
WLCSP package  
THDN vs Output Power 5.0V 8 Ohms  
THDN vs Output Power 5.0V Rl=4 Ohms  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Power (W)  
Output Power (W)  
Conditions: VDD= 4.2V. RL = 8 Ω + 33 µH, f = 1kHz, 48kHz sample rate, BCLK=12.288MHz, TA = 25°C,  
gain=12dB, unless otherwise specified.  
NAU8315 Datasheet Rev1.5  
Page 18 of 43  
Mar 30, 2020  
WLCSP package  
WLCSP package  
THDN vs Output Power 4.2V Rl=8 Ohms  
THDN vs Output Power 4.2V Rl=4 Ohms  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Power (W)  
Output Power (W)  
WLCSP package  
WLCSP package  
THDN vs Output Power 3.7V Rl=8 Ohms  
THDN vs Output Power 3.7V Rl=4 Ohms  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
100Hz  
1kHz  
6kHz  
100Hz  
1kHz  
6kHz  
0.001  
0.01  
0.1  
1
10  
0.001  
0.01  
0.1  
1
10  
Output Power (W)  
Output Power (W)  
WLCSP package  
WLCSP package  
Efficiency vs Output Power Rl=8 Ohms  
Efficiency vs Output Power Rl=4 Ohms  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3V7  
4V2  
5V0  
3V7  
4V2  
5V0  
0
0.5  
1
1.5  
2
0
1
2
3
4
Output Power (W)  
Output Power (W)  
NAU8315 Datasheet Rev1.5  
Page 19 of 43  
Mar 30, 2020  
8 FUNCTIONAL DESCRIPTION  
This chapter provides detailed descriptions of the major functions of the NAU8315 Amplifier.  
8.1 Inputs  
The NAU8315 provides digital inputs to acquire and process audio signals with high fidelity and flexibility.  
The audio input path is from an I2S/PCM Interface, using the FSL, FSR, BCLK & DACIN pins.  
The device is enabled by setting the EN pin high and disabled by setting EN to 0V. The EN, FSL, FSR,  
BCLK & DACIN pins all have a low input threshold voltage to allow for operation from a host with low IO  
supply voltage.  
The GAIN input pin is a special input pin which essentially is an ADC input. The ADC tied to this pin has  
5 decision levels and can therefore select 5 modes of operation each.  
The GAIN input pin can be configured as shown in the table below. The GAIN set represents the signal  
voltage gain of the differential DAC outputs to the differential modulator outputs or speaker outputs. The  
differential DAC full scale reference is 1.8Vpk. Note that on the 9-Ball WLCSP package the gain is set  
to 12dB fixed.  
Table 2  
GAIN Configurations for the NAU8315  
-6dBFs  
GAIN (dB)  
MODE  
Gain Mode #  
Output  
(Vpk)  
GAIN Pin Configuration  
1
2
3
4
9
3
2.535  
1.265  
3.595  
3.595  
GAIN pin tied to VSS  
GAIN pin tied to VSS through 100 kOhm +/- 5% resistor  
GAIN pin tied to VDD  
12  
Max. 12  
GAIN pin tied to VDD through 100 kOhm +/- 5% resistor  
CLIP ALC  
(no clipping)  
1.795  
5
6
GAIN pin floating  
The GAIN input ADC converts the input levels set by the external pin configuration and internal voltage  
dividers into a digital representation that sets the internal GAIN mode. There are a total of 5 modes  
having different gains as shown above. Gain mode 4 also enables the CLIP detection ALC, which then  
allows the gain to be reduced automatically as the supply voltage decreases.  
The FSR & FSL input pins are used to set the I2S and PCM interface modes. The table below shows  
the modes supported.  
NAU8315 Datasheet Rev1.5  
Page 20 of 43  
Mar 30, 2020  
 
 
 
Table 3  
Interface  
Audio Interface Configurations for the NAU8315  
FSL Pin Configuration  
Interface  
Mode #  
FSR Pin Configuration  
MODE  
1
2
Power Down or Standby  
tied to VDD or VSS  
tied to VDD or VSS  
tied to VDD or VSS  
Left Channel I2S  
Right Channel I2S  
I2S (L+R)/2  
Toggling with valid BCLK/FSL ratio  
and FSL is high for more than 2 BCLK  
rising edges  
3
4
tied to VDD or VSS  
Toggling with valid BCLK/FSR ratio  
and FSL is high for more than 2 BCLK  
rising edges  
Toggling with valid BCLK/FSL ratio  
Toggling with valid BCLK/FSR ratio  
and FSL is high for more than 2 BCLK and FSL is high for more than 2 BCLK  
rising edges. FSL & FSR signals are  
the same.  
rising edges. FSL & FSR signals are  
the same.  
5
6
7
8
9
16 bit PCM Timeslot 0  
16 bit PCM Timeslot 1  
16 bit PCM Timeslot 2  
16 bit PCM Timeslot 3  
Toggling with valid BCLK/FSL ratio  
and FSL is high for less than 2 BCLK  
rising edges  
tied to VSS  
tied to VSS  
Toggling with valid BCLK/FSL ratio  
and FSL is high for less than 2 BCLK  
rising edges  
Toggling with valid BCLK/FSL ratio  
and FSL is high for less than 2 BCLK  
rising edges  
tied to VDD  
tied to VDD  
Toggling with valid BCLK/FSL ratio  
and FSL is high for less than 2 BCLK  
rising edges  
16 bit PCM  
(Timeslot0+Timeslot1)/2  
Toggling with valid BCLK/FSL ratio  
and FSL is high for less than 2 BCLK  
rising edges. FSL & FSR signals are  
the same.  
Toggling with valid BCLK/FSL ratio  
and FSL is high for less than 2 BCLK  
rising edges. FSL & FSR signals are  
the same.  
I2S data is 24-bit by default. For the PCM Timeslot interface modes the host can also sent 24 bit or 32  
bit data. However, only the 16 MSB bits will be used to process the audio in this mode.  
Internal mask options can be used to select other timeslots or 24-bit data or 32-bit PCM data upon  
special request.  
8.2 Outputs  
The NAU8315 Mono Class-D PWM Amplifier has a gain range from 3dB to 12dB, and is powered by a  
separate power supply VDD, which can go up to 5V. This amplifier is capable of delivering up to 3.2W  
into a 4Ω load with a 5V supply.  
NAU8315 Datasheet Rev1.5  
Page 21 of 43  
Mar 30, 2020  
 
 
8.3 Digital Interfaces  
Audio data is passed to the device through a serial data interface compatible with industry standard I2S  
and PCM devices, using the FSL, FSR, BCLK & DACIN pins. The NAU8315 has no serial interface for  
control input. Operating modes are defined by the external pin configurations.  
8.4 Power Supply  
This NAU8315 has been designed to operate reliably under a wide range of power supply conditions  
and Power-On/Power-Off sequences. However, the Electro Static Detection (ESD) protection diodes  
between the supplies and the IO pins impact the application of the supplies.  
NAU8315 Datasheet Rev1.5  
Page 22 of 43  
Mar 30, 2020  
 
 
8.5 Power-On-and-Off Reset  
The NAU8315 includes a Power-On-and-Off Reset circuit on-chip. The circuit resets the internal logic  
control at VDD supply power-up and this reset function is automatically generated internally when power  
supply is too low for reliable operation. Typical reset thresholds are 1.88 V for VDD during a power-on  
ramp, and 1.61 V for VDD during a power-down ramp. It should be noted that these values are much  
lower than the required voltage for normal operation of the chip.  
The reset is held ON while the power level for VDD is below the threshold. Once the power level rises  
above the threshold, the reset is released. Once the reset is released, the device will respond to control  
from external inputs.  
An additional internal RC filter-based circuit is added which helps the circuit to respond for fast ramp  
rates (~3 µsec) and to generate the desired reset period width (~3 µsec at typical corner). This filter is  
also used to eliminate supply glitches which can generate a false reset condition, typically 50 nsec.  
In addition setting the enable pin ‘EN’ low will reset the internal logic.  
8.6 Power Up & Down Sequence  
A diagram of the typical power up sequence is shown in the figure below. At first, the power supply is  
ramped up.  
VDD  
EN  
FS,BCLK,DACIN  
2048 DACIN zeros  
recommended  
MUTE  
ENABLED  
OFF  
OUTP,OUTN  
status  
Soft  
UnMUTE  
OFF  
Figure 6  
NAU8315 Power Up & Down Sequence  
Once the supply is powered up, the enable pin ‘EN’ can be set high in order to set the device in  
standby state. Note that the ‘EN’ pin can also ramp up the same time as the supply voltage. During the  
standby state the outputs OUTN & OUTP are still off. After enabling VDD & EN ,the BCLK detection  
circuit is activated. External clocks and data can be applied right away if needed. Once the FS & BCLK  
are applied the clock detection module will validate the BCLK/FS ratio and set the internal clock  
dividers. When a valid BCLK/FS ratio is detected and the clock dividers are set, a 4 millisecond mute  
period is enabled during which all circuits are powered up and the DAC digital volume control is in the  
muted state. The mute period is followed by a soft-unmute, which gradually increases the DAC digital  
volume to full scale. After this event the signal path is fully active and the outputs are fully enabled. At  
the end of playback it is recommended to add 2048 zero samples to the DACIN input for a pop-less  
shutdown. When either one or both of the FS & BCLK clocks is stopped the clock detection circuit will  
power down the device. The detection time depends on the clock frequency used, but is approximately  
50usec. Once detected, the output drivers will shut down.  
NAU8315 Datasheet Rev1.5  
Page 23 of 43  
Mar 30, 2020  
 
 
 
8.7 Clocking and Sample Rates  
The internal clocks for the NAU8315 are derived from the external BCLK clock source. This master  
system clock can set directly by the BCLK input or it can be generated from a clock multiplier using the  
BCLK as a reference.  
8.7.1 Clock Control and Detection  
The NAU8315 includes a Clock Detection circuit that is used to enable and disable the audio paths. The  
actual power up/down is gated by the clock detection circuit. The block diagram of the clock detection  
circuit is shown in Figure 7.  
BCLK  
BCLKDET  
DETECTION  
1/N1  
50 %  
DUTYCYCLE  
x N2  
Clock  
Multiplier  
1,2,4,8x  
Delay  
MCLKSEL  
Multiplexer  
MCLK_SRC  
PWRUPEN  
FSL  
FSR  
BCLK  
BCLK/FS  
Detection  
I2SPCM  
Mode  
Detection  
CHANNEL  
CLOCK  
DETECTION  
EN  
Figure 7  
NAU8315 Clock Detection Circuit  
Clock Detection by the NAU8315 uses the BCLK FSL, FSR and EN to control the internal PWRUPEN  
signal and set the clock divider ratios.  
8.7.2 Automatic Power Control and Mute.  
Clock detection and automatic power control in the NAU8315 is enabled by meeting two conditions,  
depending on the configuration. If all conditions are met, the PWRUPEN signal will be asserted to 1. If  
any of the conditions are not met, the PWRUPEN signal is set to 0.  
The conditions for generating the PWRUPEN signal are:  
NAU8315 Datasheet Rev1.5  
Page 24 of 43  
Mar 30, 2020  
 
 
 
 
1) The NAU8315 has custom logic clock detection circuits that detect if BCLK is present. Upon  
BCLK detection, the detector output BCLKDET goes to 1. When the BCLK disappears,  
BCLKDET goes back to 0. Up to 1 µsec is required to detect BCLK and the BCLK release time  
is about 50 µsec.  
2) The clock detection logic also needs to detect the ratio BCLK /FS of 32, 50, 64, 100, 125, 128,  
200, 250, 256, 400, 500.  
The PWRUPEN signal is capable of controlling all the analog power consuming blocks.  
A Mode Detection circuit also determines one of the I2S/PCM operating mode and channel (as shown  
in Table 3) once a valid BCLK/FS ratio is detected.  
When PWRUPEN goes high an internal sequence is triggered to bring up analog functions. This includes  
an analog MUTE to allow stabilization of internal analog blocks, followed by a soft unmute of the DAC.  
The analog MUTE time is 4ms. The soft unmute then ramps the gain 512 MCLK_SRC periods per gain  
step. For the 512 setting, the soft unmute takes 256 * 512 * Tmclk_src seconds to reach 0dB (10ms for  
12.288MHz MCLK_SRC). This ensures pop free startup of the amplifier. An example of this startup is  
shown in figure below.  
Figure 8  
PWRUPEN startup sequence.  
Before reaching the DAC the incoming PCM signal is processed by a digital signal path. To ensure  
complete flushing and transient free audio of this path it is recommended that 2048 zero samples are  
sent to the device before stopping clocks. The DAC soft unmute function is also beneficial for eliminating  
any audio transients from audio path  
8.7.3 Input Clock Rates  
The range of the input clocks is shown in Table 4.  
Table 4  
Range of Input Clocks  
NAU8315 Datasheet Rev1.5  
Page 25 of 43  
Mar 30, 2020  
 
 
 
Signal  
Min  
8
Max  
96  
Frame Synch (FS) (kHz)  
Bit Clock BCLK (MHz)  
1.4112  
24.576  
8.7.4 Sample and Over Sampling Rates  
Possible BCLK/FS ratios are shown in Table 5 and Table 6. Table 4 shows the relation between the  
BCLK/FS ratio and the internal OSR and MCLK_SRC/FS ratio. The divider and multiplier N1 & N2 are  
set accordingly by the clock detection logic. Table 5 shows the possible FS & BCLK ranges for each  
BCLK/FS ratio.  
Table 5  
BCLK/FS ratios and Over Sampling Rates  
Lower  
BCLK/FS Decision  
Upper  
Decision  
N1  
N2  
MCLK_SRC/FS  
OSR  
ratio  
Threshold Threshold  
32  
50  
64  
31  
49  
63  
33  
51  
65  
1
1
2
2
2
2
2
2
1
1
1
8
8
8
8
8
4
4
4
1
1
1
256  
400  
256  
400  
500  
256  
400  
500  
256  
400  
500  
64  
100  
64  
100  
100  
64  
100  
100  
64  
100  
100  
100  
125  
128  
200  
250  
256  
400  
500  
99  
101  
126  
129  
201  
251  
257  
401  
501  
124  
127  
199  
249  
255  
399  
499  
Table 6  
Ranges of Sampling Frequencies and BCLK Rates  
BCLK/FS  
Ratio  
FS (kHz)  
Min Max  
BCLK (MHz)  
Min Max  
NAU8315 Datasheet Rev1.5  
Page 26 of 43  
Mar 30, 2020  
 
 
 
32  
44.1  
32  
44.1  
32  
24  
24  
16  
12  
8
96  
48  
96  
48  
48  
96  
48  
48  
96  
48  
48  
1.4112  
1.600  
2.8224  
3.200  
3.000  
3.072  
3.200  
3.000  
2.048  
3.200  
4.000  
3.072  
2.400  
50  
64  
6.144  
100  
125  
128  
200  
250  
256  
400  
500  
4.800  
6.000  
12.288  
9.600  
12.000  
24.576  
19.200  
24.000  
8
8
The MCLK_SRC frequency is defined as:  
F_MCLK_SRC = N2 x F_BCLK / N1  
For BCLK/FS ratios of 32 & 50 a low jitter BCLK source with accurate duty cycle must be used.  
NAU8315 Datasheet Rev1.5  
Page 27 of 43  
Mar 30, 2020  
8.8 Automatic Level Control  
The digital Automatic Level Control (ALC) function supports the DAC digital audio path of the NAU8315.  
It can be enabled as by setting the GAIN pin to 12dB gain with ALC. This function can be used to manage  
the gain to optimize the signal level at the output of the Class-D Amplifier by automatically amplifying  
input signals that are too small or automatically decreasing the amplitude signals that are too loud. The  
ALC is designed such that it adjusts the output level in order to prevent clipping. This may be use-full in  
battery operated applications, where the battery supply voltage decreases as the battery discharges. At  
lower supply voltages the outputs will more likely clip at higher output levels. In such case, the ALC  
would decrease the output level just below the clipping level and maintain high quality sound as well as  
decreasing the peak power drain from the battery.  
The Figure below illustrates the relationship of the ALC to other major functions of the NAU8315.  
Digital  
Programmable Gain  
VDDSPK  
Amplifier  
Class-D  
Modulator  
From  
DACIN  
DAC  
NuvoClip  
Detection  
ALC  
Control  
CLIP  
AND  
ALCEN  
Figure 9  
ALC Control Loop Block Diagram  
8.8.1 ALC Operation  
A clip detection signal is provided by the clip detection circuit as soon as the input signal is clipping at  
its peak levels. The ALC block then ramps down the gain at the pre-programmed ALC Attack Time  
rate. This continues until the clipping detection no longer detects a clipping signal or until the  
maximum gain decrement per clipping event is reached. When the clipping is no longer occurring, the  
ALC gain is held for the hold time. The ALC gain is then ramped up to the target following the pre-  
programmed ALC Release Time rate  
8.8.2 ALC Parameter Definitions  
ALC Minimum Gain (ALCMIN): This sets the minimum allowed gain during all modes of ALC  
operation. This is useful to keep the ALC operating range close to the desired range for a given  
application scenario.  
ALC Attack Time (ALCATK): Attack time refers to how quickly a system responds to a clipping event.  
Typically, attack time is much faster than decay time.  
NAU8315 Datasheet Rev1.5  
Page 28 of 43  
Mar 30, 2020  
 
 
 
 
ALC Decay Time (ALCDCY): Decay time refers to how quickly a system responds after the hold time.  
Typically, decay time is much slower than attack time. When no more clipping events occur, the  
gain will increase at a rate determined by this parameter.  
ALC Hold Time (ALCHLD): Hold time refers to the duration of time when no action is taken. This is  
typically to avoid undesirable sounds that can happen when an ALC responds too quickly to a  
changing input signal. In the NAU8315, the hold time value is the duration from the last clipping  
event before there is an actual gain increase during the decay time.  
CLIP_GAINADJUST sets the maximum gain decrease per clipping event. During a clipping even the  
gain decreases by 0.250dB (1-1/64) per attack time step until the clipping event no longer occurs  
or the maximum gain reduction limit set in CLIP_GAINADJUST has been reached or the ALC  
Minimum Gain is reached.  
NAU8315 Datasheet Rev1.5  
Page 29 of 43  
Mar 30, 2020  
8.9  
Device Protection  
The NAU8315 includes the following types of device protection:  
Over Current Protection (OCP)  
Under Voltage Lock Out (UVLO)  
Over Temperature Protection (OTP)  
Clock Termination Protection (CTP)  
Over Current Protection is provided in the NAU8315. If a short circuit is detected on any of the pull-up  
or pull-down devices on the output drivers for at least 14µs, the output drivers will be disabled for 100ms.  
The output drivers will then be re-enabled and checked for a short circuit again. If the short circuit is  
still present for another 14µs, the cycle will repeat until the short circuit has been fixed. The short circuit  
threshold is set at 2.1A.  
Under Voltage Lock Out (UVLO) provides Supply Under Voltage Protection in the NAU8315 If the  
VDD drops under 2.1V, the output drivers are disabled, however, the NAU8315 control circuitry will still  
operate. This is useful to help avoid the battery supply voltage dropping before the host processor can  
safely shutdown the devices on the system. If the VDD drops below 1.61V, the internal power-on-  
reset will activate and put the class-D driver in power down state.  
Over Temperature Protection (OTP) is provided in the event of thermal overload. When the device  
internal junction temperature reaches 143°C, the NAU8315 will disable the output drivers. Once the  
device cools down to a safe operating temperature (123°C) for at least 100us, the output drivers will  
be re-enabled.  
Clock Termination Protection (CTP) is provided in the NAU8315. If the FS and/or BCLK clock stops  
running, the NAU8315 automatically shuts down the Class-D driver and therefore prevents DC voltages  
to remain at the outputs.  
8.10 Power-up and Power-Down Control  
When the supply voltage ramps up, the internal power on reset circuit is triggered. At this time, all internal  
circuits will be set to the power-down state. The device can be enabled by setting EN to VDD and starting  
the clocks. Upon starting the clocks, the device will go through an internal power-up sequence in order  
to minimize ‘pops’ on the speaker output. The complete power-up sequence requires about 14 msec.  
The device will typically power down in about 22 µsec, when the clocks are stopped.  
NOTE: It is important to keep the input signal at zero amplitude or enable the mute condition in order  
to minimize ‘pops’ when the clocks are stopped.  
8.11 Bypass Capacitors  
Bypass capacitors are required to remove the AC ripple on the VDD pins. The value of these  
capacitors depends on the length of the VDD trace. In most cases, 2 x 4.7 µF and 0.1 µF are sufficient  
to achieve good performance.  
8.12 Printed Circuit Board Layout Considerations  
Good Printed Circuit Board (PCB) layout and grounding techniques are essential to achieve good audio  
performance. It is better to use low-resistance traces as these devices are driving low impedance loads.  
The resistance of the traces has a significant effect on the output power delivered to the load. In order  
to dissipate more heat, use wide traces for the power and ground lines.  
NAU8315 Datasheet Rev1.5  
Page 30 of 43  
Mar 30, 2020  
 
 
 
 
8.12.1 PCB Layout Notes  
The Class-D Amplifier is a high power switching circuits that can cause Electro Magnetic Interference  
(EMI) when poorly connected. Therefore, care must be taken to design the PCB eliminate Electro  
Magnetic Interference (EMI), reduce IR drops, and maximize heat dissipation.  
The following notes are provided to assist product design and enhance product performance:  
Use a VSS plane, preferably on both sides, to shield clocks and reduce EMI  
Maximize the copper to the VSS pins and have solid connections to the plane  
Planes on VDD are optional  
The VDD connection needs to be a solid piece of copper  
Use thick copper options on the supply layers if cost permits  
Keep the speaker connections short and thick. Do not use VIAs  
Use a small speaker connector like a wire terminal block (Phoenix Contact)  
For better heat dissipation, use VIAs to conduct heat to the other side of the PCB  
Do not use VIA’s to connect OUTP & OUTN. Use a direct top layer copper connection to the pins.  
Thick copper is preferred.  
Use large or multiple parallel VIAs to decoupling capacitors when connecting to a ground plane  
The digital IO lines can be shielded between power planes  
8.13 Filters  
The NAU8315 is designed for use without any filter on the output line. However, the NAU8315 may be  
used with or without various types of filters, depending on the needs of the application.  
8.13.1 Class D without Filters  
The NAU8315 is designed for use without any filter on the output line. That means the outputs can be  
directly connected to the speaker in the simplest configuration. This type of filter-less design is suitable  
for portable applications where the speaker is very close to the amplifier. In other words, this is preferable  
in applications where the length of the traces between the speaker and amplifier is short. Figure 10  
illustrates this simple configuration.  
SPKP  
SPKN  
Figure 10  
NAU8315 Speaker Connections without Filter  
8.13.2 Class D with Filters  
In some applications, shorter trace lengths are not possible because of speaker size limitations and  
other layout reasons. In these applications, long traces will cause EMI issues. Several types of filter  
circuits are available to reduce the EMI effects. These are Ferrite Bead Filters, LC filters, Low-Pass LCR  
Filters, and High-Pass Filters.  
Ferrite Bead Filters are used to reduce high-frequency emissions. The characteristic of a Ferrite Bead  
Filter is such that it offers higher impedance at high frequencies. For better EMI performance, select a  
Ferrite Bead Filter which offers the highest impedance at high frequencies, so that it will attenuate the  
signals at higher frequencies. The typical circuit diagram using a Ferrite Bead Filter for each output to  
the speaker is shown Figure 11.  
NAU8315 Datasheet Rev1.5  
Page 31 of 43  
Mar 30, 2020  
 
 
 
 
 
NOTE: Usually, the ferrite beads have low impedance in the audio range, so they will act as pass-  
through filters in the audio frequency range.  
Ferrite Bead  
VOUTP  
1nF  
Ferrite Bead  
VOUTN  
1 nF  
Figure 11  
NAU8315 Speaker Connections with Ferrite Bead Filters  
LC Filters are used to suppress low-frequency emissions. The diagram in Figure 12 shows the  
NAU8315 outputs connected to the speaker with an LC Filter circuit. RL is the resistance of the speaker  
coil.  
VOUTP  
VOUTN  
L
RL  
C
L
C
Figure 12  
NAU8315 Speaker Connections with LC Filters  
Low-Pass LCR Filters may also be useful in some applications where long traces or wires to the  
speakers are used. Figure 13 shows the speaker connections using standard Low-Pass LCR Filters.  
L
Output  
Input  
R
C
Figure 13  
NAU8315 Speaker Connections with Low-Pass Filters  
The following equations apply for critically damped (ζ = 0.707) standard Low-Pass LCR Filters:  
NAU8315 Datasheet Rev1.5  
Page 32 of 43  
Mar 30, 2020  
 
 
 
1
2ꢀꢁꢂ  
=
ꢁꢂ is the cut-off frequency  
(
)
√ ꢃꢄ  
1
= 0.707 =  
∗ √  
2ꢆ  
NOTE: The L and C values for differential configuration can be calculated by duplicating the single-  
ended configuration values and substituting RL = 2R.  
NAU8315 Datasheet Rev1.5  
Page 33 of 43  
Mar 30, 2020  
9 Control  
The NAU8315 Audio Interface is set to default I2S and PCM time slot modes as described in the  
FSL & FSR operating mode table. Other modes may be feasible through metal mask option changes  
upon special request.  
9.1 Digital Audio Interface  
The NAU8315 is an I2S or PCM Timeslot slave device. In I2S Slave Mode, an external controller  
supplies BCLK (bit clock) and the frame synchronization or FS signal. Data is latched on the rising edge  
of BCLK.  
The NAU8315 reads 24 bit I2S data on DACIN. For the BCLK/FS rate of 32, only the 16 MSB bits are  
read.  
9.1.1 I2S Audio Data  
In I2S Mode, the MSB is clocked on the second BCLK rising edge after the FS transitions. When FS is  
LOW, Left Channel data is received; when FS is HIGH, Right Channel data is received. This can be  
seen in Figure 14.  
FS  
LEFT CHANNEL  
RIGHT CHANNEL  
BCLK  
1
DATA  
N-1  
0
N-1  
1
0
MSB  
LSB  
MSB  
LSB  
Figure 14  
I2S Audio Data  
9.1.2 PCM Time Slot Audio Data  
PCM Time Slot Mode is used to delay the time at which the DAC data is clocked into the device. This  
can be useful when multiple NAU8315 chips or other devices share the same audio bus. This will allow  
the audio from the chips to be delayed around each other without interference.  
Normally, the DAC data is clocked immediately after the Frame Sync (FS); however, in PCM Time Slot  
Mode, the audio data can be delayed. These delays can be seen before the MSB in Figure 15.  
NAU8315 Datasheet Rev1.5  
Page 34 of 43  
Mar 30, 2020  
 
 
 
 
 
CHANNEL 2 7  
FS  
CHANNEL 0  
CHANNEL 1  
BCLK  
DATA  
N-1 N-2  
MSB  
0
N-1 N-2  
MSB  
1
0
1
N-1 N-2  
MSB  
1
0
LSB  
LSB  
LSB  
Figure 15  
PCM Time Slot Audio Data  
9.2 Digital Audio Interface Timing Diagrams  
9.2.1 I2S Audio Interface  
TBCK  
TRISE  
TFALL  
BCLK  
(Slave)  
TFSH  
TBCKH  
TFSH  
TBCKL  
TFSS  
TFSS  
FS  
(Slave)  
TDIS  
TDIH  
DACIN  
TDOD  
ADCOUT  
Figure 16  
I2S Audio Interface  
9.2.2 PCM Audio  
NAU8315 Datasheet Rev1.5  
Page 35 of 43  
Mar 30, 2020  
 
 
 
 
 
Figure 17  
PCM Audio Interface  
Table 7  
Digital Audio Interface Timing Parameter  
BCLK=3.072MHz, Fs=48KHz, 64Bit, VDD 2.5 -5.25V, Room Temperature  
Description  
Symbol  
Min  
35  
Typ  
---  
Max  
Unit  
ns  
BCLK Cycle Time (Slave Mode)  
TBCK  
---  
---  
---  
---  
---  
BCLK High Pulse Width (Slave Mode)  
BCLK Low Pulse Width (Slave Mode)  
TBCKH  
TBCKL  
20  
50  
20  
40  
---  
---  
15  
15  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Fs to CLK Rising Edge Setup Time (Slave Mode) TFSS  
BCLK Rising Edge to Fs Hold Time (Slave Mode) TFSH  
Rise Time for All Audio Interface Signals  
Fall Time for All Audio Interface Signals  
ADCIN to BCLK Rising Edge Setup Time  
BCLK Rising Edge to DACIN Hold Time  
Delay Time from SCLK Falling Edge to ADCOUT  
TRISE  
TFALL  
TDIS  
TBD  
TBD  
---  
TDIH  
---  
TDOD  
TBD  
NAU8315 Datasheet Rev1.5  
Page 36 of 43  
Mar 30, 2020  
 
 
NAU8315 Datasheet Rev1.5  
Page 37 of 43  
Mar 30, 2020  
10 Package Specification  
The NAU8315 Mono Class-D Amplifier is available in a small, 20 pin QFN package, using 0.5 mm  
pitch, as shown below.  
TOP VI EW  
BOTTOM VI EW  
15  
11  
11  
15  
10  
10  
16  
16  
20  
20  
6
6
1
5
5
1
NAU8315 20 pin QFN Package Specification  
NAU8315 Datasheet Rev1.5  
Page 38 of 43  
Mar 30, 2020  
 
The NAU8315 Mono Class-D Amplifier is also available in a small, 12 Ball WLCSP package, using 0.4  
mm pitch, as shown below.  
NAU8315 12 Ball WLCSP Package Specification  
NAU8315 Datasheet Rev1.5  
Page 39 of 43  
Mar 30, 2020  
The NAU8315 Mono Class-D Amplifier is also available in a small, 9 Ball WLCSP package, using 0.4  
mm pitch, as shown below.  
NAU8315 9 Ball WLCSP Package Specification  
NAU8315 Datasheet Rev1.5  
Page 40 of 43  
Mar 30, 2020  
11 Ordering Information  
Part Number  
Dimension  
Package  
Package Material  
4mm x 4mm  
NAU8315YG  
NAU8315A31VG  
NAU8315B31VG  
QFN-20  
Green  
Green  
Green  
1.95mm x 1.18mm  
1.95mm x 1.18mm  
9 Ball WLCSP  
12 Ball WLCSP  
NAU8315 _ _  
Package Material:  
Pb-free Package  
G
=
Package Type:  
Y
=
20-Pin QFN Package  
WLCSP-9 Package  
WLCSP-12 Package  
A31V =  
B31V =  
NAU8315 Datasheet Rev1.5  
Page 41 of 43  
Mar 30, 2020  
 
12 Revision History  
Version  
Description  
#
Date  
Page(s)  
1.0  
Sept 23, 2019  
Preliminary  
Draft 1  
1.1  
Sept 23, 2019  
Updated WLCSP 9 pinout and package drawing  
Preliminary  
Draft 1  
1.2  
Updated VIL & VIH conditions. Add WLCSP & QFN20 charts and  
WLCSP parameters  
Oct 25, 2019  
Jan 29, 200  
Preliminary  
Draft 1  
1.3  
Preliminary  
Move electrical characteristic section  
1.4  
Part number change  
Feb 18,2020  
Preliminary  
P.15  
Adding more information for I2S  
1.5  
March 30, 2020  
Added Section 9.2  
NAU8315 Datasheet Rev1.5  
Page 42 of 43  
Mar 30, 2020  
 
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types  
of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims  
to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and  
liabilities thus incurred by Nuvoton.  
NAU8315 Datasheet Rev1.5  
Page 43 of 43  
Mar 30, 2020  
 

相关型号:

NAU8315A31VG

Pin Selectable Gain Setting
NUVOTON

NAU8315B31VG

Pin Selectable Gain Setting
NUVOTON

NAU8315YG

Pin Selectable Gain Setting
NUVOTON

NAU8502

24-bit Stereo Audio ADC with Differential Microphone Inputs
NUVOTON

NAU8502YG

24-bit Stereo Audio ADC with Differential Microphone Inputs
NUVOTON

NAU8812

Mono Audio Codec with Speaker Driver
NUVOTON

NAU8812RG

Mono Audio Codec with Speaker Driver
NUVOTON

NAU8812YG

Mono Audio Codec with Speaker Driver
NUVOTON

NAU8820YG TR

IC AUDIO CODEC STEREO 32QFN
ETC

NAU88C22

24-bit Stereo Audio Codec with Speaker Driver
NUVOTON

NAU88C22IG

24-bit Stereo Audio Codec with Speaker Driver
NUVOTON

NAU88C22YG

24-bit Stereo Audio Codec with Speaker Driver
NUVOTON