NAU8812RG [NUVOTON]

Mono Audio Codec with Speaker Driver;
NAU8812RG
型号: NAU8812RG
厂家: NUVOTON    NUVOTON
描述:

Mono Audio Codec with Speaker Driver

文件: 总110页 (文件大小:2692K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NAU8812  
Mono Audio Codec with Speaker Driver  
emPowerAudio™  
1. GENERAL DESCRIPTION  
The NAU8812 is a cost effective and low power wideband MONO audio CODEC. It is designed for voice  
telephony related applications. Functions include Automatic Level Control (ALC) with noise gate, PGA, standard  
audio interface I2S, PCM with time slot assignment, and on-chip PLL. The device provides one differential  
microphone input and one single ended auxiliary input (multi purpose). There are few variable gain control stages  
in the audio path. It also includes MONO line output and integrated BTL speaker driver.  
The analog inputs have PGA on the front end, allowing dynamic range optimization with a wide range of input  
sources. The microphone amplifiers have a programmable gain from -12dB to +35.25dB to handle both amplified  
microphones. In addition to a digital high pass filter to remove DC offset voltages, the ADC also features voice  
band digital filtering. Voice-band data is accepted by the audio interface (I2S). The DAC converter path includes  
filtering and mixing, programmable-gain amplifiers (PGA), and soft muting. The digital interfaces, 2-Wire or SPI,  
have independent supply voltage to allow integration into multiple supply systems. The NAU8812 operates at  
supply voltages from 2.5V to 3.6V, although the digital core can operate at voltage as low as 1.71V to save power.  
The NAU8812 is specified for operation from -40°C to +85°C. AEC-Q100 & TS16949 compliant device is  
available upon request.  
2. FEATURES  
24-bit signal processing linear Audio CODEC  
Audio DAC: 93dB SNR and -84dB THD  
Audio ADC: 91dB SNR and -79dB THD  
Support variable sample rates from 8 - 48kHz  
Integrated BTL Speaker Driver 800mW (8Ω / 5V)  
Integrated Headset Driver 40mW (16Ω / 3.3V)  
Analog I/O  
Integrated programmable Microphone Amplifier  
Integrated Line Input and Line Output  
Earphone / Speaker / Line Output selection  
Microphone / Line Inputs selection  
Low Noise bias supplied for microphone  
On-chip PLL  
Interfaces  
I2S digital interface PCM time slot assignment  
SPI & 2-Wire serial control Interface (I2C style; Read/Write capable)  
Low Power, Low Voltage  
Analog Supply: 2.5V to 3.6V  
Digital Supply: 1.71V to 3.6V  
Nominal Operating Voltage: 3.3V  
Additional features  
Programmable ALC  
ADC Notch Filter  
Programmable High Pass Filter  
Digital A/D-D/A Passthrough  
AEC-Q100 & TS16949 compliant device available upon request  
Industrial temperature: range: 40C to +85C  
Applications  
VoIP Telephones]  
Conference speaker-phone  
emPowerAudio™  
Datasheet Revision 2.8  
Page 1 of 110  
June 2016  
 
 
NAU8812  
IP PBX  
Mobile Telephone Hands-free Kits  
Residential & Consumer Intercoms  
Line Driver  
AUX  
ADC Filter  
AUX  
Input  
Mixers  
Output  
Mixers  
DAC Filter  
BTL  
Speaker  
Driver  
Volume  
Control  
Volume  
Control  
Microphone  
Interface  
&
&
ADC  
DAC  
MIC-  
HPF  
Gain  
Stage  
Speaker  
Volume  
SPK+  
SPK-  
Limiter  
MIC+  
Notch Filter  
-1  
PLL  
Micophone  
Bias  
MICBIAS  
Digital Audio Interface  
I2S  
Serial Control Interface  
2-wire SPI  
GPIO  
PCM  
CSb/GPIO  
Audio I/O  
Digital I/O  
emPowerAudio™  
Datasheet Revision 2.8  
Page 2 of 110  
June 2016  
NAU8812  
PIN CONFIGURATION  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
VREF  
MIC -  
AUX  
VDDSPK  
3
MIC +  
MICBIAS  
NC  
VDDSPK  
SPKOUT -  
VSSSPK  
VSSSPK  
SPKOUT +  
MOUT  
4
5
6
VDDA  
VSSA  
VSSA  
VDDC  
VDDB  
VSSD  
ADCOUT  
DACIN  
FS  
NAU8812  
MONO AUDIO  
CODEC  
7
8
SSOP 28-Pin  
9
MODE  
10  
11  
12  
13  
14  
SDIO  
SCLK  
CSb/GPIO  
MCLK  
BCLK  
Figure 1: 28-Pin SSOP Package  
VSSSPK  
NC  
VDDA  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VSSSPK  
VSSA  
VSSA  
SPKOUT +  
MOUT  
NAU8812  
MONO AUDIO  
CODEC  
NC  
VDDL  
VDDC  
QFN 32-Pin  
MODE  
SO  
VDDB  
VSSD  
SDIO  
Figure 2: 32-Pin QFN Package  
emPowerAudio™  
Datasheet Revision 2.8  
Page 3 of 110  
June 2016  
 
 
 
NAU8812  
3. PIN DESCRIPTION  
Pin Name  
VREF  
28-Pin  
1
32-Pin  
29  
30  
31  
32  
1
Functionality  
Decoupling internal analog mid supply reference  
Microphone Negative Input  
Microphone Positive Input  
Microphone Bias  
A/D  
A
Pin Type  
O
I
MIC-  
2
A
MIC+  
3
A
I
MICBIAS  
NC  
4
A
O
5
No Connect  
VDDA  
VSSA  
6
2
Analog Supply  
A
A
A
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
I
O
O
O
I
7
3
Analog Ground  
VSSA  
8
4
Analog Ground  
Logic supply voltage. This pin should not be  
VDDL  
-
5
connected up to an external supply  
VDDC  
VDDB  
VSSD  
9
6
Digital Supply Core  
10  
11  
-
7
Digital Supply Buffer  
Digital Ground  
I
8
O
O
O
I
VSSD  
9
Digital Ground  
ADCOUT  
DACIN  
FS  
12  
13  
14  
15  
16  
17  
18  
19  
-
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Digital Audio Data Output  
Digital Audio Data Input  
Frame Sync  
I/O  
I/O  
I
BCLK  
Bit Clock  
MCLK  
CSb/GPIO  
SCLK  
Master Clock  
SPI Chip Select or General Purposes 1 I/O  
SPI or 2-Wire Serial Clock  
SPI Data In or 2-Wire I/O  
SPI Data Output  
I/O  
I
SDIO  
O
O
I
SO  
MODE  
NC  
20  
-
Interface Select (2-Wire or SPI)  
No Connect  
MOUT  
SPKOUT+  
VSSSPK  
VSSSPK  
SPKOUT-  
VDDSPK  
VDDSPK  
AUX  
21  
22  
23  
24  
25  
26  
27  
28  
MONO Output  
A
A
A
A
A
A
A
A
O
O
O
O
O
I
Speaker Positive Output  
Speaker Ground  
Speaker Ground  
Speaker Negative Output  
Speaker Supply  
Speaker Supply  
I
Auxiliary Input  
I
Table 1: Pin Description for SSOP and QFN Packages  
Notes  
1. The 32-QFN package includes a bulk ground connection pad on the underside of the chip. This bulk ground  
should be thermally tied to the PCB, and electrically tied to the analog ground.  
2. Unused analog input pins should be left as no-connection.  
3. Under all condition when digital pins are not used they should be tied to ground.  
4. Pins designated as NC (Not Internally Connected) should be left as no-connection  
emPowerAudio™  
Datasheet Revision 2.8  
Page 4 of 110  
June 2016  
 
 
NAU8812  
4. BLOCK DIAGRAM  
VSSSPK  
VSSSPK  
VDDSPK  
DACIN  
BCLK  
FS  
VDDSPK  
VSSA  
VSSA  
VSSD  
VDDA  
VDDB  
ADCOUT  
SO  
SCLK  
SDIO  
MODE  
VDDC  
NC  
CSb/GPIO  
MCLK  
Figure 3: NAU8812 General Block Diagram  
emPowerAudio™  
Datasheet Revision 2.8  
Page 5 of 110  
June 2016  
 
 
NAU8812  
5. Table of Contents  
1.  
GENERAL DESCRIPTION..................................................................................................................................1  
2.  
FEATURES .........................................................................................................................................................1  
PIN CONFIGURATION .......................................................................................................................................3  
PIN DESCRIPTION.............................................................................................................................................4  
BLOCK DIAGRAM...............................................................................................................................................5  
TABLE OF CONTENTS ......................................................................................................................................6  
LIST OF FIGURES............................................................................................................................................10  
LIST OF TABLES..............................................................................................................................................12  
ABSOLUTE MAXIMUM RATINGS ....................................................................................................................13  
OPERATING CONDITIONS..............................................................................................................................13  
ELECTRICAL CHARACTERISTICS..................................................................................................................14  
FUNCTIONAL DESCRIPTION..........................................................................................................................17  
12.1. INPUT PATH..............................................................................................................................................17  
12.1.1. The Single Ended Auxiliary Input (AUX) .............................................................................................17  
12.1.2. The differential microphone input (MIC- & MIC+ pins) ........................................................................19  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
10.  
11.  
12.  
12.1.2.1. Positive Microphone Input (MIC+)...............................................................................................20  
12.1.2.2. Negative Microphone Input (MIC-)..............................................................................................20  
12.1.2.3. PGA Gain Control.......................................................................................................................21  
12.1.3. PGA Boost Stage................................................................................................................................21  
12.2. MICROPHONE BIASING...........................................................................................................................23  
12.3. ADC DIGITAL FILTER BLOCK ..................................................................................................................25  
12.3.1. Programmable High Pass Filter (HPF)................................................................................................26  
12.3.2. Programmable Notch Filter (NF) .........................................................................................................26  
12.3.3. Digital ADC Gain Control.....................................................................................................................27  
12.4. PROGRAMMABLE GAIN AMPLIFIER (PGA) ............................................................................................27  
12.4.1. Automatic level control (ALC)..............................................................................................................27  
12.4.1.1. Normal Mode ..............................................................................................................................30  
12.4.1.2. ALC Hold Time (Normal mode Only) ..........................................................................................30  
12.4.2. Peak Limiter Mode ..............................................................................................................................31  
12.4.3. Attack Time .........................................................................................................................................32  
12.4.4. Decay Times .......................................................................................................................................32  
12.4.5. Noise gate (normal mode only) ...........................................................................................................32  
12.4.6. Zero Crossing......................................................................................................................................33  
12.5. DAC DIGITAL FILTER BLOCK ..................................................................................................................34  
12.5.4. Hi-Fi DAC De-Emphasis and Gain Control..........................................................................................35  
12.5.5. Digital DAC Output Peak Limiter.........................................................................................................36  
12.5.6. Volume Boost......................................................................................................................................36  
12.6. ANALOG OUTPUTS ..................................................................................................................................37  
12.6.1. Speaker Mixer Outputs .......................................................................................................................37  
12.6.2. MONO Mixer Output ...........................................................................................................................38  
12.6.3. Unused Analog I/O..............................................................................................................................39  
12.7. GENERAL PURPOSE I/O..........................................................................................................................40  
12.7.1. Slow Timer Clock ................................................................................................................................41  
12.7.2. Jack Detect .........................................................................................................................................41  
emPowerAudio™  
Datasheet Revision 2.8  
Page 6 of 110  
June 2016  
 
NAU8812  
12.7.3. Thermal Shutdown..............................................................................................................................42  
12.8. CLOCK GENERATION BLOCK .................................................................................................................43  
12.9. CONTROL INTERFACE ............................................................................................................................47  
12.9.1. SPI Serial Control................................................................................................................................47  
12.9.1.1. 16-bit Write Operation (default)...................................................................................................48  
12.9.1.2. 24-bit Write Operation.................................................................................................................48  
12.9.1.3. 32-bit Read Operation.................................................................................................................49  
12.9.2. 2-WIRE Serial Control Mode (I2C Style Interface)...............................................................................49  
12.9.2.1. 2-WIRE Protocol Convention......................................................................................................50  
12.9.2.2. 2-WIRE Write Operation .............................................................................................................50  
12.9.2.3. 2-WIRE Read Operation.............................................................................................................51  
12.10. DIGITAL AUDIO INTERFACES .................................................................................................................52  
12.10.1. Right Justified audio data....................................................................................................................53  
12.10.2. Left Justified audio data ......................................................................................................................54  
12.10.3. I2S audio data......................................................................................................................................55  
12.10.4. PCM audio data ..................................................................................................................................56  
12.10.5. PCM Time Slot audio data ..................................................................................................................57  
12.10.6. Companding........................................................................................................................................58  
12.11. POWER SUPPLY.......................................................................................................................................59  
12.11.1. Power-On Reset..................................................................................................................................59  
12.11.2. Power Related Software Considerations.............................................................................................59  
12.11.3. Software Reset....................................................................................................................................60  
12.11.4. Power Up/Down Sequencing ..............................................................................................................60  
12.11.5. Reference Impedance (REFIMP) and Analog Bias.............................................................................61  
12.11.6. Power Saving......................................................................................................................................61  
12.11.7. Estimated Supply Currents..................................................................................................................62  
REGISTER DESCRIPTION...............................................................................................................................63  
13.1. SOFTWARE RESET..................................................................................................................................65  
13.2. POWER MANAGEMENT REGISTERS .....................................................................................................65  
13.2.1. Power Management 1.........................................................................................................................65  
13.2.2. Power Management 2.........................................................................................................................66  
13.2.3. Power Management 3.........................................................................................................................66  
13.3. AUDIO CONTROL REGISTERS................................................................................................................66  
13.3.1. Audio Interface Control .......................................................................................................................66  
13.3.2. Audio Interface Companding Control ..................................................................................................67  
13.3.3. Clock Control Register ........................................................................................................................68  
13.3.4. Audio Sample Rate Control Register ..................................................................................................69  
13.3.5. GPIO Control Register ........................................................................................................................70  
13.3.6. DAC Control Register..........................................................................................................................70  
13.3.7. DAC Gain Control Register .................................................................................................................71  
13.3.8. ADC Control Register..........................................................................................................................71  
13.3.9. ADC Gain Control Register .................................................................................................................72  
13.4. DIGITAL TO ANALOG CONVERTER (DAC) LIMITER REGISTERS ........................................................73  
13.5. NOTCH FILTER REGISTERS....................................................................................................................74  
13.6. AUTOMATIC LEVEL CONTROL REGISTER ............................................................................................75  
13.6.1. ALC1 REGISTER................................................................................................................................75  
13.6.2. ALC2 REGISTER................................................................................................................................76  
13.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 7 of 110  
June 2016  
NAU8812  
13.6.3. ALC3 REGISTER................................................................................................................................77  
13.7. NOISE GAIN CONTROL REGISTER.........................................................................................................78  
13.8. PHASE LOCK LOOP (PLL) REGISTERS..................................................................................................79  
13.8.1. PLL Control Registers.........................................................................................................................79  
13.8.2. Phase Lock Loop Control (PLL) Registers ..........................................................................................79  
13.9. INPUT, OUTPUT, AND MIXERS CONTROL REGISTER..........................................................................80  
13.9.1. Attenuation Control Register ...............................................................................................................80  
13.9.2. Input Signal Control Register ..............................................................................................................80  
13.9.3. PGA Gain Control Register .................................................................................................................81  
13.9.4. ADC Boost Control Registers..............................................................................................................82  
13.9.5. Output Register...................................................................................................................................82  
13.9.6. Speaker Mixer Control Register ..........................................................................................................83  
13.9.7. Speaker Gain Control Register ...........................................................................................................83  
13.9.8. MONO Mixer Control Register ............................................................................................................84  
13.9.9. Trimming Register...............................................................................................................................84  
13.10. PCM TIME SLOT CONTROL & ADCOUT IMPEDANCE OPTION CONTROL ..........................................85  
13.10.1. PCM1 TIMESLOT CONTROL REGISTER..........................................................................................85  
13.10.2. PCM2 TIMESLOT CONTROL REGISTER..........................................................................................85  
13.11. REGISTER ID (READ ONLY) ....................................................................................................................86  
13.11.1. Device revision register.......................................................................................................................86  
13.11.2. 2-WIRE ID Register (READ ONLY).....................................................................................................86  
13.11.3. Additional ID (READ ONLY)................................................................................................................86  
13.12. Reserved....................................................................................................................................................87  
13.13. OUTPUT Driver Control Register ...............................................................................................................87  
13.14. AUTOMATIC LEVEL CONTROL ENHANCED REGISTER .......................................................................88  
13.14.1. ALC1 Enhanced Register....................................................................................................................88  
13.14.2. ALC Enhanced 2 Register...................................................................................................................88  
13.15. MISC CONTROL REGISTER.....................................................................................................................89  
13.16. Output Tie-Off REGISTER .........................................................................................................................90  
13.17. ALC PEAK-TO-PEAK READOUT REGISTER ...........................................................................................90  
13.18. ALC PEAK READOUT REGISTER............................................................................................................90  
13.19. AUTOMUTE CONTROL AND STATUS READ REGISTER.......................................................................91  
13.20. Output Tie-off Direct Manual Control REGISTER.......................................................................................91  
CONTROL INTERFACE TIMING DIAGRAM ....................................................................................................92  
14.1. SPI WRITE TIMING DIAGRAM..................................................................................................................92  
14.2. SPI READ TIMING DIAGRAM ...................................................................................................................92  
14.3. 2-WIRE TIMING DIAGRAM........................................................................................................................94  
AUDIO INTERFACE TIMING DIAGRAM...........................................................................................................95  
15.1. AUDIO INTERFACE IN SLAVE MODE......................................................................................................95  
15.2. AUDIO INTERFACE IN MASTER MODE ..................................................................................................95  
15.3. PCM AUDIO INTERFACE IN SLAVE MODE (PCM Audo Data)................................................................96  
15.4. PCM AUDIO INTERFACE IN MASTER MODE (PCM Audo Data) ............................................................96  
15.5. PCM AUDIO INTERFACE IN SLAVE MODE (PCM Time Slot Mode ).......................................................97  
15.6. PCM AUDIO INTERFACE IN MASTER MODE (PCM Time Slot Mode ) ...................................................97  
14.  
15.  
15.7.  
System Clock (MCLK) Timing Diagram...............................................................................................98  
15.8. µ-LAW ENCODE DECODE CHARACTERISTICS.....................................................................................99  
15.9. A-LAW ENCODE DECODE CHARACTERISTICS...................................................................................100  
15.10. µ-LAW / A-LAW CODES FOR ZERO AND FULL SCALE........................................................................101  
emPowerAudio™  
Datasheet Revision 2.8  
Page 8 of 110  
June 2016  
NAU8812  
15.11. µ-LAW / A-LAW OUTPUT CODES (DIGITAL MW)..................................................................................101  
16.  
17.  
18.  
DIGITAL FILTER CHARACTERISTICS ..........................................................................................................102  
TYPICAL APPLICATION.................................................................................................................................104  
PACKAGE SPECIFICATION...........................................................................................................................106  
18.1. 28 Pin SSOP32-Pin QFN .........................................................................................................................106  
18.1. 32-Pin QFN ..............................................................................................................................................107  
ORDERING INFORMATION...........................................................................................................................108  
VERSION HISTORY .......................................................................................................................................109  
19.  
20.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 9 of 110  
June 2016  
NAU8812  
6. List of Figures  
Figure 1: 28-Pin SSOP Package...................................................................................................................................3  
Figure 2: 32-Pin QFN Package .....................................................................................................................................3  
Figure 3: NAU8812 General Block Diagram..................................................................................................................5  
Figure 4: Auxiliary Input Circuit Block Diagram with AUXM[3] = 0...............................................................................18  
Figure 5: Auxiliary Input Circuit Block Diagram with AUXM[3] = 1...............................................................................18  
Figure 6: Input PGA Circuit Block Diagram .................................................................................................................19  
Figure 7: Boost Stage Block Diagram .........................................................................................................................21  
Figure 8: Microphone Bias Schematic.........................................................................................................................23  
Figure 9: ADC Digital Filter Path Block Diagram.........................................................................................................25  
Figure 10: ALC Block Diagram....................................................................................................................................28  
Figure 11: ALC Response Graph................................................................................................................................28  
Figure 12: ALC Normal Mode Operation.....................................................................................................................30  
Figure 13: ALC Hold Time...........................................................................................................................................31  
Figure 14: ALC Limiter Mode Operations....................................................................................................................31  
Figure 15: ALC Operation with Noise Gate disabled...................................................................................................32  
Figure 16: ALC Operation with Noise Gate Enabled...................................................................................................33  
Figure 17: DAC Digital Filter Path ...............................................................................................................................34  
Figure 18: DAC Digital Limiter Control ........................................................................................................................36  
Figure 19: Speaker and MONO Analogue Outputs.....................................................................................................37  
Figure 20: Tie-off Options for the Speaker and MONO output Pins ............................................................................39  
Figure 21: PLL and Clock Select Circuit......................................................................................................................43  
Figure 22: Register write operation using a 16-bit SPI Interface .................................................................................48  
Figure 23: Register Write operation using a 24-bit SPI Interface ................................................................................49  
Figure 24: Register Read operation through a 32-bit SPI Interface.............................................................................49  
Figure 25: Valid START Condition ..............................................................................................................................50  
Figure 26: Valid Acknowledge.....................................................................................................................................50  
Figure 27: Valid STOP Condition ................................................................................................................................50  
Figure 28: Slave Address Byte, Control Address Byte, and Data Byte .......................................................................50  
Figure 29: Byte Write Sequence .................................................................................................................................51  
Figure 30: 2-Wire Read Sequence..............................................................................................................................51  
Figure 31: Right Justified Audio Interface (Normal Mode)...........................................................................................53  
Figure 32: Right Justified Audio Interface (Special mode) ..........................................................................................53  
Figure 33: Left Justified Audio Interface (Normal Mode).............................................................................................54  
Figure 34: Left Justified Audio Interface (Special mode).............................................................................................54  
Figure 35: I2S Audio Interface (Normal Mode)............................................................................................................55  
Figure 36: I2S Audio Interface (Special mode)............................................................................................................55  
Figure 37: PCM Mode Audio Interface (Normal Mode) ...............................................................................................56  
emPowerAudio™  
Datasheet Revision 2.8  
Page 10 of 110  
June 2016  
NAU8812  
Figure 38: PCM Mode Audio Interface (Special mode)...............................................................................................56  
Figure 39: PCM Time Slot Mode (Time slot = 0) (Normal Mode) ................................................................................57  
Figure 40: PCM Time Slot Mode (Time slot = 0) (Special mode) ................................................................................57  
Figure 41: The Programmable ADCOUT Pin ..............................................................................................................85  
Figure 42: SPI Write Timing Diagram..........................................................................................................................92  
Figure 43: SPI Read Timing Diagram .........................................................................................................................92  
Figure 44: 2-Wire Timing Diagram ..............................................................................................................................94  
Figure 45: Audio Interface Slave Mode Timing Diagram.............................................................................................95  
Figure 46: Audio Interface in Master Mode Timing Diagram .......................................................................................95  
Figure 47: PCM Audio Interface Slave Mode Timing Diagram....................................................................................96  
Figure 48: PCM Audio Interface Slave Mode Timing Diagram....................................................................................96  
Figure 49: PCM Audio Interface Slave Mode (PCM Time Slot Mode )Timing Diagram..............................................97  
Figure 50: PCM Audio Interface Master Mode (PCM Time Slot Mode )Timing Diagram.............................................97  
Figure 51: MCLK Timing Diagram...............................................................................................................................98  
Figure 52: DAC Filter Frequency Response..............................................................................................................103  
Figure 53: ADC Filter Frequency Response..............................................................................................................103  
Figure 54: DAC Filter Ripple .....................................................................................................................................103  
Figure 55: ADC Filter Ripple .....................................................................................................................................103  
Figure 56: Application Diagram 28-Pin SSOP...........................................................................................................104  
Figure 57: Application Diagram for 32-Pin QFN........................................................................................................105  
emPowerAudio™  
Datasheet Revision 2.8  
Page 11 of 110  
June 2016  
NAU8812  
7. List of Tables  
Table 1: Pin Description for SSOP and QFN Packages................................................................................................4  
Table 2: Register associated with Input PGA Contro ..................................................................................................19  
Table 3: Microphone Non-Inverting Input Impedances.................................................................................................20  
Table 4: Microphone Inverting Input Impedances .......................................................................................................20  
Table 5: Registers associated with ALC and Input PGA Gain Control ........................................................................21  
Table 6: Registers associated with PGA Boost Stage Control ....................................................................................22  
Table 7: Register associated with Microphone Bias....................................................................................................23  
Table 8: Microphone Bias Voltage Control..................................................................................................................24  
Table 9: Register associated with ADC.......................................................................................................................25  
Table 10: High Pass Filter Cut-off Frequencies (HPFAM=1).......................................................................................26  
Table 11: Registers associated with Notch Filter Function..........................................................................................26  
Table 12: Equations to Calculate Notch Filter Coefficients..........................................................................................27  
Table 13: Register associated with ADC Gain ............................................................................................................27  
Table 14: Registers associated with ALC Control .......................................................................................................29  
Table 15: ALC Maximum and Minimum Gain Values..................................................................................................29  
Table 16: Registers associated with DAC Gain Control..............................................................................................34  
Table 17: Speaker Output Controls.............................................................................................................................38  
Table 18: MONO Output Controls...............................................................................................................................38  
Table 19: General Purpose Control.............................................................................................................................41  
Table 20: Jack Insert Detect mode..............................................................................................................................41  
Table 21: Jack Insert Detect controls..........................................................................................................................42  
Table 22: Thermal Shutdown ......................................................................................................................................42  
Table 23: Registers associated with PLL ....................................................................................................................44  
Table 24: Registers associated with PLL ....................................................................................................................45  
Table 25: PLL Frequency Examples ...........................................................................................................................46  
Table 26: Control Interface Selection..........................................................................................................................47  
Table 27: Standard Interface modes...........................................................................................................................52  
Table 28: Audio Interface Control Registers................................................................................................................52  
Table 29: Companding Control ...................................................................................................................................58  
Table 30: Power up sequence.....................................................................................................................................61  
Table 31: Power down Sequence ...............................................................................................................................61  
Table 32: Registers associated with Power Saving.....................................................................................................62  
Table 33: VDDA 3.3V Supply Current .........................................................................................................................62  
Table 34: SPI Timing Parameters ...............................................................................................................................93  
Table 35: 2-WireTiming Parameters ...........................................................................................................................94  
Table 36: Audio Interface Timing Parameters.............................................................................................................98  
Table 37: MCLK Timing Parameter.............................................................................................................................98  
emPowerAudio™  
Datasheet Revision 2.8  
Page 12 of 110  
June 2016  
NAU8812  
8. ABSOLUTE MAXIMUM RATINGS  
CONDITION  
VDDB, VDDC, VDDA supply voltages  
VDDSPK supply voltage (MOUT=0, SPKBST=0)  
VDDSPK supply voltage (MOUTBST=1, SPKBST=1)  
Core Digital Input Voltage range  
MIN  
-0.3  
MAX  
+3.63  
Units  
V
V
-0.3  
+3.63  
-0.3  
+5.50  
V
VSSD 0.3  
VSSD 0.3  
VSSA 0.3  
-40  
VDDC + 0.30  
VDDB + 0.30  
VDDA + 0.30  
+85  
V
Buffer Digital Input Voltage range  
Analog Input Voltage range  
V
V
Industrial operating temperature  
0C  
0C  
Storage temperature range  
-65  
+150  
CAUTION: Do not operate at or near the maximum ratings listed for extended period of time. Exposure to such  
conditions may adversely influence product reliability and result in failures not covered by warranty. These  
devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
9. OPERATING CONDITIONS  
Typical  
Value  
Condition  
Analogue supplies range  
Digital supply range (Buffer)  
Digital supply range (Core)  
Speaker supply  
Symbol  
VDDA  
Min Value  
2.501  
Max Value  
3.60  
Units  
V
VDDB  
1.712  
3.60  
V
VDDC  
1.712  
3.60  
V
VDDSPK  
2.50  
5.50  
V
VSSD, VSSA,  
VSSSPK  
Ground  
0
V
Note:  
1. VDDA must be ≥ VDDC.  
2. VDDB must be ≥ VDDC.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 13 of 110  
June 2016  
NAU8812  
10. ELECTRICAL CHARACTERISTICS  
VDDC = 1.8V, VDDA = VDDB = VDDSPK = 3.3V (VDDSPK = 1.5*VDDA when Boost), TA = +25oC, 1kHz signal,  
fs = 48kHz, 24-bit audio data unless otherwise stated.  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Analogue to Digital Converter (ADC)  
PGABST = 0dB  
1.0  
0
VRMS  
dBV  
dB  
Full scale input signal 1  
VINFS  
PGAGAIN = 0dB  
Signal to Noise Ratio 2  
Total Harmonic Distortion 3  
SNR  
THD  
Gain = 0dB, A-weighted  
Input = -1dBFS, Gain = 0dB  
87  
91  
-79  
-65  
dB  
Digital to Analogue Converter (DAC) to MONO output (all data measured with 10kΩ / 50pF load)  
1.0x  
(VREF  
MOUTBST=0  
Full Scale output signal 1  
)
VRMS  
1.5 x  
VREF  
MOUTBST=1  
A-weighted (ADC/DAC oversampling rate  
of 128)  
Signal to Noise Ratio 2  
SNR  
THD  
90  
93  
dB  
dB  
Total Harmonic Distortion 3  
RL = 10 kΩ; -1.0dBfs  
-84  
-70  
Auxiliary Analogue Input (AUX)  
1
0
VRMS  
dBV  
Full-scale Input Signal Level1  
VINFS  
Gain = 0dB  
AUXM=0  
Input Resistance  
Input Capacitance  
RAUX  
CAUX  
20  
kΩ  
10  
pF  
Microphone Inputs (MICN & MICP) and MIC Input Programmable Gain Amplifier (PGA)  
PGABST = 0dB  
1
0
VRMS  
dBV  
dB  
Full-scale Input Signal Level 1  
VINFS  
PGAGAIN = 0dB  
Programmable input PGA gain  
Programmable Gain Step Size  
-12  
35.25  
Guaranteed monotonic  
PGABST = 0  
0.75  
0
dB  
dB  
dB  
µV  
Programmable Boost PGA  
gain  
PGABST = 1  
20  
Mute Attenuation  
100  
0 to 20kHz,  
PGA equivalent output noise  
110  
Gain set to 35.25dB  
PGA Gain = 35.25dB  
kΩ  
kΩ  
kΩ  
1.6  
47  
75  
Auxiliary Input resistance  
RAUX  
PGA Gain = 0dB  
PGA Gain = -12dB  
Positive Microphone Input  
resistance  
kΩ  
RMIC+  
CMIC  
PMICPGA = 1  
94  
10  
Input Capacitance  
pF  
Speaker Output PGA  
Programmable Gain  
dB  
dB  
-57  
6
Programmable Gain Step Size  
Guaranteed monotonic  
1
VDDC = 1.8V, VDDA = VDDB = VDDSPK = 3.3V (VDDSPK = 1.5*VDDA when Boost), TA = +25oC, 1kHz signal,  
fs = 48kHz, 24-bit audio data unless otherwise stated.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 14 of 110  
June 2016  
NAU8812  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VRMS  
BTL Speaker Output (SPKOUT+, SPKOUT- with 8bridge tied load)  
SPKBST = 0  
VDDSPK = VDDA  
SPKBST = 1  
VDDSPK = 1.5 * VDDA  
VDDA / 3.3  
Full scale output 7  
(VDDA / 3.3) * 1.5  
Output power is very closely correlated with THD;  
Output Power  
PO  
see below  
VDDSPK = 3.3V  
RL = 8Ω  
90  
90  
dB  
dB  
Signal to Noise Ratio  
SNR  
VDDSPK = 1.5*VDDA  
RL = 8Ω  
PO  
=180mW  
-63  
-56  
-60  
-61  
dB  
dB  
dB  
dB  
VDDSPK=3.3V  
PO  
=400mW  
RL =  
8Ω  
PO  
=360mW  
Total Harmonic Distortion  
THD  
VDDSPK =  
1.5*VDDA  
PO  
=800mW  
PO =1W  
-34  
50  
dB  
dB  
dB  
Power Supply Rejection Ratio  
(50Hz - 22kHz)  
VDDSPK = 3V, SPKBST = 0  
PSRR  
VDDSPK = 1.5*VDDA, SPKBST = 1  
50  
Headphone’ output (SPKOUTP, SPKOUTN with resistive load to ground)  
Full scale output 7  
VDDA / 3.3  
90  
VRMS  
dB  
Signal to Noise Ratio  
Total Harmonic Distortion  
Microphone Bias  
A-weighted  
Po = 20mW  
SNR  
THD  
RL=16  
-84  
-85  
dB  
dB  
VDDSPK=3.3V  
RL=32  
Po = 20mW  
0.9*  
VDD  
A
(MICBIASV = 0)  
(MICBIASV = 1)  
V
V
Bias Voltage  
VMICBIAS  
0.65*  
VDD  
A
Bias Current Source  
Output Noise Voltage  
IMICBIAS  
3
mA  
MICBIASM = 0  
(1kHz to 20kHz)  
MICBIASM = 1  
(1kHz to 20kHz)  
14  
nV/√Hz  
VN  
4
nV/√Hz  
Automatic Level Control (ALC)/Limiter ADC only  
Target Record Level  
-28.5  
-12  
-6  
dB  
Programmable Gain  
35.25  
dB  
dB  
0.75  
Programmable Gain Step Size  
Gain Hold Time 4, 6  
Guaranteed Monotonic  
MCLK=12.288MHz  
0 / 2.67 / …/ 43691  
(time doubles with  
each step)  
tHOLD  
ms  
emPowerAudio™  
Datasheet Revision 2.8  
Page 15 of 110  
June 2016  
NAU8812  
VDDC = 1.8V, VDDA = VDDB = VDDSPK = 3.3V (VDDSPK = 1.5*VDDA when Boost), TA = +25oC, 1kHz signal,  
fs = 48kHz, 24-bit audio data unless otherwise stated.  
PARAMETER  
Automatic Level Control (ALC)/Limiter ADC only  
ALC Mode  
ALCM=0  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
3.3 / 6.6 / 13.1 / … /  
3360 (time doubles every  
step)  
ms  
ms  
Gain Ramp-Up (Decay) Time 5,  
MCLK=12.288MHz  
Limiter Mode  
ALCM=1  
tDCY  
6
0.73 / 1.45 / 2.91 / … /  
744 (time doubles every  
step)  
MCLK=12.288MHz  
ALC Mode  
0.83 / 1.66 / 3.33 / … /  
852 (time doubles every  
step)  
ALCM=0  
ms  
ms  
MCLK=12.288MHz  
Limiter Mode  
ALCM=1  
Gain Ramp-Down (Attack)  
Time 5, 6  
tATK  
0.18 / 0.36 / 0.73 / … /  
186 (time doubles every  
step)  
MCLK=12.288MHz  
Digital Input / Output  
0.7 ×  
VDDB  
0.3 ×  
Input HIGH Level  
VIH  
VIL  
V
V
V
V
Input LOW Level  
Output HIGH Level  
Output LOW Level  
VDDB  
0.9 ×  
VOH  
VOL  
IOL = 1mA  
VDDB  
0.1 x  
IOH = -1mA  
VDDB  
Notes  
1. Full Scale is relative to VDDA (FS = VDDA/3.3.). Input level to AUX is limited to a maximum of -3dB so that  
THD+N performance will not be reduced.  
2. Signal-to-noise ratio (dB) - SNR is a measure of the difference in level between the full-scale output and the  
output with no signal applied. (No Auto-zero or Automute function is employed in achieving these results).  
3. THD+N (dB) - THD+N are a ratio, of the rms values, of (Noise + Distortion)/Signal.  
4. Hold Time is the length of time between a signal detected being too quiet and beginning to ramp up the gain.  
It does not apply to ramping down the gain when the signal is too loud, which happens without a delay.  
5. Ramp-up and Ramp-Down times are defined as the time it takes to change the PGA gain by 6dB of its gain  
range.  
6. All hold, ramp-up and ramp-down times scale proportionally with MCLK  
7. The maximum output voltage can be limited by the speaker power supply. If MOUTBST or SPKBST is, set  
then VDDSPK should be 1.5xVDDA to prevent clipping taking place in the output stage (when PGA gains are set  
to 0dB).  
emPowerAudio™  
Datasheet Revision 2.8  
Page 16 of 110  
June 2016  
NAU8812  
11. FUNCTIONAL DESCRIPTION  
The NAU8812 is a MONO Audio CODEC with very robust ADC and DAC. The device provides one single ended  
auxiliary input (AUX pin) and one differential microphone input (MIC- & MIC+ pins). The auxiliary input (AUX) can  
be configured to sum multiple signals into a single input. It has three different amplification paths with a total gain  
of up to +55.25dB. The differential input also has amplification paths similar to auxiliary input.  
The device also has an internal configurable biasing circuit for biasing the microphone, which in turn reduces  
external components. The PGA output has programmable ADC gain. An advanced Sigma Delta DAC is used  
along with digital decimation and interpolation filters to give high quality audio at sample rates from 8 kHz to 48  
kHz. The Digital Filter blocks include ADC high pass filters, and Notch filter. The device has two output mixers,  
one for MONO output and the other for the speaker output. It also has one input mixer.  
The NAU8812 has two different types of serial control interface 2-Wire and SPI for device control. 2-Wire and  
SPI are hardware selectable through MODE pin on the device. The device also supports I2S, PCM time slotting,  
Left Justified and Right Justified for audio interface.  
The device can operate as a master or slave device. It can operate with sample rates ranging from 8 kHz to 48  
kHz, depending on the values of MCLK and its prescaler. The NAU8812 includes a PLL block, where it takes the  
external clock (MCLK pin) to generate other clocks for the audio data transfer such as Bit clock (BCLK), Frame  
sync (FS), and I2S clocks. The PLL can also configure a separate programmable clock for the use in the system  
through CSb/GPIO pin. The power control registers help save power by controlling the major individual functional  
blocks of the NAU8812.  
11.1. INPUT PATH  
The NAU8812 has two different types of microphone inputs single ended and differential. Figure 3 shows the  
different paths that the input signals can take.  
All inputs are maintained at a DC bias at approximately half of the VDDA supply voltage. Connections to these  
inputs should be AC-coupled by means of DC blocking capacitors suitable for the device application.  
11.1.1. The Single Ended Auxiliary Input (AUX)  
The single ended auxiliary input (AUX) has three different paths to MONO output (MOUT).  
Directly connected to the MONO Mixer or Speaker Mixer to MOUT or SPKOUT+ and SPKOUT- respectively  
Connect through the PGA Boost Mixer which has a range of -12dB to +6dB  
Connect through both the input PGA Gain (range of -12dB to +35.25 dB) and PGA Boost Mixer (range of 0db  
or +20dB)  
emPowerAudio™  
Datasheet Revision 2.8  
Page 17 of 110  
June 2016  
NAU8812  
The last two paths above go through the ADC filters where the ALC loop controls the amplitude of the input signal.  
The device also has an internal configurable biasing circuit for biasing the microphone, reducing external  
components.  
An internal inverting operational amplifier circuit allows the auxiliary input pin to connect multiple signals for mixing.  
This can be achieved by setting AUXM[3] address (0x2C) to LOW. The combination of the 20k ohm resistors can  
vary due to process variation in the gain stage. The block can also be configured to be used as a buffer by  
setting AUXM[3] address (0x2C) to HIGH. The internal inverting circuit block can be enable/disable by setting  
AUXEN[6] address (0x01).  
AUXM[3]  
(0x2C)  
R
20k  
20k  
AUX  
Pin  
Output to  
PGA Gain  
MONO Mixer  
Speaker Mixer  
AUXM[3]  
(0x2C)  
VREF  
AUXEN[6]  
(0x01)  
Figure 4: Auxiliary Input Circuit Block Diagram with AUXM[3] = 0  
AUXM[3]  
(0x2C)  
R
R
R
20k  
20k  
AUX  
Pin  
Output to  
PGA Gain  
MONO Mixer  
Speaker Mixer  
AUXM[3]  
(0x2C)  
VREF  
AUXEN[6]  
(0x01)  
Figure 5: Auxiliary Input Circuit Block Diagram with AUXM[3] = 1  
emPowerAudio™  
Datasheet Revision 2.8  
Page 18 of 110  
June 2016  
NAU8812  
11.1.2. The differential microphone input (MIC- & MIC+ pins)  
The NAU8812 features a low-noise, high common mode rejection ratio (CMRR), differential microphone inputs  
(MIC- & MIC+ pins) which are connected to a PGA Gain stage. The differential input structure is essential in  
noisy digital systems where amplification of low-amplitude analog signals is necessary such as notebooks and  
PDAs. When properly employed, the differential input architecture offers an improved power-supply rejection ratio  
(PSRR) and higher ground noise immunity.  
PGAGAIN[5:0]  
(0x2D)  
AUXPGA[2]  
AUXPGA[2]  
(0x2C)  
(0x2C)  
From AUX  
stage  
R
R
R
NMICPGA[1]  
(0x2C)  
NMICPGA[1]  
(0x2C)  
MIC-  
R
PGAGAIN[5:0]  
(0x2D)  
PMICPGA[0]  
(0x2C)  
MIC+  
To PGA  
Boost  
-12 dB to +35.25 dB  
R
VREF  
PGAGAIN[5:0]  
(0x2D)  
Figure 6: Input PGA Circuit Block Diagram  
Bit(s)  
Addr  
Parameter  
Programmable Range  
0 = Input PGA Positive terminal to VREF  
1 = Input PGA Positive terminal to MICP  
PMICPGA[0]  
0x2C  
Positive Microphone to PGA  
Negative Microphone to  
PGA  
0 = MICN not connected to input PGA  
1 = MICN to input PGA Negative terminal.  
NMICPGA[1]  
0x2C  
Table 2: Register associated with Input PGA Contro  
emPowerAudio™  
Datasheet Revision 2.8  
Page 19 of 110  
June 2016  
NAU8812  
11.1.2.1.  
Positive Microphone Input (MIC+)  
The positive microphone input (MIC+) can be used as part of the differential input. It connects to the positive  
terminal of the PGA gain amplifier by setting PMICPGA[0] address (0x2C) to HIGH or can be connected to VREF  
by setting PMICPGA[0] address (0x2C) to LOW.  
When the associated control bit is set logic = 1, the MIC+ pin is connected to a resistor of approximately 1kΩ  
which is tied to VREF. The purpose of the tie to VREF is to reduce any pop or click sound by keeping the DC  
level of the MIC+ pin close to VREF at all times.  
Note: In single ended applications where the MIC+ input is used without using MIC-, the PGA gain values will be  
valid only if the MIC- pin is terminated to a low impedance signal point. This termination should normally be an  
AC coupled path to signal ground. This input impedance is constant regardless of the gain value. The following  
table gives the nominal input impedance for this input. Impedance for specific gain values not listed in this table  
can be estimated through interpolation between listed values.  
MIC+ to non-inverting PGA input  
MIC- to inverting PGA input  
Nominal Input Impedance  
Nominal Input Impedance  
Gain (dB)  
Impedance (kΩ)  
Gain (dB)  
Impedance (kΩ)  
-12  
-9  
94  
94  
94  
94  
94  
94  
94  
94  
94  
94  
94  
94  
-12  
-9  
75  
69  
63  
55  
47  
39  
31  
25  
19  
11  
2.9  
1.6  
-6  
-3  
-6  
-3  
0
0
3
3
6
6
9
9
12  
18  
30  
35.25  
12  
18  
30  
35.25  
Table 3: Microphone Non-Inverting  
Input Impedances  
Table 4: Microphone Inverting Input  
Impedances  
11.1.2.2. Negative Microphone Input (MIC-)  
The negative microphone input (MIC-) has two distinctive configuration; differential input or single ended input.  
This input connects to the negative terminal of the PGA gain amplifier by setting NMICPGA[1] address (0x2C) to  
HIGH. When the MIC- is used as a single ended input, MIC+ should be conned to VREF by setting PMICPGA[0]  
address (0x2C) bit to LOW. The AUX input signal can also be mixed with the MIC- input signal by setting  
AUXPGA[2] address (0x2C) to HIGH.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 20 of 110  
June 2016  
NAU8812  
When the associated control bit is set logic = 1, the MIC- pin is connected to a resistor of approximately 30kΩ  
which is tied to VREF. The purpose of the tie to VREF is to reduce any pop or click sound by keeping the DC  
level of the MIC- pin close to VREF at all times. It is important for a system designer to know that the MIC-input  
impedance varies as a function of the selected PGA gain. This is normal and expected for a difference amplifier  
type topology. The above table gives the nominal resistive impedance values for this input over the possible gain  
range. Impedance for specific gain values not listed in this table can be estimated through interpolation between  
listed values.  
11.1.2.3.  
PGA Gain Control  
The PGA amplification is common to all three input pins MIC-, MIC+, AUX, and enabled by PGAEN[2] address  
(0x02). It has a range of -12dB to +35.25dB in 0.75dB steps, controlled by PGAGAIN[5:0] address (0x2D). Input  
PGA gain will not be used when ALC is enabled using ALCEN[8] address (0x20).  
Addr  
0x2D  
0x20  
Bit 8  
0
Bit 7  
Bit 6  
Bit5  
Bit 4  
Bit 3  
PGAGAIN[5:0]  
ALCMXGAIN[2:0] ALCMNGAIN[2:0]  
Table 5: Registers associated with ALC and Input PGA Gain Control  
Bit 2  
Bit 1  
Bit 0  
Default  
0x010  
0x038  
PGAZC PGAMT  
ALCEN  
0
0
11.1.3.  
PGA Boost Stage  
The boost stage has three inputs connected to the PGA Boost Mixer. All three inputs can be individually  
connected or disconnected from the PGA Boost Mixer. The boost stage can be enabled by setting BSTEN[4]  
address (0x02) to HIGH. The following figure shows the PGA Boost stage.  
AUXBSTGAIN[2:0]  
(0x2F)  
Output from  
AUX stage  
PGABST[8]  
(0x2F)  
PGAMT[6]  
(0x2D)  
Output from  
PGA Gain  
To ADC  
PMICBSTGAIN[6:4]  
(0x2F)  
MIC+  
Pin  
Figure 7: Boost Stage Block Diagram  
emPowerAudio™  
Datasheet Revision 2.8  
Page 21 of 110  
June 2016  
NAU8812  
The signal from AUX stage can be amplified at the PGA Boost stage before connecting to the Boost Mixer by  
setting a binary value from “001” - “111” to AUXBSTGAIN[2:0] address (0x2F). The path is disconnected by  
setting “000” to the AUXBSTGAIN bits.  
Signal from PGA stage to the PGA Boost Mixer is disconnected or muted by setting PGAMT[6] address (0x2D) to  
HIGH. In this path the PGA boost can be a fixed value of +20dB or 0dB, controlled by the PGABST[8] address  
(0x2F) bit.  
The signal from MIC+ pin to the PGA Boost Mixer is disconnected by setting ‘000’ binary value to  
PMICBSTGAIN[6:4] address (0x2F) and any other combination connects the path.  
Bit(s)  
BSTEN[4]  
Addr  
0x02  
Parameter  
Programmable Range  
0 = Boost stage OFF  
Enable PGA Boost Block  
1 = Boost stage ON  
0=Input PGA not muted  
1=Input PGA muted  
PGAMT[6]  
0x2D  
0x2F  
0x2F  
0x2F  
Mute control for input PGA  
Boost AUX signal  
AUXBSTGAIN[2:0]  
PMICBSTGAIN[6:4]  
PGABST[8]  
Range: -12dB to +6dB @ 3dB increment  
Range: -12dB to +6dB @ 3dB increment  
Boost MIC+ signal  
Boost PGA stage  
0 = PGA output has +0dB  
1 = PGA output has +20dB  
Table 6: Registers associated with PGA Boost Stage Control  
emPowerAudio™  
Datasheet Revision 2.8  
Page 22 of 110  
June 2016  
NAU8812  
11.2. MICROPHONE BIASING  
MICBIASM[0]  
(0x28)  
VREF  
MICBIAS  
R
R
MICBIASV[1:0]  
(0x2C)  
Figure 8: Microphone Bias Schematic  
The MICBIAS pin is a low-noise microphone bias source for an external microphone, which can provide a  
maximum of 3mA of bias current. This DC bias voltage is suitable for powering either traditional ECM (electret)  
type microphones, or for MEMS types microphones with an independent power supply pin. Seven different bias  
voltages are available for optimum system performance, depending on the specific application. The microphone  
bias pin normally requires an external filtering capacitor as shown on the schematic in the Application section.  
The output bias can be enabled by setting MICBIASEN[4] address (0x01) to HIGH. It has various voltage values  
selected by a combination of bits MICBIASM[4] address (0x3A) and MICBIASV[8:7] address (0x2C).  
The low-noise feature results in greatly reduced noise in the external MICBIAS voltage by placing a resistor of  
approximately 200-ohms in series with the output pin. This creates a low pass filter in conjunction with the  
external microphone-bias filter capacitor, but without any additional external components.  
Bit(s)  
Addr  
0x01  
Parameter  
Microphone bias enable  
Programmable Range  
0 = Disable  
1 = Enable  
MICBIASEN[4]  
MICBIASM[4]  
(0x3A)  
(0x2C)  
Microphone bias mode selection  
Microphone bias voltage selection  
0 = Disable  
1 = Enable  
MICBIASV[8:7]  
Table 7: Register associated with Microphone Bias  
Below are the unloaded values when MICBIASM[4] is set to 1 and 0. When loaded, the series resistor will cause  
the voltage to drop, depending on the load current.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 23 of 110  
June 2016  
NAU8812  
Microphone Bias Voltage Control  
MICBIASV[8:7] MICBIASM[4] = 0 MICBIASM[4]= 1  
0
0
1
1
0
1
0
1
0.9* VDDA  
0.65* VDDA  
0.75* VDDA  
0.50* VDDA  
0.85* VDDA  
0.60* VDDA  
0.70* VDDA  
0.50* VDDA  
Table 8: Microphone Bias Voltage Control  
emPowerAudio™  
Datasheet Revision 2.8  
Page 24 of 110  
June 2016  
NAU8812  
11.3. ADC DIGITAL FILTER BLOCK  
ADC Digital Filters  
High  
Pass  
Filter  
Digital  
Audio  
Interface  
Digital  
Decimator  
Digital  
Filter  
Notch  
Filter  
/
ADC  
Gain  
Figure 9: ADC Digital Filter Path Block Diagram  
The ADC digital filter block performs a 24-bit signal processing. The block consists of an oversampled analog  
sigma-delta modulator, digital decimator, digital filter, high pass filter, and a notch filter. The oversampled analog  
sigma-delta modulator provides a bit stream to the decimation stages and filter. The ADC coding scheme is in  
twos-complement format and the full-scale input level is proportional to VDDA. With a 3.3V supply voltage, the  
full-scale level is 1.0VRMS and any voltage greater than full scale may overload the ADC and cause distortion.  
The ADC is enabled by setting ADCEN[0] address (0x02) bit. Polarity and oversampling rate of the ADC output  
signal can be changed by ADCPL[0] address (0x0E) and ADCOS[3] address (0x0E) respectively.  
Bit(s)  
Addr  
0x0E  
Parameter  
Programmable Range  
0 = Normal  
1 = Inverted  
ADCPL[0]  
ADC Polarity  
ADC Over Sample  
Rate  
0=64x (Lowest power)  
1=128x (best SNR at typical condition)  
ADCOS[3]  
HPFEN[8]  
HPFAM[7]  
HPF[6:4]  
0x0E  
0x0E  
0x0E  
0x0E  
0x02  
0x07  
High Pass Filter  
Enable  
0 = Disable  
1 = Enable  
0 = Audio (1st order, fc ~ 3.7 Hz)  
Audio or Application Mode  
High Pass Filter frequencies  
Enable ADC  
1 = Application (2nd order, fc =HPF)  
82 Hz to 612 Hz dependant on the sample  
rate  
0 = Disable  
1 = Enable  
ADCEN[0]  
SMPLR[3:1]  
Sample rate  
8k Hz to 48 kHz  
Table 9: Register associated with ADC  
emPowerAudio™  
Datasheet Revision 2.8  
Page 25 of 110  
June 2016  
NAU8812  
11.3.1. Programmable High Pass Filter (HPF)  
The high pass filter (HPF) has two different modes that it can operate in either Audio or Application mode  
HPFAM[7] address (0x0E). In Audio Mode (HPFAM=0) the filter is first order, with a cut-off frequency of 3.7Hz.  
In Application mode (HPFAM=1) the filter is second order, with a cut-off frequency selectable via the HPF[2:0]  
register bits. Cut-off frequency of the HPF depends on sample frequency selected by SMPLR[3:1] address (0x07).  
The HPF is enabled by setting HPFEN[8] address (0x0E) to HIGH. Table below shows the cut-off frequencies  
with different sampling rate.  
fs (kHz)  
HPF[2:0]  
SMPLR=101/100  
11.025  
SMPLR=011/010  
SMPLR=001/000  
8
12  
16  
22.05  
113  
141  
180  
225  
281  
360  
450  
563  
24  
32  
44.1  
113  
141  
180  
225  
281  
360  
450  
563  
48  
000  
001  
010  
011  
100  
101  
110  
111  
82  
113  
122  
153  
156  
245  
306  
392  
490  
612  
82  
122  
153  
156  
245  
306  
392  
490  
612  
82  
122  
153  
156  
245  
306  
392  
490  
612  
102  
131  
163  
204  
261  
327  
408  
141  
180  
225  
281  
360  
450  
563  
102  
131  
163  
204  
261  
327  
408  
102  
131  
163  
204  
261  
327  
408  
Table 10: High Pass Filter Cut-off Frequencies (HPFAM=1)  
11.3.2. Programmable Notch Filter (NF)  
The NAU8812 has a programmable notch filter where it passes all frequencies except those in a stop band  
centered on a given center frequency. The filter gives lower distortion and flattens response. The notch filter is  
enabled by setting NFCEN[7] address (0x1B) to HIGH. The variable center frequency is programmed by setting  
two’s complement values to NFCA0[6:0] address (0x1C), NFCA0[13:7] address (0x1B) and NFCA1[6:0] address  
(0x1E), NFCA1[13:7] address (0x1D) registers. The coefficients are updated in the circuit when the NFCU[8] bit  
is set HIGH in a write to any of the registers NF1-NF4 address (0x1B, 0x1C, 0x1D, 0x1E).  
Addr  
0x1B  
0x1C  
0x1D  
0x1E  
Bit 8  
Bit 7  
Bit 6  
Bit5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Default  
0x000  
0x000  
0x000  
0x000  
NFCU  
NFCU  
NFCU  
NFCU  
NFCEN  
NFCA0[13:7]  
NFCA0[6:0]  
NFCA1[13:7]  
NFCA1[6:0]  
0
0
0
Table 11: Registers associated with Notch Filter Function  
emPowerAudio™  
Datasheet Revision 2.8  
Page 26 of 110  
June 2016  
NAU8812  
A0  
A1  
Notation  
Register Value (DEC)  
2  
f
NFCA0 = -A0 x 213  
NFCA1 = -A1 x 212  
(then convert to 2’s  
complement)  
b
b
fc = center frequency (Hz)  
fb = -3dB bandwidth (Hz)  
fs = sample frequency  
1tan  
1tan  
2
f
f
2  
f
s
c
x cos  
1A  
Coefficient  
0
f
2   
f
s
(Hz)  
2
s
Table 12: Equations to Calculate Notch Filter Coefficients  
11.3.3. Digital ADC Gain Control  
The digital ADC can be muted by setting “0000 0000” to ADCGAIN[7:0] address (0x0F). Any other combination  
digitally attenuates the ADC output signal in the range -127dB to 0dB in 0.5dB increments].  
Addr  
Name  
Bit 8  
0
Bit 7  
Bit 6  
Bit5  
Bit 4  
ADCGAIN  
Table 13: Register associated with ADC Gain  
Bit 3  
Bit 2  
Bit 1  
Bit 0 Default  
0x0F ADCG  
0x0FF  
11.4. PROGRAMMABLE GAIN AMPLIFIER (PGA)  
NAU8812 has a programmable gain amplifier (PGA) which controls the gain such that the signal level of the PGA  
remains substantially constant as the input signal level varies within a specified dynamic range. The PGA has  
two functions  
Automatic level control (ALC) or  
Input peak limiter  
The Automatic Level Control (ALC) seeks to control the PGA gain in response to the amplitude of the input signal  
such that the PGA output maintains a constant envelope. A digital peak detector monitors the input signal  
amplitude and compares it to a register defined threshold level ALCSL[3:0] address (0x21). Note: When the ALC  
automatic level control is enabled, the function of the ALC is to automatically adjust PGAGAIN[5:0] address (0x2D)  
volume setting.  
11.4.1. Automatic level control (ALC)  
The ALC seeks to control the PGA gain such that the PGA output maintains a constant envelope. This helps to  
prevent clipping at the input of the sigma delta ADC while maximizing the full dynamic range of the ADC. The  
ALC monitors the output of the ADC, measured after the digital decimator has converted it to 1.23 fixed-point  
formats. The ADC output is fed into a peak detector, which updates the measured peak value whenever the  
absolute value of the input signal is higher than the current measured peak. The measured peak gradually  
decays to zero unless a new peak is detected, allowing for an accurate measurement of the signal envelope.  
Based on a comparison between the measured peak value and the target value, the ALC block adjusts the gain  
control, which is fed back to the PGA.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 27 of 110  
June 2016  
NAU8812  
Rate Convert/ Decimator  
Input  
Pin  
Digital  
Filter  
Sinc  
Filter  
Digital  
Decimator  
PGA  
ADC  
ALC  
Figure 10: ALC Block Diagram  
The ALC is enabled by setting ALCEN[8] address (0x20) bit to HIGH. The ALC has two functional modes, which  
is set by ALCM[8] address (0x22).  
Normal mode (ALCM = LOW)  
Peak Limiter mode (ALCM = HIGH)  
When the ALC is disabled, the input PGA remains at the last controlled value of the ALC. An input gain update  
must be made by writing to the PGAGAIN[5:0] address (0x2D). A digital peak detector monitors the input signal  
amplitude and compares it to a register defined threshold level ALCSL[3:0] address (0x21).  
Input < noise  
gate threshold  
Gain (Attenuation) Clipped  
at ALCMNGAIN -12dB  
ALC operation range  
Target ALCSL -6dB  
+33 dB  
ALCNEN = 1  
PGA Gain  
ALCNTH = -39dB  
MIC Boost Gain = 0dB  
ALCSL = -6dB  
0 dB  
ALCMNGAIN = -12dB  
ALCMXGAIN = +35.25dB  
-12 dB  
-39dB  
-39dB  
-6dB +6dB  
Input Level  
Figure 11: ALC Response Graph  
The registers listed in the following section allow configuration of ALC operation with respect to:  
ALC target level  
Gain increment and decrement rates  
Minimum and maximum PGA gain values for ALC operating range  
Hold time before gain increments in response to input signal  
emPowerAudio™  
Datasheet Revision 2.8  
Page 28 of 110  
June 2016  
NAU8812  
Inhibition of gain increment during noise inputs  
Limiter mode operation  
Bit(s)  
Addr  
0x20  
Parameter  
Programmable Range  
ALCMNGAIN[2:0]  
ALCMXGAIN[2:0]  
Minimum Gain of PGA  
Range: -12dB to +30dB @ 6dB increment  
Maximum Gain of PGA  
Enable ALC function  
ALC Target  
Range: -6.75dB to +35.25dB @ 6dB increment  
0 = Disable  
1 = Enable  
ALCEN[8]  
ALCSL[3:0]  
ALCHT[3:0]  
Range: -28.5dB to -6dB @ 1.5dB increment  
ALC Hold Time  
Range: 0ms to 1s, time doubles with every step)  
0x21  
0 = Disable  
1 = Enable  
ALCZC[8]  
ALC Zero Crossing  
ALC Attack time  
ALCM=0 - Range: 125us to 128ms  
ALCM=1 - Range: 31us to 32ms (time doubles with  
every step)  
ALCATK[3:0]  
ALCM=0 - Range: 500us to 512ms  
ALCM=1 - Range: 125us to 128ms  
(Both ALC time doubles with every step)  
0x22  
ALCDCY[3:0]  
ALCM[8]  
ALC Decay time  
ALC Select  
0 = ALC mode  
1 = Limiter mode  
Table 14: Registers associated with ALC Control  
The operating range of the ALC is set by ALCMXGAIN[5:3] address (0x20) and ALCMNGAIN[2:0] address (0x20)  
bits such that the PGA gain generated by the ALC is between the programmed minimum and maximum levels.  
When the ALC is enabled, the PGA gain is disabled.  
In Normal mode, the ALCMXGAIN bits set the maximum level for the PGA in the ALC mode but in the Limiter  
mode ALCMXGAIN has no effect because the maximum level is set by the initial PGA gain setting upon enabling  
of the ALC.  
ALCMAXGAIN  
Maximum Gain (dB)  
ALCMINGAIN  
Minimum Gain (dB)  
111  
110  
35.25  
29.25  
000  
001  
-12  
-6  
ALC Max Gain Range 35.25dB to -6dB @  
6dB increments  
ALC Min Gain Range -12dB to 30dB @  
6dB increments  
001  
000  
-0.75  
-6.75  
110  
111  
24  
30  
Table 15: ALC Maximum and Minimum Gain Values  
emPowerAudio™  
Datasheet Revision 2.8  
Page 29 of 110  
June 2016  
NAU8812  
11.4.1.1.  
Normal Mode  
Normal mode is selected when ALCM[8] address (0x22) is set LOW and the ALC is enabled by setting ALCEN[8]  
address (0x20) HIGH. This block adjusts the PGA gain setting up and down in response to the input level. A  
peak detector circuit measures the envelope of the input signal and compares it to the target level set by  
ALCSL[3:0] address (0x21). The ALC increases the gain when the measured envelope is greater than the target  
and decreases the gain when the measured envelope is less than - 1.5dB. The following waveform illustrates the  
behavior of the ALC.  
PGA Input  
PGA Output  
PGA Gain  
Figure 12: ALC Normal Mode Operation  
11.4.1.2.  
ALC Hold Time (Normal mode Only)  
The hold parameter ALCHT[3:0] configures the time between detection of the input signal envelope being outside  
of the target range and the actual gain increase.  
Input signals with different characteristics (e.g., voice vs. music) may require different settings for this parameter  
for optimal performance. Increasing the ALC hold time prevents the ALC from reacting too quickly to brief periods  
of silence such as those that may appear in music recordings; having a shorter hold time, on the other hand, may  
be useful in voice applications where a faster reaction time helps to adjust the volume setting for speakers with  
different volumes. The waveform below shows the operation of the ALCHT parameter.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 30 of 110  
June 2016  
NAU8812  
PGA Input  
PGA Output  
PGA Gain  
Hold Delay  
Change  
Figure 13: ALC Hold Time  
11.4.2. Peak Limiter Mode  
Peak Limiter mode is selected when ALCM[8] address (0x22) is set to HIGH and the ALC is enabled by setting  
ALCEN[8] address (0x20). In limiter mode, the PGA gain is constrained to be less than or equal to the gain  
setting at the time the limiter mode is enabled. In addition, attack and decay times are faster in limiter mode than  
in normal mode as indicated by the different lookup tables for these parameters for limiter mode. The following  
waveform illustrates the behavior of the ALC in Limiter mode in response to changes in various ALC parameters.  
PGA Input  
PGA  
Output  
PGA Gain  
Limiter  
Enabled  
Figure 14: ALC Limiter Mode Operations  
When the input signal exceeds 87.5% of full scale, the ALC block ramps down the PGA gain at the maximum  
attack rate (ALCATK=0000) regardless of the mode and attack rate settings until the ADC output level has been  
reduced below the threshold. This limits ADC clipping if there is a sudden increase in the input signal level.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 31 of 110  
June 2016  
NAU8812  
11.4.3. Attack Time  
When the absolute value of the ADC output exceeds the level set by the ALC threshold, ALCSL[3:0] address  
(0x21), attack mode is initiated at a rate controlled by the attack rate register ALCATK[3:0] address (0x22). The  
peak detector in the ALC block loads the ADC output value when the absolute value of the ADC output exceeds  
the current measured peak; otherwise, the peak decays towards zero, until a new peak has been identified. This  
sequence is continuously running. If the peak is ever below the target threshold, then there is no gain decrease  
at the next attack timer time; if it is ever above the target-1.5dB, then there is no gain increase at the next decay  
timer time.  
11.4.4. Decay Times  
The decay time ALCDCY[6:4] address (0x22) is the time constant used when the gain is increasing. In limiter  
mode, the time constants are faster than in ALC mode.  
11.4.5. Noise gate (normal mode only)  
A noise gate is used when there is no input signal or the noise level is below the noise gate threshold. The noise  
gate is enabled by setting ALCNEN[3] address (0x23) to HIGH. It does not remove noise from the signal. The  
noise gate threshold ALCNTH[2:0] address (0x23) is set to a desired level so when there is no signal or a very  
quiet signal (pause), which is composed mostly of noise, the ALC holds the gain constant instead of amplifying  
the signal towards the target threshold. The noise gate only operates in conjunction with the ALC and ONLY in  
Normal mode. The noise gate flag is asserted when  
(Signal at ADC PGA gain MIC Boost gain) < ALCNTH (ALC Noise Gate Threshold) (dB)  
Levels at the extremes of the range may cause inappropriate operation, so care should be taken when setting up  
the function.  
PGA Input  
PGA Output  
PGA Gain  
Figure 15: ALC Operation with Noise Gate disabled  
emPowerAudio™  
Datasheet Revision 2.8  
Page 32 of 110  
June 2016  
NAU8812  
PGA Input  
Noise Gate Threshold  
PGA Output  
PGA Gain  
Figure 16: ALC Operation with Noise Gate Enabled  
11.4.6. Zero Crossing  
The PGA gain comes from either the ALC block when it is enabled or from the PGA gain register setting when the  
ALC is disabled. Zero crossing detection may be enabled to cause PGA gain changes to occur only at an input  
zero crossing. Enabling zero crossing detection limits clicks and pops that may occur if the gain changes while  
the input signal has a high volume.  
There are two zero crossing detection enables:  
Register ALCZC[8] address (0x21) is only relevant when the ALC is enabled.  
Register PGAZC[7] address (0x2D) is only relevant when the ALC is disabled.  
If the zero crossing function is enabled (using either register) and SCLKEN[0] address (0x07) is asserted, the zero  
cross timeout function may take effect. If the zero crossing flag does not change polarity within 0.25 seconds of a  
PGA gain update (either via ALC update or PGA gain register update), then the gain will update. This backup  
system prevents the gain from locking up if the input signal has a small swing and a DC offset that prevents the  
zero crossing flag from toggling.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 33 of 110  
June 2016  
NAU8812  
11.5. DAC DIGITAL FILTER BLOCK  
DAC Digital Filters  
Digital  
Audio  
Interface  
Digital  
Peak  
Limiter  
Sigma  
Delta  
Modulator  
Digital  
Gain  
Digital  
Filters  
Interpo-  
lation  
DAC  
Figure 17: DAC Digital Filter Path  
The DAC digital block uses 24-bit signal processing to generate analog audio with a 16-bit digital sample stream  
input. This block consists of a sigma-delta modulator, high pass filter, digital gain/filters, de-emphasis, and analog  
mixers. The DAC coding scheme is in twos complement format and the full-scale output level is proportional to  
VDDA. With a 3.3V supply voltage, the full-scale output level is 1.0VRMS. The DAC is enabled by setting  
DACEN[0] address (0x03) bit HIGH.  
Bit(s)  
Addr  
0x03  
Parameter  
Programmable Range  
0 = Disable  
DACEN[0]  
DAC enable  
1 = Enable  
0 = Disable  
Pass-through of ADC output data  
into DAC input  
ADDAP[0]  
DACPL[0]  
0x05  
1 = Enable  
0 = No Inversion  
1 = DAC Output Inverted  
0 = Disable  
DAC Polarity  
AUTOMT[2]  
DEEMP[5:4]  
DACMT[6]  
Auto Mute  
Sample Rate  
Soft Mute  
1 = Enable  
0x0A  
32 kHz, 44.1 kHz, and 48 kHz  
0 = Disable  
1 = Enable  
Range: -127dB to 0dB @ 0.5dB  
increment, 00 hex is Muted  
DACGAIN[7:0]  
0x0B  
0x18  
DAC Volume Control  
DACLIMATK[3:0]  
DACLIMDCY[7:4]  
DAC Limiter Attack  
DAC Limiter Decay  
Range: 68us to 139ms  
Range: 544us to 1.1s  
0 = Disable  
DACLIMEN[8]  
DAC Limiter Enable  
1 = Enable  
Range: 0dB to +12dB @ 1dB  
increment  
DACLIMBST[3:0]  
DACLIMTHL[6:4]  
DAC Limiter Volume Boost  
DAC Limiter Threshold  
0x19  
Range: -6dB to -1bB @ 1dB increment  
Table 16: Registers associated with DAC Gain Control  
emPowerAudio™  
Datasheet Revision 2.8  
Page 34 of 110  
June 2016  
NAU8812  
11.5.1. DAC Soft Mute  
The NAU8812 also has a Soft Mute function, which gradually attenuates the volume of the digital signal to zero.  
When removed, the gain will ramp back up to the digital gain setting. This function is disabled by default. This  
feature provides a tool that is useful for using the DACs without introducing pop and click sounds. To play back  
an audio signal, it must first be disabled by setting the DACMT[6] address (0x0A) bit to LOW.  
11.5.2. DAC Auto Mute  
The output of the DAC can be muted by the analog auto mute function. The auto mute function is enabled by  
setting AUTOMT[2] address (0x0A) to HIGH and applied to the DAC output when it sees 1024 consecutive zeros  
at its input.  
If at any time there is a non-zero sample value, the DAC will be un-muted, and the 1024 count will be reinitialized  
to zero.  
11.5.3. DAC Sampling / Oversampling rate, Polarity, DAC Volume control and Digital Pass-  
through  
The sampling rate of the DAC is determined entirely by the frequency of its input clock and the oversampling rate  
setting. The oversampling rate of the DAC can be changed to 64x or 128x. In the 128x oversampling mode it  
gives an improved audio performance at slightly higher power consumption. Because the additional supply  
current is only 1mA, in most applications the 128x oversampling is preferred for maximum audio performance.  
The polarity of the DAC output signal can be changed as a feature sometimes useful in management of the audio  
phase. This feature can help minimize any audio processing that may be otherwise required as the data are  
passed to other stages in the system.  
The effective output audio volume of the DAC can be changed using the digital volume control feature. This  
processes the output of the DAC to scale the output by the amount indicated in the volume register setting.  
Included is a “digital mute” value which will completely mute the signal output of the DAC. The digital volume  
setting can range from 0dB through -127dB in 0.5dB steps.  
Digital audio pass-through allows the output of the ADC to be directly sent to the DAC as the input signal to the  
DAC for DAC output. In this mode of operation, the external digital audio signal for the DAC will be ignored. The  
pass-through function is useful for many test and application purposes, and the DAC output may be utilized in any  
way that is normally supported for the DAC analog output signals.  
11.5.4. Hi-Fi DAC De-Emphasis and Gain Control  
The NAU8812 has Hi-Fi DAC gain control for signal conditioning. The level of attenuation for an eight-bit code X  
is given by:  
0.5 × (X-255) dB  
for 1 ≤ X ≤ 255;  
MUTE for X = 0  
emPowerAudio™  
Datasheet Revision 2.8  
Page 35 of 110  
June 2016  
NAU8812  
It includes on-chip digital de-emphasis and is available for sample rates of 32 kHz, 44.1 kHz, and 48 kHz. The  
digital de-emphasis can be enabled by setting DEEMP[5:4] address (0x0A) bits depending on the input sample  
rate. The de-emphasis feature is included to accommodate audio recordings that utilize 50/15 s pre-emphasis  
equalization as a means of noise reduction. The DAC output can be inverted (phase inversion) by setting  
DACPL[1:0] address (0x0A) to HIGH, non-inverted output is set by default.  
11.5.5. Digital DAC Output Peak Limiter  
Output Peak-Limiters reduce the dynamic range by ensuring the signal will not exceed a certain threshold, while  
maximizing the RMS of the resulted audio signal, and minimizing audible distortions. NAU8812 has a digital  
output limiter function. In the figure below, the upper graph shows the envelope of the input/output signals and  
the lower graph shows the gain characteristic. The limiter has a programmable threshold, DACLIMTHL[6:4]  
address (0x19), which ranges from -1dB to -6dB in 1dB increments. The digital peak limiter seeks to keep the  
envelope of the output signal within the target threshold +/- 0.5dB. The attack and decay rates programmed in  
registers DACLIMATK[3:0] address (0x18) and DACLIMDCY[7:4] address (0x18) specify how fast the digital peak  
limiter decrease and increase the gain, respectively, in response to the envelope of the output signal falling  
outside of this range. In normal operation LIMBST=000 signals below this threshold are unaffected by the limiter.  
DAC Input  
Data  
Threshold  
-1dB  
DAC Output  
Signal  
0dB  
Digital Gain  
-0.5dB  
-1dB  
Figure 18: DAC Digital Limiter Control  
11.5.6. Volume Boost  
The limiter has programmable upper gain, which boosts signals below the threshold to compress the dynamic  
range of the signal and increase its perceived loudness. This operates as an ALC function with limited boost  
capability. The volume boost is from 0dB to +12dB in 1dB steps, controlled by the DACLIMBST[3:0] register bits.  
The output limiter volume boost can also be used as a stand-alone digital gain boost when the limiter is disabled.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 36 of 110  
June 2016  
NAU8812  
11.6. ANALOG OUTPUTS  
The NAU8812 features two different types of outputs, a single-ended MONO output (MOUT) and a differential  
speaker outputs (SPKOUT+ and SPKOUT-). The speaker amplifiers designed to drive a load differentially; a  
configuration referred to as Bridge-Tied Load (BTL).  
MOUTBST[3]  
(0x31)  
VDDSPK  
Output from  
Auxiliary Amplifier  
MOUTMXEN[3]  
(0x03)  
DACOUT[0]  
(0x38)  
DAC Output  
MOUT  
MONO  
MIXER  
MOUTBST GAIN DC output  
0
1
1.0x 1.0 x VREF  
1.5x 1.5 x VREF  
-10dB or +0dB  
SIDETONE  
Output from PGA Boost  
VSSSPK  
VDDSPK  
Zero Cross  
Detection  
-1  
SPKOUT-  
SPEAKER  
MIXER  
SPKBST GAIN  
DC output  
1.0 x VREF  
1.5 x VREF  
0
1
1.0x  
1.5x  
SPKOUT+  
-10dB or 0dB  
SPKMXEN[2]  
(0x03)  
Zero Cross  
Detection  
Buffer  
SPKBST[2]  
(0x31)  
SPKVOL[5:0]  
(0x36)  
VSSSPK  
Figure 19: Speaker and MONO Analogue Outputs  
Important: For analog outputs depopping purpose, when powering up speakers, headphone,  
AUXOUTs, certain delays are generated after enabling sequence. However, the delays are created  
by MCLK and sample rate register. For correct operation, sending I2S signal no earlier than 250ms  
after speaker or headphone enabled and MCLK appearing  
11.6.1.  
Speaker Mixer Outputs  
The speaker amplifiers are designed to drive a load differentially; a configuration referred to as Bridge-Tied Load  
(BTL). The differential speaker outputs can drive a single 8Ω speaker or two headphone loads of 16Ω or 32Ω or  
a line output. Driving the load differentially doubles the output voltage. The output of the speaker can be  
manipulated by changing attenuation and the volume (loudness of the output signal).  
The output stage is powered by the speaker supply, VDDSPK, which are capable of driving up to 1.5VRMS signals  
(equivalent to 3VRMS into a BTL speaker). The speaker outputs can be controlled and can be muted individually.  
The output pins are at reference DC level when the output is muted.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 37 of 110  
June 2016  
NAU8812  
Bit(s)  
Addr  
0x03  
Parameter  
Programmable Range  
0 Disabled  
1 Enabled  
SPKMXEN[2]  
Speaker Mixer enable  
Speaker positive terminal  
enable  
0 Disabled  
1 Enabled  
PSPKEN[5]  
NSPKEN[6]  
SPKATT[1]  
SPKBST[2]  
SPKGAIN[5:0]  
SPKMT[6]  
0x03  
0x03  
0x28  
0x31  
0x36  
0x36  
Speaker negative terminal  
enable  
0 Disabled  
1 Enabled  
0 - 0dB  
1 - -10dB  
Speaker output attenuation  
Speaker output Boost  
Speaker output Volume  
Speaker output Mute  
0 (1.0x VREF) Boost  
1- (1.5 x VREF) Boost  
Range: -57dB to +6dB @ 6dB increment  
0 Speaker Enabled  
1 Speaker Muted  
Table 17: Speaker Output Controls  
11.6.2. MONO Mixer Output  
The single ended output can drive headphone loads of 16Ω or 32Ω or a line output. The MOUT can be  
manipulated by changing attenuation and the volume (loudness of the output signal).  
The output stage is powered by the speaker supply, VDDSPK, which are capable of driving up to 1.5VRMS signals.  
The MONO output can be enabled for signal output or muted. The output pins are at reference DC level when the  
output is muted.  
Bit(s)  
Addr  
0x03  
Parameter  
Programmable Range  
0 Disabled  
1 Enabled  
MOUTMXEN[3]  
MONO mixer enable  
0 Disabled  
1 Enabled  
MOUTEN[7]  
MOUTATT[2]  
MOUTBST[3]  
MOUTMXMT[6]  
MOUTMT[4]  
0x03  
0x28  
0x31  
0x38  
0x45  
MONO output enable  
MONO output attenuation  
MONO output boost  
0 - 0dB  
1 - -10dB  
0 (1.0x VREF) Boost  
1- (1.5 x VREF) Boost  
0 MONO Mixer Normal Mode  
1 MONO Mixer Muted  
MONO Output Mixer Mute  
MONO Output Mute  
0 MONO Output Normal Mode  
1 MONO Output Muted  
Table 18: MONO Output Controls  
emPowerAudio™  
Datasheet Revision 2.8  
Page 38 of 110  
June 2016  
NAU8812  
11.6.3. Unused Analog I/O  
AUX  
30k  
AUXEN[6]  
(0x01)  
SMOUT[3]  
(0x4F)  
MOUTBST[3] = 0  
(0x31)  
30k  
MIC-  
1K  
NMICPGA[1]  
(0x2C)  
MOUT  
30K  
40k  
MIC+  
MOUTBST[3] = 1  
(0x31)  
PMICPGA[0]  
(0x2C)  
SPSPK[4]  
(0x4F)  
1.0 x VREF  
1K  
VREF  
SPKOUT+  
30K  
SBUFL[6]  
(0x4F)  
IOBUFEN[2]  
(0x01)  
SNSPK[5]  
(0x4F)  
SBUFH[7]  
(0x4F)  
DCBUFEN[8]  
(0x01)  
1K  
SPKOUT-  
1.5 x VREF  
30K  
AOUTIMP[0]  
(0x31)  
R
R
Figure 20: Tie-off Options for the Speaker and MONO output Pins  
In audio and voice systems, any time there is a sudden change in voltage to an audio signal, an audible pop or  
click  
sound may be the result. Systems that change inputs and output configurations dynamically, or which are  
required to manage low power operation, need special attention to possible pop and click situations. The  
NAU8812 includes many features which may be used to greatly reduce or eliminate pop and click sounds. The  
most common cause of a pop or click signal is a sudden change to an input or output voltage. This may happen  
in either a DC coupled system, or in an AC coupled system.  
The strategy to control pops and clicks is similar for either a DC coupled system, or an AC coupled system. The  
case of the AC coupled system is the most common and the more difficult situation, and therefore, the AC  
coupled case will be the focus for this information section. When an input or output pin is being used, the DC  
level of that pin will be very close to half of the VDDA voltage that is present on the VREF pin. The only exception  
is that when outputs are operated in the 5-Volt mode known as the 1.5x boost condition, then the DC level for  
emPowerAudio™  
Datasheet Revision 2.8  
Page 39 of 110  
June 2016  
NAU8812  
those outputs will be equal to 1.5xVREF. In all cases, any input or output capacitors will become charged to the  
operating voltage of the used input or output pin. The goal to reduce pops and clicks is to insure that the charge  
voltage on these capacitors does not change suddenly at any time.  
When an input or output is in a not-used operating condition, it is desirable to keep the DC voltage on that pin at  
the same voltage level as the DC level of the used operating condition. This is accomplished using special  
internal DC voltage sources that are at the required DC values. When an input or output is in the not-used  
condition, it is connected to the correct internal DC voltage as not to have a pop or click. This type of connection  
is known as a “tie-off” condition.  
Two internal DC voltage sources are provided for making tie-off connections. One DC level is equal to the VREF  
voltage value, and the other DC level is equal to 1.5x the VREF value. All inputs are always tied off to the VREF  
voltage value. Outputs will automatically be tied to either the VREF voltage value or to the 1.5xVREF value,  
depending on the value of the “boost” control bit for that output. That is to say, when an output is set to the 1.5x  
gain condition, then that same output will automatically use the 1.5xVREF value for tie-off in the not-used  
condition. The input pull-ups are connected to IOBUFEN[2] address (0x01) buffer with a voltage source (VREF).  
The output pull-ups can be connected two different buffers depending on the voltage source. IOBUFEN[2]  
address (0x01) buffer is enabled if the voltage source is (VREF) and DCBUFEN[8] address (0x01) buffer is  
enabled if the voltage source is (1.5 x VREF). IOBUFEN[2] address (0x01) buffer is shared between input and  
output pins.  
To conserve power, these internal voltage buffers may be enabled/disabled using control register settings. To  
better manage pops and clicks, there is a choice of impedance of the tie-off connection for unused outputs. The  
nominal values for this choice are 1kΩ and 30kΩ. The low impedance value will better maintain the desired DC  
level in the case when there is some leakage on the output capacitor or some DC resistance to ground at the  
NAU8812 output pin. A tradeoff in using the low-impedance value is primarily that output capacitors could change  
more suddenly during power-on and power-off changes.  
Automatic internal logic determines whether an input or output pin is in the used or un-used condition. This logic  
function is always active. An output is determined to be in the un-used condition when it is in the disabled  
unpowered condition, as determined by the power management registers. An input is determined to be in the un-  
used condition when all internal switches connected to that input are in the “open” condition.  
11.7. GENERAL PURPOSE I/O  
The CSb/GPIO pin can be configured in two ways, chip select for SPI interface and general purpose GPIO.  
Therefore, the general-purpose configuration is only available in the 2-Wire interface mode, which is configured  
by setting GPIOSEL[2:0] address (0x08) to 001 – 101. “000” configures the pin to be a chip select for SPI mode.  
The CSb/GPIO pin is not available in the SPI interface mode. When the pin is configured as an input, it can be  
used as chip select signal for SPI interface or for jack detect. When the pin is configured as output, it can be used  
for signaling analog mute, temperature alert, PLL frequency output, and PLL frequency lock. The CSb/GPIO pin  
can also output the master clock through a PLL or directly. The path also included a divider for different clocks  
emPowerAudio™  
Datasheet Revision 2.8  
Page 40 of 110  
June 2016  
NAU8812  
needed in the system. Note that SCLKEN must be enabled when using the Jack Detect function.  
Addr  
0x08  
0x07  
D8  
0
D7  
0
D6  
0
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x000  
GPIOPLL[1:0]  
GPIOPL  
GPIOSEL[2:0]  
0
0
0
0
0
SMPLR[2:0]  
SCLKEN 0x000  
Table 19: General Purpose Control  
11.7.1. Slow Timer Clock  
An internal Slow Timer Clock is supplied to automatically control features that happen over a relatively long period  
of time, or time-spans. This enables the NAU8812 to implement long time-span features without any  
host/processor management or intervention.  
The Slow Timer Clock supports two features automatic time out for the zero-crossing holdoff of PGA volume  
changes, and timing for debouncing of the mechanical jack detection feature. If either feature is required, the  
Slow Timer Clock must be enabled. The Slow Timer Clock is initialized in the disabled state.  
The Slow Timer Clock rate is derived from MCLK using an integer divider that is compensated for the sample rate  
as indicated by the register address (0x07). If the sample rate register value precisely matches the actual  
sample rate, then the internal Slow Timer Clock rate will be a constant value of 128ms. If the actual sample rate  
is, for example, 44.1kHz and the sample rate selected in register 0x07 is 48kHz, the rate of the Slow Timer Clock  
will be approximately 10% slower in direct proportion of the actual vs. indicated sample rate. This scale of  
difference should not be important in relation to the dedicated end uses of the Slow Timer Clock.  
11.7.2. Jack Detect  
Jack detect is a specific GPIO function. Jack detect is only available in 2-Wire mode only. Jack detect is selected  
by setting GPIOSEL[2:0] address (0x08) to “001”. The GPIOPL[3] bit address (0x08) inverts the CSb/GPIO pin  
when set to 1. The table below shows all the combinations for jack insert detects.  
The CSb/GPIO pin has an internal de-bounce circuit so that when the jack detect feature is enabled it does not  
toggle multiple times due to input glitches. Slow clock mode must be enabled when using jack insert detect by  
setting SCLKEN[0] address (0x07).  
NSPKEN/  
PSPKEN  
Speaker MONO output  
GPIOPL CSb/GPIO  
MOUTEN  
Enabled  
Enabled  
0
0
1
1
0
1
0
1
1
X
X
1
X
1
1
X
Yes  
No  
No  
Yes  
No  
Yes  
Yes  
No  
Table 20: Jack Insert Detect mode  
emPowerAudio™  
Datasheet Revision 2.8  
Page 41 of 110  
June 2016  
NAU8812  
Bit(s)  
Addr  
0x08  
Parameter  
Programmable Range  
0 - CSb Input  
1 - Jack Detect  
2 - Temperature OK  
3 - AMUTE Active  
4 - PLL Frequency Output  
5 - PLL Lock (0- Locked, 1 Not  
Locked)  
GPIOSEL[2:0]  
GPIO select  
6 - HIGH  
7 - LOW  
0 Non- Inverted  
1 Inverted  
GPIOPL[3]  
0x08  
0x08  
GPIO polarity  
0 - Divide by 1  
1 - Divide by 2  
2 - Divide by 3  
3 - Divide by 4  
0 Muted  
1 Enabled  
0 Muted  
GPIOPLL[4:5]  
GPIO PLL divider  
PSPKEN[5]  
NSPKEN[6]  
0x03  
0x03  
Speaker positive terminal enable  
Speaker negative terminal  
enable  
1 Enabled  
0 Muted  
1 Enabled  
Period 221 * MCLK  
MOUTEN[7]  
SCLKEN[0]  
0x03  
0x07  
MONO Output enable  
Slow clock enable  
Table 21: Jack Insert Detect controls  
11.7.3. Thermal Shutdown  
The device contains an on-chip temperature sensor that senses the temperature inside the package. By enabling  
the temperature sensor interrupt in GPIOSEL[2:0] address (0x08), an interrupt will be generated if the  
temperature reaches a threshold of approximately 125°C. This facilitates control of the temperature should the  
device get close to the junction temperature. Note that there is no filtering associated with this temperature alarm  
since the package has an intrinsic thermal time constant. The thermal temperature is enabled by setting TSEN[1]  
address (0x31).  
Bit(s)  
Addr  
0x31  
Parameter  
Programmable Range  
0: Thermal Shutdown Disable  
1: Thermal Shutdown Enable  
TSEN[1]  
Temperature Sense Enable  
Table 22: Thermal Shutdown  
emPowerAudio™  
Datasheet Revision 2.8  
Page 42 of 110  
June 2016  
NAU8812  
11.8. CLOCK GENERATION BLOCK  
ADCOS[3]  
(0x0E)  
MCLKSEL[7:5]  
(0x06)  
fPLL  
ADC  
PLLMCLK[4]  
(0x24)  
f/N  
f/N  
IMCLK  
f1  
MCLK  
f2  
f/N  
DAC  
PLL1  
R=f2/f1  
f/4  
f/2  
DACOS[3]  
(0x0A)  
CLKM[8]  
(0x06)  
PLL BLOCK  
IMCLK/  
N
IMCLK/  
256  
BCLKSEL[4:2]  
(0x06)  
CLKIOEN[0]  
(0x06)  
f/N  
FS  
BCLK  
Digital Audio  
Interface  
GPIO1  
/CSb  
GPIO1PLL[5:4]  
(0x08)  
GPIO1SEL[2:0]  
(0x08)  
Figure 21: PLL and Clock Select Circuit  
The NAU8812 has two basic clock modes that support the ADC and DAC data converters. It can accept external  
clocks in the slave mode, or in the master mode, it can generate the required clocks from an external reference  
frequency using an internal PLL (Phase Locked Loop). The internal PLL is a fractional type scaling PLL, and  
therefore, a very wide range of external reference frequencies can be used to create accurate audio sample rates.  
Separate from this ADC and DAC clock subsystem, audio data are clocked to and from the NAU8812 by means  
of the control logic described in the Digital Audio Interfaces section. The Frame Sync (FS) and Bit Clock (BCLK)  
pins in the Digital Audio Interface manage the audio bit rate and audio sample rate for this data flow.  
It is important to understand that the Digital Audio Interface does not determine the sampling rate for the ADC and  
DAC data converters, and instead, this rate is derived exclusively from the Internal Master Clock (IMCLK). It is  
therefore a requirement that the Digital Audio Interface and data converters be operated synchronously, and that  
the FS, BCLK, and IMCLK signals are all derived from a common reference frequency. If these three clocks  
signals are not synchronous, audio quality will be reduced.  
The IMCLK is always exactly 256 times the sampling rate of the data converters. IMCLK is output from the  
Master Clock Prescaler. The prescaler reduces by an integer division factor the input frequency input clock. The  
source of this input frequency clock is either the external MCLK pin, or the output from the internal PLL Block.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 43 of 110  
June 2016  
NAU8812  
Addr  
0x01  
0x06  
0x07  
0x24  
0x25  
0x26  
0x27  
D8  
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
0
D0  
REFIMP  
Default  
DCBUFEN  
AUXEN  
PLLEN  
MICBIASEN ABIASEN IOBUFEN  
BCLKSEL[2:0]  
CLKM  
MCLKSEL[2:0]  
CLKIOEN 0x140  
SCLKEN 0x000  
0x008  
0
0
0
0
0
0
0
0
0
0
0
0
SMPLR[2:0]  
PLLN[3:0]  
PLLMCLK  
PLLK[23:18]  
0x00C  
PLLK[17:9]  
PLLK[8:0]  
0x093  
0x0E9  
Table 23: Registers associated with PLL  
In Master Mode, the IMCLK signal is used to generate FS and BCLK signals that are driven onto the FS and  
BCLK pins and input to the Digital Audio Interface. FS is always IMCLK/256 and the duty cycle of FS is  
automatically adjusted to be correct for the mode selected in the Digital Audio Interface. The frequency of BCLK  
may optionally be divided to optimize the bit clock rate for the application scenario.  
In Slave Mode, there is no connection between IMCLK and the FS and BCLK pins. In this mode, FS and BLCK  
are strictly input pins, and it is the responsibility of the system designer to insure that FS, BCLK, and IMCLK are  
synchronous and scaled appropriately for the application.  
11.8.1. Phase Locked Loop (PLL) General description  
The PLL may be optionally used to multiply an external input clock reference frequency by a high resolution  
fractional number. To enable the use of the widest possible range of external reference clocks, the PLL block  
includes an optional divide-by-two prescaler for the input clock, a fixed divide-by-four scaler on the PLL output,  
and an additional programmable integer divider that is the Master Clock Prescaler.  
The high resolution fraction for the PLL is the ratio of the desired PLL oscillator frequency (f2), and the reference  
frequency at the PLL input (f1). This can be represented as R = f2/f1, with R in the form of a decimal number:  
xy.abcdefgh. To program the NAU8812, this value is separated into an integer portion (“xy”), and a fractional  
portion, “abcdefgh”. The fractional portion of the multiplier is a value that when represented as a 24-bit binary  
number (stored in three 9-bit registers on the NAU8812), very closely matches the exact desired multiplier factor.  
To keep the PLL within its optimal operating range, the integer portion of the decimal number (“xy”), must be any  
of the following decimal values: 6, 7, 8, 9, 10, 11, or 12. The input and output dividers outside of the PLL are  
often helpful to scale frequencies as needed to keep the “xy” value within the required range. Also, the optimum  
PLL oscillator frequency is in the range between 90MHz and 100MHz, and thus, it is best to keep f2 within this  
range.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 44 of 110  
June 2016  
NAU8812  
In summary, for any given design, choose:  
Equations  
Description  
Notes  
IMCLK = (256) * (desired codec  
sample rate)  
IMCLK = desired Master Clock  
The integer values for D and P  
are chosen to keep the PLL in its  
optimal operating range. It may  
be best to assign initial values of  
1 to both D and P, and then by  
inspection, determine if they  
should be a different value.  
where P is the Master Clock divider  
integer value;  
optimal f2: 90MHz< f2 <100MHz  
f2 = (4 * P * IMCLK)  
where D is the PLL Prescale factor of 1,  
or 2, and MCLK is the frequency at the  
MCLK pin  
f1 = (MCLK / D)  
R = f2 / f1 = xy.abcdefgh decimal  
value  
which is the fractional frequency  
multiplication factor for the PLL  
truncated integer portion of the R value  
and limited to decimal value 6, 7, 8, 9,  
10, 11, or 12  
N = xy  
rounded to the nearest whole integer  
value then converted to a binary 24-bit  
value  
K = (224) * (0.abcdefgh)  
Table 24: Registers associated with PLL  
11.8.2. CSB/GPIO as PLL out (fPLL  
)
CSB/GPIO is a multi-function pin that may be used for a variety of purposes. If not required for some other  
purpose, this pin may be configured to output the clock frequency from the PLL subsystem. This is the same  
frequency that is available from the PLL subsystem as the input to the Master Clock Prescaler. This frequency  
may be optionally divided by an additional integer factor of 2, 3, or 4, before being output on GPIO.  
11.8.3. Phase Locked Loop (PLL) Design Example  
In an example application, a desired sample rate for the DAC is known to be 48.000kHz. Therefore, it is also  
known that the IMCLK rate will be 256fs, or 12.288MHz. Because there is a fixed divide-by-four scaler on the PLL  
output, then the desired PLL oscillator output frequency will be 49.152MHz.  
In this example system design, there is already an available 12.000MHz clock from the USB subystem. To  
reduce system cost, this clock will also be used for audio. Therefore, to use the 12MHz clock for audio, the  
desired fractional multiplier ratio would be R = 49.152/12.000 = 4.096. This value, however, does not meet the  
requirement that the “xy” whole number portion of the multiplier be in the inclusive range between 6 and 12. To  
meet the requirement, the Master Clock Prescaler can be set for an additional divide-by-two factor. This now  
makes the PLL required oscillator frequency 98.304 MHz, and the improved multiplier value is now R =  
98.304/12.000 = 8.192.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 45 of 110  
June 2016  
NAU8812  
To complete this portion of the design example, the integer portion of the multiplier is truncated to the value, 8 and  
the fractional portion is multiplied by 224, as to create the needed 24-bit binary fractional value. The calculation for  
this is: (224)(0.192) = 3221225.472.  
It is best to round this value to the nearest whole value of 3221225, or hexadecimal 0x3126E9.  
Below are additional examples of results for this calculation applied to commonly available clock frequencies and  
desired IMCLK 256fs sample rates.  
Desired  
Output  
(MHz)  
Input  
Frequency  
(f1)  
MCLK  
Divider  
bits  
Actual Register Setting  
MCLK  
(MHz)  
f2  
N
(Hex)  
R
K (Hex)  
(MHz)  
PLLK[23:18] PLLK[17:9] PLLK[8:0]  
12.0  
12.0  
14.4  
14.4  
19.2  
19.2  
19.8  
19.8  
24.0  
24.0  
26.0  
26.0  
11.28960  
12.28800  
11.28960  
12.28800  
11.28960  
12.28800  
11.28960  
12.28800  
11.28960  
12.28800  
11.28960  
12.28800  
MCLK/1  
MCLK/1  
MCLK/1  
MCLK/1  
MCLK/2  
MCLK/2  
MCLK/2  
MCLK/2  
MCLK/2  
MCLK/2  
MCLK/2  
MCLK/2  
90.3168  
98.3040  
90.3168  
98.3040  
90.3168  
98.3040  
90.3168  
98.3040  
90.3168  
98.3040  
90.3168  
98.3040  
fPLL/2  
fPLL/2  
fPLL/2  
fPLL/2  
fPLL/2  
fPLL/2  
fPLL/2  
fPLL/2  
fPLL/2  
fPLL/2  
fPLL/2  
fPLL/2  
7.526400  
8.192000  
6.272000  
6.826667  
9.408000  
10.240000  
9.122909  
9.929697  
7.526400  
8.192000  
6.947446  
7.561846  
7
8
86C226  
3126E9  
45A1CA  
D3A06D  
6872B0  
3D70A3  
1F76F8  
EE009E  
86C226  
3126E9  
F28BD4  
8FD526  
21  
0C  
11  
34  
1A  
0F  
07  
3B  
21  
0C  
3C  
23  
161  
93  
26  
E9  
6
D0  
1CA  
6D  
B0  
6
1D0  
39  
9
10  
9
B8  
A3  
1BB  
100  
161  
93  
F8  
9
9E  
7
26  
8
E9  
6
145  
1EA  
1D4  
126  
7
Table 25: PLL Frequency Examples  
emPowerAudio™  
Datasheet Revision 2.8  
Page 46 of 110  
June 2016  
NAU8812  
11.9. CONTROL INTERFACE  
The NAU8812 features two serial bus interfaces SPI and 2-Wire that provide access to the control registers. The  
MODE pin in conjunction with SPIEN[8] (address 0x49) as shown in the following Table selects the control  
interfaces. 2-Wire interface is compatible with industry I2C serial bus protocol using a bidirectional data signal  
(SDIO) and a clock signal (SCLK). SPI interface is also compatible with other industry interfaces allowing  
operation on a simple 3-wire or 4-wire bus. Table below describes the selection of the protocol modes.  
SPIEN[8] Bit  
MODE Pin  
Description  
(0x49)  
0
1
0
2-Wire Interface (Write/Read)  
SPI Interface 16-bit (Write ONLY)  
0
1
SPI Interface 32-bit (Read)  
SPI Interface 24-bit (Write)  
(SSOP 28-Pin Write ONLY,  
QFN 32-Pin Write/Read)  
x
Table 26: Control Interface Selection  
11.9.1.  
SPI Serial Control  
The Serial Peripheral Interface (SPI) is one of the widely accepted communication interfaces implemented in  
Nuvoton’s Audio CODEC portfolio. SPI is a software protocol allowing operation on a simple 3-wire or 4-wire bus  
where the data is transferred MSB first. NAU8812 has two different SPI architectures  
16-bit write ONLY (default)  
24-bit write with 32-bit read  
The SPI interface consists of a clock (SCLK), chip select (CSb), serial data input (SDIO), and serial data output  
(SO) to configure all the internal register contents. The SO Pin is ONLY available on the 32-Pin QFN package.  
SCLK is static, allowing the user to stop the clock and then start it again to resume operations where it left off.  
The 24-bit write operation consists of 8-bits of device address, 7-bits of control register address, and 9-bits of data.  
The 32-bit read operation consists of 8-bits of device address, 8-bits of control register address, and 16-bits of  
data of which 9 LSB bits are actual data bits and the rest are 0’s.  
The device address  
Write operation is 00010000b = 10h  
Read operation is 00100000b = 20h  
emPowerAudio™  
Datasheet Revision 2.8  
Page 47 of 110  
June 2016  
NAU8812  
11.9.1.1. 16-bit Write Operation (default)  
The default control interface architecture is SPI 16-bit. This interface architecture consists of 7-bits of control  
register address, and 9-bits of control register data. The MODE Pin set to “1” (HIGH) selects the SPI 16-bit. In  
this mode, the user can only do write operation. The write operation requires a valid control register address,  
then a valid 9-bit Data Byte and the finally to complete the transaction the CSb has to transition from LOW to  
HIGH to latch the last 9-bits (data).  
CBb/GPIO  
SCLK  
SDIO  
A6 A5 A4 A3 A2 A1 A0 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Control Register  
9-bit Data Byte  
Address  
Figure 22: Register write operation using a 16-bit SPI Interface  
11.9.1.2. 24-bit Write Operation  
The 24-bit write operation is a three-byte operation. To start the operation the host controller transitions the CSb  
from HIGH to LOW. The host micro-controller sends valid device address, then a valid control register address  
following Data Byte. Finally the interface is terminated by toggling CSb pin from LOW to HIGH. The write  
operation will accept multiple 9-bit DATA blocks, which will be written in to sequential address beginning with the  
address, specified in the control register address. Steps below show the procedure to enter and exit SPI 24-bit  
write and 32-bit read  
Procedure to enter the 24-bit SPI interface  
Set the Mode pin to “0” (LOW)  
Use the 2-wire write architecture to write to register address 0x049 SPIEN[8] = “1” (HIGH)  
OR  
Set the Mode pin to “1” (HIGH)  
Use the 16-bit write architecture to write to register address 0x049 SPIEN[8] = “1” (HIGH)  
Procedure to exit the 24-bit SPI interface  
Use the 24-bit write architecture to write to register address 0x49 SPIEN[8] = “0” (LOW)  
Depending on the state of the Mode pin, control interface will be selected  
o
o
Mode Pin = “0” for I2C  
Mode Pin = “1” for 16-bit SPI  
emPowerAudio™  
Datasheet Revision 2.8  
Page 48 of 110  
June 2016  
NAU8812  
CBb/GPIO  
SCLK  
SDIO  
0
0
0
1
0
0
0
0
A6 A5 A4 A3 A2 A1 A0 D8 D7 D6 D5 D4 D3 D2 D1 D0  
Control Register  
9-bit Data Byte  
Address  
Device Address = 10h  
Figure 23: Register Write operation using a 24-bit SPI Interface  
11.9.1.3.  
32-bit Read Operation  
The 32-bit read operation is a four-byte operation with 2-bytes of data. The transmission starts with the falling  
edge of the CSb line and ends with the rising edge of the CSb. The host micro-controller sends device address,  
control register address byte following 2 bytes of data. The device can receive more than one byte of data by  
continuously clocking. Note after reaching the maximum address the internal pointer “rolls over” to address 0x00  
(hex). The device will output a dummy byte [0x00] when locations without register assignments are within the  
sequence.  
CBb/GPIO  
SCLK  
SDIO  
SO  
0
0
1
0
0
0
0
0
A6 A5 A4 A3 A2 A1 A0  
0
0
0
0
0
0
0
0
D8 D7 D6 D5 D4 D3 D2 D1 D0  
Data Byte 1  
Data Byte 2  
Control Register  
Address  
Device Address = 20h  
Figure 24: Register Read operation through a 32-bit SPI Interface  
11.9.2.  
2-WIRE Serial Control Mode (I2C Style Interface)  
The NAU8812 supports a bidirectional bus oriented protocol. The protocol defines any device that sends data  
onto the bus as a transmitter and the receiving device as the receiver. Therefore, the 2-Wire operates as slave  
interface. All communication over the 2-Wire interface is conducted by sending the MSB of each byte of data first.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 49 of 110  
June 2016  
NAU8812  
11.9.2.1.  
2-WIRE Protocol Convention  
All 2-Wire interface operations must begin with a START condition, which is a HIGH to LOW transition of SDIO  
while SCLK is HIGH. All 2-Wire and all interface operations are terminated by a STOP condition, which is a LOW  
to HIGH transition of SDIO while SCLK is HIGH. A STOP condition at the end of a read or write operation places  
the device in standby mode. An acknowledge (ACK), is a software convention used to indicate a successful data  
transfer. The transmitting device, either master or slave, releases the SDIO bus after transmitting eight bits.  
During the ninth clock cycle, the receiver pulls the SDIO line LOW to acknowledge the reception of the eight bits  
of data.  
Following a START condition, the master must output a device address byte. The 7-MSB bits “0011010” are the  
device address. The LSB of the device address byte is the R/W bit and defines a read (R/W = 0) or write (R/W =  
1) operation. When this, R/W, bit is a “1”, then a read operation is selected and when “0” the device selects a  
write operation. The device outputs an acknowledge LOW for a correct device address and HIGH for an incorrect  
device address on the SDIO pin.  
9th  
Clock  
SCLK  
SCLK  
SDIO  
SCLK  
SDIO  
SDIO  
Receive  
ACK  
SDIO  
Transmit  
START  
STOP  
Figure 27: Valid STOP Condition  
Figure 25: Valid START Condition  
Figure 26: Valid Acknowledge  
Device  
R/W  
0
0
1
1
0
1
0
Address Byte  
Control  
Address Byte  
Write - D8  
Read - 0  
A6  
D7  
A5  
D6  
A4  
D5  
A3  
D4  
A2  
D3  
A1  
D2  
A0  
D1  
Data Byte  
D0  
Figure 28: Slave Address Byte, Control Address Byte, and Data Byte  
11.9.2.2.  
2-WIRE Write Operation  
A Write operation consists of a two-byte instruction followed by one or more Data Bytes. A Write operation  
requires a START condition, followed by a valid device address byte, a valid control address byte, data byte(s),  
and a STOP condition. After each three bytes sequence, the NAU8812 responds with an ACK and the 2-Wire  
interface enters a standby state.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 50 of 110  
June 2016  
NAU8812  
SCLK  
SDIO  
0
0
1
1
0
1
0
0
A6  
A0 D8  
A5 A4 A3 A2 A1  
D7 D6 D5  
D4 D3 D2 D1 D0  
S
T
O
P
A
C
S
T
A
A
C
K
A
C
K
K
R
T
Device Address  
=34h  
R/W  
Control Register Address  
9-bit Data Byte  
Figure 29: Byte Write Sequence  
11.9.2.3.  
2-WIRE Read Operation  
A Read operation consists of a three-byte instruction followed by one or more Data Bytes. The master initiates  
the operation issuing the following sequence: a START condition, device address byte with the R/W bit set to “0”,  
a control address byte, a second START condition, and a second device address byte with the R/W bit set to “1”.  
After each of the three bytes, the NAU8812 responds with an ACK. Then the NAU8812 transmits Data Bytes as  
long as the master responds with an ACK during the SCLK cycle following the ninth bit of each byte. The master  
terminates the read operation (issuing a STOP condition) following the last bit of the last Data Byte.  
After reaching the memory location 7Fh the pointer “rolls over” to 00h, and the device continues to output data for  
each ACK received.  
SCLK  
0
0
1
1
0
1
0
0
A6 A5 A4 A3 A2 A1 A0  
Control Register Address  
0
0
1
1
0
1
0
1
0
S
S
A
C
K
A
C
K
A
C
K
2ND Device Address = 35h  
T
A
R
T
T
A
R
T
Device Address = 34h  
0
0
0
0
0
0
D8  
D6 D5 D4 D3 D2 D1 D0  
D7  
0
A
C
K
N
A
C
K
S
T
O
P
16-bit Data  
Figure 30: 2-Wire Read Sequence  
emPowerAudio™  
Datasheet Revision 2.8  
Page 51 of 110  
June 2016  
NAU8812  
11.10. DIGITAL AUDIO INTERFACES  
NAU8812 only uses the Left channel to transfer data in normal mode. It supports an independent digital interface  
for voice and audio. The digital interface is used to input digital data to the DAC, or output digital data from the  
ADC. The digital interface can be configured to Master mode or Slave mode.  
Master mode is configured by setting CLKIOEN[0] address (0x06) bit to HIGH. The main clock (MCLK) of the  
digital interface is provided from an external clock either from a crystal oscillator or from a microcontroller. With  
an appropriate MCLK, the device generates bit clock (BCLK) and frame sync (FS) internally in the master mode.  
By generating the bit clock and frame sync internally, the NAU8812 has full control of the data transfer.  
Slave mode is configured by setting CLKIOEN[0] address (0x06) bit to LOW. In this mode, an external controller  
has to supply the bit clock and the frame sync. The NAU8812 uses ADCOUT, DACIN, FS, and BCLK pins to  
control the digital interface. Care needs to be exercised when designing a system to operate the NAU8812 in this  
mode as the relationship between the sample rate, bit clock, and frame sync needs to be controlled by other  
controller. In both modes of operation, the internal MCLK and MCLK prescalers determine the sample rate for the  
DAC and ADC.  
The output state of the ADCOUT pin by default is pulled-low. Depending on the application, the output can be  
configured to be Hi-Z, pull-low, pull-high, Low or High. To configure the output, three different bits have to be set.  
First the output switched to the mask by setting PUDOEN[5] address (0x3C), then the mask has to be enabled be  
setting PUDPE[4] address (0x3C) and finally output state select pulled up or down by PUDPS[3] address (0x3C).  
Six different audio formats are supported by NAU8812 with MSB first and they are as follows.  
AIFMT[4]  
Addr: (0x04)  
AIFMT[3]  
Addr: (0x04)  
PCMTSEN[8]  
Addr: (0x3C) Addr: (0x3C)  
PCMB[1]  
PCM Mode  
PCM B  
0
0
0
1
1
1
0
0
1
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
Right Justified  
Left Justified  
I2S  
PCM A  
PCM Time Slot  
Table 27: Standard Interface modes  
Addr  
0x04  
0x06  
0x3B  
D8  
D7  
D6  
WLEN[1:0]  
MCLKSEL[2:0]  
D5  
D4  
AIFMT[1:0]  
BCLKSEL[2:0]  
TSLOT[8:0]  
D3  
D2  
D1  
D0  
0
Default  
0x050  
BCLKP  
CLKM  
FSP  
DACPHS ADCPHS  
0
CLKIOEN 0x140  
0x000  
0x3C PCMTSEN TRI PCM8BIT PUDOEN PUDPE  
PUDPS LOUTR PCMB TSLOT[9:8] 0x000  
Table 28: Audio Interface Control Registers  
emPowerAudio™  
Datasheet Revision 2.8  
Page 52 of 110  
June 2016  
NAU8812  
11.10.1. Right Justified audio data  
In right justified interface (normal mode), the left channel serial audio data is synchronized with the frame sync.  
Left channel data is transferred during the HIGH frame sync. The MSB data is sampled first. The data is latched  
on the last rising edge of BCLK before frame sync transition (FS). The LSB is aligned with the falling edge of the  
frame sync signal (FS). Right justified format is selected by setting AIFMT[1:0] address (0x04) to “00” binary in  
conjunction with PCMTSEN[8] address (0x3C) set to LOW.  
FS  
LEFT CHANNEL  
RIGHT CHANNEL  
BCLK  
DACIN/  
ADCOUT  
1
2
N-1  
N
MSB  
LSB  
Figure 31: Right Justified Audio Interface (Normal Mode)  
NAU8812 features a special mode where the device outputs Left channel data to both Left and Right channels.  
This is accomplished by setting LOUTR[2] address (0x3C) to “1”  
FS  
BCLK  
LEFT CHANNEL  
RIGHT CHANNEL  
ADCOUT  
1
2
N-1  
N
1
2
N-1  
N
MSB  
LSB  
MSB  
LSB  
Figure 32: Right Justified Audio Interface (Special mode)  
emPowerAudio™  
Datasheet Revision 2.8  
Page 53 of 110  
June 2016  
NAU8812  
11.10.2. Left Justified audio data  
In Left justified interface (normal mode), the left channel serial audio data is synchronized with the frame sync.  
Left channel data is transferred during the HIGH frame sync. The MSB data is sampled first and is available on  
the first rising edge of BCLK following a frame sync transition (FS). Left justified format is selected by setting  
AIFMT[1:0] address (0x04) to “01” binary in conjunction with PCMTSEN[8] address (0x3C) set to LOW.  
FS  
LEFT CHANNEL  
RIGHT CHANNEL  
BCLK  
DACIN/  
ADCOUT  
1
2
N-1  
N
MSB  
LSB  
Figure 33: Left Justified Audio Interface (Normal Mode)  
NAU8812 features a special mode where the device outputs Left channel data to both Left and Right channels.  
This is accomplished by setting LOUTR[2] address (0x3C) to “1”  
FS  
BCLK  
LEFT CHANNEL  
RIGHT CHANNEL  
ADCOUT  
1
2
N-1  
N
1
2
N-1  
N
MSB  
LSB  
MSB  
LSB  
Figure 34: Left Justified Audio Interface (Special mode)  
emPowerAudio™  
Datasheet Revision 2.8  
Page 54 of 110  
June 2016  
NAU8812  
11.10.3. I2S audio data  
In I2S interface (normal mode), the left channel serial audio data is synchronized with the frame sync. Left  
channel data is transferred during the LOW frame sync. The MSB data is sampled first. The data is latched on  
the second rising edge of BCLK following a frame sync transition (FS). I2S format is selected by setting  
AIFMT[1:0] address (0x04) to “10” binary in conjunction with PCMTSEN[8] address (0x3C) set to LOW.  
FS  
LEFT CHANNEL  
RIGHT CHANNEL  
BCLK  
DACIN/  
ADCOUT  
1
2
N-1  
N
MSB  
LSB  
1 BCLK  
Figure 35: I2S Audio Interface (Normal Mode)  
NAU8812 features a special mode where the device outputs Left channel data to both Left and Right channels.  
This is accomplished by setting LOUTR[2] address (0x3C) to “1”  
FS  
LEFT CHANNEL  
RIGHT CHANNEL  
BCLK  
ADCOUT  
1
2
N-1  
N
1
2
N-1  
N
MSB  
LSB  
MSB  
LSB  
1 BCLK  
1 BCLK  
Figure 36: I2S Audio Interface (Special mode)  
emPowerAudio™  
Datasheet Revision 2.8  
Page 55 of 110  
June 2016  
NAU8812  
11.10.4. PCM audio data  
In PCM interface (normal mode), the left channel serial audio data is synchronized with the frame sync. Left  
channel data is transferred during the LOW frame sync. The MSB data is sampled first. The data is latched on  
the second rising edge of BCLK following a frame sync transition (FS). PCM format is selected by setting  
AIFMT[4:3] address (0x04) to “11” binary in conjunction with PCMTSEN[8] address (0x3C) set to LOW.  
The digital data can be forced to appear on the right phase of the FS by setting ADCPHS[0] and DACPHS[1]  
address (0x04) bits to HIGH respectively. The starting point of the right phase data depends on the word length  
WLEN[6:5] address (0x04) after the frame sync transition (FS).  
1 BCLK  
FS  
LEFT CHANNEL  
BCLK  
DACIN/  
ADCOUT  
1
2
N-1  
N
MSB  
LSB  
Word Length, WLEN[6:5]  
Figure 37: PCM Mode Audio Interface (Normal Mode)  
NAU8812 features a special mode where the device outputs Left channel data to both Left and Right channels.  
This is accomplished by setting LOUTR[2] address (0x3C) to “1”  
1 BCLK  
FS  
LEFT CHANNEL  
RIGHT CHANNEL  
BCLK  
ADCOUT  
1
2
N-1  
LSB MSB  
Word Length, WLEN[6:5]  
N
1
2
N-1  
N
MSB  
LSB  
Word Length, WLEN[6:5]  
Figure 38: PCM Mode Audio Interface (Special mode)  
emPowerAudio™  
Datasheet Revision 2.8  
Page 56 of 110  
June 2016  
NAU8812  
11.10.5. PCM Time Slot audio data  
In PCM Time-Slot interface (normal mode), the left channel serial audio data is synchronized with the frame sync.  
Left channel data is transferred during the LOW frame sync. The MSB data is sampled first. The starting point of  
the timeslot is controlled by a 10-bit byte TSLOT[9:0] address (0x3B and 0x3C). The data is latched on the first  
rising edge of BCLK following a frame sync transition (FS) providing PCM is in timeslot zero (TSLOT[9:0] = 000).  
PCM Time-Slot format is selected by setting AIFMT[4:3] address (0x04) to “11” binary in conjunction with  
PCMTSEN[8] address (0x3C) set to HIGH. The digital data can be forced to appear on the right phase of the FS  
by setting ADCPHS[0] and DACPHS[1] address (0x04) bits to HIGH respectively. The starting point of the right  
phase data depends on the word length WLEN[6:5] address (0x04) and timeslot assignment TSLOT[9:0] address  
(0x3B and 0x3C) after the frame sync transition (FS). DACIN will return to the bus condition either on the  
negative edge of BCLK during the LSB, or on the positive edge of BCLK following the LSB depending on the  
setting of TRI[7] address (0x3C). Tri-stating on the negative edge allows the transmission of data by multiple  
sources in adjacent timeslots without the risk of driver contention.  
1 BCLK  
FS  
LEFT CHANNEL  
BCLK  
DACIN/  
ADCOUT  
1
2
N-1  
N
MSB  
LSB  
Word Length, WLEN[6:5]  
Figure 39: PCM Time Slot Mode (Time slot = 0) (Normal Mode)  
NAU8812 features a special mode where the device outputs Left channel data to both Left and Right channels.  
This is accomplished by setting LOUTR[2] address (0x3C) to “1”  
1 BCLK  
FS  
LEFT CHANNEL  
RIGHT CHANNEL  
BCLK  
ADCOUT  
1
2
N-1  
N
1
2
N-1  
N
MSB  
LSB MSB  
LSB  
Word Length, WLEN[6:5]  
Word Length, WLEN[6:5]  
Figure 40: PCM Time Slot Mode (Time slot = 0) (Special mode)  
emPowerAudio™  
Datasheet Revision 2.8  
Page 57 of 110  
June 2016  
NAU8812  
11.10.6. Companding  
Companding is used in digital communication systems to optimize signal-to-noise ratios with reduced data bit  
rates, and make use of non-linear algorithms. NAU8812 supports two different types of companding A-law and µ-  
law on both transmit and receive sides. A-law algorithm is used in European communication systems and µ-law  
algorithm is used by North America, Japan, and Australia. This feature is enabled by setting DACCM[4:3]  
address (0x05) or ADCCM[2:1] address (0x05) register bits. Companding converts 13 bits (µ-law) or 12 bits (A-  
law) to 8 bits using non-linear quantization. The companded signal is an 8-bit word containing sign (1-bit),  
exponent (3-bits) and mantissa (4-bits). As recommended by the G.711 standard (all 8-bits are inverted for µ-law,  
all even data bits are inverted for A-law).  
Setting CMB8[5] address 0x05 to 1 will cause the PCM interface to use 8-bit word length for data transfer,  
overriding the word length configuration setting in WLEN[6:5] address 0x04.  
Addr  
D8  
0
D7  
0
D6  
0
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x05  
CMB8  
DACCM[1:0]  
ADCCM[1:0]  
ADDAP  
0x000  
Table 29: Companding Control  
The following equations for data compression (as set out by ITU-T G.711 standard):  
µ-law (where µ=255 for the U.S. and Japan):  
F(x) = ln( 1 + µ|x|) / ln( 1 + µ)  
-1 ≤ x ≤ 1  
A-law (where A=87.6 for Europe):  
emPowerAudio™  
Datasheet Revision 2.8  
Page 58 of 110  
June 2016  
NAU8812  
11.11. POWER SUPPLY  
This device has been designed to operate reliably using a wide range of power supply conditions and power-  
on/power-off sequences. There are no special requirements for the sequence or rate at which the various power  
supply pins change. Any supply can rise or fall at any time without harm to the device. However, pops and clicks  
may result from some sequences. Optimum handling of hardware and software power-on and power-off  
sequencing is described in more detail in the Power Up/Down Sequencing section of this document.  
11.11.1. Power-On Reset  
The NAU8812 does not have an external reset pin. The device reset function is automatically generated  
internally when power supplies are too low for reliable operation. The internal reset is generated any time that  
either VDDA or VDDC is lower than is required for reliable maintenance of internal logic conditions. The threshold  
voltage for VDDA is approximately ~1.52Vdc and the threshold voltage for VDDC is approximately  
~0.67Vdc. Note that these are much lower voltages than are required for normal operation of the chip. These  
values are mentioned here as general guidance as to overall system design.  
If either VDDA or VDDC is below its respective threshold voltage, an internal reset condition may be  
asserted. During this time, all registers and controls are set to the hardware determined initial  
conditions. Software access during this time will be ignored, and any expected actions from software activity will  
be invalid.  
When both VDDA and VDDC reach a value above their respective thresholds, an internal reset pulse is generated  
which extends the reset condition for an additional time. The duration of this extended reset time is approximately  
50 microseconds, but not longer than 100 microseconds. The reset condition remains asserted during this  
time. If either VDDA or VDDC at any time becomes lower than its respective threshold voltage, a new reset  
condition will result. The reset condition will continue until both VDDA and VDDC again higher than their  
respective thresholds. After VDDA and VDDC are again both greater than their respective threshold voltage, a  
new reset pulse will be generated, which again will extend the reset condition for not longer than an additional 100  
microseconds.  
11.11.2. Power Related Software Considerations  
There is no direct way for software to determine that the device is actively held in a reset condition. If there is a  
possibility that software could be accessing the device sooner than 100 microseconds after the VDDA and VDDC  
supplies are valid, the reset condition can be determined indirectly. This is accomplished by writing a value to any  
register other than register 0x00, with that value being different than the power-on reset initial values. The  
optimum choice of register for this purpose may be dependent on the system design, and it is recommended the  
system engineer choose the register and register test bit for this purpose. After writing the value, software will  
then read back the same register. When the register test bit reads back as the new value, instead of the power-  
on reset initial value, software can reliably determine that the reset condition has ended.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 59 of 110  
June 2016  
NAU8812  
Although it is not required, it is strongly recommended that a Software Reset command should be issued after  
power-on and after the power-on-reset condition is ended. This will help insure reliable operation under every  
power sequencing condition that could occur.  
11.11.3. Software Reset  
The control registers can be reset to default conditions by writing any value to RST address (0x00), using any of  
the control interface modes. Writing valid data to any other register disables the reset, but all registers will need  
to be initiated again appropriate to the operation. See the applications section on powering NAU8812 up for  
information on avoiding pops and clicks after a software reset.  
11.11.4. Power Up/Down Sequencing  
Most audio products have issues during power up and power down in the form of pop and click noise. To avoid  
cuch issues the NAU8812 provides four different power supplies VDDA, VDDB, VDDC and VDDSPK with  
separated grounds VSSA, VSSD and VSSSPK. The audio CODEC circuitry, the input amplifiers, output  
amplifiers and drivers, the audio ADC and DAC converters, the PLL, and so on, can be powered up and down  
individually by software control via 2-Wire or SPI interface. The zero cross function should be used when  
changing the volume in the PGAs to avoid any audible pops or clicks. There are two different modes of operation  
5.0V and 3.3V mode. The recommended power-up and power-down sequences for both the modes are outlined  
as following.  
Power Up  
Name  
VDDSPK - 3.3V operation  
Analog VDDA  
VDDSPK - 5.0V operation  
Analog VDDA  
Buffer - VDDB  
Buffer - VDDB  
Power supplies  
Digital VDDC  
Digital VDDC  
Output driver - VDDSPK  
SPKBST[2] = 0  
Output driver VDDSPK  
SPKBST[2] = 1  
Mode  
MOUTBST[3] = 0  
REFIMP[1:0]  
MOUTBST[3] = 1  
as required (value of the REFIMP bits based on the startup  
time which is a combination of the reference impedance and  
the decoupling capacitor on VREF)  
Power  
Management  
ABIASEN[3] = 1  
(enables the internal device bias for all analog blocks)  
IOBUFEN[2] = 1  
(enables the internal device bias buffer)  
CLKIOEN[0] if required  
BCLKSEL[4:2] if required  
MCLKSEL[7:5] if required  
PLLEN[5] if required  
DACEN[0] = 1  
CLKIOEN[0] if required  
BCLKSEL[4:2] if required  
MCLKSEL[7:5] if required  
PLLEN[5] if required  
DACEN[0] = 1  
Clock divider  
PLL  
DAC, ADC  
Mixers  
ADCEN[0] = 1  
ADCEN[0] = 1  
SPKMXEN[2]  
SPKMXEN[2]  
emPowerAudio™  
Datasheet Revision 2.8  
Page 60 of 110  
June 2016  
NAU8812  
Power Up  
VDDSPK - 3.3V operation  
Name  
VDDSPK - 5.0V operation  
MOUTMXEN[3]  
MOUTEN[7]  
MOUTMXEN[3]  
MOUTEN[7]  
NSPKEN[6]  
Output stages  
Un-mute DAC  
NSPKEN[6]  
PSPKEN[5]  
PSPKEN[5]  
DACMT[6] = 0  
DACMT[6] = 0  
Table 30: Power up sequence  
Name  
Power Down Both Cases  
Un-mute DAC  
DACMT[6] = 1  
Power Management  
PWRM1 = 0x000  
MOUTEN[7]  
Output stages  
Power supplies  
NSPKEN[6]  
PSPKEN[5]  
Analog VDDA  
Buffer - VDDB  
Digital VDDC  
Output driver VDDSPK  
Table 31: Power down Sequence  
11.11.5. Reference Impedance (REFIMP) and Analog Bias  
Before the device is functional or any of the individual analog blocks are enabled REFIMP[1:0] address (0x01)  
and ABIASEN[3] address (0x01) must be set. The REFIMP[1:0] bits control the resistor values (“R” in Figure3)  
that generates the mid supply reference, VREF. REFIMP[1:0] bits control the power up ramp rate in conjunction  
with the external decoupling capacitor. A small value of “R” allows fast ramp up of the mid supply reference and a  
large value of “R” provides higher PSRR of the mid supply reference.  
The master analog biasing of the device is enabled by setting ABIASEN[3] address (0x01). This bit has to be set  
before for the device to function.  
11.11.6. Power Saving  
Saving power is one of the critical features in a semiconductor device specially ones used in the Bluetooth  
headsets and handheld device. NAU8812 has two oversampling rates 64x and 128x. The default mode of  
operation for the DAC and ADC is in 64x oversampling mode which is set by programming DACOS[3] address  
(0x0A) and ADCOS[3] address (0x0E) respectively to LOW. Power is saved by choosing 64x oversampling rate  
emPowerAudio™  
Datasheet Revision 2.8  
Page 61 of 110  
June 2016  
NAU8812  
compared to 128x oversampling rate but slightly degrades the noise performance. To each lowest power  
possible after the device is functioning set ABIASEN[3] address (0x01) bit to LOW.  
Addr  
0x01 DCBUFEN  
0x0A  
D8  
D7  
0
0
D6  
AUXEN PLLEN MICBIASEN ABIASEN IOBUFEN  
DACMT DEEMP[1:0] DACOS AUTOMT  
MOUTF[2:0]  
0x3A LPSPKA LPIPBST LPADC LPSPKD  
LPDAC  
D5  
D4  
D3  
D2  
D1  
REFIMP  
0
0
D0  
Default  
0x000  
0
DACPL 0x000  
ADCPL 0x100  
0x0E MOUTFEN MOUTFAM  
ADCOS  
TRIMREG  
0
0
IBADJ  
0
0x000  
Table 32: Registers associated with Power Saving  
11.11.7. Estimated Supply Currents  
NAU8812 can be programmed to enable or disable various analog blocks individually. The table below shows the  
amount of current consumed by certain analog blocks. Sample rate settings will vary current consumption of the  
VDDC supply. VDDC consumes approximately 4mA with VDDC = 1.8V and fs = 48kHz. Lower sampling rates  
will draw lower current.  
BIT  
Address  
VDDA CURRENT  
10K => 300 uA  
161k/595k < 100 uA  
REFIMP[1:0]  
IOBUFEN[2]  
ABIASEN[3]  
MICBIASEN[4]  
PLLEN[5]  
40uA  
600uA  
0x01  
500 uA  
2.5mA Clocks Applied  
80uA  
DCBUFEN[8]  
ADCEN[0]  
x64 - ADCOS= 0 => 2.0mA  
x128 - ADCOS= 1 => 3.0mA  
PGAEN[2]  
0x02  
400uA  
200 uA  
BSTEN[4]  
X64 (DACOS=0)=>1.6mA  
x128(DACOS=1)=>1.7mA  
DACEN[0]  
SPKMXEN[2]  
MOUTMXEN[3]  
NSPKEN[6]  
PSPKEN[5]  
MOUTEN[7]  
400uA  
200uA  
0x03  
1mA from VDDSPK + 100uA (VDDA = 5V mode)  
1mA from VDDSPK + 100uA (VDDA = 5V mode)  
100uA  
Table 33: VDDA 3.3V Supply Current  
emPowerAudio™  
Datasheet Revision 2.8  
Page 62 of 110  
June 2016  
NAU8812  
12. REGISTER DESCRIPTION  
Register  
Address  
Register Bits  
D4  
Register Names  
Default  
DEC HEX  
D8  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
0
0
Software Reset  
RESET (SOFTWARE)  
000  
POWER MANAGEMENT  
1
2
3
01 Power Management 1 DCBUFEN  
0
0
AUXEN  
0
PLLEN MICBIASEN ABIASEN  
IOBUFEN  
PGAEN  
REFIMP  
000  
02 Power Management 2  
03 Power Management 3  
0
0
0
BSTEN  
0
0
0
0
ADCEN  
DACEN  
000  
000  
MOUTEN NSPKEN  
PSPKEN  
MOUTMXEN SPKMXEN  
AUDIO CONTROL  
AIFMT[1:0]  
4
5
6
7
8
04 Audio Interface  
05 Companding  
06 Clock Control 1  
07 Clock Control 2  
08 GPIO CTRL  
BCLKP  
FSP  
0
WLEN[1:0]  
DACPHS  
ADCPHS  
0
050  
000  
140  
000  
000  
000  
0FF  
100  
0FF  
0
0
0
0
DACCM[1:0]  
ADCCM[1:0]  
ADDAP  
CLKIOEN  
SCLKEN  
CLKM  
MCLKSEL[2:0]  
BCLKSEL[2:0]  
0
0
0
0
0
0
0
0
SMPLR[2:0]  
AUTOMT  
0
0
GPIOPLL[1:0]  
DEEMP[1:0]  
GPIOPL  
DACOS  
GPIOSEL[2:0]  
0
10 0A DAC CTRL  
11 0B DAC Volume  
14 0E ADC CTRL  
15 0F ADC Volume  
0
DACMT  
DACPL  
ADCPL  
0
HPFEN  
0
DACGAIN  
ADCOS  
ADCGAIN  
DIGITAL TO ANALOG (DAC) LIMITER  
DACLIMDCY[3:0]  
DACLIMTHL[2:0]  
NOTCH FILTER  
NFCA0[13:7]  
HPFAM  
HPF[2:0]  
0
24 18 DAC Limiter 1  
25 19 DAC Limiter 2  
DACLIMEN  
0
DACLIMATK[3:0]  
DACLIMBST[3:0]  
032  
000  
0
27 1B Notch Filter High  
28 1C Notch Filter Low  
29 1D Notch Filter High  
30 1E Notch Filter Low  
NFCU  
NFCU  
NFCU  
NFCU  
NFCEN  
000  
000  
000  
000  
0
0
0
NFCA0[6:0]  
NFCA1[13:7]  
NFCA1[6:0]  
ALC CONTROL  
32 20 ALC CTRL 1  
33 21 ALC CTRL 2  
34 22 ALC CTRL 3  
35 23 Noise Gate  
ALCEN  
ALCZC  
ALCM  
0
0
0
0
ALCMXGAIN[2:0]  
ALCMNGAIN[2:0]  
038  
00B  
032  
000  
ALCHT[3:0]  
ALCDCY[3:0]  
ALCSL[3:0]  
ALCATK[3:0]  
0
0
0
ALCNEN  
ALCNTH[2:0]  
PLL CONTROL  
PLLMCLK  
36 24 PLL N CTRL  
37 25 PLL K 1  
38 26 PLL K 2  
39 27 PLL K 3  
0
0
0
0
0
0
0
PLLN[3:0]  
008  
00C  
093  
0E9  
PLLK[23:18]  
PLLK[17:9]  
PLLK[8:0]  
INPUT, OUTPUT & MIXER CONTROL  
40 28 Attenuation CTRL  
44 2C Input CTRL  
45 2D PGA Gain  
0
0
0
0
0
0
0
0
0
MOUTATT  
AUXPGA  
SPKATT  
0
000  
003  
010  
MICBIASV  
AUXM  
NMICPGA PMICPGA  
0
PGAZC  
PGAMT  
PGAGAIN[5:0]  
emPowerAudio™  
Datasheet Revision 2.8  
Page 63 of 110  
June 2016  
NAU8812  
Register  
Address  
Register Bits  
D4  
Register Names  
Default  
DEC HEX  
D8  
D7  
D6  
D5  
D3  
D2  
D1  
AUXBSTGAIN  
TSEN  
D0  
47 2F ADC Boost  
PGABST  
0
PMICBSTGAIN  
0
MOUTBST  
0
100  
49 31 Output CTRL  
50 32 Mixer CTRL  
0
0
0
0
0
0
0
0
0
0
SPKBST  
0
AOUTIMP  
DACSPK  
002  
001  
039  
0
SPKZC  
0
AUXSPK  
BYPSPK  
54 36 SPKOUT Volume  
56 38 MONO Mixer Control  
SPKMT  
MOUTMT  
SPKGAIN[5:0]  
0
0
0
AUXMOUT BYPMOUT DACMOUT 001  
LOW POWER CONTROL  
LPDAC MICBIASM  
58 3A Power Management 4 LPIPBST  
LPADC  
TRI  
LPSPKD  
TRIMREG  
IBADJ  
000  
PCM TIME SLOT & ADCOUT IMPEDANCE OPTION CONTROL  
59 3B Time Slot  
TSLOT[8:0]  
000  
60 3C ADCOUT Drive  
PCMTSEN  
PCM8BIT PUDOEN  
PUDPE  
PUDPS  
LOUTR  
PCMB  
TSLOT[9:8] 020  
REGISTER ID  
62 3E Silicon Revision  
63 3F 2-Wire ID  
0
0
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
0
1
0
0
1
1
1
0
0
1
1
1
1
0
0
0
0EE  
01A  
0CA  
124  
001  
000  
000  
1
0
0
64 40 Additional ID  
65 41 Reserved  
0
0
0
1
0
0
69 45 High Voltage CTRL  
70 46 ALC Enhancements 1  
MOUTMT  
HVOPU  
HVOP  
ALCPKSEL ALCNGSEL  
ALCGAINL (READ ONLY)  
71 47 ALC Enhancements 2 PKLIMEN  
0
73 49 Additional IF CTRL  
75 4B Power/Tie-off CTRL  
76 4C ALC P2P Detector  
77 4D ALC Peak Detector  
78 4E Control and Status  
SPIEN  
0
FSERRVAL[1:0]  
FSERFLSH FSERRENA  
NFDLY  
0
DACINMT PLLLOCKP DACOS256 000  
LPSPKA  
0
0
0
MANVREFH MANVREFM MANVREFL 000  
P2PDET (READ ONLY)  
PDET (READ ONLY)  
000  
000  
0
0
AMTCTRL  
SBUFL  
HVDET  
SNSPK  
NSGATE  
SPSPK  
AMUTE  
SMOUT  
DMUTE  
0
0
0
FTDEC  
0
000  
000  
79 4F Output tie-off CTRL MANOUTEN SBUFH  
emPowerAudio™  
Datasheet Revision 2.8  
Page 64 of 110  
June 2016  
NAU8812  
12.1. SOFTWARE RESET  
Addr  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x000  
0x00  
RESET (SOFTWARE)  
This is device Reset register. Performing a write instruction to this register with any data will reset all the bits in  
the register map to default.  
12.2. POWER MANAGEMENT REGISTERS  
12.2.1. Power Management 1  
Addr  
D8  
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x01 DCBUFEN  
AUXEN PLLEN MICBIASEN ABIASEN IOBUFEN  
REFIMP[1:0]  
0x000  
Microphone  
Bias  
Enable  
Analogue  
amplifier  
bias control  
Buffer for DC  
level shifting  
Enable  
Unused  
input/output tie  
off buffer enable  
AUX input  
buffer enable  
Name  
PLL enable  
Bit  
DCBUFEN[8]  
AUXEN[6]  
PLLEN[5]  
MICBIASEN[4]  
ABIASEN[3]  
IOBUFEN[2]  
0
Disable  
Disable  
Disable  
Disable  
Enable  
Disable  
Disable  
Enable  
(required for  
1.5x gain)  
1
Enable  
Enable  
Enable  
Enable  
The DCBUFEN[8] address (0x01) is a dedicated buffer for DC level shifting output stages when in 1.5x gain  
boost configuration. There are three different reference impedance selections to choose from as follows:  
VREF REFERENCE  
IMPEDANCE SELECTION  
(“R” refers to “R” as shown in Figure3)  
REFIMP[1]  
REFIMP[0]  
Mode  
0
0
1
1
0
1
0
1
Disable  
R = 80 k  
R = 300 k  
R = 3 k  
emPowerAudio™  
Datasheet Revision 2.8  
Page 65 of 110  
June 2016  
NAU8812  
12.2.2. Power Management 2  
Addr  
D8  
0
D7  
0
D6  
0
D5  
0
D4  
D3  
0
D2  
D1  
0
D0  
Default  
0x02  
BSTEN  
PGAEN  
ADCEN 0x000  
Input Boost  
Enable  
MIC(+/-)  
PGA Enable  
Name  
ADC Enable  
Bit  
BSTEN[4]  
PGAEN[2]  
ADCEN[0]  
0
1
Stage Disable  
Stage Enable  
Disable  
Enable  
Disable  
Enable  
12.2.3. Power Management 3  
Addr  
D8  
0
D7  
D6  
D5  
D4  
0
D3  
D2  
D1  
D0  
Default  
0x03  
MOUTEN NSPKEN PSPKEN  
MOUTMXEN SPKMXEN  
0
DACEN 0x000  
MOUT  
Enable  
SPKOUT-  
Enable  
SPKOUT+  
Enable  
MONO Mixer  
Enable  
Speaker  
Mixer Enable  
DAC  
Enable  
Name  
Bit  
MOUTEN[7] NSPKEN[6]  
PSPKEN[5]  
MOUTMXEN[3] SPKMXEN[2] DACEN[0]  
0
1
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
Disable  
Enable  
12.3. AUDIO CONTROL REGISTERS  
12.3.1. Audio Interface Control  
Addr  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
Default  
0x04  
BCLKP  
FSP  
WLEN[1:0]  
AIFMT[1:0]  
DACPHS ADCPHS  
0x050  
The following table explains the PCM control register bits.  
DAC Data ‘right’ or ‘left’  
ADC Data ‘right’ or ‘left’  
BCLK  
Polarity  
Frame Clock  
Polarity  
Name  
phases of FRAME clock  
phases of FRAME clock  
Bit  
BCLKP[8]  
FSP[7]  
Normal  
Inverted  
DACPHS[2]  
ADCPHS[1]  
DAC data appear in ‘left’ phase of  
ADC data appear in ‘left’ phase of  
0
1
Normal  
FRAME  
FRAME  
DAC data appears in ‘right’ phase of  
ADC data appears in ‘right’ phase of  
Inverted  
FRAME  
FRAME  
There are three different CODEC modes to choose from as follows:  
emPowerAudio™  
Datasheet Revision 2.8  
Page 66 of 110  
June 2016  
NAU8812  
Word Length Selection  
WLEN[6] WLEN[5] Bits  
Audio Data Format Select  
AIFMT[4] AIFMT[3] Format  
Right  
Justified  
0
0
16  
0
0
0
1
1
1
0
1
20  
24  
32  
0
1
1
1
0
1
Left Justified  
I2S  
PCM A  
12.3.2. Audio Interface Companding Control  
Addr  
D8  
0
D7  
0
D6  
0
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x000  
0x05  
CMB8  
DACCM[1:0]  
ADCCM[1:0]  
ADDAP  
The NAU8812 provides a Digital Loopback ADDAP[0] address (0x05) bit. Setting ADDAP[0] bit to HIGH enables  
the loopback so that the ADC data can be fed directly into the DAC input.  
Companding Mode 8-bit  
DAC Companding Selection  
DACCM[4] DACCM[3] Mode  
ADC Companding Select  
ADCCM[2] ADCCM[1] Mode  
word enable  
CMB8[5] Mode  
normal  
operation  
0
1
0
0
Disabled  
0
0
Disabled  
8-bit operation  
0
1
1
1
0
1
Reserved  
µ-Law  
0
1
1
1
0
1
Reserved  
µ-Law  
A-Law  
A-Law  
DAC audio data input option to route  
directly to ADC data stream  
ADDAP[0]  
Mode  
0
Normal Operation  
ADC output data stream  
routed to DAC input data  
path  
1
emPowerAudio™  
Datasheet Revision 2.8  
Page 67 of 110  
June 2016  
NAU8812  
12.3.3. Clock Control Register  
Addr  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
0
D0  
Default  
0x06  
CLKM  
MCLKSEL[2:0]  
BCLKSEL[2:0]  
CLKIOEN 0x140  
Master Clock Selection  
MCLKSEL MCLKSEL MCLKSEL  
Bit Clock Select  
BCLKSEL BCLKSEL BCLKSEL  
Mode  
1  
Mode  
[7]  
[6]  
[5]  
[4]  
[3]  
[2]  
1  
(BCLK=MCLK)  
2  
0
0
0
0
0
0
1.5  
0
0
1
0
0
1
(BCLK=MCLK/2)  
2  
3  
4  
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
8  
4  
16  
32  
6  
8  
Reserved  
Reserved  
12  
Source of Internal Clock master  
clock source selection control  
Enables chip master mode to  
drive FS and BCLK outputs  
Name  
Bit  
CLKM[8]  
CLKIOEN[0]  
MCLK (PLL Bypassed)  
MCLK pin used as master clock  
Slave Mode  
(FS and BCLK are inputs)  
0
1
Master Mode  
(FS and BCLK are driven as  
outputs by internally generated  
clocks)  
MCLK (PLL Output)  
Internal PLL oscillator output  
used as master clock  
emPowerAudio™  
Datasheet Revision 2.8  
Page 68 of 110  
June 2016  
NAU8812  
12.3.4. Audio Sample Rate Control Register  
Addr  
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
Default  
0x07  
SMPLR[2:0]  
SCLKEN 0x000  
The Audio sample rate configures the coefficients for the internal digital filters  
Sample Rate Selection  
SMPLR[3] SMPLR[2] SMPLR[1] Mode (Hz)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
48 k  
32 k  
24 k  
16 k  
12 k  
8 k  
Reserved  
Reserved  
NAU8812 provides a slow clock to be used for both the jack insert detect debounce circuit and the zero cross  
timeout.  
Slow Clock Enable  
Bit  
SCLKEN[0]  
0
1
MCLK  
PLL Output (Period 221 * MCLK)  
emPowerAudio™  
Datasheet Revision 2.8  
Page 69 of 110  
June 2016  
NAU8812  
12.3.5. GPIO Control Register  
Addr  
D8  
0
D7  
0
D6  
0
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x08  
GPIOPLL[4:5]  
GPIOPL  
GPIOSEL[2:0]  
0x000  
General Purpose I/O Selection  
GPIOSEL GPIOSEL GPIOSEL  
Mode (Hz)  
[2]  
[1]  
[0]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
CSb Input  
Jack Insert Detect  
Temperature OK  
AMUTE Active  
PLL CLK Output  
PLL Lock  
1
0
PLL Output Clock Divider  
GPIO Polarity  
GPIOPLL[5]  
GPIOPLL[4]  
Mode  
Bit  
GPIOPL[3]  
1  
2  
3  
4  
0
0
1
1
0
1
0
1
0
1
Normal  
Inverted  
12.3.6. DAC Control Register  
Addr  
D8  
0
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x0A  
DACMT  
DEEMP[1:0]  
DACOS AUTOMT  
0
DACPL 0x000  
Name Soft Mute Enable Over Sample Rate Auto Mute enable Polarity Invert  
Bit  
DACMT[6]  
DACOS[3]  
AUTOMT[2]  
DACPL[0]  
64x  
0
Disable  
Disable  
Normal  
(Lowest power)  
128x  
(best SNR)  
DAC Output  
Inverted  
1
Enable  
Enable  
emPowerAudio™  
Datasheet Revision 2.8  
Page 70 of 110  
June 2016  
NAU8812  
De-emphasis  
DEEMP[4]  
DEEMP[5]  
Mode  
0
0
1
1
0
1
0
1
No de-emphasis  
32kHz sample rate  
44.1kHz sample rate  
48kHz sample rate  
12.3.7. DAC Gain Control Register  
Addr  
D8  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x0B  
DACGAIN  
0x0FF  
DAC Gain  
DACGAIN[7:0]  
Mode (dB)  
B7  
B6  
B5  
B4  
B3 B2 B1  
B0  
Digital  
Mute  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
-127.0  
-126.5  
-126.0  
DAC Gain Range -127dB to 0dB @ 0.5 increments  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
-1.5  
-1.0  
-0.5  
0.0  
12.3.8. ADC Control Register  
Addr  
D8  
D7  
D6  
D5  
D4  
D3  
ADCOS  
D2  
0
D1  
0
D0  
Default  
0x0E HPFEN HPFAM  
HPF[2:0]  
ADCPL 0x100  
High Pass Filter  
Audio or Application  
Mode  
Over Sample  
Rate  
Name  
ADC Polarity  
Enable  
Bit  
HPFEN[8]  
HPFAM[7]  
ADCOS[3]  
ADCPL[0]  
0
1
Disable  
Enable  
Audio (1st order, fc ~ 3.7 Hz)  
Application (2nd order, fc = HPF)  
64x (Lowest power)  
128x (best SNR)  
Normal  
Inverted  
emPowerAudio™  
Datasheet Revision 2.8  
Page 71 of 110  
June 2016  
NAU8812  
High Pass Filter  
fs ( kHz)  
SMPLR=101  
SMPLR=100  
SMPLR=011  
SMPLR=010  
SMPLR=001  
SMPLR=000  
HPF[6]  
B2  
HPF[5]  
HPF[4]  
B0  
B1  
8
11.025  
12  
16  
22.05  
24  
32  
44.1  
48  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
82  
113  
141  
180  
225  
281  
360  
450  
563  
122  
153  
156  
245  
306  
392  
490  
612  
82  
113  
141  
180  
225  
281  
360  
450  
563  
122  
153  
156  
245  
306  
392  
490  
612  
82  
113  
141  
180  
225  
281  
360  
450  
563  
122  
153  
156  
245  
306  
392  
490  
612  
102  
131  
163  
204  
261  
327  
408  
102  
131  
163  
204  
261  
327  
408  
102  
131  
163  
204  
261  
327  
408  
12.3.9. ADC Gain Control Register  
Addr  
D8  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x0F  
ADCGAIN  
0x0FF  
ADC Gain  
ADCGAIN[7:0]  
Mode (dB)  
B7  
B6  
B5  
B4  
B3 B2 B1  
B0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
Unused  
-127.0  
-126.5  
-126.0  
ADC Gain Range -127dB to 0dB @ 0.5 increments  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
-1.5  
-1.0  
-0.5  
0.0  
emPowerAudio™  
Datasheet Revision 2.8  
Page 72 of 110  
June 2016  
NAU8812  
12.4.  
DIGITAL TO ANALOG CONVERTER (DAC) LIMITER REGISTERS  
Addr  
0x18 DACLIMEN  
0x19  
D8  
D7  
0
D6  
DACLIMDCY[3:0]  
DACLIMTHL[2:0]  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
DACLIMATK[3:0]  
DACLIMBST[3:0]  
0x032  
0x000  
0
DAC Limiter Decay time (per 6dB gain change) for 44.1  
kHz sampling. Note that these will scale with sample  
rate  
DAC Limiter Attack time (per 6dB gain change) for 44.1  
kHz sampling. Note that these will scale with sample rate  
DACLIMDCY[3:0]  
DACLIMATK[3:0]  
B3  
B2  
B1  
B0  
Decay Time  
B3  
B2  
B1  
B0  
Attack Time  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
544.0 us  
1.1 ms  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
68 us  
136 us  
272 us  
544 us  
1.1 ms  
2.2 ms  
4.4 ms  
8.7 ms  
17.4 ms  
35 ms  
2.2 ms  
4.4 ms  
8.7 ms  
17.4 ms  
35.0 ms  
69.6 ms  
139.0 ms  
278.5 ms  
557.0 ms  
69.6 ms  
To  
1.1 s  
To  
139 ms  
1
1
1
1
1
1
1
1
emPowerAudio™  
Datasheet Revision 2.8  
Page 73 of 110  
June 2016  
NAU8812  
DAC Limiter volume Boost (can be used as  
DAC Limiter Programmable signal threshold level  
(determines level at which the limiter starts to  
operate)  
a
stand alone volume Boost when  
DACLIMEN=0)  
DACLIMTHL[3:0]  
B1  
DACLIMBST[3:0]  
Threshold  
(dB)  
Boost  
(dB)  
B2  
B0  
B3  
B2  
B1  
B0  
0
0
0
0
1
1
0
0
0
1
0
1
0
1
-1  
-2  
-3  
-4  
-5  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
+1  
+2  
+3  
+4  
+5  
+6  
+7  
+8  
+9  
+10  
+11  
1
1
0
0
To  
1
-6  
1
1
DAC Digital Limiter  
Bit  
DACLIMEN[8]  
0
1
Disabled  
Enabled  
1
1
1
1
0
0
0
1
+12  
To  
Reserved  
1
1
1
1
12.5. NOTCH FILTER REGISTERS  
Addr  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x000  
0x000  
0x000  
0x000  
0x1B NFCU NFCEN  
NFCA0[13:7]  
NFCA0[6:0]  
NFCA1[13:7]  
NFCA1[6:0]  
0x1C NFCU  
0x1D NFCU  
0x1E NFCU  
0
0
0
The Notch Filter is enabled by setting NFCEN[7] address (0x1B) bit to HIGH. The coefficients, A0 and A1, should  
be converted to 2’s complement numbers to determine the register values. A0 and A1 are represented by the  
register bits NFCA0[13:0] and NFCA1[13:0]. Since there are four register of coefficients, a Notch Filter Update bit  
is provided so that the coefficients can be updated simultaneously. NFCU[8] is provided in all registers of the  
Notch Filter coefficients but only one bit needs to be toggled for LOW - HIGH - LOW for an update. If any of the  
NFCU[8] bits are left HIGH then the Notch Filter coefficients will continuously update. An example of how to  
calculate is provided in the Notch Filter section.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 74 of 110  
June 2016  
NAU8812  
Name  
A0  
A1  
Notation  
Register Value (DEC)  
2fb  
2fs  
NFCA0 = -A0 x 213  
NFCA1 = -A1 x 212  
(then convert to 2’s  
complement)  
1tan  
fc = center frequency (Hz)  
fb = -3dB bandwidth (Hz)  
fs = sample frequency  
2fc  
fs  
1A0 xcos  
Coefficient  
2fb  
2fs  
1tan  
(Hz)  
12.6. AUTOMATIC LEVEL CONTROL REGISTER  
12.6.1. ALC1 REGISTER  
Addr  
D8  
D7  
0
D6  
0
D5  
D4  
ALCMXGAIN[2:0]  
D3  
D2  
D1  
D0  
Default  
0x038  
0x20  
ALCEN  
ALCMNGAIN[2:0]  
Maximum Gain  
Minimum Gain  
ALCMNGAIN[2:0]  
ALCMXGAIN[2:0]  
Mode  
Mode  
B2  
B1  
B0  
B2  
B1  
B0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
-6.75dB  
-0.75dB  
+5.25dB  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
-12dB  
-6dB  
0dB  
1
0
1
0
1
+11.25dB  
+17.25dB  
+23.25dB  
+29.25dB  
+35.25dB  
+6dB  
+12dB  
+18dB  
+24dB  
+30dB  
Name  
ALC Enable  
ALCEN[8]  
Bit  
Disabled (PGA gain set by PGAGAIN  
register bits)  
0
1
Enabled (ALC controls PGA gain)  
emPowerAudio™  
Datasheet Revision 2.8  
Page 75 of 110  
June 2016  
NAU8812  
12.6.2. ALC2 REGISTER  
Addr  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00B  
0x21  
ALCZC  
ALCHT[3:0]  
ALCSL[3:0]  
ALC HOLD TIME before gain is increased.  
ALC TARGET sets signal level at ADC input  
ALCHT[3:0]  
B6 B5  
ALCSL[3:0]  
B2 B1  
ALC Hold  
Time (sec)  
ALC Target  
Level (dB)  
B7  
B4  
B3  
B0  
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
-28.5 fs  
-27 fs  
0
0
0
1
2 ms  
4 ms  
0
0
0
1
25.5 fs  
ALC Target Level Range  
-28.5dB to -6dB @ 1.5dB increments  
Time Doubles with every increment  
1
1
1
0
0
0
0
0
1
0
1
0
256 ms  
512 ms  
1
1
1
1
1
0
1
1
1
1
1
0
0
1
1
1
0
1
0
1
-12 fs  
-10.5 fs  
-9 fs  
To  
1 s  
-7.5 fs  
-6 fs  
1
1
1
1
ALC Zero Crossing  
Detect  
Name  
Bit  
ALCZC[8]  
0
1
Disabled  
Enabled  
It is recommended that zero crossing should not be used in conjunction with the ALC or Limiter functions  
emPowerAudio™  
Datasheet Revision 2.8  
Page 76 of 110  
June 2016  
NAU8812  
12.6.3. ALC3 REGISTER  
Addr  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x032  
0x22  
ALCM  
ALCDCY[3:0]  
ALCATK[3:0]  
ALC DECAY TIME  
ALCM = 0 (Normal Mode)  
ALCDCY[3:0]  
ALCM = 1 (Limiter Mode)  
90% of  
Range  
90% of  
Range  
B3  
B2  
B1  
B0  
Per Step  
Per 6dB  
Per Step  
Per 6dB  
0
0
0
0
0
0
0
0
1
0
1
0
500 us  
1 ms  
4 ms  
8 ms  
28.78 ms  
57.56 ms  
115 ms  
125 us  
250 us  
500 us  
1 ms  
2 ms  
4 ms  
7.2 ms  
14.4 ms  
28.8 ms  
2 ms  
16 ms  
Time doubles with every increment  
1
1
1
0
0
0
0
0
1
0
1
0
128 ms  
256 ms  
1 s  
2 s  
7.37 s  
14.7 s  
32 ms  
64 ms  
256 ms  
512 ms  
1.8 s  
3.7 s  
To  
512 ms  
4 s  
29.5 s  
128 ms  
1 s  
7.37 s  
1
1
1
1
ALC ATTACK TIME  
ALCM = 0 (Normal Mode)  
ALCATK[3:0]  
ALCM = 1 (Limiter Mode)  
90% of  
Range  
90% of  
Range  
B3  
B2  
B1  
B0  
Per Step  
Per 6dB  
Per Step  
Per 6dB  
0
0
0
0
0
0
0
0
1
0
1
0
125 us  
250 us  
500 us  
1 ms  
2 ms  
4 ms  
7.2 ms  
14.4 ms  
28.85 ms  
31 us  
62 us  
248 us  
496 us  
992 us  
1.8 ms  
3.6 ms  
7.15 ms  
124 us  
Time doubles with every increment  
1
1
1
0
0
0
0
0
1
0
1
0
26.5 ms  
53 ms  
256 ms  
512 ms  
1.53 s  
3.06 s  
7.9 ms  
63.2 ms  
127 ms  
455.8 ms  
916 ms  
15.87 ms  
To  
128 ms  
1 s  
7.89 s  
31.7ms  
254 ms  
1.83 s  
1
1
1
1
emPowerAudio™  
Datasheet Revision 2.8  
Page 77 of 110  
June 2016  
NAU8812  
12.7. NOISE GAIN CONTROL REGISTER  
Addr  
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
Default  
0x000  
0x23  
ALCNEN  
ALCNTH[2:0]  
Noise Gate Enable  
Noise Gate Threshold  
Bit  
ALCNEN[3]  
Disabled  
ALCNTH[2:0]  
Mode  
0
1
B2  
B1  
B0  
Enabled  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
-39 dB  
-45 dB  
-51 dB  
-57 dB  
-63 dB  
-69 dB  
-75 dB  
-81 dB  
emPowerAudio™  
Datasheet Revision 2.8  
Page 78 of 110  
June 2016  
NAU8812  
12.8. PHASE LOCK LOOP (PLL) REGISTERS  
12.8.1. PLL Control Registers  
Addr  
D8  
0
D7  
0
D6  
0
D5  
0
D4  
D3  
D2  
D1  
D0  
Default  
0x008  
0x24  
PLLMCLK  
PLLN[3:0]  
PLL Integer  
PLLN[3:0]  
PLL Clock  
PLLMCLK[4]  
MCLK not divided  
Bit  
Frequency  
Ratio  
B3  
B2  
B1  
B0  
0
1
Divide MCLK by 2 before input  
PLL  
0
0
0
1
Not Valid  
To  
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
5
6
7
8
9
10  
11  
12  
13  
Not Valid  
12.8.2. Phase Lock Loop Control (PLL) Registers  
Addr  
0x25  
0x26  
0x27  
D8  
0
D7  
0
D6  
0
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x00C  
0x093  
0x0E9  
PLLK[23:18]  
PLLK[17:9]  
PLLK[8:0]  
Fractional (K) part of PLLK1 PLLK3 input/output frequency ratio  
emPowerAudio™  
Datasheet Revision 2.8  
Page 79 of 110  
June 2016  
NAU8812  
12.9.  
INPUT, OUTPUT, AND MIXERS CONTROL REGISTER  
Attenuation Control Register  
12.9.1.  
Addr  
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
D1  
D0  
0
Default  
0x28  
MOUTATT SPKATT  
0x000  
Attenuation Control  
Attenuation control for bypass path (output of  
Name input boost stage) to speaker mixer and MONO  
mixer input  
Bit  
MOUTATT[2]  
SPKATT[1]  
0
1
0 dB  
0 dB  
-10 dB  
-10 dB  
12.9.2. Input Signal Control Register  
Addr  
D8  
D7  
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
Default  
0x2C  
MICBIASV  
AUXM AUXPGA NMICPGA PMICPGA 0x003  
Input PGA amplifier  
MICN to input PGA  
AUX amplifier output to  
input PGA signal source  
Auxiliary Input mode  
AUXM[3]  
positive terminal to  
negative terminal  
MIC+ or VREF  
Bit  
AUXPGA[2]  
NMICPGA[1]  
PMICPGA[0]  
AUX not connected to  
input PGA  
MICN not connected to  
input PGA  
Input PGA Positive  
terminal to VREF  
0
Inverting Buffer  
Input PGA Positive  
terminal to MICP  
through variable resistor  
Mixer (Internal Resistor  
bypassed)  
AUX to input PGA  
Negative terminal  
MICN to input PGA  
Negative terminal.  
1
Microphone Bias Voltage Control  
MICBIASV[8:7]  
Address (0x2C)  
MICBIASM[4] = 0  
Address (0x28)  
MICBIASM[4] = 1  
Address (0x28)  
0
0
1
1
0
1
0
1
0.9* VDDA  
0.65* VDDA  
0.75* VDDA  
0.50* VDDA  
0.85* VDDA  
0.60* VDDA  
0.70* VDDA  
0.50* VDDA  
emPowerAudio™  
Datasheet Revision 2.8  
Page 80 of 110  
June 2016  
NAU8812  
12.9.3. PGA Gain Control Register  
Addr  
D8  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x010  
0x2D  
PGAZC PGAMT  
PGAGAIN[5:0]  
Programmable Gain Amplifier Gain  
PGAGAIN[5:0]  
B5  
B4  
B3  
B2  
B1  
B0  
Gain  
0
0
0
0
0
0
0
0
0
0
0
1
-12.00 dB  
-11.25 dB  
-10.50 dB  
:::  
0
0
0
0
1
0
:::  
0
:::  
0
:::  
1
:::  
1
:::  
1
:::  
1
-0.75 dB  
0 dB  
0
1
0
0
0
0
0
1
0
0
0
1
+0.75 dB  
PGA Gain Range -12dB to +35.25dB @ 0.75  
increment  
:::  
1
:::  
1
:::  
1
:::  
1
:::  
0
:::  
1
:::  
33.75  
34.50  
35.25  
1
1
1
1
1
0
1
1
1
1
1
1
PGA Zero Cross Enable  
Mute Control for PGA  
Bit  
PGAZC[7]  
PGAMT[6]  
Update gain when gain  
register changes  
0
Normal Mode  
PGA Muted  
Update gain on 1st zero  
cross after gain register  
write  
1
emPowerAudio™  
Datasheet Revision 2.8  
Page 81 of 110  
June 2016  
NAU8812  
12.9.4. ADC Boost Control Registers  
Addr  
D8  
D7  
0
D6  
D5  
D4  
D3  
0
D2  
D1  
D0  
Default  
0x2F  
PGABST  
PMICBSTGAIN  
AUXBSTGAIN  
0x100  
MIC+ pin to the input Boost Stage  
(NB, when using this path set  
PMICPGA=0):  
Auxiliary to Input Boost Stage  
PMICBSTGAIN[2:0]  
AUXBSTGAIN[2:0]  
Gain (dB)  
Gain (dB)  
B2  
B1  
B0  
B2  
B1  
B0  
Path  
Disconnected  
Path  
Disconnected  
0
0
0
0
0
0
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
-12  
-9  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
-12  
-9  
-6  
-3  
0
-6  
-3  
0
+3  
+6  
+3  
+6  
Name  
Input Boost  
Bit  
PGABST[8]  
0
1
PGA output has +0dB gain through input Boost stage  
PGA output has +20dB gain through input Boost stage  
12.9.5. Output Register  
Addr  
D8  
0
D7  
0
D6  
0
D5  
0
D4  
0
D3  
D2  
D1  
D0  
Default  
0x31  
MOUTBST SPKBST TSEN AOUTIMP 0x002  
MONO Output Boost  
Stage  
Speaker Output Boost  
Stage  
Thermal Shutdown Analog Output Resistance  
Bit  
MOUTBST[3]  
SPKBST[2]  
TSEN[1]  
AOUTIMP[0]  
0
1
(1.0 x VREF) Gain Boost  
(1.0 x VREF) Gain Boost  
Disabled  
~1kΩ  
(1.5 x VREF) Gain Boost  
(1.5 x VREF) Gain Boost  
Enabled  
~30 kΩ  
emPowerAudio™  
Datasheet Revision 2.8  
Page 82 of 110  
June 2016  
NAU8812  
12.9.6. Speaker Mixer Control Register  
Addr  
D8  
0
D7  
0
D6  
0
D5  
D4  
0
D3  
0
D2  
0
D1  
D0  
Default  
0x32  
AUXSPK  
BYPSPK DACSPK 0x001  
Bypass path (output of  
Boost stage) to Speaker  
Mixer  
Auxiliary to Speaker Mixer  
DAC to Speaker Mixer  
Bit  
AUXSPK[5]  
BYPSPK[1]  
DACSPK[0]  
0
1
Disconnected  
Connected  
Disconnected  
Connected  
Disconnected  
Connected  
12.9.7. Speaker Gain Control Register  
Addr  
D8  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x36  
SPKZC  
SPKMT  
SPKGAIN[5:0]  
0x039  
Speaker Gain  
SPKGAIN[5:0]  
B5  
B4  
B3  
B2  
B1  
B0  
Gain (dB)  
0
0
0
0
0
0
0
0
0
0
0
1
-57.0  
-56.0  
-55.0  
:::  
0
0
0
0
1
0
:::  
1
:::  
1
:::  
1
:::  
0
:::  
0
:::  
0
-1.0  
0.0  
1
1
1
0
0
1
1
1
1
0
1
0
+1.0  
Speaker Gain Range -57 dB to +6 dB @ +1  
increment  
:::  
1
:::  
1
:::  
1
:::  
1
:::  
0
:::  
1
:::  
+4.0  
+5.0  
+6.0  
1
1
1
1
1
0
1
1
1
1
1
1
Speaker Gain Control Zero Cross  
Speaker Output  
Bit  
SPKZC[7]  
SPKMT[6]  
Change Gain on Zero Cross  
ONLY  
0
1
Speaker Enabled  
Speaker Muted  
Change Gain Immediately  
emPowerAudio™  
Datasheet Revision 2.8  
Page 83 of 110  
June 2016  
NAU8812  
12.9.8. MONO Mixer Control Register  
Addr  
D8  
0
D7  
0
D6  
D5  
0
D4  
0
D3  
0
D2  
D1  
D0  
Default  
0x38  
MOUTMXMT  
AUXMOUT BYPMOUT DACMOUT 0x001  
Bypass path (output of  
Boost Stage) to MONO  
Mixer  
Auxiliary to  
MONO Mixer  
DAC to  
MONO Mixer  
MOUT Mute  
Bit MOUTMXMT[6] AUXMOUT[2]  
BYPMOUT[1]  
DACMOUT[0]  
0
1
Not Muted  
Muted  
Disconnected  
Connected  
Disconnected  
Disconnected  
Connected  
Connected  
During mute, the MONO output will output VREF that can be used as a DC reference for a headphone out.  
12.9.9. Trimming Register  
Addr  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x3A LPIPBST LPADC LPSPKD LPDAC MICBIASM  
TRIMREG[3:2]  
IBADJ[1:0]  
0x000  
Trim Output Regulator (V)  
Adjust Master Bias of the Analog Portion  
B1  
B0  
TRIMREG[3:2]  
IBADJ[1:0]  
0
0
1
1
0
1
0
1
1.800  
1.610  
1.400  
1.218  
Default Current Consumption  
25% Current Increase from Default  
14% Current Decrease from Default  
25% Current Decrease from Default  
Trim regulator bits can be used only when VDDD <2.7V.  
Low Power  
Speaker Driver  
Low Power IP  
Boost  
Microphone bias  
Mode selection  
Low Power ADC  
LPADC[7]  
Low Power DAC  
LPDAC[5]  
Bit  
LPIPBST[8]  
LPSPKD[6]  
MICBIASM[4]  
0
Normal Function  
Normal Function  
Normal Function  
Cut power in half  
Normal Function  
Disable  
1
Cut power in half  
Cut power in half  
Cut power in half  
Enable  
Note cutting the power in half will directly affect the audio performances.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 84 of 110  
June 2016  
NAU8812  
12.10. PCM TIME SLOT CONTROL & ADCOUT IMPEDANCE OPTION CONTROL  
12.10.1. PCM1 TIMESLOT CONTROL REGISTER  
Addr  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x000  
0x3B  
TSLOT[8:0]  
Transmit and receive timeslot are expressed in number of BCLK cycles in a 10-bit word. The most significant bit  
TSLOT[9] is located in register PCMTS2[0] address (0x3C). Timeslot, TSLOT[9:0], determines the start point for  
the timeslot on the PCM interface for data in the transmit direction.  
12.10.2. PCM2 TIMESLOT CONTROL REGISTER  
Addr  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x3C PCMTSEN  
TRI  
PCM8BIT PUDOEN PUDPE PUDPS LOUTR PCMB TSLOT[9] 0x000  
Left and Right  
Tri-state PCMT  
PCM Transit  
Name  
PCM Word Length  
Channel have  
same data  
PCM Mode2  
PCMB  
Enable  
LSB  
Bit  
0
PCMTSEN[8]  
TRI[7]  
PCM8BIT[6]  
LOUTR  
Drive the full Clock  
of LSB  
Use WLEN[6:5] to  
select Word Length  
PCM A  
Disable  
Disable  
Audio interface will  
be 8 Bit Word  
Length  
Tri-State the 2nd  
half of LSB  
1
PCM Time Slot  
Enable  
Enable  
If TRI = 1 and PUDOEN = 0, the device will drive the LSB bit 1st half of BCLK out of the ADCOUT pin (stop driving  
after LSB BCLK Rising edge) but if TRI = 0 or PUDOEN = 1 this feature is disabled, full BCLK of LSB will be  
driven the LSB value.  
PUDPE  
PUDPS  
iADCOUT  
ADCOUT  
PUDOE  
Figure 41: The Programmable ADCOUT Pin  
emPowerAudio™  
Datasheet Revision 2.8  
Page 85 of 110  
June 2016  
NAU8812  
Internal ADC  
out data  
Power Up and Down  
Output Enable  
Power Up and  
Down Pull Enable  
Power Up and Down  
Pull Select  
OUTPUT  
iADCOUT  
PUDOEN[5]  
PUDPE[4]  
PUDPS[3]  
PAD  
0
1
x
x
x
1
1
0
0
0
x
x
0
1
1
x
x
x
0
1
0
1
Hi-Z  
Pull-Low  
Pull-High  
12.11. REGISTER ID (READ ONLY)  
12.11.1. Device revision register  
Addr  
D8  
0
D7  
1
D6  
1
D5  
1
D4  
0
D3  
D2  
1
D1  
D0  
0
Default  
0x0EE  
0x3E  
1
1
READ ONLY  
Device revision ID  
12.11.2. 2-WIRE ID Register (READ ONLY)  
Addr  
D8  
0
D7  
0
D6  
0
D5  
0
D4  
D3  
D2  
D1  
D0  
Default  
0x3F  
1
1
0
1
0
0x01A  
READ ONLY  
First 7 bits (D0 D6) of the 2-Wire device ID excluding the LSB read/write bit.  
12.11.3. Additional ID (READ ONLY)  
Addr  
D8  
0
D7  
1
D6  
1
D5  
0
D4  
0
D3  
1
D2  
0
D1  
1
D0  
0
Default  
0x40  
0x0CA  
READ ONLY  
emPowerAudio™  
Datasheet Revision 2.8  
Page 86 of 110  
June 2016  
NAU8812  
12.12. Reserved  
Addr  
0x41  
D8  
1
D7  
0
D6  
0
D5  
1
D4  
0
D3  
0
D2  
1
D1  
0
D0  
0
Default  
0x124  
12.13.  
OUTPUT Driver Control Register  
Addr  
D8  
D7  
D6  
D5  
D4  
D3  
0
D2  
D1  
0
D0  
Default  
0x45  
0
MOUTMT  
HVOPU  
HVOP  
0x001  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
set internal output biasing to be  
optimal for 3.6Vdc or lower  
operation  
set internal output biasing to be  
optimal for higher than 3.6Vdc  
operation  
Override to automatic  
3V/5V bias selection  
0
HVOP  
Note: For this to be effective  
HVOPU[2] address 0x45 must  
set  
Note: For this to be effective  
HVOPU[2] address 0x45 must set  
This bit must set in conjunction with  
HVOP[0] address 0x45 for the  
automatic override to be effective  
Update bit for HV  
override feature  
2
4
HVOPU  
High Voltage override Disable  
Disable  
Headphone output mute MOUTMT  
Enable  
During mute, the MONO output will output VREF that can be used as a DC reference for a headphone out.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 87 of 110  
June 2016  
NAU8812  
12.14. AUTOMATIC LEVEL CONTROL ENHANCED REGISTER  
12.14.1. ALC1 Enhanced Register  
Addr  
D8  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x001  
0x46  
ALCPKSEL ALCNGSEL  
ALCGAINL[5:0] (READ ONLY)  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
ALC Disabled: Display PGA Gain  
ALC Enabled: Display Real Time ALC Gain  
5:0  
6
Display PGA and ALC Gain  
ALCGAINL  
ALCNGSEL  
ALCPKSEL  
Choose peak or peak-to-peak value  
for Noise Gate threshold logic  
use peak-to-peak  
use rectified peak  
detector output value  
detector output value  
Choose peak or peak-to-peak value  
for ALC threshold logic  
use rectified peak  
use peak-to-peak  
7
detector output value  
detector output value  
12.14.2. ALC Enhanced 2 Register  
Addr  
D8  
D7  
D6  
D5  
D4  
0
D3  
D2  
D1  
D0  
Default  
0x47 PKLIMEN  
0x000  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
PKLIMEN  
0
1
Enable control for ALC fast  
peak limiter function  
8
Enable  
Disable  
emPowerAudio™  
Datasheet Revision 2.8  
Page 88 of 110  
June 2016  
NAU8812  
12.15. MISC CONTROL REGISTER  
Addr  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x49 SPIEN FSERRVAL[1:0] FSERFLSH FSERRENA NFDLY DACINMT PLLLOCKP DACOS256 0x000  
Bit Value  
Set DAC to 256x  
DACOS256 determined by Register 0x0A[3] oversampling rate regardless  
(default) of Register 0x0A[3]  
Bit  
Location  
Bit Description  
Bit Name  
0
1
Use oversampling rate as  
Set DAC to use 256x  
oversampling rate  
0
1
2
Enable control to use PLL  
output when PLL is not in  
phase locked condition  
PLL VCO output disabled when PLL VCO output used as-is  
PLLLOCKP PLL is in unlocked condition  
when PLL is in unlocked  
condition  
(default)  
Enable control to mute  
DAC limiter output when  
softmute is enabled  
DAC limiter output may not  
move to exactly zero during  
Softmute (default)  
DAC limiter output muted to  
exactly zero during Softmute  
DACINMT  
Enable control to delay use  
of notch filter output when  
filter is enabled  
Enable control for short  
frame cycle detection logic  
Delay using notch filter output  
512 sample times after notch  
enabled (default)  
Short frame cycle detection  
logic enabled  
Use notch filter output  
immediately after notch filter  
is enabled  
Short frame cycle detection  
logic disabled  
Set DSP state to initial  
conditions on short frame  
sync event  
3
4
5
NFDLY  
FSERRENA  
FSERFLSH  
Enable DSP state flush on  
short frame sync event  
Ignore short frame sync events  
(default)  
Set SPI control bus mode  
regardless of state of Mode SPIEN  
pin  
Force SPI 4-wire mode  
regardless of state of Mode  
pin  
8
Default Operation  
Short frame sync detection period value  
trigger if frame time less than  
FSERRVAL[1:0]  
B1  
B0  
0
0
1
1
0
1
0
1
255 MCLK edges  
253 MCLK edges  
254 MCLK edges  
255 MCLK edges  
MODE  
Pin  
SPIEN[8]  
Bit  
Address  
Description  
0
0
0
2-Wire Interface (Write/Read)  
1
SPI Interface 16-bit (Write ONLY)  
0x49  
SPI Interface 32-bit (Read)  
SPI Interface 24-bit (Write)  
(SSOP 28-Pin Write ONLY,  
QFN 32-Pin Write/Read)  
x
1
emPowerAudio™  
Datasheet Revision 2.8  
Page 89 of 110  
June 2016  
NAU8812  
12.16. Output Tie-Off REGISTER  
Addr  
D8  
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x4B  
LPSPKA  
MANVREFH MANVREFM MANVREFL 0x000  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
MANVREFL  
MANVREFM  
MANVREFH  
LPSPKA  
0
1
Direct manual control for switch for  
VREF 6k-ohm resistor to ground  
switch to ground controlled switch to ground in the  
by Register 0x01 setting closed position  
0
1
2
7
Direct manual control for switch for  
VREF 160k-ohm resistor to ground  
switch to ground controlled switch to ground in the  
by Register 0x01 setting closed position  
Direct manual control of switch for  
VREF 600k-ohm resistor to ground  
switch to ground controlled switch to ground in the  
by Register 0x01 setting  
closed position  
Two-stage amplifier for  
speaker driver  
Three-stage amplifier  
for speaker driver  
Amplifier Stage  
12.17. ALC PEAK-TO-PEAK READOUT REGISTER  
Addr  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Default  
0x4C  
P2PDET  
0x000  
Bit  
Location  
Bit Description  
Bit Name  
P2PDET  
READ ONLY Register  
Outputs the instantaneous value contained in the peak-to-peak amplitude register  
used by the ALC for signal level dependent logic. Value is highest of left or right  
input when both inputs are under ALC control.  
0 - 8  
12.18. ALC PEAK READOUT REGISTER  
Addr  
D8  
D7  
D6  
D5  
D4  
PDET  
D3  
D2  
D1  
D0  
Default  
0x4D  
0x000  
Bit  
Location  
Bit Description  
Bit Name  
PDET  
READ ONLY Register  
Outputs the instantaneous value contained in the peak detector amplitude register  
used by the ALC for signal level dependent logic. Value is highest of left or right  
input when both inputs are under ALC control.  
0 - 8  
emPowerAudio™  
Datasheet Revision 2.8  
Page 90 of 110  
June 2016  
NAU8812  
12.19. AUTOMUTE CONTROL AND STATUS READ REGISTER  
Addr  
D8  
0
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
0
D0  
Default  
0x4E  
AMTCTRL HVDET NSGATE  
AMUTE  
DMUTE  
FTDEC 0x000  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
FASTDEC  
DMUTE  
0
1
0
2
Peak limiter indicator  
Below 87.5% of full scale  
Above 87.5% of full scale  
Digital gain is zero either by  
.- Direct setting  
READ ONLY BIT  
Digital Mute function of the DAC  
Digital gain greater than zero  
.- Softmute function  
READ ONLY BIT  
Analog Mute function applied to DAC  
3
4
AMUTE  
Automute Disabled  
Automute Enabled  
Signal is greater than the noise Signal is less than the noise  
gate threshold and ALC gain  
can change  
READ ONLY BIT  
Logic controlling the Noise Gate  
NSGATE  
gate threshold and ALC gain  
is held constant  
READ ONLY BIT  
High voltage detection circuit  
monitoring VDDSPK voltage  
VDDSPK logic switch voltage  
threshold measured as 4.0Vdc  
or Less  
VDDSPK logic switch voltage  
threshold measured as  
4.0Vdc or Greater  
5
6
HVDET  
Automute operates on data at  
the input to the DAC digital  
attenuator (default)  
Select observation point used by DAC  
output Automute feature  
Automute operates on data at  
the DACIN input pin  
AMTCTRL  
12.20. Output Tie-off Direct Manual Control REGISTER  
Addr  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
0
D1  
0
D0  
0
Default  
0x4F MANOUTEN SBUFH SBUFL SNSPK SPSPK  
SMOUT  
0x000  
Bit Value  
Bit  
Location  
Bit Description  
Bit Name  
0
1
If MANUOUTEN = 1, use this bit to  
control Auxout1 output tie-off  
resistor switch  
Tie-off resistor switch for  
MOUT output is forced  
closed  
Tie-off resistor switch for MOUT  
output is forced open  
3
SMOUT  
If MANUOUTEN = 1, use this bit to  
control left speaker output Tie-off  
resistor switch  
Tie-off resistor switch for  
SPKOUTP speaker output is  
forced open  
Tie-off resistor switch for  
SPKOUTP speaker output  
is forced closed  
4
5
SPSPK  
SNSPK  
If MANUOUTEN = 1, use this bit to  
control left speaker output Tie-off  
resistor switch  
Tie-off resistor switch for  
SPKOUTN speaker output is  
forced open  
Tie-off resistor switch for  
SPKOUTN speaker output  
is forced closed  
If MANUOUTEN = 1, use this bit to  
control bypass switch around 1.0x  
non-boosted output Tie-off buffer  
amplifier  
Bypass switch in closed  
position when output buffer  
amplifier is disabled  
Normal automatic operation of  
bypass switch  
6
SBUFL  
If MANUOUTEN = 1, use this bit to  
control bypass switch around 1.5x  
boosted output Tie-off buffer  
amplifier  
Bypass switch in closed  
position when output buffer  
amplifier is disabled  
Normal automatic operation of  
bypass switch  
7
8
SBUFH  
Ignore Register 0x4F bits to  
control input Tie-off  
resistor/buffer switching  
Use Register 0x4F bits to  
override automatic Tie-off  
resistor/buffer switching  
Enable direct control over output  
Tie-off resistor switching  
MANOUTEN  
emPowerAudio™  
Datasheet Revision 2.8  
Page 91 of 110  
June 2016  
NAU8812  
13. CONTROL INTERFACE TIMING DIAGRAM  
13.1. SPI WRITE TIMING DIAGRAM  
TCSBH  
TCSBL  
CSB  
TSCCSH  
TSCK  
TRISE  
TFALL  
SCLK  
TSCKH  
TSCKL  
SDIO  
TSDIOS  
TSDIOH  
Figure 42: SPI Write Timing Diagram  
13.2. SPI READ TIMING DIAGRAM  
TCSBH  
CSB  
TSCCSH  
TCSSCS  
TSCK  
TRISE  
TFALL  
SCLK  
TSCKH  
TSDIOS  
TG3D  
TSCKL  
SDIO  
TSDIOH  
TZG3D  
TG3ZD  
GPIO1  
Figure 43: SPI Read Timing Diagram  
emPowerAudio™  
Datasheet Revision 2.8  
Page 92 of 110  
June 2016  
NAU8812  
SYMBOL  
TSCK  
DESCRIPTION  
MIN  
80  
35  
35  
---  
TYP  
---  
MAX  
---  
UNIT  
SCLK Cycle Time  
ns  
ns  
ns  
ns  
ns  
TSCKH  
TSCKL  
TRISE  
SCLK High Pulse Width  
SCLK Low Pulse Width  
---  
---  
---  
---  
Rise Time for all SPI Signals  
Fall Time for all SPI Signals  
---  
10  
TFALL  
---  
---  
10  
CSb Falling Edge to 1st SCLK Falling Edge Setup Time (4  
wire SPI only)  
TCSSCS  
30  
---  
---  
ns  
TSCCSH  
TCSBL  
Last SCLK Rising Edge to CSb Rising Edge Hold Time  
CSb Low Time  
30  
30  
30  
20  
20  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
ns  
ns  
ns  
ns  
ns  
TCSBH  
TSDIOS  
TSDIOH  
CSb High Time between CSb Lows  
SDIO to SCLK Rising Edge Setup Time  
SCLK Rising Edge to SDIO Hold Time  
Delay Time from CSb Falling Edge to SO Active  
(4 wire SPI Only)  
TZG3D  
--  
--  
15  
ns  
Delay Time from CSb Rising Edge to SO Tri-state (4 wire  
SPI Only)  
TG3ZD  
TG3D  
--  
--  
15  
15  
ns  
ns  
Delay Time from SCLK Falling Edge to SO (4 wire SPI Only)  
Table 34: SPI Timing Parameters  
---  
---  
emPowerAudio™  
Datasheet Revision 2.8  
Page 93 of 110  
June 2016  
NAU8812  
13.3. 2-WIRE TIMING DIAGRAM  
TSTAH  
TSDIOS  
TSDIOH  
TSTAH  
SDIO  
SCLK  
TSCKH  
TFALL  
TSCKL  
TRISE  
TSTAS  
TSTOS  
Figure 44: 2-Wire Timing Diagram  
DESCRIPTION  
SYMBOL  
TSTAH  
MIN  
600  
TYP  
---  
MAX  
UNIT  
START / Repeat START condition, SCLK falling edge to  
SDIO falling edge hold timing  
---  
---  
---  
ns  
ns  
ns  
Repeat START condition, SDIO rising edge to SCLK  
falling edge setup timing  
TSTAS  
TSTOS  
600  
600  
---  
---  
STOP condition, SDIO rising edge to SCLK rising edge  
setup timing  
TSCKH  
TSCKL  
TRISE  
SCLK High Pulse Width  
600  
1.3  
---  
---  
---  
---  
---  
---  
---  
---  
---  
ns  
us  
ns  
ns  
ns  
ns  
SCLK Low Pulse Width  
Rise Time for all 2-Wire Signals  
Fall Time for all 2-Wire Signals  
SDIO to SCLK Rising Edge DATA Setup Time  
SCLK falling Edge to SDIO DATA Hold Time  
Table 35: 2-WireTiming Parameters  
300  
300  
---  
TFALL  
---  
TSDIOS  
TSDIOH  
400  
0
600  
emPowerAudio™  
Datasheet Revision 2.8  
Page 94 of 110  
June 2016  
NAU8812  
14. AUDIO INTERFACE TIMING DIAGRAM  
14.1. AUDIO INTERFACE IN SLAVE MODE  
TBCK  
TRISE  
TFALL  
BCLK  
(Slave)  
TFSH  
TBCKH  
TFSH  
TBCKL  
TFSS  
TFSS  
FS  
(Slave)  
TDIS  
TDIH  
DACIN  
TDOD  
ADCOUT  
Figure 45: Audio Interface Slave Mode Timing Diagram  
14.2. AUDIO INTERFACE IN MASTER MODE  
BCLK  
(Master)  
TFSD  
TFSD  
FS  
(Master)  
TDIS  
TDIH  
DACIN  
TDOD  
ADCOUT  
Figure 46: Audio Interface in Master Mode Timing Diagram  
emPowerAudio™  
Datasheet Revision 2.8  
Page 95 of 110  
June 2016  
NAU8812  
14.3. PCM AUDIO INTERFACE IN SLAVE MODE (PCM Audo Data)  
TBCK  
TRISE  
TFALL  
BCLK  
(Slave)  
TBCKH  
TFSH  
TFSH  
TBCKL  
TFSS  
TFSS  
FS  
(Slave)  
TDIS  
TDIH  
DACIN  
MSB  
TDOD  
ADCOUT  
MSB  
Figure 47: PCM Audio Interface Slave Mode Timing Diagram  
14.4. PCM AUDIO INTERFACE IN MASTER MODE (PCM Audo Data)  
BCLK  
(Master)  
TFSD  
TFSD  
TFSD  
FS  
(Master)  
TDIS  
TDIH  
DACIN  
MSB  
TDOD  
MSB  
ADCOUT  
Figure 48: PCM Audio Interface Slave Mode Timing Diagram  
emPowerAudio™  
Datasheet Revision 2.8  
Page 96 of 110  
June 2016  
NAU8812  
14.5. PCM AUDIO INTERFACE IN SLAVE MODE (PCM Time Slot Mode )  
TBCK  
TRISE  
TFALL  
BCLK  
(Slave)  
TBCKH  
TFSH  
TFSH  
TBCKL  
TFSS  
TFSS  
FS  
(Slave)  
TDIS  
TDIH  
DACIN  
MSB  
TDOD1  
TDOD  
ADCOUT  
MSB  
Figure 49: PCM Audio Interface Slave Mode (PCM Time Slot Mode )Timing Diagram  
14.6. PCM AUDIO INTERFACE IN MASTER MODE (PCM Time Slot Mode )  
BCLK  
(Master)  
TFSD  
TFSD  
FS  
(Master)  
TDIS  
TDIH  
DACIN  
MSB  
TDOD  
ADCOUT  
MSB  
Figure 50: PCM Audio Interface Master Mode (PCM Time Slot Mode )Timing Diagram  
emPowerAudio™  
Datasheet Revision 2.8  
Page 97 of 110  
June 2016  
NAU8812  
SYMBOL  
TBCK  
DESCRIPTION  
MIN  
50  
TYP  
---  
MAX  
---  
UNIT  
BSCK Cycle Time (Slave Mode)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TBCKH  
TBCKL  
TFSS  
TFSH  
TFSD  
TRISE  
TFALL  
TDIS  
BSCK High Pulse Width (Slave Mode)  
20  
20  
20  
20  
---  
---  
---  
15  
15  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
BSCK Low Pulse Width (Slave Mode)  
---  
fs to SCK Rising Edge Setup Time (Slave Mode)  
SCK Rising Edge to fs Hold Time (Slave Mode)  
fs to SCK falling to fs transition (Master Mode)  
Rise Time for All Audio Interface Signals  
Fall Time for All Audio Interface Signals  
ADCIN to SCK Rising Edge Setup Time  
SCK Rising Edge to ADCIN Hold Time  
---  
---  
10  
0.135TBCK  
0.135TBCK  
---  
TDIH  
---  
TDOD  
Delay Time from SCLK falling Edge to DACOUT  
10  
Table 36: Audio Interface Timing Parameters  
14.7. System Clock (MCLK) Timing Diagram  
TMCLKH  
MCLK  
TMCLKL  
Figure 51: MCLK Timing Diagram  
PARAMETER  
MCLK Duty Cycle  
SYMBOL  
TMCLKDC  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
40:60  
60:40  
MCLK High Pulse Width  
TMCLKH  
TMCLKL  
20  
20  
---  
---  
---  
---  
ns  
ns  
MCLK Low Pulse Width  
Table 37: MCLK Timing Parameter  
emPowerAudio™  
Datasheet Revision 2.8  
Page 98 of 110  
June 2016  
NAU8812  
14.8. µ-LAW ENCODE DECODE CHARACTERISTICS  
Normalized  
Digital Code  
Normalized  
Decode  
Levels  
Encode  
Decision  
Levels  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Sign  
Chord  
Chord  
Chord  
Step  
Step  
Step  
Step  
8159  
1
:
0
:
0
:
0
:
0
:
0
:
0
:
0
:
8031  
7903  
:
:
4319  
1
:
0
:
0
:
0
:
1
:
1
:
1
:
1
:
4191  
4063  
:
:
2143  
1
:
0
:
0
:
1
:
1
:
1
:
1
:
1
:
2079  
2015  
:
:
1055  
1
:
0
:
1
:
0
:
1
:
1
:
1
:
1
:
1023  
991  
:
:
511  
1
:
0
:
1
:
1
:
1
:
1
:
1
:
1
:
495  
479  
:
239  
:
231  
:
1
:
1
:
0
:
0
:
1
:
1
:
1
:
1
:
223  
:
103  
1
:
1
:
0
:
1
:
1
:
1
:
1
:
1
:
99  
:
95  
:
35  
1
:
1
:
1
:
0
:
1
:
1
:
1
:
1
:
33  
:
31  
:
3
1
:
1
:
1
:
1
:
1
:
1
:
1
:
0
:
2
:
1
0
1
1
1
1
1
1
1
1
0
Notes:  
Sign bit = 0 for negative values, sign bit = 1 for positive values  
emPowerAudio™  
Datasheet Revision 2.8  
Page 99 of 110  
June 2016  
NAU8812  
14.9. A-LAW ENCODE DECODE CHARACTERISTICS  
Normalized  
Digital Code  
Normalized  
Decode  
Levels  
Encode  
Decision  
Levels  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Sign  
Chord  
Chord  
Chord  
Step  
Step  
Step  
Step  
4096  
1
:
0
:
1
:
0
:
1
:
0
:
1
:
0
:
4032  
3968  
:
:
2176  
1
:
0
:
1
:
0
:
0
:
1
:
0
:
1
:
2112  
2048  
:
:
1088  
1
:
0
:
1
:
1
:
0
:
1
:
0
:
1
:
1056  
1024  
:
:
544  
1
:
0
:
0
:
0
:
0
:
1
:
0
:
1
:
528  
512  
:
:
272  
1
:
0
:
0
:
1
:
0
:
1
:
0
:
1
:
264  
256  
:
:
132  
:
136  
1
:
1
:
1
:
0
:
0
:
1
:
0
:
1
:
128  
:
68  
1
:
1
:
1
:
0
:
0
:
1
:
0
:
1
:
66  
:
64  
:
2
1
1
0
1
0
1
0
1
1
0
Notes:  
1. Sign bit = 0 for negative values, sign bit = 1 for positive values  
2. Digital code includes inversion of all even number bits  
emPowerAudio™  
Datasheet Revision 2.8  
Page 100 of 110  
June 2016  
NAU8812  
14.10. µ-LAW / A-LAW CODES FOR ZERO AND FULL SCALE  
µ-Law  
A-Law  
Level  
Sign bit  
(D7)  
Chord bits  
(D6,D5,D4)  
Step bits  
(D3,D2,D1,D0)  
Sign bit  
(D7)  
Chord bits  
(D6,D5,D4)  
Step bits  
(D3,D2,D1,D0)  
+ Full Scale  
+ Zero  
1
1
0
0
000  
111  
111  
000  
0000  
1111  
1111  
0000  
1
1
0
0
010  
101  
101  
010  
1010  
0101  
- Zero  
0101  
- Full Scale  
1010  
14.11.  
µ-LAW / A-LAW OUTPUT CODES (DIGITAL MW)  
µ-Law  
A-Law  
Sample  
Sign bit  
(D7)  
Chord bits  
(D6,D5,D4)  
Step bits  
(D3,D2,D1,D0)  
Sign bit  
(D7)  
Chord bits  
(D6,D5,D4)  
Step bits  
(D3,D2,D1,D0)  
1
2
3
4
5
6
7
8
0
0
0
0
1
1
1
1
001  
000  
000  
001  
001  
000  
000  
001  
1110  
1011  
1011  
1110  
1110  
1011  
1011  
1110  
0
0
0
0
1
1
1
1
011  
010  
010  
011  
011  
010  
010  
011  
0100  
0001  
0001  
0100  
0100  
0001  
0001  
0100  
emPowerAudio™  
Datasheet Revision 2.8  
Page 101 of 110  
June 2016  
NAU8812  
15. DIGITAL FILTER CHARACTERISTICS  
TEST  
CONDITIONS  
PARAMETER  
MIN  
0
TYP  
MAX  
UNIT  
ADC Filter  
+/- 0.025dB  
-6dB  
0.454*fs  
Passband  
0.5*fs  
Passband Ripple  
Stopband  
+/-0.025  
dB  
dB  
0.546*fs  
-60  
Stopband  
Attenuation  
f > 0.546*fs  
Group Delay  
21/fs  
ADC High Pass Filter  
-3dB  
3.7  
High Pass Filter  
Corner Frequency  
-0.5dB  
-0.1dB  
10.4  
21.6  
Hz  
DAC Filter  
+/- 0.035dB  
-6dB  
0
0.454*fs  
+/-0.035  
Passband  
0.5*fs  
Passband Ripple  
Stopband  
dB  
dB  
0.546*fs  
-55  
Stopband  
Attenuation  
f > 0.546*fs  
Group Delay  
29/fs  
Table 57 Digital Filter Characteristics  
TERMINOLOGY  
1. Stop Band Attenuation (dB) the degree to which the frequency spectrum is attenuated (outside audio band)  
2. Pass-band Ripple any variation of the frequency response in the pass-band region  
3. Note that this delay applies only to the filters and does not include  
emPowerAudio™  
Datasheet Revision 2.8  
Page 102 of 110  
June 2016  
NAU8812  
Figure 53: ADC Filter Frequency Response  
Figure 52: DAC Filter Frequency Response  
Figure 54: DAC Filter Ripple  
Figure 55: ADC Filter Ripple  
emPowerAudio™  
Datasheet Revision 2.8  
Page 103 of 110  
June 2016  
NAU8812  
16. TYPICAL APPLICATION  
C9  
4.7uF  
C10  
1uF  
VREF  
AUX  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
C8  
1uF  
VDDSPK  
VDDSPK  
MIC -  
MIC +  
C7  
1uF  
VDDSPK  
SPKOUT -  
VSSSPK  
VSSSPK  
SPKOUT +  
3
C4  
4.7uF  
R1  
R2  
1.2k ohm  
1.2k ohm  
MICBIAS  
NC  
VSS  
4
C6  
4.7uF  
5
VDDA  
VDDA  
VSSA  
VSSA  
VDDC  
VDDB  
6
VSS  
NAU8812  
MONO AUDIO  
CODEC  
7
C5  
1uF  
MOUT  
MODE  
SDIO  
8
VDDC  
SSOP 28-Pin  
9
VDDB  
10  
11  
12  
13  
14  
C2  
C1  
C3  
4.7uF  
4.7uF  
4.7uF  
VSSD  
SCLK  
VSS  
CSb/GPIO  
MCLK  
ADCOUT  
DACIN  
FS  
BCLK  
Figure 56: Application Diagram 28-Pin SSOP  
emPowerAudio™  
Datasheet Revision 2.8  
Page 104 of 110  
June 2016  
NAU8812  
C8  
1uF  
VSS  
C4  
4.7uF  
VDDSPK  
C7  
1uF  
C9  
4.7uF  
C10  
1uF  
R2  
1.2k ohm  
R1  
1.2k ohm  
MICBIAS  
C6  
4.7uF  
VSSSPK  
VSSSPK  
SPKOUT +  
MOUT  
NC  
1
24  
23  
22  
21  
20  
19  
18  
17  
VDDA  
VDDA  
2
3
4
5
6
7
8
VSSA  
VSSA  
VDDL  
VDDC  
NAU8812  
MONO AUDIO  
CODEC  
C11  
10nF  
C5  
1uF  
NC  
VDDC  
QFN 32-Pin  
MODE  
VDDB  
VDDB  
VSSD  
SO  
C1  
C2  
4.7uF  
C3  
4.7uF  
SDIO  
4.7uF  
VSS  
Figure 57: Application Diagram for 32-Pin QFN  
Note 1: All non-polar capacitors are assumed to be low ESR type parts, such as with MLC construction or similar.  
If capacitors are not low ESR, additional 0.1uF and/or 0.01uF capacitors may be necessary in parallel  
with the bulk 4.7uF capacitors on the supply rails.  
Note 2: Load resistors to ground on outputs may be helpful in some applications to insure a DC path for the  
output capacitors to charge/discharge to the desired levels. If the output load is always present and the  
output load provides a suitable DC path to ground, then the additional load resistors may not be  
necessary. If needed, such load resistors are typically a high value, but a value dependent upon the  
application requirements.  
Note 3: To minimize pops and clicks, large polarized output capacitors should be a low leakage type.  
Note 4: Depending on the microphone device and PGA gain settings, common mode rejection can be improved  
by choosing the resistors on each node of the microphone such that the impedance presented to any  
noise on either microphone wire is equal.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 105 of 110  
June 2016  
NAU8812  
17. PACKAGE SPECIFICATION  
17.1. 28 Pin SSOP  
D
28  
15  
DTEAIL A  
H
E
E
1
14  
A
A2  
b
SEATING PLANE  
SEATING PLANE  
L
Y
L1  
e
b
A1  
DETAIL A  
DIMENSION IN MM DIMENSION IN INCH  
MIN. NOM MAX. MIN. NOM MAX.  
SYMBOL  
0.079  
2.00  
A
A1  
A2  
b
0.05  
1.65 1.75 1.85  
0.002  
0.065  
0.069  
0.073  
0.015  
0.010  
0.22  
0.09  
0.38 0.009  
0.25 0.004  
c
10.20  
5.30 5.60  
7.80 8.20  
0.65  
10.05  
5.00  
0.395 0.401 0.407  
0.197 0.209 0.220  
10.35  
D
E
HE  
7.40  
0.291 0.307 0.323  
0.0256  
e
L
L1  
0.95  
0.037  
0.55 0.75  
1.25  
0.021 0.030  
0.050  
0.004  
8
Y
0.10  
8
0
0
emPowerAudio™  
Datasheet Revision 2.8  
Page 106 of 110  
June 2016  
NAU8812  
32-Pin QFN  
32  
25  
1
24  
8
17  
16  
9
32  
25  
24  
1
17  
8
16  
9
emPowerAudio™  
Datasheet Revision 2.8  
Page 107 of 110  
June 2016  
NAU8812  
18. ORDERING INFORMATION  
Nuvoton Part Number Description  
NAU8812_ _  
Package Material:  
Pb-free Package  
G
=
Package Type:  
R
Y
=
=
28-Pin SSOP Package  
32-Pin QFN Package  
emPowerAudio™  
Datasheet Revision 2.8  
Page 108 of 110  
June 2016  
NAU8812  
19. VERSION HISTORY  
VERSION  
DATE  
PAGE  
DESCRIPTION  
1.0  
September 2009  
Preliminary release  
Updated Figure numbers  
13 - 15  
36  
The word SPKBST was updated with VDDSPK  
Figure 19 updated  
1.1  
1.2  
November 2009  
December 2009  
38  
Figure 20 updated  
69  
Description of CLKM and CLKIOEN is updated  
Updated type on the VERSION  
Note Added  
108  
3
13 - 15  
66  
Electrical Specification table format updated  
Register 0x05 description updated  
Register 0x06 description updated  
67  
1.3  
1.4  
1.5  
January 2010  
January 2010  
February 2010  
46 - 48  
107  
Control interface description updated  
Package description updated  
Figure 7 updated  
22  
14  
63, 87  
63, 87  
4
Speaker THD for 2-stage updated  
Bit-8 of register 0x46 deleted from the document.  
Default value of register 0x47 updated  
Block diagram updated  
1.6  
1.7  
March 2010  
April 2010  
44  
Table 24 updated  
62  
Table 34 updated  
63, 86  
Register 0x41 Reserved updated  
47  
63  
79  
97  
Removed trailing clock cycle from SPI timing diagram  
Corrected Register 0x38 Register name  
Improved description of Mic Bias set up  
Added System Clock Timing Diagram  
2.0  
2.1  
January 2011  
October 2013  
15  
93  
Corrected Digital I/O voltages from DCVDD to DBVDD  
Corrected 2 wire timing diagram  
An additional remark of VDDSPK boost mode  
Modify Figure29 Byte Write Sequence  
13 15  
2.2  
2.7  
2.8  
Jan 2014  
March 2016  
June 2016  
50  
Modify Figure30 2-Wire Read Sequence  
37  
Add Important Notice  
46  
87  
Revise f1 equation from * to /  
Silicon Revision ID changed  
Package infromation  
108  
emPowerAudio™  
Datasheet Revision 2.8  
Page 109 of 110  
June 2016  
NAU8812  
Important Notice  
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any  
malfunction or failure of which may cause loss of human life, bodily injury or severe property  
damage. Such applications are deemed, “Insecure Usage”.  
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic  
energy control instruments, airplane or spaceship instruments, the control or operation of  
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all  
types of safety devices, and other applications intended to support or sustain life.  
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay  
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the  
damages and liabilities thus incurred by Nuvoton.  
emPowerAudio™  
Datasheet Revision 2.8  
Page 110 of 110  
June 2016  

相关型号:

NAU8812YG

Mono Audio Codec with Speaker Driver
NUVOTON

NAU8820YG TR

IC AUDIO CODEC STEREO 32QFN
ETC

NAU88C22

24-bit Stereo Audio Codec with Speaker Driver
NUVOTON

NAU88C22IG

24-bit Stereo Audio Codec with Speaker Driver
NUVOTON

NAU88C22YG

24-bit Stereo Audio Codec with Speaker Driver
NUVOTON

NAU88L21

Ultra-Low Power Audio CODEC Ground-Referenced Headphone Amplifier
NUVOTON

NAU88L21IG

Ultra-Low Power Audio CODEC Ground-Referenced Headphone Amplifier
NUVOTON

NAU88L21YG

Ultra-Low Power Audio CODEC Ground-Referenced Headphone Amplifier
NUVOTON

NAU88L25

Ultra-Low Power Audio CODEC for Headphone/Headsets Application With 124dB Class G Headphone Drive and Advanced Headset Features
NUVOTON

NAU88L25B

Ultra-Low Power Audio CODEC for Headphone/Headsets Application With 124dB Class G Headphone Drive and Advanced Headset Features
NUVOTON

NAU88L25VGB

Ultra-Low Power Audio CODEC for Headphone/Headsets Application With 124dB Class G Headphone Drive and Advanced Headset Features
NUVOTON

NAU88L25YG

Ultra-Low Power Audio CODEC for Headphone/Headsets Application With 124dB Class G Headphone Drive and Advanced Headset Features
NUVOTON