935278866118 [NXP]

LIQUID CRYSTAL DISPLAY DRIVER, PDSO40, PLASTIC, VSOP-40;
935278866118
型号: 935278866118
厂家: NXP    NXP
描述:

LIQUID CRYSTAL DISPLAY DRIVER, PDSO40, PLASTIC, VSOP-40

驱动 光电二极管 接口集成电路
文件: 总28页 (文件大小:141K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCF8577C  
LCD direct/duplex driver with  
I2C-bus interface  
1998 Jul 30  
Product specification  
Supersedes data of 1997 Mar 28  
File under Integrated Circuits, IC12  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
CONTENTS  
1
2
3
4
5
6
FEATURES  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
BLOCK DIAGRAM  
PINNING  
FUNCTIONAL DESCRIPTION  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
6.10  
Hardware subaddress A0, A1, A2  
Oscillator A0/OSC  
User-accessible registers  
Auto-incremented loading  
Direct drive mode  
Duplex mode  
Power-on reset  
Slave address  
I2C-bus protocol  
Display memory mapping  
7
CHARACTERISTICS OF THE I2C-BUS  
7.1  
7.2  
7.3  
7.4  
Bit transfer  
Start and stop conditions  
System configuration  
Acknowledge  
8
LIMITING VALUES  
9
HANDLING  
10  
11  
12  
13  
DC CHARACTERISTICS  
AC CHARACTERISTICS  
APPLICATION INFORMATION  
CHIP DIMENSIONS AND BONDING PAD  
LOCATIONS  
14  
15  
PACKAGE OUTLINES  
SOLDERING  
15.1  
Plastic dual in-line packages  
By dip or wave  
Repairing soldered joints  
Plastic small outline packages  
By wave  
By solder paste reflow  
Repairing soldered joints (by hand-held  
soldering iron or pulse-heated solder tool)  
15.1.1  
15.1.2  
15.2  
15.2.1  
15.2.2  
15.2.3  
16  
17  
18  
DEFINITIONS  
LIFE SUPPORT APPLICATIONS  
PURCHASE OF PHILIPS I2C COMPONENTS  
1998 Jul 30  
2
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
1
FEATURES  
Direct/duplex drive modes with up to  
32/64 LCD-segment drive capability per device  
Operating supply voltage: 2.5 to 6 V  
Low power consumption  
I2C-bus interface  
2
GENERAL DESCRIPTION  
Optimized pinning for single plane wiring  
Single-pin built-in oscillator  
The PCF8577C is a single chip, silicon gate CMOS circuit.  
It is designed to drive liquid crystal displays with up to  
32 segments directly, or 64 segments in a duplex  
configuration.  
Auto-incremented loading across device subaddress  
boundaries  
Display memory switching in direct drive mode  
May be used as I2C-bus output expander  
System expansion up to 256 segments  
Power-on reset blanks display  
The two-line I2C-bus interface substantially reduces wiring  
overheads in remote display applications. I2C-bus traffic is  
minimized in multiple IC applications by automatic address  
incrementing, hardware subaddressing and display  
memory switching (direct drive mode).To allow partial VDD  
shutdown the ESD protection system of the SCL and SDA  
I2C-bus address: 0111 0100.  
pins does not use a diode connected to VDD  
.
3
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
PCF8577CP  
DIP40  
plastic dual in-line package; 40 leads (600 mil)  
SOT129-1  
PCF8577CT  
PCF8577CT  
PCF8577CU/10  
VSO40  
plastic very small outline package; 40 leads  
VS040 in blister tape  
SOT158A  
chip on film-frame-carrier (FFC)  
4
BLOCK DIAGRAM  
1
S32  
39  
SCL  
SEGMENT BYTE  
BACKPLANE  
AND  
SEGMENT  
DRIVERS  
REGISTERS  
AND  
MULTIPLEX  
LOGIC  
2
INPUT  
FILTERS  
I C - BUS  
2
I C - BUS  
CONTROLLER  
40  
32  
33  
S1  
BP1  
SDA  
34  
36  
37  
A2/BP2  
A1  
A0/OSC  
35  
V
DD  
POWER -  
ON  
RESET  
CONTROL REGISTER  
AND  
OSCILLATOR  
AND  
DIVIDER  
PCF8577C  
COMPARATOR  
38  
V
SS  
MGA727  
Fig.1 Block diagram.  
3
1998 Jul 30  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
5
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
S32 to S1  
BP1  
1 to 32 segments outputs  
1
2
3
4
5
6
7
8
9
S32  
S31  
S30  
S29  
S28  
S27  
S26  
40 SDA  
33  
34  
cascade sync input/backplane  
output  
39  
38  
37  
36  
35  
SCL  
V
A2/BP2  
hardware address line and  
cascade sync input/backplane  
output  
SS  
A0/OSC  
A1  
VDD  
35  
36  
37  
positive supply voltage  
V
DD  
A1  
hardware address line input  
34 A2/BP2  
33  
A0/OSC  
hardware address line and  
oscillator pin input  
S25  
S24  
BP1  
VSS  
38  
39  
40  
negative supply voltage  
I2C-bus clock line input  
I2C-bus data line input/output  
32 S1  
31 S2  
30 S3  
29 S4  
28 S5  
SCL  
SDA  
S23 10  
S22 11  
PCF8577C  
12  
S20 13  
S21  
14  
15  
27  
S19  
S18  
S6  
26 S7  
25 S8  
24 S9  
23 S10  
22 S11  
21 S12  
S17 16  
S16 17  
S15 18  
S14 19  
20  
S13  
MGA725  
Fig.2 Pin configuration.  
1998 Jul 30  
4
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
6
FUNCTIONAL DESCRIPTION  
6.3  
User-accessible registers  
There are nine user-accessible 1-byte registers. The first  
is a control register which is used to control the loading of  
data into the segment byte registers and to select display  
options. The other eight are segment byte registers, split  
into two banks of storage, which store the segment data.  
The set of even numbered segment byte registers is called  
BANK A. Odd numbered segment byte registers are called  
BANK B.  
6.1  
Hardware subaddress A0, A1, A2  
The hardware subaddress lines A0, A1 and A2 are used to  
program the device subaddress for each PCF8577C  
connected to the I2C-bus. Lines A0 and A2 are shared with  
OSC and BP2 respectively to reduce pin-out  
requirements.  
1. Line A0 is defined as LOW (logic 0) when this pin is  
used for the local oscillator or when connected to VSS  
Line A0 is defined as HIGH (logic 1) when connected  
to VDD  
.
There is one slave address for the PCF8577C (see Fig.6).  
All addressed devices load the second byte into the control  
register and each device maintains an identical copy of the  
control byte in the control register at all times (see I2C-bus  
protocol, Fig.7), i.e. all addressed devices respond to  
control commands sent on the I2C-bus.  
.
2. Line A1 must be defined as LOW (logic 0) or as HIGH  
(logic 1) by connection to VSS or VDD respectively.  
3. In the direct drive mode the second backplane signal  
BP2 is not used and the A2/BP2 pin is exclusively the  
A2 input. Line A2 is defined as LOW (logic 0) when  
connected to VSS or, if this is not possible, by leaving  
it unconnected (internal pull-down). Line A2 is defined  
The control register is shown in more detail in Fig.3.  
The least-significant bits select which device and which  
segment byte register is loaded next. This part of the  
register is therefore called the Segment Byte Vector  
(SBV).  
as HIGH (logic 1) when connected to VDD  
.
4. In the duplex drive mode the second backplane signal  
BP2 is required and the A2 signal is undefined. In this  
mode device selection is made exclusively from  
lines A0 and A1.  
The upper three bits of the SBV (V5 to V3) are compared  
with the hardware subaddress input signals A2, A1  
and A0. If they are the same then the device is enabled for  
loading, if not the device ignores incoming data but  
remains active.  
6.2  
Oscillator A0/OSC  
The three least-significant bits of the SBV (V2 to V0)  
address one of the segment byte registers within the  
enabled chip for loading segment data.  
The PCF8577C has a single-pin built-in oscillator which  
provides the modulation for the LCD segment driver  
outputs. One external resistor and one external capacitor  
are connected to the A0/OSC pin to form the oscillator (see  
Figs 15 and 16). For correct start-up of the oscillator after  
power on, the resistor and capacitor must be connected to  
the same VSS/VDD as the chip. In an expanded system  
containing more than one PCF8577C the backplane  
signals are usually common to all devices and only one  
oscillator is required. The devices which are not used for  
the oscillator are put into the cascade mode by connecting  
the A0/OSC pin to either VDD or VSS depending on the  
required state for A0. In the cascade mode each  
The control register also has two display control bits.  
These bits are named MODE and BANK. The MODE bit  
selects whether the display outputs are configured for  
direct or duplex drive displays. The BANK bit allows the  
user to display BANK A or BANK B.  
6.4  
Auto-incremented loading  
After each segment byte is loaded the SBV is incremented  
automatically. Thus auto-incremented loading occurs if  
more than one segment byte is received in a data transfer.  
PCF8577C is synchronized from the backplane signal(s).  
Since the SBV addresses both device and segment  
registers in all addressed chips, auto-incremented loading  
may proceed across device boundaries provided that the  
hardware subaddresses are arranged contiguously.  
1998 Jul 30  
5
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
CONTROL REGISTER  
SEGMENT BYTE REGISTERS  
DISPLAY SEGMENT BYTE VECTOR  
CONTROL  
(SBV)  
msb  
lsb  
msb  
lsb  
V5  
0
2
4
6
V4 V3 V2 V1 V0  
segment byte  
register  
address  
(1) (1)  
comparison  
BANK 'A'  
A2 A1 A0  
1
3
5
7
device  
subaddress  
BANK 'B'  
0
1
BANK 'A'  
BANK 'B'  
BANK  
0
1
DIRECT DRIVE  
DUPLEX DRIVE  
DISPLAY  
MODE  
MGA733  
(1) Bits ignored in duplex mode.  
Fig.3 PCF8577C register organization.  
OFF  
ON  
V
DD  
BP1  
V
SS  
V
DD  
Segment x  
(Sx)  
V
SS  
V
V
SS  
DD  
0
BP1 Sx  
(V  
V
)
DD  
SS  
1
MGA737  
f
LCD  
Von(rms) = VDD VSS; Voff(rms) = 0.  
Fig.4 Direct drive mode display output waveforms.  
6
1998 Jul 30  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
6.5  
Direct drive mode  
6.6  
Duplex mode  
The PCF8577C is set to the direct drive mode by loading  
the MODE control bit with logic 0. In this mode only four  
bytes are required to store the data for the 32 segment  
drivers. Setting the BANK bit to logic 0 selects even bytes  
(BANK A), setting the BANK bit to logic 1 selects odd bytes  
(BANK B).  
The PCF8577C is set to the duplex mode by loading the  
MODE bit with logic 1. In this mode a second backplane  
signal (BP2) is needed and pin A2/BP2 is used for this;  
therefore A2 and its equivalent SBV bit V5 are undefined.  
The SBV auto-increments by one between loaded bytes.  
All of the segment bytes are required to store data for the  
32 segment drivers and the BANK bit is ignored.  
In the direct drive mode the SBV is auto-incremented by  
two after the loading of each segment byte register. This  
means that auto-incremented loading of BANK A or  
BANK B is possible. Either bank may be completely or  
partially loaded irrespective of which bank is being  
displayed. Direct drive output waveforms are shown in  
Fig.4.  
Duplex mode output waveforms are shown in Fig.5.  
OFF / OFF  
ON / OFF  
OFF / ON  
ON / ON  
V
DD  
0.5 (V  
V
)
)
BP1  
BP2  
DD  
SS  
V
SS  
V
DD  
0.5 (V  
V
DD  
SS  
V
SS  
V
DD  
Segment x  
(Sx)  
V
SS  
V
V
SS  
DD  
0.5 (V  
V
)
)
DD  
SS  
0
BP1 Sx  
0.5 (V  
DD  
V
SS  
(V  
DD  
V
)
SS  
V
V
SS  
DD  
0.5 (V  
V
)
)
DD  
SS  
0
BP2 Sx  
0.5 (V  
V
SS  
DD  
(V  
DD  
V
)
SS  
1
f
MGA738  
LCD  
Von(rms) = 0.791 (VDD VSS); Voff(rms) = 0.354 (VDD VSS).  
Von (rms)  
= 2.236  
-----------------------  
Voff (rms)  
Fig.5 Duplex mode display output waveforms.  
7
1998 Jul 30  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
I2C-bus protocol  
6.7  
Power-on reset  
6.9  
The PCF8577C I2C-bus protocol is shown in Fig.7.  
At power-on reset the PCF8577C resets to a defined  
starting condition as follows:  
The PCF8577C is a slave receiver and has a fixed slave  
address (see Fig.6). All PCF8577Cs with the same slave  
address acknowledge the slave address in parallel.  
The second byte is always the control byte and is loaded  
into the control register of each PCF8577C connected to  
the I2C-bus. All addressed devices acknowledge the  
control byte. Subsequent data bytes are loaded into the  
segment registers of the selected device. Any number of  
data bytes may be loaded in one transfer and in an  
expanded system rollover of the SBV from 111 111 to  
000 000 is allowed. If a stop (P) condition is given after the  
control byte acknowledge the segment data will remain  
unchanged. This allows the BANK bit to be toggled without  
changing the segment register contents. During loading of  
segment data only the selected PCF8577C gives an  
acknowledge. Loading is terminated by generating a stop  
(P) condition.  
1. Both backplane outputs are set to VSS in master mode;  
to 3-state in cascade mode  
2. All segment outputs are set to VSS  
3. The segment byte registers and control register are  
cleared  
4. The I2C-bus interface is initialized.  
6.8  
Slave address  
The PCF8577C slave address is shown in Fig.6.  
Before any data is transmitted on the I2C-bus, the device  
which should respond is addressed first. The addressing is  
always done with the first byte transmitted after the start  
procedure.  
S
0
1
1
1
0
1
0
0
A
SLAVE ADDRESS  
MGA731  
Fig.6 PCF8577C slave address.  
acknowledge by  
all PCF8577C  
acknowledge by  
all PCF8577C  
acknowledge by  
selected PCF8577C only  
msb  
lsb  
SEGMENT  
BYTE VECTOR  
S
A
SEGMENT DATA  
A
P
SLAVE ADDRESS  
0
A
control byte  
n bytes  
R/W  
auto increment  
segment byte vector  
MGA732  
Fig.7 I2C-bus protocol.  
8
1998 Jul 30  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
6.10 Display memory mapping  
The mapping between the eight segment registers and the segment outputs S1 to S32 is given in Tables 1 and 2.  
Since only one register bit per segment is needed in the direct drive mode, the BANK bit allows swapping of display  
information. If BANK is set to logic 0 even bytes (BANK A) are displayed; if BANK is set to logic 1 odd bytes (BANK B)  
are displayed. BP1 is always used for the backplane output in the direct drive mode. In duplex mode even bytes  
(BANK A) correspond to backplane 1 (BP1) and odd bytes (BANK B) correspond to backplane 2 (BP2).  
Table 1 Segment byte-segment driver mapping in direct drive mode  
SEGMENT/  
BIT/  
REGISTER  
V
2
V
1
V
0
MSB  
7
LSB BACK-  
MODE BANK  
6
5
4
3
2
1
0
PLANE  
0
0
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
S8  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
S1  
BP1  
BP1  
BP1  
BP1  
BP1  
BP1  
BP1  
BP1  
S8  
S7  
S6  
S5  
S4  
S3  
S2  
S16  
S16  
S24  
S24  
S32  
S32  
S15  
S15  
S23  
S23  
S31  
S31  
S14  
S14  
S22  
S22  
S30  
S30  
S13  
S13  
S21  
S21  
S29  
S29  
S12  
S12  
S20  
S20  
S28  
S28  
S11  
S11  
S19  
S19  
S27  
S27  
S10  
S10  
S18  
S18  
S26  
S26  
S9  
S9  
S17  
S17  
S25  
S25  
Mapping example: bit 0 of register 7 controls the LCD segment S25 if BANK bit is a logic 1.  
Table 2 Segment byte-segment driver mapping in duplex mode  
SEGMENT/  
BIT/  
REGISTER  
V
2
V
1
V
0
MSB  
7
LSB BACK-  
MODE BANK(1)  
6
5
4
3
2
1
0
PLANE  
1
1
1
1
1
1
1
1
X
X
X
X
X
X
X
X
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
S8  
S7  
S6  
S5  
S4  
S3  
S2  
S1  
S1  
BP1  
BP2  
BP1  
BP2  
BP1  
BP2  
BP1  
BP2  
S8  
S7  
S6  
S5  
S4  
S3  
S2  
S16  
S16  
S24  
S24  
S32  
S32  
S15  
S15  
S23  
S23  
S31  
S31  
S14  
S14  
S22  
S22  
S30  
S30  
S13  
S13  
S21  
S21  
S29  
S29  
S12  
S12  
S20  
S20  
S28  
S28  
S11  
S11  
S19  
S19  
S27  
S27  
S10  
S10  
S18  
S18  
S26  
S26  
S9  
S9  
S17  
S17  
S25  
S25  
Note  
1. Where X = don’t care.  
Mapping example: bit 7 of register 5 controls the LCD segment S24/BP2.  
1998 Jul 30  
9
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
CHARACTERISTICS OF THE I2C-BUS  
7.4  
Acknowledge  
7
The I2C-bus is for 2-way, 2-line communication between  
different ICs or modules. The two lines are a serial data  
line (SDA) and a serial clock line (SCL). Both lines must be  
connected to a positive supply via a pull-up resistor when  
connected to the output stages of a device. Data transfer  
may be initiated only when the I2C-bus is not busy.  
The number of data bytes transferred between the start  
and stop conditions from transmitter to receiver is not  
limited. Each byte is followed by one acknowledge bit.  
The acknowledge bit is a HIGH level put on the I2C-bus by  
the transmitter whereas the master generates an extra  
acknowledge related clock pulse. A slave receiver which is  
addressed must generate an acknowledge after the  
reception of each byte. Also a master must generate an  
acknowledge after the reception of each byte that has  
been clocked out of the slave transmitter. The device that  
acknowledges has to pull down the SDA line during the  
acknowledge clock pulse, set-up and hold times must be  
taken into account. A master receiver must signal an end  
of data to the transmitter by not generating an  
7.1  
Bit transfer  
One data bit is transferred during each clock pulse.  
The data on the SDA line must remain stable during the  
HIGH period of the clock pulse as changes in the data line  
at this time will be interpreted as control signals.  
7.2  
Start and stop conditions  
acknowledge on the last byte that has been clocked out of  
the slave. In this event the transmitter must leave the data  
line HIGH to enable the master to generate a stop  
condition.  
Both data and clock lines remain HIGH when the I2C-bus  
is not busy. A HIGH-to-LOW transition of the data line,  
while the clock is HIGH is defined as the start condition (S).  
A LOW-to-HIGH transition of the data line while the clock  
is HIGH is defined as the stop condition (P).  
7.3  
System configuration  
A device generating a message is a ‘transmitter’, a device  
receiving a message is the ‘receiver’. The device that  
controls the message is the ‘master’ and the devices which  
are controlled by the master are the ‘slaves’.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
MBA607  
Fig.8 Bit transfer.  
1998 Jul 30  
10  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
SDA  
SDA  
SCL  
SCL  
S
P
STOP condition  
START condition  
MBA608  
Fig.9 Definition of the start and stop conditions.  
SDA  
SCL  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
TRANSMITTER /  
RECEIVER  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
MBA605  
Fig.10 System configuration.  
clock pulse for  
acknowledgement  
START  
condition  
SCL FROM  
MASTER  
2
9
1
8
DATA OUTPUT  
BY TRANSMITTER  
S
DATA OUTPUT  
BY RECEIVER  
MBA606 - 1  
Fig.11 Acknowledgement on the I2C-bus.  
11  
1998 Jul 30  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
8
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL PARAMETER CONDITIONS  
VDD supply voltage  
VI  
MIN.  
0.5  
MAX.  
UNIT  
+8.0  
VDD + 0.5  
+50  
V
input voltage on pin  
0.5  
50  
20  
25  
V
I
DD; ISS  
VDD or VSS current  
mA  
mA  
mA  
II  
DC input current  
+20  
IO  
DC output current  
+25  
Ptot  
PO  
Tstg  
power dissipation per package note 1  
power dissipation per output  
storage temperature  
500  
mW  
mW  
°C  
100  
65  
+150  
Note  
1. Reduce by 7.7 mW/K when Tamb > 60 °C.  
9
HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe it is  
desirable to take normal precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC12  
under “Handling MOS Devices”.  
10 DC CHARACTERISTICS  
VDD = 2.5 to 6 V; VSS = 0 V; Tamb = 40 to 85 °C; unless otherwise specified.  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP.(1)  
MAX.  
UNIT  
VDD  
IDD  
supply voltage  
2.5  
6
V
supply current for  
non-specified inputs at VDD or  
VSS  
no load; fSCL = 100 kHz;  
50  
125  
µA  
µA  
µA  
Rosc = 1 M;  
Cosc = 680 pF  
no load; fSCL = 0;  
25  
25  
75  
Rosc = 1 M;  
Cosc = 680 pF  
no load; fSCL = 0;  
Rosc = 1 M;  
40  
Cosc = 680 pF; VDD = 5 V;  
Tamb = 25 °C  
no load; fSCL = 0; direct  
10  
20  
µA  
mode; A0/OSC = VDD  
;
VDD = 5 V; Tamb = 25 °C  
VPOR  
power-on reset level  
note 2  
1.1  
2.0  
V
Input A0  
VIL(A0)  
VIH(A0)  
LOW-level input voltage  
HIGH-level input voltage  
0
0.05  
VDD  
V
V
V
DD 0.05  
1998 Jul 30  
12  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
SYMBOL  
Input A1  
PARAMETER  
CONDITIONS  
MIN.  
TYP.(1)  
MAX.  
UNIT  
VIL(A1)  
VIH(A1)  
LOW-level input voltage  
HIGH-level input voltage  
0
0.3VDD  
VDD  
V
0.7VDD  
V
Input A2  
VIL(A2)  
VIH(A2)  
LOW-level input voltage  
HIGH-level input voltage  
0
0.10  
VDD  
V
V
V
DD 0.10  
Input SCL; SDA  
VIL(SCL; SDA) LOW-level input voltage  
VIH(SCL; SDA) HIGH-level input voltage  
0
0.3VDD  
V
0.7VDD  
6
7
V
Ci  
input capacitance  
note 3  
pF  
Output SDA  
IOL  
LOW-level output current  
VOL = 0.4 V; VDD = 5 V  
VI = VDD or VSS  
VI = VDD or VSS  
VI = VDD  
3
mA  
µA  
µA  
µA  
µA  
µA  
A1; SCL; SDA  
IL1  
leakage current  
1  
5  
5  
1  
+1  
+5  
A2/BP2; BP1  
IL2  
leakage current  
A2/BP2  
Ipd  
pull-down current  
leakage current  
1.5  
A0/OSC  
IL3  
VI = VDD  
Oscillator  
IOSC  
start-up current  
VI = VSS  
1.2  
5
LCD outputs  
VDC  
IOL1  
DC component of LCD driver  
±20  
mV  
mA  
LOW-level segment output  
current  
VDD = 5 V; VOL = 0.8 V;  
note 4  
0.3  
IOH1  
RBP  
HIGH-level segment output  
current  
VDD = 5 V;  
VOH = VDD 0.8 V; note 4  
0.3  
mA  
backplane output resistance  
(BP1; BP2)  
VO = VSS or VDD or  
12(VSS + VDD); note 5  
0.4  
5
kΩ  
Notes  
1. Typical conditions: VDD = 5 V; Tamb = 25 °C.  
2. Resets all logic when VDD < VPOR  
.
3. Periodically sampled, not 100% tested.  
4. Outputs measured one at a time.  
5. Outputs measured one at a time; VDD = 5 V; Iload = 100 µA.  
1998 Jul 30  
13  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
11 AC CHARACTERISTICS  
VDD = 2.5 to 6 V; Tamb = 40 to 85 °C; unless otherwise specified. All the timing values are valid within the operating  
supply voltage and ambient temperature range and refer to VIL and VIH with an input voltage swing of VSS to VDD  
.
SYMBOL  
PARAMETER  
display frequency  
CONDITIONS  
MIN.  
TYP.(1)  
90  
MAX.  
120  
UNIT  
Hz  
fLCD  
tBS  
Cosc = 680 pF; Rosc = 1 M65  
driver delays with test loads  
VDD = 5 V  
20  
100  
µs  
I2C-bus  
fSCL  
SCL clock frequency  
100  
100  
kHz  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
tSW  
tolerable spike width on I2C-bus Tamb = 25 °C  
I2C-bus free time  
tBUF  
4.7  
4.0  
4.0  
4.7  
4.0  
tSU;STA  
tHD;STA  
tLOW  
tHIGH  
tr  
START condition set-up time  
START condition hold time  
SCL LOW time  
SCL HIGH time  
SCL and SDA rise time  
SCL and SDA fall time  
data set-up time  
1.0  
0.3  
tf  
tSU;DAT  
tHD;DAT  
tSU;STO  
250  
0
data hold time  
STOP condition set-up time  
4.0  
Note  
1. Typical conditions: VDD = 5 V; Tamb = 25 °C.  
1.5 kΩ  
6.8 kΩ  
SCL, SDA  
V
S32 to S1  
(pins 1 to 32)  
(V  
V
) / 2  
DD  
DD  
SS  
(pins 39, 40)  
MGA730  
Fig.12 Test loads.  
1998 Jul 30  
14  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
0.5 V  
0.5 V  
(V  
(V  
= 5 V)  
Sx  
DD  
DD  
t
BS  
V
0.5 V  
0.5 V  
DD  
2
= 5 V)  
BP1, BP2  
MGA729  
Fig.13 Driver timing waveforms.  
SDA  
SCL  
SDA  
t
f
t
t
BUF  
LOW  
t
t
t
SU;DAT  
t
HD;STA  
r
t
HD;DAT  
HIGH  
t
SU;STA  
MGA728  
t
SU;STO  
Fig.14 I2C-bus timing diagram; rise and fall times refer to VIL and VIH.  
1998 Jul 30  
15  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
DIRECT DRIVE LCD DISPLAY  
32 33  
backplane  
256  
1
64  
S2  
S1  
S2  
S1  
S2  
S1  
BP1  
BP2  
BP1  
BP2  
BP1  
BP2  
A2  
A2  
A2  
V
V
V
V
DD  
DD  
DD  
DD  
A1  
A0 OSC  
C
osc  
A1  
A0  
A1  
A0  
R
OSC  
osc  
OSC  
V
V
V
V
SS  
SS  
SCL  
SDA  
SS  
SCL  
SDA  
SS  
SCL  
SDA  
SCL  
SDA  
S31  
S32  
S31  
S32  
S31  
PCF8577C  
PCF8577C  
PCF8577C  
S32  
device subaddress  
A2.A1.A0 = 000  
device subaddress  
A2.A1.A0 = 001  
device subaddress  
A2.A1.A0 = 111  
MGA735  
Fig.15 Direct display driver; expansion to 256 segments using eight PCF8577Cs.  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
BP2  
DUPLEX LCD DISPLAY  
32 33  
BP1  
128  
1
64  
S2  
S1  
S2  
S1  
S2  
S1  
BP1  
BP2  
BP1  
BP2  
BP1  
BP2  
A2  
A2  
A2  
V
V
V
V
DD  
DD  
A1  
A0 OSC  
DD  
DD  
A1  
A0 OSC  
C
osc  
A1  
A0  
R
OSC  
osc  
V
V
V
V
SS  
SS  
SCL  
SDA  
SS  
SCL  
SDA  
SS  
SCL  
SDA  
S31  
S32  
S31  
S32  
S31  
S32  
SCL  
SDA  
PCF8577C  
PCF8577C  
PCF8577C  
device subaddress  
A1.A0 = 00  
device subaddress  
A1.A0 = 01  
device subaddress  
A1.A0 = 11  
MGA736  
Fig.16 Duplex display; expansion to 2 × 128 segments using four PCF8577Cs.  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
32 output lines  
S2  
S1  
BP1  
BP2  
A2  
V
V
DD  
DD  
A1  
A0 OSC  
V
V
SS  
SS  
SCL  
SDA  
SCL  
SDA  
S31  
S32  
PCF8577C  
device subaddress  
A2, A1, A0 = 000  
expansion  
MGA734  
MODE bit must always be set to logic 0 (direct drive).  
BANK switching is permitted.  
BP1 must always be connected to VSS and A0/OSC must be connected to either VDD or VSS (no LCD modulation).  
Fig.17 Use of PCF8577C as a 32-bit output expander in I2C-bus application.  
1998 Jul 30  
18  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
13 CHIP DIMENSIONS AND BONDING PAD LOCATIONS  
5
6
4
3
2
1
40 39 38 37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
V
S27  
S26  
S25  
S24  
S23  
S22  
S21  
S20  
S19  
S18  
DD  
7
A2/BP2  
BP1  
S1  
8
9
10  
11  
12  
13  
14  
15  
16  
S2  
x
2.31  
mm  
0
S3  
0
S4  
y
S5  
PCF8577C  
S6  
S7  
17 18 19 20 21 22 23 24  
2 mm  
Chip area = 4.62 mm2.  
MGA726  
Thickness = 381 ±25 µm.  
n-substrate (back) connected to VDD  
.
Bonding pad dimensions = 110 µm × 110 µm.  
Fig.18 Bonding pad locations.  
handbook, halfpage  
MBE924  
Fig.19 Reference marks.  
1998 Jul 30  
19  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
Table 3 Bonding pad locations (dimensions in µm)  
All x and y co-ordinates are referenced to the centre of the chip, see Fig.18.  
PAD POSITION CENTRED  
PAD POSITION CENTRED  
SIGNAL  
SIGNAL  
x
y
x
y
S32  
S31  
S30  
S29  
S28  
S27  
S26  
S25  
S24  
S23  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
S15  
S14  
S13  
S12  
S11  
86  
257  
428  
599  
836  
836  
836  
836  
836  
836  
836  
836  
836  
836  
836  
836  
599  
428  
257  
86  
941  
941  
S10  
S9  
427  
598  
836  
836  
836  
836  
836  
836  
836  
836  
836  
836  
836  
836  
598  
427  
256  
85  
941  
941  
941  
770  
599  
428  
257  
86  
941  
S8  
941  
S7  
941  
S6  
769  
S5  
598  
S4  
427  
S3  
256  
S2  
85  
85  
S1  
256  
86  
BP1  
A2/BP2  
VDD  
A1  
427  
257  
428  
599  
770  
941  
941  
941  
941  
941  
941  
941  
598  
769  
941  
A0/OSC  
VSS  
SCL  
SDA  
941  
941  
941  
941  
Recpats  
C
F
586  
580  
699  
85  
663  
256  
1998 Jul 30  
20  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
14 PACKAGE OUTLINES  
DIP40: plastic dual in-line package; 40 leads (600 mil)  
SOT129-1  
D
M
E
A
2
A
L
A
1
c
e
w M  
Z
b
1
(e )  
1
b
M
H
40  
21  
pin 1 index  
E
1
20  
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
(1)  
(1)  
Z
1
2
w
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
1
1
E
H
max.  
min.  
max.  
max.  
1.70  
1.14  
0.53  
0.38  
0.36  
0.23  
52.50  
51.50  
14.1  
13.7  
3.60  
3.05  
15.80  
15.24  
17.42  
15.90  
4.7  
0.51  
4.0  
2.54  
0.10  
15.24  
0.60  
0.254  
0.01  
2.25  
0.067  
0.045  
0.021  
0.015  
0.014  
0.009  
2.067  
2.028  
0.56  
0.54  
0.14  
0.12  
0.62  
0.60  
0.69  
0.63  
inches  
0.19  
0.020  
0.16  
0.089  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-01-14  
SOT129-1  
051G08  
MO-015AJ  
1998 Jul 30  
21  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
VSO40: plastic very small outline package; 40 leads  
SOT158-1  
D
E
A
X
c
y
H
v
M
A
E
Z
40  
21  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
detail X  
1
20  
w
M
b
p
e
0
5
scale  
10 mm  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(2)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
0.3  
0.1  
2.45  
2.25  
0.42  
0.30  
0.22  
0.14  
15.6  
15.2  
7.6  
7.5  
12.3  
11.8  
1.7  
1.5  
1.15  
1.05  
0.6  
0.3  
2.70  
0.11  
0.25  
0.762  
0.03  
2.25  
0.089  
0.2  
0.1  
0.1  
7o  
0o  
0.012 0.096  
0.004 0.089  
0.017 0.0087 0.61  
0.012 0.0055 0.60  
0.30  
0.29  
0.48  
0.46  
0.067 0.045  
0.059 0.041  
0.024  
0.012  
inches  
0.010  
0.008 0.004 0.004  
Notes  
1. Plastic or metal protrusions of 0.4 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-01-24  
SOT158-1  
1998 Jul 30  
22  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
Several techniques exist for reflowing; for example,  
15 SOLDERING  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
15.1 Introduction  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
15.3.2 WAVE SOLDERING  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(order code 9398 652 90011).  
Wave soldering techniques can be used for all VSO  
packages if the following conditions are observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
15.2 DIP  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
15.2.1 SOLDERING BY DIPPING OR BY WAVE  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
The package footprint must incorporate solder thieves at  
the downstream end.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
15.2.2 REPAIRING SOLDERED JOINTS  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
15.3.3 REPAIRING SOLDERED JOINTS  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
15.3 VSO  
15.3.1 REFLOW SOLDERING  
Reflow soldering techniques are suitable for all VSO  
packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
1998 Jul 30  
23  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
16 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
17 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
18 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1998 Jul 30  
24  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
NOTES  
1998 Jul 30  
25  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
NOTES  
1998 Jul 30  
26  
Philips Semiconductors  
Product specification  
LCD direct/duplex driver with  
I2C-bus interface  
PCF8577C  
NOTES  
1998 Jul 30  
27  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Middle East: see Italy  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Fax. +43 160 101 1210  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
Norway: Box 1, Manglerud 0612, OSLO,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belgium: see The Netherlands  
Brazil: see South America  
Pakistan: see Singapore  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Portugal: see Spain  
Romania: see Italy  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Colombia: see South America  
Czech Republic: see Austria  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Tel. +65 350 2538, Fax. +65 251 6500  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
Slovakia: see Austria  
Slovenia: see Italy  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1998  
SCA60  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
415106/1200/04/pp28  
Date of release: 1998 Jul 30  
Document order number: 9397 750 04197  

相关型号:

935278869112

LIQUID CRYSTAL DISPLAY DRIVER, PDSO56, PLASTIC, VSOP-56
NXP

935278869118

LIQUID CRYSTAL DISPLAY DRIVER, PDSO56, PLASTIC, VSOP-56
NXP

935278908118

SPECIALTY MICROPROCESSOR CIRCUIT, PDSO8, 3.90 MM, PLASTIC, MS-012, SOT-96-1, SO-8
NXP

935278918115

NAND Gate, LVC/LCX/Z Series, 2-Func, 2-Input, CMOS, PDSO8
NXP

935278931115

LVC/LCX/Z SERIES, TRIPLE 1-INPUT INVERT GATE, PDSO8, 1 X 1.95 MM, 0.50 MM HEIGHT, 0.50 MM PITCH, PLASTIC, MO-252, SOT833-1, SON-8
NXP

935278932115

Inverter, LVC/LCX/Z Series, 3-Func, 1-Input, CMOS, PDSO8
NXP

935278954112

0.04W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO8, 3.90 MM, PLASTIC, MS-012, SOT-96-1, SOP-8
NXP

935278954115

0.04W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO8, 3.90 MM, PLASTIC, MS-012, SOT-96-1, SOP-8
NXP

935278975557

935278975557
NXP

935278978518

935278978518
NXP

935278996115

AUP/ULP/V SERIES, 2-INPUT NAND GATE, PDSO6, 1 X 1.45 MM, 0.50 MM HEIGHT, PLASTIC, MO-252, SOT-886, SON-6
NXP

935278996132

AUP/ULP/V SERIES, 2-INPUT NAND GATE, PDSO6, 1 X 1.45 MM, 0.50 MM HEIGHT, PLASTIC, MO-252, SOT-886, SON-6
NXP