935286782518 [NXP]

70W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO36, PLASTIC, SOT851-2, HSOP-36;
935286782518
型号: 935286782518
厂家: NXP    NXP
描述:

70W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO36, PLASTIC, SOT851-2, HSOP-36

放大器 光电二极管 商用集成电路
文件: 总53页 (文件大小:329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDF8599  
I2C-bus controlled dual channel 43 W/2 single channel  
85 W/1 class-D power amplifier with load diagnostics  
Rev. 02 — 30 July 2009  
Product data sheet  
1. General description  
The TDF8599 is a dual Bridge-Tied Load (BTL) car audio amplifier comprising an  
NDMOST-NDMOST output stage based on SOI BCDMOS technology. Low power  
dissipation enables the TDF8599 high-efficiency, class-D amplifier to be used with a  
smaller heat sink than those normally used with standard class-AB amplifiers.  
The TDF8599 can operate in either non-I2C-bus mode or I2C-bus mode. When in I2C-bus  
mode, DC load detection results and fault conditions can be easily read back from the  
device. Up to five I2C-bus addresses can be selected depending on the value of the  
external resistor connected to pins ADS and MOD.  
When pin ADS is short circuited to pin AGND, the TDF8599 operates in non-I2C-bus  
mode. Switching between Operating mode and Mute mode in non-I2C-bus mode is only  
possible using pins EN and SEL_MUTE.  
2. Features  
I High-efficiency  
I Low quiescent current  
I Operating voltage from 8 V to 18 V  
I Two 4 /2 capable BTL channels or one 1 capable BTL channel  
I Differential inputs  
I Supports I2C-bus mode with five I2C-bus addresses or non-I2C-bus mode operation  
I Clip detect  
I Independent short circuit protection for each channel  
I Advanced short circuit protection for load, GND and supply  
I Load dump protection  
I Thermal foldback and thermal protection  
I DC offset protection  
I Selectable AD or BD modulation  
I Parallel channel mode for high current drive capability  
I Advanced clocking:  
N Switchable oscillator clock source: internal for Master mode or external for Slave  
mode  
N Spread spectrum mode  
N Phase staggering  
N Frequency hopping  
I No ‘pop noise’ caused by DC output offset voltage  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
I I2C-bus mode:  
N DC load detection  
N AC load detection  
N Thermal pre-warning diagnostic level setting  
N Identification of activated protections or warnings  
N Selectable diagnostic information available using pin DIAG and pin CLIP  
I Qualified in accordance with AEC-Q100  
3. Applications  
I Car audio  
4. Quick reference data  
Table 1.  
Quick reference data  
VP = 14.4 V unless otherwise stated.  
Symbol  
VP  
Parameter  
Conditions  
Min  
Typ  
14.4  
-
Max  
18  
Unit  
V
[1]  
[2]  
supply voltage  
standby current  
total quiescent current  
8
-
Istb  
voltage on pin EN < 0.8 V  
10  
µA  
mA  
Iq(tot)  
Operating mode; no load, snubbers and  
filter connected  
-
90  
120  
Po  
output power  
Stereo mode  
THD = 1 %; RL = 4 Ω  
THD = 10 %; RL = 4 Ω  
square wave (EIAJ); RL = 4 Ω  
THD = 1 %; RL = 2 Ω  
THD = 10 %; RL = 2 Ω  
square wave (EIAJ); RL = 2 Ω  
Parallel mode  
18  
24  
-
20  
26  
40  
32  
43  
70  
-
-
-
-
-
-
W
W
W
W
W
W
29  
39  
-
[2]  
THD = 10 %; RL = 1 Ω  
-
85  
-
W
[1] In this data sheet, VP1, VP2 and VPA are all described as VP.  
[2] Output power is measured indirectly based on RDSon measurement.  
5. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TDF8599TH  
TDF8599TD  
HSOP36  
HSOP36  
plastic, heatsink small outline package; 36 leads; low stand-off height  
plastic, heatsink small outline package; 36 leads; low stand-off height  
SOT851-2  
SOT938-1  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
2 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
6. Block diagram  
V
V
V
P2  
DDA  
10  
P1  
31  
24  
34  
32  
VSTAB1  
BOOT1N  
STABI1  
9
8
AGND  
SVRR  
V
P1  
DRIVER  
HIGH  
TDF8599  
33  
29  
PWM  
CONTROL  
OUT1N  
1
2
DRIVER  
LOW  
IN1P  
IN1N  
PGND1  
BOOT1P  
V
P1  
DRIVER  
HIGH  
28  
23  
PWM  
CONTROL  
OUT1P  
DRIVER  
LOW  
PGND1  
5
ACGND  
BOOT2N  
+
V
P2  
DRIVER  
HIGH  
22  
26  
27  
PWM  
CONTROL  
OUT2N  
BOOT2P  
OUT2P  
3
4
DRIVER  
LOW  
IN2P  
IN2N  
PGND2  
V
P2  
DRIVER  
HIGH  
PWM  
CONTROL  
DRIVER  
LOW  
18  
19  
17  
12  
OSCSET  
OSCIO  
SSM  
PGND2  
OSCILLATOR  
5 V STABI  
MOD  
35  
21  
V
DDD  
VSTAB2  
STABI2  
6
EN  
SEL_MUTE  
SCL  
7
PROTECTION  
MODE  
SELECT  
+
DIAGNOSTICS  
16  
15  
11  
OVP, OCP, OTP,  
UVP, TFP,  
2
SDA  
I C-BUS  
WP,DCP.  
ADS  
36  
14  
13  
20  
30  
25  
GNDD/HW  
DIAG CLIP DCP  
PGND1  
PGND2  
001aai766  
Fig 1. Block diagram  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
3 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
7. Pinning information  
7.1 Pinning  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
1
2
GNDD/HW  
IN1P  
V
DDD  
IN1N  
3
VSTAB1  
OUT1N  
IN2P  
4
IN2N  
5
BOOT1N  
ACGND  
EN  
6
V
P1  
7
PGND1  
BOOT1P  
OUT1P  
SEL_MUTE  
SVRR  
AGND  
8
9
TDF8599TH  
10  
11  
12  
13  
14  
15  
16  
17  
18  
OUT2P  
V
DDA  
BOOT2P  
PGND2  
ADS  
MOD  
CLIP  
DIAG  
SDA  
V
P2  
BOOT2N  
OUT2N  
VSTAB2  
DCP  
SCL  
SSM  
OSCIO  
OSCSET  
001aai767  
Fig 2. Heatsink up (top view) pin configuration TDF8599TH  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
4 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
IN1P  
IN1N  
GNDD/HW  
V
DDD  
3
IN2P  
VSTAB1  
OUT1N  
4
IN2N  
5
ACGND  
EN  
BOOT1N  
6
V
P1  
7
SEL_MUTE  
SVRR  
PGND1  
BOOT1P  
OUT1P  
OUT2P  
BOOT2P  
PGND2  
8
9
AGND  
TDF8599TD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
V
DDA  
ADS  
MOD  
CLIP  
V
P2  
DIAG  
SDA  
BOOT2N  
OUT2N  
VSTAB2  
DCP  
SCL  
SSM  
OSCSET  
OSCIO  
001aai768  
Fig 3. Heatsink down (top view) pin configuration TDF8599TD  
7.2 Pin description  
Table 3.  
Pin description  
Pin Type[1]  
Symbol  
IN1P  
Description  
1
2
3
4
5
6
I
I
I
I
I
I
channel 1 positive audio input  
channel 1 negative audio input  
channel 2 positive audio input  
channel 2 negative audio input  
decoupling for input reference voltage  
enable input:  
IN1N  
IN2P  
IN2N  
ACGND  
EN  
non-I2C-bus mode: switch between off and Mute mode  
I2C-bus mode: off and Standby mode  
select mute or unmute  
SEL_MUTE  
SVRR  
AGND  
VDDA  
7
I
8
I
decoupling for internal half supply reference voltage  
analog supply ground  
9
G
P
I
10  
11  
analog supply voltage  
ADS  
non-I2C-bus mode: connected to pin AGND  
I2C-bus mode: selection and address selection pin  
modulation mode, phase shift and parallel mode select  
MOD  
12  
I
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
5 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
Table 3.  
Pin description …continued  
Symbol  
CLIP  
DIAG  
SDA  
Pin Type[1]  
Description  
13  
14  
15  
16  
17  
O
O
I/O  
I
clip output; open-drain  
diagnostic output; open-drain  
I2C-bus data input and output  
I2C-bus clock input  
SCL  
SSM  
master setting: Spread spectrum mode frequency  
slave setting: phase lock operation  
master/slave oscillator setting  
OSCSET  
OSCIO  
18  
19  
master only setting: set internal oscillator frequency  
external oscillator slave setting: input  
internal oscillator master setting: output  
DC protection input for the filtered output voltages  
decoupling internal stabilizer 2 for DMOST drivers  
channel 2 negative PWM output  
boot 2 negative bootstrap capacitor  
channel 2 power supply voltage  
channel 2 power ground  
I/O  
I
DCP  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
VSTAB2  
OUT2N  
BOOT2N  
O
[2]  
VP2  
P
PGND2  
BOOT2P  
OUT2P  
OUT1P  
BOOT1P  
PGND1  
G
boot 2 positive bootstrap capacitor  
channel 2 positive PWM output  
channel 1 positive PWM output  
boot 1 positive bootstrap capacitor  
channel 1 power ground  
O
O
G
P
[2]  
VP1  
channel 1 power supply voltage  
boot 1 negative bootstrap capacitor  
channel 1 negative PWM output  
decoupling internal stabilizer 1 for DMOST drivers  
decoupling of the internal 5 V logic supply  
ground digital supply voltage  
BOOT1N  
OUT1N  
VSTAB1  
VDDD  
O
G
GNDD/HW  
handle wafer connection  
[1] I = input, O = output, I/O = input/output, G = ground and P = power supply.  
[2] In this data sheet supply voltage VP describes VP1 and VP2  
.
8. Functional description  
8.1 General  
The TDF8599 is a dual full bridge (BTL) audio power amplifier using class-D technology.  
The audio input signal is converted into a Pulse-Width Modulated (PWM) signal using the  
analog input and PWM control stages. A PWM signal is applied to driver circuits for both  
high-side and low-side enabling the DMOS power output transistors to be driven. An  
external 2nd order low-pass filter converts the PWM signal into an analog audio signal  
across the loudspeakers.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
6 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
The TDF8599 includes integrated common circuits for all channels such as the oscillator,  
all reference sources, mode functionality and a digital timing manager. In addition, the  
built-in protection includes thermal foldback, temperature, overcurrent and overvoltage  
(load dump).  
The TDF8599 operates in either I2C-bus mode or non-I2C-bus mode. In I2C-bus mode,  
DC load detection, frequency hopping and extended configuration functions are provided  
together with enhanced diagnostic information.  
8.2 Mode selection  
The mode pins EN, ADS and SEL_MUTE enable mute state, I2C-bus mode and Operating  
mode switching.  
Pin SEL_MUTE is used to mute and unmute the device and must be connected to an  
external capacitor (CON). This capacitor generates a time constant which is used to  
ensure smooth fade-in and fade-out of the input signal.  
The TDF8599 is enabled when pin EN is HIGH. When pin EN is LOW, the TDF8599 is off  
and the supply current is at its lowest value (typically 2 µA). When off, the TDF8599 is  
completely deactivated and will not react to I2C-bus commands.  
I2C-bus mode is selected by connecting a resistor between pins ADS and AGND. In  
I2C-bus mode with pin EN HIGH, the TDF8599 waits for further commands (see Table 4).  
I2C-bus mode is described in Section 9 on page 24.  
Non-I2C-bus mode is selected by connecting pin ADS to pin AGND. In non-I2C-bus mode,  
the default TDF8599 state is Mute mode. The amplifiers switch idle (50 % duty cycle) and  
the audio signal is suppressed at the output. In addition, the capacitor (CSVRR) is charged  
to half the supply voltage. To enter Operating mode, pin SEL_MUTE must be HIGH with  
S1 open, enabling capacitor (CON) charged by an internal pull-up (see Figure 4). In  
addition, pin EN must be driven HIGH.  
S2  
S2  
EN  
EN  
3.3 V  
3.3 V  
ADS  
ADS  
TDF8599  
TDF8599  
SEL_MUTE  
SEL_MUTE  
R
ADS  
AGND  
AGND  
C
ON  
C
ON  
S1  
001aai769  
001aai770  
a. Non-I2C-bus mode  
b. I2C-bus mode  
See Table 13 for detailed information on  
RADS  
.
Fig 4. Mode selection  
I2C-bus mode and non-I2C-bus mode control are described in Table 4 on page 8 and  
Table 5 on page 8. Switches S1 and S2 are shown in Figure 4.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
7 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
Table 4.  
I2C-bus mode operation  
Pin EN  
Pin SEL_MUTE  
Bit IB1[D0]  
Bit IB2[D0]  
Mode  
HIGH (S2 closed)  
HIGH  
LOW  
LOW  
X[1]  
1
0
Operating mode  
Mute mode  
Standby mode  
off  
1
1
0
X[1]  
X[1]  
X[1]  
LOW (S2 open)  
[1] X = do not care.  
Table 5.  
Pin EN  
Non-I2C-bus mode operation  
Pin SEL_MUTE  
Mode  
HIGH (S2 closed)  
HIGH (S1 open)  
LOW (S1 closed)  
X[1]  
Operating mode  
Mute mode  
off  
LOW (S2 open)  
[1] X = do not care.  
8.3 Pulse-width modulation frequency  
The output signal from the amplifier is a PWM signal with a clock frequency of fosc. This  
frequency is set by connecting a resistor (Rosc) between pins OSCSET and AGND. The  
optimal clock frequency setting is between 300 kHz and 400 kHz. Connecting a resistor  
with a value of 39 k, for example, sets the clock frequency to 320 kHz (see Figure 6).  
The external capacitor (Cosc) has no influence on the oscillator frequency. It does  
however, reduce jitter and sensitivity to disturbance. Using a 2nd order LC demodulation  
filter in the application generates an analog audio signal across the loudspeaker.  
8.3.1 Master and slave mode selection  
In a master and slave configuration, multiple TDF8599 devices are daisy-chained together  
in one audio application with a single device providing the clock frequency signal for all  
other devices. In this situation, it is recommended that the oscillators of all devices are  
synchronized for optimum EMI behavior as follows:  
All OSCIO pins are connected together and one TDF8599 in the application is configured  
as the clock-master. All other TDF8599 devices are configured as clock-slaves (see  
Figure 6).  
The clock-master pin OSCIO is configured as the oscillator output. When a resistor  
(Rosc) is connected between pins OSCSET and AGND, the TDF8599 is in Master  
mode.  
The clock-slave pins OSCIO are configured as the oscillator inputs. When pin  
OSCSET is directly connected to pin AGND (see Table 6), the TDF8599 is in Slave  
mode.  
Table 6.  
Mode  
Mode setting pin OSCIO  
Settings  
Pin OSCSET  
Pin OSCIO  
output  
Master  
Slave  
Rosc > 26 kΩ  
Rosc = 0 ; shorted to pin AGND  
input  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
8 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
The value of the resistor Rosc sets the clock frequency based on Equation 1:  
12.45 × 109  
f osc  
=
[Hz]  
(1)  
---------------------------  
Rosc  
001aai771  
50  
R
osc  
(k)  
40  
30  
20  
10  
0
300  
350  
400  
450  
500  
(kHz)  
f
osc  
Fig 5. Clock frequency as a function of Rosc  
OSCSET  
OSCSET  
OSCSET  
R
osc  
C
osc  
TDF8599  
TDF8599  
TDF8599  
OSCIO  
Master  
OSCIO  
Slave 1  
OSCIO  
Slave 2  
R
f
osc  
001aai772  
Fig 6. Master and slave configuration  
In Master mode, Spread spectrum mode and frequency hopping can be enabled. In Slave  
mode, phase staggering and phase lock operation can be selected. An external clock can  
be used as the master-clock on pin OSCIO of the slave devices. When using an external  
clock it must remain active during the shutdown sequence to ensure that all devices are  
switched off and able to enter the off state as described in Section 8.2.  
8.3.2 Spread spectrum mode (Master mode)  
Spread spectrum mode is a technique of modulating the oscillator frequency with a slowly  
varying signal to broaden the switching spectrum, thereby reducing the spectral density of  
the EMI. Connecting a capacitor (CSSM) to pin SSM enables Spread spectrum mode (see  
Figure 7). When pin SSM is connected to pin AGND, Spread spectrum mode is disabled.  
The capacitor on pin SSM (CSSM) sets the spreading frequency when Spread spectrum  
mode is active. The current (ISSM) flowing in and out of pin SSM is typically 5 µA. This  
gives a triangular voltage on pin SSM that sweeps around the voltage set by pin OSCSET  
± 5 %. The voltage on pin SSM is used to modulate the oscillator frequency.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
9 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
The spread spectrum frequency (fSSM) can be calculated using Equation 2:  
ISSM  
f SSM  
=
[Hz]  
(2)  
-----------------------------------------------------  
2 × CSSM × V1 × 10 %  
where the voltage on pin OSCSET = V1 and is calculated as 100 µA × Rosc (V) with  
ISSM = 5 µA.  
100 µA  
100 µA  
OSCSET  
OSCSET  
R
osc  
C
osc  
R
osc  
C
osc  
5 µA  
I
SSM  
SSM  
SSM  
C
SSM  
001aai773  
001aai774  
a. Off  
b. On  
Fig 7. Spread spectrum mode  
The frequency swings between 0.95 × fosc and 1.05 × fosc; see Figure 8.  
OSCIO  
max(V)  
SSM  
min(V)  
t (ms)  
001aai775  
Fig 8. Spread spectrum operation in Master mode  
8.3.3 Frequency hopping (Master mode)  
Frequency hopping is a technique used to change the oscillator frequency for AM tuner  
compatibility. In Master mode, the resistor connected between pins OSCSET and AGND  
sets the oscillator frequency (fosc). In I2C-bus mode, this frequency can be varied by  
± 10 %. Set bit IB1[D4] to logic 1 and bit IB1[D3] to either logic 0 (0.9 × fosc) or logic 1  
(1.1 × fosc).  
8.3.4 Phase lock operation (Slave mode)  
In Slave mode, Phase-Locked Loop (PLL) operation can be used to reduce the jitter effect  
of the external oscillator signal connected to pin OSCIO. Phase lock operation is also  
needed to enable phase staggering, see Section 8.4.2. Phase lock operation is enabled  
when the oscillator is in Slave mode by connecting two capacitors (CPLL_s and CPLL_p) and  
a resistor (RPLL) between pin SSM and pin AGND (see Figure 9).  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
10 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
Connecting pin SSM to pin AGND disables phase lock operation and causes the slave to  
directly use the external oscillator signal. Values for CPLL_s, CPLL_p and RPLL depend on  
the desired loop bandwidth (BPLL) of the PLL. RPLL is given by: RPLL = 8.4 × BPLL . The  
corresponding values for CPLL_s and CPLL_p are given by Equation 3 and Equation 4:  
0.032  
RPLL × BPLL  
CPLL_p  
=
[F]  
(3)  
------------------------------  
Remark: CPLL_p is only needed when 14 π phase shift is selected. See Section 8.4.2 for  
more detailed information.  
0.8  
CPLL_s  
=
[F]  
(4)  
------------------------------  
RPLL × BPLL  
When pin OSCIO is connected to a clock-master with Spread spectrum mode enabled,  
the PLL loop bandwidth BPLL should be 100 × fSSM  
.
100 µA  
OSCSET  
SSM  
100 µA  
OSCSET  
PLL  
C
PLL_s  
SSM  
PLL  
(1)  
R
PLL  
C
PLL_p  
001aai776  
001aai777  
(1) Only needed when 14 π phase shift is  
selected.  
a. Off  
b. On  
Fig 9. Phase lock operation  
Table 7 lists all oscillator modes.  
Table 7.  
Oscillator modes  
OSCSET pin  
Rosc > 26 kΩ  
Rosc > 26 kΩ  
Rosc = 0 Ω  
OSCIO pin  
output  
output  
input  
SSM pin  
Oscillator modes  
CSSM to pin AGND  
shorted to pin AGND  
master, spread spectrum  
master, no spread spectrum  
CPLL + RPLL to pin AGND slave, PLL enabled  
shorted to pin AGND slave, PLL disabled  
Rosc = 0 Ω  
input  
8.4 Operation mode selection  
Pin MOD is used to select specific operating modes. The value of resistor (RMOD  
)
connected between pins MOD and AGND together with the non-I2C-bus mode or I2C-bus  
mode determine the operating mode (see Table 8). The mode of operation depends on  
whether non-I2C-bus mode or I2C-bus mode is active. This in turn is determined by the  
resistor value connected between pins ADS and AGND.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
11 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
In non-I2C-bus mode, pin MOD is used to select:  
1. AD or BD modulation (see Section 8.4.1).  
2. 12 π phase shift when an oscillator is used in Slave mode (see Section 8.4.2).  
3. Parallel mode operation (see Section 8.4.3).  
In I2C-bus mode, pin MOD can only select Parallel mode. In addition, the modulation  
mode and phase shift are programmed using I2C-bus commands.  
Table 8.  
Operation mode selection with the MOD pin  
I2C-bus mode Non-I2C-bus mode  
RMOD (k)  
0 (short to AGND) Stereo mode  
AD modulation: no phase shift in Slave mode  
BD modulation: no phase shift in Slave mode  
AD modulation: 12 π phase shift in Slave mode  
BD modulation: 12 π phase shift in Slave mode  
AD modulation: no phase shift in Slave mode  
BD modulation: no phase shift in Slave mode  
4.7  
13  
33  
100  
Parallel mode[1]  
(open)  
[1] See Section 8.4.3 on page 14 for more detailed information.  
The information on pin MOD is latched when one of the TDF8599 outputs starts switching,  
to avoid incorrect information on pin MOD caused by disturbances of switching amplifier  
outputs.  
8.4.1 Modulation mode  
In non-I2C-bus mode, pin MOD is used to select either AD or BD modulation mode (see  
Table 8). In I2C-bus mode, the modulation mode is selected using an I2C-bus command.  
AD modulation mode: the bridge halves switch in opposite phase.  
BD modulation mode: the bridge halves switch in phase but the input signal for the  
modulators is inverted.  
Figure 10 and Figure 11 show simplified representations of AD and BD modulation.  
+V  
+V  
P
P
INxP  
OUTP OUTN  
INxN  
AD  
BD  
001aai778  
Fig 10. AD/BD modulation switching circuit  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
12 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
INxP  
OUTxP  
001aai779  
a. Bridge half 1  
INxN  
OUTxN  
001aai780  
b. Bridge half 2 switched in the opposite phase to bridge half 1  
Fig 11. AD modulation  
INxP  
OUTxP  
OUTxP, OUTxN  
001aai781  
a. Phase switching cycle  
INxN  
OUTxN  
001aai782  
b. Inverted signal to the modulator  
Fig 12. BD modulation  
8.4.2 Phase staggering (Slave mode)  
In Slave mode with phase lock operation enabled, a phase shift with respect to the  
incoming clock signal can be selected to distribute the switching moments over time. In  
non-I2C-bus mode, 12 π phase shift can be programmed using pin MOD. In I2C-bus mode,  
five different phase shifts (14 π, 13 π, 12 π, 23 π, 34 π) can be selected using the I2C-bus  
bits (IB3[D1:D3]). See Table 8 for selection of the phase shift in non-I2C-bus mode with pin  
MOD. An additional capacitor must be connected to pin SSM when 14 π phase shift is  
used (see Figure 9). An example of using 12 π phase shift for BD modulation is shown in  
Figure 13.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
13 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
OUT1P  
OUT1N  
OUT2P  
OUT2N  
phase  
0
master  
π
OUT1P  
OUT1N  
OUT2P  
OUT2N  
1
2
π
slave  
2
3
π
001aai783  
Fig 13. Master and slave operation with 12 π phase shift  
8.4.3 Parallel mode  
In Parallel mode; the two output stages operate in parallel to enlarge the drive capability.  
The inputs and outputs for Parallel mode must be connected on the Printed-Circuit Board  
(PCB) as shown in Figure 14. The parallel connection can be made after the output filter,  
as shown in Figure 14 or directly to the device output pins (OUTxP and OUTxN).  
IN1P  
IN1N  
IN2N  
IN2P  
MOD  
OUT1N  
OUT1P  
+
TDF8599  
OUT2P  
OUT2N  
+
R
MOD  
001aai784  
Fig 14. Parallel mode  
In Parallel mode, the channel 1 I2C-bus bits can be programmed using the I2C-bus.  
However, CLIP detection must be deactivated by disabling it for both channel 1 and  
channel 2.  
8.5 Protection  
The TDF8599 includes a range of built-in protection functions. How the TDF8599  
manages the various possible fault conditions for each protection is described in the  
following sections:  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
14 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
Table 9.  
Overview of protection types  
Protection type  
Thermal foldback  
Overtemperature  
Overcurrent  
Reference  
Section 8.5.1  
Section 8.5.2  
Section 8.5.3  
Section 8.5.4  
Section 8.5.5  
Section 8.5.6  
Section 8.5.6  
Window  
DC Offset  
Undervoltage  
Overvoltage  
8.5.1 Thermal foldback  
Thermal Foldback Protection (TFP) is activated when the average junction temperature  
exceeds the threshold level (145 °C). TFP decreases amplifier gain such that the  
combination of power dissipation and Rth(j-a) create a junction temperature around the  
threshold level. The device will not completely switch off but remains operational at the  
lower output power levels. If the average junction temperature continues to increase, a  
second built-in temperature protection threshold level shuts down the amplifier completely.  
8.5.2 Overtemperature protection  
If the average junction temperature Tj > 160 °C, OverTemperature Protection (OTP) is  
activated and the power stage shuts down immediately.  
8.5.3 Overcurrent protection  
OverCurrent Protection (OCP) is activated when the output current exceeds the maximum  
output current of 8 A. OCP regulates the output voltage such that the maximum output  
current is limited to 8 A. The amplifier outputs keep switching and the amplifier is NOT  
shutdown completely. This is called current limiting.  
OCP also detects when the loudspeaker terminals are short circuited or one of the  
amplifier’s demodulated outputs is short circuited to one of the supply lines. In either case,  
the shorted channel(s) are switched off.  
The amplifier can distinguish between loudspeaker impedance drops and a low-ohmic  
short across the load or one of the supply lines. This impedance threshold depends on the  
supply voltage used. When a short is made across the load causing the impedance to  
drop below the threshold level, the shorted channel(s) are switched off. They try to restart  
every 50 ms. If the short circuit condition is still present after 50 ms, the cycle repeats. The  
average power dissipation will be low because of this reduced duty cycle.  
When a channel is switched off due to a short circuit on one of the supply lines, Window  
Protection (WP) is activated. WP ensures the amplifier does not start-up after 50 ms until  
the supply line short circuit is removed.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
15 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
8.5.4 Window protection  
Window Protection (WP) checks the PWM output voltage before switching from Standby  
mode to Mute mode (with both outputs switching) and is activated as follows:  
During the start-up sequence:  
When the TDF8599 is switched from standby to mute (td(stb-mute)). When a short  
circuit on one of the output terminals (i.e. between VP or GND) is detected, the  
start-up procedure is interrupted and the TDF8599 waits for open circuit outputs.  
No large currents flow in the event of a short circuit to the supply lines because the  
check is performed before the power stages are enabled.  
During operation:  
A short to one of the supply lines activates OCP causing the amplifier channel to  
shutdown. After 50 ms the amplifier channel restarts and WP is activated.  
However, the corresponding amplifier channel will not start-up until the supply line  
short circuit has been removed.  
8.5.5 DC offset protection  
DC offset Protection (DCP) is activated when the DC content in the demodulated output  
voltage exceeds a set threshold (typically 2 V). DCP is active in both Mute mode and  
Operating mode. Figure 15 shows how false triggering of the DCP by low frequencies in  
the audio signal is prevented using the external capacitor (CF) to generate a cut-off  
frequency.  
OUT1P  
OUT1N  
OUT2P  
OUT2N  
V
ref  
50 kΩ  
V to I  
V to I  
IB1[D6]  
IB2[D6]  
DCP  
C
F
DIAG  
IB1[D7]  
S4  
DB1[D2]  
S
Q
IB2[D7]  
S3  
switch off channels  
001aai785  
Fig 15. DC offset protection and diagnostic output  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
16 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
In I2C-bus mode, DC offsets generate a voltage shift around the bias voltage. When the  
voltage shift exceeds threshold values, the offset alarm bit DB1[D2] is set and if bit  
IB1[D7] is not set, diagnostic information is also given. Any detected offset shuts down  
both channels when bit IB2[D7] is not set. To restart the TDF8599 in I2C-bus mode, pin  
EN must be toggled or DCP disabled by connecting pin DCP to pin AGND.  
In non-I2C-bus mode, when an offset is detected, DCP always gives diagnostic  
information on pin DIAG and shuts down both channels.  
Connecting a capacitor between pins DCP and AGND enables DC offset protection.  
Connecting pin DCP to pin AGND disables DCP in both I2C-bus and non-I2C-bus mode.  
8.5.6 Supply voltages  
UnderVoltage Protection (UVP) is activated when the supply voltage drops below the UVP  
threshold (typically 7.5 V). UVP triggers the UVP circuit causing the system to first mute  
and then stop switching. When the supply voltage rises above the threshold level, the  
system restarts.  
OverVoltage Protection (OVP) is activated when the supply voltage exceeds the OVP  
threshold (typically 27 V). The OVP (or load dump) circuit is activated and the power  
stages are shutdown.  
An overview of all protection circuits and the amplifier states is given in Table 10.  
8.5.7 Overview of protection circuits and amplifier states  
Table 10. Overview of TDF8599 protection circuits and amplifier states  
Protection circuit name  
Amplifier state  
Complete  
shutdown  
Channel  
shutdown  
Restart[1]  
TFP  
OTP  
OCP  
WP  
N[2]  
N[2]  
Y[3]  
Y[3]  
Y[4]  
Y
Y
N
N
Y
N
Y
DCP  
UVP  
OVP  
Y
N
N[5]  
Y[6]  
Y
Y
N
Y
N
[1] When fault is removed.  
[2] Amplifier gain depends on the junction temperature and size of the heat sink.  
[3] TFP influences restart timing depending on heat sink size.  
[4] Shorted load causes a restart of the channel every 50 ms.  
[5] Latched protection is reset by toggling pin EN or by disabling DCP in I2C-bus mode.  
[6] In I2C-bus mode deep supply voltage drops will cause a Power-On Reset (POR). The restart requires an  
I2C-bus command.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
17 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
8.6 Diagnostic output  
8.6.1 Diagnostic table  
The diagnostic information for I2C-bus mode and non-I2C-bus mode is shown in Table 11.  
The instruction bitmap and data bytes are described in Table 14 and Table 15.  
Pins DIAG and CLIP have an open-drain output which must have an external pull-up  
resistor connected to an external voltage. Pins CLIP and DIAG can show both fixed and  
I2C-bus selectable information.  
Pin DIAG goes LOW when a short circuit to one of the amplifier outputs occurs. The  
microprocessor reads the failure information using the I2C-bus. The I2C-bus bits are set  
for a short circuit. These bits can be reset with the I2C-bus read command.  
Even after the short has been removed, the microprocessor knows what was wrong after  
reading the I2C-bus. In principle, during a single I2C-bus read command, the old  
information is read. To read the current information, two read commands must be sent,  
one after another.  
When selected, pin DIAG gives the current diagnostic information. Pin DIAG is released  
instantly when the failure is removed, independent of the I2C-bus latches.  
Table 11. Available data on pins DIAG and CLIP  
Diagnostic  
I2C-bus mode  
Non-I2C-bus mode  
Pin DIAG Pin CLIP Pin DIAG  
Pin CLIP  
no  
Power-on reset  
UVP or OVP  
Clip detection  
Temperature pre-warning  
OCP/WP  
yes  
yes  
no  
no  
no  
yes  
yes  
no  
selectable no  
selectable no  
yes  
yes  
no  
no  
yes  
no  
yes  
DCP  
selectable no  
yes no  
yes  
yes  
no  
OTP  
no  
When OCP is triggered, the open-drain DIAG output is activated. The diagnostic output  
signal during different short circuit conditions is illustrated in Figure 16.  
shorted load  
short to GND or V line  
P
AMPLIFIER  
RESTART  
NO  
RESTART  
pull up V  
AGND = 0 V  
50 ms 50 ms 50 ms  
001aai786  
Fig 16. Diagnostic output for short circuit conditions  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
18 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
8.6.2 Load identification (I2C-bus mode only)  
8.6.2.1 DC load detection  
DC load detection is only available in I2C-bus mode and is controlled using bit IB2[D2].  
The default setting is logic 0 for bit IB2[D2] which disables DC load detection. DC load  
detection is enabled when bit IB2[D2] = 1. Load detection takes place before the class-D  
amplifier output stage starts switching in Mute mode and the start-up time from Standby  
mode to Mute mode is increased by tdet(DCload) (see Figure 17).  
V
P
DRIVER  
HIGH  
B
OUTN  
PWM  
CONTROL  
DRIVER  
LOW  
PGND1  
R
L
V
P
DRIVER  
HIGH  
OUTP  
PWM  
CONTROL  
DRIVER  
LOW  
PGND2  
001aai787  
Fig 17. DC load detection circuit  
out (V)  
out−  
out+  
t (s)  
t
t
det(DCload)  
d(stb-mute)  
001aai788  
Fig 18. DC load detection procedure  
The capacitor connected to pin SEL_MUTE (see Figure 4 on page 7) is used to create an  
inaudible current test pulse, drawn from the positive amplifier output. The diagnostic  
‘speaker load’ (or ‘open load’), based on the voltage difference between pins OUTxP and  
OUTxN is shown in Figure 19.  
SPEAKER LOAD  
OPEN LOAD  
0 Ω  
25 350 Ω  
001aai789  
Fig 19. DC load detection limits  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
19 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
Remark: DC load detection identifies a short circuited speaker as a valid speaker load.  
OCP detection, using byte DB1[D3] for channel 1 and byte DB2[D3] for channel 2,  
performs diagnostics on shorted loads. However, the diagnostics are performed after the  
DC load detection cycle has finished and once the amplifier is in Operating mode.  
The result of the DC load detection is stored in bits DB1[D4] and DB2[D4].  
Table 12. Interpretation of DC load detection bits  
DC load bits DB1[D4] and DB2[D4]  
OCP bits DB1[D3] and DB2[D3] Description  
0
0
1
0
1
0
speaker load  
shorted load  
open load  
Remark: After DC load detection has been performed, the DC load valid bit DB1[D6] must  
be set. The DC load data bits are only valid when bit DB1[D6] = 1. When DC load  
detection is interrupted by a sudden large change in supply voltage (triggered by UVP or  
OVP) or if the amplifier hangs up, the DC load valid bit is reset to DB1[D6] = 0. The DC  
load detection enable bit IB2[D2] must be reset after the DC load protection cycle to  
release any amplifier hang-up. Once the DC load detection cycle has finished, DC load  
detection can be restarted by toggling the DC load detection enable bit IB2[D2]. However,  
this can only be used if both amplifier channels have not been enabled with bit IB1[D1] or  
bit IB2[D1]. See Section 8.6.2.2 “Recommended start-up sequence with DC load  
detection enabled” for detailed information.  
8.6.2.2 Recommended start-up sequence with DC load detection enabled  
The flow diagram (Figure 20) illustrates the TDF8599’s ability to perform a DC load  
detection without starting the amplifiers. After a DC load detection cycle finishes without  
setting the DC load valid bit DB1[D6], DC load detection is repeated (when bit IB2[D2] is  
toggled).  
To limit the maximum number of DC load detection cycle loops, a counter and limit have  
been added. The loop exits after the predefined number of cycles (COUNTMAX), if the  
DC load detection cycle finishes with an invalid detection.  
Depending on the application needs, the invalid DC load detection cycle can be handled  
as follows:  
the amplifier can be started without DC load detection  
the DC load detection loop can be executed again  
A valid DC load detection cycle does not affect the normal amplifier start-up timing.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
20 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
2
I C-bus TX  
IB1[D0] = 1  
IB2[D2] = 1  
IB1[D1] = 1  
IB2[D1] = 1  
startup  
enable DC load  
disable channel 1  
disable channel 2  
COUNT = 0  
2
I C-bus TX  
WAIT DC load  
IB1[D0] = 1  
IB2[D2] = 1  
IB1[D1] = 1  
IB2[D1] = 1  
startup  
enable DC load  
disable channel 1  
disable channel 2  
restart  
DC load  
2
I C-bus RX  
NO  
DB1[D4] = 1  
DB2[D4] = 1  
DB1[D6] = 1  
channel 1 open load  
channel 2 open load  
DC load valid  
YES  
COUNT COUNTMAX  
ERROR HANDLING  
start amplifier  
anyway  
COUNT = COUNT + 1  
2
I C-bus TX  
IB1[D0] = 1  
IB2[D2] = 0  
IB1[D1] = 1  
IB2[D1] = 1  
startup  
disable DC load  
disable channel 1  
disable channel 2  
NO  
DB1[D6] = 1  
DC load valid  
YES  
2
I C-bus TX  
IB1[D0] = 1  
startup  
IB2[D2] = 0  
IB1[D1] = 0  
IB2[D1] = 0  
disable DC load  
enable channel 1  
enable channel 2  
001aaj061  
Fig 20. Recommended start-up sequence with DC load detection enabled  
8.6.2.3 AC load detection  
AC load detection is only available in I2C-bus mode and is controlled using bit IB3[D4].  
The default setting for bit IB3[D4] = 0 disables AC load detection. When AC load detection  
is enabled (bit IB3[D4] = 1), the amplifier load current is measured and compared with a  
reference level. Pin CLIP is activated when this threshold is reached. Using this  
information, AC load detection can be performed using a predetermined input signal  
frequency and level. The frequency and signal level should be chosen so that the load  
current exceeds the programmed current threshold when the AC coupled load (tweeter) is  
present.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
21 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
8.6.2.4 CLIP detection  
CLIP detection gives information for clip levels 1 %. Pin CLIP is used as the output for  
the clip detection circuitry on both channel 1 and channel 2. Setting either bit IB1[D5] or bit  
IB2[D5] to logic 0 defines which channel reports clip information on the CLIP pin.  
In Parallel mode, disabling clip detection on both channels requires both bits to be set to  
bit IB1[D5] = 1 and bit IB2[D5] = 1.  
8.6.3 Start-up and shutdown sequence  
To prevent switch on or switch off ‘pop noise’, a capacitor (CSVRR) connected to pin SVRR  
is used to smooth start-up and shutdown. During start-up and shutdown, the output  
voltage tracks the voltage on pin SVRR. Increasing CSVRR results in a longer start-up and  
shutdown time. Enhanced pop-noise performance is achieved by muting the amplifier until  
the SVRR voltage reaches its final value and the outputs start switching. The value of  
capacitor connected to pin SEL_MUTE (CON) determines the unmute and mute timing.  
The voltage on pin SEL_MUTE determines the amplifier gain. Increasing CON increases  
the unmute and mute times. In addition, a larger CON value increases the DC load  
detection cycle.  
When the amplifier is switched off with an I2C-bus command or by pulling pin EN LOW, the  
amplifier is first muted and then capacitor (CSVRR) is discharged.  
In Slave mode, the device enters the off state immediately after capacitor (CSVRR) is  
discharged. In Master mode, the clock is kept active by an additional delay (td(2)) of  
approximately 50 ms to allow slave devices to enter the off state.  
When an external clock is connected to pin OSCIO (in Slave mode), the clock must  
remain active during the shutdown sequence for delay (td(1)) to ensure that the slaved  
TDF8599 devices are able to enter the off state.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
22 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
V
DDA  
DIAG  
(1)  
t
d
EN  
ACGND  
(3)  
t
d
IB1[D0] and  
IB2[D0] = 0  
t
d(mute-fgain)  
mute delay  
(2)  
t
d
SEL_MUTE  
SVRR  
t
t
t
det(DCload)  
wake  
d(stb-mute)  
OUTn  
001aai790  
(1) Shutdown hold delay.  
(2) Master mode shutdown delay.  
(3) Shutdown delay.  
Fig 21. Start-up and shutdown timing in I2C-bus mode with DC load detection  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
23 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
V
DDA  
DIAG  
(2)  
(1)  
t
t
d
d
EN  
ACGND  
t
d(mute-fgain)  
(3)  
SEL_MUTE  
SVRR  
t
d
t
d(stb-mute)  
OUTn  
001aai791  
(1) Shutdown hold delay.  
(2) Shutdown delay.  
(3) Master mode shutdown delay.  
Fig 22. Start-up and shutdown timing in non-I2C-bus mode  
9. I2C-bus specification  
TDF8599 address with hardware address select.  
Table 13. TDF8599 address using an external resistor  
[1]  
RADS  
A6 A5 A4 A3 A2 A1 A0 R/W  
Open  
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
1
1
0
0
0
1
0
1
0
0 = Write to TDF8599  
1 = Read from TDF8599  
100 kto pin AGND  
33 kto pin AGND  
13 kto pin AGND  
4.7 kto pin AGND  
Ground  
non-I2C-bus mode select  
[1] Required external resistor accuracy is 1 %.  
The information on pin ADS is latched when the amplifier starts switching.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
24 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
SCL  
SDA  
SCL  
SDA  
(1)  
(2)  
Mµp  
Mµp  
START  
STOP  
(1)  
SLAVE  
SLAVE  
001aai792  
001aai793  
(1) When SCL is HIGH, SDA changes to form the start or  
stop condition.  
(1) SDA is allowed to change.  
(2) All data bits must be valid on the positive edges of SCL.  
Fig 23. I2C-bus start and stop conditions  
Fig 24. Data bits sent from Master microprocessor  
(Mµp)  
SCL  
SDA  
1
2
7
8
9
1
2
7
8
9
MSB  
MSB 1  
LSB + 1  
ACK  
MSB  
MSB 1  
LSB + 1  
LSB  
ACK  
Mµp  
START  
ADDRESS  
WRITE  
WRITE DATA  
STOP  
(1)  
ACK  
SLAVE  
ACK  
001aai794  
(1) To stop the transfer after the last acknowledge a stop condition must be generated.  
Fig 25. I2C-bus write  
SCL  
SDA  
1
2
7
8
9
1
2
7
8
9
MSB  
MSB 1  
LSB + 1  
ACK  
MSB  
MSB 1  
LSB + 1  
LSB  
(1)  
Mµp START  
ADDRESS  
READ  
ACK  
STOP  
SLAVE  
ACKNOWLEDGE  
READ DATA  
001aai795  
(1) To stop the transfer, the last byte must not be acknowledged (SDA is HIGH) and a stop condition must be generated.  
Fig 26. I2C-bus read  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
25 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
9.1 Instruction bytes  
If R/W bit = 0, the TDF8599 expects three instruction bytes: IB1, IB2 and IB3. After a  
power-on reset, all unspecified instruction bits must be set to zero’.  
Table 14. Instruction byte descriptions  
Bit  
D7  
D6  
D5  
D4  
D3  
Value Description  
Instruction byte IB1  
Instruction byte IB2  
Instruction byte IB3  
0
1
0
1
0
1
0
1
0
offset detection on pin DIAG  
no offset detection on pin DIAG  
channel 1 offset monitoring on  
channel 1 offset monitoring off  
channel 1 clip detect on pin CLIP  
offset protection on  
-
-
-
-
-
offset protection off  
channel 2 offset monitoring on  
channel 2 offset monitoring off  
channel 2 clip detect on pin CLIP  
channel 1 no clip detect on pin CLIP channel 2 no clip detect on pin CLIP -  
disable frequency hopping  
enable frequency hopping[1]  
oscillator frequency as set with  
thermal pre-warning on pin CLIP  
disable AC load detection  
no thermal pre warning on pin CLIP enable AC load detection  
temperature pre-warning at 140 °C oscillator phase shift bits  
Rosc 10 %  
IB3[D3] to IB3[D1][2]  
1
oscillator frequency as set with  
temperature pre-warning at 120 °C  
Rosc + 10 %  
D2  
D1  
D0  
0
1
0
1
0
1
-
DC-load detection disabled  
DC-load detection enabled  
channel 2 enabled  
-
channel 1 enabled  
channel 1 disabled  
channel 2 disabled  
TDF8599 in Standby mode  
all channels operating  
all channels muted  
AD modulation  
BD modulation  
TDF8599 in Mute or Operating  
modes[3]  
[1] See Section 8.3.3 on page 10 for information on IB1[D3] and IB1[D4].  
[2] See Table 15 “Phase shift bit settings” for information.  
[3] See Table 4 for information on IB1[D0] and IB2[D0].  
Table 15. Phase shift bit settings  
D3  
0
D2  
0
D1  
0
Phase  
0
0
0
1
14 π  
13 π  
12 π  
23 π  
34 π  
0
1
0
0
1
1
1
0
0
1
0
1
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
26 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
9.2 Data bytes  
If R/W = 1, the TDF8599 sends two data bytes to the microprocessor (DB1 and DB2). All  
short diagnostic and offset protection bits are latched. In addition, all bits are reset after a  
read operation except the DC load detection bits (DBx[D4], DB1[D6]). The default setting  
for all bits is logic 0.  
In Parallel mode, the diagnostic information is stored in byte DB1.  
Table 16. Description of data bytes  
Bit  
Value DB1 channel 1  
DB2 channel 2  
D7  
0
1
at least 1 instruction bit set to logic 1 below maximum temperature  
all instruction bits are set to logic 0  
maximum temperature protection  
activated  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
invalid DC load data  
valid DC load data  
no temperature warning  
temperature pre-warning active  
no undervoltage  
no overvoltage  
overvoltage protection active  
speaker load channel 1  
open load channel 1  
no shorted load channel 1  
shorted load channel 1  
no offset  
undervoltage protection active  
speaker load channel 2  
open load channel 2  
no shorted load channel 2  
shorted load channel 2  
reserved  
offset detected  
reserved  
no short to VP channel 1  
short to VP channel 1  
no short to ground channel 1  
short to ground channel 1  
no short to VP channel 2  
short to VP channel 2  
no short to ground channel 2  
short to ground channel 2  
Data byte DB1[D7] indicates whether the instruction bits have been set to logic 0. In  
principle, DB1[D7] is set after a POR or when all the instruction bits are programmed to  
logic 0. Pin DIAG is driven HIGH when bit DB1[D7] = 1.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
27 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
10. Limiting values  
Table 17. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Operating mode  
off state  
Min  
Max Unit  
VP  
supply voltage  
-
18  
V
V
V
[1]  
1  
-
+50  
50  
load dump; duration  
50 ms, tr > 2.5 ms  
[2]  
[2]  
IORM  
repetitive peak output  
current  
maximum output current  
limiting  
8
-
A
IOM  
Vi  
peak output current  
input voltage  
maximum; non-repetitive  
-
12  
A
V
pins SCL, SDA, ADS,  
MOD, SSM, OSCIO, EN  
and SEL_MUTE  
0
5.5  
Vo  
output voltage  
pins DIAG and CLIP  
0
-
10  
V
RESR  
equivalent series resistance between pins VP and  
PGNDn  
350  
mΩ  
Tj  
junction temperature  
storage temperature  
ambient temperature  
-
150  
°C  
Tstg  
Tamb  
VESD  
55  
40  
+150 °C  
+85  
°C  
[3]  
[4]  
electrostatic discharge  
voltage  
HBM  
C = 100 pF;  
Rs = 1.5 kΩ  
CDM  
-
2000  
V
non-corner pins  
corner pins  
-
500  
750  
VP  
V
V
V
-
[5]  
V(prot)  
protection voltage  
AC and DC short circuit  
voltage of output pins  
across load and to  
0
supply and ground  
[1] Floating condition assumed for outputs.  
[2] Current limiting concept.  
[3] Human Body Model (HBM).  
[4] Charged-Device Model (CDM).  
[5] The output pins are defined as the output pins of the filter connected between the TDF8599 output pins and  
the load.  
11. Thermal characteristics  
Table 18. Thermal characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Rth(j-a)  
thermal resistance from junction in free air  
to ambient  
35  
K/W  
Rth(j-c)  
thermal resistance from junction  
to case  
1
K/W  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
28 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
12. Static characteristics  
Table 19. Static characteristics  
VP = 14.4 V; fosc = 320 kHz; 40 °C < Tamb < +85 °C; unless otherwise specified.  
Symbol  
Supply  
VP  
Parameter  
Conditions  
Min Typ Max Unit  
supply voltage  
8
-
14.4 18  
V
IP  
supply current  
off state; Tj 85 °C; VP = 14.4 V  
2
10  
µA  
µA  
mA  
Istb  
standby current  
total quiescent current  
voltage on pin EN < 0.8 V  
-
-
10  
Iq(tot)  
Operating mode; no load,  
-
90  
120  
snubbers and filter connected  
Series resistance output switches  
RDSon  
drain-source on-state resistance power switch;  
Tj = 25 °C  
-
-
130  
170  
-
-
mΩ  
mΩ  
Tj = 100 °C  
I2C-bus interface: pins SCL and SDA  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level output voltage  
0
-
-
-
1.5  
5.5  
0.4  
V
V
V
VIH  
VOL  
2.3  
0
pin SDA; Iload = 5 mA  
Address, phase shift and modulation mode select: pins ADS and MOD  
[1]  
[1]  
Vi  
Ii  
input voltage  
input current  
pins not connected  
pins shorted to GND  
1.5  
80  
2
2.7  
V
120 160  
µA  
Enable and SEL_MUTE input: pins EN and SEL_MUTE  
Vi  
input voltage  
pin EN; off state  
pin EN; Standby mode; I2C-bus  
mode  
0
2
-
-
0.8  
5
V
V
pin EN; Mute mode or Operating  
mode; non-I2C-bus mode  
2
0
3
-
-
-
5
V
V
V
pin SEL_MUTE; Mute mode;  
voltage on pin EN > 2 V  
0.8  
5
pin SEL_MUTE; Operating mode;  
voltage on pin EN > 2 V  
Ii  
input current  
pin EN; 2.5 V  
-
-
-
-
5
µA  
µA  
pin SEL_MUTE; Operating mode;  
0.8 V  
50  
Diagnostic output  
THDclip  
total harmonic distortion clip  
detection level  
-
0.2  
-
%
V
[2]  
Vth(offset)  
VOL  
threshold voltage for offset  
detection  
1
-
2
-
3
LOW-level output voltage  
DIAG or CLIP pins activated;  
Io = 1 mA  
0.3  
50  
V
IL  
leakage current  
DIAG and CLIP pins; diagnostic  
not activated  
-
-
µA  
Audio inputs; pins IN1N, IN1P, IN2N and IN2P  
Vi  
input voltage  
-
2.45 -  
V
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
29 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
Table 19. Static characteristics …continued  
VP = 14.4 V; fosc = 320 kHz; 40 °C < Tamb < +85 °C; unless otherwise specified.  
Symbol Parameter Conditions  
SVRR voltage and ACGND input bias voltage in Mute and Operating modes  
Min Typ Max Unit  
Vref  
reference voltage  
input ACGND pin  
2
2.45 3  
V
V
half supply reference SVRR pin  
6.9 7.2 7.5  
Amplifier outputs; pins OUT1N, OUT1P, OUT2N and OUT2P  
VO(offset)  
output offset voltage  
BTL; Mute mode  
-
-
-
-
25  
70  
mV  
mV  
[3][5]  
BTL; Operating mode  
Stabilizer output; pins VSTAB1 and VSTAB2  
Vo output voltage  
stabilizer output in Mute mode and  
Operating mode  
8
10  
12  
V
Voltage protections  
V(prot)  
protection voltage  
undervoltage; amplifier is muted  
6.8 7.2  
26.2 27  
8
-
V
V
overvoltage; load dump protection  
is activated  
VP that a POR occurs at  
3
8
3.7 4.4  
V
A
Current protection  
IO(ocp)  
overcurrent protection output  
current  
current limit  
-
-
Temperature protection  
Tprot  
protection temperature  
155  
140  
-
-
160  
150  
°C  
°C  
Tact(th_fold)  
thermal foldback activation  
temperature  
gain = 1 dB  
Tj(AV)(warn1)  
Tj(AV)(warn2)  
average junction temperature for IB2[D3] = 0; non-I2C-bus mode  
pre-warning 1  
-
-
140 150  
120 130  
°C  
°C  
average junction temperature for IB2[D3] = 1  
pre-warning 2  
DC load detection levels: I2C-bus mode only[6]  
Zth(load)  
load detection threshold  
impedance  
for normal speaker; DB1[D4] = 0;  
DB2[D4] = 0  
-
-
-
25  
-
Zth(open)  
open load detection threshold  
impedance  
DB1[D4] = 1; DB2[D4] = 1  
350  
AC load detection levels: I2C-bus mode only  
Ith(o)det(load)AC  
AC load detection output  
threshold current  
700 900 1100 mA  
Start-up/shut-down/mute timing  
[4]  
[4]  
twake  
wake-up time  
on pin EN before first I2C-bus  
transmission is recognized  
-
-
500  
µs  
tdet(DCload)  
td(stb-mute)  
DC load detection time  
CON = 470 nF  
-
-
250  
140  
-
-
ms  
ms  
delay time from standby to mute measured from amplifier enabling  
to start of mute release (no DC  
load detection); CSVRR = 47 µF  
C
ON = 470 nF  
[5]  
td(mute-fgain)  
mute to full gain delay time  
CON = 470 nF  
-
15  
-
ms  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
30 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
Table 19. Static characteristics …continued  
VP = 14.4 V; fosc = 320 kHz; 40 °C < Tamb < +85 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
td  
delay time  
shutdown delay time from EN pin  
LOW to SVRR LOW;  
SVRR < 0.1 V; CSVRR = 47 µF  
145 260 425  
ms  
ms  
ms  
shutdown delay time from pin EN  
LOW to ACGND LOW; voltage on  
pin ACGND < 0.1 V; Master mode  
-
-
400  
50  
-
-
delay in Master mode to allow  
slaved devices to shutdown  
fosc = 320 kHz  
Speaker load impedance  
RL load resistance  
stereo mode  
parallel mode  
1.6  
0.8  
4
-
-
-
[1] Required resistor accuracy for pins ADS and MOD is 1 %; see Section 9 on page 24.  
[2] Maximum leakage current from DCP pin to ground = 3 µA.  
[3] DC output offset voltage is applied to the output gradually during the transition between Mute mode and Operating mode.  
[4] I2C-bus mode only.  
[5] The transition time between Mute mode and Operating mode is determined by the time constant on the SEL_MUTE pin.  
[6] The DC load valid bit DB1[D6] must be used; Section 8.6.2.1 on page 19. The DC load enable bit IB2[D2] must be reset after each load  
detection cycle to prevent amplifier hang-up incidents.  
[7] The output offset values can be either positive or negative. The Vth(offset) limit values (excluding Typ) are the valid absolute values.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
31 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
12.1 Switching characteristics  
Table 20. Switching characteristics  
VP = 14.4 V; 40 °C < Tamb < +85 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Internal oscillator  
fosc  
oscillator frequency  
external clock frequency;  
-
320  
-
-
kHz  
kHz  
R
osc = 39 kΩ  
internal fixed frequency and Spread  
spectrum mode frequency based on  
the resistor value connected to pin  
OSCSET for the master setting  
300  
450  
Master/slave setting (OSCIO pin)  
Rosc  
oscillator resistance  
resistor value on pin OSCSET;  
master setting  
26  
39  
49  
kΩ  
VOL  
VOH  
VIL  
LOW-level output voltage  
HIGH-level output voltage  
LOW-level input voltage  
HIGH-level input voltage  
tracking frequency  
output  
-
-
-
-
-
-
-
0.8  
-
V
output  
4
V
input  
-
0.8  
-
V
VIH  
input  
4
V
ftrack  
Nslave  
PLL enabled  
driven by one master  
300  
-
500  
12  
kHz  
number of slaves  
Spread spectrum mode setting  
fosc  
oscillator frequency variation  
between maximum and minimum  
values; Spread spectrum mode  
activated  
-
-
10  
7
-
-
%
fsw  
switching frequency  
Spread spectrum mode activated;  
Hz  
C
SSM = 1 µF  
Frequency hopping  
fosc(int)  
internal oscillator frequency  
change positive; IB1[D4] = 1;  
IB1[D3] = 1  
-
-
fosc + 10 % -  
fosc 10 % -  
kHz  
kHz  
change negative; IB1[D4] = 1;  
IB1[D3] = 0  
Timing  
tr  
rise time  
PWM output; Io = 0 A  
PWM output; Io = 0 A  
Io = 0 A  
-
-
-
10  
10  
80  
-
-
-
ns  
ns  
ns  
tf  
fall time  
tw(min)  
minimum pulse width  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
32 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
13. Dynamic characteristics  
Table 21. Dynamic characteristics  
VP = 14.4 V; RL = 4 ; fi = 1 kHz; fosc = 320 kHz; Rs(L) < 0.04 [1]; 40 °C < Tamb < +85 °C; Stereo mode; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[2]  
Po  
output power  
Stereo mode;  
THD = 1 %; RL = 4 Ω  
THD = 10 %; RL = 4 Ω  
square wave (EIAJ); RL = 4 Ω  
THD = 1 %; RL = 2 Ω  
THD = 10 %; RL = 2 Ω  
square wave (EIAJ); RL = 2 Ω  
Parallel mode  
18  
24  
-
20  
26  
40  
32  
43  
70  
-
-
-
-
-
-
W
W
W
W
W
W
29  
39  
-
[2]  
THD = 10 %; RL = 1 Ω  
fi = 1 kHz; Po = 1 W  
fi = 10 kHz; Po = 1 W  
-
85  
-
W
%
[3]  
[3]  
THD  
total harmonic distortion  
-
0.02 0.1  
0.02 0.1  
-
%
Gv(cl)  
αcs  
closed-loop voltage gain  
channel separation  
25  
-
26  
70  
27  
-
dB  
dB  
fi = 1 kHz; Po = 1 W  
SVRR  
supply voltage rejection ratio Operating mode  
[4]  
[4]  
fripple = 100 Hz  
fripple = 1 kHz  
Mute mode  
-
-
70  
70  
-
-
dB  
dB  
[4]  
[4]  
fripple = 1 kHz  
-
70  
-
dB  
off state and Standby mode  
fripple = 1 kHz  
-
90  
-
dB  
|Zi(dif)  
|
differential input impedance  
output noise voltage  
60  
100  
150  
kΩ  
Vn(o)  
Operating mode  
BD mode  
[5]  
[5]  
-
-
60  
77  
µV  
µV  
AD mode  
100  
140  
Mute mode  
BD mode  
[6]  
[6]  
-
25  
85  
0
32  
µV  
µV  
dB  
dB  
dB  
%
AD mode  
-
110  
αbal(ch)  
αmute  
CMRR  
ηpo  
channel balance  
mute attenuation  
-
1
-
[7]  
66  
65  
-
-
common mode rejection ratio Vi(CM) = 1 V RMS  
output power efficiency Po = 20 W  
80  
90  
-
-
[1] Rs(L) is the sum of the inductor series resistance from the low-pass LC filter in the application together with all resistance from PCB  
traces or wiring between the output pin of the TDF8599 and the inductor to the measurement point. LC filter dimensioning is L = 10 µH,  
C = 1 µF for 2 load and L = 5 µH, C = 2.2 µF for 4 load.  
[2] Output power is measured indirectly based on RDSon measurement.  
[3] Total harmonic distortion is measured at the bandwidth of 22 Hz to 20 kHz, AES brick wall. The maximum limit is guaranteed but may  
not be 100 % tested.  
[4] Vripple = Vripple(max) = 2 V p-p; Rs = 0 .  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
33 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
[5] B = 22 Hz to 20 kHz, AES brick wall, Rs = 0 .  
[6] B = 22 Hz to 20 kHz, AES brick wall, independent of Rs.  
[7] Vi = Vi(max) = 0.5 V RMS.  
14. Application information  
14.1 Output power estimation (Stereo mode)  
The output power, just before clipping, can be estimated using Equation 5:  
2
RL  
f osc  
× 1 tw(min)  
×
× V p  
-----------------------------------------------------  
---------  
RL + 2 × (RDSon + Rs)  
2
Po  
=
[W]  
(5)  
---------------------------------------------------------------------------------------------------------------------------------------  
2 × RL  
Where,  
VP = supply voltage (V)  
RL = load impedance ()  
RDSon = on resistance of power switch ()  
Rs = series resistance of the output inductor ()  
tw(min) = minimum pulse width(s) depending on output current (s)  
fosc = oscillator frequency in Hz (typically 320 kHz)  
The output power at 10 % THD can be estimated by: Po(2) = 1.25 × Po(1) where  
Po(1) = 0.5 % and Po(2) = 10 %.  
Figure 27 and Figure 28 show the estimated output power at THD = 0.5 % and  
THD = 10 % as a function of supply voltage for different load impedances in stereo mode.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
34 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
001aai796  
001aai797  
80  
80  
P
P
o
o
(W)  
(W)  
60  
60  
(1)  
(2)  
40  
20  
0
40  
20  
0
(1)  
(2)  
(3)  
(3)  
8
10  
12  
14  
16  
18  
8
10  
12  
14  
16  
18  
V
(V)  
V (V)  
P
P
THD = 0.5 %.  
THD = 10 %.  
(1) RDSon = 0.12 (at Tj = 25 °C), Rs = 0.025 ,  
(1) RDSon = 0.12 (at Tj = 25 °C), Rs = 0.025 ,  
tw(min) = 130 ns and IO(ocp) = 8 A (minimum).  
tw(min) = 130 ns and IO(ocp) = 8 A (minimum).  
(2) RL = 1 .  
(3) RL = 2 .  
(4) RL = 4 .  
(2) RL = 1 .  
(3) RL = 2 .  
(4) RL = 4 .  
Fig 27. Po as a function of VP in stereo mode with  
THD = 0.5 %  
Fig 28. Po as a function of VP in stereo mode with  
THD = 10 %  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
35 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
14.2 Output power estimation (Parallel mode)  
Figure 29 and Figure 30 show the estimated output power at THD = 0.5 % and  
THD = 10 % as a function of the supply voltage for different load impedances in parallel  
mode.  
001aai798  
001aai799  
(1)  
160  
160  
P
P
o
o
(W)  
(W)  
120  
120  
(1)  
80  
40  
0
80  
40  
0
(2)  
(3)  
(2)  
(3)  
8
10  
12  
14  
16  
18  
8
10  
12  
14  
16  
18  
V
(V)  
V (V)  
P
P
THD = 0.5 %.  
THD = 10 %.  
(1) RDSon = 0.06 (at Tj = 25 °C), Rs = 0.0125 ,  
(1) RDSon = 0.06 (at Tj = 25 °C), Rs = 0.0125 ,  
tw(min) = 130 ns and IO(ocp) = 16 A (minimum).  
tw(min) = 130 ns and IO(ocp) = 16 A (minimum).  
(2) RL = 1 .  
(3) RL = 2 .  
(4) RL = 4 .  
(2) RL = 1 .  
(3) RL = 2 .  
(4) RL = 4 .  
Fig 29. Po as a function of VP in parallel mode with  
THD = 0.5 %  
Fig 30. Po as a function of VP parallel mode with  
THD = 10 %  
14.3 Output current limiting  
The peak output current is internally limited to 8 A maximum. During normal operation, the  
output current should not exceed this threshold level otherwise the output signal will be  
distorted. The peak output current can be estimated using Equation 6:  
VP  
I ≤  
8 [A]  
(6)  
-----------------------------------------------------  
o
RL + 2 × (RDSon + Rs)  
Io = output current (A)  
VP = supply voltage (V)  
RL = load impedance ()  
RDSon = on-resistance of power switch ()  
Rs = series resistance of output inductor ()  
Example: A 1 speaker can be used with a supply voltage of 11 V before current limiting  
is triggered.  
Current limiting (clipping) avoids audio holes but can cause distortion similar to voltage  
clipping. In Parallel mode, the output current is internally limited above 16 A.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
36 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
14.4 Speaker configuration and impedance  
A flat-frequency response (due to a 2nd order Butterworth filter) is obtained by changing  
the low-pass filter components (LLC, CLC) based on the speaker configuration and  
impedance. Table 22 shows the required values.  
Table 22. Filter component values  
Load impedance ()  
LLC (µH)  
CLC (µF)  
1
2
4
2.5  
5
4.4  
2.2  
1
10  
Remark: When using a 1 load impedance in Parallel mode, the outputs are shorted  
after the low-pass filter switches two 2 filters in parallel.  
14.5 Heat sink requirements  
In some applications, it is necessary to connect an external heat sink to the TDF8599.  
Thermal foldback activates at Tj = 145 °C. The expression below shows the relationship  
between the maximum power dissipation before activation of thermal foldback and the  
total thermal resistance from junction to ambient;  
T j(max) T  
Rth(j-a)  
=
amb[K/W]  
(7)  
-----------------------------------  
Pmax  
Pmax is determined by the efficiency (η) of the TDF8599. The efficiency measured as a  
function of output power is given in Figure 39. The power dissipation can be derived as a  
function of output power (see Figure 32).  
Example 1:  
VP = 14.4 V  
Po = 2 × 25 W into 4 (THD = 10 % continuous)  
Tj(max) = 140 °C  
Tamb = 25 °C  
Pmax = 5.8 W (from Figure 40)  
The required Rth(j-a) = 115 °C / 5.8 W = 19 K/W  
The total thermal resistance Rth(j-a) consists of: Rth(j-c) + Rth(c-h) + Rth(h-a)  
Where:  
Thermal resistance from junction to case (Rth(j-c)) = 1.1 K/W  
Thermal resistance from case to heat sink (Rth(c-h)) = 0.5 K/W to 1 K/W (depending on  
mounting)  
Thermal resistance from heat sink to ambient (Rth(h-a)) would then be  
19 (1.1 + 1) = 17 K/W.  
If an audio signal has a crest factor of 10 (the ratio between peak power and average  
power = 10 dB) then Tj will be much lower.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
37 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
Example 2:  
VP = 14.4 V  
Po = 2 × (25 W / 10) = 2 × 2.5 W into 4 (audio with crest factor of 10)  
Tamb = 25 °C  
Pmax = 2.5 W (from Figure 40)  
Rth(j-a) = 19 K/W  
Tj(max) = 25 °C + (2.5 W × 19 K/W) = 72 °C  
14.6 Curves measured in reference design  
001aai800  
001aai801  
2
2
10  
10  
THD + N  
(%)  
THD + N  
(%)  
10  
10  
1
1
(1)  
(1)  
1  
1  
10  
10  
(2)  
(3)  
(2)  
(3)  
2  
2  
10  
10  
3  
3  
10  
10  
1  
2
1  
2
10  
1
10  
10  
10  
1
10  
10  
P
(W)  
P (W)  
o
o
(1) VP = 14.4 V; RL = 2 at 6 kHz.  
(2) VP = 14.4 V; RL = 2 at 1 kHz.  
(3) VP = 14.4 V, RL = 2 at 100 Hz.  
(1) VP = 14.4 V; RL = 4 at 6 kHz.  
(2) VP = 14.4 V; RL = 4 at 1 kHz.  
(3) VP = 14.4 V, RL = 4 at 100 Hz.  
Fig 31. THD + N as a function of output power with a  
Fig 32. THD + N as a function of output power with a  
2 load  
4 load  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
38 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
001aai802  
001aai803  
1
1
THD + N  
(%)  
THD + N  
(%)  
1  
1  
10  
10  
(1)  
(1)  
2  
2  
(2)  
10  
10  
10  
(2)  
3  
3  
10  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
(1) VP = 14.4 V; RL = 2 at 10 W.  
(2) VP = 14.4 V; RL = 2 at 1 W.  
(1) VP = 14.4 V; RL = 4 at 10 W.  
(2) VP = 14.4 V; RL = 4 at 1 W.  
Fig 33. THD + N as a function of frequency with a 2 Ω  
Fig 34. THD + N as a function of frequency with a 4 Ω  
load  
load  
001aai804  
001aai805  
60  
60  
α
(dB)  
α
(dB)  
cs  
cs  
70  
70  
80  
80  
(1)  
(1)  
(2)  
(2)  
90  
90  
100  
100  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
Po = 1 W; VP = 14.4 V; RL = 2 .  
(1) Channel 1 to channel 2.  
Po = 1 W; VP = 14.4 V; RL = 4 .  
(1) Channel 1 to channel 2.  
(2) Channel 2 to channel 1.  
(2) Channel 2 to channel 1.  
Fig 35. Channel separation as a function of frequency  
Fig 36. Channel separation as a function of frequency  
with a 2 load  
with a 4 load  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
39 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
001aai806  
001aai807  
75  
1.0  
G
(dB)  
0.8  
CMRR  
(dB)  
0.6  
0.4  
0.2  
0
80  
85  
90  
(2)  
(1)  
0.2  
(1)  
(2)  
0.4  
0.6  
0.8  
1.0  
2  
1  
2
2
3
4
5
10  
10  
1
10  
10  
10  
10  
10  
10  
10  
f (kHz)  
f (Hz)  
Vi = 1 V; Ri = 0 .  
Vi = 100 mV RMS; Ri = 0 .  
(1) VP = 14.4 V; RL = 2 .  
(2) VP = 14.4 V; RL = 4 .  
(1) VP = 14.4 V; RL = 2 .  
(2) VP = 14.4 V; RL = 4 .  
Fig 37. CMRR as a function of frequency  
Fig 38. Gain as a function of frequency  
001aai808  
001aai809  
100  
20  
(2)  
(1)  
η
(%)  
P
D
(W)  
80  
16  
60  
40  
20  
0
12  
8
(1)  
(2)  
4
0
0
10  
20  
30  
40  
50  
P
60  
(W)  
0
20  
40  
60  
P (W)  
o
o
(1) VP = 14.4 V; RL = 2 at 1 kHz.  
(2) VP = 14.4 V; RL = 4 at 1 kHz.  
(1) VP = 14.4 V; RL = 2 at 1 kHz.  
(2) VP = 14.4 V; RL = 4 at 1 kHz.  
Fig 39. Efficiency as a function of output power  
Fig 40. Power dissipation as a function of total output  
power  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
40 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
14.7 Typical application schematics  
bead  
bead  
bead  
V
V
V
P1  
P2  
PA  
100 µF  
35 V  
100 µF  
35 V  
V
P
1000 µF  
35 V  
PGND1  
GND  
PGND2  
C
C
C
C
IN1P  
IN1N  
IN2P  
IN2N  
470 nF  
470 nF  
470 nF  
470 nF  
GNDD/HW  
IN1P  
IN1N  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
7
8
9
IN1P  
IN1N  
100 nF  
V
DDD  
220 nF  
VSTAB1  
OUT1N  
IN2P  
IN2N  
IN2P  
IN2N  
L
LC  
OUT1N  
15 nF  
C
ACGND  
100 nF  
100 nF  
10 Ω  
C
LC  
BOOT1N  
ACGND  
EN  
22 Ω  
V
P1  
100 nF  
V
P1  
(1)  
470 pF  
470 pF  
enable  
V
PGND1  
470 pF  
P1  
470 pF  
SEL_MUTE  
PGND1  
(1)  
mute/on  
PGND1  
22 Ω  
470 nF  
C
BOOT1P  
OUT1P  
SVRR  
AGND  
LC  
10 Ω  
10 Ω  
100 nF  
15 nF  
47 µF  
L
LC  
OUT1P  
100 nF  
TDF8599  
L
LC  
V
OUT2P  
DDA  
OUT2P  
10  
11  
12  
13  
14  
15  
16  
17  
18  
V
PA  
bead  
15 nF  
100 nF  
2
non-I C-bus  
mode  
C
BOOT2P  
ADS  
LC  
22 Ω  
4.7 kΩ  
10 kΩ  
10 kΩ  
PGND2  
PGND2  
MOD  
CLIP  
DIAG  
SDA  
BD modulation  
setting  
470 pF  
470 pF  
100 nF  
V
PGND2  
470 pF  
P2  
470 pF  
V
P2  
V
Pull-up  
Pull-up  
V
22 Ω  
P2  
C
BOOT2N  
OUT2N  
VSTAB2  
DCP  
LC  
V
10 Ω  
100 nF  
15 nF  
L
LC  
OUT2N  
220 nF  
SCL  
(2)  
1 µF  
SSM  
(3)  
100 nF  
OSCIO  
OSCSET  
MASTER  
MODE  
39 kΩ  
001aai810  
Dual BTL mode (stereo) in non-I2C-bus mode with DC offset protection disabled; Spread spectrum  
mode enabled BD modulation.  
(1) See Figure 4 on page 7 for a diagram of the connection for pins EN and SEL_MUTE.  
(2) See Section 8.3.2 on page 9 for detailed information.  
(3) See Section 8.5.5 on page 16 for detailed information on DC offset protection.  
Fig 41. Example application diagram for dual BTL in non-I2C-bus mode  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
41 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
bead  
bead  
bead  
V
V
V
P1  
P2  
PA  
100 µF  
35 V  
100 µF  
35 V  
V
P
1000 µF  
35 V  
PGND1  
GND  
PGND2  
C
C
C
C
IN1P  
IN1N  
IN2P  
IN2N  
470 nF  
470 nF  
470 nF  
470 nF  
GNDD/HW  
IN1P  
IN1N  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
7
8
9
IN1P  
IN1N  
100 nF  
V
DDD  
220 nF  
VSTAB1  
OUT1N  
IN2P  
IN2N  
IN2P  
IN2N  
L
LC  
OUT1N  
15 nF  
C
ACGND  
100 nF  
10 Ω  
C
LC  
BOOT1N  
ACGND  
EN  
100 nF  
22 Ω  
V
P1  
100 nF  
V
P1  
(1)  
470 pF  
470 pF  
enable  
V
PGND1  
470 pF  
P1  
470 pF  
(1)  
SEL_MUTE  
SVRR  
PGND1  
PGND1  
22 Ω  
470 nF  
47 µF  
C
BOOT1P  
OUT1P  
OUT2P  
BOOT2P  
PGND2  
LC  
10 Ω  
10 Ω  
100 nF  
15 nF  
L
LC  
AGND  
OUT1P  
100 nF  
TDF8599  
L
LC  
V
DDA  
OUT2P  
10  
11  
12  
13  
14  
15  
16  
17  
18  
V
PA  
bead  
15 nF  
100 nF  
R
ADS  
2
I C-bus  
C
ADS  
LC  
address select  
22 Ω  
33 kΩ  
PGND2  
MOD  
CLIP  
DIAG  
SDA  
stereo mode  
setting  
470 pF  
470 pF  
100 nF  
V
PGND2  
470 pF  
P2  
470 pF  
10 kΩ  
10 kΩ  
V
P2  
V
Pull-up  
Pull-up  
V
22 Ω  
P2  
C
BOOT2N  
OUT2N  
VSTAB2  
DCP  
LC  
V
10 Ω  
100 nF  
15 nF  
L
LC  
OUT2N  
connect  
to µP  
220 nF  
SCL  
SSM  
(2)  
(3)  
100 nF  
4.7 µF  
OSCIO  
OSCSET  
MASTER  
MODE  
39 kΩ  
001aai811  
Dual BTL mode (stereo) in I2C-bus mode with DC offset protection enabled; Spread spectrum  
mode disabled.  
(1) See Figure 4 on page 7 for a diagram of the connection for pins EN and SEL_MUTE.  
(2) See Section 8.3.2 on page 9 for detailed information.  
(3) See Section 8.5.5 on page 16 for detailed information on DC offset protection.  
Fig 42. Example application diagram for dual BTL in I2C-bus mode  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
42 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
bead  
bead  
bead  
V
V
V
P1  
P2  
PA  
100 µF  
35 V  
100 µF  
35 V  
V
P
1000 µF  
35 V  
PGND1  
GND  
PGND2  
C
C
INP  
470 nF  
470 nF  
GNDD/HW  
IN1P  
IN1N  
36  
35  
34  
33  
32  
31  
30  
29  
28  
1
2
INP  
INN  
100 nF  
INN  
V
DDD  
220 nF  
VSTAB1  
OUT1N  
IN2P  
IN2N  
3
L
LC  
4
15 nF  
C
ACGND  
10 Ω  
BOOT1N  
ACGND  
EN  
5
100 nF  
V
P1  
100 nF  
V
P1  
(1)  
470 pF  
470 pF  
6
enable  
OUTN  
V
PGND1  
470 pF  
P1  
(1)  
SEL_MUTE  
PGND1  
470 pF  
7
100 nF  
C
LC  
PGND1  
470 nF  
47 µF  
BOOT1P  
OUT1P  
OUT2P  
SVRR  
AGND  
8
10 Ω  
10 Ω  
15 nF  
22 Ω  
L
LC  
9
100 nF  
TDF8599  
L
LC  
V
DDA  
27  
26  
25  
24  
23  
22  
21  
20  
19  
10  
11  
12  
13  
14  
15  
16  
17  
18  
V
PA  
bead  
22 Ω  
15 nF  
R
ADS  
2
I C-bus  
BOOT2P  
PGND2  
ADS  
address select  
C
LC  
100 nF  
100 kΩ  
10 kΩ  
PGND2  
MOD  
CLIP  
DIAG  
SDA  
parallel mode  
setting  
470 pF  
470 pF  
100 nF  
OUTP  
V
PGND2  
470 pF  
P2  
V
P2  
470 pF  
V
V
Pull-up  
Pull-up  
V
P2  
10 kΩ  
BOOT2N  
OUT2N  
VSTAB2  
DCP  
10 Ω  
15 nF  
L
LC  
connect  
to µP  
220 nF  
SCL  
SSM  
fixed  
frequency  
(2)  
(3)  
4.7 µF  
100 nF  
OSCIO  
OSCSET  
MASTER  
MODE  
39 kΩ  
001aai812  
Single BTL mode (parallel) in I2C-bus mode with DC offset protection enabled; Spread spectrum  
mode disabled.  
(1) See Figure 4 on page 7 for a diagram of the connection for pins EN and SEL_MUTE.  
(2) See Section 8.3.2 on page 9 for detailed information.  
(3) See Section 8.5.5 on page 16 for detailed information on DC offset protection.  
Fig 43. Example application diagram for a single BTL in I2C-bus mode  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
43 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
bead  
bead  
bead  
V
V
V
P1  
P2  
PA  
100 µF  
35 V  
100 µF  
35 V  
C
C
C
C
IN1P  
IN1N  
IN2P  
IN2N  
470 nF  
470 nF  
470 nF  
470 nF  
GNDD/HW  
IN1P  
IN1N  
V
36  
35  
34  
33  
32  
31  
30  
29  
28  
1
2
P
IN1P  
IN1N  
1000 µF  
35 V  
100 nF  
PGND1  
V
DDD  
GND  
PGND2  
220 nF  
VSTAB1  
OUT1N  
IN2P  
IN2N  
3
IN2P  
IN2N  
L
LC  
OUT1N  
100 nF  
4
15 nF  
C
ACGND  
10 Ω  
C
BOOT1N  
ACGND  
LC  
5
100 nF  
22 Ω  
V
P1  
V
(1)  
P1  
EN  
470 pF  
470 pF  
6
enable  
100 nF  
PGND1  
V
PGND1  
470 pF  
P1  
470 pF  
(1)  
SEL_MUTE  
7
PGND1  
22 Ω  
470 nF  
C
BOOT1P  
OUT1P  
OUT2P  
BOOT2P  
PGND2  
SVRR  
AGND  
LC  
8
10 Ω  
10 Ω  
100 nF  
15 nF  
47 µF  
L
LC  
OUT1P  
9
100 nF  
bead  
TDF8599  
MASTER  
L
LC  
V
DDA  
OUT2P  
100 nF  
27  
26  
25  
24  
23  
22  
21  
20  
19  
10  
11  
12  
13  
14  
15  
16  
17  
18  
V
PA  
15 nF  
R
ADS  
2
C-bus  
C
ADS  
I
LC  
address select  
22 Ω  
33 kΩ  
10 kΩ  
PGND2  
470 pF  
MOD  
CLIP  
DIAG  
SDA  
stereo mode  
setting  
470 pF  
100 nF  
V
PGND2  
470 pF  
P2  
470 pF  
V
P2  
V
Pull-up  
Pull-up  
V
22 Ω  
P2  
10 kΩ  
C
BOOT2N  
OUT2N  
VSTAB2  
DCP  
LC  
V
10 Ω  
100 nF  
15 nF  
L
LC  
OUT2N  
220 nF  
SCL  
1 µF  
spread  
spectrum  
mode  
SSM  
DC offset  
protection enabled  
(3)  
(2)  
4.7 µF  
100 nF  
OSCIO  
OSCSET  
MASTER  
MODE  
20 kΩ  
39 kΩ  
C
470 nF  
470 nF  
INP  
GNDD/HW  
IN1P  
IN1N  
36  
35  
34  
33  
32  
31  
30  
29  
28  
1
2
3
4
5
6
7
8
9
IN3P  
IN3N  
100 nF  
V
DDD  
C
INN  
220 nF  
VSTAB1  
OUT1N  
IN2P  
IN2N  
L
LC  
15 nF  
C
ACGND  
10 Ω  
BOOT1N  
ACGND  
100 nF  
V
(1)  
P1  
V
P1  
EN  
470 pF  
470 pF  
100 nF  
PGND1  
OUT3N  
V
PGND1  
470 pF  
P1  
470 pF  
(1)  
SEL_MUTE  
100 nF  
C
LC  
PGND1  
470 nF  
47 µF  
BOOT1P  
OUT1P  
OUT2P  
SVRR  
AGND  
10 Ω  
10 Ω  
15 nF  
22 Ω  
L
LC  
100 nF  
TDF8599  
SLAVE  
L
LC  
V
DDA  
27  
26  
25  
24  
23  
22  
21  
20  
19  
10  
11  
12  
13  
14  
15  
16  
17  
18  
V
PA  
bead  
22 Ω  
15 nF  
R
ADS  
2
I
C-bus  
address select  
BOOT2P  
PGND2  
ADS  
C
LC  
100 nF  
100 kΩ  
10 kΩ  
PGND2  
470 pF  
MOD  
CLIP  
DIAG  
SDA  
parallel mode  
setting  
470 pF  
100 nF  
OUT3P  
V
PGND2  
470 pF  
P2  
470 pF  
V
P2  
V
Pull-up  
Pull-up  
V
P2  
10 kΩ  
BOOT2N  
OUT2N  
VSTAB2  
DCP  
V
10 Ω  
15 nF  
L
LC  
connect  
to µP  
220 nF  
SCL  
270 nF  
10 nF  
5.1 kΩ  
SSM  
phase lock  
operation  
(4)  
DC offset  
4.7 µF  
protection enabled  
(3)  
OSCIO  
OSCSET  
SLAVE MODE  
001aai813  
I2C-bus mode: Dual BTL in Master mode, one BTLs in Slave mode; DC offset protection enabled.  
(1) See Figure 4 on page 7 for a diagram of the connection for pins EN and SEL_MUTE.  
(2) See Section 8.3.2 on page 9 for detailed information.  
(3) See Section 8.5.5 on page 16 for detailed information on DC offset protection.  
(4) See Section 8.3.4 on page 10 for detailed information on PLL operation.  
Fig 44. Master-slave example application diagram; dual BTL master and one BTL slave in  
I2C-bus mode  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
44 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
15. Package outline  
HSOP36: plastic, heatsink small outline package; 36 leads; low stand-off height  
SOT851-2  
D
E
A
x
c
y
X
E
2
M
H
E
v
A
D
1
D
2
1
18  
pin 1 index  
Q
A
A
2
E
1
(A )  
3
A
4
θ
L
p
detail X  
36  
19  
z
M
w
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(2)  
UNIT  
mm  
A
A
A
4
b
c
D
D
1
D
E
E
E
e
H
L
p
Q
v
w
x
y
Z
θ
2
3
p
2
1
2
E
max.  
+0.08 0.38 0.32  
0.04 0.25 0.23  
3.5  
3.2  
16.0 13.0 1.1 11.1 6.2 2.9  
15.8 12.6 0.9 10.9 5.8 2.5  
14.5 1.1 1.7  
13.9 0.8 1.5  
2.55  
2.20  
8°  
0°  
0.65  
3.5  
0.35  
0.25 0.12 0.03 0.07  
Notes  
1. Limits per individual lead.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
SOT851-2  
04-05-04  
Fig 45. Package outline SOT851-2 (HSOP36)  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
45 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
HSOP36: plastic, heatsink small outline package; 36 leads; low stand-off height  
SOT938-1  
A
E
E
D
2
X
y
M
H
E
v
A
D
1
D
2
36  
19  
Q
E
A
2
1
A
pin index  
(A )  
3
A
1
A
4
θ
L
p
detail X  
1
18  
M
w
Z
b
p
e
y
Z
θ
0
5
10 mm  
°
°
2.55  
2.20  
8
0
scale  
0.1  
DIMENSIONS (mm are the original dimensions)  
A
max  
(1)  
(2)  
(2)  
UNIT  
A
1
A
2
A
3
A
4
b
c
D
D
1
D
2
E
E
E
e
H
L
p
Q
v
w
p
1
2
E
0.3  
0.1  
3.3  
3.0  
0.1  
0
0.38 0.32 16.0 13.0  
0.25 0.23 15.8 12.6  
1.1  
0.9  
11.1  
10.9  
6.2  
5.8  
2.9  
2.5  
14.5  
13.9  
1.1  
0.8  
1.5  
1.4  
mm  
3.6  
0.35  
0.65  
0.25 0.12  
Notes  
1. Limits per individual lead.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
06-01-20  
06-04-07  
SOT938-1  
Fig 46. Package outline SOT938-1 (HSOP36)  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
46 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
16. Handling information  
In accordance with SNW-FQ-611-D. The number of the quality specification can be found  
in the Quality Reference Handbook. The handbook can be ordered using the code  
9398 510 63011.  
17. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
17.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
17.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
17.3 Wave soldering  
Key characteristics in wave soldering are:  
© NXP B.V. 2009. All rights reserved.  
TDF8599_2  
Product data sheet  
Rev. 02 — 30 July 2009  
47 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
17.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 47) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 23 and 24  
Table 23. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 24. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 47.  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
48 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 47. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
18. Abbreviations  
Table 25. Abbreviations  
Abbreviation  
BCDMOS  
BTL  
Description  
Bipolar Complementary and double Diffused Metal-Oxide Semiconductor  
Bridge-Tied Load  
DCP  
DC offset Protection  
EMI  
I2C  
ElectroMagnetic Interference  
Inter-Integrated Circuit  
LSB  
Least Significant Bit  
Mµp  
Master microprocessor  
MSB  
Most Significant Bit  
NDMOST  
OCP  
N-type double Diffused Metal-Oxide Semiconductor Transistor  
OverCurrent Protection  
OTP  
OverTemperature Protection  
OverVoltage Protection  
OVP  
POR  
Power-On Reset  
PWM  
SOI  
Pulse-Width Modulation  
Silicon On Insulator  
TFP  
Thermal Foldback Protection  
UnderVoltage Protection  
UVP  
WP  
Window Protection  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
49 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
19. Revision history  
Table 26. Revision history  
Document ID  
TDF8599_2  
Release date  
20090730  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
TDF8599_1  
Modifications:  
Data sheet status changed from Objective data sheet to Product data sheet.  
Various minor textual inconsistencies in the data sheet corrected.  
Changed Section 8.2: Figure 4 on page 7.  
Changed Section 8.2: Table 4 on page 8.  
Changed Section 8.2: Table 5 on page 8.  
Changed Section 8.6.3: Figure 20 on page 21.  
Changed Section 8.6.3: Figure 21 on page 23.  
Changed Section 14.7: Figure 41 on page 41, Figure 42 on page 42, Figure 43 on page 43  
and Figure 44 on page 44.  
TDF8599_1  
20081113  
Product data sheet  
-
-
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
50 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
20. Legal information  
20.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Applications — Applications that are described herein for any of these  
20.2 Definitions  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
20.3 Disclaimers  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
20.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
21. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
51 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
22. Tables  
Table 1. Quick reference data . . . . . . . . . . . . . . . . . . . . .2  
Table 2. Ordering information . . . . . . . . . . . . . . . . . . . . .2  
Table 3. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Table 4. I2C-bus mode operation . . . . . . . . . . . . . . . . . . .8  
Table 5. Non-I2C-bus mode operation . . . . . . . . . . . . . . .8  
Table 6. Mode setting pin OSCIO . . . . . . . . . . . . . . . . . .8  
Table 7. Oscillator modes . . . . . . . . . . . . . . . . . . . . . . .11  
Table 8. Operation mode selection with the MOD pin . .12  
Table 9. Overview of protection types . . . . . . . . . . . . . .15  
Table 10. Overview of TDF8599 protection circuits  
Table 14. Instruction byte descriptions . . . . . . . . . . . . . . 26  
Table 15. Phase shift bit settings . . . . . . . . . . . . . . . . . . 26  
Table 16. Description of data bytes . . . . . . . . . . . . . . . . . 27  
Table 17. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 18. Thermal characteristics . . . . . . . . . . . . . . . . . . 28  
Table 19. Static characteristics . . . . . . . . . . . . . . . . . . . . 29  
Table 20. Switching characteristics . . . . . . . . . . . . . . . . . 32  
Table 21. Dynamic characteristics . . . . . . . . . . . . . . . . . 33  
Table 22. Filter component values . . . . . . . . . . . . . . . . . 37  
Table 23. SnPb eutectic process (from J-STD-020C) . . . 48  
Table 24. Lead-free process (from J-STD-020C) . . . . . . 48  
Table 25. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 26. Revision history . . . . . . . . . . . . . . . . . . . . . . . . 50  
and amplifier states . . . . . . . . . . . . . . . . . . . . .17  
Table 11. Available data on pins DIAG and CLIP . . . . . .18  
Table 12. Interpretation of DC load detection bits . . . . . .20  
Table 13. TDF8599 address using an external resistor . .24  
23. Figures  
Fig 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Fig 2. Heatsink up (top view) pin configuration  
TDF8599TH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Fig 3. Heatsink down (top view) pin configuration  
Fig 28. Po as a function of VP in stereo mode with  
THD = 10 %. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Fig 29. Po as a function of VP in parallel mode with  
THD = 0.5 % . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Fig 30. Po as a function of VP parallel mode with  
THD = 10 %. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Fig 31. THD + N as a function of output power with a  
2 W load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Fig 32. THD + N as a function of output power with a  
4 W load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Fig 33. THD + N as a function of frequency with a  
2 W load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Fig 34. THD + N as a function of frequency with a  
4 W load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Fig 35. Channel separation as a function of  
TDF8599TD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Fig 4. Mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Fig 5. Clock frequency as a function of Rosc . . . . . . . . . .9  
Fig 6. Master and slave configuration . . . . . . . . . . . . . . .9  
Fig 7. Spread spectrum mode . . . . . . . . . . . . . . . . . . . .10  
Fig 8. Spread spectrum operation in Master mode . . . .10  
Fig 9. Phase lock operation . . . . . . . . . . . . . . . . . . . . . .11  
Fig 10. AD/BD modulation switching circuit . . . . . . . . . . .12  
Fig 11. AD modulation . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Fig 12. BD modulation . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Fig 13. Master and slave operation with 12 p phase  
shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Fig 14. Parallel mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Fig 15. DC offset protection and diagnostic output . . . . .16  
Fig 16. Diagnostic output for short circuit conditions . . . .18  
Fig 17. DC load detection circuit . . . . . . . . . . . . . . . . . . .19  
Fig 18. DC load detection procedure . . . . . . . . . . . . . . . .19  
Fig 19. DC load detection limits . . . . . . . . . . . . . . . . . . . .19  
Fig 20. Recommended start-up sequence with DC load  
detection enabled. . . . . . . . . . . . . . . . . . . . . . . . .21  
Fig 21. Start-up and shutdown timing in I2C-bus mode  
with DC load detection. . . . . . . . . . . . . . . . . . . . .23  
Fig 22. Start-up and shutdown timing in non-I2C-bus  
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Fig 23. I2C-bus start and stop conditions. . . . . . . . . . . . .25  
Fig 24. Data bits sent from Master microprocessor  
(Mmp). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Fig 25. I2C-bus write . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Fig 26. I2C-bus read. . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Fig 27. Po as a function of VP in stereo mode with  
frequency with a 2 W load. . . . . . . . . . . . . . . . . . 39  
Fig 36. Channel separation as a function of  
frequency with a 4 W load. . . . . . . . . . . . . . . . . . 39  
Fig 37. CMRR as a function of frequency . . . . . . . . . . . . 40  
Fig 38. Gain as a function of frequency. . . . . . . . . . . . . . 40  
Fig 39. Efficiency as a function of output power . . . . . . . 40  
Fig 40. Power dissipation as a function of total output  
power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Fig 41. Example application diagram for dual BTL in  
non-I2C-bus mode . . . . . . . . . . . . . . . . . . . . . . . . 41  
Fig 42. Example application diagram for dual BTL in  
I2C-bus mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Fig 43. Example application diagram for a single BTL in  
I2C-bus mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Fig 44. Master-slave example application diagram; dual  
BTL master and one BTL slave in I2C-bus mode 44  
Fig 45. Package outline SOT851-2 (HSOP36) . . . . . . . . 45  
Fig 46. Package outline SOT938-1 (HSOP36) . . . . . . . . 46  
Fig 47. Temperature profiles for large and small  
components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
THD = 0.5 % . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
TDF8599_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 30 July 2009  
52 of 53  
TDF8599  
NXP Semiconductors  
I2C-bus controlled dual channel class-D power amplifier  
24. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
13  
Dynamic characteristics. . . . . . . . . . . . . . . . . 33  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
14  
Application information . . . . . . . . . . . . . . . . . 34  
Output power estimation (Stereo mode) . . . . 34  
Output power estimation (Parallel mode) . . . . 36  
Output current limiting . . . . . . . . . . . . . . . . . . 36  
Speaker configuration and impedance. . . . . . 37  
Heat sink requirements . . . . . . . . . . . . . . . . . 37  
Curves measured in reference design . . . . . . 38  
Typical application schematics. . . . . . . . . . . . 41  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
14.7  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
15  
16  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 45  
Handling information . . . . . . . . . . . . . . . . . . . 47  
8
8.1  
8.2  
8.3  
Functional description . . . . . . . . . . . . . . . . . . . 6  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pulse-width modulation frequency . . . . . . . . . . 8  
Master and slave mode selection . . . . . . . . . . . 8  
Spread spectrum mode (Master mode) . . . . . . 9  
Frequency hopping (Master mode). . . . . . . . . 10  
Phase lock operation (Slave mode) . . . . . . . . 10  
Operation mode selection. . . . . . . . . . . . . . . . 11  
Modulation mode . . . . . . . . . . . . . . . . . . . . . . 12  
Phase staggering (Slave mode) . . . . . . . . . . . 13  
Parallel mode . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Thermal foldback . . . . . . . . . . . . . . . . . . . . . . 15  
Overtemperature protection . . . . . . . . . . . . . . 15  
Overcurrent protection . . . . . . . . . . . . . . . . . . 15  
Window protection . . . . . . . . . . . . . . . . . . . . . 16  
DC offset protection . . . . . . . . . . . . . . . . . . . . 16  
Supply voltages . . . . . . . . . . . . . . . . . . . . . . . 17  
Overview of protection circuits and  
17  
Soldering of SMD packages . . . . . . . . . . . . . . 47  
Introduction to soldering. . . . . . . . . . . . . . . . . 47  
Wave and reflow soldering . . . . . . . . . . . . . . . 47  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 47  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 48  
17.1  
17.2  
17.3  
17.4  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.4  
8.4.1  
8.4.2  
8.4.3  
8.5  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.5.7  
18  
19  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 50  
20  
Legal information . . . . . . . . . . . . . . . . . . . . . . 51  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 51  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
20.1  
20.2  
20.3  
20.4  
21  
22  
23  
24  
Contact information . . . . . . . . . . . . . . . . . . . . 51  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
amplifier states . . . . . . . . . . . . . . . . . . . . . . . . 17  
Diagnostic output . . . . . . . . . . . . . . . . . . . . . . 18  
Diagnostic table . . . . . . . . . . . . . . . . . . . . . . . 18  
Load identification (I2C-bus mode only) . . . . . 19  
DC load detection . . . . . . . . . . . . . . . . . . . . . . 19  
Recommended start-up sequence with  
8.6  
8.6.1  
8.6.2  
8.6.2.1  
8.6.2.2  
DC load detection enabled . . . . . . . . . . . . . . . 20  
AC load detection . . . . . . . . . . . . . . . . . . . . . . 21  
CLIP detection . . . . . . . . . . . . . . . . . . . . . . . . 22  
Start-up and shutdown sequence. . . . . . . . . . 22  
8.6.2.3  
8.6.2.4  
8.6.3  
9
9.1  
9.2  
I2C-bus specification . . . . . . . . . . . . . . . . . . . . 24  
Instruction bytes . . . . . . . . . . . . . . . . . . . . . . . 26  
Data bytes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
10  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 28  
Thermal characteristics. . . . . . . . . . . . . . . . . . 28  
Static characteristics. . . . . . . . . . . . . . . . . . . . 29  
Switching characteristics . . . . . . . . . . . . . . . . 32  
11  
12  
12.1  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 30 July 2009  
Document identifier: TDF8599_2  

相关型号:

935286803115

Clock Generator
NXP

935286803118

Clock Generator
NXP

935286841125

AUP/ULP/V SERIES, DUAL 2-INPUT NAND GATE, PDSO8, 3 X 2 MM, 0.50 MM HEIGHT, 0.50 MM PITCH, PLASTIC, SOT996-2, SON-8
NXP

935286853125

LVC/LCX/Z SERIES, DUAL 2-INPUT NOR GATE, PDSO8, 3 X 2 MM, 0.50 MM HEIGHT, 0.50 MM PITCH, PLASTIC, SOT996-2, SON-8
NXP

935286861125

LVC/LCX/Z SERIES, TRIPLE 1-INPUT INVERT GATE, PDSO8, 3 X 2 MM, 0.50 MM HEIGHT, 0.50 MM PITCH, PLASTIC, SOT996-2, SON-8
NXP

935286881118

LED DISPLAY DRIVER, PDSO8, 3 X 3 MM, 0.85 MM HEIGHT, PLASTIC, MO-229, SOT-908-1, HVSON-8
NXP

935286883132

LINE DRIVER, PDSO10, 1 X 1 MM, 0.5 MM HEIGHT, PLASTIC, SOT1081-1, SON-10
NXP

935286884112

Audio Amplifier
NXP

935286885112

Audio Amplifier
NXP

935286924112

HC/UH SERIES, 8-BIT BIDIRECTIONAL PARALLEL IN PARALLEL OUT SHIFT REGISTER, TRUE OUTPUT, PDSO20, PLASTIC, TSSOP1-20
NXP

935286924118

HC/UH SERIES, 8-BIT BIDIRECTIONAL PARALLEL IN PARALLEL OUT SHIFT REGISTER, TRUE OUTPUT, PDSO20, PLASTIC, TSSOP1-20
NXP

935286926112

LIQUID CRYSTAL DISPLAY DRIVER, PDSO40, PLASTIC, SOT158-1, VSOP-40
NXP