935311297528 [NXP]

Analog Circuit;
935311297528
型号: 935311297528
厂家: NXP    NXP
描述:

Analog Circuit

文件: 总71页 (文件大小:3292K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MC33814  
Rev. 12.0, 8/2018  
NXP Semiconductors  
Technical Data  
Two cylinder small engine control IC  
33814  
Powered by SMARTMOS technology, the 33814 delivers a cost-optimized IC  
solution for managing one and two-cylinder engines. With six drivers, three pre-  
drivers, a 5.0 V regulator for the MCU, a protected external sensor supply, and a  
high level of integration, the IC offers an ideal response to contemporary market  
requirements. The innovative VRS system optimizes noise immunity under  
cranking conditions. Diagnostic and protection features present on all outputs allow  
applications to operate with greater safety.  
TWO CYLINDER SMALL ENGINE  
CONTROL IC  
Features:  
• Operates over supply voltage range of 4.5 V < VPWR < 36 V  
• Start-up/shutdown control and power sequence logic with KEYSW input  
• MCU supply: VCC is a 5.0 V ( 2.0 %, 200 mA) regulated supply  
• Sensor supply: VPROT (100 mA) is a VCC tracking protected sensor supply  
• Three configurable pre-drivers for IGBT or general purpose gate MOSFETs for  
ignition and O2 sensor (HEGO) heater:  
98ASA00737D  
AE SUFFIX (PB-FREE)  
48-PIN LQFP-EP  
• PWM  
• Overcurrent shutdown  
• Short-to-battery shutdown  
Applications:  
• Six low-side drivers with full diagnostics, self-protection and PWM control:  
• Two fuel injector drivers, RDS(on) = 0.6 Ω, ILIMIT = 1.8 A, to drive typical 12 Ω  
high-impedance injectors  
Small Engine Control for:  
• Motor scooters  
• Small motorcycles  
• Lawn mowers  
• Lawn trimmers  
• Snow blowers  
• Chain saws  
• Gasoline-driven electrical generators  
• Outboard motors  
• Relay 1 driver, RDS(on) = 0.4 Ω, ILIMIT = 3.0 A, to drive fuel pump  
• Relay 2 driver, RDS(on) = 1.5 Ω, ILIMIT = 1.2 A, to drive power relay  
• Lamp driver, RDS(on) = 1.5 Ω, ILIMIT = 1.2 A, to drive warning lamp or an LED  
• Programmable Tachometer Driver, RDS(on) = 20 Ω, Ishutdown = 60 mA, to drive  
a Tachometer display  
• Innovative configurable VRS conditioning circuit, with two different parameter  
settings for engine cranking and running mode and an optional automatic mode  
to improve noise immunity in cranking conditions  
• K-line (ISO9141)  
• MCU reset generator and programmable watchdog  
• MCU Interface: 16-bit SPI and parallel interface with 5.0 V IO capability  
.
MC33814  
V
BAT  
5.0 V Sensor Supply  
Keyswitch  
BAT  
V
BAT  
V
KEYSW  
VPROT  
Relay 2  
(Power)  
ROUT2  
MIL  
VPWR  
LAMPOUT  
ROUT1  
TACHOUT  
VPPREF  
Relay 1  
(Fuel Pump)  
VPPSENS  
TACHOMETER  
O2HFB  
O2HOUT  
O2HSENSP  
O2 Heater  
MCU  
VCC  
VCC  
+5.0 V  
RESETB  
RESETB  
O2HSENSN  
V
BAT  
4
SPI  
SPI  
INJOUT1  
INJOUT2  
ISO9141  
Injectors  
MRX  
MTX  
BATSW  
RIN1  
RIN2  
IGNIN1  
IGNIN2  
INJIN1  
INJIN2  
VRSOUT  
O2HIN  
VRSP  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
V
BAT  
ISO9141  
IGNFB1  
IGNOUT1  
IGNFB2  
IGNOUT2  
IGNSENSP  
IGNSENSN  
V
BAT  
VRSN  
GND  
Crankshaft VRS  
Figure 1. 33814 simplified application diagram  
© NXP B.V. 2018.  
Table of Contents  
1
2
3
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.1 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.2 Static electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.3 Dynamic electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.4 Timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.5 Typical electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
General IC functional description and application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.1 System controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.2 Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5.3 System reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5.4 Power supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
5.5 Drivers blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
5.6 Pre-driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
5.7 VRS circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
5.8 ISO9141 bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
5.9 Mode code and revision number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
5.10 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
5.11 SPI registers mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
6.1 Output OFF open load fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
6.2 Low voltage operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
6.3 Low-side injector driver voltage clamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
6.4 Reverse battery protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
7.1 Package mechanical dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
4
5
6
7
8
33814  
2
NXP Semiconductors  
1
Orderable parts  
Table 1. Orderable part variations  
Part number (1)  
Temperature (T )  
Package  
A
MC33814AE  
-40 °C to 125 °C  
48 LQFP-EP  
Notes  
1. To order parts in tape and reel, add the R2 suffix to the part number.  
33814  
NXP Semiconductors  
3
2
Internal block diagram  
POR,  
Overvoltage  
Undervoltage  
VPWR  
Pre-  
RESETB  
PROT  
VCC  
VPP  
Regulator  
VPPREF  
VPPSENS  
+5.0 V  
Tracking  
Regulator  
VCC  
V
VCC  
LOGIC CONTROL  
+5.0 V  
CSB  
SI  
SCLK  
SO  
Watchdog  
Regulator  
SPI INTERFACE  
and REGISTERS  
Typical of all 6 Driver Outputs  
INJOUT1  
O2HIN  
INJIN1  
INJOUT2  
ROUT1  
Gate Control  
VClamp  
75 µA  
Current Limit  
Temperature Limit  
Short/Open  
ROUT2  
lLimit  
INJIN2  
IGNIN1  
+
(1 of 6 shown)  
LAMPOUT  
RS  
TACHOUT  
INJGND1  
INJGND2  
SPI Control  
Parallel Control  
PARALLEL  
CONTROL  
RGND1  
RGND2  
IGNIN2  
RIN1  
VPWR  
VAnalog  
VLogic  
V10.0 Analog  
V2.5 Logic  
RIN2  
MRX  
VCC  
ISO9141  
ISO9141  
CONTROLLER  
Bandgap  
Bias  
MTX  
Pre-drivers  
KEYSW  
SLEEP/RUN  
START LOGIC  
IGNFB1  
To ROUT2  
Driver  
Ignition 1  
Ignition 2  
IGNOUT1  
BATSW  
IGNFB2  
IGNOUT2  
Oscillator  
lLimit  
IGNSENSP  
IGNSENSN  
To Logic  
Control  
+
O2HFB  
O2HOUT  
O2 Heater  
Divider  
O2HSENSP  
O2HSENSN  
lLimit  
(SPI CONTROL)  
V
+
CC  
To Logic  
Control  
(SPI)  
Divide by “N”  
N=1-32  
+
VRSP  
VRSN  
To TACHOUT Driver  
VRS CIRCUIT  
VRSOUT  
Note: All current sinks and sources ~50µA except where indicated  
GND  
Figure 2. Simplified internal block diagram  
33814  
4
NXP Semiconductors  
3
Pin connections  
3.1  
Pinout diagram  
Transparent Top View  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
RIN1  
RIN2  
O2HFB  
O2HOUT  
IGNSENSP  
IGNSENSN  
O2HSENSN  
O2HSENSP  
VRSOUT  
VRSP  
2
3
O2HIN  
IGNIN1  
IGNIN2  
INJIN1  
INJIN2  
BATSW  
MTX  
MRX  
TACHOUT  
NC  
4
5
6
EP  
7
8
9
VRSN  
CSB  
VPWR  
SCLK  
10  
11  
12  
Figure 3. 33814 pin connections  
3.2  
Pin definitions  
Table 2. 33814 pin definitions  
Pin  
Pin name Pin function  
Formal name  
Description  
O2 Sensor Heater Voltage feedback from drain of O2 Sensor Heater driver FET. If used as IGBT driver,  
1
O2HFB  
Input  
Feedback Input  
voltage feedback from collector of IGBT through 10:1 voltage divider (9R:1R).  
Pre-driver output for O2 Sensor Heater driven by SPI input or O2HIN pin  
Positive input to the ignition current sense differential amplifier.  
O2 Sensor Heater  
Output  
2
3
O2HOUT  
Output  
Ignition Current  
Sense Input Positive  
IGNSENSP  
IGNSENSN  
O2HSENSN  
Input  
Input  
Input  
Measures current in IGBT emitter resistor (or MOSFET source resistor) for IGNOUT1  
and IGNOUT2, if used  
Negative input to the ignition current sense differential amplifier.  
Measures current in IGBT emitter resistor (or MOSFET source resistor) for IGNOUT1  
and IGNOUT2, if used  
Ignition Current  
Sense Input Negative  
4
5
Negative input to the O2 heater current sense differential amplifier.  
Measures current in of O2 heater driver MOSFET source resistor (or IGBT emitter  
resistor), if used  
O2 Heater Current  
Sense Input Negative  
Positive input to the O2 heater current sense differential amplifier.  
Measures current in of O2 heater driver MOSFET source resistor (or MOSFET source  
resistor) for IGNOUT1 and IGNOUT2, if used  
O2 Heater Current  
Sense Input Positive  
6
7
O2HSENSP  
VRSOUT  
Input  
VRS Conditioned  
Output  
Output  
5.0 V Logic Level Output from conditioned VRS differential inputs VRSP, VRSN  
33814  
NXP Semiconductors  
5
Table 2. 33814 pin definitions  
Pin  
Pin name Pin function  
Formal name  
Description  
Variable Reluctance The VRSP and VRSN form a differential input for the Variable Reluctance Sensor  
Sensor Positive Input attached to the crankshaft toothed wheel.  
8
VRSP  
Input  
Variable Reluctance  
The VRSP and VRSN form a differential input for the Variable Reluctance Sensor  
9
VRSN  
Input  
Sensor Negative  
attached to the crankshaft toothed wheel.  
Input  
The Chip Select input pin is an active low signal sent by the MCU to indicate that the  
device is being addressed.  
10  
11  
CSB  
Input  
SPI Chip Select  
Main Voltage Supply VPWR is the main voltage supply input for the device. Should be connected to a 12 Volt  
VPWR  
Supply Input  
Input  
battery with reverse battery protection and adequate transient protection.  
The SCLK input pin is used to clock in and out the serial data on the SI and SO pins  
while being addressed by the CSB.  
12  
13  
14  
SCLK  
SI  
Input  
Input  
SPI Clock Input  
SPI Data Input  
The SI input pin is used to receive serial data into the device from the MCU.  
Base drive for external PNP pass transistor  
VPP Reference Base  
Drive  
VPPREF  
Output  
15  
16  
GND  
SO  
Ground  
Output  
Ground  
Ground pin, return for all voltage supplies  
SPI Data Output  
The SO output pin is used to transmit serial data from the device to the MCU.  
VCC Supply  
Protected Output  
5.0 Volt supply output for MCU VCC. This output supplies the VCC voltage for 5.0 Volt  
MCUs. It is short-circuit and overcurrent protected.  
17  
18  
19  
VCC  
Supply  
Input  
Voltage Sense from  
VPP  
VPPSENS  
RESETB  
Feedback to internal VPP 6.5 Volt regulator from external pass transistor  
RESETB Output to 5.0 V Logic level reset signal used to reset the MCU during under and overvoltage  
Output  
MCU  
conditions and for initial power-up, down and watchdog timeouts  
The VPROT Output is a protected 5.0 Volt output that tracks the VCC voltage but  
isolates the VCC output against shorts to ground and to battery. It is intended to supply  
sensors which are located off of the ECU board.  
Sensor Supply  
Protected Output  
20  
VPROT  
Output  
21  
22  
LAMPOUT  
RGND2  
Output  
WarningLampOutput Low-side driver output for MIL (warning lamp) driven by SPI input command  
ROUT2 Power  
Ground  
Ground connection for ROUT 2 low-side driver. Must be tied to VPWR Ground.  
Ground  
23  
ROUT2  
N.C.  
Output  
Relay Driver 2 Output Low-side relay driver output # 2 driven by SPI input command or RIN2 logic input  
Unused pin  
24, 25  
No Connect  
This pin provides the low-side drive for a tachometer gauge or alternatively as a SPI  
Tachometer output  
26  
27  
28  
29  
30  
31  
32  
33  
34  
TACHOUT  
MRX  
Output  
Output  
Input  
controlled low-side driver, or oscillator output.  
Low-side Driver  
Output 5.0 V logic level ISO9141 data to the MCU from the ISO9141 IN/OUT pin  
Output  
ISO9141 MCU Data  
MTX  
Input 5.0 V logic level ISO9141 data from the MCU to the ISO9141 IN/OUT pin  
Input  
This output is a 5.0 V logic level that is high when KEYSW is high. It is only low when  
Battery Switch  
BATSW  
INJIN2  
INJIN1  
IGNIN2  
IGNIN1  
O2HIN  
Output  
Input  
KEYSW is low. It can also be controlled via the SPI.  
5.0 V logic level input from the MCU to control the injector 2 driver output. (Can also be  
Injector Driver Input 2  
controlled via the SPI)  
5.0 V logic level input from the MCU to control the injector 1 driver output. (Can also be  
Input  
Injector Driver Input 1  
controlled via the SPI)  
5.0 V logic level input from MCU controlling the ignition coil # 2 current flow and spark.  
(Can also be controlled via the SPI)  
Input  
Ignition Input 2  
5.0 V logic level input from MCU controlling the ignition coil # 1 current flow and spark.  
(Can also be controlled via the SPI)  
Input  
Ignition Input 1  
O2 Sensor Heater 5.0 V logic level input used to turn on and off the O2HOUT driver. The O2HOUT driver  
Input  
Input  
can also be turned on and off via the SPI if this pin is not present in a different package.  
5.0 V logic level input from the MCU to control the relay 2 driver output ROUT2. The  
35  
RIN2  
Input  
Relay Driver Input 2 ROUT2 driver can also be turned on and off via the SPI if this pin is not present in a  
different package.  
33814  
6
NXP Semiconductors  
Table 2. 33814 pin definitions  
Pin  
Pin name Pin function  
Formal name  
Description  
5.0 V logic level input from the MCU to control the relay 1 driver output ROUT1. The  
36  
RIN1  
Input  
Input  
Relay Driver Input 1 ROUT1 driver can also be turned on and off via the SPI if this pin is not present in a  
different package.  
The Key Switch Input is a VPWR level signal that indicates that the Key is inserted and  
turned to the ON/OFF position. In the ON position the (KEYSW = VBAT) the IC is  
37  
KEYSW  
Key Switch Input  
enabled and BATSW = HIGH (Relay 2 ON if programmed in the SPI). In the OFF  
position the IC is in Sleep mode, only when the PWREN bit in the SPI register is also  
low.  
Injector Driver 2  
Ground  
38  
39  
INJGND2  
INJOUT2  
Ground  
Output  
Ground connection for injector 2 low-side driver. Must be tied to VPWR ground  
Low-side driver output for injector 2 driven by the SPI input or by parallel input INJIN2  
Ground connection for ROUT 1 low-side driver. Must be tied to VPWR ground  
Injector Driver 2  
Output  
ROUT1 Power  
Ground  
40  
41  
42  
RGND1  
ROUT1  
Ground  
Output  
Ground  
Relay Driver 1 Output Low-side relay driver output # 1 driven by the SPI input command or RIN1 logic input  
Injector Driver 1  
INJGND1  
Ground connection for injector 1 low-side driver. Must be tied to VPWR ground  
Ground  
Injector Driver 1  
43  
44  
INJOUT1  
ISO9141  
Output  
Low-side driver output for injector 1 driven by the SPI input or by parallel input INJIN1  
Output  
ISO9141 K-Line  
ISO9141 pin is VPWR level IN/OUT signal which is connected to an external ECU tester  
Input/Output Bidirectional Serial that uses the ISO9141 protocol.The output is open drain with an internal 32 kΩ pull-up  
Data Signal  
resistor and the Input is a ratiometric VPWR level threshold comparator.  
Voltage feedback from collector of ignition # 1 driver IGBT through 10:1 voltage divider  
(9R:1R)(or voltage feedback from the drain of the FET connected to IGNOUT1, if  
selected)  
Feedback from  
Collector 1  
45  
IGNFB1  
Input  
46  
47  
48  
IGNOUT1  
IGNFB2  
Output  
Input  
Ignition Output 1  
Output to gate of IGBT or GPGD for ignition # 1  
Feedback from  
Collector 2  
Voltage feedback from collector of ignition # 2 driver IGBT through 10:1 voltage divider  
(9R:1R)(or voltage feedback from the drain of the IGNOUT2 FET, if selected)  
IGNOUT2  
Output  
Ignition Output 2  
Output to gate of IGBT or GPGD for ignition # 2  
33814  
NXP Semiconductors  
7
4
General product characteristics  
4.1  
Maximum ratings  
Table 3. Maximum ratings  
All voltages are with respect to ground, unless mentioned otherwise. Exceeding these ratings may cause malfunction or permanent device  
damage.  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Notes  
ELECTRICAL RATINGS  
V
V
Supply Voltage  
-0.3  
45  
V
V
PWR  
PWR  
DC  
DC  
VPP Supply Voltage (If supplied externally and not using internal VPP regulator)  
• VPPREF  
VPP_Ext  
-0.3  
-0.3  
45  
10  
• VPPSENSE  
VCC  
VCC Regulator  
-0.3  
-0.3  
7.0  
V
V
DC  
DC  
VPROT  
VPROT Regulator  
VPWR  
SPI Interface and Logic Input Voltage (VSI, VSCLK, VCSB, VRIN1, VRIN2, VINJIN1  
INJIN2, VIGNIN1, VIGNIN2, VO2HIN, VMTX  
,
VIL, VIH  
VIL, VIH  
VOUTX  
-0.3  
-0.3  
-0.3  
V
V
V
V
V
CC  
CC  
DC  
DC  
DC  
V
)
SPI Interface and Logic Output Voltage (VSO, VBATSW, VMRX,VVRSOUT  
)
All Low-side Drivers Drain Voltage (VINJOUT1, VINJOUT2, VROUT1, VROUT2  
,
VCLAMP  
V
LAMPOUT, VTACHOUT  
)
VGDX  
All Pre-drivers Output Voltage (VIGNOUT1, VIGNOUT2, VO2HOUT  
)
-0.3  
-1.5  
10  
60  
V
V
DC  
DC  
VGDFB  
All Pre-driver Feedback Inputs Voltage (VIGNFB1, VIGNFB2, VO2HFB  
All Pre-driver Current Sense Inputs Voltage  
)
VISENS  
-0.3  
1.0  
V
DC  
(VIGNSENSN, VIGNSENSP, VO2HSENSN,VO2HSENSP  
KEYSW Input Voltage (VKEYSW  
RESETB Output Voltage (VRESETB  
ISO9141 Input/Output Voltage (VISO9141  
Maximum Voltage for VRSN and VRSP inputs to ground  
)
VKEYSW  
VRESETB  
VISO9141  
VVRS_IN  
IVRSX_IN  
)
-18  
-0.3  
-18  
-0.5  
-
VPWR  
V
V
V
V
DC  
DC  
DC  
DC  
)
V
CC  
)
VPWR  
6.0  
Maximum Current for VRSN and VRSP inputs (internal diodes limit voltage)  
15  
mA  
Output Clamp Energy (INJOUT1, INJOUT2, ROUT1, ROUT2)  
• TJUNCTION = 150 °C, IOUT = 1.0 A  
E
-
-
100  
35  
mJ  
CLAMP  
Output Clamp Energy (LAMPOUT)  
• TJUNCTION = 150 °C, IOUT = 0.5 A  
E
mJ  
V
CLAMP_LAMP  
ESD Voltage  
V
V
V
• Human Body Model (HBM)  
• Charge Device Model (CDM) (corner pins)  
• Charge Device Model (CDM)  
-
-
-
±2000  
±750  
±500  
ESD1  
ESD2  
ESD3  
(2)  
Notes  
2. ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω) and the Charge Device Model.  
33814  
8
NXP Semiconductors  
Table 3. Maximum ratings  
All voltages are with respect to ground, unless mentioned otherwise. Exceeding these ratings may cause malfunction or permanent device  
damage.  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Notes  
THERMAL RATINGS  
Operating Temperature (Automotive grade version)  
TA  
TJ  
TC  
• Ambient  
• Junction  
• Case  
-40  
-40  
-40  
125  
150  
125  
°C  
T
Storage Temperature  
-55  
-
150  
°C  
°C  
STG  
(3) (4)  
TPPRT  
Peak Package Reflow Temperature During Reflow  
Note 4  
,
Thermal Resistance and Package Dissipation Ratings  
Thermal Resistance  
R
R
• Junction-to-Ambient (LQFP-48-EP Package) (Single Layer Board)  
• Junction-to-Case (LQFP-48-EP Package)  
29  
2.4  
29  
2.4  
°C/W  
JA  
θ
θ
JC  
Notes  
3. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause  
malfunction or permanent damage to the device.  
4. NXP’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and  
Moisture Sensitivity Levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes), enter the core ID to view all orderable  
parts and review parametrics.  
33814  
NXP Semiconductors  
9
4.2  
Static electrical characteristics  
Table 4. Power input static electrical characteristics  
Characteristics noted under conditions of 6.0 V VPWR 18 V, -40 °C TCASE 125 °C and Calibrated Timers, unless otherwise noted.  
Where applicable, typical values reflect the parameter’s approximate average value with VPWR = 14 V, TA = 25 °C.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
POWER INPUT (VPWR)  
Supply Voltage (measured at VPWR pin)  
• Logic Stable Range  
• Full Operational Range  
VPWR(  
2.5  
4.5  
6.0  
-
-
-
45  
36  
18  
LS  
)
(5)  
V
VPWR(  
VPWR(  
FO  
)
• Full Parameter Specification Range  
FP  
)
Supply Current  
IVPWR(  
-
-
10.0  
10  
14.0  
20  
mA  
• All Outputs Disabled (Normal Mode), excludes base current to the  
external pnp  
ON  
)
Sleep State Supply Current (Must have PWREN = 0 and KEYSW ≤  
0.8 V for sleep state)  
• VPWR = 18 V  
IVPWR(SS)  
μA  
(6)  
(7)  
VPWR(OV)  
VPWR(OV-HYS)  
VCC(POR)  
VPWR Overvoltage Shutdown Threshold Voltage (OV Reset)  
VPWR Overvoltage Shutdown Hysteresis Voltage  
37.5  
0.5  
39  
1.5  
-
42  
3.0  
4.9  
V
V
V
VCC Power On Reset Voltage Threshold (POR), (rising voltage)  
3.9  
VCC Undervoltage Shutdown Threshold Voltage (UV Reset), (falling  
voltage)  
VCC(UV)  
2.9  
-
3.9  
V
VCC(UV/POR-HYS) VCC POR and Undervoltage Shutdown Hysteresis Voltage  
VCC,NONOVERLAP VCC POR and Undervoltage Non-overlap (POR-UV)  
100  
0.8  
-
-
mV  
V
1.0  
1.2  
VOLTAGE PRE-REGULATOR OUTPUT (VPPREF, VPPSENS)  
(8)  
VPPSENS  
IVPPREF_CL  
VOCE  
VPPSENS Output Voltage  
5.85  
-5.0  
2.2  
-
6.5  
-15  
-
7.15  
-20  
25  
V
VPPREF Current Limit  
mA  
μF  
Output Capacitance External (ceramic)  
VPPSENS Quiescent Current (excluding external PNP current)  
IVPPSENS  
-
3
mA  
Line Regulation IVCC = 100 mA, IVPROT = 50 mA, 9.0 V < VPWR < 18 V  
and Diodes Inc. FZT753TA PNP  
REGLINE_VPP  
VDROPOUT_VPP  
-
-
2.0  
-
25  
mV  
mV  
Dropout Voltage (Minimal Input/Output Voltage, tracks input below)  
500  
I
VCC = 100 mA, IVPROT = 50 mA and Diodes Inc. FZT753TA PNP  
VOLTAGE REGULATOR OUTPUTS (VCC, VPROT)  
VCC  
VCC Output Voltage 0 IVCC IVCC_C  
4.9  
-
5.0  
-
5.1  
V
IVCC_C  
VCC Output Current Continuous  
200  
mA  
VPROT Output Voltage (tracks VCC)  
IVCC = 100 mA, IVPROT = 50 mA 9.0 V < VPWR < 18 V  
IVCC-VPROT  
|
-
-
25  
mV  
IVPROT_C  
IVCC_CL  
VPROT Output Current Continuous  
VCC Output Current Limiting  
-
-
-
-
100  
500  
260  
mA  
mA  
mA  
(8)  
200  
110  
IVPROT_CL  
VPROT Output Current Limiting  
Output Capacitance External (VCC and VPROT) without reverse  
protection diode  
VOCE  
2.2  
-
47  
μF  
Notes  
5. This parameter is guaranteed by design but is not production tested.  
6. Overvoltage thresholds minimum and maximum include hysteresis.  
7. Undervoltage thresholds minimum and maximum include hysteresis  
8. Guaranteed at 9.0 V VPWR 18 V  
33814  
10  
NXP Semiconductors  
Table 4. Power input static electrical characteristics  
Characteristics noted under conditions of 6.0 V VPWR 18 V, -40 °C TCASE 125 °C and Calibrated Timers, unless otherwise noted.  
Where applicable, typical values reflect the parameter’s approximate average value with VPWR = 14 V, TA = 25 °C.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
VOLTAGE REGULATOR OUTPUTS (VCC, VPROT) (CONTINUED)  
VCC  
VCC Output Voltage 0 IVCC IVCC_C  
Line Regulation (Both VCC and VPROT  
4.9  
-
5.0  
2.0  
5.1  
25  
V
)
REGLINE_VB  
mV  
IVCC =100 mA, IPROT = 50 mA, 9.0 V< VPWR < 18 V  
Load Regulation (Both VCC and VPROT) measured from 10 % to 90 %  
of IVCC_C and IPROT_C, VPWR = 13 V  
REGLOAD_VB  
-
-
20  
-
35  
mV  
mV  
VDROPOUT_VCC/ Dropout Voltage (Both VCC and VPROT) (Minimal Input/Output Voltage  
VCC = 100 mA, IVPROT = 50 mA, tracks input below)  
500  
I
VPROT  
ALL LOW-SIDE DRIVERS (INJOUT1, INJOUT2, ROUT1, ROUT2, LAMPOUT, TACHOUT)  
Output Fault Detection Voltage Threshold used for Short to battery and  
open load detections  
(9)  
VOUT(FLT-TH)  
2.0  
2.5  
3.0  
V
Output OFF Open Load Detection Current (INJ1, INJ2, RELAY1,  
RELAY2 AND LAMP)  
• VDRAIN = 18 V, Outputs Programmed OFF  
I(OFF)OCO  
40  
10  
75  
-
115  
30  
μA  
μA  
I(OFF)TACH  
Output OFF Open Load Detection Current TachOut  
Output Leakage Current  
IOUT(LKG)  
• VDRAIN = 24 V, Open Load Detection Disabled and Output  
commanded OFF  
-
-
20  
μA  
(9)  
(9)  
TLIM  
Overtemperature Shutdown (OT)  
155  
5.0  
-
185  
15  
°C  
°C  
TLIM(HYS)  
Overtemperature Shutdown Hysteresis  
10  
Output Clamp Voltage  
• ID = 20 mA  
VOC  
V
48  
53  
60  
INJOUT1, INJOUT2  
RDS (ON)_INJx  
Drain-to-Source ON Resistance  
• IOUT = 1.0 A TJ = 150 °C, VPWR = 13 V  
-
-
-
0.6  
3.0  
Ω
IOUT(LIM)_INJx  
Output Self Limiting Current  
1.8  
A
ROUT1  
Driver Drain-to-Source ON Resistance  
• IOUT = 700 mA, TJ = 150 °C, VPWR = 13 V  
RDS (ON)_R1  
-
-
-
0.4  
6.0  
Ω
IOUT(LIM)_R1  
Output Self-limiting Current (Has inrush current timer)  
3.0  
A
ROUT2  
Driver Drain-to-Source ON Resistance  
• IOUT = 350 mA, TJ = 150 °C, VPWR = 13 V  
RDS (ON)_R2  
-
-
-
1.5  
2.4  
Ω
IOUT(LIM)_R2  
Output Self-limiting Current  
1.2  
A
LAMPOUT  
Driver Drain-to-Source ON Resistance  
• IOUT = 1.0 A, TJ = 150 °C, VPWR = 13 V  
RDS (ON)_LAMP  
-
-
-
1.5  
2.4  
Ω
IOUT(LIM)_LAMP  
Notes  
Output Self-limiting Current (Has inrush current timer)  
1.2  
A
9. This parameter is guaranteed by design, however it is not production tested.  
33814  
NXP Semiconductors  
11  
Table 4. Power input static electrical characteristics  
Characteristics noted under conditions of 6.0 V VPWR 18 V, -40 °C TCASE 125 °C and Calibrated Timers, unless otherwise noted.  
Where applicable, typical values reflect the parameter’s approximate average value with VPWR = 14 V, TA = 25 °C.  
Symbol  
TACHOUT  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
Driver Drain-to-Source ON Resistance  
• IOUT = 50 mA, TJ = 150 °C, VPWR = 13 V  
RDS (ON)_TACH  
-
-
-
20  
Ω
IOUT(SHUTDOWN)_  
Output Current Shutdown  
60  
110  
mA  
TACH  
ALL PRE-DRIVERS (IGNOUT1, IGNOUT2 AND O2HOUT)  
Pre-driver Output Voltage, VPWR = 13 V  
• IGD = 500 μA  
• IGD = -500 μA  
VGS(ON)  
VGS(OFF)  
7.0  
0.0  
8.0  
0.375  
9.0  
0.5  
V
IGNOUTx Output Source Current (IGNOUT1 and IGNOUT2 by default)  
• 1.0 VGD 3.0, VPWR = 13 V  
IIGN_GD_H  
10  
-
-
mA  
Output OFF Open Load Detection Current  
• VDRAIN = 18 V, Outputs Programmed OFF  
I(OFF)OCO  
40  
10  
75  
-
115  
-
μA  
GPGD Output Source Current (O2HOUT by default) at 1.0 VGD 3.0,  
VPWR = 13 V  
IGPGD_GD_H  
mA  
Pre-driver Fault Detection Voltage Threshold, Outputs programmed  
OFF (open load), Outputs programmed ON (short to battery)  
• IGD = 500 μA  
• IGD = -500 μA  
VIGNFB(FLT-TH)  
VGPGD(FLT_TH)  
100  
1.0  
250  
2.5  
400  
4.0  
mV  
V
VCLAMP  
Output Clamp Voltage  
48  
53  
60  
V
Overcurrent Voltage Threshold for O2HOUT  
• VO2HSENSN to VO2HSENSP  
VSENS-TH  
180  
200  
220  
mV  
Overcurrent Voltage Threshold for IGNOUT1 and IGNOUT2  
• VIGNSENSN to VIGNSENSP  
(10)  
VSENS-TH  
VSENS-TH  
180  
360  
200  
400  
220  
440  
• VIGNSENSN to VIGNSENSP (if both IGNOUT1 and IGNOUT2 are  
configured as IGBT gate drivers and both IGNOUT1 and IGNOUT2  
are ON)  
mV  
Current Sense Input Offset Current (IGNSENSP, IGNSENSN,  
O2HSENSN, O2HSENSP)  
ISENS-OFFSET  
ISENS-BIAS  
-
-
-
-
15  
15  
μA  
μA  
Current Sense Input Bias Current  
ISO-9141 TRANSCEIVER PARAMETERS (8.0 V < VPWR < 18 V)  
VIL_ISO  
VIH_ISO  
Input Low Voltage at ISO I/O pin  
Input High Voltage at ISO I/O pin  
-
-
-
0.3xVPWR  
-
V
V
0.7*VPWR  
0.15x  
VPWR  
VHYST_ISO  
VOL_ISO  
Input Hysteresis at ISO I/O pin  
Output Low-voltage at ISO I/O pin  
Output High-voltage at ISO I/O pin  
-
-
-
-
V
V
V
-
0.2xVPWR  
-
0.8x  
VOH_ISO  
VPWRR  
IPU  
Internal pull-up resistor to VPWR  
-
32  
-
kΩ  
ILIM_ISO  
Output current limit at ISO I/O pin (MTX = 0)  
50  
100  
150  
mA  
33814  
12  
NXP Semiconductors  
Table 4. Power input static electrical characteristics  
Characteristics noted under conditions of 6.0 V VPWR 18 V, -40 °C TCASE 125 °C and Calibrated Timers, unless otherwise noted.  
Where applicable, typical values reflect the parameter’s approximate average value with VPWR = 14 V, TA = 25 °C.  
Symbol  
Characteristic  
Load capacitance at ISO I/O pin  
Min.  
Typ.  
Max.  
Unit  
Notes  
(11)  
CL_ISO  
0.01  
3.0  
10  
nF  
I_ISO  
TLIM  
Output load current at ISO I/O pin (MTX = 0, RLOAD = 1.0 kΩ, 10 %)  
Overtemperature Shutdown (OT)  
-
12  
-
-
mA  
°C  
(11)  
(11)  
155  
5.0  
185  
15  
TLIM(HYS)  
Overtemperature Shutdown Hysteresis  
10  
°C  
Notes  
10. 400 mV threshold is only valid when both IGNOUT are configured as IGBT gate drivers and both IGNOUT1 and IGNOUT2 are ON.  
11. This parameter is guaranteed by design, however it is not production tested.  
33814  
NXP Semiconductors  
13  
Table 4. Power input static electrical characteristics  
Characteristics noted under conditions of 6.0 V VPWR 18 V, -40 °C TCASE 125 °C and Calibrated Timers, unless otherwise noted.  
Where applicable, typical values reflect the parameter’s approximate average value with VPWR = 14 V, TA = 25 °C.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
VRS CONDITIONER INPUT  
See Table variable via  
SPI or dynamically  
VVRS_THRESH  
Comparator Thresholds  
Threshold Accuracy  
-
-
mV  
%
AccuTHRESH  
-
20  
Steady State Condition ( 20 % only valid for VRS DAC thresholds  
110 mV and higher.All other thresholds guaranteed monotonic only.)  
IBIASRSX  
VCLAMP_P  
VCLAMP_N  
Input Bias Current VRSP and VRSN (2.5 V common mode must be off)  
VRS Positive Clamp Voltage at ICLAMP = 10 mA  
-5.0  
5.5  
5.0  
5.8  
µA  
V
-
-
VRS Negative Clamp Voltage at ICLAMP = 10 mA  
-0.45  
-0.22  
V
DIGITAL INTERFACE (MRX, MTX,CSB, SI, SCLK, SO, RINX,O2HIN, INJINX, IGNINX, BATSW, VRSOUT, RESETB)  
VIH  
VIL  
Input Logic High-voltage Thresholds  
Input Logic Low-voltage Thresholds  
Input Logic Voltage Hysteresis  
Input Logic Capacitance  
0.7 x VCC  
-
-
-
-
VCC + 0.3  
V
V
GND - 0.3  
0.2 x VCC  
VHYS  
CIN  
500  
-
-
mV  
pF  
20  
Sleep Mode Input Logic Current  
• KEYSW = 0 V  
(12)  
(12)  
ILOGIC_SS  
-10  
30  
-
10  
μA  
μA  
Input Logic Pull-down Current INJIN1, INJIN2, RIN1, RIN2, SI, SCLK,  
IGNIN1, IGNIN2, O2HIN  
• 0.8 V to 5.0 V  
ILOGIC_PD  
50  
100  
SO Tri-state Output (in Tri-state mode, CSB = 1)  
• 0 V to 5.0 V  
ITRISO  
μA  
μA  
μA  
μA  
V
-10  
-10  
-
10  
10  
-90  
10  
-
CSB Input Current  
• CSB = VCC  
ICSB  
-
-40  
-
Input Logic Pull-up Current - CSB and MTX  
• 0.0 to 4.2 V  
ILOGIC_PU  
-20  
CSB Leakage Current to VCC  
• CSB = 5.0 V, KEYSW = 0.0 V  
ICSB(LKG)  
-
SO, MRX High-state Output Voltage (CSB =0 for SO)  
• ISO-HIGH = -1.0 mA  
VSO_HIGH  
VMRX_HIGH  
VCC - 0.4  
-
SO, MRX Low-state Output Voltage (CSB =0 for SO)  
• ISO-LOW = 1.0 mA  
VSO_LOW  
VMRX_LOW  
V
V
V
-
-
-
0.4  
-
BATSW High-state Output Voltage  
• ISO-HIGH = -10 mA  
VBATSW_HIGH  
VCC - 1.0  
BATSW Low-state Output Voltage  
• ISO-LOW = 10 mA  
VBATSW_LOW  
-
-
-
-
-
1.0  
VPWR  
2.5  
VKEYSW_HIGH  
VKEYSW_LOW  
VKEYSW_HYS  
KEYSW High-state Input Voltage  
KEYSW Low-state Input Voltage  
KEYSW Hysteresis  
4.5  
-0.3  
100  
V
V
-
mV  
Notes  
12. This parameter is guaranteed by design, however it is not production tested.  
33814  
14  
NXP Semiconductors  
Table 4. Power input static electrical characteristics  
Characteristics noted under conditions of 6.0 V VPWR 18 V, -40 °C TCASE 125 °C and Calibrated Timers, unless otherwise noted.  
Where applicable, typical values reflect the parameter’s approximate average value with VPWR = 14 V, TA = 25 °C.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
DIGITAL INTERFACE (MRX, MTX,CSB, SI, SCLK, SO, RINX,O2HIN, INJINX, IGNINX, BATSW, VRSOUT, RESETB) (CONTINUED)  
VRS Low-state Output Voltage  
• IVRS-LOW = 1.0 mA  
VVRSOUT_LOW  
VVRSOUT_HIGH  
VRESET_LOW  
-
-
-
-
0.4  
5.0  
0.4  
V
V
V
VRS High-state Output Voltage  
• IVRS-HIGH = 1.0 mA  
VCC -0.4  
RESET Low-state Output Voltage  
• IRESET-LOW = 1.0 mA  
-
IRESET_  
RESET High-state Leakage Current  
10  
-
-
25  
μA  
kΩ  
LEAKAGE_HIGH  
RRESET_PULDOWN RESET Pull-down Resistor  
200  
500  
33814  
NXP Semiconductors  
15  
4.3  
Dynamic electrical characteristics  
(14)  
Table 5. Dynamic electrical characteristics  
Characteristics noted under conditions of 6.0 V VPWR 18 V, -40 °C TCASE 125 °C and Calibrated Timers, unless otherwise noted.  
Where applicable, typical values reflect the parameter’s approximate average value with VPWR = 14 V, TA = 25 °C.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
POWER INPUT  
Required Low State Duration on VCC for power-on reset  
• VCC 0.2 V  
t
1.0  
-
-
μs  
RESET  
t(POR)  
Power on RESET pulse width  
KEYSW Filter Time  
100  
-
-
-
-
μs  
(13)  
t(KEYSW_FILTER)  
12.7  
ms  
WATCHDOG TIMER  
WDMAX  
WDMIN  
-
-
-
-
10  
-
sec.  
ms  
μs  
Maximum Time Value Watchdog can be loaded with (default time)  
Minimum Time Value Watchdog can be loaded with  
Reset Pulse Width when Watchdog time is out  
1.0  
100  
WDRESET  
-
VRS CONDITIONING INPUT  
Output Blanking Time Programming Range  
(% of previous out pulse 0 to 15/32 in 1/32 steps, 15/32 = 46.9 %)  
OUTPUTBLANK  
0
-
50  
%
OUTPUTDEGLITCH  
DELAYTHRESH  
DELAYOBT  
-
-
-
1.0  
-
%
μs  
μs  
Output Deglitch Filter Time (1/128 of the previous output pulse)  
(13)  
(13)  
-
-
10  
10  
Delay from CSB to Change in VRS Comparator Threshold  
Delay from CSB to Change in VRS Output Blank Time  
ISO9141 TRANSCEIVER  
ISOBR  
tTXDF  
Typical ISO9141 Data Rate  
-
-
-
-
-
10  
-
-
kbps  
μs  
Turn OFF Delay MTX Input to ISO Output  
2.0  
1.0  
1.0  
1.0  
tRXDF, tRXDR  
tRXR, tRXF  
tTXR, tTXF  
Turn ON/OFF Delay ISO Input to MRX Output  
-
μs  
Rise and Fall Time MRX Output (measured from 10 % to 90 %)  
Maximum Rise and Fall Time MTX Input (measured from 10 % to 90 %)  
-
μs  
-
μs  
ALL LOW-SIDE DRIVERS  
t
Output ON Current Limit Fault Filter Timer  
Output Retry Timer  
30  
7.0  
7.0  
100  
60  
10  
10  
-
90  
13  
µs  
ms  
ms  
µs  
SC1  
t
REF  
(13)  
tINRUSH  
t(OFF)OC  
Inrush Current Delay Timer  
13  
Output OFF Open-circuit Fault Filter Timer  
400  
Output Slew Rate, INJOUT1, INJOUT2, ROUT1, ROUT2 and  
LAMPOUT  
t
1.0  
1.0  
-
5.0  
5.0  
1.0  
1.0  
10  
10  
V/μs  
V/μs  
µs  
SR(RISE)  
• R  
= 500 Ω, VLOAD = 14 V  
LOAD  
Output Slew Rate, INJOUT1, INJOUT2, ROUT1, ROUT2 and  
LAMPOUT  
t
SR(FALL)  
• R  
= 500 Ω, VLOAD = 14 V  
LOAD  
Propagation Delay (Input Rising Edge OR CSB to Output Falling Edge)  
• Input at 50 % VDD to Output voltage 90 % of VLOAD (INJ1, INJ2,  
ROUT1, ROUT2, LAMP)  
tPHL  
5.0  
6.0  
Propagation Delay (Input Rising Edge OR CSB to Output Falling Edge)  
• Input at 50 % VDD to Output voltage 90 % of VLOAD  
(TACHOMETER)  
tPHL  
-
µs  
Notes  
13. Guaranteed by design  
14. internal oscillator of 4.0 MHz 10 % typical for VPWR = 13 V, at room temp.  
33814  
16  
NXP Semiconductors  
(14)  
Table 5. Dynamic electrical characteristics  
Characteristics noted under conditions of 6.0 V VPWR 18 V, -40 °C TCASE 125 °C and Calibrated Timers, unless otherwise noted.  
Where applicable, typical values reflect the parameter’s approximate average value with VPWR = 14 V, TA = 25 °C.  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
Notes  
ALL LOW-SIDE DRIVERS (CONTINUED)  
Propagation Delay (Input Falling Edge OR CSB to Output Rising Edge)  
• Input at 50 % VDD to Output voltage 10 % of VLOAD (INJ1, INJ2,  
ROUT1, ROUT2, LAMP)  
tPLH  
-
1.0  
5.0  
µs  
Propagation Delay (Input Falling Edge OR CSB to Output Rising Edge)  
• Input at 50 % VDD to Output voltage 10 % of VLOAD  
(TACHOMETER)  
tPLH  
-
1.0  
-
6.0  
14  
µs  
Output Slew Rate, Tachout  
t
6.0  
V/μs  
SR(FALL)  
• R  
= 500 Ω, VLOAD = 14 V  
LOAD  
ALL GATE PRE-DRIVER (IGN1, IGN2 AND O2H)  
t(OFF)OC Output OFF Open-circuit Fault Filter Timer  
tSC1  
100  
30  
-
-
400  
90  
µs  
µs  
Overcurrent (short-circuit) Fault Filter Timer  
Propagation Delay (Input Rising Edge OR CSB to Output Rising Edge)  
• Input at 50 % VDD to Output voltage 10 % of VGS(ON)  
tPLH  
-
-
1.0  
1.0  
5.0  
5.0  
µs  
µs  
Propagation Delay (Input Falling Edge OR CSB to Output Falling Edge)  
• Input at 50 % VDD to Output voltage 90 % of VGS(ON)  
tPHL  
SPI DIGITAL INTERFACE TIMING (15)  
Falling Edge of CSB to Rising Edge of SCLK  
• Required Setup Time  
tLEAD  
100  
50  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
Falling Edge of SCLK to Rising Edge of CSB  
• Required Setup Time  
tLAG  
SI to Rising Edge of SCLK  
• Required Setup Time  
t
16  
SI(SU)  
Rising Edge of SCLK to SI  
• Required Hold Time  
t
20  
SI(HOLD)  
t
SI, CSB, SCLK Signal Rise Time (16)  
-
-
-
-
-
5.0  
5.0  
-
-
ns  
ns  
ns  
ns  
ns  
R(SI)  
tF(SI)  
SI, CSB, SCLK Signal Fall Time (16)  
-
t
Time from Falling Edge of CSB to SO Low-impedance (17)  
Time from Rising Edge of CSB to SO High-impedance  
Time from Falling Edge of SCLK to SO Data Valid (18)  
55  
55  
55  
SO(EN)  
t
-
SO(DIS)  
tVALID  
25  
Sequential Transfer Rate (15)  
• Time required between data transfers  
tSTR  
-
-
1.0  
µs  
Notes  
15. These parameters are guaranteed by design. Production test equipment uses 1.0 MHz, 5.0 V SPI interface (variable with magnitude input  
frequency).  
16. Rise and Fall time of incoming SI, CSB and SCLK signals suggested for design consideration to prevent the occurrence of double pulsing.  
17. Time required for output states data to be terminated at SO pin.  
18. Time required to obtain valid data out from SO following the fall of SCLK with 200 pF load.  
33814  
NXP Semiconductors  
17  
4.4  
Timing diagrams  
CSB  
0.2 V  
DD  
t
t
LAG  
LEAD  
0.7 V  
0.2 V  
DD  
SCLK  
DD  
t
t
SI(HOLD)  
SI(SU)  
0.7 V  
0.2 V  
DD  
SI  
MSB in  
DD  
t
SO(EN)  
t
t
SO(DIS)  
VALID  
0.7 V  
0.2 V  
DD  
MSB out  
SO  
LSB out  
DD  
Figure 4. Timing diagram  
33814  
18  
NXP Semiconductors  
4.5  
Typical electrical characteristics  
4.5.1 Driver and gate driver characteristics  
Gate Pre-Drive Vol vs Vpwr @ 25 deg C  
Gate Pre-Drive Voh vs Vpwr @ 25 deg C  
Iload  
Vpwr (V)  
Figure 5. Typical electrical specifications  
33814  
NXP Semiconductors  
19  
)
s
m
h
o
(
n
o
s
d
R
Vpwr (V)  
Figure 6. Typical electrical specifications (continued)  
4.5.2 VCC and VPROT characteristics  
Figure 9. VCC voltage vs. VPWR at -40 °C  
Figure 7. VCC voltage vs. VPWR at 125 °C  
Figure 8. VCC voltage vs. VPWR at 25 °C  
Figure 10. VPROT voltage vs. VPWR at 125 °C  
33814  
20  
NXP Semiconductors  
Figure 12. VPROT voltage vs. VPWR at -40 °C  
Figure 11. VPROT voltage vs. VPWR at 25 °C  
33814  
NXP Semiconductors  
21  
5
General IC functional description and application  
information  
5.1  
System controller  
5.1.1 System control signals  
5.1.1.1  
KEYSW input pin  
KEYSW is the input from the vehicle ignition key switch. This signal is at VBAT (12 V) when the key is inserted and turned to the ON  
position. When the key is in the OFF position and/or removed from the key switch, this input is pulled to ground by an internal pull-down  
resistor. This pin is internally protected against a reverse battery condition by an internal diode. The state of the KEYSW input is also  
available as a bit in the SPI Status Register.  
5.1.1.2  
BATSW output pin  
The BATSW output pin is a 5.0 V logic level output, which by default is an indication of the state of the KEYSW input.  
5.1.1.3  
PWREN SPI control register BIT  
The PWREN signal is a bit in the SPI Control Register #1 allowing “Prepare to shutdown” state transition.  
5.1.2 Operating modes  
5.1.2.1  
Power On Reset (POR)  
Applying VPWR and bringing KEYSW high (VBAT), longer than the KEYSW filter time, generates a Power On Reset (POR) and places the  
device in the Normal operating state. The Power On Reset circuit incorporates a timer to prevent high frequency transients from causing  
an erroneous POR. Upon enabling the device (KEYSW High), outputs are activated based on the initial state of the control register or  
parallel input. All three supplies, VPP, VCC and VPROT, are enabled when KEYSW is brought high.  
Table 6. Operational states  
PWREN SPI Bit  
KEYSW Input  
BATSWB Output  
All Supplies  
STATE  
Input  
L
H
H
L
L
L
L
H
H
L
OFF  
ON  
ON  
ON  
Sleep  
NORMAL  
H
H
NORMAL  
Prepare to shutdown  
33814  
22  
NXP Semiconductors  
Figure 13. 33814 functional state diagram  
5.1.2.2  
Normal state  
The default Normal state is entered when power is applied to the VPWR and KEYSW pins. Note that the device is designed to have VPWR  
present before KEYSW is brought high. It is acceptable to bring VPWR and KEYSW high simultaneously. However it is not recommended  
to bring KEYSW high while VPWR is low.  
SPI register settings from Power On Reset (POR) are as follows:  
• All outputs turned off  
• Off State open load detection enabled (LSD)  
• Default values in the SPI Configuration, Control and Status registers  
5.1.2.3  
Sleep state  
When KEYSW signal is low and the PWREN SPI Control register bit is also low, the 33814 enters into Sleep mode. In the Sleep state, all  
outputs, current sources and sinks are off and the device consumes less than IVPWR(SS). When KEYSW signal goes high, it wakes up the  
IC, turns on the VPP regulator and a Power On Reset signal is generated.  
33814  
NXP Semiconductors  
23  
5.1.2.4  
Prepare to shutdown state  
The purpose of the PWREN signal is to allow the MCU to control the shutdown of power to itself when the user turns off the KEYSW. This  
may be necessary to allow the MCU the time required to perform its pre-shutdown routines. When the MCU wants to shutdown the power  
supplies in the 33814, it must write a logic zero (0) to the PWREN bit in the SPI Control register. Only the state of the PWREN bit in the  
SPI Control register controls the shutdown of the 33814 power supplies. In this state, only the outputs are turned off (except ROUT2 if the  
Shutdown Disable bit is set. See 5.5.3.3. Using ROUT2 as a power relay, page 37).  
Note: In case of KEYSW =1 condition, 33814 goes back in Normal mode, retrieving the last register configuration. This suggests that  
before entering in Prepare to Shutdown mode, user needs to configure registers as appropriate (switching off drivers and pre-drivers for  
example).  
5.1.2.5  
Power On Self-test (POST)  
When a power on occurs after a POR, it may be desired to go through an initial Power On Self-test routine to ensure the SPI is working  
correctly and the status registers in the 33814 are viable. After a POR, all the registers in the 33814 contain their ‘default’ values, as  
indicated in the SPI register tables later in this document. The watchdog is also set to its default timeout value of 10 seconds, so any POST  
routine must be accomplished within this time frame or a WD reset may occur.  
To perform a POST routine, the MCU should first send a SPI message to set the POST enable bit in the SPI control register 1, bit 6. Once  
this bit is set, the status registers are disconnected from the analog and logic portions of the 33814 and are connected only to the SPI  
circuitry. The POST can then write various data patterns to the status registers and verify that none of the bits are ‘stuck’ and state of the  
bit is accurately reflected. Note that bits in the status register labeled ‘x’ are not implemented and testing these bits may result in erroneous  
data. After testing all the status registers and confirming they are viable, the status registers can be set back to their default values by  
clearing the POST Enable bit back to 0. The POST enable bit allows the MCU to write ones (1s) to the Status registers.  
Normally, the status register can only be cleared to zeros by the MCU and ones can be written to the status register only by the 33814  
internal logic. This is designed to prevent the MCU from missing any reported fault bits and, for the 33814, to prevent system status errors  
resulting from the MCU erroneously writing a one (1) to a fault bit.  
Once the POST enable bit is set back to a zero (0) by the MCU, the status register returns to the condition where the 33814 can only write  
ones (1s) to it and the MCU can only write zeros (0s) to it. Again, it is important to note that any POST routine should be designed to take  
less than 10 seconds to avoid a watchdog reset from occurring and truncating the POST routine, because the WD reset clears the POST  
Enable bit as well.  
5.1.3 BATSW output functionality  
The BATSW output pin has several functionalities:  
By default, the BATSW output pin is an indication of the state of the KEYSW input.  
The BATSW output can also be used to control an LS driver, such as the Relay ROUT2 driver by connecting the BATSW output  
to the RIN2 input.  
The BATSW output can also be configured as a low current LED high-side driver controlled through the SPI interface.  
5.1.3.1  
BATSW pin as a KEYSW input indication  
When KEYSW is at VBAT (12 V) level, the BATSW output is a logic 1 (5.0 V) and when KEYSW is at ground (0 V) level, BATSW is at a  
logic 0. The BATSW output may be used to inform the MCU the user is trying to shutdown the vehicle.  
5.1.3.2  
BATSW pin as an LS driver control  
The BATSW output can also be used to control an LS driver, such as the Relay ROUT2 driver, by connecting the BATSW output to the  
RIN2 input. (see 5.5.3.3. Using ROUT2 as a power relay, page 37)  
5.1.3.3  
BATSW pin as an LED driver  
If the BATSW signal is not needed by the MCU or to control the Relay 2 output, it can be configured as a low current LED high-side driver  
controlled through the SPI interface. As a high-side driver, BATSW can be PWM’d to allow an LED to be dimmed. A bit in the SPI Battery  
Switch Logic Output Configuration register called ‘HSD’, controls whether the BATSW output is a simple high-side driver, or controlled by  
KEYSW as indicated previously.  
33814  
24  
NXP Semiconductors  
MC33814  
OffꢁBoard  
300 ꢀ  
BATSW  
.01ꢁμF  
LED  
GND  
Figure 14. Recommended circuit to use BATSW as an LED driver  
If the BATSW output is used to control an LED, the LED cathode should be tied to ground and the LED anode should be connected to the  
BATSW pin through an external resistor. The value of the external resistor should be 340 Ω or greater. Care must be taken if the BATSW  
output is sent off-board due to the chance of shorts to the battery or shorts to ground, for which the output is not protected. At a minimum,  
this output should be protected by a diode, a current limit resistor and an ESD capacitor (0.01 µF ceramic).  
5.1.4 System SPI registers  
5.1.4.1  
SPI configuration registers  
Table 7. Battery switch logic output configuration register  
Reg # Hex  
7
6
5
4
3
2
1
0
PWM  
Freq.1  
PWM  
Freq. 0  
HSD Mode  
(0)  
x
x
x
x
x
6
6
Battery Switch Logic Output  
Reset  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
Table 8. Battery switch logic output configuration register field  
Field  
Description  
BATSW Mode selection  
7-HSD Mode  
0 - BATSW is controlled by KEYSW  
1 - BATSW is used as a high-side driver  
PWM Frequency and Duty Cycle Mode (19)  
00 - PWM Freq.: None  
01 - PWM Freq.:100 Hz-D/C: Internal  
10 - PWM Freq.: 1 KHz-D/C: Internal  
1-0 PWM Freq.x  
Notes  
19. See 5.5.2.2. Pulse Width Modulation mode, page 35  
5.1.4.2  
SPI control registers  
Table 9. Other OFF/ON control register  
Reg # Hex  
7
6
5
4
3
2
1
0
POST  
Enable  
OFF/ON  
RESET  
internal  
only  
Pwren  
OFF/ON  
VProt  
ON/OFF  
Batsw  
OFF/ON  
Tach  
OFF/ON  
X
X
1
8
1
8
Other OFF/ON Control  
Batsw  
Reset  
Reset  
(0)  
X
(0)  
(0)  
PWM5  
(0)  
(1)  
PWM4  
(0)  
(0)  
PWM3  
(0)  
(0)  
PWM2  
(0)  
(1)  
PWM1  
(0)  
(0)  
PWM0  
(0)  
PWM6  
(0)  
(0)  
33814  
NXP Semiconductors  
25  
Table 10. Other OFF/ON control register field description  
Field  
Description  
Power Enable  
7-Pwren OFF/ON  
0-Power Disable (allowing sleep mode entry)  
1-Power Enable (allowing Prepare to Shutdown mode entry)  
Power On Self Test Enable  
6-POST Enable OFF/ON 0-POST Disable  
1-POST Enable  
BATSW Output Control  
2-BATSW OFF/ON  
0-BATSW Output OFF  
1-BATSW Output ON  
Table 11. BATSW control register field description  
Field  
Description  
PWM Duty Cycle Setting with 1 % increment 0000000 to  
1100100 (Dec. 100) represent 0 % to 100 %  
6-0 PWM x  
1100100 (Dec. 100) to 1111111 (Dec.127) all map to 100 %.  
5.1.4.3  
SPI status registers  
Table 12. Power supply and any system fault status register  
Reg # Hex  
7
6
5
4
3
2
1
0
Any  
System  
Faults  
VPROT  
Short to  
Battery  
VPROT  
Overtemp  
OT  
VPROT  
Short to  
Ground  
Keysw  
(1)  
Pwren  
(0)  
Batsw  
(0)  
SPI Error  
(0)  
Power Supply and Any  
System Faults  
13  
D
Reset  
(0)  
(0)  
(0)  
(0)  
Table 13. Power supply and any system fault status register field description  
Field  
Description  
System-wide any fault bit whose stats is the OR of all the other “Any fault” bits in the other status  
7-Any System Fault 0-No Fault reported  
1-At least one Fault is reported (20)  
KEYSW Pin Status:  
6-Keysw  
5-PWREN  
4-Batsw  
0-KEYSW is high (VBAT Present)  
1-KEYSW is low (Prepare to Shutdown mode)  
PWREN Status  
0-PWREN Control bit is low  
1-PWREN Control bit is high  
BATSW Pin Status  
0-BATSW Pin is low  
1-BATSW Pin is high  
Notes  
20. The MCU must interrogate all the other status registers to determine the actual fault(s) present.  
33814  
26  
NXP Semiconductors  
5.2  
Watchdog  
5.2.1 Watchdog Normal operation  
The watchdog is a programmable timer used to monitor the operation of the MCU. The timer programming is done by the Watchdog  
Parameters SPI Configuration Register by selection the Time Multiplier Value (bit 6-4) and the Time Value (bit 3-0).  
Watchdog Timer = Time Multiplier Value (1.0 s,100 ms, or 10 ms) X Time Value (1 to 10)  
Using this technique, time values from 1.0 ms. to 10 seconds can be programmed into the watchdog (default value is 10 s).  
When the MCU is executing code properly, its program code should contain instructions to periodically send a SPI message to the  
watchdog SPI control register to refresh the watchdog. The watchdog timer, once refreshed, reloads the time interval value stored in the  
SPI watchdog configuration register and begins counting time again. Under normal operating conditions this sequence continues until the  
MCU shuts down, typically, when the KEYSW is turned off.  
5.2.2 Watchdog Fault operation  
In the event that something goes wrong during the MCU program execution, such as an unexpected breakpoint or some other program  
hang-up such as the execution of a HALT instruction, the watchdog may not be refreshed. When the WD time interval value programmed  
in the SPI Configuration register elapses, the watchdog issues a RESETB pulse. This RESETB pulse causes the MCU to restart its  
program and correct operation should be restored. After any RESETB (power-on or other), the watchdog SPI configuration register  
contains the default value for the refresh time (10 seconds). The watchdog is also enabled by default. The MCU, in its initialization (start-  
up) code, can choose to change this default value and/or disable the watchdog by sending a SPI command to write new information in  
the watchdog SPI configuration register.  
5.2.3 Disabling the Watchdog timer  
A watchdog reset occurs, by default, 10 seconds after the POR. If the MCU needs to be programmed in-circuit, a means of disabling the  
watchdog must be provided to avoid interrupting the MCU programming procedure. This disable mechanism can be a jumper between  
the RESETB pin of the 33814 and the MCU’s Reset input pin. Alternatively, an isolation resistor can be placed between the RESETB pin  
on the 33814 and the MCU’s reset input pin, allowing the MCU’s reset pin to be pulled high independently of the 33814 RESETB. The  
watchdog can also be disabled via a bit in the SPI WD configuration register.  
5.2.4 Watchdog SPI register  
5.2.4.1  
Watchdog SPI configuration register  
Table 14. Watchdog parameters configuration registers  
Reg # Hex  
7
6
5
4
3
2
1
0
Disable/ Load Time Load Time Load Time Load Time Load Time Load Time Load Time  
Enable  
x1 sec  
x100 ms  
x10 ms  
8
4
2
1
10  
A
Watchdog Parameters  
Reset  
(1)  
(1)  
(0)  
(0)  
(1)  
(0)  
(1)  
(0)  
Table 15. Watchdog parameter - register field descriptions  
Field  
Description  
Watchdog Enable/Disable  
7-Disable/Enable  
0-Watchdog Disable  
1-Watchdog Enable (Default State)  
Time Multiplier Value (21)  
6-Load Time x1 sec 0- Disable  
1- Multiplier value = 1.0 sec (Default State)  
Time Multiplier Value (21)  
5-Load Time x100 ms 0- Disable (Default State)  
1- Multiplier value = 100 ms  
33814  
NXP Semiconductors  
27  
Table 15. Watchdog parameter - register field descriptions  
Field  
Description  
Time Multiplier Value (21)  
4-Load Time x10 ms 0- Disable (Default State)  
1- Multiplier value = 10 ms  
Bits 3, 2, 1, 0 are a binary coded decimal (BCD) value from 1 to 10. (11 to 16  
are mapped to 10 and 0 is mapped to 1)  
3-0 Load Time Value  
Default state = 1010 = X10  
Notes  
21. There are three time multiplier values so only one bit, 6, 5, or 4 may be set at one time. Setting  
more than one bit results in the highest multiplier value getting precedence.  
5.2.4.2  
Watchdog SPI control register  
Table 16. Watchdog control registers  
Reg # Hex  
7
6
5
4
3
2
1
0
Load Time Load Time Load Time Load Time Load Time Load Time Load Time  
WDRFSH  
(0)  
x1 sec  
x100 ms  
x10 ms  
8
4
2
1
12  
C
Watchdog  
Reset  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
Table 17. Watchdog control - register field descriptions  
Description  
Field  
Watchdog Refresh  
0-No Watchdog refresh action  
1-Refresh the watchdog timer. (reload the time value from the Watchdog  
Parameters Register)  
7-WDRFSH  
Temporary Time Multiplier Value (22)  
6-Load Time x1 sec 0- Disable  
1- Multiplier value = 1.0 sec  
Temporary Time Multiplier Value (22)  
5-Load Time x100 ms 0- Disable  
1- Multiplier value = 100 ms  
Temporary Time Multiplier Value (22)  
4-Load Time x10 ms 0- Disable  
1- Multiplier value = 10 ms  
Bits 3, 2, 1, 0 are a Temporary Binary coded decimal (BCD) value from 1 to 10.  
(11 to 16 are mapped to 10 and 0 is mapped to 1)  
3-0 Load Time Value  
Notes  
22. There are three time multiplier values so only one bit, 6, 5, or 4 may be set at one time. Setting  
more than one bit results in the highest multiplier value getting precedence.  
Note: The watchdog SPI Control Register can also be loaded with a time value to temporarily set a different value in the watchdog timer  
for the next cycle. When Bits 6 through 0 in the watchdog SPI control register are zero, the value stored in the watchdog SPI configuration  
register loads into the watchdog timer. If there is a temporary time value written into the watchdog SPI control register, the value loads into  
the watchdog. The watchdog SPI control register is automatically cleared to zero when the watchdog timer is loaded. Unless a new  
temporary time value is again written to the watchdog SPI Control Register, the next watchdog timer load is from the value stored in the  
watchdog SPI configuration register.  
33814  
28  
NXP Semiconductors  
5.2.4.3  
Watchdog SPI status register  
Table 18. Watchdog status register  
Reg # Hex  
7
6
5
4
3
2
1
0
Enable/  
Disable  
WD timer WD timer WD timer WD timer WD timer WD timer WD timer  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
10  
A
Watchdog State  
Reset  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
Table 19. Watchdog status - register field descriptions  
Field  
Description  
Watchdog Enable/Disable Status  
7-Enable/Disable 0-Watchdog disable  
1-Watchdog Enable  
Reflecting the Watchdog Timer value  
Each step represents the WD timer/127  
6-0 WD Timer bit x  
Bits [6:0] represent the value stored in the watchdog timer. If the watchdog is enabled, this value read on the fly represents the time left  
before a watchdog reset.  
Table 20. Watchdog timer values  
Status register  
WD timer bit6  
WD timer bit5  
WD timer bit4  
WD timer bit3  
WD timer bit2  
WD timer bit1  
WD timer bit0  
Value in ms  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
0
1
10  
1
1
0
1
1
0
0
1
1
0
0
0
1
1
0
0
1
1
0
0
0
1
1
0
0
1
1
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
1
2
3
4
5
6
7
8
9
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
200  
300  
400  
500  
600  
700  
33814  
NXP Semiconductors  
29  
Table 20. Watchdog timer values (continued)  
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
1
0
1
0
1
0
1
0
1
0
800  
900  
1000  
2000  
3000  
4000  
5000  
6000  
7000  
8000  
9000  
10000  
5.3  
System reset  
5.3.1 RESETB output pin  
The RESETB pin is a 5.0 volt logic, low level output used to reset the MCU.The RESETB pin is an open drain output. Without power on  
the 33814 circuit, the RESETB pin is held low by an internal pull-down resistor. In a typical application, the RESETB pin must be pulled  
up externally by a pull-up resistor to VCC.  
5.3.2 Reset sources  
When power is applied to the circuit and the voltage on the VCC pin reaches the lower voltage threshold, the RESETB pin remains at a  
low level (open drain FET turned on) for a period of time equal to the time value WDRESET. After this time period, the RESETB pin goes  
high and stays high until a reset pulse is generated due to any of the following events:  
A watchdog timer timeout event occurs  
An undervoltage event on VCC occurs  
An overvoltage event on VPWR occurs  
A Power On Reset (POR) is always provided upon power ON (anytime the IC goes from sleep state to active state).  
5.3.3 Internal reset  
The SPI control register includes a bit labeled ‘Reset’. When this bit is set to a one (1) by the MCU, it instructs the 33814 to perform an  
internal reset. This reset does NOT toggle the RESETB output pin. However, it causes all internal registers to be initialized back to their  
default values (including clearing the reset bit in the SPI control register).  
Table 21. Other OFF/ON control register  
Reg # Hex  
7
6
5
4
3
2
1
0
POST  
Enable  
OFF/ON  
RESET  
internal  
only  
Pwren  
OFF/ON  
VProt  
ON/OFF  
Batsw  
OFF/ON  
Tach  
OFF/ON  
X
X
1
1
Other OFF/ON Control  
Reset  
(0)  
(0)  
(0)  
(1)  
(0)  
(0)  
(1)  
(0)  
33814  
30  
NXP Semiconductors  
Table 22. Other OFF/ON register field descriptions  
Field  
Description  
Reset Internal Only Command  
0-RESET Internal Only 0-Do not perform an internal reset  
1-Perform an internal reset  
5.4  
Power supplies  
5.4.1 Pin description  
5.4.1.1  
PWR supply input  
The VPWR pin is the battery input to the 33814 IC. The VPWR pin requires an external reverse battery and adequate transient voltage  
protection. The VPWR pin should be bypassed to ground, as close to the IC as possible, with a 0.1 µF ceramic capacitor.  
5.4.1.2  
VPPREF output  
The VPPREF output pin is used to drive the base of an external regulator PNP pass transistor. It is not recommended that this voltage be  
brought off of the module PC board, because it may not have adequate protection to prevent damage to the PNP pass transistor under  
short-to-ground or short-to-battery conditions.  
5.4.1.3  
VPPSENS input  
The VPPSENS pin is used to monitor the VPP pre-regulator output voltage from the external pass transistor’s collector and to supply the  
input voltage to the VCC and VPROT regulators. The VPPSENS pin should be bypassed to ground, as close to the IC as possible, with a  
0.1 µF ceramic capacitor and a higher value electrolytic capacitor in parallel. The VPPSENS pin should not be used to supply other  
components. The external regulator PNPN pass transistor should be dedicated to the 33814.  
5.4.1.4  
VCC output (5.0 V supply)  
The VCC output supplies 5.0 V power to the system MCU and other on-board peripherals. An external capacitor VOCE is recommended.  
5.4.1.5  
VPROT output (5.0 V protected supply)  
The VPROT output is a protected 5.0 Volt output that tracks the VCC voltage. The VPROT output should be protected against ESD by  
means of a 0.1 µF ceramic capacitor on the output and a higher value electrolytic capacitor in parallel. An external capacitor VOCE is also  
recommended.  
5.4.1.6  
GND  
The GND pin provides the ground reference for the VPWR, VPP, VPROT and VCC supplies. The GND pin is used as a return for both the  
power supplies, as well as power a ground for some of the lower current output drivers. The higher current output drivers have their own  
ground pins. All ground pins (INJGND1, INJGND2, RGND1 and RGND2) and the exposed pad must be directly connected to this pin and  
to the negative battery terminal. There is no separate ground pin associated with the LAMPOUT driver. It shares a ground with ROUT2.  
5.4.2 Power supplies functions  
5.4.2.1  
Power supply  
The 33814 is designed to operate from VPWRMIN to VPWRMAX on the VPWR pin. The VPWR pin supplies power to all internal regulators  
and analog and logic circuit blocks. All IC analog current and internal logic current is provided from the VPWR pin. An overvoltage  
comparator monitors this pin. When an overvoltage condition is present, all outputs and voltage regulators are shut off for protection.  
33814  
NXP Semiconductors  
31  
5.4.2.2  
V
pre-regulator  
PP  
The VPP pre-regulator supplies the input voltage to the VCC and VPROT regulators. The VPP regulator is a low drop-out (LDO) regulator. It  
provides a regulated output voltage when the input is greater than its specified voltage level and it follows the input voltage when it is below  
its specified voltage level.  
The VPP regulator uses an external PNP transistor as a pass element. This allows the user to choose the PNP’s size and package  
considerations to meet the system requirements. The amount of power the external PNP transistor has to dissipate depends on the  
maximum voltage the system can be expected to run at and the maximum expected current drawn from the VCC and VPROT regulators.  
The VPPSENS pin is used to feedback the value of the VPP voltage for regulation. Since the VPP regulator is not intended to supply off-  
the-board loads, there is no short-to-ground or short-to-battery protection on the output of the external PNP.  
5.4.2.3  
V
regulator  
CC  
The VCC regulator obtains its input voltage from the VPP pre-regulator. The VCC regulator output is used for supplying 5.0 V to the MCU  
and for setting communication threshold levels via the internal SPI SO driver. The VCC regulator contains an internal pass transistor  
protecting against overcurrent.  
A Power On Reset (POR) circuit monitors the VCC output voltage level. When the VCC voltage exceeds the VCC(POR) threshold, the  
RESETB line is held low for an additional delay time t(POR) before being brought to a logic one level. An undervoltage (UV) circuit monitors  
the output of the VCC regulator. When the voltage goes below the VCC(UV) threshold for more than the VCC filter time, t(VCC-UV), the  
RESETB line is asserted to a logic zero state and remains there until the POR condition is met.  
5.4.2.4  
V
regulator  
PROT  
The protected output VPROT is a tracking regulator using the VCC output as a reference. Because the VPROT regulator is expected to supply  
5.0 V to external sensors and other off-board peripherals in the vehicle, it is well protected against shorts-to battery, shorts-to-ground,  
overcurrent and overtemperature.The VPROT supply is enabled at power-on, but can be disabled via the SPI Control Register.  
5.4.2.5  
Power up sequence  
Table 23. Power up sequence  
t
Actions  
t0  
t1  
Battery connected to VPWR Pin  
User turns on ignition switch, KeySw => High  
• Internal regulators, band gap reference and bias current generator are enabled  
Internal PORb de-asserted after internal 2.5 V regulator to the logic core stabilizes  
• Logic and oscillator are enabled  
t2 = t1+ ~5.0 μs  
• Start KeySw filter time  
KeySW filter time period expires  
• Enable VPP pre-regulator  
t3 = t2+ ~12.7 ms  
• Soft start sets turn on ramp to ~ 400 μs  
VPPSENS exceeds 4.8 V, enables VCC & VPROT regulators  
• Soft start sets turn on ramps to ~ 2.0 ms  
• BatSw buffer receives power  
t4 = t3+ (< 400 μs)  
• Output rises with VCC  
VCC exceed POR Threshold ~4.6 V  
• Start POR Timing ~128 μs  
t5 = t4+ (< 2.0 ms)  
POR Time period expires  
• Release RESETB pin  
t6 = t5+ ~128 μs  
33814  
32  
NXP Semiconductors  
~5µs  
<400µs  
<2ms ~128µs  
t0  
t1 t2  
KeySw Filter Time ~12.7ms  
t4  
t3  
t5  
t6  
KEYSW  
Internal V2P5  
Internal Ibias  
4.8V  
VppSens  
4.6V  
Vcc  
Vprot  
ResetB  
BatSW  
Figure 15. Power up sequence  
5.4.3 Power supply SPI register  
5.4.3.1  
SPI control registers  
Table 24. OFF/ON control register  
Reg # Hex  
7
6
5
4
3
2
1
0
POST  
Enable  
OFF/ON  
RESET  
internal  
only  
Pwren  
OFF/ON  
VProt  
OFF/ON  
Batsw  
OFF/ON  
Tach  
OFF/ON  
X
X
1
1
Other OFF/ON Control  
Reset  
(0)  
(0)  
(0)  
(1)  
(0)  
(0)  
(1)  
(0)  
Table 25. Other OFF/ON register field descriptions  
Field  
Description  
VPROT Regulator Enable  
4-VPROT OFF/ON 0-Disable  
1-Enable (Default)  
33814  
NXP Semiconductors  
33  
5.4.3.2  
SPI status registers  
Table 26. Power supply and any system fault status register  
Reg # Hex  
7
6
5
4
3
2
1
0
Any  
System  
Faults  
VPROT  
Short to  
Battery  
VPROT  
Overtemp  
OT  
VPROT  
Short to  
Ground  
Keysw  
(1)  
Pwren  
(0)  
Batsw  
(0)  
SPI Error  
(0)  
Power Supply and Any  
System Faults  
13  
D
Reset  
(0)  
(0)  
(0)  
(0)  
Table 27. Power supply and any system fault status register field description  
Field  
Description  
VPROT Short to Battery Status:  
2-VPROT Short to Battery 0-No Fault reported  
1-Fault reported  
VPROT Overtemp:  
1-VPROT Overtemp OT 0-No Fault reported  
1-Fault reported  
VPROT Short To Ground:  
0-VPROT Short to Ground 0-No Fault reported  
1-Fault reported  
5.5  
Drivers blocks  
5.5.1 Pin description  
5.5.1.1  
INJIN1, INJIN2 inputs  
The INJIN1 and INJIN2 pins are the parallel inputs controlling the Injector outputs, INJOUT1 and INJOUT2 respectively. The INJIN1 and  
INJIN2 pins are 5.0 V logic level inputs with built-in pull-downs to ground that prevent accidental actuation of an injector if the connection  
to the pin is lost.  
5.5.1.2  
RIN1, RIN2 inputs  
The RIN1and RIN2 pins are the parallel inputs controlling the relay outputs ROUT1 and ROUT2 respectively. The RIN1 and RIN2 pins are  
5.0 V logic level inputs with built-in pull-downs to ground to prevent accidental actuation of a relay if the connection to the pin is lost.  
5.5.1.3  
INJOUT1, INJOUT2 driver outputs  
These are outputs pins for INJOUT1 and INJOUT2 low-side drivers. Theses outputs can be used as injector driver outputs for the two  
Injectors the IC supports. If the two injectors are not needed, one INJOUT can be used as a general purpose low-side driver for relays,  
motors, lamps, gauges, etc. Injector outputs are forced off during all RESET events.  
5.5.1.4  
ROUT1, ROUT2 driver outputs  
These are output pins for ROUT1 and ROUT2 low-side drivers and have different current ratings and can be used to drive relays (like fuel  
pump, main power relay, …) or other inductive loads.  
5.5.1.5  
LAMPOUT driver output  
The Lamp driver output, LAMPOUT is a low-side driver capable of driving an incandescent lamp even under cold filament conditions and  
can also be used to drive a LED if the open load feature is disabled.  
33814  
34  
NXP Semiconductors  
5.5.1.6  
Tachometer (TACHOUT)  
The TACHOUT pin is a low-side driver which can used to drive a tachometer meter movement and can be programmed via the SPI to:  
Output the same signal as VRSOUT divided by a 1 to 32 programmable divider  
Output a PWM signal with a frequency and duty cycle programmable via the SPI  
Output one of eight fixed frequencies  
5.5.2 Common functionality  
The six open drain low-side drivers (LSDs) are designed to control various automotive loads, such as injectors, fuel pumps, solenoids,  
lamps and relays, etc. Each driver includes off-state open load detection, on-state short-to-ground detection, short-circuit to battery  
protection, overcurrent protection, overtemperature protection and diagnostic fault reporting via the SPI. The LSD outputs can be Pulse  
Width Modulated (PWM’d) based on an internal and/or external frequency for use as variable speed motor drivers, LED/lamp dimming  
drivers, or as a fuel pump driver.  
All outputs except ROUT2 are disabled when the KEYSW input pin is brought low regardless of the state of the input pins. All outputs,  
including ROUT2 are disabled when the RESETB pin is low.  
5.5.2.1  
LSD input logic control  
The four LSDs (INJOUT1, INJOUT2, ROUT1 and ROUT2) are controlled individually using a combination of the external pin input  
(respectively INJIN1, INJIN2, RIN1 and RIN2) and/or a SPI On/Off Control bit. The two LSDs (LAMPOUT and TACHOUT) are controlled  
individually using a SPI On/Off Control bit. The logic can be made to turn the outputs on or off by:  
a logical combination of the external pin ORed with the SPI Control On/Off Bit (Default State)  
a logical combination of the external pin ANDed with the SPI Control On/Off Bit  
A separate OR/AND select bit is found in the SPI configuration registers to accomplish this selection.  
5.5.2.2  
Pulse Width Modulation mode  
Alongside just turning the outputs ON or OFF, the six LSD outputs can be Pulse Width Modulated (PWM’d) to control the outputs with a  
variable 0 to 100 % duty cycle at a selection of different frequencies. There are two built-in PWM frequencies (100 HZ and 1.0 kHz) and  
the external input pin can also be used as either an external PWM frequency input (divided by 100) or a total PWM (frequency and duty  
cycle) input.  
Two bits (Bits 1, 0) in the SPI configuration register control which mode of input control is selected. The internal PWM duty cycles (D/C)  
are controlled by the lower seven bits in the corresponding SPI control register with a 1 % increment. The external PWM duty cycles (D/  
C) are provided by the MCU on the input pin of the corresponding output driver.  
5.5.2.3  
Overcurrent (OC) protection  
Output protection uses two strategies—overcurrent (OC) protection and/or overtemperature (OT) protection—to detect a fault. When a  
fault occurs, the output protection feature automatically controls the output to prevent damage to the output device.  
The overcurrent protection scheme senses an overcurrent condition by monitoring the voltage on the individual output device drain.  
5.5.2.3.1  
Inrush delay  
The Inrush Delay bit in the SPI Configuration Register for each output, when set to a one(1), prevents the overcurrent fault bit from being  
set and the overcurrent protection from shutting off the output for tINRUSH time (Typ.10 ms) rather than tSC1.(Typ. 60 µs).  
This means that during this fixed time period, the device enters into current limitation, and the output is switched off when the fixed period  
expires.  
Note that for the Lampout Driver, the default state is Inrush Delay equal to 1 (tINRUSH).  
5.5.2.3.2  
Retry feature  
When the Retry feature is enabled (Retry Bit for each output) during an overcurrent condition at the end of the Inrush period, the output  
device turns off and waits until a delay time (tRef) has passed. After this off time, the output tries to turn on again. If the short is still present,  
the process starts again. This on/off cycling continues until the output is shut off by command or the overtemperature (OT) on the output  
device is reached. Note that the Inrush delay resets to its default state for this on/off cycling. See Figure 16.  
33814  
NXP Semiconductors  
35  
If the SPI configuration register retry enable bit is set to a zero (0), this on/off cycling does not occur and the output turns off if the  
overcurrent threshold is reached. The output does not turn on again until the output is shut off and then on again by command.  
ON  
INJIN1  
Off  
No Fault  
12V  
Fault Injected  
Fault  
*Depending SW setting  
INJOUT1  
Tsc1 Or Tinrush*  
2.5V (STB Th)  
Iout(Lim)_Inj1  
~1.3A  
I_Injout1  
INJOUT1  
Tref  
Tref  
Tref  
Tsc1 Or Tinrush*  
Tsc1  
Tsc1  
2.5V (STB Th)  
Iout(Lim)_Inj1  
~1.3A  
Cylcling till Overtemp  
protection is reached  
I_Injout1  
t
Figure 16. Retry and Inrush feature  
5.5.2.4  
Temperature limit (OT) protection  
The second output protection scheme works by sensing the local temperature of the individual output device. During an overcurrent event,  
the device enters the current limit and remains there until the output driver maximum temperature limit is exceeded (OT). At this point, the  
device shuts down automatically regardless of the input state. The output tries to turn on again only when the junction temperature falls  
below the maximum temperature minus the TLIM hysteresis temperature value and the input state is commanding the output to be on. The  
TLIM hysteresis value is specified in the static parameter table.  
The temperature limit (TLIM) protection is independent of the overcurrent protection and is not controlled by the SPI. TLIM is always enabled  
and is always a retry operation. Outputs may be used in parallel to drive higher current loads as long as the turn-off energy of the load  
does not exceed the energy rating of a single output driver.  
5.5.2.5  
Open load (OL) and short-to-battery (OC) strategy  
The injectors, lamps, relays and tachometer low-side outputs are capable of detecting an open load in the off state and short-to-battery  
condition in the on state. All faults are reported through the SPI status register communication (OL bit for open load fault and OC bit for  
short-to-battery fault).  
For open load detection, a current source is placed between the MOSFET drain pin and the ground of the IC. An open load fault is reported  
when the drain voltage is less than the listed threshold. A shorted load fault is reported if the drain pin voltage is greater than the  
programmed short threshold voltage when the device is in the on state. The open load and short-to-battery fault threshold voltage is fixed  
and cannot be modified via the SPI.  
The open load feature could be disabled (to allow the outputs to be used as LED drivers) by clearing the appropriate bit in the in the LSD  
configuration register.  
5.5.2.6  
Short-to-ground (SG) strategy  
The injectors, lamps and relays (but not the Tachometer) low-side driver outputs are capable of detecting a short-to-ground by measuring  
the current flow in the output device and comparing it to a known current value. If a short-to-ground is detected, it is annunciated via a bit  
in the appropriate SPI status register.  
33814  
36  
NXP Semiconductors  
5.5.2.7  
Output driver diagnostics  
Overcurrent (OC), temperature limit (OT) exceeded, short-to-ground (SG) and open load (OL) conditions are reported through the status  
register for each driver (no SG for the tachometer). A bit in the SPI status register indicates when any of the LSDs or pre-drivers are  
reporting a fault and when a particular output has any of the four possible fault conditions present. The MCU polls for fault conditions by  
looking for a single bit in one register to detect the presence of any fault in the circuit.  
5.5.3 Special features  
5.5.3.1  
LAMP OUT  
The Inrush delay bit is set to 1 by default to allow the driver to handle the inrush current of a cold lamp filament. It waits an additional time  
before annunciating an overcurrent condition. A pull-down current sink is provided to allow the IC to detect when the bulb is burned out  
(open filament). The LAMP is switched on and off via the SPI ON/OFF Control register word. It also has the ability to be PWM’d for  
advanced diagnostic (dimming) purposes via the SPI Lamp Control register. The output can also drive an LED if the open load detect  
current sink is commanded off via the SPI to prevent ‘ghosting’.  
5.5.3.2  
TACHOUT  
The TACHOUT pin is a low-side driver used to drive a tachometer meter movement. TACHOUT can be programmed via the SPI to:  
Output the same signal as VRSOUT divided by a 1 to 32 programmable divider  
Output a PWM signal with a frequency and duty cycle programmable via the SPI  
Output one of eight fixed frequencies, as indicated in Table 30  
If a tachometer is not required, the TACHOUT output can also be used as a low current, SPI controlled, low-side driver to drive an LED  
or other low current load. The SPI Configuration register for the tachometer is used to determine for which mode this output is used. The  
TACHOUT output handles overcurrent (OC) differently than the other low-side drivers. When an overcurrent limit is reached, the  
TACHOUT output does not enter a current limiting state, but rather shuts the output off to protect the output device. The retry option works  
similarly to the other low-side drivers. In the LSD mode, bit 4 of the SPI Configuration register controls the turn on or turn off of the open  
load detect current sink.  
5.5.3.3  
Using ROUT2 as a power relay  
The ROUT2 (Relay 2 Output) can be used to drive a power relay. The RIN2 input or the RIN2 bit in the SPI Control register can be used  
to turn the ROUT2 output on or off as desired. The BATSW output can be connected to the RIN2 input to control the power relay, or the  
MCU can chose to control the RIN2 bit in the SPI Control register to actuate the power relay. The ROUT2 output is unique in that it can  
be kept turned on even after KEYSW is turned off (as long as the PWREN bit is still set to a one), by setting the shutdown disable (SDD)  
bit in the ROUT2 Configuration register.  
5.5.4 SPI drivers registers  
5.5.4.1  
SPI configuration registers  
Table 28. Injector 1/2, Relay1/2,Lampout configuration registers  
Reg # Hex  
7
6
5
4
3
2
1
0
PWM  
Freq. 1  
PWM  
Freq. 0  
Retry  
Enable  
OL Current  
Sink Enable  
In-Rush  
Delay  
x
x
OR/AND  
(0)  
0
1
0
1
Injector 1 Driver  
Injector 2 Driver  
Reset  
Reset  
(0)  
(0)  
x
(0)  
x
(1)  
(0)  
(0)  
(0)  
PWM  
Freq. 1  
PWM  
Freq. 0  
Retry  
Enable  
OL Current  
Sink Enable  
In-Rush  
Delay  
OR/AND  
(0)  
(0)  
(0)  
(0)  
(1)  
(0)  
(0)  
(0)  
33814  
NXP Semiconductors  
37  
Table 28. Injector 1/2, Relay1/2,Lampout configuration registers (continued)  
Reg # Hex  
7
6
5
4
3
2
1
0
PWM  
Freq. 1  
PWM  
Freq. 0  
Retry  
Enable  
OL Current  
Sink Enable  
In-Rush  
Delay  
x
x
OR/AND  
2
3
5
2
3
5
Relay 1 Driver  
Relay 2 Driver  
Lamp Driver  
Reset  
(0)  
(0)  
(0)  
(1)  
(0)  
(0)  
(0)  
(0)  
Shutdown  
DisableSD  
D
PWM  
Freq. 1  
PWM  
Freq. 0  
Retry  
Enable  
OL Current  
Sink Enable  
In-Rush  
Delay  
x
OR/AND  
Reset  
Reset  
(0)  
(0)  
x
(0)  
x
(1)  
(0)  
(0)  
x
(0)  
(0)  
PWM  
Freq. 1  
PWM  
Freq. 0  
Retry  
Enable  
OL Current  
Sink Enable  
In-Rush  
Delay  
(0)  
(0)  
(0)  
(1)  
(1)  
(0)  
(0)  
(0)  
Table 29. Injector 1/2 and Relay 1/2 Lampout configuration. Field description  
Field  
Description  
Retry Enable  
0-Disable  
7-Retry Enable  
1-Enable  
Shutdown Disable Mode selection (23) allowing to keep  
ROUT2 ON even after KEYSW =0  
0- SDD Mode Disable  
1- SDD Mode Enable  
6-Shutdown Disable SDD  
Open Load Current Sink Enable  
4-OL Current Sink Enable 0- Disable (OL Flag in status register will be forced to 0)  
1- Enable (Default)  
In-rush Delay Time disabling overcurrent protection  
3-In-Rush Delay  
2-OR/AND  
0-tSC1 (Default)  
1- tINRUSH  
(24)  
OR/AND logical action to control LS Output (25)  
0- OR between Input pin and Control bit (Default)  
1-AND between Input pin and Control bit  
PWM Frequency and Duty Cycle Mode (26)  
00-PWM Freq.: None or Ext.Pin - D/C: None or ext.Pin  
01-PWM Freq.:100 Hz-D/C: Internal  
1/0- PWM Freq1/0  
10-PWM Freq.: 1 KHz-D/C: Internal  
11-PWM Freq.:On ext. pin /100 -D/C: Internal  
Notes  
23. Valid only for Relay 2 Driver.  
24. Default For Lampout Driver  
25. NA for Lampout Driver  
26. No ext Pin for Lampout Driver  
Table 30. Tachometer driver configuration registers  
Reg # Hex  
7
6
5
4
3
2
1
0
N2/Osc 1/ N1/Osc 0/  
N16/OL  
CurrentSink  
Enable  
Retry  
Enable  
Vrsout/  
LSD  
Vrsout/  
Osc. mode  
N8/In-Rush  
Delay  
PWM  
PWM  
N4/Osc 2  
(0)  
4
4
Tachometer Driver  
Freq. 1  
Freq. 0  
Reset  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(1)  
33814  
38  
NXP Semiconductors  
Table 31. Tachometer driver configuration registers. Field description  
Field  
Description  
Retry Enable  
7-Retry Enable 0-Disable  
1-Enable  
VRSOUT/LSD/OSC Mode selection  
00 (Default) - VRSOUT Output divided by N  
01- Oscillator Output  
6-VRSOUT/LSD  
5-VRSOUT  
/
Osc.mode  
10- Low-side Driver mode  
11- Same as 10 (LSD)  
N16 or Open Load Current Sink Enable  
-When used as VRSOUT, see Table 32. .  
-When used as LSD:  
0- Disable (Open Load Flag in status register will be forced  
to 0)  
4-N16/ OL  
Current Sink  
Enable  
1- Enable (Default)  
N8 / In-Rush Delay Time disabling overcurrent protection  
-When used as VRSOUT, see Table 32.  
-When used as LSD:  
0-tSC1  
3-N8/In-Rush  
Delay  
1- tINRUSH  
N(4,2,1) or Output Frequency or PWM Output  
-When used as VRSOUT, see Table 32.  
-When used as Oscillator Output, see Table 33  
-When used as PWM output, see Table 34  
2-1-0:N(4,2,1),  
Osc (2,1,0) PWM  
freq (x,1,0)  
Table 32. Tachout mode configuration when used as VSROUT  
TACHOUT Mode  
VRSOUT divided by ‘N’ where ‘N’ is defined by  
SPI Configuration Register Bits 4, 3, 2, 1, 0  
(N16, N8, N4, N2, N1)  
bits 0 thru 4 of SPI  
00000  
00001 (default)  
00010  
N=32  
N=1  
N=2  
......  
........  
N=31  
11111  
Table 33. Fixed oscillator frequencies configuration when used as an oscillator output  
SPI Configuration Register Bits 2,1,0  
Oscillator Frequencies MODE  
(Osc2, Osc1, Osc0)  
000  
001 (default)  
010  
10 Hz  
100 Hz  
1.0 kHz  
011  
5.0 kHz  
100  
10 kHz  
101  
20 kHz  
40 kHz  
110  
111  
100 kHz (not recommended for use)  
33814  
NXP Semiconductors  
39  
Table 34. PWM frequency configuration when used as LSD  
SPI Configuration Register Bits 1, 0  
PWM MODE  
PWM Frequency  
x00  
x01 (default)  
x10  
None  
PWM Freq: 100 Hz - D/C: Internal  
PWM Freq: 1.0 kHZ - D/C: Internal  
None  
x11  
5.5.4.2  
SPI control registers  
Table 35. Main OFF/ON control register  
Reg # Hex  
7
6
5
4
3
2
1
0
INJ1  
(0)  
INJ2  
(0)  
REL1  
(0)  
REL2  
(0)  
LAMP  
(0)  
IGN1  
(0)  
IGN2  
(0)  
O2H  
(0)  
0
0
Main OFF/ON Control  
Reset  
Table 36. Main OFF/ON control register field description  
Field  
Description  
INJOUT1 Bit Control  
0-OFF  
7-INJ1  
1-ON  
INJOUT2 Bit Control  
0-OFF  
1-ON  
6-INJ2  
5-REL1  
4-REL2  
1-LAMP  
ROUT1 Bit Control  
0-OFF  
1-ON  
ROUT2 Bit Control  
0-OFF  
1-ON  
LAMP Bit Control  
0-OFF  
1-ON  
Table 37. Other OFF/ON control register  
Reg # Hex  
7
6
5
4
3
2
1
0
POST  
Enable  
OFF/ON  
RESET  
internal  
only  
Pwren  
OFF/ON  
VProt  
ON/OFF  
Batsw  
OFF/ON  
Tach  
OFF/ON  
X
X
1
1
Other OFF/ON Control  
Reset  
(0)  
(0)  
(0)  
(1)  
(0)  
(0)  
(1)  
(0)  
Table 38. Other OFF/ON control register field description  
Field Description  
TACHOUT Bit Control  
1-Tach OFF/ON 0-OFF  
1-ON  
33814  
40  
NXP Semiconductors  
Table 39. PWM duty cycle setting control register  
Reg # Hex  
7
6
5
4
3
2
1
0
X
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
2
3
4
5
6
7
2
3
4
5
6
7
Injector 1 Driver  
Injector 2 Driver  
Relay 1 Driver  
Relay 2 Driver  
Tachometer Driver  
Lamp Driver  
Reset  
Reset  
Reset  
Reset  
Reset  
Reset  
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
(0)  
Table 40. PWM duty cycle setting control register field description  
Field  
Description  
PWM Duty Cycle Setting with 1 % increment  
6-0 -PWMx  
0000000 to 1100100 (Dec. 100) represent 0 % to 100 %  
1100100(Dec. 100) to 1111111 (Dec.127) all map to 100 %.  
5.5.4.3  
SPI status registers  
s
Table 41. LS driver status register  
Reg # Hex  
7
6
5
4
3
2
1
0
Open Load  
OL  
Over -  
current OC  
Overtemp Short Gnd  
Faults  
(0)  
x
(0)  
x
x
(0)  
x
x
(0)  
x
OT  
SG  
0
1
2
3
4
5
0
1
2
3
4
5
Injector 1 Driver Faults  
Injector 2 Driver Faults  
Relay 1 Driver Faults  
Relay 2 Driver Faults  
Tachometer Driver Faults  
Lamp Driver Faults  
Reset  
Reset  
Reset  
Reset  
Reset  
Reset  
(0)  
(0)  
(0)  
(0)  
Open Load Overcurren Overtemp Short Gnd  
Faults  
(0)  
OL  
t OC  
OT  
SG  
(0)  
x
(0)  
x
(0)  
x
(0)  
(0)  
(0)  
(0)  
Open Load Overcurren Overtemp Short Gnd  
Faults  
(0)  
OL  
t OC  
OT  
SG  
(0)  
x
(0)  
x
(0)  
x
(0)  
(0)  
(0)  
(0)  
Open Load Overcurren Overtemp Short Gnd  
Faults  
(0)  
OL  
t OC  
OT  
SG  
(0)  
x
(0)  
x
(0)  
x
(0)  
(0)  
(0)  
(0)  
Open Load Overcurren Overtemp  
Faults  
(0)  
x
OL  
t OC  
OT  
(0)  
x
(0)  
x
(0)  
x
(0)  
(0)  
(0)  
(0)  
Open Load Overcurren Overtemp Short Gnd  
Faults  
(0)  
OL  
t OC  
OT  
SG  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
33814  
NXP Semiconductors  
41  
Table 42. LS driver status register description field  
Field  
Description  
Global Driver Fault bit (by driver)  
Logical OR of bit 0-3  
0-No Fault  
7-Faults  
1-Fault detected  
Open Load Fault Flag  
3-Open Load OL 0-No Fault (Forced to 0 if OL feature disabled)  
1-Fault detected  
Overcurrent Fault Flag  
2-Overcurrent OC 0-No Fault  
1-Fault detected  
Over Temp Limit Fault Flag  
1-Over Temp OT 0-No Fault  
1-Fault detected  
Over Temp Limit Fault Flag (27)  
0-Short GND SG 0-No Fault  
1-Fault detected  
Notes  
27. Not present on Tachometer Driver  
Table 43. System On/Off indicators status register  
Reg # Hex  
7
6
5
4
3
2
1
0
INJ1  
Off/On  
INJ2  
Off/On  
REL1  
Off/On  
REL2  
Off/On  
LAMP  
Off/On  
IGN1  
Off/On  
IGN2  
Off/On  
O2H  
Off/On  
System On/Off  
Indicators  
14  
E
Reset  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
Table 44. System On/Off indicators status register field description  
Field  
Description  
Driver On/Off Status  
7-3 Driver Off/On 0- Off  
1- On  
5.6  
Pre-driver  
5.6.1 Pin description  
5.6.1.1  
IGNIN1 and IGNIN2 inputs  
The IGNIN1 and IGNIN2 pins are the parallel inputs controlling the IGNOUT1 and IGNOUT2 pre-driver outputs respectively. The IGNIN1  
and IGNIN2 pins are 5.0 V logic level inputs with built-in pull-downs to ground that prevents accidental actuation of a pre-driver output if  
the connection to the pin is lost.  
5.6.1.2  
O2HIN input  
The O2HIN pin is the parallel input controlling the O2HOUT pre-driver output. The O2HIN pin is a 5.0 V logic level input with a built-in pull-  
down to ground that prevents accidental actuation of the pre-driver output if the connection to the pin is lost.  
33814  
42  
NXP Semiconductors  
5.6.1.3  
IGNOUT1 and IGNOUT2 Pre-driver outputs, with feedback IGNFB1 and IGNFB2  
and current sense inputs IGNSENSP and IGNSENSN  
The IGNOUT1 and IGNOUT2 outputs are pre-driver outputs driving either an ignition (IGBT) pre-driver or a general purpose gate driver  
(GPGD). INGOUT1 and IGNOUT2 are configured by default as an IGBT driver to control the ignition coil current to produce a spark.  
The IGNOUTx outputs and their associated feedback pins IGNFBx provide short-to-battery and one shared current sense resistor  
provides overcurrent protection for the external driver transistors. When used as an IGBT driver, a 10:1 voltage divider (9R:1R) must be  
used on the feedback pins to prevent the 400 V flyback from damaging the IC. More accurate current control can be provided by placing  
a current sense resistor between the IGNSENSP and IGNSENSN pins.  
5.6.1.4  
O2HOUT Pre-driver output with drain feedback input O2HFB and current sense  
inputs O2HSENSP and O2HSENSN  
The O2HOUT output is a pre-driver output driving either an ignition (IGBT) pre-driver or a general purpose gate driver (GPGD). O2HOUT  
is configured by default as GPDC to control the gate of a MOSFET to drive a heater on an O2 (Lamda) sensor. The pre-driver is capable  
of driving most power MOSFETs. The O2HOUT output and associated drain feedback pin O2HFB provide short-to-battery, overcurrent  
protection for the external driver MOSFET. When used as an IGBT driver, a 10:1 voltage divider (9R:1R) must be used on the feedback  
pins to prevent the 400 V flyback from damaging the IC. More accurate current control can be provided by placing a current sense resistor  
between the O2HSENSP and O2HSENSN pins.  
5.6.2 Functions description  
There are three identical pre-drivers in the 33814. Each pre-driver can be configured as either an ignition (IGBT) pre-driver or a general  
purpose gate driver (GPGD). By default, one pre-driver is configured as a GPGD (O2HOUT) and two pre-drivers are configured as ignition  
(IGNOUT1, IGNOUT2) pre-drivers. A bit in each pre-driver’s SPI Configuration register defines whether the pre-driver behaves as an  
ignition or a GPGD pre-driver.  
It should be noted that there are only two current measurement circuits: ISGNSENSP/N and O2HSENSP/N. Each pre-driver includes off-  
state open load detection and can be Pulse Width Modulated (PWM’d) based on an internal and/or external frequency for use as variable  
speed motor drivers, LED/lamp dimming drivers, or as a fuel pump driver.  
5.6.2.1  
Pre-driver input logic control  
The three Pre-drivers (IGNOUT1, IGNOUT2 and O2HOUT) are controlled individually using a combination of the external pin input  
(respectively IGNIN1, IGNIN2 and O2HIN) and/or a SPI On/Off Control bit.  
The logic can be made to turn the outputs on or off by:  
a logical combination of the external pin ORed with the SPI Control On/Off Bit (Default State)  
a logical combination of the external pin ANDed with the SPI Control On/Off Bit  
A separate OR/AND select bit is found in the SPI configuration registers to accomplish this selection.  
5.6.2.2  
Pulse Width Modulation mode  
See 5.5.2.2. Pulse Width Modulation mode, page 35.  
5.6.2.3  
Open load (OL) and short-to-battery (OC) strategy  
The Pre-drivers are capable of detecting an open load in the off state and short-to-battery condition in the on state. All faults are reported  
through the SPI status register communication (OL bit for open load fault and OC bit for short-to-battery fault).  
For open load detection, a current source is placed between the MOSFET drain pin and ground of the IC. An open load fault is reported  
when the drain voltage is less than the specified threshold. A shorted load fault is reported when the drain pin voltage is greater than the  
programmed short threshold voltage when the device is in the on state. The open load and short-to-battery fault threshold voltage is fixed  
and cannot be modified via the SPI.  
The Open Load feature could be disabled (current source disable) by clearing the appropriate bit in the in the pre-driver configuration  
register.  
33814  
NXP Semiconductors  
43  
5.6.2.4  
Current sense protection (OC) strategy  
Two current measurement circuits, ISGNSENSP/N and O2HSENSP/N, are available for more accurate current control and better  
protection of pre-driver. A current sense resistor should be place between the IGNSENSP and IGNSENSN pins for IGNOUT1 and  
IGNOUT2 and between O2HSENSEP and O2HSENSEN for O2HOUT.  
When both IGNOUT1 and IGNOUT2 pre-drivers are used as ignition (IGBT) pre-drivers, both pre-drivers can share one current sense  
resistor. The pre-driver configuration determines the value of the current sense threshold voltage across the current sense resistor. The  
voltage threshold is Vsense-th typically 200 mV. It is changed to typically 400 mV when both IGNOUT1 and IGNOUT2 are configured as  
IGBT gate drivers and both IGNOUT1 and IGNOUT2 are ON. The IGNOUT2 pre-driver does not have an associated current sense circuit  
and relies on short-to-battery (drain voltage sense) protection only.  
When one pre-driver is used as an ignition pre-driver and the other pre-driver is used as a GPGD, the current sense circuit is connected  
only to the ignition driver channel.  
When both pre-drivers are designated as GPGD pre-drivers, only pre-driver #1 has use of the current sense circuit, the other pre-driver,  
#2, only has short-to-battery protection via the drain sense voltage comparator. The O2HOUT has its own current sense circuit,  
O2HSENSP/N.  
Table 45. Current sense protection strategy overview  
Output mode configuration  
Protection available  
Current sense measurement  
circuit available on  
IGN1OUT  
IGN2OUT  
for IGNOUT1  
for IGNOUT2  
IGNOUT1 and IGNOUT2  
(shared)  
IGBT  
IGBT  
SVBAT and current sense  
SVBAT and current sense  
IGBT  
GPGD  
GPGD  
GPGD  
IGBT  
IGNOUT1  
IGNOUT2  
IGNOUT1  
SVBAT and current sense  
SVBAT  
SVBAT  
SVBAT and current sense  
SVBAT  
GPGD  
SVBAT and current sense  
5.6.2.5  
Retry feature  
See 5.5.2.3.2. Retry feature, page 35  
5.6.2.6  
Output pre-driver diagnostics  
Overcurrent (OC) and open load (OL) conditions are reported through the status register for each pre-driver. There is also a bit in the SPI  
status register to indicate when any of the pre-drivers report a fault and when a particular output has any of the four possible fault conditions  
present. The MCU polls for fault conditions by looking for a single bit in one register to detect the presence of any fault in the circuit.  
5.6.3 SPI drivers registers  
5.6.3.1  
SPI configuration registers  
Table 46. Pre-driver configuration registers  
Reg # Hex  
7
6
5
4
3
2
1
0
OL  
Current  
Sink  
PWM  
Freq. 1  
PWM  
Freq. 0  
GPGD/IGN  
Select  
Retry  
Enable  
x
x
OR/AND  
7
7
O2 Heater Pre-driver  
Reset  
Reset  
Reset  
(0)  
(0)  
(0)  
x
(1)  
(0)  
x
(0)  
OR/AND  
(0)  
(0)  
(0)  
PWM  
Freq. 1  
PWM  
Freq. 0  
GPGD/IGN  
Select  
Retry  
Enable  
OL Current  
Sink  
8
9
8
9
Ignition 1 Pre-driver  
Ignition 2 Pre-driver  
(1)  
(0)  
(0)  
x
(0)  
(0)  
x
(0)  
(0)  
PWM  
Freq. 1  
PWM  
Freq. 0  
GPGD/IGN  
Select  
Retry  
Enable  
OL Current  
Sink  
OR/AND  
(0)  
(1)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
33814  
44  
NXP Semiconductors  
Table 47. Pre-driver configuration registers field description  
Field  
Description  
GPGD/IGN mode selection  
7-GPGD/IGN  
0- General Purpose Gate Driver (Default for O2HOUT)  
1-IGBT Driver (Default for IGNOUT1and2)  
Retry Enable  
0-Disable  
6-Retry Enable  
1-Enable  
Open Load Current Sink Enable  
4-OL Current Sink 0- Disable (Open Load Flag in status register will be forced to 0)  
1- Enable (Default for O2Heater Pre-driver)  
OR/AND logical action to control Output  
2-OR/AND  
0- OR between Input pin and Control bit (Default)  
1-AND between Input pin and Control bit  
PWM Frequency and Duty Cycle Mode  
00-PWM Freq.: None or Ext.Pin - D/C: None or ext.Pin  
1/0 -PWM Freq1/0. 01-PWM Freq.:100 HZ-D/C: Internal  
10-PWM Freq.: 1 KHZ-D/C: Internal  
01-PWM Freq.:On ext. pin /100 -D/C: Internal  
5.6.3.2  
SPI control registers  
Table 48. Main OFF/ON control register  
Reg # Hex  
7
6
5
4
3
2
1
0
INJ1  
(0)  
INJ2  
(0)  
REL1  
(0)  
REL2  
(0)  
LAMP  
(0)  
IGN1  
(0)  
IGN2  
(0)  
O2H  
(0)  
0
0
Main OFF/ON Control  
Reset  
Table 49. Main OFF/ON control register field description  
Field  
Description  
IGN1 Bit Control  
0-OFF  
2-IGN1  
1-ON  
IGN2 Bit Control  
0-OFF  
1-ON  
1-IGN2  
0-O2H  
O2H Bit Control  
0-OFF  
1-ON  
Table 50. PWM D/C configuration register  
Reg # Hex  
7
6
5
4
3
2
1
0
X
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
9
9
A
B
O2 Heater Pre-driver  
Ignition 1 Pre-driver  
Ignition 2 Pre-driver  
Reset  
Reset  
Reset  
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
10  
11  
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
(0)  
33814  
NXP Semiconductors  
45  
Table 51. PWM D/C configuration register field description  
Field  
Description  
PWM Duty Cycle Setting with 1 % increment  
6-0 -PWMx  
0000000 to 1100100 (Dec. 100) represent 0 % to 100 %  
1100100(Dec. 100) to 1111111 (Dec.127) all map to 100 %.  
5.6.3.3  
SPI status registers  
Table 52. Pre-driver status registers  
Reg # Hex  
7
6
5
4
3
2
1
0
Open Load Overcurrent  
Faults  
(0)  
x
(0)  
x
x
(0)  
x
x
(0)  
x
x
(0)  
x
x
(0)  
x
OL  
OC  
7
8
9
7
8
9
O2 Heater Pre-driver Faults  
Ignition 1 Pre-driver Faults  
Ignition 2 Pre-driver Faults  
Reset  
Reset  
Reset  
(0)  
(0)  
Open Load Overcurrent  
Faults  
(0)  
OL  
OC  
(0)  
x
(0)  
x
(0)  
x
(0)  
(0)  
(0)  
x
(0)  
x
Open Load Overcurrent  
Faults  
(0)  
OL  
OC  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
33814  
46  
NXP Semiconductors  
Table 53. Pre-driver status registers field description  
Field  
Description  
Global Driver Fault bit (by driver) Logical OR of bit 3-2  
7-Faults  
0-No Fault  
1-Fault detected  
Open Load Fault Flag  
3-Open Load OL 0-No Fault (Forced to 0 if OL feature disabled)  
1-Fault detected  
Overcurrent Fault Flag (including Short To VBAT Fault)  
2-Overcurrent OC 0-No Fault  
1-Fault detected  
Table 54. System On/Off indicators status register  
Reg # Hex  
7
6
5
4
3
2
1
0
INJ1  
Off/On  
INJ2  
Off/On  
REL1  
Off/On  
REL2  
Off/On  
LAMP  
Off/On  
IGN1  
Off/On  
IGN2  
Off/On  
O2H  
Off/On  
System On/Off  
Indicators  
14  
E
Reset  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
Table 55. System On/Off indicators status register field description  
Field  
Description  
Pre-driver On/Off Status  
2-0 xxx Off/On 0- Off  
1- On  
5.7  
VRS circuitry  
5.7.1 Pin description  
5.7.1.1  
VRSP and VRSN inputs  
The VRSP and VRSN form a differential input for the Variable Reluctance Sensor attached to the crankshaft toothed wheel. It is important  
to provide an external 15 kΩ current limiting resistors to prevent damage to the VRSP and VRSN inputs (See Figure 17).The VRS can  
be connected to the 33814 in either a differential or single-ended fashion.The use of a differential filtering capacitor and grounded  
capacitors of at least 100 nF are also advisable. In some applications, placing a damping resistor of approximately 5.0 kΩ directly across  
the pickup coil is also useful to minimize high frequency ringing.  
5.7.1.2  
VRSOUT output  
The VRSOUT Pin is the output of the VRS circuit, which is a 5.0 Volt logic level signal provided to the MCU.  
33814  
NXP Semiconductors  
47  
5.7.2 Functions description  
The 33814 contains a VRS input conditioning circuit employing a differential input. VRSP and VRSN are the positive and negative inputs  
from the VRS (See Figure 17). An internal zener diode clamps to ground and VCC limits the input voltage to within the safe operating range  
of the circuit.  
The VRS circuit conditions and digitizes the input from the crankshaft mounted toothed wheel to provide an angle clock and RPM data to  
the MCU. This circuit provides a comparator with multiple thresholds programmed via the SPI. This allows the VRS circuit to handle  
different sensors and a dynamic range of VRS output at engine speeds ranging from cranking to running. The output of this circuit is  
provided on the VRSOUT pin to the MCU. The comparator threshold values can also be controlled automatically based on the input signal  
amplitude.  
The output of the comparator contains a programmable one shot, noise blanking circuit. The time value of this blanking pulse can be  
selected via the SPI as a percentage of the last input high (or low) pulse.The VRSOUT output can also be divided and sent to the  
TACHOUT pin to drive a tachometer.  
Two different SPI registers are provided to control the VRS circuit values in the manual mode. The SPI VRS configuration register is used  
to set the ‘engine running’ values for the threshold and blanking filter, and the SPI VRS control register is used to provide the ‘engine  
cranking’ threshold and blanking filter values. Once the engine is running, the MCU clears the SPI VRS control register (engine cranking)  
and the 33814 uses the values found in the SPI VRS configuration register (engine running).  
VCC  
External  
Circuitry  
VCC  
15Kꢀ  
VRSP  
+
DEGLITCH  
FILTER  
1% of previous  
output pulse up  
time or Zero  
BLANKING FILTER  
Variable  
Threshold  
Comparator  
_
1 nF  
SET  
CLR  
VRSOUT  
S
R
Q
Q
VRSN  
15Kꢀ  
SPI VRS  
Threshold  
value  
Threshold  
DAC  
(4 Bits)  
OUTPUT PULSE UP-  
TIME COUNTER  
4 MHz  
VCC  
_
DEGLITCH  
FILTER  
1% of previous  
output pulse up  
time or Zero  
Zero  
BLANKING  
COUNTER (N/32)  
(4 Bits)  
SPI VRS  
Blanking  
value  
Threshold  
Comparator  
+
BLANKING FILTER  
Figure 17. VRS schematic  
5.7.2.1  
‘Engine Running’ and ‘Engine Cranking’ parameters  
Two different SPI registers are provided to define two different sets of parameters (Input Threshold and Blanking Time) for ‘engine running’  
and ‘engine cranking’ conditions, in the manual mode. The SPI VRS Engine Running Parameters register is used to set the ‘engine  
running’ values for the threshold and blanking filter. The SPI VRS Engine Cranking Parameters register is used to set the ‘engine cranking’  
values for the threshold and blanking filter.  
When the contents of the SPI VRS Engine Cranking Parameters register contains all zeros, the value for parameters is taken from the  
value in the SPI VRS Engine Running Parameters register.  
When the contents of the SPI VRS Engine Cranking Parameters register is non-zero, the value for parameters is taken from this register.  
So from system point of view, once the engine is running, the MCU should clear the SPI VRS Engine Cranking Parameters register and  
the 33814 uses the values found in the SPI VRS Engine Running Parameters.  
5.7.2.1.1  
Input comparator threshold values  
The threshold voltage for the input comparator is produced by a 4-bit D/A converter. The SPI VRS Engine Cranking Parameters register  
or SPI VRS Engine Running Parameters register controls the output value of the D/A.The values output by this D/A, using one or the other  
register, are listed in the below threshold values table.  
33814  
48  
NXP Semiconductors  
Table 56. Input comparator threshold value table  
SPI VRS Manual Parameter  
Min. Threshold  
Value  
Threshold Values  
Max. Threshold  
Value  
Configuration Registers  
Bits 7, 6, 5, 4  
Comment  
(Nominal)  
0000  
0001  
10 mv  
14 mv  
28 mv  
36 mv  
38 mv  
50 mv  
55 mv  
80 mv  
92 mv  
+20%  
+20%  
+20%  
+20%  
+20%  
+20%  
+20%  
+20%  
+20%  
Tolerance not specified, for information only.  
Monotonicity not guaranteed.  
0010  
3.0 mv  
5.0 mv  
21 mv  
25 mv  
56 mv  
-20%  
-20%  
-20%  
-20%  
-20%  
-20%  
-20%  
-20%  
-20%  
20 mv  
0011  
28 mv  
Tolerance not specified, for information only. Only  
specified for monotonicity.  
0100  
40 mv  
0101 (default)  
0110  
56 mv  
80 mv  
0111  
110 mv  
150 mv  
215 mv  
300 mv  
425 mv  
600 mv  
850 mv  
1.21 V  
1.715 V  
1000  
1001  
1010  
1011  
Tolerance and monotonicity specified.  
1100  
1101  
1110  
1111  
5.7.2.1.2  
Blanking time definitions  
The values for the one shot blanking as a percentage of the last high output pulse period is shown in Table 57.  
Table 57. SPI VRS manual configuration register  
SPI VRS Configuration/Control  
Register Bits 3,2,1,0  
Blanking Time in % (of last  
pulse high period)  
0000 (default)  
0001  
0.0  
3.12  
6.25  
9.37  
12.5  
15.62  
18.75  
21.87  
25  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
28.1  
31.3  
34.4  
37.5  
40.6  
43.8  
46.9  
1010  
1011  
1100  
1101  
1110  
1111  
33814  
NXP Semiconductors  
49  
5.7.2.2  
Manual and Automatic modes  
The SPI VRS miscellaneous configuration register has a bit to enable the automatic selection of the comparator threshold (bit 7). At this  
time, the operation of automatic mode remains.  
Under cranking conditions in Manual mode, the selected threshold value is fixed (VT Selected) by the SPI VRS Engine Cranking  
Parameters register. To avoid invalid detection due to noise close to the selected threshold, Automatic mode allows the VRS system to  
be less sensitive to noise in the cranking mode.  
As soon as the VRS Input signal crosses zero, the VRS system selects the highest Input Comparator Threshold (VT Max 1.715 V Typ.).  
A decay circuitry ensures the VRS system decays from VT Max to VT Selected with the correct timing. The setting of the decay timing is  
done through the SPI VRS Automatic Parameters Configuration Register.  
Figure 18. Automatic mode illustration (VT signal in pink is internal IC signal not observable in application)  
Mantissa and Exponent parameters defined in the VRS Automatic mode parameters register set the decay time of the system.  
The mathematical formula is:  
E = log2[(Vpeak x Tau)/18.1] - 4 truncated  
M = {[(Vpeak x Tau)/18.1]/2E} - 16 rounded to nearest integer  
So Tau (timing between zero crossing and VPEAK) and the VPEAK value are required to determine M and E parameters. Tau and VPEAK  
could be calculated, based on system specification (number of teeth, minimum RPM,…). However, NXP recommends measuring physical  
parameters on the real application to define the best setting. A dedicated application note is available to explain the mathematical principle  
and measurement instructions.  
5.7.2.3  
Disable VRS bit  
The disable VRS bit in the SPI VRS miscellaneous configuration register is used to disable the VRS input circuitry when there is no need  
for a VRS input conditioning circuit. This would be the case, for example, if the crankshaft wheel sensor was a hall effect device whose  
output could be directly input to the MCU. The default for this bit is zero (0) indicating the VRS input conditioning circuitry is active.  
33814  
50  
NXP Semiconductors  
5.7.2.4  
High/Low reference bit  
The High/Low reference bit in the SPI VRS miscellaneous configuration register is used to change the use of the input high pulse timing  
to input low pulse timing, in cases where an elongated tooth wheel is being used rather than the missing tooth wheel. The default for this  
bit is zero (0), indicating the use of a crankshaft wheel with a missing tooth (or teeth).  
5.7.2.5  
VRS deglitching filters  
The VRS input circuit has additional filters on the rising and falling edges of the input waveforms to reduce the effect of short transitions  
occurring during noise sensitive times. The deglitching filters are approximately 1 % of the last positive pulse period. The deglitch filters  
are enabled by setting the deglitch bit (bit 3) in the SPI VRS miscellaneous parameters configuration register. This bit is, by default, zero  
(0), meaning the deglitch filters are disabled.  
5.7.2.6  
GND VRSN bit  
To use the VRS inputs in a single-ended configuration, the “GND VRSN” bit in the SPI Configuration register must be set to indicate to  
the 33814 that this mode is being used. The VRS is then connected between the VRSP input and ground. The default for this bit is zero  
(0), indicating the differential mode is selected. Note that in the single ended configuration, the 2.5 Volt reference should be disconnected  
(Disable 2.5V CM bit should be set to 1) when using a Variable Reluctance Sensor.  
Note that a hall effect sensor can be used instead of a VRS. To do so, the bits GND VRSN and disable 2.5 V ref must be 0 and the VRSN  
pin must not be connected. In this case, the voltage on VRSN is 2.5 V and the 0 crossing can be done even if low state output of the hall  
effect is 0 V or little higher.  
5.7.2.7  
Inverting inputs  
The Inv. Inputs Bit in the SPI VRS Miscellaneous Parameter Register is used to make a logical inversion of all functions. This is swapping  
the VRSP and VRSN signals.  
5.7.2.8  
2.5 Volt reference disconnect bit  
The disconnect 2.5 V reference bit in the SPI VRS configuration register is used to disconnect the internal 2.5 V reference signal from the  
VRSN and VRSP inputs so an external reference voltage can be employed. The default state of this bit is zero (0), indicating the internal  
2.5 Volt reference voltage is connected to the VRSN and VRSP inputs.  
5.7.2.9  
VRS peak detector  
The VRS peak detector determines the magnitude of the positive peak of the VRS input signal and digitizes it. The value of the VRS peak  
voltage is reported in the VRS SPI status register bits 7, 6, 5 and 4. The MCU reads the input pulse peak voltage value after the zero  
crossing time and uses this information to set the threshold and blanking parameters for subsequent input pulses. Status bits reflect the  
last detected peak and only read 0000 after a POR or SPI reset command.  
Table 58. Peak detector output in SPI VRS status register  
SPI VRS Status Register Bits 7,6,5,4  
Peak Values (nominal)  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
10 mV  
14 mV  
20 mV  
28 mV  
40 mV  
56 mV  
80 mV  
110 mV  
150 mV  
215 mV  
33814  
NXP Semiconductors  
51  
Table 58. Peak detector output in SPI VRS status register (continued)  
1010  
1011  
1100  
1101  
1110  
1111  
300 mV  
425 mV  
600 mV  
850 mV  
1.210 V  
1.715 V  
5.7.2.10 Clamp active status bits  
There are two clamp active status bits in the SPI VRS status register. One is for the low pulse clamp and the other is for the high pulse  
clamp. When either of these bits are a one (1), it indicates the peak voltage for the part of the input waveform which has exceeded the  
clamp voltage and is clamped to the high or low voltage limit. These status bits can be used to indicate the engine has attained the speed  
necessary to switch from ‘cranking’ values for the threshold and blanking (in the SPI VRS control register) to the ‘running’ values (in the  
SPI VRS configuration register).  
5.7.3 SPI drivers registers  
5.7.3.1  
SPI configuration registers  
Table 59. VRS configuration registers  
Reg # Hex  
7
6
5
4
3
2
1
0
Threshold Threshold Threshold Threshold Filter Time Filter Time FilterTime FilterTime  
VRS Engine Running  
3
2
1
0
3
2
1
0
11  
12  
13  
B
C
D
Parameters  
Reset  
Reset  
Reset  
(0)  
(1)  
(0)  
(1)  
(0)  
(0)  
(1)  
(1)  
exponent  
1
mantiss 8 mantiss 4 mantiss 2 mantiss 1 exponent 8 exponent 4 exponent 2  
VRS Automatic Parameters  
(0)  
Man./Auto  
(0)  
(0)  
(1)  
x
(0)  
(0)  
De-glitch Gnd VRSN Inv Inputs  
(0) (0) (0)  
(0)  
(0)  
(1)  
Disable  
VRS  
High/ Low  
Disable  
2.5 V CM  
VRS Miscellaneous  
Parameters  
Ref  
(0)  
(0)  
(0)  
(0)  
Table 60. VRS engine running parameters register field description  
Field  
Description  
7-4 Threshold x Input Comparator Threshold Value Selection, Table 56  
3-0 Filter Time x Blanking Time Selection, Table 57  
Table 61. VRS automatic parameters register field  
Field  
Description  
Mantissa parameter to set the decay timing in Automatic  
mode  
7-5 Mantissa x  
Exponent parameter to set the decay timing in Automatic  
mode  
3-0 Exponent x  
33814  
52  
NXP Semiconductors  
Table 62. VRS miscellaneous parameters register field  
Field  
Description  
Manual/Automatic Mode Selection  
0-Manual Mode (Default)  
1-Automatic Mode  
7-MAN/Auto  
Disabling the VRS System  
6-Disable VRS 0- VRS Enable (Default)  
1-VRS disable  
High/Low reference  
4-High/Low Ref 0-High Pulse Timing (Missing tooth Wheel)  
1-Low Pulse Timing (Elongated Tooth Wheel)  
Additional Deglitching Filter  
3-De-glitch  
2-Gnd VRSN  
1-Inv inputs  
0-De-glitch Disable  
1-De-glitch enable  
Single Ended Configuration (VRSN = GND) or Differential  
mode configuration  
0-Differential Mode Configuration  
1-Single Ended Configuration  
Logical Inversion of all functions  
0-VRSN and VRSP not swapped  
1-VRSN and VRSP swapped  
Disable 2.5 V reference  
0-Internal 2.5 V Ref connected to VRSN and VSRP  
1-Internal 2.5 V Ref disconnected from VRSN and VRSP  
0-Disable 2.5V  
CM  
5.7.3.2  
SPI control registers  
Table 63. VRS engine cranking parameters register  
Reg # Hex  
7
6
5
4
3
2
1
0
Threshold Threshold Threshold Threshold Filter Time Filter Time Filter Time Filter Time  
VRS Engine Cranking  
Parameters  
3
2
1
0
3
2
1
0
13  
D
Reset  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
Table 64. VRS engine cranking parameters register field description  
Field  
Description  
7-4 Threshold x Input Comparator Threshold Value Selection, Table 56  
3-0 Filter Time x Blanking Time Selection, Table 57  
5.7.3.3  
SPI status registers  
Table 65. VRS status register  
Reg # Hex  
7
6
5
4
3
2
1
0
Clamp-  
active  
VRSP  
Clamp-  
active  
VRSN  
ISO  
Overtemp  
OT  
Peak 8  
(0)  
Peak 4  
(0)  
Peak 2  
(0)  
Peak 1  
(0)  
x
VRS Conditioner and  
ISO9141 Faults  
11  
B
Reset  
(0)  
(0)  
(0)  
(0)  
33814  
NXP Semiconductors  
53  
Table 66. VRS status register description field  
Field  
Description  
Reflect the magnitude of the positive peak of the VRS input  
according to Table 58  
7-4 Peak x  
Positive Clamp Active status  
0-Clamp Value not reached  
1-Clamp Value reached  
2-Clamp Active  
VRSP  
Negative Clamp Active status  
0-Clamp Value not reached  
1-Clamp Value reached  
1-Clamp Active  
VRSN  
5.8  
ISO9141 bus  
Three pins are used to provide an ISO9141 K-line communication link for the MCU to support system diagnostics.  
5.8.1 MTX output pin  
MTX is the 5.0 V logic level serial input to the IC from the MCU.  
5.8.2 MRX input pin  
MRX is the 5.0 V logic level serial output line to the MCU.  
5.8.3 ISO9141 pin  
The ISO9141 pin is a bi-directional line with an internal 32k pull-up to VPWR. This allows to customer to save an external pull-up resistor.  
5.8.4 Functions description  
Three pins are used to provide an ISO9141 K-line communication link for the MCU to support system diagnostics. This system is  
consistent with the ISO9141 specification for signaling to and from the MCU.  
K-Line has its own overtemperature protection and fault bit reporting.  
5.8.5 SPI drivers registers  
There is only one bit in the SPI Status register to indicate an overtemperature fault from the ISO9141 functional block. There are no  
Configuration or Control registers associated with this functional block.  
Table 67. ISO status register  
Reg # Hex  
7
6
5
4
3
2
1
0
Clamp-  
active  
VRSP  
Clamp-  
active  
VRSN  
ISO  
Overtemp  
OT  
Peak 8  
(0)  
Peak 4  
(0)  
Peak 2  
(0)  
Peak 1  
(0)  
x
VRS Conditioner and  
ISO9141 Faults  
11  
B
Reset  
(0)  
(0)  
(0)  
(0)  
Table 68. ISO status register description field  
Field  
Description  
Overtemp condition fault  
0-No overtemp condition reached  
1-Overtemp condition reached  
0-ISO Overtemp  
OT  
33814  
54  
NXP Semiconductors  
5.9  
Mode code and revision number  
One status register is reserved for reporting the model code and revision of the C circuits. The model code for the 33814 is 001. The  
revision code is the current version number for the circuit. This register is read-only.  
Table 69. Model code/revision number register  
Reg # Hex  
7
6
5
4
3
2
1
0
Model Code/ Revision  
Number*  
*Read Only except for POST  
Enable  
Model  
Code 2  
Model  
Code 1  
Model  
Code 0  
Rev #  
(x)  
Rev #  
(x)  
Rev #  
(x)  
Rev #  
(x)  
Rev #  
(x)  
15  
F
Reset  
(0)  
(0)  
(1)  
Table 70. Model code/revision number register field description  
Field  
7-5 Model Code Model Code #001 = 33814 device  
4-0 Rev # Rev #  
Description  
5.10 SPI  
5.10.1 Pin description  
5.10.1.1 SCLK input  
The serial clock (SCLK) pin clocks the internal SPI shift register of the 33814. The SI data is latched into the input shift register on the  
rising edge of SCLK signal. The SO pin shifts status bits out on the falling edge of SCLK. The SO data is available for the MCU to read  
on the rising edge of SCLK. With CSB in a logic high state, signals on the SCLK and SI pins are ignored and the SO pin is in a high-  
impedance state.The SCLK signal consists of a 50 % duty cycle with CMOS logic levels referenced to VCC. All SPI transfers consist of  
exactly 16 SCLK pulses. If any more or less than 16 clock pulses are received within one frame of CSB going low and then high, a SPI  
error is reported in the SPI Status Register. The SPI error bit also sets whenever an invalid SPI message is received, even though it may  
contain 16 bits.  
5.10.1.2 CSB input  
The system MCU selects which slave is to receive SPI communication using separate chip select (CSB) pins. With the CSB in a logic low  
state, SPI words may be sent to the 33814 via the serial input (SI) pin and status information is received by the MCU via the serial output  
(SO) pin. The falling edge of CSB enables the SO output and transfers status information into the SO buffer.  
The rising edge of the CSB initiates the following operation:  
Disables the SO driver (high-impedance)  
Activates the received command word, allowing the 33814 to activate/deactivate output drivers  
To avoid spurious data, the high-to-low and low-to-high transitions of the CSB signal must occur only when SCLK is in a logic low state.  
Internal to the 33814 device is an active pull-up to VCC on CSB. In cases where voltage exists on CSB without the application of VCC, no  
current flows from CSB to the VCC pin.This input requires CMOS logic levels referenced to VCC and has an internal active pull-up current  
source.  
5.10.1.3 SI input  
The SI pin is used for serial instruction data input. SI information is latched into the input register on the rising edge of SCLK and the input  
data transitions on the falling edge of SCLK. A logic high state present on SI programs a one in the command word on the rising edge of  
the CSB signal. To program a complete word, 16 bits of information must be entered into the device.This input requires CMOS logic levels  
referenced to VCC  
.
33814  
NXP Semiconductors  
55  
5.10.1.4 SO output  
The SO pin is the output from the SPI shift register. The SO pin remains high-impedance until the CSB pin transitions to a logic low state.  
All normal operating drivers are reported as zero, all faulted drivers are reported as one. The negative transition of CSB enables the SO  
driver. The SI/SO shifting of the data follows a first-in-first-out protocol with both input and output words transferring the most significant  
bit (MSB) first. The serial output data is available to be latched by the MCU on the rising edge of SCLK. The SO data transitions on the  
falling edge of the SCLK. This output provides CMOS logic levels referenced to VCC.  
5.10.2 MCU SPI interface description  
The 33814 device directly interfaces to a 5.0 V microcontroller unit (MCU) using a16-bit serial peripheral interface (SPI) protocol. SPI serial  
clock frequencies up to 8.0 MHz can be used when programming and reading output status information (production tested at 1.0 MHz).  
Figure 19 illustrates the SPI configuration between an MCU and one 33814.  
Data is sent to the 33814 device through the SI input pin. As data is being clocked into the SI pin, other data is being clocked out of the  
device by the SO output pin. The response data received by the MCU during SPI communication depends on the previous SPI message  
sent to the device. The SPI can be used to read or write data to the configuration and control registers and to read or write the data  
contained in the status registers.  
The MCU is only allowed to read or clear bits (write zeros) in the status register unless the Power ON Self-test (POST) enable bit in the  
control register is set. When the POST enable bit is set, the MCU can read and write zeros or ones to the status register. Note that the  
MCU must clear the POST enable bit before operation is resumed or the status register does not update with fault indications.  
5.10.2.1 SPI integrity check  
One SPI word is reserved as a SPI check message. When bits 12 through15 are all zero, the SPI echoes the remaining 12-bit SPI word  
sent and flips bits 12 through14, bit 15 remains a 0. This allows the MCU to poll the SPI and compare the received message to confirm  
the integrity of the SPI communication channel to the 33814. There is a SPI error bit in the SPI status register indicating if an incorrect SPI  
message has been received. The SPI error bit in the SPI status register is set whenever any SPI message error is detected.  
Important A SCLK pulse count strategy has been implemented to ensure integrity of SPI communications. Only SPI messages consisting  
of 16 SCLK pulses are acknowledged. SPI messages consisting of other than 16 SCLK pulses are ignored by the device and reported as  
a SPI error. Invalid SPI messages, containing invalid commands or addresses are also flagged as a SPI error.  
33814  
Micro controller  
MOSI  
MISO  
SI  
Shift Register  
16-Bit Shift Register  
SO  
SCLK  
Receive  
Buffer  
To Logic  
CSB  
Parallel  
Ports  
Figure 19. SPI interface with microprocessor  
Two or more 33814 devices can be used in a module system. Multiple ICs can be SPI configured in parallel only. Figure 19 demonstrates  
the configuration.  
33814  
56  
NXP Semiconductors  
Microcontroller  
33814  
MOSI  
SI  
Shift Register  
MISO  
SCLK  
SO  
SCLK  
CSB  
Parallel  
Ports  
33879A  
SI  
SO  
SCLK  
CSB  
Figure 20. SPI parallel interface (only) with microprocessor  
5.10.2.2 SPI register definitions  
There are three basic SPI register types:  
Configuration registers - used to set the operating modes and parameters for the 33814 functional blocks. Each output can be  
configured by setting the individual bits in the configuration register for output according to the descriptions in the previous functional  
descriptions for each particular output.  
Control registers - used to turn outputs on and off and set the PWM duty cycle for outputs used as PWM outputs. Setting the temporary  
operating parameters for the watchdog timer and the VRS circuit is also used.  
Status registers - used to annunciate faults and other values the MCU may need to act upon. Each output and functional block has a  
status register associated with it and the individual fault bits for each of the faults monitored are contained in these registers.  
Non-fault bits in the status register can be set and cleared by the 33814 circuit. All status register bits not marked as ‘x’ can be cleared by  
the MCU only when the POST bit is zero (0). When the POST bit is one (1), the MCU can read or write any existing bit in the status register.  
Non-existing bits (marked with an ‘x’ in the table) cannot be changed from the default zero (0) value.  
Entries in the following SPI Registers marked with an ‘x’ are non-existent bits. They are set to zero (0) by default and cannot be changed  
by reading or writing to them. They should be ignored when testing registers during POST.  
5.10.2.3 SPI command summary  
The SPI commands are defined as 16 bits with 4 address control bits and 12 command data bits. There are 7 separate commands used  
to set the operational parameters of device. The operational parameters are stored internally in 8-bit registers. Write commands write the  
data contained in the present SPI word whereas read commands must wait until the next SPI command is sent to read the data requested.  
Table 11 defines the commands and default state of the internal registers at POR. SPI commands may be sent to the device at any time  
while the device is in the Normal state. Messages sent are acted upon on the rising edge of the CSB input. The bit value returned equals  
bit value sent for this command.  
Table 71. SPI command messages  
Control Address Bits  
Data Bits  
Command  
hex  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SPI Check  
0
0
0
0
0
X*  
X*  
X*  
X*  
X*  
X*  
X*  
X*  
X*  
X*  
X*  
X*  
Read Configuration  
Register  
<0000>  
Internal Register Address  
1
2
0
0
0
0
0
1
1
0
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
Write Configuration  
Register  
<0000>  
Internal Register Address  
33814  
NXP Semiconductors  
57  
Table 71. SPI command messages (continued)  
Control Address Bits  
Command  
Data Bits  
hex  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
<0000>  
Internal Register Address  
Read Status Register  
Write Status Register  
Read Control Register  
3
0
0
1
1
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
<0000>  
Internal Register Address  
4
5
0
0
1
1
0
0
0
1
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
<0000>  
Internal Register Address  
<0000>  
Internal Register Address  
Write Control Register  
SPI Check Response  
6
7
0
0
1
1
1
1
0
1
0/1  
X*  
0/1  
X*  
0/1  
X*  
0/1  
X*  
0/1  
X*  
0/1  
X*  
0/1  
X*  
0/1  
X*  
X*  
X*  
X*  
X*  
There are seven SPI commands issued by the MCU to:  
• Do a SPI Check verification  
• Read the contents of the SPI configuration registers  
• Write the contents of the SPI configuration registers  
• Read the contents of the SPI status registers  
• Write the contents of the SPI status registers  
• Read the contents of the SPI control registers  
• Write the contents of the SPI control registers  
5.10.3 SPI drivers register  
Table 72. Power supply and any system fault status register  
Reg # Hex  
7
6
5
4
3
2
1
0
Any  
System  
Faults  
VPROT  
Short to  
Battery  
VPROT  
Overtemp  
OT  
VPROT  
Short to  
Ground  
Keysw  
(0)  
Pwren  
(0)  
Batsw  
(0)  
SPI error  
(0)  
Power Supply and Any  
System Faults  
13  
D
Reset  
(0)  
(0)  
(0)  
(0)  
Table 73. Power supply and any system fault status register description field  
Field  
Description  
SPI Error fault status  
0-No fault reported  
1-Fault reported  
3-SPI Error  
5.11 SPI registers mapping  
The SPI interface consists of three blocks of four, 8-bit read/write registers. There are three types of SPI registers:  
Configuration registers - These registers allow the MCU to configure the various parameters and options for the various functional  
blocks.  
Control registers - These registers are used to command the outputs on and off and set the PWM duty cycle values.  
Status registers - These registers report back faults and other conditions of the various functional blocks.  
The following conventions are used in the SPI register tables:  
• All default selections are in BOLD fonts.  
• Non-default selections are in normal font.  
• The first selection listed is the default selection.  
• The binary values shown, (0 or 1) are the default values after a reset has occurred.  
33814  
58  
NXP Semiconductors  
Table 74. SPI configuration registers  
Reg # Hex  
7
6
5
4
3
2
1
0
PWM  
Freq. 1  
PWM  
Freq. 0  
Retry  
Enable  
OL Current  
Sink Enable  
In-Rush  
Delay  
x
(0)  
x
x
(0)  
x
OR/AND  
(0)  
0
1
2
0
1
2
Injector 1 Driver  
Injector 2 Driver  
Relay 1 Driver  
Reset  
Reset  
Reset  
(0)  
(1)  
(0)  
(0)  
(0)  
PWM  
Freq. 1  
PWM  
Freq. 0  
Retry  
Enable  
OL Current  
Sink Enable  
In-Rush  
Delay  
OR/AND  
(0)  
(0)  
(0)  
x
(0)  
x
(1)  
(0)  
(0)  
(0)  
PWM  
Freq. 1  
PWM  
Freq. 0  
Retry  
Enable  
OL Current  
Sink Enable  
In-Rush  
Delay  
OR/AND  
(0)  
(0)  
(0)  
(0)  
(1)  
(0)  
(0)  
(0)  
Shutdown  
DisableSD  
D
PWM  
Freq. 1  
PWM  
Freq. 0  
Retry  
Enable  
OL Current  
Sink Enable  
In-Rush  
Delay  
x
OR/AND  
(0)  
3
4
3
4
Relay 2 Driver  
Reset  
(0)  
(0)  
(0)  
(1)  
(0)  
(0)  
(0)  
N2/Osc 1/ N1/Osc 0/  
PWM  
Freq. 1  
N16/OL  
Current Sink  
Enable  
Retry  
Enable  
Vrsout/  
LSD  
Vrsout/  
Osc. mode  
N8/In-Rush  
Delay  
PWM  
Freq. 0  
N4/Osc 2  
Tachometer Driver  
Reset  
Reset  
Reset  
Reset  
Reset  
(0)  
(0)  
x
(0)  
x
(0)  
(0)  
(0)  
(0)  
(1)  
PWM  
Freq. 1  
PWM  
Freq. 0  
Retry  
Enable  
OL Current In-Rush  
Sink Enable  
x
(0)  
Delay  
5
6
5
6
7
8
9
A
Lamp Driver  
Battery Switch Logic Output  
O2 Heater Pre-driver  
Ignition 1 Pre-driver  
(0)  
HSD Mode  
(0)  
(0)  
X
(0)  
x
(1)  
(1)  
(0)  
(0)  
PWM  
Freq.1  
PWM  
Freq. 0  
x
x
(0)  
x
x
(0)  
(0)  
x
(0)  
(0)  
(0)  
(0)  
PWM  
Freq. 1  
PWM  
Freq. 0  
GPGD/IGN  
Select  
Retry  
Enable  
OL Current  
Sink  
OR/AND  
(0)  
7
(0)  
(0)  
(0)  
x
(1)  
(0)  
x
(0)  
(0)  
PWM  
Freq. 1  
PWM  
Freq. 0  
GPGD/IGN  
Select  
Retry  
Enable  
OL Current  
Sink  
OR/AND  
(0)  
8
(1)  
(0)  
(0)  
x
(0)  
(0)  
x
(0)  
(0)  
PWM  
Freq. 1  
PWM  
Freq. 0  
GPGD/IGN  
Select  
Retry  
Enable  
OL Current  
Sink  
OR/AND  
(0)  
9
Ignition 2 Pre-driver  
Reset  
Reset  
(1)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
Disable/ Load Time Load Time Load Time Load Time Load Time Load Time Load Time  
Enable  
x1 sec  
x100 ms  
x10 ms  
8
4
2
1
10  
Watchdog Parameters  
(1)  
(1)  
(0)  
(0)  
(1)  
(0)  
(1)  
(0)  
Threshold Threshold Threshold  
Filter Time Filter Time Filter Time Filter Time  
Threshold 0  
(1)  
VRS Engine Running  
Parameters  
3
2
1
3
2
1
0
11  
12  
13  
B
C
D
Reset  
Reset  
(0)  
(1)  
(0)  
(0)  
(0)  
(1)  
(1)  
mantiss 8 mantiss 4 mantiss 2  
mantiss 1 exponent 8 exponent 4 exponent 2 exponent 1  
VRS Automatic Parameters  
(0)  
Man./Auto  
(0)  
(0)  
(1)  
x
(0)  
(0)  
De-glitch Gnd VRSN Inv Inputs  
(0) (0) (0)  
(0)  
(0)  
(1)  
Disable  
VRS  
High/ Low  
Disable  
2.5 V CM  
VRS Miscellaneous  
Parameters  
Ref  
Reset  
(0)  
(0)  
(0)  
(0)  
33814  
NXP Semiconductors  
59  
Table 75. SPI control registers  
Reg # Hex  
7
6
5
4
3
2
1
0
INJ1  
(0)  
INJ2  
(0)  
REL1  
(0)  
REL2  
(0)  
LAMP  
(0)  
IGN1  
(0)  
IGN2  
(0)  
O2H  
(0)  
0
0
Main OFF/ON Control  
Reset  
POST  
Enable  
OFF/ON  
RESET  
internal  
only  
Pwren  
OFF/ON  
VProt OFF/  
Batsw  
OFF/ON  
Tach  
OFF/ON  
X
X
ON  
1
1
Other OFF/ON Control  
Reset  
Reset  
Reset  
Reset  
Reset  
Reset  
Reset  
Reset  
Reset  
Reset  
Reset  
(0)  
X
(0)  
PWM6  
(0)  
(0)  
PWM5  
(0)  
(1)  
PWM4  
(0)  
(0)  
PWM3  
(0)  
(0)  
PWM2  
(0)  
(1)  
PWM1  
(0)  
(0)  
PWM0  
(0)  
2
3
2
3
4
5
6
7
8
9
A
B
Injector 1 Driver  
Injector 2 Driver  
Relay 1 Driver  
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
4
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
5
Relay 2 Driver  
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
6
Tachometer Driver  
Lamp Driver  
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
7
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
8
Batsw  
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
9
O2 Heater Pre-driver  
Ignition 1 Pre-driver  
Ignition 2 Pre-driver  
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
10  
11  
(0)  
X
PWM6  
(0)  
PWM5  
(0)  
PWM4  
(0)  
PWM3  
(0)  
PWM2  
(0)  
PWM1  
(0)  
PWM0  
(0)  
(0)  
Load Time Load Time Load Time Load Time Load Time Load Time Load Time  
WDRFSH  
(0)  
x1 sec  
x100 ms  
x10 ms  
8
4
2
1
12  
13  
C
D
Watchdog  
Reset  
Reset  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
Threshold Threshold Threshold Threshold Filter Time Filter Time Filter Time Filter Time  
VRS Engine Cranking  
Parameters  
3
2
1
0
3
2
1
0
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
Table 76. SPI status registers  
Reg # Hex  
7
6
5
4
3
2
1
0
Open Load  
OL  
Over -  
current OC  
Overtemp Short Gnd  
Faults  
(0)  
x
(0)  
x
x
(0)  
x
x
(0)  
x
OT  
SG  
0
1
2
0
1
2
Injector 1 Driver Faults  
Injector 2 Driver Faults  
Relay 1 Driver Faults  
Reset  
Reset  
Reset  
(0)  
(0)  
(0)  
(0)  
Open Load Overcurrent Overtemp Short Gnd  
Faults  
(0)  
OL  
OC  
OT  
SG  
(0)  
x
(0)  
x
(0)  
x
(0)  
(0)  
(0)  
(0)  
Open Load Overcurrent Overtemp Short Gnd  
Faults  
(0)  
OL  
OC  
OT  
SG  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
33814  
60  
NXP Semiconductors  
Table 76. SPI status registers (continued)  
Open Load Overcurrent Overtemp Short Gnd  
Faults  
(0)  
x
(0)  
x
x
(0)  
x
x
(0)  
x
OL  
OC  
OT  
SG  
3
4
3
4
5
7
8
9
A
Relay 2 Driver Faults  
Tachometer Driver Faults  
Lamp Driver Faults  
Reset  
Reset  
Reset  
Reset  
Reset  
Reset  
Reset  
(0)  
(0)  
(0)  
(0)  
Open Load Overcurrent Overtemp  
Faults  
(0)  
x
OL  
OC  
OT  
(0)  
x
(0)  
x
(0)  
x
(0)  
(0)  
(0)  
(0)  
Open Load Overcurrent Overtemp Short Gnd  
Faults  
(0)  
OL  
OC  
OT  
SG  
5
(0)  
x
(0)  
x
(0)  
x
(0)  
(0)  
(0)  
(0)  
Open Load Overcurrent  
Faults  
(0)  
x
(0)  
x
x
(0)  
x
OL  
OC  
7
O2 Heater Pre-driver Faults  
(0)  
x
(0)  
x
(0)  
x
(0)  
(0)  
Open Load Overcurrent  
Faults  
(0)  
Ignition 1 Pre-driver  
Faults  
OL  
OC  
8
(0)  
x
(0)  
x
(0)  
x
(0)  
(0)  
(0)  
x
(0)  
x
Open Load Overcurrent  
Faults  
(0)  
Ignition 2 Pre-driver  
Faults  
OL  
OC  
9
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
Enable/  
Disable  
WD timer WD timer WD timer WD timer WD timer bit WD timer WD timer  
bit 6  
bit 5  
bit 4  
bit 3  
2
bit 1  
bit 0  
10  
Watchdog State  
(0)  
Peak 8  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
Clamp-  
active  
VRSP  
Clamp-  
active  
VRSN  
ISO  
Overtemp  
OT  
Peak 4  
(0)  
Peak 2  
(0)  
Peak 1  
(0)  
x
(0)  
VRS Conditioner and  
ISO9141 Faults  
11  
13  
B
D
Reset  
(0)  
(0)  
(0)  
Any  
System  
Faults  
VPROT  
Short to  
Battery  
VPROT  
Overtemp  
OT  
VPROT  
Short to  
Ground  
Keysw  
(1)  
Pwren  
(0)  
Batsw  
(0)  
SPI Error  
(0)  
Power Supply and  
Any System Faults  
Reset  
Reset  
(0)  
(0)  
(0)  
(0)  
INJ1  
Off/On  
INJ2  
Off/On  
REL1  
Off/On  
REL2  
Off/On  
LAMP  
Off/On  
IGN1  
Off/On  
IGN2  
Off/On  
O2H  
Off/On  
System On/Off  
Indicators  
14  
15  
E
F
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
Model Code/ Revision  
Number*  
*Read Only except for POST  
Enable  
Model  
Code 2  
Model  
Code 1  
Model  
Code 0  
Rev #  
Rev #  
Rev #  
Rev #  
Rev #  
Reset  
(0)  
(0)  
(1)  
(0)  
(0)  
(0)  
(0)  
(0)  
33814  
NXP Semiconductors  
61  
Table 77. SPI configuration bits R/W access  
R
e
g
#
Hex Description  
7
6
5
4
3
2
1
0
Injector 1  
Retry  
OL current  
sink enable  
In-rush  
delay  
PWM  
PWM  
(28)  
(28)  
(28)  
(28)  
(28)  
(28)  
0
0
R/W  
R/W  
R/W  
x
x
x
R
R
R
x
x
x
R
R
R
R/W  
R/W  
R/W  
R/W OR/AND R/W  
R/W OR/AND R/W  
R/W OR/AND R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
driver  
enable  
Freq. 1  
Freq. 0  
Injector 2  
driver  
Retry  
enable  
OL current  
sink enable  
In-rush  
delay  
PWM  
Freq. 1  
PWM  
Freq. 0  
1
2
1
Retry  
enable  
OL current  
sink enable  
In-rush  
delay  
PWM  
Freq. 1  
PWM  
Freq. 0  
2
3
Relay 1 driver  
Relay 2 driver  
Shut  
down  
disable  
SDD  
Retry  
enable  
OL current  
sink enable  
In-rush  
delay  
PWM  
Freq. 1  
PWM  
Freq. 0  
3
4
R/W  
R/W  
R/W  
R/W  
x
R/W OR/AND R/W  
R/W  
R/W  
R/W  
R/W  
N16/OL  
R/W current sink R/W  
enable  
N2/OSC1/  
R/W N4/Osc 2 R/W PWM  
Freq.1  
Tachometer  
driver  
Retry  
enable  
VRSout  
/LSD  
Vrsout/  
Osc mode  
N8/In-rush  
delay  
PWM  
Freq. 0  
4
Retry  
OL current  
sink enable  
In-rush  
delay  
PWM  
PWM  
(28)  
R
(28)  
(28)  
5
6
5
6
Lamp driver  
R/W  
R/W  
x
x
x
x
R
R
R/W  
R/W  
x
x
R
R
R/W  
R/W  
R/W  
R/W  
enable  
Freq. 1  
Freq. 0  
Battery switch HSD  
PWM  
Freq. 1  
PWM  
Freq. 0  
(28)  
R
(28)  
(28)  
R
(28)  
R
(28)  
x
x
x
logic output  
mode  
CPGD/  
IGN  
select  
O2 heater  
predriver  
Retry  
enable  
OL current  
sink enable  
PWM  
Freq. 1  
PWM  
Freq. 0  
(28)  
(28)  
(28)  
(28)  
R
7
8
9
7
8
9
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
x
x
x
R
R
R
R/W  
R/W  
R/W  
R/W  
OR/AND R/W  
OR/AND R/W  
OR/AND R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
CPGD/  
IGN  
select  
Ignition 1  
predriver  
Retry  
enable  
OL current  
sink enable  
PWM  
Freq. 1  
PWM  
Freq. 0  
(28)  
R
x
x
CPGD/  
IGN  
select  
Ignition 2  
predriver  
Retry  
enable  
OL current  
sink enable  
PWM  
Freq. 1  
PWM  
Freq. 0  
(28)  
R
Load  
Watchdog  
parameters  
Disable/  
Enable  
Load time  
x100 ms  
Load time  
x10 ms  
Load time  
8
Loadtime  
Load time  
2
Load  
time 1  
10 A  
11 B  
12 C  
R/W time x1 R/W  
sec  
R/W  
R/W  
R/W  
R/W  
4
VRS engine  
running  
parameters  
Threshold  
3
Thresh  
old 2  
Threshold  
1
Filter time  
3
Filtertime  
Filter time  
1
Filter  
time 0  
R/W  
R/W  
R/W Threshold 0 R/W  
R/W  
2
VRS  
automatic  
parameters  
Mantiss  
4
Exponent  
Exponent  
2
Expone  
nt 1  
Mantiss 8 R/W  
R/W Mantiss 2 R/W Mantiss 1  
R/W Exponent 8 R/W  
R/W  
4
VRS  
Disable  
Disable  
VRS  
GND  
VRSN  
(28)  
13 D  
miscellaneous Man/Auto R/W  
parameters  
R/W  
x
R
High/low ref R/W De-glitch  
R/W  
R/W Inv inputs R/W 2.5 V  
CM  
Notes  
28. Only read as 0  
33814  
62  
NXP Semiconductors  
Table 78. SPI control bits R/W access  
R
e
g
#
Hex Description  
7
6
5
4
3
2
1
0
Main ON/OFF  
0
0
INJ1  
R/W INJ2  
POST  
R/W REL1 R/W REL2  
R/W LAMP  
R/W  
IGN1  
R/W IGN2  
R/W O2H  
R/W  
W
control  
RESET  
R/W internal  
only  
Other OFF/  
ON control  
Pwren OFF/  
ON  
enable R/W  
OFF/  
Vprot OFF/  
ON  
Batsw  
OFF/ON  
Tach  
R/W  
(29)  
(29)  
(29)  
R
1
1
R
x
R
R/W  
x
OFF/ON  
ON  
Injector 1  
(29)  
(29)  
2
3
2
x
x
R
R
PWM6 R/W PWM5 R/W PWM4  
PWM6 R/W PWM5 R/W PWM4  
R/W PWM3  
R/W PWM3  
R/W  
R/W  
PWM2  
PWM2  
R/W PWM1 R/W PWM0  
R/W PWM1 R/W PWM0  
R/W  
R/W  
driver  
Injector 2  
driver  
3
(29)  
(29)  
4
5
4
5
Relay 1 driver  
Relay 2 driver  
x
x
R
R
PWM6 R/W PWM5 R/W PWM4  
PWM6 R/W PWM5 R/W PWM4  
R/W PWM3  
R/W PWM3  
R/W  
R/W  
PWM2  
PWM2  
R/W PWM1 R/W PWM0  
R/W PWM1 R/W PWM0  
R/W  
R/W  
Tachometer  
driver  
(29)  
6
6
x
R
PWM6 R/W PWM5 R/W PWM4  
R/W PWM3  
R/W  
PWM2  
R/W PWM1 R/W PWM0  
R/W  
(29)  
(29)  
7
8
7
8
Lamp driver  
Batsw  
x
x
R
R
PWM6 R/W PWM5 R/W PWM4  
PWM6 R/W PWM5 R/W PWM4  
R/W PWM3  
R/W PWM3  
R/W  
R/W  
PWM2  
PWM2  
R/W PWM1 R/W PWM0  
R/W PWM1 R/W PWM0  
R/W  
R/W  
O2 heater  
predriver  
(29)  
(29)  
(29)  
9
9
x
x
x
R
R
R
PWM6 R/W PWM5 R/W PWM4  
PWM6 R/W PWM5 R/W PWM4  
PWM6 R/W PWM5 R/W PWM4  
R/W PWM3  
R/W PWM3  
R/W PWM3  
R/W  
R/W  
R/W  
PWM2  
PWM2  
PWM2  
R/W PWM1 R/W PWM0  
R/W PWM1 R/W PWM0  
R/W PWM1 R/W PWM0  
R/W  
R/W  
R/W  
Ignition 1  
predriver  
10 A  
11 B  
Ignition 2  
predriver  
Load  
Load  
time  
x100  
ms  
Load time  
Load time  
Load  
Load  
Load  
(30)  
12 C  
Watchdog  
WDRFSH  
timex1 R/W  
sec  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
x10 ms  
8
time 4  
time 2  
time 1  
VRS engine  
cranking  
parameters  
Thresh  
Threshold 3 R/W R/W  
Thres  
hold 1  
Threshold  
0
Filter time  
3
Filter  
time 2  
Filter  
time 1  
Filter  
time 0  
13 D  
old 2  
Notes  
29. Only read as 0  
30. Can only be written to 1. Write 0 has no effect. Only read as 0.  
33814  
NXP Semiconductors  
63  
Table 79. SPI status bits R/W access  
R
e
g
#
Hex Description  
7
6
5
4
3
2
1
0
Short to  
Injector 1  
0
Openload  
OL  
Over  
Over  
(31)  
(31)  
(31)  
(32)  
(32)  
(32)  
(32)  
(32)  
(32)  
(32)  
(32)  
(32)  
(33)  
(33)  
(33)  
(33)  
(33)  
(33)  
(33)  
(33)  
(33)  
(33)  
(33)  
(33)  
0
Faults  
Faults  
Faults  
R
x
x
x
R
R
R
x
x
x
R
R
R
x
x
x
R
R
R
R
R
R
R
R
R
R
R
R
GND  
(SG)  
R
R
R
driver faults  
current OC  
temp OT  
Short to  
GND  
(SG)  
Injector 2  
1
Openload  
OL  
Over  
current OC  
Over  
temp OT  
1
2
R
R
driver faults  
Short to  
GND  
(SG)  
Relay 1 driver  
faults  
Openload  
OL  
Over  
current OC  
Over  
temp OT  
2
Short to  
GND  
Relay 2 driver  
Openload  
OL  
Over  
Over  
(31)  
(31)  
(31)  
(32)  
(32)  
(32)  
(32)  
(32)  
(32)  
(32)  
(32)  
(32)  
(33)  
(33)  
(33)  
(33)  
(33)  
(33)  
(33)  
(33)  
(33)  
(33)  
(32)  
(33)  
3
4
5
3
Faults  
Faults  
Faults  
R
R
R
x
x
x
R
R
R
x
x
x
R
R
R
x
x
x
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
faults  
current OC  
temp OT  
(SG)  
Tachometer  
driver faults  
Openload  
OL  
Over  
current OC  
Over  
temp OT  
4
x
Short to  
GND  
(SG)  
Lamp driver  
faults  
Openload  
OL  
Over  
current OC  
Over  
temp OT  
5
O2 heater  
Openload  
OL  
Over  
(31)  
(31)  
(32)  
(32)  
(32)  
(32)  
(32)  
(32)  
(32)  
(32)  
(32)  
(33)  
(33)  
(33)  
(33)  
(33)  
(33)  
(32)  
(32)  
(32)  
(32)  
(32)  
(32)  
7
8
9
7
8
9
predriver  
faults  
Faults  
Faults  
Faults  
R
R
x
x
x
R
R
R
R
x
x
x
R
R
R
R
x
x
x
R
R
R
R
R
R
R
R
R
R
R
R
x
x
x
R
R
R
R
x
x
x
R
R
R
R
current OC  
Ignition 1  
predriver  
faults  
Openload  
OL  
Over  
current OC  
Ignition 2  
predriver  
faults  
Openload  
OL  
Over  
current OC  
WD  
timer  
bit 6  
WD  
timer  
bit 5  
WD  
timer bit  
1
WD  
timer bit  
0
Watchdog  
state  
Disable/  
Enable  
WD timer  
bit 4  
WD timer  
bit 3  
WD timer  
bit 2  
10 A  
11 B  
R
R
VRS  
Clamp  
active  
VRSP  
Clamp  
active  
VRSN  
ISO  
overtem  
p OT  
conditioner  
and ISO 9141  
faults  
(32)  
(33)  
(33)  
(33)  
Peak 8  
Peak 4 R  
Peak 2 R  
Peak 1  
R
x
R
R
R
R
Power supply Any  
Vprot  
overtem  
p
Vprot  
short to  
ground  
PWRE  
Vprotshort  
to battery  
(31)  
(33)  
(33)  
13 D  
14 E  
and any  
system  
R
R
R
Keysw  
R
R
R
R
N
BATSW  
R
R
R
SPI error  
R
R
R
R
R
R
R
R
R
R
R
R
system faults faults  
INJ12  
OFF/  
ON  
REL1  
OFF/  
ON  
System On/  
Off indicators OFF/ON  
INJ1  
REL2 OFF/  
ON  
LAMP  
OFF/ON  
IGN1 OFF/  
ON  
IGN2  
OFF/ON  
O2H  
OFF/ON  
R
R
Model code/  
Model  
Model  
code 1  
Model  
code 0  
15 F  
revision  
code 2  
REV#  
Rev#  
Rev#  
Rev#  
Rev#  
number  
Notes  
31. Can only be written to 0 when faults have disappeared  
32. Only read as 0  
33. Can only be written to 0 when the fault has disappeared  
33814  
64  
NXP Semiconductors  
6
Typical applications  
6.1  
Output OFF open load fault  
An Output OFF Open Load Fault is the detection and reporting of an open load when the corresponding output is disabled (input bit  
programmed to a logic low state). The Output OFF Open Load Fault is detected by comparing the drain-to-source voltage of the specific  
MOSFET output to an internally generated reference. Each output has one dedicated comparator for this purpose.  
Each output has an internal pull-down current source or resistor. The pull-down current sources are enabled on power-up and must be  
enabled for Open Load Detect to function. In cases were the Open Load Detect current is disabled, the status bit always responds with  
logic 0. The device only shuts down the pull-down current in Sleep mode or when disabled via the SPI.  
During output switching, especially with capacitive loads, a false Output OFF Open Load Fault may be triggered. To prevent this false  
fault from being reported, an internal fault filter of 100 to 450 µs is incorporated. The duration for which a false fault may be reported is a  
function of the load impedance RDS(ON), COUT of the MOSFET as well as the supply voltage VPWR. The rising edge of CSB triggers the  
built-in fault delay timer. The timer must time out before the fault comparator is enabled to detect a faulted threshold. Once the condition  
causing the Open Load Fault is removed, the device resumes normal operation. The Open Load Fault, however, is latched in the output  
SO Response register for the MCU to read.  
6.2  
Low voltage operation  
Low voltage condition (6.5 V< VPWR <9.0 V) operates per the command word, however parameter tables may be out of specification and  
status reported on SO pin is not guaranteed.  
6.3  
Low-side injector driver voltage clamp  
Each Injector output of the 33814 incorporates an internal voltage clamp to provide fast turn-OFF and transient protection. Each clamp  
independently limits the drain-to-source voltage to VCL. The total energy clamped (EJ) can be calculated by multiplying the current area  
under the current curve (IA) times the clamp voltage (VCL) (see Figure 21). Characterization of the output clamps indicates the maximum  
energy to be 100 mJ at 125 °C junction temperature per output.  
Drain-to-Source Clamp  
Drain Voltage  
Voltage (VCL = 50 V)  
Clamp Energy  
Drain Current  
(ID= 0.3 A)  
(EJ = IA x V  
)
CL
Drain-to-Source ON  
Voltage (VDS(ON)  
)
Current  
Area (I )  
A
Time  
GND  
Figure 21. Output voltage clamping  
6.4  
Reverse battery protection  
The 33814 device requires external reverse battery protection on the VPWR pin. All outputs consist of a power MOSFET with an integral  
substrate diode. During a reverse battery condition, current flows through the load via the substrate diode. Under this condition load,  
devices turn on. If load reverse battery protection is desired, a diode must be placed in series with the load.  
33814  
NXP Semiconductors  
65  
7
Packaging  
7.1  
Package mechanical dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and  
perform a keyword search for the drawing’s document number.  
Table 80. 98A reference documents  
Package  
Suffix  
Package outline drawing number  
98ASA00737D  
48-pin LQFP-EP  
AE  
33814  
66  
NXP Semiconductors  
33814  
NXP Semiconductors  
67  
33814  
68  
NXP Semiconductors  
8
Revision history  
REVISION DATE  
1.0 8/2012  
DESCRIPTION OF CHANGES  
• Initial release  
• Removed Freescale Confidential Proprietary on page 1  
• Confirmed that all known edits requested for version1.0 are present.  
• Changed “VRS Low-state Output Voltage” to “VRS High-state Output Voltage” and “IVRS-LOW” to”IVRS-HIGH”  
for VVRSOUT_HIGH in Table 4.  
• Changed “Voltage to Current” for IRESET_LEAKAGE_HIGHin Table 4  
• Added units to the ROUT2 section of Table 4  
• Corrected spelling of “ISO9141” in section 5.1.15  
• Changed VPP Supply Voltage (If supplied externally and not using internal VPP regulator) to reflect two separate  
limits  
• Changed VPROT Output Voltage (tracks VCC) Max limit  
• Changed Typ and Max limit on Load Regulation (Both VCC and VPROT) measured from 10 % to 90 % of IVCC_C  
and IPROT_C, VPWR = 13 V  
2.0  
4/2013  
• Changed Min. limit on VRS Negative Clamp Voltage at ICLAMP = 10 mA  
• Changed Note 12  
• Updated Table 10 and Table 12  
• Added lower limit note for VCC Output Current Limiting  
• Updated Output Clamp Energy (INJOUT1, INJOUT2, ROUT1, ROUT2), Output Clamp Energy (INJOUT1,  
INJOUT2)(Continuous operation) and added Output Clamp Energy (LAMPOUT)  
• Added ESD Voltage  
• Added clarification to 5.1.21, “LAMPOUT Driver Output”  
• Corrected RESET Pull-down Resistor min. and max  
• Added symbol to Output OFF Open Load Detection Current TachOut  
• Added Output load current at ISO I/O pin (MTX = 0, RLOAD = 1.0 kΩ, ±10 %)  
3.0  
4.0  
5.0  
6.0  
5/2013  
5/2013  
6/2013  
10/2015  
• Changed part number from PC33814AE to MC33814AE in Table 1, Orderable part variations  
• Corrected typo in Table 74, Reg. 13  
• Corrected package from 98ASA00173D to 98ASA00430D  
• Corrected package from 98ASA00430D to 98ASA00737D and associated images as per PCN # 16956  
• Rewrite of section 4.4. Timing diagrams, page 18  
• Updated the IC description and list of features  
• Updated Figure 1 with better representations  
• Updated description for pre-driver pins in 3.2. Pin definitions, page 5  
• Removed Output clamp energy in continuous operation mode  
• Corrected VESD1 parameter  
3/2016  
• Updated the INJOUT1/2 Output Self Limiting Current low limit from 1.6A to 1.8A  
• Corrected the description in pre-driver section for VIGNFB/GPGD  
• ISO9141 section: Added Overtemperature threshold & Hysteresis parameter  
• Added KEYSW Filter time parameter  
7.0  
• Updated 4.5.2. VCC and VPROT characteristics, page 20  
• Rewrite of section 5. General IC functional description and application information, page 22  
• Updated data sheet document format and style  
• Corrected typo (100 KHz changed to 100 Hz)  
• Updated 5.7.2.6. GND VRSN bit, page 51  
3/2016  
4/2016  
• Corrected Figure 16  
• Added VCC max. rating (7.0 V)  
• Clarified overcurrent and short to VBAT fault bit reporting for drivers and pre-drivers  
• Corrected the effect of open load sink current disable bit  
• Clarified current sense feature of the pre-drivers  
• Added the 32 kΩ internal pull-up present on ISO Pin  
• Updated 98A  
8.0  
9.0  
8/2016  
10/2016  
• Removed VPWR_UV condition from Figure 13  
33814  
NXP Semiconductors  
69  
REVISION DATE  
DESCRIPTION OF CHANGES  
• Design enhancement to fulfill ISO 16750 test, and modification of the state machine related to exit condition from  
Prepare to Shutdown mode as per CIN# 201706024I  
• Updated Figure 13  
10.0  
7/2017  
• Added note to 5.1.2.4. Prepare to shutdown state, page 24  
• Minor typo corrections  
• Added Table 20, Table 77, Table 78 and Table 79  
11.0  
5/2018  
11.1  
12.0  
5/2018  
8/2018  
• Added text for clarification  
• Updated the description for VOUT(FLT-TH) parameter in Table 4 (deleted Short to GND)  
33814  
70  
NXP Semiconductors  
Information in this document is provided solely to enable system and software implementers to use NXP products.  
There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits  
based on the information in this document. NXP reserves the right to make changes without further notice to  
anyproducts herein. NXP makes no warranty, representation, or guarantee regarding the suitability of its products for  
any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit,  
and specifically disclaims any and all liability, including without limitation, consequential or incidental damages.  
"Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different  
applications, and actual performance may vary over time. All operating parameters, including "typicals," must be  
validated for each customer application by the customer's technical experts. NXP does not convey any license under  
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which  
can be found at the following address:  
How to Reach Us:  
Home Page:  
NXP.com  
Web Support:  
http://www.nxp.com/support  
http://www.nxp.com/terms-of-use.html.  
NXP, the NXP logo, Freescale, the Freescale logo and SMARTMOS are trademarks of NXP Semiconductors B.V.  
All other product or service names are the property of their respective owners. All rights reserved.  
© NXP B.V. 2018.  
Document Number: MC33814  
Rev. 12.0  
8/2018  

相关型号:

935311297557

Analog Circuit
NXP

935311331574

Interface Circuit
NXP

935311348518

Brush DC Motor Controller
NXP

935311357128

RF Power Field-Effect Transistor
NXP

935311407528

RISC Microcontroller
NXP

935311432518

Multifunction Peripheral
NXP

935311447518

Microprocessor Circuit
NXP

935311454528

Power Supply Support Circuit
NXP

935311454557

Power Supply Support Circuit
NXP

935311459528

Microcontroller
NXP

935311459557

Microcontroller
NXP

935311468528

Power Supply Support Circuit
NXP