935314082528 [NXP]

Microcontroller;
935314082528
型号: 935314082528
厂家: NXP    NXP
描述:

Microcontroller

时钟 微控制器 外围集成电路
文件: 总180页 (文件大小:1801K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
56F8037/56F8027  
Data Sheet  
Technical Data  
56F8000  
16-bit Digital Signal Controllers  
MC56F8037  
Rev. 8  
04/2012  
freescale.com  
Document Revision History  
Version History  
Rev. 0  
Description of Change  
Initial public release.  
Rev. 1  
• In Table 10-4, added an entry for flash data retention with less than 100 program/erase  
cycles (minimum 20 years).  
• In Table 10-6, changed the device clock speed in STOP mode from 8MHz to 4MHz.  
• In Table 10-12, changed the typical relaxation oscillator output frequency in Standby mode  
from 400kHz to 200kHz.  
• Changed input propagation delay values in Table 10-21 as follows:  
Old values: 1 s typical, 2 s maximum  
New values: 35 ns typical, 45 ns maximum  
Rev. 2  
Rev. 3  
In Table 10-20, changed the maximum ADC internal clock frequency from 8MHz to 5.33MHz.  
• Added the following note to the description of the TMS signal in Table 2-3:  
Note: Always tie the TMS pin to VDD through a 2.2K resistor.  
• Changed the description of the GPIOC4 signal in Table 2-3 (was “...the signal goes to both  
the ANA0 and CMPAI3”, is “...the signal goes to both ANB0 and CMPB13”).  
Rev. 4  
• Changed the ITCN_BASE address In Table 5-3 (was $00 F060, is $00 F0E0).  
• In Figure 5-10, moved the footnote marker (superscript 1) from bit 4 to “RESET”.  
• Changed the STANDBY > STOP IDD values in Table 10-6 as follows:  
Typical: was 290A, is 540A  
Maximum: was 390A, is 650A  
• Changed the POWERDOWN IDD values in Table 10-6 as follows:  
Typical: was 190A, is 440A  
Maximum: was 250A, is 550A  
• Changed footnote 1 in Table 10-12 (was “Output frequency after application of 8MHz trim  
value, at 125°C.”, is “Output frequency after application of factory trim”).  
• Deleted the text “at 125°C” from Figure 10-5.  
• Changed the maximum input offset voltage in Table 10-21 (was +/- 20 mV, is ±35 mV).  
Rev. 5  
• In Table 2-3, changed VCAP value from 4.7F to 2.2F.  
• Revised Section 7, Security Features.  
• Added information for 56F8027 device throughout document.  
• Fixed miscellaneous typos.  
56F8037/56F8027 Data Sheet, Rev. 8  
2
FreescaleSemiconductor  
Document Revision History  
Version History  
Rev. 6  
Description of Change  
In the table Recommended Operating Conditions, removed the line “XTAL not driven by an  
external clock“ from the characteristic:  
“Oscillator Input Voltage High  
XTAL not driven by an external clock  
XTAL driven by an external clock source”  
In the table 56F8037/56F8027 Ordering Information, changed “MC56F8027VLD“ to  
“MC56F8027VLH“  
Removed “Preliminary” from data sheet  
In the Select Peripheral Input Source for PWM2/PWM3 Pair Source Bits, fixed typos  
Added new part number to ordering information: MC56F8027MLH  
Rev. 7  
Rev. 8  
Added MC56F8037MLH to the part ordering table.  
• In section Section 5.6.18, changed bit15 from “PENDING” to reserved.  
• Added section Section 5.6.18.2 to describe the reserved bit.  
Please see http://www.freescale.com for the most current data sheet revision.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
3
56F8037/56F8027 General Description  
• Up to 32 MIPS at 32MHz core frequency  
• Three Programmable Interval Timers (PITs)  
• DSP and MCU functionality in a unified,  
C-efficient architecture  
• Two Queued Serial Communication Interfaces (QSCIs)  
with LIN slave functionality  
• 56F8037 offers 64KB (32K x 16) Program Flash  
• 56F8027 offers 32KB (16K x 16) Program Flash  
• Two Queued Serial Peripheral Interfaces (QSPIs)  
• Freescale’s scalable controller area network (MSCAN)  
2.0 A/B Module  
• 56F8037 offers 8KB (4K x 16) Unified Data/Program  
RAM  
• Two 16-bit Quad Timers  
2
• 56F8027 offers 4KB (2K x 16) Unified Data/Program  
RAM  
• One Inter-Integrated Circuit (I C) port  
• Computer Operating Properly (COP)/Watchdog  
• On-Chip Relaxation Oscillator  
• One 6-channel PWM module  
• Two 8-channel 12-bit Analog-to-Digital Converters  
(ADCs)  
• Integrated Power-On Reset (POR) and Low-Voltage  
Interrupt (LVI) module  
• Two 12-bit Digital-to-Analog Converters (DACs)  
• Two Analog Comparators  
• JTAG/Enhanced On-Chip Emulation (OnCE™) for  
unobtrusive, real-time debugging  
RESET or  
GPIOA  
V
2
V
3
V
V
V
SSA  
CAP  
DD  
SS  
DDA  
4
4
JTAG/EOnCE  
Port or  
GPIOD  
PWM  
or TMRA or TMRB  
or CMP or QSPI1  
or GPIOA  
Digital Reg  
Low-Voltage  
Supervisor  
Analog Reg  
14  
16-Bit  
56800E Core  
Data ALU  
Program Controller  
and Hardware  
Looping Unit  
Address  
Generation Unit  
Bit  
Manipulation  
Unit  
16 x 16 + 36 -> 36-Bit MAC  
Three 16-bit Input Registers  
Four 36-bit Accumulators  
2
8
DAC  
or GPIOD  
PAB  
PDB  
CDBR  
CDBW  
AD0  
Memory  
ADC  
R/W Control  
or CMP  
or QSCI1  
or GPIOC  
XDB2  
XAB1  
XAB2  
Program Memory  
32K x 16 Flash  
16K x 16 Flash  
8
System Bus  
Control  
AD1  
PAB  
Unified Data /  
Program RAM  
4K x 16  
PDB  
CDBR  
CDBW  
2K x 16  
Programmable  
Interval  
Timer  
IPBus Bridge (IPBB)  
QSCI0  
or PWM  
2
QSPI0  
I C  
2
or PWM  
or I C  
or CAN  
or TMRB  
or CMP  
2
or QSPI1  
or TMRA  
or TMRB  
or GPIOB  
or I C  
XTAL, CLKIN, or  
GPIOD  
P
O
R
or TMRA  
or GPIOB  
System  
Integration  
Module  
Interrupt  
Controller  
COP/  
Watchdog  
O
S
C
Clock  
Generator*  
or GPIOB  
EXTAL or GPIOD  
*Includes On-Chip  
Relaxation Oscillator  
6
4
4
56F8037/56F8027 Block Diagram  
56F8037/56F8027 Data Sheet, Rev. 8  
4
FreescaleSemiconductor  
56F8037/56F8027 Data Sheet Table of Contents  
7.3  
Product Analysis. . . . . . . . . . . . . . . . . . 131  
Part 1 Overview. . . . . . . . . . . . . . . . . . . . . . . . 6  
1.1  
1.2  
1.3  
56F8037/56F8027 Features . . . . . . . . . . . 6  
56F8037/56F8027 Description . . . . . . . . . 8  
Award-Winning Development  
Part 8 General Purpose Input/Output  
(GPIO) . . . . . . . . . . . . . . . . . . . . . . . .131  
Environment . . . . . . . . . . . . . . . . . . . 9  
Architecture Block Diagram . . . . . . . . . . . 9  
Product Documentation . . . . . . . . . . . . . 18  
Data Sheet Conventions. . . . . . . . . . . . . 18  
8.1  
8.2  
8.3  
Introduction. . . . . . . . . . . . . . . . . . . . . . 131  
Configuration . . . . . . . . . . . . . . . . . . . . 131  
Reset Values . . . . . . . . . . . . . . . . . . . . 135  
1.4  
1.5  
1.6  
Part 9 Joint Test Action Group (JTAG) . . .140  
Part 2 Signal/Connection Descriptions . . . 19  
9.1  
56F8037/56F8027 Information . . . . . . . 140  
2.1  
2.2  
Introduction . . . . . . . . . . . . . . . . . . . . . . . 19  
56F8037/56F8027 Signal Pins . . . . . . . . 24  
Part 10Specifications. . . . . . . . . . . . . . . . . .140  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
10.7  
10.8  
General Characteristics . . . . . . . . . . . . 140  
DC Electrical Characteristics . . . . . . . . 144  
AC Electrical Characteristics . . . . . . . . 147  
Flash Memory Characteristics . . . . . . . 148  
External Clock Operation Timing . . . . . 148  
Phase Locked Loop Timing . . . . . . . . . 149  
Relaxation Oscillator Timing. . . . . . . . . 149  
Reset, Stop, Wait, Mode Select, and  
Part 3 OCCS . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
Overview. . . . . . . . . . . . . . . . . . . . . . . . . 40  
Features . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Operating Modes . . . . . . . . . . . . . . . . . . 41  
Internal Clock Source . . . . . . . . . . . . . . . 42  
Crystal Oscillator. . . . . . . . . . . . . . . . . . . 42  
Ceramic Resonator. . . . . . . . . . . . . . . . . 43  
External Clock Input - Crystal Oscillator  
Option. . . . . . . . . . . . . . . . . . . . . . . 43  
Interrupt Timing . . . . . . . . . . . . . . 151  
Serial Peripheral Interface (SPI) Timing152  
10.9  
3.8  
Alternate External Clock Input . . . . . . . . 44  
10.10 Quad Timer Timing. . . . . . . . . . . . . . . . 156  
10.11 Queued Serial Communication Interface  
(QSCI) Timing . . . . . . . . . . . . . . . 158  
Part 4 Memory Maps. . . . . . . . . . . . . . . . . . . 44  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
Introduction . . . . . . . . . . . . . . . . . . . . . . . 44  
Interrupt Vector Table . . . . . . . . . . . . . . . 45  
Program Map . . . . . . . . . . . . . . . . . . . . . 47  
Data Map . . . . . . . . . . . . . . . . . . . . . . . . 48  
EOnCE Memory Map . . . . . . . . . . . . . . . 50  
Peripheral Memory-Mapped Registers . . 51  
10.12 Freescale’s Scalable Controller Area  
Network (MSCAN) Timing . . . . . . 159  
10.13 Inter-Integrated Circuit Interface (I2C)  
Timing . . . . . . . . . . . . . . . . . . . . . 159  
10.14 JTAG Timing. . . . . . . . . . . . . . . . . . . . . 161  
10.15 Analog-to-Digital Converter (ADC)  
Parameters . . . . . . . . . . . . . . . . . 162  
Part 5 Interrupt Controller (ITCN) . . . . . . . . 68  
10.16 Equivalent Circuit for ADC Inputs. . . . . 163  
10.17 Comparator (CMP) Parameters . . . . . . 164  
10.18 Digital-to-Analog Converter (DAC)  
Parameters . . . . . . . . . . . . . . . . . 164  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
Introduction . . . . . . . . . . . . . . . . . . . . . . . 68  
Features . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Functional Description . . . . . . . . . . . . . . 68  
Block Diagram. . . . . . . . . . . . . . . . . . . . . 70  
Operating Modes . . . . . . . . . . . . . . . . . . 71  
Register Descriptions . . . . . . . . . . . . . . . 71  
Resets. . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
10.19 Power Consumption . . . . . . . . . . . . . . . 166  
Part 11Packaging . . . . . . . . . . . . . . . . . . . . .168  
11.1  
56F8037/56F8027 Package and  
Pin-Out Information . . . . . . . . . . . 168  
Part 6 System Integration Module (SIM). . . 93  
Part 12Design Considerations . . . . . . . . . .171  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
Introduction . . . . . . . . . . . . . . . . . . . . . . . 93  
Features . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Register Descriptions . . . . . . . . . . . . . . . 95  
Clock Generation Overview . . . . . . . . . 124  
Power-Saving Modes . . . . . . . . . . . . . . 124  
Resets. . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . 129  
12.1  
12.2  
Thermal Design Considerations . . . . . . 171  
Electrical Design Considerations . . . . . 172  
Part 13Ordering Information . . . . . . . . . . . .173  
Part 14Appendix. . . . . . . . . . . . . . . . . . . . . .174  
Part 7 Security Features. . . . . . . . . . . . . . . 129  
7.1  
7.2  
Operation with Security Enabled. . . . . . 129  
Flash Access Lock and Unlock Mechanisms130  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
5
Part 1 Overview  
1.1 56F8037/56F8027 Features  
1.1.1  
Digital Signal Controller Core  
Efficient 16-bit 56800E family Digital Signal Controller (DSC) engine with dual Harvard architecture  
As many as 32 Million Instructions Per Second (MIPS) at 32MHz core frequency  
Single-cycle 16 16-bit parallel Multiplier-Accumulator (MAC)  
Four 36-bit accumulators, including extension bits  
32-bit arithmetic and logic multi-bit shifter  
Parallel instruction set with unique DSP addressing modes  
Hardware DO and REP loops  
Three internal address buses  
Four internal data buses  
Instruction set supports both DSP and controller functions  
Controller-style addressing modes and instructions for compact code  
Efficient C compiler and local variable support  
Software subroutine and interrupt stack with depth limited only by memory  
JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, processor speed-independent, real-time  
debugging  
1.1.2  
Difference Between Devices  
Table 1-1 outlines the key differences between the 56F8037 and 56F8027 devices.  
Table 1-1 Device Differences  
Feature  
Program Flash  
Unified Data/Program RAM  
56F8037 56F8027  
64KB  
8KB  
32KB  
4KB  
1.1.3  
Memory  
Dual Harvard architecture permits as many as three simultaneous accesses to program and data memory  
Flash security and protection that prevent unauthorized users from gaining access to the internal Flash  
On-chip memory  
— 64KB of Program Flash (56F8037 device)  
32KB of Program Flash (56F8027 device)  
— 8KB of Unified Data/Program RAM (56F8037 device)  
4KB of Unified Data/Program RAM (56F8027 device)  
EEPROM emulation capability using Flash  
56F8037/56F8027 Data Sheet, Rev. 8  
6
FreescaleSemiconductor  
56F8037/56F8027 Features  
1.1.4  
Peripheral Circuits for 56F8037/56F8027  
One multi-function six-output Pulse Width Modulator (PWM) module  
— Up to 96MHz PWM operating clock  
— 15 bits of resolution  
— Center-aligned and Edge-aligned PWM signal mode  
— Four programmable fault inputs with programmable digital filter  
— Double-buffered PWM registers  
— Each complementary PWM signal pair allows selection of a PWM supply source from:  
– PWM generator  
– External GPIO  
– Internal timers  
– Analog comparator outputs  
– ADC conversion result which compares with values of ADC high- and low-limit registers to set  
PWM output  
Two independent 12-bit Analog-to-Digital Converters (ADCs)  
— 2 x 8 channel inputs  
— Supports both simultaneous and sequential conversions  
— ADC conversions can be synchronized by both PWM and timer modules  
— Sampling rate up to 2.67MSPS  
— 16-word result buffer registers  
Two 12-bit Digital-to-Analog Converters (DACs)  
— 2 microsecond settling time when output swing from rail to rail  
— Automatic waveform generation generates square, triangle and sawtooth waveforms with  
programmable period, update rate, and range  
Two 16-bit multi-purpose Quad Timer modules (TMRs)  
— Up to 96MHz operating clock  
— Eight independent 16-bit counter/timers with cascading capability  
— Each timer has capture and compare capability  
— Up to 12 operating modes  
Two Queued Serial Communication Interfaces (QSCIs) with LIN Slave functionality  
— Full-duplex or single-wire operation  
— Two receiver wake-up methods:  
– Idle line  
– Address mark  
— Four-bytes-deep FIFOs are available on both transmitter and receiver  
Two Queued Serial Peripheral Interfaces (QSPIs)  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
7
— Full-duplex operation  
— Master and slave modes  
— Four-words-deep FIFOs available on both transmitter and receiver  
— Programmable Length Transactions (2 to 16 bits)  
One Inter-Integrated Circuit (I2C) port  
— Operates up to 400kbps  
— Supports both master and slave operation  
— Supports both 10-bit address mode and broadcasting mode  
One Freescale scalable controller area network (MSCAN) module  
— Fully compliant with CAN protocol - Version 2.0 A/B  
— Supports standard and extended data frames  
— Supports data rate up to 1Mbps  
— Five receive buffers and three transmit buffers  
Three 16-bit Programmable Interval Timers (PITs)  
Two analog Comparators (CMPs)  
— Selectable input source includes external pins, DACs  
— Programmable output polarity  
— Output can drive Timer input, PWM fault input, PWM source, external pin output and trigger ADCs  
— Output falling and rising edge detection able to generate interrupts  
Computer Operating Properly (COP)/Watchdog timer capable of selecting different clock sources  
Up to 53 General-Purpose I/O (GPIO) pins with 5V tolerance  
Integrated Power-On Reset and Low-Voltage Interrupt Module  
Phase Lock Loop (PLL) to provide high-speed clock to the core and peripherals  
Clock sources:  
— On-chip relaxation oscillator  
— External clock: crystal oscillator, ceramic resonator and external clock source  
JTAG/EOnCE debug programming interface for real-time debugging  
1.1.5  
Energy Information  
Fabricated in high-density CMOS with 5V tolerance  
On-chip regulators for digital and analog circuitry to lower cost and reduce noise  
Wait and Stop modes available  
ADC smart power management  
Each peripheral can be individually disabled to save power  
1.2 56F8037/56F8027 Description  
The 56F8037/56F8027 is a member of the 56800E core-based family of Digital Signal Controllers (DSCs).  
It combines, on a single chip, the processing power of a DSP and the functionality of a microcontroller  
with a flexible set of peripherals to create an extremely cost-effective solution. Because of its low cost,  
56F8037/56F8027 Data Sheet, Rev. 8  
8
FreescaleSemiconductor  
Award-Winning Development Environment  
configuration flexibility, and compact program code, the 56F8037/56F8027 is well-suited for many  
applications. The 56F8037/56F8027 includes many peripherals that are especially useful for industrial  
control, motion control, home appliances, general purpose inverters, smart sensors, fire and security  
systems, switched-mode power supply, power management, and medical monitoring applications.  
The 56800E core is based on a dual Harvard-style architecture consisting of three execution units  
operating in parallel, allowing as many as six operations per instruction cycle. The MCU-style  
programming model and optimized instruction set allow straightforward generation of efficient, compact  
DSP and control code. The instruction set is also highly efficient for C compilers to enable rapid  
development of optimized control applications.  
The 56F8037/56F8027 supports program execution from internal memories. Two data operands can be  
accessed from the on-chip data RAM per instruction cycle. The 56F8037/56F8027 also offers up to 53  
General Purpose Input/Output (GPIO) lines, depending on peripheral configuration.  
The 56F8037 Digital Signal Controller includes 64KB of Program Flash and 8KB of Unified  
Data/Program RAM. The 56F8027 Digital Signal Controller includes 32KB of Program Flash and 4KB of  
Unified Data/Program RAM. Program Flash memory can be independently bulk erased or erased in pages.  
Program Flash page erase size is 512 Bytes (256 Words).  
A full set of programmable peripherals—PWM, ADCs, QSCIs, QSPIs, I2C, PITs, Quad Timers, DACs  
and analog comparators—supports various applications. Each peripheral can be independently shut down  
to save power. Any pin in these peripherals can also be used as General Purpose Input/Outputs (GPIOs).  
1.3 Award-Winning Development Environment  
TM  
Processor Expert  
(PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use  
component-based software application creation with an expert knowledge system.  
The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation,  
compiling, and debugging. A complete set of evaluation modules (EVMs), demonstration board kit and  
development system cards will support concurrent engineering. Together, PE, CodeWarrior and EVMs  
create a complete, scalable tools solution for easy, fast, and efficient development.  
1.4 Architecture Block Diagram  
The 56F8037/56F8027’s architecture is shown in Figures 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, and 1-7. Figure 1-1  
illustrates how the 56800E system buses communicate with internal memories and the IPBus Bridge and  
the internal connections between each unit of the 56800E core. Figure 1-2 shows the peripherals and  
control blocks connected to the IPBus Bridge. Figures 1-3, 1-4, 1-5, 1-6 and 1-7 detail how the device’s  
I/O pins are muxed. The figures do not show the on-board regulator and power and ground signals. Please  
see Part 2, Signal/Connection Descriptions, for information about which signals are multiplexed with  
those of other peripherals.  
1.4.1  
PWM, TMR and ADC Connections  
Figure 1-6 shows the over-limit and under-limit connections from the ADC to the PWM and the  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
9
connections to the PWM from the TMR and GPIO. These signals can control the PWM outputs in a similar  
manner as the PWM generator. See the 56F802x and 56F803x Peripheral Reference Manual for  
additional information.  
The PWM_reload_sync output can be connected to Timer A’s (TMRA) Channel 3 input; TMRA’s  
Channels 2 and 3 outputs are connected to the ADC sync inputs. TMRA Channel 3 output is connected to  
SYNC0 and TMRA Channel 2 is connected to SYNC1. SYNC0 is the master ADC sync input that is used  
to trigger ADCA and ADCB in sequence and parallel mode. SYNC1 is used to trigger ADCB in parallel  
independent mode. These are controlled by bits in the SIM Control Register; see Section 6.3.1.  
56F8037/56F8027 Data Sheet, Rev. 8  
10  
FreescaleSemiconductor  
Architecture Block Diagram  
DSP56800E Core  
Program Control Unit  
ALU1  
ALU2  
Address  
PC  
LA  
LA2  
Generation  
Unit  
Instruction  
Decoder  
R0  
R1  
(AGU)  
HWS0  
HWS1  
FIRA  
R2  
R3  
Interrupt  
Unit  
Program  
Memory  
M01  
N3  
OMR  
R4  
R5  
N
SR  
LC  
LC2  
Looping  
Unit  
SP  
FISR  
XAB1  
XAB2  
PAB  
Data /  
Program  
RAM  
PDB  
CDBW  
CDBR  
XDB2  
A2  
B2  
C2  
D2  
A1  
B1  
C1  
D1  
Y1  
Y0  
X0  
A0  
B0  
C0  
D0  
Bit-  
Manipulation  
Unit  
IPBUS  
Interface  
Y
Data  
Enhanced  
OnCE™  
Arithmetic  
Logic Unit  
(ALU)  
JTAG TAP  
MAC and ALU  
Multi-Bit Shifter  
Figure 1-1 56800E Core Block Diagram  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
11  
To/From IPBus Bridge  
OCCS  
Interrupt  
(ROSC / PLL /  
OSC)  
Controller  
Low-Voltage Interrupt  
POR & LVI  
System POR  
GPIO A  
GPIO B  
GPIO C  
GPIO D  
RESET  
SIM  
(Muxed with GPIOA7)  
COP Reset  
COP  
IPBus  
(Continues on Figure 1-3)  
Figure 1-2 Peripheral Subsystem  
56F8037/56F8027 Data Sheet, Rev. 8  
12  
FreescaleSemiconductor  
Architecture Block Diagram  
To/From IPBus Bridge  
IPBus  
INTC  
SYNC  
MSTR_CNT_EN  
PIT0  
3
DAC SYNC on Figure 1-5  
MSTR_CNT_EN  
SYNC  
SYNC  
PIT1  
MSTR_CNT_EN  
PIT2  
2
3
SYNC0, SYNC1 on Figure 1-7  
LIMIT on Figure 1-6  
Sync0, Over/Under  
ANA0  
ANA0 on Figure 1-5  
Sync1  
Limits  
GPIOC2  
GPIOC3  
ANA2 (VREFHA  
)
)
ANA3 (VREFLA  
ANA4 on Figure 1-4  
ANA4  
GPIOC1, 9-11  
ANA1, 5-7  
4
ANA1, 5-7  
ADC  
ANB0  
ANB0 on Figure 1-5  
GPIOC6  
GPIOC7  
ANB2 (VREFHA  
)
)
ANB3 (VREFLB  
ANB4 on Figure 1-4  
ANB4  
GPIOC5, 13-15  
ANB1, 5-7  
4
ANB1, 5-7  
Figure 1-3 56F8037/56F8027 I/O Pin-Out Muxing (Part 1/5)  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
13  
To/From IPBus Bridge  
CLKO  
TA0 on Figure 1-7  
GPIOB4  
SS1  
QSPI1  
3
3
3
TA1-3 on Figure 1-7  
SCLK1, MISO1, MOSI1  
GPIOA12 - 14  
TB0 on Figure 1-5  
T0  
TB1 on Figure 1-5  
T1  
1
2
TMRB  
TB2, TB3 on Figure 1-5  
2
T2, T3  
2
GPIOB6 - 7  
GPIOB2 - 3  
RXD0, TXD0  
TA2, TA3 on Figure 1-7  
2
QSCI0  
MISO0, MOSI0  
2
QSPI0  
I2C  
SCLK0, SS0  
SCL, SDA  
2
2
2
GPIOB0 - 1  
GPIOB8 - 9  
2
2
2
CANTX, CANRX  
2
MSCAN  
GPIOB12 - 13  
GPIOC8 - 12  
2
2
ANA4, ANB4 on Figure 1-3  
TXD1, RXD1  
2
QSCI1  
IPBus  
Figure 1-4 56F8037/56F8027 I/O Pin-Out Muxing (Part 2/5)  
56F8037/56F8027 Data Sheet, Rev. 8  
14  
FreescaleSemiconductor  
Architecture Block Diagram  
To/From IPBus Bridge  
FAULT1 on Figure 1-6  
TA2 on Figure 1-7  
GPIOA8  
GPIOC0  
CMPAI1  
CMPAI3  
CMP_IN1  
CMP_IN3  
CMPA  
CMP_OUT  
CMPAO on Figure 1-6, Figure 1-7  
CMPAI2  
CMP_IN2  
GPIOA10  
Export Import  
ANA0 on Figure 1-3  
TB2 on Figure 1-4  
GPIOB10  
GPIOD6  
DAC0  
TB0 on Figure 1-4  
DAC0  
2
TA0o, TA1o on Figure 1-7  
3
DAC SYNC on Figure 1-3  
RELOAD on Figure 1-6  
DAC1  
GPIOD7  
TB1 on Figure 1-4  
DAC1  
GPIOB11  
TB3 on Figure 1-4  
GPIOA11  
ANB0 on Figure 1-3  
Import Export  
CMP_IN2  
CMPBI2  
CMP_OUT  
CMPBO on Figure 1-6, Figure 1-7  
CMPB  
GPIOC4  
GPIOA9  
CMPBI3  
CMPBI1  
CMP_IN3  
CMP_IN1  
TA3 on Figure 1-7  
FAULT2 on Figure 1-6  
IPBus  
Figure 1-5 56F8037/56F8027 I/O Pin-Out Muxing (Part 3/5)  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
15  
To/From IPBus Bridge  
TA0 on Figure 1-7  
GPIOA6  
2
TA2 - 3 on Figure 1-7  
GPIOA0 - 3  
4
PWM0 - 3  
FAULT0  
GPIOA4 - 5  
2
2
PWMA4 - 5  
1
PWM  
FAULT1  
FAULT1 on Figure 1-5  
CMPAO on Figure 1-5  
FAULT2  
FAULT3  
1
RELOAD PSRC0 - 2  
FAULT2 on Figure 1-5  
CMPBO on Figure 1-5  
TA1 on Figure 1-7  
GPIOB5  
CMPBO on Figure 1-5  
CMPAO on Figure 1-5  
IPBus  
3
3
GPIOB2 - 4 on Figure 1-4  
LIMIT on Figure 1-3  
3
3
TA0o, TA2o, TA3o on Figure 1-3  
Figure 1-6 56F8037/56F8027 I/O Pin-Out Muxing (Part 4/5)  
56F8037/56F8027 Data Sheet, Rev. 8  
16  
FreescaleSemiconductor  
Architecture Block Diagram  
To/From IPBus Bridge  
TA0o on Figure 1-6 (PWM)  
TA0 on Figure 1-6 (GPIOA6)  
TA0 on Figure 1-4 (GPIOB4)  
T0o  
T0i  
TA1 on Figure 1-4(GPIOA12)  
T1o  
T1i  
TA1 on Figure 1-6 (GPIOB5)  
CMPAO on Figure 1-6 (CMPA)  
SYNC1 on Figure 1-3 (ADC)  
TA2o on Figure 1-6 (PWM)  
TA2 on Figure 1-6 (GPIOA4)  
TMRA  
T2o  
T2i  
TA2 on Figure 1-5 (GPIOA8)  
TA2 on Figure 1-4 (GPIOA13)  
TA2 on Figure 1-4 (GPIOB2)  
CMPBO on Figure 1-6 (CMPB)  
SYNC0 on Figure 1-3 (ADC)  
TA3o on Figure 1-6 (PWM)  
TA3 on Figure 1-6 (GPIOA5)  
T3o  
T3i  
TA3 on Figure 1-5 (GPIOA9)  
TA3 on Figure 1-4 (GPIOA14)  
TA 3 on Figure 1-4 (GPIOB3)  
RELOAD on Figure 1-6 (PWM)  
IPBus  
Figure 1-7 56F8037/56F8027 I/O Pin-Out Muxing (Part 5/5)  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
17  
1.5 Product Documentation  
The documents listed in Table 1-2 are required for a complete description and proper design with the  
56F8037/56F8027. Documentation is available from local Freescale distributors, Freescale Semiconductor  
sales offices, Freescale Literature Distribution Centers, or online at:  
http://www.freescale.com  
Table 1-2 56F8037/56F8027 Chip Documentation  
Topic  
DSP56800E  
Description  
Order Number  
DSP56800ERM  
Detailed description of the 56800E family architecture,  
16-bit Digital Signal Controller core processor, and the  
instruction set  
Reference Manual  
56F802x and 56F803x  
Peripheral Reference  
Manual  
Detailed description of peripherals of the 56F802x and  
56F803x family of devices  
MC56F80xxRM  
56F80xxBLUG  
56F802x and 56F803x  
Serial Bootloader User  
Guide  
Detailed description of the Serial Bootloader in the  
56F802x and 56F803x family of devices  
56F8037/56F8027  
Technical Data Sheet  
Electrical and timing specifications, pin descriptions,  
and package descriptions (this document)  
MC56F8037/56F8027  
MC56F8037/56F8027E  
56F8037/56F8027  
Errata  
Details any chip issues that might be present  
1.6 Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
This is used to indicate a signal that is active when pulled low. For example, the RESET pin is  
active when low.  
“asserted”  
“deasserted”  
Examples:  
A high true (active high) signal is high or a low true (active low) signal is low.  
A high true (active high) signal is low or a low true (active low) signal is high.  
Voltage1  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
PIN  
PIN  
PIN  
PIN  
VIL/VOL  
False  
Deasserted  
Asserted  
VIH/VOH  
VIH/VOH  
VIL/VOL  
True  
False  
Deasserted  
1. Values for V , V , V , and V are defined by individual product specifications.  
IL  
OL  
IH  
OH  
56F8037/56F8027 Data Sheet, Rev. 8  
18  
FreescaleSemiconductor  
Introduction  
Part 2 Signal/Connection Descriptions  
2.1 Introduction  
The input and output signals of the 56F8037/56F8027 are organized into functional groups, as detailed in  
Table 2-1. Table 2-2 summarizes all device pins. In Table 2-2, each table row describes the signal or  
signals present on a pin, sorted by pin number.  
Table 2-1 Functional Group Pin Allocations  
Functional Group  
Power Inputs (VDD, VDDA  
Number of Pins  
)
4
5
Ground (VSS, VSSA  
Supply Capacitors  
Reset1  
)
2
1
Pulse Width Modulator (PWM) Ports1  
Queued Serial Peripheral Interface 0 (QSPI0) Ports1  
Queued Serial Peripheral Interface 1 (QSPI1) Ports1  
Timer Module A (TMRA) Ports1  
13  
4
4
4
Timer Module B (TMRB) Ports1  
4
Analog-to-Digital Converter (ADC) Ports1  
Digital-to-Analog Converter (DAC) Ports1  
Queued Serial Communications Interface 0 (QSCI0) Ports1  
Queued Serial Communications Interface 1 (QSCI1) Ports1  
Inter-Integrated Circuit Interface (I2C) Ports1  
MSCAN Ports1  
16  
2
2
2
2
2
Oscillator Signals1  
2
JTAG/Enhanced On-Chip Emulation (EOnCE)1  
4
1. Pins may be shared with other peripherals. See Table 2-2.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
19  
In Table 2-2, peripheral pins in bold identify reset state.  
Table 2-2 56F8037/56F8027 Pins  
Peripherals:  
Pin  
#
Quad  
Timer  
Power&  
Ground  
Pin Name  
GPIOB6  
Signal Name  
GPIO I2C  
QSCI  
QSPI  
ADC  
PWM  
DAC  
Comp  
MSCAN  
JTAG Misc.  
1
GPIOB6, RXD0, SDA,  
CLKIN  
B6  
SDA RXD0  
CLKIN  
2
3
4
GPIOB1  
GPIOB7  
GPIOB5  
GPIOB1, SS0, SDA  
GPIOB7, TXD0, SCL  
B1  
B7  
B5  
SDA  
SS0  
SCL TXD0  
GPIOB5, TA1,  
FAULT3, CLKIN  
FAULT3 TA1  
FAULT2 TA3  
TB3  
CLKIN  
5
6
GPIOA9  
GPIOA9, FAULT2,  
TA3, CMPBI1  
A9  
CMPBI1  
CMPBI2  
GPIOA11 GPIOA11, TB3,  
A11  
CMPBI2  
7
8
9
VDD  
VSS  
V
V
V
DD  
DD  
SS  
V
SS  
GPIOC12 GPIOC12, ANB4,  
C12  
C4  
RXD1  
ANB4  
ANB0  
RXD1  
10 GPIOC4  
11 GPIOC5  
GPIOC4, ANB0,  
CMPBI3  
CMPBI3  
GPIOC5, ANB1  
C5  
C13  
C6  
ANB1  
ANB5  
ANB2  
12 GPIOC13 GPIOC13, ANB5  
13 GPIOC6  
ANB2, V  
REFHB  
V
REFHB  
14 GPIOC7  
GPIOC7, ANB3,  
C7  
D7  
ANB3  
V
REFLB  
V
REFLB  
15 GPIOD7  
16 VDDA  
GPIOD7, DAC1  
DAC1  
DAC0  
V
V
V
DDA  
DDA  
SSA  
17 VSSA  
V
SSA  
18 GPIOD6  
19 GPIOC3  
GPIOD6, DAC0  
GPIOC3, ANA3,  
D6  
C3  
ANA3  
V
V
REFLA  
REFLA  
20 GPIOC2  
GPIOC2, ANA2,  
C2  
ANA2  
V
V
REFHA  
REFHA  
ANA5  
ANA1  
ANA6  
ANA0  
21 GPIOC9  
22 GPIOC1  
GPIOC9, ANA5  
GPIOC1, ANA1  
C9  
C1  
23 GPIOC10 GPIOC10, ANA6  
C10  
C0  
24 GPIOC0  
GPIOC0, ANA0,  
CMPAI3  
CMPAI3  
25 GPIOC11 GPIOC11, ANA7  
C11  
C8  
ANA7  
ANA4  
26 GPIOC8  
27 VSS  
GPIOC8, ANA4, TXD1  
TXD1  
V
V
SS  
SS  
56F8037/56F8027 Data Sheet, Rev. 8  
20  
FreescaleSemiconductor  
Introduction  
Table 2-2 56F8037/56F8027 Pins (Continued)  
Peripherals:  
Pin  
#
Quad  
Timer  
Power&  
Ground  
Pin Name  
Signal Name  
GPIO I2C  
QSCI  
QSPI  
ADC  
PWM  
DAC  
Comp  
MSCAN  
JTAG Misc.  
28 VCAP  
29 TCK  
V
V
CAP  
CAP  
TCK, GPIOD2  
D2  
TCK  
30 GPIOB10 GPIOB10, CMPAO,  
B10  
TB0  
CMPAO  
TB0  
31 RESET  
32 GPIOB3  
RESET, GPIOA7  
A7  
RESET  
GPIOB3, MOSI0, TA3,  
PSRC1  
B3  
MOSI0  
MISO0  
PSRC1  
PSRC0  
TA3  
TA2  
33 GPIOB2  
34 GPIOA6  
GPIOB2, MISO0, TA2,  
PSRC0  
B2  
A6  
GPIOA6, FAULT0,  
TA0  
FAULT0 TA0  
TB2  
35 GPIOA10 GPIOA10, TB2,  
A10  
A8  
CMPAI2  
CMPAI1  
CMPAI2  
36 GPIOA8  
GPIOA8, FAULT1,  
TA2, CMPAI1  
FAULT1 TA2  
37 GPIOA12 GPIOA12, TB1,  
A12  
B4  
SCLK1  
SS1  
TB1  
TA1  
SCLK1, TA1  
38 GPIOB4  
39 GPIOA5  
GPIOB4, SS1, TB0,  
TA0, PSRC2, CLKO  
PSRC2  
TA0  
TB0  
CLKO  
GPIOA5, PWM5, TA3,  
FAULT2  
A5  
PWM5  
FAULT2  
TA3  
40 VSS  
41 VDD  
V
V
V
SS  
DD  
SS  
V
DD  
42 GPIOB0  
43 GPIOA4  
GPIOB0, SCLK0, SCL  
B0  
A4  
SCL  
SCLK0  
GPIOA4, PWM4, TA2,  
FAULT1  
PWM4  
FAULT1  
TA2  
44 GPIOA13 GPIOA13, TB2,  
A13  
A14  
B9  
MISO1  
MOSI1  
TB2  
TA2  
MISO1, TA2  
45 GPIOA14 GPIOA14, TB3,  
TB3  
TA3  
MOSI1, TA3  
46 GPIOB9  
GPIOB9, SDA,  
CANRX  
SDA  
CANRX  
47 GPIOA2  
48 GPIOA3  
49 VCAP  
GPIOA2, PWM2  
GPIOA3, PWM3  
A2  
A3  
PWM2  
PWM3  
V
V
V
V
CAP  
CAP  
DD  
50 VDD  
V
DD  
51 VSS  
V
SS  
SS  
52 GPIOD5  
GPIOD5, XTAL, CLKIN  
D5  
XTAL  
CLKIN  
53 GPIOD4  
54 GPIOB8  
55 GPIOA1  
GPIOD4, EXTAL  
D4  
B8  
A1  
EXTAL  
GPIOB8, SCL, CANTX  
GPIOA1, PWM1  
SCL  
CANTX  
PWM1  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
21  
Table 2-2 56F8037/56F8027 Pins (Continued)  
Peripherals:  
Pin  
#
Quad  
Timer  
Power&  
Ground  
Pin Name  
Signal Name  
GPIO I2C  
QSCI  
QSPI  
ADC  
PWM  
DAC  
Comp  
MSCAN  
JTAG Misc.  
56 GPIOA0  
GPIOA0, PWM0  
A0  
B12  
B13  
D0  
PWM0  
57 GPIOB12 GPIOB12, CANTX  
58 GPIOB13 GPIOB13, CANRX  
CANTX  
CANRX  
59 TDI  
TDI, GPIOD0  
TD1  
60 GPIOB11 GPIOB11, CMPBO,  
B11  
TB1  
CMPBO  
TB1  
61 GPIOC15 GPIOC15, ANB7  
62 GPIOC14 GPIOC14, ANB6  
C15  
C14  
D3  
ANB7  
ANB6  
63 TMS  
64 TDO  
TMS, GPIOD3  
TDO, GPIOD1  
TMS  
TDO  
D1  
56F8037/56F8027 Data Sheet, Rev. 8  
22  
FreescaleSemiconductor  
Introduction  
VDD  
VSS  
GPIOA0-3 (PWM0-3)  
Power  
Ground  
Power  
4
1
1
3
4
GPIOA4 (PWM4, TA2, FAULT1)  
GPIOA5 (PWM5, TA3, FAULT2)  
GPIOA6 (FAULT0, TA0)  
VDDA  
1
1
VSSA  
Ground  
56F8037/56F80217  
PWM  
GPIOA8 (FAULT1, TA2, CMPAI1)  
Other  
Supply  
Ports  
or TMRA  
or TMRB  
or CMP  
or QSPI1  
or GPIOA  
VCAP  
1
2
GPIOA9 (FAULT2, TA3, CMPBI1)  
GPIOA10 (TB2, CMPAI2)  
1
GPIOD4 (EXTAL)  
OSC Port  
or GPIO  
1
1
1
1
1
1
1
GPIOA11 (TB3, CMPBI2)  
GPIOD5 (XTAL, CLKIN)  
GPIOA12 (SCLK1, TB1, TA1)  
GPIOA13 (MISO1, TB2, TA2)  
GPIOA14 (MOSI1, TB3, TA3)  
RESET  
or GPIOA  
RESET (GPIOA7)  
1
GPIOB0 (SCLK0, SCL)  
GPIOB1 (SS0, SDA)  
GPIOB8 (SCL, CANTX)  
GPIOB9 (SDA, CANRX)  
GPIOB10 (TB0, CMPAO)  
1
1
QSPI0  
1
1
1
or I2C  
or PWM  
I2C  
GPIOB2 (MISO0, TA2, PSRC0)  
GPIOB3 (MOSI0, TA3, PSRC1)  
or TMRA  
or GPIOB  
or CAN  
or TMRB  
or CMP  
or GPIOB  
1
GPIOB11 (TB1, CMPBO)  
GPIOB12 (CANTX)  
1
1
1
GPIOB4 (SS1, TB0, TA0, PSRC2,  
CLKO)  
GPIOB13 (CANRX)  
QSCI0  
or PWM  
or I2C  
or TMRA  
or TMRB  
or QSPI1  
or GPIOB  
1
1
GPIOB5 (TA1, FAULT3, CLKIN)  
GPIOB6 (RXD0, SDA, CLKIN)  
GPIOB7 (TXD0, SCL)  
GPIOC0 (ANA0 & CMPAI3)  
GPIOC1 (ANA1)  
1
1
1
1
1
GPIOC2 (ANA2, VREFHA  
)
1
1
GPIOC3 (ANA3, VREFLA  
)
DAC  
or GPIOD  
GPIOD6-7 (DAC0-1)  
GPIOC8 (ANA4, TXD1)  
GPIOC9-11 (ANA5-7)  
ADC  
2
1
3
or CMP  
or QSCI1  
or GPIOC  
GPIOC4 (ANB0 & CMPBI3)  
GPIOC5 (ANB1)  
TDI (GPIOD0)  
TDO (GPIOD1)  
TCK (GPIOD2)  
TMS (GPIOD3)  
1
1
1
1
1
GPIOC6 (ANB2, VREFHB  
GPIOC7 (ANB3, VREFLB  
)
JTAG/ EOnCE  
or GPIOD  
1
1
)
GPIOC12 (ANB4, RXD1)  
GPIOC13-15 (ANA5-7)  
1
1
3
Figure 2-1 56F8037/56F8027 Signals Identified by Functional Group  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
23  
2.2 56F8037/56F8027 Signal Pins  
After reset, each pin is configured for its primary function (listed first). Any alternate functionality must  
be programmed.  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VDDA  
7
Supply  
Supply  
Supply  
I/O Power — This pin supplies 3.3V power to the chip I/O interface.  
41  
50  
8
Supply  
VSS — These pins provide ground for chip logic and I/O drivers.  
27  
40  
51  
16  
Supply  
Supply  
Supply  
Supply  
Supply  
Supply  
ADC Power — This pin supplies 3.3V power to the ADC modules. It  
must be connected to a clean analog power supply.  
VSSA  
17  
ADC Analog Ground — This pin supplies an analog ground to the  
ADC modules.  
VCAP  
VCAP  
28  
49  
31  
VCAP — Connect this pin to a 2.2F or greater bypass capacitor in  
order to bypass the core voltage regulator, required for proper chip  
operation. See Section 10.2.1.  
RESET  
Input  
Input,  
internal  
pull-up  
enabled  
Reset — This input is a direct hardware reset on the processor.  
When RESET is asserted low, the chip is initialized and placed in the  
reset state. A Schmitt trigger input is used for noise immunity. The  
internal reset signal will be deasserted synchronous with the internal  
clocks after a fixed number of internal clocks.  
(GPIOA7)  
Input/Open  
Drain  
Output  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or open drain output pin. Note that RESET functionality is  
disabled in this mode and the chip can only be reset via POR, COP  
reset, or software reset.  
After reset, the default state is RESET.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
24  
FreescaleSemiconductor  
56F8037/56F8027 Signal Pins  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOA0  
(PWM0)  
GPIOA1  
(PWM1)  
GPIOA2  
(PWM2)  
GPIOA3  
(PWM3)  
56  
55  
47  
48  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
PWM0 — This is one of the six PWM output pins.  
After reset, the default state is GPIOA0.  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
PWM1 — This is one of the six PWM output pins.  
After reset, the default state is GPIOA1.  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
PWM2 — This is one of the six PWM output pins.  
After reset, the default state is GPIOA2.  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
PWM3 — This is one of the six PWM output pins.  
After reset, the default state is GPIOA3.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
25  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOA4  
43  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(PWM4)  
(TA21)  
Output  
PWM4 — This is one of the six PWM output pins.  
TA2 — Timer A, Channel 2  
Input/  
Output  
(FAULT12)  
Input  
Fault1 — This fault input pin is used for disabling selected PWM  
outputs in cases where fault conditions originate off-chip.  
After reset, the default state is GPIOA4. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
1The TA2 signal is also brought out on the GPIOA8-9, GPIOA13-14 and GPIOB2-3 pins.  
2The Fault1 signal is also brought out on the GPIOA8-9, GPIOB4 and GPIOB10 pins.  
GPIOA5  
39  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(PWM5)  
(TA33)  
Output  
PWM5 — This is one of the six PWM output pins.  
TA3 — Timer A, Channel 3  
Input/  
Output  
Input  
Fault2 — This fault input pin is used for disabling selected PWM  
outputs in cases where fault conditions originate off-chip.  
(FAULT24)  
After reset, the default state is GPIOA5. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
3The TA3 signal is also brought out on the GPIOA8-9, GPIOA13-14 and GPIOB2-3 pins.  
4The Fault2 signal is also brought out on the GPIOA8-9, GPIOB4 and GPIOB10 pins.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
26  
FreescaleSemiconductor  
56F8037/56F8027 Signal Pins  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOA6  
34  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(FAULT0)  
(TA05)  
Input  
Fault0 — This fault input pin is used for disabling selected PWM  
outputs in cases where fault conditions originate off-chip.  
TA0 — Timer A, Channel 0.  
After reset, the default state is GPIOA6. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
5The TA0 signal is also brought out on the GPIOB4 pin.  
GPIOA8  
36  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(FAULT1)  
(TA2)  
Input  
Fault1 — This fault input pin is used for disabling selected PWM  
outputs in cases where fault conditions originate off-chip.  
Input/  
TA2 — Timer A, Channel 2.  
Output  
(CMPAI1)  
Input  
Comparator A, Input 1 — This is an analog input to Comparator A.  
After reset, the default state is GPIOA8. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
GPIOA9  
5
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(FAULT2)  
(TA3)  
Input  
Fault2 — This fault input pin is used for disabling selected PWM  
outputs in cases where fault conditions originate off-chip.  
Input/  
TA2 — Timer A, Channel 3.  
Output  
(CMPBI1)  
Input  
Comparator B, Input 1 — This is an analog input to Comparator B.  
After reset, the default state is GPIOA9. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
27  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOA10  
35  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(TB26)  
Input/  
Output  
TB2 — Timer B, Channel 2.  
Input  
Comparator A, Input 2 — This is an analog input to Comparator A.  
(CMPAI2)  
After reset, the default state is GPIOA10. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
6The TB2 signal is also brought out on the GPIOA13 pin.  
GPIOA11  
6
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(TB37)  
Input/  
Output  
TB3 — Timer B, Channel 3.  
Input  
Comparator B, Input 2 — This is an analog input to Comparator B.  
(CMPBI2)  
After reset, the default state is GPIOA11. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
7The TB3 signal is also brought out on the GPIOA14 pin.  
GPIOA12  
37  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(SCLK1)  
Input/  
Output  
QSPI1 Serial Clock — In the master mode, this pin serves as an  
output, clocking slaved listeners. In slave mode, this pin serves as  
the data clock input. A Schmitt trigger input is used for noise  
immunity.  
(TB18)  
(TA19)  
Input/  
Output  
TB1 — Timer B, Channel 1.  
TA1 — Timer A, Channel 1.  
Input/  
Output  
After reset, the default state is GPIOA12. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
8The TB1 signal is also brought out on the GPIOB11 pin.  
9The TA1 signal is also brought out on the GPIOB5 pin.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
28  
FreescaleSemiconductor  
56F8037/56F8027 Signal Pins  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOA13  
44  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(MISO1)  
Input/  
Output  
QSPI1 Master In/Slave Out— This serial data pin is an input to a  
master device and an output from a slave device. The MISO line of a  
slave device is placed in the high-impedance state if the slave device  
is not selected. The slave device places data on the MISO line a  
half-cycle before the clock edge the master devices uses to latch the  
data.  
(TB210  
)
)
Input/  
Output  
TB2 — Timer B, Channel 2.  
TA2 — Timer A, Channel 2.  
Input/  
Output  
(TA211  
After reset, the default state is GPIOA13. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
10The TB2 signal is also brought out on the GPIOA10 pin.  
11The TA2 signal is also brought out on the GPIOA4, GPIOA8 and GPIOB2 pins.  
GPIOA14  
45  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port A GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(MOSI1)  
Input/  
Output  
QSPI1 MasterOut/Slave In — This serial data pin is an output from  
a master device and an input to a slave device. The master device  
places data on the MOSI line a half-cycle before the clock edge the  
slave devices uses to latch the data.  
TB3 — Timer B, Channel 3.  
TA3 — Timer A, Channel 3.  
(TB312  
)
)
Input/  
Output  
Input/  
Output  
After reset, the default state is GPIOA14. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
(TA313  
12The TB3 signal is also brought out on the GPIOA11 pin.  
13The TA3 signal is also brought out on the GPIOA5, GPIOA9, and GPIOB3 pins.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
29  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOB0  
42  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port B GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(SCLK0)  
Input/  
Output  
QSPI0 Serial Clock — In the master mode, this pin serves as an  
output, clocking slaved listeners. In slave mode, this pin serves as  
the data clock input. A Schmitt trigger input is used for noise  
immunity.  
(SCL14  
)
Serial Clock — This pin serves as the I2C serial clock.  
Input/  
Output  
After reset, the default state is GPIOB0. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
14The SCL signal is also brought out on the GPIOB7 and GPIOB8 pins.  
GPIOB1  
2
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port B GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(SS0)  
Input/  
QSPI0 Slave Select — SS is used in slave mode to indicate to the  
Output  
QSPI0 module that the current transfer is to be received.  
(SDA15  
)
Serial Data — This pin serves as the I2C serial data line.  
Input  
After reset, the default state is GPIOB1. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
15The SDA signal is also brought out on the GPIOB6 and GPIOB9 pins.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
30  
FreescaleSemiconductor  
56F8037/56F8027 Signal Pins  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOB2  
33  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port B GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(MISO0)  
Input/  
Output  
QSPI0 Master In/Slave Out — This serial data pin is an input to a  
master device and an output from a slave device. The MISO line of a  
slave device is placed in the high-impedance state if the slave device  
is not selected. The slave device places data on the MISO line a  
half-cycle before the clock edge the master device uses to latch the  
data.  
(TA216  
)
Input/  
Output  
TA2 — Timer A, Channel 2  
Input  
PSRC0 — External PWM signal source input for the complementary  
PWM4/PWM5 pair.  
(PSRC0)  
After reset, the default state is GPIOB2. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
16The TA2 signal is also brought out on the GPIOA4, GPIOA8 and GPIOA13 pins.  
GPIOB3  
32  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port B GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(MOSI0)  
Input/  
Output  
QSPI0 Master Out/Slave In— This serial data pin is an output from  
a master device and an input to a slave device. The master device  
places data on the MOSI line a half-cycle before the clock edge the  
slave device uses to latch the data.  
(TA317  
)
Input/  
Output  
TA3 — Timer A, Channel 3  
Input  
PSRC1 — External PWM signal source input for the complementary  
PWM2/PWM3 pair.  
(PSRC1)  
After reset, the default state is GPIOB3. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
17The TA3 signal is also brought out on the GPIOA5, GPIOA9 and GPIOA14 pins.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
31  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOB4  
38  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port B GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(SS1)  
Input/  
QSPI1 Slave Select — This is used in slave mode to indicate to the  
Output  
QSPI1 module that the current transfer is to be received.  
(TB018  
)
)
Input/  
Output  
TB0 — Timer B, Channel 0  
TA0 — Timer A, Channel 0  
Input/  
Output  
(TA019  
Input  
PSRC2 — External PWM signal source input for the complementary  
PWM0/PWM1 pair.  
(PSRC2)  
(CLKO)  
Output  
Clock Output — This is a buffered clock output; the clock source is  
selected by Clockout Select (CLKOSEL) bits in the Clock Output  
Select Register (CLKOUT). See Section 6.3.7.  
After reset, the default state is GPIOB4. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
18The TB0 signal is also brought out on the GPIOB4 and GPIOB10 pins.  
19The TA0 signal is also brought out on the GPIOB4 and GPIOA6 pins.  
GPIOB5  
4
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port B GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(TA120  
)
Input/  
Output  
TA1 — Timer A, Channel 1  
Input  
Input  
FAULT3 — This fault input pin is used for disabling selected PWM  
outputs in cases where fault conditions originate off-chip.  
(FAULT3)  
(CLKIN)  
External Clock Input— This pin serves as an external clock input.  
After reset, the default state is GPIOB5. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
20The TA1 signal is also brought out on the GPIOA12 pin.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
32  
FreescaleSemiconductor  
56F8037/56F8027 Signal Pins  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOB6  
1
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port B GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(RXD0)  
Input  
Receive Data 0 — QSCI0 receive data input.  
(SDA21  
)
Serial Data — This pin serves as the I2C serial data line.  
Input/  
Output  
Input  
(CLKIN)  
External Clock Input — This pin serves as an optional external  
clock input.  
After reset, the default state is GPIOB6. The peripheral functionality  
is controlled via the SIM (See Section 6.3.16) and the CLKMODE bit  
of the OCCS Oscillator Control Register.  
21The SDA signal is also brought out on the GPIOB1 and GPIOB9 pins.  
GPIOB7  
3
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port B GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Transmit Data 0 — QSCI0 transmit data output or transmit / receive  
(TXD0)  
Input/  
in single wire operation.  
Output  
Serial Clock — This pin serves as the I2C serial clock.  
(SCL22  
)
Input/  
Output  
After reset, the default state is GPIOB7. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
22The SCL signal is also brought out on the GPIOB0 and GPIOB8 pins.  
GPIOB8  
54  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port B GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(SCL23  
)
Serial Clock 1 — This pin serves as the I2C serial clock.  
CAN Transmit Data — This is the SCAN interface output.  
Input/  
Output  
Open Drain  
Output  
(CANTX24  
)
After reset, the default state is GPIOB8. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
23The SCL signal is also brought out on the GPIOB0 and GPIOB7 pins.  
24The CANTX signal is also brought out on the GPIOB12 pin.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
33  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOB9  
46  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port B GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(SDA25  
)
Serial Data 1 — This pin serves as the I2C serial data line.  
CAN Receive Data — This is the MSCAN interface input.  
Input/  
Output  
Input  
(CANRX26  
)
After reset, the default state is GPIOB9. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
25The SDA signal is also brought out on the GPIOB1 and GPIOB6 pins.  
26The CANRX signal is also brought out on the GPIOB13 pin.  
GPIOB10  
30  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port B GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(TB027  
)
Input/  
Output  
TB0— Timer B, Channel 0.  
Output  
Comparator A Output— This is the output of comparator A.  
(CMPAO)  
After reset, the default state is GPIOB10. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
27The TB0 signal is also brought out on the GPIOB4 pin.  
GPIOB11  
60  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port B GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
(TB128  
)
Input/  
Output  
TB1— Timer B, Channel 1.  
Output  
Comparator B Output— This is the output of comparator B.  
(CMPBO)  
After reset, the default state is GPIOB11. The peripheral functionality  
is controlled via the SIM. See Section 6.3.16.  
28The TB1 signal is also brought out on the GPIOA12 pin.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
34  
FreescaleSemiconductor  
56F8037/56F8027 Signal Pins  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOB12  
57  
Input/  
Input  
Port B GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
(CANTX29  
)
Open Drain  
Output  
CAN Transmit Data — This is the MSCAN interface output.  
After reset, the default state is GPIOB12.  
29The CANTX signal is also brought out on the GPIOB8 pin.  
GPIOB13  
58  
Input/  
Input  
Port B GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
(CANRX30  
)
Input  
CAN Receive Data — This is the MSCAN interface input.  
After reset, the default state is GPIOB13.  
30The CANRX signal is also brought out on the GPIOB9 pin.  
GPIOC0  
24  
Input/  
Input  
Port C GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
(ANA0 &  
CMPAI3)  
Analog  
Input  
ANA0 — Analog input to ADC A, Channel 0.  
Comparator A, Input 3 — This is an analog input to Comparator A.  
When used as an analog input, the signal goes to both ANA0 and  
CMPAI3.  
After reset, the default state is GPIOC0.  
GPIOC1  
(ANA1)  
22  
20  
Input/  
Output  
Input  
Input  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANA1 — Analog input to ADC A, Channel 1.  
After reset, the default state is GPIOC1.  
GPIOC2  
(ANA2)  
Input/  
Output  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANA2 — Analog input to ADC A, Channel 2.  
(VREFHA  
)
Analog  
Input  
VREFHA — Analog reference voltage high (ADC A).  
After reset, the default state is GPIOC2.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
35  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOC3  
(ANA3)  
19  
Input/  
Output  
Input  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANA3 — Analog input to ADC A, Channel 3.  
(VREFLA  
)
Analog  
Input  
VREFLA — Analog reference voltage low. (ADC A).  
After reset, the default state is GPIOC3.  
GPIOC4  
10  
Input/  
Input  
Port C GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
(ANB0 &  
CMPBI3)  
Analog  
Input  
ANB0 — Analog input to ADC B, Channel 0.  
Comparator B, Input 3 — This is an analog input to Comparator B.  
Analog  
Input  
When used an analog input, the signal goes to both ANB0 and  
CMPB13.  
After reset, the default state is GPIOC4.  
GPIOC5  
(ANB1)  
11  
13  
Input/  
Output  
Input  
Input  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANB1 — Analog input to ADC B, Channel 1.  
After reset, the default state is GPIOC5.  
GPIOC6  
(ANB2)  
Input/  
Output  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANB2 — Analog input to ADC B, Channel 2.  
(VREFHB  
)
Input  
VREFHx — Analog reference voltage high (ADC B).  
After reset, the default state is GPIOC6.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
36  
FreescaleSemiconductor  
56F8037/56F8027 Signal Pins  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOC7  
(ANB3)  
14  
Input/  
Output  
Input  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANB3 — Analog input to ADC B, Channel 3.  
(VREFLB  
)
Input  
VREFLB — Analog reference voltage low (ADC B).  
After reset, the default state is GPIOC7.  
GPIOC8  
(ANA4)  
(TXD1)  
26  
Input/  
Output  
Input  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANA4 — Analog input to ADC A, Channel 4.  
Input/  
Transmit Data 1 — SCI1 transmit data output.  
Output  
After reset, the default state is GPIOC8.  
GPIOC9  
(ANA5)  
21  
23  
25  
Input/  
Output  
Input  
Input  
Input  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANA5 — Analog input to ADC A, Channel 5.  
After reset, the default state is GPIOC9.  
GPIOC10  
(ANA6)  
Input/  
Output  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANA6 — Analog input to ADC A, Channel 6.  
After reset, the default state is GPIOC10.  
GPIOC11  
(ANA7)  
Input/  
Output  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANA7 — Analog input to ADC A, Channel 7.  
After reset, the default state is GPIOC11.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
37  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOC12  
(ANB4)  
(RXD1)  
9
Input/  
Output  
Input  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANB4 — Analog input to ADC B, Channel 4.  
Input  
Receive Data 1 — SCI1 receive data input.  
After reset, the default state is GPIOC12.  
GPIOC13  
(ANB5)  
12  
62  
61  
53  
Input/  
Output  
Input  
Input  
Input  
Input  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANB5 — Analog input to ADC B, Channel 5.  
After reset, the default state is GPIOC13.  
GPIOC14  
(ANB6)  
Input/  
Output  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANB6 — Analog input to ADC B, Channel 6.  
After reset, the default state is GPIOC14.  
GPIOC15  
(ANB7)  
Input/  
Output  
Port C GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
ANB7 — Analog input to ADC B, Channel 7.  
After reset, the default state is GPIOC15.  
GPIOD4  
(EXTAL)  
Input/  
Output  
Port D GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
External Crystal Oscillator Input — This input can be connected to  
an 8MHz external crystal. Tie this pin low if XTAL is being driven by  
an external clock source.  
After reset, the default state is GPIOD4.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
38  
FreescaleSemiconductor  
56F8037/56F8027 Signal Pins  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
GPIOD5  
(XTAL)  
52  
Input/  
Output  
Input  
Port D GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input/  
External Crystal Oscillator Output — This output connects the  
internal crystal oscillator output to an external crystal.  
Output  
(CLKIN)  
Input  
External Clock Input — This pin serves as an external clock input.  
After reset, the default state is GPIOD5.  
GPIOD6  
(DAC0)  
18  
15  
59  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port D GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
DAC0— Digital-to-Analog Converter output 0.  
After reset, the default state is GPIOD6.  
GPIOD7  
(DAC1)  
Input/  
Output  
Input,  
internal  
pull-up  
enabled  
Port D GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Analog  
Input  
DAC1— Digital-to-Analog Converter output 1.  
After reset, the default state is GPIOD7.  
TDI  
Input  
Input,  
internal  
pull-up  
enabled  
Test Data Input — This input pin provides a serial input data stream  
to the JTAG/EOnCE port. It is sampled on the rising edge of TCK  
and has an on-chip pull-up resistor.  
(GPIOD0)  
Input/  
Port D GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is TDI.  
TDO  
64  
Output  
Output  
Test Data Output — This tri-stateable output pin provides a serial  
tri-stated, output data stream from the JTAG/EOnCE port. It is driven in the  
internal  
pull-up  
shift-IR and shift-DR controller states, and changes on the falling  
edge of TCK.  
enabled  
(GPIOD1)  
Input/  
Port D GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is TDO.  
Return to Table 2-2  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
39  
Table 2-3 56F8037/56F8027 Signal and Package Information for the 64-Pin LQFP (Continued)  
Signal  
Name  
LQFP  
Pin No.  
StateDuring  
Reset  
Type  
Signal Description  
TCK  
29  
Input  
Input,  
internal  
pull-up  
enabled  
Test Clock Input — This input pin provides a gated clock to  
synchronize the test logic and shift serial data to the JTAG/EOnCE  
port. The pin is connected internally to a pull-up resistor. A Schmitt  
trigger input is used for noise immunity.  
(GPIOD2)  
Input/  
Port D GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is TCK.  
TMS  
63  
Input  
Input,  
internal  
pull-up  
enabled  
Test Mode Select Input — This input pin is used to sequence the  
JTAG TAP controller’s state machine. It is sampled on the rising  
edge of TCK and has an on-chip pull-up resistor.  
(GPIOD3)  
Input/  
Port D GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is TMS.  
Note: Always tie the TMS pin to VDD through a 2.2K resistor.  
Return to Table 2-2  
Part 3 OCCS  
3.1 Overview  
The On-Chip Clock Synthesis (OCCS) module allows designers using an internal relaxation oscillator, an  
external crystal, or an external clock to run 56F8000 family devices at user-selectable frequencies up to  
32MHz. For details, see the OCCS chapter in the 56F802x and 56F803x Peripheral Reference Manual.  
56F8037/56F8027 Data Sheet, Rev. 8  
40  
FreescaleSemiconductor  
Features  
3.2 Features  
The OCCS module interfaces to the oscillator and PLL and offers these features:  
Internal relaxation oscillator  
Ability to power down the internal relaxation oscillator or crystal oscillator  
Ability to put the internal relaxation oscillator into Standby mode  
3-bit postscaler provides control for the PLL output  
Ability to power down the PLL  
Provides a 2X system clock which operates at twice the system clock to the System Integration Module  
(SIM)  
Provides a 3X system clock which operates at three times the system clock to PWM and Timer modules  
Safety shutdown feature is available if the PLL reference clock is lost  
Can be driven from an external clock source  
The clock generation module provides the programming interface for the PLL, internal relaxation  
oscillator, and crystal oscillator.  
3.3 Operating Modes  
In 56F8000 family devices, an internal oscillator, an external crystal, or an external clock source can be  
used to provide a reference clock to the SIM.  
The 2X system clock source output from the OCCS can be described by one of the following equations:  
2X system frequency = oscillator frequency  
2X system frequency = (oscillator frequency x 8) / (postscaler)  
where:  
postscaler = 1, 2, 4, 8, 16, or 32  
The SIM is responsible for further dividing these frequencies by two, which will insure a 50% duty cycle  
in the system clock output.  
The 56F8000 family devices’ on-chip clock synthesis module has the following registers:  
Control Register (OCCS_CTRL)  
Divide-by Register (OCCS_DIVBY)  
Status Register (OCCS_STAT)  
Shutdown Register (OCCS_SHUTDN)  
Oscillator Control Register (OCCS_OCTRL)  
For more information on these registers, please refer to the 56F802x and 56F803x Peripheral Reference  
Manual.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
41  
3.4 Internal Clock Source  
An internal relaxation oscillator can supply the reference frequency when an external frequency source or  
crystal is not used. It is optimized for accuracy and programmability while providing several power-saving  
configurations which accommodate different operating conditions. The internal relaxation oscillator has  
very little temperature and voltage variability. To optimize power, the architecture supports a standby state  
and a power-down state.  
During a boot or reset sequence, the relaxation oscillator is enabled by default (the PRECS bit in the  
PLLCR word is set to 0). Application code can then also switch to the external clock source and power  
down the internal oscillator, if desired. If a changeover between internal and external clock sources is  
required at power-on, the user must ensure that the clock source is not switched until the desired external  
clock source is enabled and stable.  
To compensate for variances in the device manufacturing process, the accuracy of the relaxation oscillator  
can be incrementally adjusted to within + 0.078% of 8MHz by trimming an internal capacitor. Bits 0-9 of  
the OSCTL (oscillator control) register allow the user to set in an additional offset (trim) to this preset  
value to increase or decrease capacitance. Each unit added or subtracted changes the output frequency by  
about 0.078% of 8MHz, allowing incremental adjustment until the desired frequency accuracy is achieved.  
The center frequency of the internal oscillator is calibrated at the factory to 8MHz and the TRIM value is  
stored in the Flash information block and loaded to the FMOPT1 register at reset. When using the  
relaxation oscillator, the boot code should read the FMOPT1 register and set this value as OSCTL TRIM.  
For further information, see the 56F802x and 56F803x Peripheral Reference Manual.  
3.5 Crystal Oscillator  
The internal crystal oscillator circuit is designed to interface with a parallel-resonant crystal resonator in a  
frequency range of 4-8MHz, specified for the external crystal. Figure 3-1 shows a typical crystal oscillator  
circuit. Follow the crystal suppliers recommendations when selecting a crystal, since crystal parameters  
determine the component values required to provide maximum stability and reliable start-up. The load  
capacitance values used in the oscillator circuit design should include all stray layout capacitances. The  
crystal and associated components should be mounted as near as possible to the EXTAL and XTAL pins  
to minimize output distortion and start-up stabilization time.  
56F8037/56F8027 Data Sheet, Rev. 8  
42  
FreescaleSemiconductor  
Ceramic Resonator  
Crystal Frequency = 4 - 8MHz (optimized for 8MHz)  
EXTAL XTAL  
Rz  
EXTAL XTAL  
Rz  
Sample External Crystal Parameters:  
Rz = 750 K  
Note: If the operating temperature range is limited to  
below 85oC (105oC junction), then Rz = 10 Meg   
CL1  
CL2  
Figure 3-1 External Crystal Oscillator Circuit  
3.6 Ceramic Resonator  
The internal crystal oscillator circuit is also designed to interface with a ceramic resonator in the frequency  
range of 4-8MHz. Figure 3-2 shows the typical 2 and 3 terminal ceramic resonators and their circuits.  
Follow the resonator suppliers recommendations when selecting a resonator, since their parameters  
determine the component values required to provide maximum stability and reliable start up. The load  
capacitance values used in the resonator circuit design should include all stray layout capacitances. The  
resonator and associated components should be mounted as near as possible to the EXTAL and XTAL pins  
to minimize output distortion and start-up stabilization time.  
Resonator Frequency = 4 - 8MHz (optimized for 8MHz)  
3 Terminal  
2 Terminal  
EXTAL XTAL  
Rz  
Sample External Ceramic Resonator Parameters:  
Rz = 750 K  
EXTAL XTAL  
Rz  
CL1  
CL2  
C1  
C2  
Figure 3-2 External Ceramic Resonator Circuit  
3.7 External Clock Input - Crystal Oscillator Option  
The recommended method of connecting an external clock is illustrated in Figure 3-3. The external clock  
source is connected to XTAL and the EXTAL pin is grounded. The external clock input must be generated  
using a relatively low impedance driver.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
43  
56F8037/56F8027  
CLKMODE = 1  
XTAL  
EXTAL  
External  
Clock  
GND or  
GPIO  
Figure 3-3 Connecting an External Clock Signal using XTAL  
3.8 Alternate External Clock Input  
The recommended method of connecting an external clock is illustrated in Figure 3-3. The external clock  
source is connected to GPIO6/RXD (primary) or GPIOB5/TA1/FAULT3/XTAL/EXTAL (secondary).  
The user has the option of using GPIO6/RXD/CLKIN or GPIOB5/TA1/FAULT3/CLKIN as external  
clock input.  
56F8037/56F8027  
GPIO  
ExternalClock  
Figure 3-4 Connecting an External Clock Signal using GPIO  
Part 4 Memory Maps  
4.1 Introduction  
The 56F8037/56F8027 device is a 16-bit motor-control chip based on the 56800E core. It uses a  
Harvard-style architecture with two independent memory spaces for Data and Program. On-chip RAM is  
shared by both spaces and Flash memory is used only in Program space.  
This section provides memory maps for:  
Program Address Space, including the Interrupt Vector Table  
Data Address Space, including the EOnCE Memory and Peripheral Memory Maps  
On-chip memory sizes for the device are summarized in Table 4-1. Flash memories’ restrictions are  
identified in the “Use Restrictions” column of Table 4-1.  
56F8037/56F8027 Data Sheet, Rev. 8  
44  
FreescaleSemiconductor  
Interrupt Vector Table  
Table 4-1 Chip Memory Configurations  
On-Chip Memory  
56F8037  
56F8027  
Use Restrictions  
Erase / Program via Flash interface unit and word writes to CDBW  
Program Flash  
(PFLASH)  
32k x 16  
or  
16k x 16  
or  
64KB  
32KB  
Unified RAM (RAM)  
4k x 16  
or  
2k x 16  
or  
Usable by both the Program and Data memory spaces  
8KB  
4KB  
4.2 Interrupt Vector Table  
Table 4-2 provides the 56F8037/56F8027’s reset and interrupt priority structure, including on-chip  
peripherals. The table is organized with higher-priority vectors at the top and lower-priority interrupts  
lower in the table. As indicated, the priority of an interrupt can be assigned to different levels, allowing  
some control over interrupt priorities. All level 3 interrupts will be serviced before level 2, and so on. For  
a selected priority level, the lowest vector number has the highest priority.  
The location of the vector table is determined by the Vector Base Address (VBA). Please see Section 5.6.8  
for the reset value of the VBA.  
By default, the chip reset address and COP reset address will correspond to vector 0 and 1 of the interrupt  
vector table. In these instances, the first two locations in the vector table must contain branch or JMP  
instructions. All other entries must contain JSR instructions.  
1
Table 4-2 Interrupt Vector Table Contents  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
Reserved for Reset Overlay2  
core  
P:$00  
core  
core  
core  
core  
core  
core  
core  
core  
core  
core  
core  
core  
core  
P:$02  
P:$04  
P:$06  
P:$08  
P:$0A  
P:$0C  
P:$0E  
P:$10  
P:$12  
P:$14  
P:$16  
P:$18  
P:$1A  
Reserved for COP Reset Overlay  
Illegal Instruction  
2
3
4
5
6
7
8
9
3
3
3
3
SW Interrupt 3  
HW Stack Overflow  
Misaligned Long Word Access  
EOnCE Step Counter  
EOnCE Breakpoint Unit  
EOnCE Trace Buffer  
EOnCE Transmit Register Empty  
EOnCE Receive Register Full  
SW Interrupt 2  
1-3  
1-3  
1-3  
1-3  
1-3  
2
10  
11  
12  
13  
14  
1
SW Interrupt 1  
0
SW Interrupt 0  
Reserved  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
45  
1
Table 4-2 Interrupt Vector Table Contents (Continued)  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
LVI  
15  
1-3  
P:$1E  
P:$20  
P:$22  
P:$24  
P:$26  
P:$28  
P:$2a  
P:$2C  
P:$2E  
P:$30  
P:$32  
P:$34  
P:$36  
P:$38  
P:$3A  
P:$3C  
P:$3E  
P:$40  
P:$42  
P:$44  
P:$46  
P:$48  
P:$4A  
P:$4C  
P:$4E  
P:$50  
Low-Voltage Detector (Power Sense)  
Phase-Locked Loop  
FM Access Error Interrupt  
FM Command Complete  
FM Command, Data, and Address Buffers Empty  
MSCAN Error  
PLL  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
1-3  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
FM  
FM  
FM  
MSCAN  
MSCAN  
MSCAN  
MSCAN  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
QSPI0  
QSPI0  
QSPI1  
QSPI1  
QSCI0  
QSCI0  
QSCI0  
QSCI0  
QSCI1  
QSCI1  
QSCI1  
QSCI1  
I2C  
MSCAN Receive  
MSCAN Transmit  
MSCAN Wake-Up  
GPIOD  
GPIOC  
GPIOB  
GPIOA  
QSPI0 Receiver Full  
QSPI0 Transmitter Empty  
QSPI1 Receiver Full  
QSPI1 Transmitter Empty  
QSCI0 Transmitter Empty  
QSCI0 Transmitter Idle  
QSCI0 Receiver Error  
QSCI0 Receiver Full  
QSCI1 Transmitter Empty  
QSCI1 Transmitter Idle  
QSCI1 Receiver Error  
QSCI1 Receiver Full  
I2C Error  
I2C General  
I2C Receive  
I2C Transmit  
I2C  
I2C  
I2C  
I2C  
41  
42  
43  
44  
0-2  
0-2  
0-2  
0-2  
P:$52  
P:$54  
P:$56  
P:$58  
I2C Status  
TMRA  
TMRA  
TMRA  
TMRA  
TMRB  
TMRB  
TMRB  
TMRB  
45  
46  
47  
48  
49  
50  
51  
52  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$5A  
P:$5C  
P:$5E  
P:$60  
P:$62  
P:$64  
P:$66  
P:$68  
Timer A, Channel 0  
Timer A, Channel 1  
Timer A, Channel 2  
Timer A, Channel 3  
Timer B, Channel 0  
Timer B, Channel 1  
Timer B, Channel 2  
Timer B, Channel 3  
56F8037/56F8027 Data Sheet, Rev. 8  
46  
FreescaleSemiconductor  
Program Map  
1
Table 4-2 Interrupt Vector Table Contents (Continued)  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
CMPA  
CMPB  
PIT0  
53  
0-2  
P:$6A  
P:$6C  
P:$6E  
P:$70  
P:$72  
P:$74  
P:$76  
P:$78  
P:$7A  
P:$7C  
P:$7E  
Comparator A  
Comparator B  
Interval Timer 0  
Interval Timer 1  
Interval Timer 2  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
-1  
PIT1  
PIT2  
ADC  
ADC A Conversion Complete  
ADC B Conversion Complete  
ADC Zero Crossing or Limit Error  
Reload PWM  
ADC  
ADC  
PWM  
PWM  
SWILP  
PWM Fault  
SW Interrupt Low Priority  
1. Two words are allocated for each entry in the vector table. This does not allow the full address range to be referenced  
from the vector table, providing only 19 bits of address.  
2. If the VBA is set to the reset value, the first two locations of the vector table will overlay the chip reset addresses since  
the reset address would match the base of this vector table.  
4.3 Program Map  
The Program Memory map is shown in Table 4-3 and Table 4-4.  
1
Table 4-3 Program Memory Map at Reset for 56F8037  
Begin/End Address  
Memory Allocation  
P: $1F FFFF  
RESERVED  
P: $00 9000  
On-Chip RAM2  
8KB  
P: $00 8FFF  
P: $00 8000  
P: $00 7FFF  
P: $00 0000  
Internal Program Flash  
64KB  
Cop Reset Address = $00 0002  
Boot Location = $00 0000  
1. All addresses are 16-bit Word addresses.  
2. This RAM is shared with Data space starting at address X: $00 0000; see Figure 4-1.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
47  
1
Table 4-4 Program Memory Map at Reset for 56F8027  
Begin/End Address  
Memory Allocation  
P: $1F FFFF  
RESERVED  
P: $00 8800  
On-Chip RAM2  
4KB  
P: $00 87FF  
P: $00 8000  
P: $00 7FFF  
P: $00 4000  
Internal Program Flash  
32KB  
Cop Reset Address = $00 4002  
Boot Location = $00 4000  
P: $00 3FFF  
P: $00 0000  
RESERVED  
1. All addresses are 16-bit Word addresses.  
2. This RAM is shared with Data space starting at address X: $00 0000; see Figure 4-2.  
4.4 Data Map  
1
Table 4-5 Data Memory Map for 56F8037  
Begin/End Address  
Memory Allocation  
X:$FF FFFF  
EOnCE  
X:$FF FF00  
256 locations allocated  
X:$FF FEFF  
X:$01 0000  
RESERVED  
X:$00 FFFF  
X:$00 F000  
On-Chip Peripherals  
4096 locations allocated  
X:$00 EFFF  
X:$00 9000  
RESERVED  
RESERVED  
RESERVED  
X:$00 8FFF  
X:$00 8000  
X:$00 7FFF  
X:$00 1000  
X:$00 0FFF  
X:$00 0000  
On-Chip Data RAM  
8KB2  
1. All addresses are 16-bit Word addresses.  
2. This RAM is shared with Program space starting at P: $00 8000; see Figure 4-1.  
56F8037/56F8027 Data Sheet, Rev. 8  
48  
FreescaleSemiconductor  
Data Map  
Program  
Data  
EOnCE  
Reserved  
Reserved  
RAM  
Peripherals  
Reserved  
RAM  
Dual Port RAM  
Flash  
Figure 4-1 Dual Port RAM for 56F8037  
Table 4-6 Data Memory Map for 56F8027  
1
Begin/End Address  
Memory Allocation  
X:$FF FFFF  
EOnCE  
X:$FF FF00  
256 locations allocated  
X:$FF FEFF  
X:$01 0000  
RESERVED  
X:$00 FFFF  
X:$00 F000  
On-Chip Peripherals  
4096 locations allocated  
X:$00 EFFF  
X:$00 9000  
RESERVED  
RESERVED  
RESERVED  
X:$00 8FFF  
X:$00 8000  
X:$00 7FFF  
X:$00 0800  
X:$00 07FF  
X:$00 0000  
On-Chip Data RAM  
4KB2  
1. All addresses are 16-bit Word addresses.  
2. This RAM is shared with Program space starting at P: $00 8000; see Figure 4-2.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
49  
Program  
Data  
EOnCE  
Reserved  
Reserved  
RAM  
Flash  
Peripherals  
Reserved  
RAM  
Dual Port RAM  
Reserved  
Figure 4-2 Dual Port RAM for 56F8027  
4.5 EOnCE Memory Map  
Figure 4-7 lists all EOnCE registers necessary to access or control the EOnCE.  
Table 4-7 EOnCE Memory Map  
Address  
X:$FF FFFF  
Register Acronym  
Register Name  
OTX1 / ORX1  
Transmit Register Upper Word  
Receive Register Upper Word  
X:$FF FFFE  
OTX / ORX (32 bits)  
Transmit Register  
Receive Register  
X:$FF FFFD  
X:$FF FFFC  
X:$FF FFFB - X:$FF FFA1  
X:$FF FFA0  
X:$FF FF9F  
X:$FF FF9E  
X:$FF FF9D  
X:$FF FF9C  
X:$FF FF9B  
X:$FF FF9A  
X:$FF FF99  
X:$FF FF98  
X:$FF FF97  
X:$FF FF96  
X:$FF FF95  
X:$FF FF94  
X:$FF FF93  
OTXRXSR  
OCLSR  
Transmit and Receive Status and Control Register  
Core Lock / Unlock Status Register  
Reserved  
OCR  
Control Register  
Instruction Step Counter  
OSCNTR (24 bits)  
OSR  
Instruction Step Counter  
Status Register  
OBASE  
Peripheral Base Address Register  
Trace Buffer Control Register  
Trace Buffer Pointer Register  
Trace Buffer Register Stages  
OTBCR  
OTBPR  
OTB (21 - 24 bits/stage) Trace Buffer Register Stages  
Breakpoint Unit Control Register  
OBCR (24 bits)  
Breakpoint Unit Control Register  
Breakpoint Unit Address Register 1  
Breakpoint Unit Address Register 1  
Breakpoint Unit Address Register 2  
OBAR1 (24 bits)  
56F8037/56F8027 Data Sheet, Rev. 8  
50  
FreescaleSemiconductor  
Peripheral Memory-Mapped Registers  
Table 4-7 EOnCE Memory Map (Continued)  
Address  
X:$FF FF92  
Register Acronym  
Register Name  
Breakpoint Unit Address Register 2  
OBAR2 (32 bits)  
X:$FF FF91  
Breakpoint Unit Mask Register 2  
Breakpoint Unit Mask Register 2  
Reserved  
X:$FF FF90  
OBMSK (32 bits)  
OBCNTR  
X:$FF FF8F  
X:$FF FF8E  
EOnCE Breakpoint Unit Counter  
Reserved  
X:$FF FF8D  
X:$FF FF8C  
Reserved  
X:$FF FF8B  
Reserved  
X:$FF FF8A  
OESCR  
External Signal Control Register  
Reserved  
X:$FF FF89 - X:$FF FF00  
4.6 Peripheral Memory-Mapped Registers  
On-chip peripheral registers are part of the data memory map on the 56800E series. These locations may  
be accessed with the same addressing modes used for ordinary Data memory, except all peripheral  
registers should be read or written using word accesses only.  
Table 4-8 summarizes base addresses for the set of peripherals on the 56F8037/56F8027 device.  
Peripherals are listed in order of the base address.  
The following tables list all of the peripheral registers required to control or access the peripherals.  
Table 4-8 Data Memory Peripheral Base Address Map Summary  
Peripheral  
Prefix  
Base Address  
Table Number  
Timer A  
Timer B  
ADC  
TMRA  
TMRB  
ADC  
X:$00 F000  
X:$00 F040  
X:$00 F080  
X:$00 F0C0  
X:$00 F0E0  
X:$00 F100  
X:$00 F120  
X:$00 F130  
X:$00 F140  
X:$00 F150  
X:$00 F160  
X:$00 F170  
X:$00 F180  
X:$00 F190  
X:$00 F1A0  
X:$00 F1B0  
4-9  
4-10  
4-11  
4-12  
4-13  
4-14  
4-15  
4-16  
4-17  
4-18  
4-19  
4-20  
4-21  
4-22  
4-23  
4-24  
PWM  
ITCN  
SIM  
PWM  
ITCN  
SIM  
COP  
COP  
CLK, PLL, OSC  
Power Supervisor  
GPIO Port A  
GPIO Port B  
GPIO Port C  
GPIO Port D  
PIT 0  
OCCS  
PS  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
PIT0  
PIT 1  
PIT1  
PIT 2  
PIT2  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
51  
Table 4-8 Data Memory Peripheral Base Address Map Summary (Continued)  
Peripheral  
Prefix  
Base Address  
Table Number  
DAC 0  
DAC 1  
DAC0  
DAC1  
CMPA  
CMPB  
QSCI0  
QSCI1  
QSPI0  
QSPI1  
I2C  
X:$00 F1C0  
X:$00 F1D0  
X:$00 F1E0  
X:$00 F1F0  
X:$00 F200  
X:$00 F210  
X:$00 F220  
X:$00 F230  
X:$00 F280  
4-25  
4-26  
4-27  
4-28  
4-29  
4-30  
4-31  
4-32  
4-33  
Comparator A  
Comparator B  
QSCI 0  
QSCI 1  
QSPI 0  
QSPI 1  
I2C  
FM  
FM  
X:$00 F400  
X:$00 F800  
4-34  
4-35  
MSCAN  
CAN  
56F8037/56F8027 Data Sheet, Rev. 8  
52  
FreescaleSemiconductor  
Peripheral Memory-Mapped Registers  
Table 4-9 Quad Timer A Registers Address Map  
(TMRA_BASE = $00 F000)  
Register Acronym  
Address Offset  
$0  
Register Description  
Compare Register 1  
TMRA0_COMP1  
TMRA0_COMP2  
TMRA0_CAPT  
TMRA0_LOAD  
TMRA0_HOLD  
TMRA0_CNTR  
TMRA0_CTRL  
TMRA0_SCTRL  
TMRA0_CMPLD1  
TMRA0_CMPLD2  
TMRA0_CSCTRL  
TMRA0_FILT  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Input Filter Register  
Reserved  
TMRA0_ENBL  
TMRA1_COMP1  
TMRA1_COMP2  
TMRA1_CAPT  
TMRA1_LOAD  
TMRA1_HOLD  
TMRA1_CNTR  
TMRA1_CTRL  
TMRA1_SCTRL  
TMRA1_CMPLD1  
TMRA1_CMPLD2  
TMRA1_CSCTRL  
TMRA1_FILT  
$F  
Timer Channel Enable Register  
Compare Register 1  
Compare Register 2  
Capture Register  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Input Filter Register  
Reserved  
TMRA2_COMP1  
TMRA2_COMP2  
TMRA2_CAPT  
TMRA2_LOAD  
TMRA2_HOLD  
TMRA2_CNTR  
TMRA2_CTRL  
TMRA2_SCTRL  
TMRA2_CMPLD1  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
Compare Register 1  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
53  
Table 4-9 Quad Timer A Registers Address Map (Continued)  
(TMRA_BASE = $00 F000)  
Register Acronym  
Address Offset  
Register Description  
Comparator Load Register 2  
TMRA2_CMPLD2  
TMRA2_CSCTRL  
TMRA2_FILT  
$29  
$2A  
$2B  
Comparator Status and Control Register  
Input Filter Register  
Reserved  
TMRA3_COMP1  
TMRA3_COMP2  
TMRA3_CAPT  
TMRA3_LOAD  
TMRA3_HOLD  
TMRA3_CNTR  
TMRA3_CTRL  
TMRA3_SCTRL  
TMRA3_CMPLD1  
TMRA3_CMPLD2  
TMRA3_CSCTRL  
TMRA3_FILT  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
$3B  
Compare Register 1  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Input Filter Register  
Reserved  
Table 4-10 Quad Timer B Registers Address Map  
(TMRB_BASE = $00 F040)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRB0_COMP1  
TMRB0_COMP2  
TMRB0_CAPT  
TMRB0_LOAD  
TMRB0_HOLD  
TMRB0_CNTR  
TMRB0_CTRL  
TMRB0_SCTRL  
TMRB0_CMPLD1  
TMRB0_CMPLD2  
TMRB0_CSCTRL  
TMRB0_FILT  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Input Filter Register  
Reserved  
TMRB0_ENBL  
TMRB1_COMP1  
TMRB1_COMP2  
TMRB1_CAPT  
$F  
Timer Channel Enable Register  
Compare Register 1  
Compare Register 2  
Capture Register  
$10  
$11  
$12  
56F8037/56F8027 Data Sheet, Rev. 8  
54  
FreescaleSemiconductor  
Peripheral Memory-Mapped Registers  
Table 4-10 Quad Timer B Registers Address Map (Continued)  
(TMRB_BASE = $00 F040)  
Register Acronym  
Address Offset  
$13  
Register Description  
TMRB1_LOAD  
TMRB1_HOLD  
TMRB1_CNTR  
TMRB1_CTRL  
TMRB1_SCTRL  
TMRB1_CMPLD1  
TMRB1_CMPLD2  
TMRB1_CSCTRL  
TMRB1_FILT  
Load Register  
Hold Register  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Input Filter Register  
Reserved  
TMRB2_COMP1  
TMRB2_COMP2  
TMRB2_CAPT  
TMRB2_LOAD  
TMRB2_HOLD  
TMRB2_CNTR  
TMRB2_CTRL  
TMRB2_SCTRL  
TMRB2_CMPLD1  
TMRB2_CMPLD2  
TMRB2_CSCTRL  
TMRB2_FILT  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
$2B  
Compare Register 1  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Input Filter Register  
Reserved  
TMRB3_COMP1  
TMRB3_COMP2  
TMRB3_CAPT  
TMRB3_LOAD  
TMRB3_HOLD  
TMRB3_CNTR  
TMRB3_CTRL  
TMRB3_SCTRL  
TMRB3_CMPLD1  
TMRB3_CMPLD2  
TMRB3_CSCTRL  
TMRB3_FILT  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
$3B  
Compare Register 1  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Input Filter Register  
Reserved  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
55  
Table 4-11 Analog-to-Digital Converter Registers Address Map  
(ADC_BASE = $00 F080)  
Register Acronym  
Address Offset  
Register Description  
Control Register 1  
ADC_CTRL1  
ADC_CTRL2  
ADC_ZXCTRL  
ADC_CLIST 1  
ADC_CLIST 2  
ADC_CLIST 3  
ADC_CLIST 4  
ADC_SDIS  
$0  
$1  
Control Register 2  
$2  
Zero Crossing Control Register  
Channel List Register 1  
Channel List Register 2  
Channel List Register 3  
Channel List Register 4  
Sample Disable Register  
Status Register  
$3  
$4  
$5  
$6  
$7  
ADC_STAT  
$8  
ADC_RDY  
$9  
Conversion Ready Register  
Limit Status Register  
Zero Crossing Status Register  
Result Register 0  
ADC_LIMSTAT  
ADC_ZXSTAT  
ADC_RSLT0  
ADC_RSLT1  
ADC_RSLT2  
ADC_RSLT3  
ADC_RSLT4  
ADC_RSLT5  
ADC_RSLT6  
ADC_RSLT7  
ADC_RSLT8  
ADC_RSLT9  
ADC_RSLT10  
ADC_RSLT11  
ADC_RSLT12  
ADC_RSLT13  
ADC_RSLT14  
ADC_RSLT15  
ADC_LOLIM0  
ADC_LOLIM1  
ADC_LOLIM2  
ADC_LOLIM3  
ADC_LOLIM4  
ADC_LOLIM5  
ADC_LOLIM6  
ADC_LOLIM7  
$A  
$B  
$C  
$D  
Result Register 1  
$E  
Result Register 2  
$F  
Result Register 3  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
$1C  
$1D  
$1E  
$1F  
$20  
$21  
$22  
$23  
Result Register 4  
Result Register 5  
Result Register 6  
Result Register 7  
Result Register 8  
Result Register 9  
Result Register 10  
Result Register 11  
Result Register 12  
Result Register 13  
Result Register 14  
Result Register 15  
Low Limit Register 0  
Low Limit Register 1  
Low Limit Register 2  
Low Limit Register 3  
Low Limit Register 4  
Low Limit Register 5  
Low Limit Register 6  
Low Limit Register 7  
56F8037/56F8027 Data Sheet, Rev. 8  
56  
FreescaleSemiconductor  
Peripheral Memory-Mapped Registers  
Table 4-11 Analog-to-Digital Converter Registers Address Map (Continued)  
(ADC_BASE = $00 F080)  
Register Acronym  
Address Offset  
$24  
Register Description  
High Limit Register 0  
ADC_HILIM0  
ADC_HILIM1  
ADC_HILIM2  
ADC_HILIM3  
ADC_HILIM4  
ADC_HILIM5  
ADC_HILIM6  
ADC_HILIM7  
ADC_OFFST0  
ADC_OFFST1  
ADC_OFFST2  
ADC_OFFST3  
ADC_OFFST4  
ADC_OFFST5  
ADC_OFFST6  
ADC_OFFST7  
ADC_PWR  
$25  
$26  
$27  
$28  
$29  
$2A  
$2B  
$2C  
$2D  
$2E  
$2F  
$30  
$31  
$32  
$33  
$34  
$35  
High Limit Register 1  
High Limit Register 2  
High Limit Register 3  
High Limit Register 4  
High Limit Register 5  
High Limit Register 6  
High Limit Register 7  
Offset Register 0  
Offset Register 1  
Offset Register 2  
Offset Register 3  
Offset Register 4  
Offset Register 5  
Offset Register 6  
Offset Register 7  
Power Control Register  
Calibration Register  
Reserved  
ADC_CAL  
Table 4-12 Pulse Width Modulator Registers Address Map  
(PWM_BASE = $00 F0C0)  
Register Acronym  
Address Offset  
Register Description  
PWM_CTRL  
PWM_FCTRL  
PWM_FLTACK  
PWM_OUT  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
Control Register  
Fault Control Register  
Fault Status Acknowledge Register  
Output Control Register  
Counter Register  
PWM_CNTR  
PWM_CMOD  
PWM_VAL0  
PWM_VAL1  
PWM_VAL2  
PWM_VAL3  
PWM_VAL4  
PWM_VAL5  
PWM_DTIM0  
Counter Modulo Register  
Value Register 0  
Value Register 1  
Value Register 2  
Value Register 3  
Value Register 4  
Value Register 5  
Dead Time Register 0  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
57  
Table 4-12 Pulse Width Modulator Registers Address Map (Continued)  
(PWM_BASE = $00 F0C0)  
Register Acronym  
Address Offset  
Register Description  
Dead Time Register 1  
PWM_DTIM1  
PWM_DMAP1  
PWM_DMAP2  
PWM_CNFG  
PWM_CCTRL  
PWM_PORT  
PWM_ICCTRL  
PWM_SCTRL  
PWM_SYNC  
PWM_FFILT0  
PWM_FFILT1  
PWM_FFILT2  
PWM_FFILT3  
$D  
$E  
Disable Mapping Register 1  
Disable Mapping Register 2  
Configure Register  
$F  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
Channel Control Register  
Port Register  
Internal Correction Control Register  
Source Control Register  
Synchronization Window Register  
Fault0 Filter Register  
Fault1 Filter Register  
Fault2 Filter Register  
Fault3 Filter Register  
Table 4-13 Interrupt Control Registers Address Map  
(ITCN_BASE = $00 F0E0)  
Register Acronym  
Address Offset  
Register Description  
Interrupt Priority Register 0  
ITCN_IPR0  
ITCN_IPR1  
ITCN_IPR2  
ITCN_IPR3  
ITCN_IPR4  
ITCN_IPR5  
ITCN_IPR6  
ITCN_VBA  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
Interrupt Priority Register 1  
Interrupt Priority Register 2  
Interrupt Priority Register 3  
Interrupt Priority Register 4  
Interrupt Priority Register 5  
Interrupt Priority Register 6  
Vector Base Address Register  
Fast Interrupt Match 0 Register  
Fast Interrupt Vector Address Low 0 Register  
Fast Interrupt Vector Address High 0 Register  
Fast Interrupt Match 1 Register  
Fast Interrupt Vector Address Low 1 Register  
Fast Interrupt Vector Address High 1 Register  
IRQ Pending Register 0  
ITCN_FIM0  
ITCN_FIVAL0  
ITCN_FIVAH0  
ITCN_FIM1  
ITCN_FIVAL1  
ITCN_FIVAH1  
ITCN_IRQP0  
ITCN_IRQP1  
ITCN_IRQP2  
IRQ Pending Register 1  
IRQ Pending Register 2  
56F8037/56F8027 Data Sheet, Rev. 8  
58  
FreescaleSemiconductor  
Peripheral Memory-Mapped Registers  
Table 4-13 Interrupt Control Registers Address Map (Continued)  
(ITCN_BASE = $00 F0E0)  
Register Acronym  
Address Offset  
$11  
Register Description  
IRQ Pending Register 3  
ITCN_IRQP3  
Reserved  
ITCN_ICTRL  
$16  
Interrupt Control Register  
Reserved  
Table 4-14 SIM Registers Address Map  
(SIM_BASE = $00 F100)  
Register Acronym  
Address Offset  
Register Description  
SIM_CTRL  
SIM_RSTAT  
SIM_SWC0  
SIM_SWC1  
SIM_SWC2  
SIM_SWC3  
SIM_MSHID  
SIM_LSHID  
SIM_PWR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
Control Register  
Reset Status Register  
Software Control Register 0  
Software Control Register 1  
Software Control Register 2  
Software Control Register 3  
Most Significant Half JTAG ID  
Least Significant Half JTAG ID  
Power Control Register  
Reserved  
SIM_CLKOUT  
SIM_PCR  
$A  
$B  
Clock Out Select Register  
Peripheral Clock Rate Register  
Peripheral Clock Enable Register 0  
Peripheral Clock Enable Register 1  
Peripheral STOP Disable Register 0  
Peripheral STOP Disable Register 1  
I/O Short Address Location High Register  
I/O Short Address Location Low Register  
Protection Register  
SIM_PCE0  
SIM_PCE1  
SIM_SD0  
$C  
$D  
$E  
SIM_SD1  
$F  
SIM_IOSAHI  
SIM_IOSALO  
SIM_PROT  
SIM_GPSA0  
SIM_GPSA1  
SIM_GPSB0  
SIM_GPSB1  
SIM_GPSCD  
SIM_IPS0  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
GPIO Peripheral Select Register 0 for GPIOA  
GPIO Peripheral Select Register 1 for GPIOA  
GPIO Peripheral Select Register 0 for GPIOB  
GPIO Peripheral Select Register 1 for GPIOB  
GPIO Peripheral Select Register for GPIOC and GPIOD  
Internal Peripheral Source Select Register 0 for PWM  
Internal Peripheral Source Select Register 1 for DACs  
Internal Peripheral Source Select Register 2 for TMRA  
Reserved  
SIM_IPS1  
SIM_IPS2  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
59  
Table 4-15 Computer Operating Properly Registers Address Map  
(COP_BASE = $00 F120)  
Register Acronym  
Address Offset  
Register Description  
COP_CTRL  
COP_TOUT  
COP_CNTR  
$0  
$1  
$2  
Control Register  
Time-Out Register  
Counter Register  
Table 4-16 Clock Generation Module Registers Address Map  
(OCCS_BASE = $00 F130)  
Register Acronym  
Address Offset  
Register Description  
OCCS_CTRL  
OCCS_DIVBY  
OCCS_STAT  
$0  
$1  
$2  
Control Register  
Divide-By Register  
Status Register  
Reserved  
OCCS_OCTRL  
OCCS_CLKCHK  
OCCS_PROT  
$5  
$6  
$7  
Oscillator Control Register  
Clock Check Register  
Protection Register  
Table 4-17 Power Supervisor Registers Address Map  
(PS_BASE = $00 F140)  
Register Acronym  
Address Offset  
Register Description  
PS_CTRL  
PS_STAT  
$0  
$1  
Control Register  
Status Register  
Reserved  
Table 4-18 GPIOA Registers Address Map  
(GPIOA_BASE = $00 F150)  
Address Offset  
Register Description  
Register Acronym  
GPIOA_PUPEN  
GPIOA_DATA  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
Pull-up Enable Register  
Data Register  
GPIOA_DDIR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
GPIOA_PEREN  
GPIOA_IASSRT  
GPIOA_IEN  
GPIOA_IPOL  
56F8037/56F8027 Data Sheet, Rev. 8  
60  
FreescaleSemiconductor  
Peripheral Memory-Mapped Registers  
Table 4-18 GPIOA Registers Address Map (Continued)  
(GPIOA_BASE = $00 F150)  
Address Offset  
Register Description  
Register Acronym  
GPIOA_IPEND  
$7  
$8  
$9  
$A  
$B  
Interrupt Pending Register  
GPIOA_IEDGE  
GPIOA_PPOUTM  
GPIOA_RDATA  
GPIOA_DRIVE  
Interrupt Edge-Sensitive Register  
Push-Pull Output Mode Control Register  
Raw Data Input Register  
Output Drive Strength Control Register  
Table 4-19 GPIOB Registers Address Map  
(GPIOB_BASE = $00 F160)  
Register Acronym  
Address Offset  
Register Description  
GPIOB_PUPEN  
GPIOB_DATA  
GPIOB_DDIR  
GPIOB_PEREN  
GPIOB_IASSRT  
GPIOB_IEN  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
Pull-up Enable Register  
Data Register  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Output Mode Control Register  
Raw Data Input Register  
GPIOB_IPOL  
GPIOB_IPEND  
GPIOB_IEDGE  
GPIOB_PPOUTM  
GPIOB_RDATA  
GPIOB_DRIVE  
Output Drive Strength Control Register  
Table 4-20 GPIOC Registers Address Map  
(GPIOC_BASE = $00 F170)  
Register Acronym  
Address Offset  
Register Description  
GPIOC_PUPEN  
GPIOC_DATA  
GPIOC_DDIR  
GPIOC_PEREN  
GPIOC_IASSRT  
GPIOC_IEN  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
Pull-up Enable Register  
Data Register  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Output Mode Control Register  
Raw Data Input Register  
GPIOC_IPOL  
GPIOC_IPEND  
GPIOC_IEDGE  
GPIOC_PPOUTM  
GPIOC_RDATA  
GPIOC_DRIVE  
Output Drive Strength Control Register  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
61  
Table 4-21 GPIOD Registers Address Map  
(GPIOD_BASE = $00 F180)  
Register Acronym  
Address Offset  
Register Description  
GPIOD_PUPEN  
GPIOD_DATA  
GPIOD_DDIR  
GPIOD_PEREN  
GPIOD_IASSRT  
GPIOD_IEN  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
Pull-up Enable Register  
Data Register  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Output Mode Control Register  
Raw Data Input Register  
GPIOD_IPOL  
GPIOD_IPEND  
GPIOD_IEDGE  
GPIOD_PPOUTM  
GPIOD_RDATA  
GPIOD_DRIVE  
Output Drive Strength Control Register  
Table 4-22 Programmable Interval Timer 0 Registers Address Map  
(PIT0_BASE = $00 F190)  
Register Acronym  
Address Offset  
Register Description  
PIT0_CTRL  
PIT0_MOD  
PIT0_CNTR  
$0  
$1  
$2  
Control Register  
Modulo Register  
Counter Register  
Table 4-23 Programmable Interval Timer 1 Registers Address Map  
(PIT1_BASE = $00 F1A0)  
Register Acronym  
Address Offset  
Register Description  
PIT1_CTRL  
PIT1_MOD  
PIT1_CNTR  
$0  
$1  
$2  
Control Register  
Modulo Register  
Counter Register  
Table 4-24 Programmable Interval Timer 2 Registers Address Map  
(PIT2_BASE = $00 F1B0)  
Register Acronym  
Address Offset  
Register Description  
PIT2_CTRL  
PIT2_MOD  
$0  
$1  
Control Register  
Modulo Register  
56F8037/56F8027 Data Sheet, Rev. 8  
62  
FreescaleSemiconductor  
Peripheral Memory-Mapped Registers  
Table 4-24 Programmable Interval Timer 2 Registers Address Map (Continued)  
(PIT2_BASE = $00 F1B0)  
Register Acronym  
Address Offset  
Register Description  
Counter Register  
PIT2_CNTR  
$2  
Table 4-25 Digital-to-Analog Converter 0 Registers Address Map  
(DAC0_BASE = $00 F1C0)  
Register Acronym  
Address Offset  
Register Description  
DAC0_CTRL  
DAC0_DATA  
DAC0_STEP  
DAC0_MINVAL  
DAC0_MAXVAL  
$0  
$1  
$2  
$3  
$4  
Control Register  
Data Register  
Step Register  
Minimum Value Register  
Maximum Value Register  
Table 4-26 Digital-to-Analog Converter 0 Registers Address Map  
(DAC1_BASE = $00 F1D0)  
Register Acronym  
Address Offset  
Register Description  
DAC1_CTRL  
DAC1_DATA  
DAC1_STEP  
DAC1_MINVAL  
DAC1_MAXVAL  
$0  
$1  
$2  
$3  
$4  
Control Register  
Data Register  
Step Register  
Minimum Value Register  
Maximum Value Register  
Table 4-27 Comparator A Registers Address Map  
(CMPA_BASE = $00 F1E0)  
Register Acronym  
Address Offset  
Register Description  
CMPA_CTRL  
CMPA_STAT  
CMPA_FILT  
$0  
$1  
$2  
Control Register  
Status Register  
Filter Register  
Table 4-28 Comparator B Registers Address Map  
(CMPB_BASE = $00 F1F0)  
Register Acronym  
Address Offset  
Register Description  
CMPB_CTRL  
CMPB_STAT  
CMPB_FILT  
$0  
$1  
$2  
Control Register  
Status Register  
Filter Register  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
63  
Table 4-29 Queued Serial Communication Interface 0 Registers Address Map  
(QSCI0_BASE = $00 F200)  
Register Acronym  
Address Offset  
Register Description  
Baud Rate Register  
QSCI0_RATE  
QSCI0_CTRL1  
QSCI0_CTRL2  
QSCI0_STAT  
QSCI0_DATA  
$0  
$1  
$2  
$3  
$4  
Control Register 1  
Control Register 2  
Status Register  
Data Register  
Table 4-30 Queued Serial Communication Interface 1 Registers Address Map  
(QSCI1_BASE = $00 F210)  
Register Acronym  
Address Offset  
Register Description  
Baud Rate Register  
QSCI1_RATE  
QSCI1_CTRL1  
QSCI1_CTRL2  
QSCI1_STAT  
QSCI1_DATA  
$0  
$1  
$2  
$3  
$4  
Control Register 1  
Control Register 2  
Status Register  
Data Register  
Table 4-31 Queued Serial Peripheral Interface 0 Registers Address Map  
(QSPI0_BASE = $00 F220)  
Register Acronym  
Address Offset  
Register Description  
Status and Control Register  
QSPI0_SCTRL  
QSPI0_DSCTRL  
QSPI0_DRCV  
QSPI0_DXMIT  
QSPI0_FIFO  
$0  
$1  
$2  
$3  
$4  
$5  
Data Size and Control Register  
Data Receive Register  
Data Transmit Register  
FIFO Control Register  
Delay Register  
QSPI0_DELAY  
Table 4-32 Queued Serial Peripheral Interface 1 Registers Address Map  
(QSPI1_BASE = $00 F230)  
Register Acronym  
Address Offset  
Register Description  
Status and Control Register  
QSPI1_SCTRL  
QSPI1_DSCTRL  
QSPI1_DRCV  
QSPI1_DXMIT  
QSPI1_FIFO  
$0  
$1  
$2  
$3  
$4  
Data Size and Control Register  
Data Receive Register  
Data Transmit Register  
FIFO Control Register  
56F8037/56F8027 Data Sheet, Rev. 8  
64  
FreescaleSemiconductor  
Peripheral Memory-Mapped Registers  
Table 4-32 Queued Serial Peripheral Interface 1 Registers Address Map  
(QSPI1_BASE = $00 F230)  
Register Acronym  
Address Offset  
$5  
Register Description  
QSPI1_DELAY  
Delay Register  
2
Table 4-33 I C Registers Address Map  
(I2C_BASE = $00 F280)  
Register Acronym  
Address Offset  
Register Description  
I2C_CTRL  
$0  
$2  
Control Register  
I2C_TAR  
Target Address Register  
I2C_SAR  
$4  
Slave Address Register  
I2C_DATA  
$8  
RX/TX Data Buffer and Command Register  
Standard Speed Clock SCL High Count Register  
Standard Speed Clock SCL Low Count Register  
Fast Speed Clock SCL High Count Register  
Fast Speed Clock SCL Low Count Register  
Interrupt Status Register  
I2C_SSHCNT  
I2C_SSLCNT  
I2C_FSHCNT  
I2C_FSLCNT  
I2C_ISTAT  
$A  
$C  
$E  
$10  
$16  
$18  
$1A  
$1C  
$1E  
$20  
$22  
$24  
$26  
$28  
$2A  
$2C  
$2E  
$30  
$32  
$34  
$36  
$38  
$3A  
$3C  
$40  
I2C_IMASK  
Interrupt Mask Register  
I2C_RISTAT  
I2C_RXFT  
Raw Interrupt Status Register  
Receive FIFO Threshold Register  
Transmit FIFO Threshold Register  
Clear Combined and Individual Interrupts Register  
Clear RX_UNDER Interrupt Register  
Clear RX_OVER Interrupt Register  
Clear TX_OVER Interrupt Register  
Clear RD_REQ Interrupt Register  
Clear TX_ABRT Interrupt Register  
Clear RX_DONE Interrupt Register  
Clear Activity Interrupt Register  
Clear STOP_DET Interrupt Register  
Clear START_DET Interrupt Register  
Clear GEN_CALL Interrupt Register  
Enable Register  
I2C_TXFT  
I2C_CLRINT  
I2C_CLRRXUND  
I2C_CLRRXOVR  
I2C_CLRTXOVR  
I2C_CLRRDREQ  
I2C_CLRTXABRT  
I2C_CLRRXDONE  
I2C_CLRACT  
I2C_CLRSTPDET  
I2C_CLRSTDET  
I2C_CLRGC  
I2C_ENBL  
I2C_STAT  
Status Register  
I2C_TXFLR  
Transmit FIFO Level Register  
I2C_RXFLR  
Receive FIFO Level Register  
I2C_TXABRTSRC  
Transmit Abort Status Register  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
65  
Table 4-34 Flash Module Registers Address Map  
(FM_BASE = $00 F400)  
Register Acronym  
Address Offset  
Register Description  
Clock Divider Register  
FM_CLKDIV  
FM_CNFG  
$0  
$1  
Configuration Register  
Reserved  
$2  
FM_SECHI  
FM_SECLO  
$3  
Security High Half Register  
Security Low Half Register  
Reserved  
$4  
$5 - $9  
$10  
FM_PROT  
Protection Register  
Reserved  
$11 - $12  
$13  
FM_USTAT  
FM_CMD  
User Status Register  
Command Register  
Reserved  
$14  
$15 - $17  
$18  
FM_DATA  
FM_OPT1  
FM_TSTSIG  
Data Buffer Register  
Reserved  
$19 - $A  
$1B  
Information Option Register 1  
Reserved  
$1C  
$1D  
Test Array Signature Register  
Table 4-35 MSCAN Registers Address Map  
(MSCAN_BASE = $00 F800)  
Register Acronym  
Address Offset  
Register Description  
MSCAN_CTRL0  
$00  
$01  
$02  
$03  
$04  
$05  
$06  
$07  
$08  
$09  
$0A  
$0B  
Control Register 0  
MSCAN_CTRL1  
MSCAN_BTR0  
MSCAN_BTR1  
MSCAN_RFLG  
MSCAN_RIER  
MSCAN_TFLG  
MSCAN_TIER  
MSCAN_TARQ  
MSCAN_TAAK  
MSCAN_TBSEL  
MSCAN_IDAC  
Control Register 1  
Bus Timing Register 0  
Bus Timing Register 1  
Receiver Flag Register  
Receiver Interrupt Enable Register  
Transmitter Flag Register  
Transmitter Interrupt Enable Register  
Transmitter Message Abort Request Register  
Transmitter Message Abort Acknowledge Register  
Transmitter Buffer Selection Register  
Identifier Acceptance Control Register  
Reserved  
MSCAN_MISC  
MSCAN_RXERR  
MSCAN_TXERR  
$0D  
$0E  
$0F  
Miscellaneous Register  
Receive Error Register  
Transmit Error Register  
56F8037/56F8027 Data Sheet, Rev. 8  
66  
FreescaleSemiconductor  
Peripheral Memory-Mapped Registers  
Table 4-35 MSCAN Registers Address Map (Continued)  
(MSCAN_BASE = $00 F800)  
Register Acronym  
MSCAN_IDAR0  
Address Offset  
Register Description  
Identifier Acceptance Register 0  
Identifier Acceptance Register 1  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
$1C  
$1D  
$1E  
$1F  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
$2B  
$2C  
$2D  
$2E  
$2F  
$30  
$31  
$32  
$33  
MSCAN_IDAR1  
MSCAN_IDAR2  
MSCAN_IDAR3  
MSCAN_IDMR0  
MSCAN_IDMR1  
MSCAN_IDMR2  
MSCAN_IDMR3  
MSCAN_IDAR4  
MSCAN_IDAR5  
MSCAN_IDAR6  
MSCAN_IDAR7  
MSCAN_IDMR4  
MSCAN_IDMR5  
MSCAN_IDMR6  
MSCAN_IDMR7  
MSCAN_RXFG0  
MSCAN_RXFG1  
MSCAN_RXFG2  
MSCAN_RXFG3  
MSCAN_RXFG4  
MSCAN_RXFG5  
MSCAN_RXFG6  
MSCAN_RXFG7  
MSCAN_RXFG8  
MSCAN_RXFG9  
MSCAN_RXFG10  
MSCAN_RXFG11  
MSCAN_RXFG12  
MSCAN_RXFG13  
MSCAN_RXFG14  
MSCAN_RXFG15  
MSCAN_TXFG0  
MSCAN_TXFG1  
MSCAN_TXFG2  
MSCAN_TXFG3  
Identifier Acceptance Register 2  
Identifier Acceptance Register 3  
Identifier Mask Register 0  
Identifier Mask Register 1  
Identifier Mask Register 2  
Identifier Mask Register 3  
Identifier Acceptance Register 4  
Identifier Acceptance Register 5  
Identifier Acceptance Register 6  
Identifier Acceptance Register 7  
Identifier Mask Register 4  
Identifier Mask Register 5  
Identifier Mask Register 6  
Identifier Mask Register 7  
Foreground Receive Buffer 0  
Foreground Receive Buffer 1  
Foreground Receive Buffer 2  
Foreground Receive Buffer 3  
Foreground Receive Buffer 4  
Foreground Receive Buffer 5  
Foreground Receive Buffer 6  
Foreground Receive Buffer 7  
Foreground Receive Buffer 8  
Foreground Receive Buffer 9  
Foreground Receive Buffer 10  
Foreground Receive Buffer 11  
Foreground Receive Buffer 12  
Foreground Receive Buffer 13  
Foreground Receive Buffer 14  
Foreground Receive Buffer 15  
Foreground Transmit Buffer 0  
Foreground Transmit Buffer 1  
Foreground Transmit Buffer 2  
Foreground Transmit Buffer 3  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
67  
Table 4-35 MSCAN Registers Address Map (Continued)  
(MSCAN_BASE = $00 F800)  
Register Acronym  
MSCAN_TXFG4  
Address Offset  
Register Description  
Foreground Transmit Buffer 4  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
$3B  
$3C  
$3D  
$3E  
$3F  
MSCAN_TXFG5  
MSCAN_TXFG6  
MSCAN_TXFG7  
MSCAN_TXFG8  
MSCAN_TXFG9  
MSCAN_TXFG10  
MSCAN_TXFG11  
MSCAN_TXFG12  
MSCAN_TXFG13  
MSCAN_TXFG14  
MSCAN_TXFG15  
Foreground Transmit Buffer 5  
Foreground Transmit Buffer 6  
Foreground Transmit Buffer 7  
Foreground Transmit Buffer 8  
Foreground Transmit Buffer 9  
Foreground Transmit Buffer 10  
Foreground Transmit Buffer 11  
Foreground Transmit Buffer 12  
Foreground Transmit Buffer 13  
Foreground Transmit Buffer 14  
Foreground Transmit Buffer 15  
Reserved  
Part 5 Interrupt Controller (ITCN)  
5.1 Introduction  
The Interrupt Controller (ITCN) module arbitrates between various interrupt requests (IRQs), signals to  
the 56800E core when an interrupt of sufficient priority exists, and to what address to jump in order to  
service this interrupt.  
5.2 Features  
The ITCN module design includes these distinctive features:  
Programmable priority levels for each IRQ  
Two programmable Fast Interrupts  
Notification to SIM module to restart clocks out of Wait and Stop modes  
Ability to drive initial address on the address bus after reset  
For further information, see Table 4-2, Interrupt Vector Table Contents.  
5.3 Functional Description  
The Interrupt Controller is a slave on the IPBus. It contains registers that allow each of the 64 interrupt  
sources to be set to one of four priority levels (excluding certain interrupts that are of fixed priority). Next,  
all of the interrupt requests of a given level are priority encoded to determine the lowest numerical value  
of the active interrupt requests for that level. Within a given priority level, number 0 is the highest priority  
and number 63 is the lowest.  
56F8037/56F8027 Data Sheet, Rev. 8  
68  
FreescaleSemiconductor  
Functional Description  
5.3.1  
Normal Interrupt Handling  
Once the INTC has determined that an interrupt is to be serviced and which interrupt has the highest  
priority, an interrupt vector address is generated. Normal interrupt handling concatenates the Vector Base  
Address (VBA) and the vector number to determine the vector address, generating an offset into the vector  
table for each interrupt.  
5.3.2  
Interrupt Nesting  
Interrupt exceptions may be nested to allow an IRQ of higher priority than the current exception to be  
serviced. The 56800E core controls the masking of interrupt priority levels it will accept by setting the I0  
and I1 bits in its status register.  
Table 5-1 Interrupt Mask Bit Definition  
Exceptions Permitted  
SR[9] (I1) SR[8] (I0)  
Exceptions Masked  
0
0
1
1
0
1
0
1
Priorities 0, 1, 2, 3  
Priorities 1, 2, 3  
Priorities 2, 3  
Priority 3  
None  
Priority 0  
Priorities 0, 1  
Priorities 0, 1, 2  
The IPIC bits of the ICTRL register reflect the state of the priority level being presented to the 56800E  
core.  
Table 5-2 Interrupt Priority Encoding  
Current Interrupt  
Priority Level  
Required Nested  
Exception Priority  
IPIC_VALUE[1:0]  
00  
01  
10  
11  
No interrupt or SWILP  
Priority 0  
Priorities 0, 1, 2, 3  
Priorities 1, 2, 3  
Priorities 2, 3  
Priority 3  
Priority 1  
Priority 2 or 3  
5.3.3  
Fast Interrupt Handling  
Fast interrupts are described in the DSP56800E Reference Manual. The interrupt controller recognizes  
Fast Interrupts before the core does.  
A Fast Interrupt is defined (to the ITCN) by:  
1. Setting the priority of the interrupt as level 2, with the appropriate field in the IPR registers  
2. Setting the FIMn register to the appropriate vector number  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
69  
3. Setting the FIVALn and FIVAHn registers with the address of the code for the Fast Interrupt  
When an interrupt occurs, its vector number is compared with the FIM0 and FIM1 register values. If a  
match occurs, and it is a level 2 interrupt, the ITCN handles it as a Fast Interrupt. The ITCN takes the vector  
address from the appropriate FIVALn and FIVAHn registers, instead of generating an address that is an  
offset from the VBA.  
The core then fetches the instruction from the indicated vector address and if it is not a JSR, the core starts  
its Fast Interrupt handling.  
5.4 Block Diagram  
any0  
Priority  
Level  
Level 0  
64 -> 6  
Priority  
Encoder  
6
2 -> 4  
Decode  
INT1  
INT  
VAB  
IPIC  
CONTROL  
any3  
IACK  
SR[9:8]  
Level 3  
Priority  
Level  
64 -> 6  
Priority  
PIC_EN  
6
Encoder  
2 -> 4  
Decode  
INT64  
Figure 5-1 Interrupt Controller Block Diagram  
56F8037/56F8027 Data Sheet, Rev. 8  
70  
FreescaleSemiconductor  
Operating Modes  
5.5 Operating Modes  
The ITCN module design contains two major modes of operation:  
Functional Mode  
The ITCN is in this mode by default.  
Wait and Stop Modes  
During Wait and Stop modes, the system clocks and the 56800E core are turned off. The ITCN will signal  
a pending IRQ to the System Integration Module (SIM) to restart the clocks and service the IRQ. An IRQ  
can only wake up the core if the IRQ is enabled prior to entering the Wait or Stop mode.  
5.6 Register Descriptions  
A register address is the sum of a base address and an address offset. The base address is defined at the  
system level and the address offset is defined at the module level.  
Table 5-3 ITCN Register Summary  
(ITCN_BASE = $00 F0E0)  
Register  
Acronym  
Base Address +  
Register Name  
Section Location  
IPR0  
$0  
$1  
Interrupt Priority Register 0  
5.6.1  
5.6.2  
IPR1  
Interrupt Priority Register 1  
Interrupt Priority Register 2  
Interrupt Priority Register 3  
Interrupt Priority Register 4  
Interrupt Priority Register 5  
Interrupt Priority Register 6  
Vector Base Address Register  
Fast Interrupt Match 0 Register  
Fast Interrupt 0 Vector Address Low Register  
Fast Interrupt 0 Vector Address High 0 Register  
Fast Interrupt Match 1 Register  
Fast Interrupt 1 Vector Address Low Register  
Fast Interrupt 1 Vector Address High Register  
IRQ Pending Register 0  
IPR2  
$2  
5.6.3  
IPR3  
$3  
5.6.4  
IPR4  
$4  
5.6.5  
IPR5  
$5  
5.6.6  
IPR6  
$6  
5.6.7  
VBA  
$7  
5.6.8  
FIM0  
$8  
5.6.9  
FIVAL0  
FIVAH0  
FIM1  
$9  
5.6.10  
5.6.11  
5.6.12  
5.6.13  
5.6.14  
5.6.15  
5.6.16  
5.6.17  
5.6.18  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
$11  
FIVAL1  
FIVAH1  
IRQP0  
IRQP1  
IRQP2  
IRQP3  
IRQ Pending Register 1  
IRQ Pending Register 2  
IRQ Pending Register 3  
Reserved  
ICTRL  
$16  
Interrupt Control Register  
5.6.19  
Reserved  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
71  
Add.  
Offset  
Register  
Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
IPR0  
IPR1  
PLL IPL  
LVI IPL  
RX_REG IPL TX_REG IPL  
MSCAN_RX MSCAN_ERR  
TRBUF IPL  
FM_CBE IPL  
GPIOA IPL  
BKPT_U IPL  
FM_CC IPL  
GPIOB IPL  
STPCNT IPL  
FM_ERR IPL  
GPIOC IPL  
MSCAN_WK  
UP IPL  
MSCAN_TX  
IPL  
GPIOD IPL  
IPL  
IPL  
W
R
QSCI0_XMIT QSPI1_XMIT QSPI1_RCV QSPI0_XMIT QSPI0_RCV  
IPR2  
IPL  
IPL  
IPL  
IPL  
IPL  
W
R
QSCI1_RCV  
IPL  
QSCI1_RER  
R IPL  
QSCI1_TIDL QSCI1_XMIT QSCI0_RCV QSCI0_RERR QSCI0_TIDL  
IPR3  
I2C_ERR IPL  
IPL  
IPL  
IPL  
IPL  
IPL  
W
R
I2C_STAT  
IPL  
IPR4  
TMRA_3 IPL TMRA_2 IPL TMRA_1 IPL TMRA_0 IPL  
I2C_TX IPL  
I2C_RX IPL  
I2C_GEN IPL  
W
R
IPR5  
PIT1 IPL  
PIT0 IPL  
COMPB IPL  
COMPA IPL  
TMRB_3 IPL TMRB_2 IPL  
TMRB_1 IPL  
TMRB_0 IPL  
PIT2 IPL  
W
0
0
0
0
0
0
0
0
0
0
ADCB_CC  
IPR6  
PWM_F IPL PWM_RL IPL ADC_ZC IPL  
ADCA_CC IPL  
IPL  
R
W
R
VBA  
VECTOR_BASE_ADDRESS  
0
0
0
0
0
0
FIM0  
FAST INTERRUPT 0  
W
R
FIVAL0  
FIVAH0  
FIM1  
FAST INTERRUPT 0 VECTOR ADDRESS LOW  
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 0 VECTOR  
ADDRESS HIGH  
W
R
FAST INTERRUPT 1  
W
R
FIVAL1  
FIVAH1  
IRQP0  
IRQP1  
IRQP2  
FAST INTERRUPT 1 VECTOR ADDRESS LOW  
W
R
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 1 VECTOR  
ADDRESS HIGH  
W
R
PENDING[16:2]  
PENDING[32:17]  
PENDING[48:33]  
1
W
R
W
R
W
R
PENDING[63:49]  
$11  
$16  
IRQP3  
W
Reserved  
ICTRL  
R
INT  
IPIC  
VAB  
1
1
1
0
0
INT_  
DIS  
W
Reserved  
= Reserved  
Figure 5-2 ITCN Register Map Summary  
56F8037/56F8027 Data Sheet, Rev. 8  
72  
FreescaleSemiconductor  
Register Descriptions  
5.6.1  
Interrupt Priority Register 0 (IPR0)  
Base + $0  
Read  
15  
14  
0
13  
12  
0
11  
0
10  
0
9
8
7
6
5
4
3
2
1
0
PLL IPL  
LVI IPL  
RX_REG IPL TX_REG IPL  
TRBUF IPL  
BKPT_U IPL STPCNT IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-3 Interrupt Priority Register 0 (IPR0)  
5.6.1.1  
PLL Loss of Reference or Change in Lock Status Interrupt Priority Level  
(PLL IPL)—Bits 15–14  
This field is used to set the interrupt priority levels for the PLL Loss of Reference or Change in Lock Status  
IRQ. This IRQ is limited to priorities 1 through 3. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.1.2  
Low Voltage Detector Interrupt Priority Level (LVI IPL)—Bits 13–12  
This field is used to set the interrupt priority levels for the Low Voltage Detector IRQ. This IRQ is limited  
to priorities 1 through 3 and is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.1.3  
Reserved—Bits 11–10  
This bit field is reserved. Each bit must be set to 0.  
5.6.1.4  
EOnCE Receive Register Full Interrupt Priority Level  
(RX_REG IPL)— Bits 9–8  
This field is used to set the interrupt priority level for the EOnCE Receive Register Full IRQ. This IRQ is  
limited to priorities 1 through 3. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
73  
5.6.1.5  
EOnCE Transmit Register Empty Interrupt Priority Level  
(TX_REG IPL)— Bits 7–6  
This field is used to set the interrupt priority level for the EOnCE Transmit Register Empty IRQ. This IRQ  
is limited to priorities 1 through 3. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.1.6  
EOnCE Trace Buffer Interrupt Priority Level  
(TRBUF IPL)— Bits 5–4  
This field is used to set the interrupt priority level for the EOnCE Trace Buffer IRQ. This IRQ is limited  
to priorities 1 through 3. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.1.7  
EOnCE Breakpoint Unit Interrupt Priority Level  
(BKPT_U IPL)— Bits 3–2  
This field is used to set the interrupt priority level for the EOnCE Breakpoint Unit IRQ. This IRQ is limited  
to priorities 1 through 3. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.1.8  
EOnCE Step Counter Interrupt Priority Level  
(STPCNT IPL)— Bits 1–0  
This field is used to set the interrupt priority level for the EOnCE Step Counter IRQ. This IRQ is limited  
to priorities 1 through 3. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
56F8037/56F8027 Data Sheet, Rev. 8  
74  
FreescaleSemiconductor  
Register Descriptions  
5.6.2  
Interrupt Priority Register 1 (IPR1)  
Base + $1  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MSCAN_WK  
UP IPL  
MSCAN_TX  
IPL  
MSCAN_RX  
IPL  
MSCAN_ERR  
IPL  
GPIOD IPL  
FM_CBE IPL  
FM_CC IPL  
FM_ERR IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-4 Interrupt Priority Register 1 (IPR1)  
GPIOD Interrupt Priority Level (GPIOD IPL)—Bits 15–14  
5.6.2.1  
This field is used to set the interrupt priority level for the GPIOD IRQ. This IRQ is limited to priorities 0  
through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.2.2  
MSCAN Wake Up Interrupt Priority Level  
(MSCAN_WKUP IPL)—Bits 13–12  
This field is used to set the interrupt priority level for the MSCAN Wake Up IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.2.3  
MSCAN Transmit Interrupt Priority Level (MSCAN_TX IPL)—Bits 11–10  
This field is used to set the interrupt priority level for the MSCAN Transmit IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.2.4  
MSCAN Receive Interrupt Priority Level (MSCAN_RX IPL)—Bits 9–8  
This field is used to set the interrupt priority level for MSCAN Receive IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
75  
11 = IRQ is priority level 2  
5.6.2.5  
MSCAN Error Interrupt Priority Level (MSCAN_ERR IPL)—Bits 7–6  
This field is used to set the interrupt priority level for the MSCAN Error IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.2.6  
FM Command, Data, Address Buffers Empty Interrupt Priority Level  
(FM_CBE IPL)—Bits 5–4  
This field is used to set the interrupt priority level for the FM Command, Data Address Buffers Empty  
IRQ. This IRQ is limited to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.2.7  
FM Command Complete Interrupt Priority Level (FM_CC IPL)—Bits 3–2  
This field is used to set the interrupt priority level for the FM Command Complete IRQ. This IRQ is  
limited to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.2.8  
FM Error Interrupt Priority Level (FM_ERR IPL)—Bits 1–0  
This field is used to set the interrupt priority level for the FM Error IRQ. This IRQ is limited to priorities  
0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8037/56F8027 Data Sheet, Rev. 8  
76  
FreescaleSemiconductor  
Register Descriptions  
5.6.3  
Interrupt Priority Register 2 (IPR2)  
Base + $2  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
QSCI0_XMIT QSPI1_XMIT  
IPL IPL  
QSPI1_RCV QSPI0_XMIT  
IPL IPL  
QSPI0_RCV  
IPL  
GPIOA IPL  
GPIOB IPL  
GPIOC IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-5 Interrupt Priority Register 2 (IPR2)  
5.6.3.1  
QSCI 0 Transmitter Empty Interrupt Priority Level (QSCI0_XMIT IPL)—  
Bits 15–14  
This field is used to set the interrupt priority level for the QSCI0 Transmitter Empty IRQ. This IRQ is  
limited to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.2  
QSPI 1 Transmitter Empty Interrupt Priority Level (QSPI1_XMIT IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for the QSPI1 Transmitter Empty IRQ. This IRQ is  
limited to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.3  
QSPI 1 Receiver Full Interrupt Priority Level (QSPI1_RCV IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for the QSPI1 Receiver Full IRQ. This IRQ is limited  
to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.4  
QSPI 0 Transmitter Empty Interrupt Priority Level (QSPI0_XMIT IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for the QSPI0 Transmitter Empty IRQ. This IRQ is  
limited to priorities 0 through 2. It is disabled by default.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
77  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.5  
QSPI 0 Receiver Full Interrupt Priority Level (QSPI0_RCV IPL)—Bits 7–6  
This field is used to set the interrupt priority level for the QSPI0 Receiver Full IRQ. This IRQ is limited  
to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.6  
GPIOA Interrupt Priority Level (GPIOA IPL)—Bits 5–4  
This field is used to set the interrupt priority level for the GPIOA IRQ. This IRQ is limited to priorities 0  
through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.7  
GPIOB Interrupt Priority Level (GPIOB IPL)—Bits 3–2  
This field is used to set the interrupt priority level for the GPIOB IRQ. This IRQ is limited to priorities 0  
through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.8  
GPIOC Interrupt Priority Level (GPIOC IPL)—Bits 1–0  
This field is used to set the interrupt priority level for the GPIOC IRQ. This IRQ is limited to priorities 0  
through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8037/56F8027 Data Sheet, Rev. 8  
78  
FreescaleSemiconductor  
Register Descriptions  
5.6.4  
Interrupt Priority Register 3 (IPR3)  
Base + $3  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
QSCI1_RCV QSCI1_RER QSCI1_TIDL QSCI1_XMIT QSCI0_RCV QSCI0_RERR QSCI0_TIDL  
IPL R IPL IPL IPL IPL IPL IPL  
I2C_ERR IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-6 Interrupt Priority Register 3 (IPR3)  
2
5.6.4.1  
I C Error Interrupt Priority Level (I2C_ERR IPL)—Bits 15–14  
2
This field is used to set the interrupt priority level for the I C Error IRQ. This IRQ is limited to priorities  
0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.2  
QSCI 1 Receiver Full Interrupt Priority Level (QSCI1_RCV IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for the QSCI1 Receiver Full IRQ. This IRQ is limited  
to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.3  
QSCI 1 Receiver Error Interrupt Priority Level (QSCI1_RERR IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for the QSCI1 Receiver Error IRQ. This IRQ is limited  
to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.4  
QSCI 1 Transmitter Idle Interrupt Priority Level (QSCI1_TIDL IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for the QSCI1 Transmitter Idle IRQ. This IRQ is limited  
to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
79  
11 = IRQ is priority level 2  
5.6.4.5  
QSCI 1 Transmitter Empty Interrupt Priority Level (QSCI1_XMIT IPL)—  
Bits 7–6  
This field is used to set the interrupt priority level for the QSCI1 Transmitter Empty IRQ. This IRQ is  
limited to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.6  
QSCI 0 Receiver Full Interrupt Priority Level (QSCI0_RCV IPL)—Bits 5–4  
This field is used to set the interrupt priority level for the QSCI0 Receiver Full IRQ. This IRQ is limited  
to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.7  
QSCI 0 Receiver Error Interrupt Priority Level (QSCI0_RERR IPL)—  
Bits 3–2  
This field is used to set the interrupt priority level for the QSCI0 Receiver Error IRQ. This IRQ is limited  
to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.8  
QSCI 0 Transmitter Idle Interrupt Priority Level (QSCI0_TIDL IPL)—  
Bits 1–0  
This field is used to set the interrupt priority level for the QSCI0 Transmitter Idle IRQ. This IRQ is limited  
to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8037/56F8027 Data Sheet, Rev. 8  
80  
FreescaleSemiconductor  
Register Descriptions  
5.6.5  
Interrupt Priority Register 4 (IPR4)  
Base + $4  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TMRA_3 IPL  
TMRA_2 IPL  
TMRA_1 IPL  
TMRA_0 IPL I2C_STAT IPL I2C_TX IPL  
I2C_RX IPL I2C_GEN IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-7 Interrupt Priority Register 4 (IPR4)  
5.6.5.1  
Timer A, Channel 3 Interrupt Priority Level (TMRA_3 IPL)—  
Bits 15–14  
This field is used to set the interrupt priority level for the Timer A, Channel 3 IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.2  
Timer A, Channel 2 Interrupt Priority Level (TMRA_2 IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for the Timer A, Channel 2 IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.3  
Timer A, Channel 1 Interrupt Priority Level (TMRA_1 IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for the Timer A, Channel 1 IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
81  
5.6.5.4  
Timer A, Channel 0 Interrupt Priority Level (TMRA_0 IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for the Timer A, Channel 0 IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
2
5.6.5.5  
I C Status Interrupt Priority Level (I2C_STAT IPL)—Bits 7–6  
2
This field is used to set the interrupt priority level for the I C Status IRQ. This IRQ is limited to priorities  
0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
2
5.6.5.6  
I C Transmit Interrupt Priority Level (I2C_TX IPL)—Bits 5–4  
2
This field is used to set the interrupt priority level for the I C Transmit IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
2
5.6.5.7  
I C Receive Interrupt Priority Level (I2C_RX IPL)— Bits 3–2  
2
This field is used to set the interrupt priority level for the I C Receiver IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
2
5.6.5.8  
I C General Call Interrupt Priority Level (I2C_GEN IPL)—Bits 1–0  
2
This field is used to set the interrupt priority level for the I C General Call IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
56F8037/56F8027 Data Sheet, Rev. 8  
82  
FreescaleSemiconductor  
Register Descriptions  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6  
Interrupt Priority Register 5 (IPR5)  
Base + $5  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PIT1 IPL  
PIT0 IPL  
COMPB IPL  
COMPA IPL  
TMRB_3 IPL TMRB_2 IPL TMRB_1 IPL TMRB_0 IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-8 Interrupt Priority Register 5 (IPR6)  
5.6.6.1  
Programmable Interval Timer 1 Interrupt Priority Level (PIT1 IPL)—  
Bits 15–14  
This field is used to set the interrupt priority level for the Programmable Interval Timer 1 IRQ. This IRQ  
is limited to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.2  
Programmable Interval Timer 0 Interrupt Priority Level (PIT0 IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for the Programmable Interval Timer 0 IRQ. This IRQ  
is limited to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.3  
Comparator B Interrupt Priority Level (COMPB IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for the Comparator B IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
83  
5.6.6.4  
Comparator A Interrupt Priority Level (COMPA IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for the Comparator IRQ. This IRQ is limited to priorities  
0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.5  
Timer B, Channel 3 Interrupt Priority Level (TMRB_3 IPL)—Bits 7–6  
This field is used to set the interrupt priority level for the Timer B, Channel 3 IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.6  
Timer B, Channel 2 Interrupt Priority Level (TMRB_2 IPL)—Bits 5–4  
This field is used to set the interrupt priority level for the Timer B, Channel 2 IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.7  
Timer B, Channel 1 Interrupt Priority Level (TMRB_1 IPL)—Bits 3–2  
This field is used to set the interrupt priority level for the Timer B, Channel 1 IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.8  
Timer B, Channel 0 Interrupt Priority Level (TMRB_0 IPL)—Bits 1–0  
This field is used to set the interrupt priority level for the Timer B, Channel 0 IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
56F8037/56F8027 Data Sheet, Rev. 8  
84  
FreescaleSemiconductor  
Register Descriptions  
11 = IRQ is priority level 2  
5.6.7  
Interrupt Priority Register 6 (IPR6)  
Base + $6  
Read  
15  
0
14  
0
13  
0
12  
0
11  
10  
9
8
7
6
5
4
3
2
1
0
ADCB_CC  
IPL  
ADCA_CC  
IPL  
PWM_F IPL  
PWM_RL IPL  
ADC_ZC IPL  
PIT2 IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-9 Interrupt Priority Register 6 (IPR6)  
5.6.7.1  
Reserved—Bits 15–12  
This bit field is reserved. Each bit must be set to 0.  
5.6.7.2  
PWM Fault Interrupt Priority Level (PWM_F IPL)—Bits 11–10  
This field is used to set the interrupt priority level for the PWM Fault Interrupt IRQ. This IRQ is limited  
to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.3  
Reload PWM Interrupt Priority Level (PWM_RL IPL)—Bits 9–8  
This field is used to set the interrupt priority level for the Reload PWM Interrupt IRQ. This IRQ is limited  
to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.4  
ADC Zero Crossing Interrupt Priority Level (ADC_ZC IPL)—Bits 7–6  
This field is used to set the interrupt priority level for the ADC Zero Crossing IRQ. This IRQ is limited to  
priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
85  
5.6.7.5  
ADC B Conversion Complete Interrupt Priority Level  
(ADCB_CC IPL)—Bits 5–4  
This field is used to set the interrupt priority level for the ADC B Conversion Complete IRQ. This IRQ is  
limited to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.6  
ADC A Conversion Complete Interrupt Priority Level  
(ADCA_CC IPL)—Bits 3–2  
This field is used to set the interrupt priority level for the ADC A Conversion Complete IRQ. This IRQ is  
limited to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.7  
Programmable Interval Timer 2 Interrupt Priority Level  
(PIT2 IPL)—Bits 1–0  
This field is used to set the interrupt priority level for the Programmable Interval Timer 2 IRQ. This IRQ  
is limited to priorities 0 through 2. It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8  
Vector Base Address Register (VBA)  
Base + $7  
Read  
15  
0
14  
0
13  
12  
11  
10  
9
8
7
6
5
4
0
3
0
2
0
1
0
0
0
VECTOR_BASE_ADDRESS  
Write  
RESET1  
0
0
0
0
0
0
0
0
0
0
0
1. The 56F8037 resets to a value of 0x0000. This corresponds to reset addresses of 0x000000.  
The 56F8027 resets to a value of 0x0080. This corresponds to reset addresses of 0x004000.  
Figure 5-10 Vector Base Address Register (VBA)  
5.6.8.1  
Reserved—Bits 15–14  
This bit field is reserved. Each bit must be set to 0.  
56F8037/56F8027 Data Sheet, Rev. 8  
86  
FreescaleSemiconductor  
Register Descriptions  
5.6.8.2  
Vector Address Bus (VAB) Bits 13–0  
The value in this register is used as the upper 14 bits of the interrupt vector VAB[20:0]. The lower 7 bits  
are determined based on the highest priority interrupt and are then appended onto VBA before presenting  
the full VAB to the Core.  
5.6.9  
Fast Interrupt Match 0 Register (FIM0)  
Base + $8  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
2
1
0
0
0
FAST INTERRUPT 0  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-11 Fast Interrupt Match 0 Register (FIM0)  
5.6.9.1  
Reserved—Bits 15–6  
This bit field is reserved. Each bit must be set to 0.  
5.6.9.2  
Fast Interrupt 0 Vector Number (FAST INTERRUPT 0)—Bits 5–0  
These values determine which IRQ will be Fast Interrupt 0. Fast Interrupts vector directly to a service  
routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table  
first. IRQs used as Fast Interrupts must be set to priority level 2. Unexpected results will occur if a Fast  
Interrupt vector is set to any other priority. A Fast Interrupt automatically becomes the highest-priority  
level 2 interrupt regardless of its location in the interrupt table prior to being declared as Fast Interrupt.  
Fast Interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each IRQ, refer to  
the vector table.  
5.6.10 Fast Interrupt 0 Vector Address Low Register (FIVAL0)  
Base + $9  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
0
1
0
0
0
FAST INTERRUPT 0 VECTOR ADDRESS LOW  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-12 Fast Interrupt 0 Vector Address Low Register (FIVAL0)  
5.6.10.1 Fast Interrupt 0 Vector Address Low (FIVAL0)—Bits 15–0  
The lower 16 bits of the vector address used for Fast Interrupt 0. This register is combined with FIVAH0  
to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
87  
5.6.11 Fast Interrupt 0 Vector Address High Register (FIVAH0)  
Base + $A  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
FAST INTERRUPT 0 VECTOR  
ADDRESS HIGH  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-13 Fast Interrupt 0 Vector Address High Register (FIVAH0)  
5.6.11.1 Reserved—Bits 15–5  
This bit field is reserved. Each bit must be set to 0.  
5.6.11.2 Fast Interrupt 0 Vector Address High (FIVAH0)—Bits 4–0  
The upper five bits of the vector address used for Fast Interrupt 0. This register is combined with FIVAL0  
to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.  
5.6.12 Fast Interrupt 1 Match Register (FIM1)  
Base + $B  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
2
1
0
0
0
FAST INTERRUPT 1  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-14 Fast Interrupt 1 Match Register (FIM1)  
5.6.12.1 Reserved—Bits 15–6  
This bit field is reserved. Each bit must be set to 0.  
5.6.12.2 Fast Interrupt 1 Vector Number (FAST INTERRUPT 1)—Bits 5–0  
These values determine which IRQ will be Fast Interrupt 1. Fast Interrupts vector directly to a service  
routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table  
first. IRQs used as Fast Interrupts must be set to priority level 2. Unexpected results will occur if a Fast  
Interrupt vector is set to any other priority. A Fast Interrupt automatically becomes the highest priority  
level 2 interrupt, regardless of its location in the interrupt table prior to being declared as Fast Interrupt.  
Fast Interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each IRQ, refer to  
the vector table.  
5.6.13 Fast Interrupt 1 Vector Address Low Register (FIVAL1)  
Base + $C  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
0
1
0
0
0
FAST INTERRUPT 1 VECTOR ADDRESS LOW  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-15 Fast Interrupt 1 Vector Address Low Register (FIVAL1)  
56F8037/56F8027 Data Sheet, Rev. 8  
88  
FreescaleSemiconductor  
Register Descriptions  
5.6.13.1 Fast Interrupt 1 Vector Address Low (FIVAL1)—Bits 15–0  
The lower 16 bits of the vector address used for Fast Interrupt 1. This register is combined with FIVAH1  
to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.  
5.6.14 Fast Interrupt 1 Vector Address High (FIVAH1)  
Base + $D  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
2
1
0
0
FAST INTERRUPT 1 VECTOR  
ADDRESS HIGH  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-16 Fast Interrupt 1 Vector Address High Register (FIVAH1)  
5.6.14.1 Reserved—Bits 15–5  
This bit field is reserved. Each bit must be set to 0.  
5.6.14.2 Fast Interrupt 1 Vector Address High (FIVAH1)—Bits 4–0  
The upper five bits of the vector address used for Fast Interrupt 1. This register is combined with FIVAL1  
to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.  
5.6.15 IRQ Pending Register 0 (IRQP0)  
Base + $E  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING[16:2]  
Write  
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-17 IRQ Pending Register 0 (IRQP0)  
5.6.15.1 IRQ Pending (PENDING)—Bits 16–2  
This register bit values represent the pending IRQs for interrupt vector numbers 2 through 16. Ascending  
IRQ numbers correspond to ascending bit locations.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.15.2 Reserved—Bit 0  
This bit field is reserved. It must be set to 0.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
89  
5.6.16 IRQ Pending Register 1 (IRQP1)  
Base + $F  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING[32:17]  
Write  
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-18 IRQ Pending Register 1 (IRQP1)  
5.6.16.1 IRQ Pending (PENDING)—Bits 32–17  
This register bit values represent the pending IRQs for interrupt vector numbers 17 through 32. Ascending  
IRQ numbers correspond to ascending bit locations.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.17 IRQ Pending Register 2 (IRQP2)  
Base + $10  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING[48:33]  
Write  
RESET  
1
1
1
1
1
1
1
1
1
Figure 5-19 IRQ Pending Register 2 (IRQP2)  
5.6.17.1 IRQ Pending (PENDING)—Bits 48–33  
This register bit values represent the pending IRQs for interrupt vector numbers 33 through 48. Ascending  
IRQ numbers correspond to ascending bit locations.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.18 IRQ Pending Register 3 (IRQP3)  
Base + $11  
Read  
15  
1
14  
13  
12  
11  
10  
9
8
7
6
5
1
4
1
3
1
2
1
1
1
0
1
PENDING[63:49]  
Write  
RESET  
1
1
1
1
1
1
1
1
1
1
Figure 5-20 IRQ Pending Register 3 (IRQP3)  
5.6.18.1 IRQ Pending (PENDING)—Bits 63–49  
This register bit values represent the pending IRQs for interrupt vector numbers 49 through 63. Ascending  
IRQ numbers correspond to ascending bit locations.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
56F8037/56F8027 Data Sheet, Rev. 8  
90  
FreescaleSemiconductor  
Register Descriptions  
5.6.18.2 Reserved—Bit 15  
This bit field is reserved. When it is read, it has a value of 1.  
5.6.19 Interrupt Control Register (ICTRL)  
$Base + $16  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
0
6
0
5
4
1
3
1
2
1
1
0
0
0
INT  
IPIC  
VAB  
INT_  
DIS  
Write  
0
0
0
0
0
0
0
0
0
1
1
1
0
0
RESET  
Figure 5-21 Interrupt Control Register (ICTRL)  
5.6.19.1 Interrupt (INT)—Bit 15  
This read-only bit reflects the state of the interrupt to the 56800E core.  
0 = No interrupt is being sent to the 56800E core  
1 = An interrupt is being sent to the 56800E core  
5.6.19.2 Interrupt Priority Level (IPIC)—Bits 14–13  
These read-only bits reflect the state of the new interrupt priority level bits being presented to the 56800E  
core. These bits indicate the priority level needed for a new IRQ to interrupt the current interrupt being  
sent to the 56800E core. This field is only updated when the 56800E core jumps to a new interrupt service  
routine.  
Note:  
Nested interrupts may cause this field to be updated before the original interrupt service routine can  
read it.  
00 = Required nested exception priority levels are 0, 1, 2, or 3  
01 = Required nested exception priority levels are 1, 2, or 3  
10 = Required nested exception priority levels are 2 or 3  
11 = Required nested exception priority level is 3  
Table 5-4 Interrupt Priority Encoding  
Current Interrupt  
Priority Level  
Required Nested  
Exception Priority  
IPIC_VALUE[1:0]  
00  
01  
10  
11  
No interrupt or SWILP  
Priority 0  
Priorities 0, 1, 2, 3  
Priorities 1, 2, 3  
Priorities 2, 3  
Priority 3  
Priority 1  
Priority 2 or 3  
5.6.19.3 Vector Number - Vector Address Bus (VAB)—Bits 12–6  
This read-only field shows bits [7:1] of the Vector Address Bus used at the time the last IRQ was taken.  
In the case of a Fast Interrupt, it shows the lower address bits of the jump address. This field is only updated  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
91  
when the 56800E core jumps to a new interrupt service routine.  
Note:  
Nested interrupts may cause this field to be updated before the original interrupt service routine can  
read it.  
5.6.19.4 Interrupt Disable (INT_DIS)—Bit 5  
This bit allows all interrupts to be disabled.  
0 = Normal operation (default)  
1 = All interrupts disabled  
5.6.19.5 Reserved—Bits 4-2  
This bit field is reserved. Each bit must be set to 1.  
5.6.19.6 Reserved—Bits 1–0  
This bit field is reserved. Each bit must be set to 0.  
5.7 Resets  
5.7.1  
General  
Table 5-5 Reset Summary  
Source  
Characteristics  
Reset  
Priority  
Core Reset  
RST  
Core reset from the SIM  
5.7.2  
Description of Reset Operation  
Reset Handshake Timing  
5.7.2.1  
The ITCN provides the 56800E core with a reset vector address on the VAB pins whenever RESET is  
asserted from the SIM. The reset vector will be presented until the second rising clock edge after RESET  
is released. The general timing is shown in Figure 5-22.  
RES  
CLK  
RESET_VECTOR_ADR  
VAB  
PAB  
READ_ADR  
Figure 5-22 Reset Interface  
56F8037/56F8027 Data Sheet, Rev. 8  
92  
FreescaleSemiconductor  
Introduction  
5.7.3  
ITCN After Reset  
After reset, all of the ITCN registers are in their default states. This means all interrupts are disabled,  
except the core IRQs with fixed priorities:  
Illegal Instruction  
SW Interrupt 3  
HW Stack Overflow  
Misaligned Long Word Access  
SW Interrupt 2  
SW Interrupt 1  
SW Interrupt 0  
SW Interrupt LP  
These interrupts are enabled at their fixed priority levels.  
Part 6 System Integration Module (SIM)  
6.1 Introduction  
The SIM module is a system catchall for the glue logic that ties together the system-on-chip. It controls  
distribution of resets and clocks and provides a number of control features. The System Integration  
Module’s functions are discussed in more detail in the following sections.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
93  
6.2 Features  
The SIM has the following features:  
Chip reset sequencing  
Core and peripheral clock control and distribution  
Stop/Wait mode control  
System status control  
Registers containing the JTAG ID of the chip  
Controls for programmable peripheral and GPIO connections  
Peripheral clocks for TMR and PWM with a high-speed (3X) option  
Power-saving clock gating for peripherals  
Three power modes (Run, Wait, Stop) to control power utilization  
— Stop mode shuts down the 56800E core, system clock, and peripheral clock  
— Wait mode shuts down the 56800E core and unnecessary system clock operation  
— Run mode supports full device operation  
Controls the enable/disable functions of the 56800E core WAIT and STOP instructions with write protection  
capability  
Controls the enable/disable functions of Large Regulator Standby mode with write protection capability  
Permits selected peripherals to run in Stop mode to generate Stop recovery interrupts  
Controls for programmable peripheral and GPIO connections  
Software chip reset  
I/O short address base location control  
Peripheral protection control to provide runaway code protection for safety-critical applications  
Controls output of internal clock sources to CLKO pin  
Four general-purpose software control registers are reset only at power-on  
Peripherals Stop mode clocking control  
56F8037/56F8027 Data Sheet, Rev. 8  
94  
FreescaleSemiconductor  
Register Descriptions  
6.3 Register Descriptions  
A write to an address without an associated register is an NOP. A read from an address without an  
associated register returns unknown data.  
Table 6-1 SIM Registers (SIM_BASE = $00 F100)  
Register  
Acronym  
Section  
Location  
Base Address +  
Register Name  
CTRL  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
Control Register  
6.3.1  
6.3.2  
6.3.3  
6.3.3  
6.3.3  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
RSTAT  
SWC0  
SWC1  
SWC2  
SWC3  
MSHID  
LSHID  
PWR  
Reset Status Register  
Software Control Register 0  
Software Control Register 1  
Software Control Register 2  
Software Control Register 3  
Most Significant Half of JTAG ID  
Least Significant Half of JTAG ID  
Power Control Register  
Reserved  
CLKOUT  
PCR  
$A  
$B  
CLKO Select Register  
6.3.7  
6.3.8  
Peripheral Clock Rate Register  
PCE0  
PCE1  
SD0  
$C  
Peripheral Clock Enable Register 0  
Peripheral Clock Enable Register 0  
Stop Disable Register 0  
6.3.9  
$D  
6.3.10  
6.3.11  
6.3.12  
6.3.13  
6.3.14  
6.3.15  
6.3.16  
6.3.17  
6.3.18  
6.3.19  
6.3.20  
6.3.21  
6.3.22  
6.3.23  
$E  
SD1  
$F  
Stop Disable Register 1  
IOSAHI  
IOSALO  
PROT  
GPSA0  
GPSA1  
GPSB0  
GPSB1  
GPSCD  
IPS0  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
I/O Short Address Location High Register  
I/O Short Address Location Low Register  
Protection Register  
GPIO Peripheral Select Register 0 for GPIOA  
GPIO Peripheral Select Register 1 for GPIOA  
GPIO Peripheral Select Register 0 for GPIOB  
GPIO Peripheral Select Register 1 for GPIOB  
GPIO Peripheral Select Register for GPIOC and GPIOD  
Internal Peripheral Source Select Register 0 for PWM  
Internal Peripheral Source Select Register 1 for DACs  
Internal Peripheral Source Select Register 2 for Quad Timer A  
Reserved  
IPS1  
IPS2  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
95  
Add.  
Address  
Offset Acronym  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
0
0
0
0
0
0
0
0
0
0
SIM_  
CTRL  
ONCE SW  
EBL0 RST  
STOP_  
DISABLE  
WAIT_  
DISABLE  
$0  
W
COP_ COP_  
R
0
0
0
0
0
0
0
0
0
SWR  
EXTR POR  
0
0
SIM_  
$1  
TOR  
LOR  
RSTAT  
W
R
$2  
$3  
$4  
$5  
$6  
$7  
$8  
SIM_SWC0  
SIM_SWC1  
SIM_SWC2  
SIM_SWC3  
SIM_MSHID  
SIM_LSHID  
Software Control Data 0  
Software Control Data 1  
Software Control Data 2  
Software Control Data 3  
W
R
W
R
W
R
W
R
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
1
0
0
1
0
0
1
0
1
0
0
1
W
R
W
R
SIM_PWR  
Reserved  
LRSTDBY  
W
R
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
CLKOSEL  
0
SIM_  
CLKOUT  
CLK  
DIS  
$A  
$B  
$C  
$D  
$E  
$F  
PWM3 PWM2 PWM1 PWM0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
TMRB_ TMRA_ PWM_C I2C_  
CR CR CR  
SIM_PCR  
SIM_PCE0  
SIM_PCE1  
SIM_SD0  
SIM_SD1  
R
W
R
CMPB CMPA DAC1 DAC0  
0
ADC  
0
I2C QSCI1 QSCI0 QSPI1 QSPI0  
PWM  
TA0  
W
R
PIT2  
PIT1  
PIT0  
TB3  
0
TB2  
TB1  
TB0  
TA3  
TA2  
TA1  
0
W
R
CMPB_ CMPA_ DAC1_S DAC0_  
SD  
ADC_  
SD  
I2C_ QSCI1 QSCI0 QSPI1 QSPI0  
SD _SD _SD _SD _SD  
PWM_  
SD  
SD  
D
SD  
W
R
0
0
PIT2_ PIT1_S PIT0_  
TB3_ TB2_ TB1_ TB0_ TA3_ TA2_ TA1_ TA0_  
SD  
0
D
0
SD  
0
SD  
SD  
SD  
SD  
SD  
SD  
SD  
SD  
W
R
0
0
0
0
0
0
0
0
$10 SIM_IOSAHI  
$11 SIM_IOSALO  
ISAL[23:22]  
W
R
ISAL[21:6]  
0
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$12  
SIM_PROT  
PCEP  
GIPSP  
W
R
0
0
0
0
GPS_  
A6  
$13 SIM_GPSA0  
$14 SIM_GPSA1  
$15 SIM_GPSB0  
$16 SIM_GPSB1  
$17 SIM_GPSCD  
GPS_A5  
GPS_A4  
W
R
GPS_  
A11  
GPS_  
A10  
GPS_A14  
GPS_A13  
GPS_A12  
GPS_A9  
GPS_A8  
W
R
0
0
0
0
0
0
GPS_  
B1  
GPS_  
B0  
GPS_B6  
GPS_B5  
GPS_B4  
GPS_B3  
GPS_B2  
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GPS_  
B11  
GPS_  
B10  
GPS_  
B9  
GPS_  
B8  
GPS_  
B7  
W
R
0
0
0
GPS_  
D5  
GPS_  
C12  
GPS_  
C8  
W
R
0
IPS0_  
FAULT2  
IPS0_  
FAULT1  
$18  
$19  
SIM_IPS0  
SIM_IPS1  
IPS0_PSRC2  
0
IPS0_PSRC1  
IPS0_PSRC0  
W
R
0
0
0
0
0
IPS1_DSYNC1  
IPS1_DSYNC0  
W
56F8037/56F8027 Data Sheet, Rev. 8  
96  
FreescaleSemiconductor  
Register Descriptions  
R
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
IPS2_  
TA3  
IPS2_  
TA2  
IPS2_  
TA1  
$1A  
SIM_IPS2  
Reserved  
W
= Read as 0  
= Read as 1  
= Reserved  
Figure 6-1 SIM Register Map Summary  
6.3.1  
SIM Control Register (SIM_CTRL)  
Base + $0  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
ONCE SW  
STOP_  
WAIT_  
EBL  
RST  
DISABLE  
DISABLE  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-2 SIM Control Register (SIM_CTRL)  
6.3.1.1  
Reserved—Bits 15–6  
This bit field is reserved. Each bit must be set to 0.  
6.3.1.2  
OnCE Enable (ONCEEBL)—Bit 5  
0 = OnCE clock to 56800E core enabled when core TAP is enabled  
1 = OnCE clock to 56800E core is always enabled  
Note:  
Using default state “0” is recommended.  
6.3.1.3  
Software Reset (SWRST)—Bit 4  
Writing 1 to this field will cause the device to reset  
Read is zero  
6.3.1.4  
Stop Disable (STOP_DISABLE)—Bits 3–2  
00 = Stop mode will be entered when the 56800E core executes a STOP instruction  
01 = The 56800E STOP instruction will not cause entry into Stop mode  
10 = Stop mode will be entered when the 56800E core executes a STOP instruction and the  
STOP_DISABLE field is write-protected until the next reset  
11 = The 56800E STOP instruction will not cause entry into Stop mode and the STOP_DISABLE field is  
write-protected until the next reset  
6.3.1.5  
Wait Disable (WAIT_DISABLE)—Bits 1–0  
00 = Wait mode will be entered when the 56800E core executes a WAIT instruction  
01 = The 56800E WAIT instruction will not cause entry into Wait mode  
10 = Wait mode will be entered when the 56800E core executes a WAIT instruction and the  
WAIT_DISABLE field is write-protected until the next reset  
11 = The 56800E WAIT instruction will not cause entry into Wait mode and the WAIT_DISABLE field is  
write-protected until the next reset  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
97  
6.3.2  
SIM Reset Status Register (SIM_RSTAT)  
This read-only register is updated upon any system reset and indicates the cause of the most recent reset.  
It indicates whether the COP reset vector or regular reset vector (including Power-On Reset, External  
Reset, Software Reset) in the vector table is used. This register is asynchronously reset during Power-On  
Reset and subsequently is synchronously updated based on the precedence level of reset inputs. Only the  
most recent reset source will be indicated if multiple resets occur. If multiple reset sources assert  
simultaneously, the highest-precedence source will be indicated. The precedence from highest to lowest is  
Power-On Reset, External Reset, COP Loss of Reference Reset, COP Time-Out Reset, and Software  
Reset. Power-On Reset is always set during a Power-On Reset; however, Power-On Reset will be cleared  
and External Reset will be set if the external reset pin is asserted or remains asserted after the Power-On  
Reset has deasserted.  
Base + $1  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
COP_ COP_  
TOR  
0
0
0
0
0
0
0
0
0
SWR  
EXTR POR  
0
0
LOR  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
Figure 6-3 SIM Reset Status Register (SIM_RSTAT)  
6.3.2.1  
Reserved—Bits 15–7  
This bit field is reserved. Each bit must be set to 0.  
6.3.2.2  
Software Reset (SWR)—Bit 6  
When set, this bit indicates that the previous system reset occurred as a result of a software reset (written  
1 to SWRST bit in the SIM_CTRL register).  
6.3.2.3  
COP Time-Out Reset (COP_TOR)—Bit 5  
When set, this bit indicates that the previous system reset was caused by the Computer Operating Properly  
(COP) module signaling a COP time-out reset. If COP_TOR is set as code starts executing, the COP reset  
vector in the vector table will be used. Otherwise, the normal reset vector is used.  
6.3.2.4  
COP Loss of Reference Reset (COP_LOR)—Bit 4  
When set, this bit indicates that the previous system reset was caused by the Computer Operating Properly  
(COP) module signaling a loss of COP reference clock reset. If COP_LOR is set as code starts executing,  
the COP reset vector in the vector table will be used. Otherwise, the normal reset vector is used.  
6.3.2.5  
External Reset (EXTR)—Bit 3  
When set, this bit indicates that the previous system reset was caused by an external reset.  
6.3.2.6  
Power-On Reset (POR)—Bit 2  
This bit is set during a Power-On Reset.  
56F8037/56F8027 Data Sheet, Rev. 8  
98  
FreescaleSemiconductor  
Register Descriptions  
6.3.2.7  
Reserved—Bits 1–0  
This bit field is reserved. Each bit must be set to 0.  
6.3.3  
SIM Software Control Registers (SIM_SWC0, SIM_SWC1,  
SIM_SWC2, and SIM_SWC3)  
These registers are general-purpose registers. They are reset only at power-on, so they can monitor  
software execution flow.  
Base + $2  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Software Control Data 0 - 3  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-4 SIM Software Control Register 0 (SIM_SWC0 - 3)  
Software Control Register 0 - 3 (FIELD)—Bits 15–0  
6.3.3.1  
This register is reset only by the Power-On Reset (POR). It is intended for use by a software developer to  
contain data that will be unaffected by the other reset sources (external reset, software reset, and COP  
reset).  
6.3.4  
Most Significant Half of JTAG ID (SIM_MSHID)  
This read-only register displays the most significant half of the JTAG ID for the chip. This register reads  
$01F2.  
Base + $6  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
0
Write  
RESET  
0
0
0
0
0
0
0
1
1
1
1
1
0
0
1
0
Figure 6-5 Most Significant Half of JTAG ID (SIM_MSHID)  
6.3.5  
Least Significant Half of JTAG ID (SIM_LSHID)  
This read-only register displays the least significant half of the JTAG ID for the chip. This register reads  
$801D.  
Base + $7  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
1
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
Write  
RESET  
1
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
Figure 6-6 Least Significant Half of JTAG ID (SIM_LSHID)  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
99  
6.3.6  
SIM Power Control Register (SIM_PWR)  
This register controls the Standby mode of the large on-chip regulator. The large on-chip regulator derives  
the core digital logic power supply from the IO power supply. At a system bus frequency of 200kHz, the  
large regulator may be put in a reduced-power standby mode without interfering with device operation to  
reduce device power consumption. Refer to the overview of power-down modes and the overview of clock  
generation for more information on the use of large regulator standby.  
Base + $8  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LRSTDBY  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-7 SIM Power Control Register (SIM_PWR)  
6.3.6.1  
Reserved—Bits 15–2  
This bit field is reserved. Each bit must be set to 0.  
6.3.6.2  
Large Regulator Standby Mode[1:0] (LRSTDBY)—Bits 1–0  
00 = Large regulator is in Normal mode  
01 = Large regulator is in Standby (reduced-power) mode  
10 = Large regulator is in Normal mode and the LRSTDBY field is write-protected until the next reset  
11 = Large regulator is in Standby mode and the LRSTDBY field is write-protected until the next reset  
6.3.7  
Clock Output Select Register (SIM_CLKOUT)  
The Clock Output Select register can be used to multiplex out selected clock sources generated inside the  
clock generation and SIM modules onto the muxed clock output pins. All functionality is for test purposes  
only. Glitches may be produced when the clock is enabled or switched. The delay from the clock source  
to the output is unspecified. The observability of the CLKO clock output signal at an output pad is subject  
to the frequency limitations of the associated IO cell.  
GPIOA[3:0] can function as GPIO, PWM, or as clock output pins. If GPIOA[3:0] are programmed to  
operate as peripheral outputs, then the choice is between PWM and clock outputs. The default state is for  
the peripheral function of GPIOA[3:0] to be programmed as PWM (selected by bits [9:6] of the Clock  
Output Select register).  
GPIOB4 can function as GPIO, or as other peripheral outputs, including clock output (CLKO). If GPIOB4  
is programmed to operate as a peripheral output and CLKO is selected in the SIM_GPSB0 register, bits  
[4:0] decide if CLKO is enabled or disabled and which clock source is selected if CLKO is enabled. See  
Figure 6-8 for details.  
56F8037/56F8027 Data Sheet, Rev. 8  
100  
FreescaleSemiconductor  
Register Descriptions  
Base + $A  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
CLKOSEL  
0
1
0
0
0
0
0
0
0
CLK  
DIS  
PWM3 PWM2 PWM1 PWM0  
Write  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
RESET  
Figure 6-8 CLKO Select Register (SIM_CLKOUT)  
6.3.7.1  
Reserved—Bits 15–10  
This bit field is reserved. Each bit must be set to 0.  
6.3.7.2  
PWM3—Bit 9  
0 = Peripheral output function of GPIOA[3] is defined to be PWM3  
1 = Peripheral output function of GPIOA[3] is defined to be the Relaxation Oscillator Clock  
6.3.7.3  
PWM2—Bit 8  
0 = Peripheral output function of GPIOA[2] is defined to be PWM2  
1 = Peripheral output function of GPIOA[2] is defined to be the system clock  
6.3.7.4  
PWM1—Bit 7  
0 = Peripheral output function of GPIOA[1] is defined to be PWM1  
1 = Peripheral output function of GPIOA[1] is defined to be 2X system clock  
6.3.7.5  
PWM0—Bit 6  
0 = Peripheral output function of GPIOA[0] is defined to be PWM0  
1 = Peripheral output function of GPIOA[0] is defined to be 3X system clock  
6.3.7.6  
Clockout Disable (CLKDIS)—Bit 5  
0 = CLKOUT output function is enabled and will output the signal indicated by CLKOSEL  
1 = CLKOUT output function is disabled  
6.3.7.7  
Clockout Select (CLKOSEL)—Bits 4–0  
CLKOSEL selects clock to be muxed out on the CLKO pin as defined in the following. Internal delay to  
CLKO output is unspecified. Signal at the output pad is undefined when CLKO signal frequency exceeds  
the rated frequency of the I/O cell. CLKO may not operate as expected when CLKDIS and CLKOSEL  
settings are changed.  
00000 = Continuous system clock  
00001 = Continuous peripheral clock  
00010 = 3X system clock  
00100.....11111 = Reserved for factory test  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
101  
6.3.8  
Peripheral Clock Rate Register (SIM_PCR)  
By default, all peripherals are clocked at the system clock rate, which has a maximum of 32MHz. Selected  
peripherals clocks have the option to be clocked at 3X system clock rate, which has a maximum of 96MHz,  
if the PLL output clock is selected as the system clock. If PLL is disabled, the 3X system clock will not be  
available. This register is used to enable high-speed clocking for those peripherals that support it.  
Note:  
Operation is unpredictable if peripheral clocks are reconfigured at runtime, so peripherals should be  
disabled before a peripheral clock is reconfigured.  
Base + $B  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
Read  
Write  
TMRB_ TMRA_ PWM_ I2C_  
CR  
CR  
CR  
CR  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-9 Peripheral Clock Rate Register (SIM_PCR)  
6.3.8.1  
Quad Timer B Clock Rate (TMRB_CR)—Bit 15  
This bit selects the clock speed for the Quad Timer B module.  
0 = Quad Timer B clock rate equals the system clock rate, to a maximum 32MHz (default)  
1 = Quad Timer B clock rate equals 3X system clock rate, to a maximum 96MHz  
6.3.8.2  
Quad Timer A Clock Rate (TMRA_CR)—Bit 14  
This bit selects the clock speed for the Quad Timer A module.  
0 = Quad Timer A clock rate equals the system clock rate, to a maximum 32MHz (default)  
1 = Quad Timer A clock rate equals 3X system clock rate, to a maximum 96MHz  
6.3.8.3  
Pulse Width Modulator Clock Rate (PWM_CR)—Bit 13  
This bit selects the clock speed for the PWM module.  
0 = PWM module clock rate equals the system clock rate, to a maximum 32MHz (default)  
1 = PWM module clock rate equals 3X system clock rate, to a maximum 96MHz  
6.3.8.4  
Inter-Integrated Circuit Run Clock Rate (I2C_CR)—Bit 12  
2
This bit selects the clock speed for the I C run clock.  
0 = I2C module run clock rate equals the system clock rate, to a maximum 32MHz (default)  
1 = I2C module run clock rate equals 3X system clock rate, to a maximum 96MHz  
6.3.8.5  
Reserved—Bits 11–0  
This bit field is reserved. Each bit must be set to 0.  
56F8037/56F8027 Data Sheet, Rev. 8  
102  
FreescaleSemiconductor  
Register Descriptions  
6.3.9  
Peripheral Clock Enable Register 0 (SIM_PCE0)  
The Peripheral Clock Enable register enables or disables clocks to the peripherals as a power savings  
feature. Significant power savings are achieved by enabling only the peripheral clocks that are in use.  
When a peripheral’s clock is disabled, that peripheral is in Stop mode. Accesses made to a module that has  
its clock disabled will have no effect. The corresponding peripheral should itself be disabled while its clock  
is shut off. IPBus writes are not possible.  
Setting the PCE bit does not guarantee that the peripheral’s clock is running. Enabled peripheral clocks  
will still become disabled in Stop mode, unless the peripheral’s Stop Disable control in the SDn register  
is set to 1.  
Note:  
The MSCAN module supports extended power management capabilities, including Sleep,  
Stop-in-Wait, and Disable modes. MSCAN clocks are selected by MSCAN control registers. Refer to  
the 56F802x and 56F803x Peripheral Reference Manual for details.  
Base + $C  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
Read  
Write  
CMPB CMPA DAC1 DAC0  
ADC  
I2C  
QSCI1 QSCI0 QSPI1 QSPI0  
PWM  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-10 Peripheral Clock Enable Register 0 (SIM_PCE0)  
Comparator B Clock Enable (CMPB)—Bit 15  
6.3.9.1  
0 = The clock is not provided to the Comparator B module (the Comparator B module is disabled)  
1 = The clock is enabled to the Comparator B module  
6.3.9.2  
Comparator A Clock Enable (CMPA)—Bit 14  
0 = The clock is not provided to the Comparator A module (the Comparator A module is disabled)  
1 = The clock is enabled to the Comparator A module  
6.3.9.3  
Digital-to-Analog Clock Enable 1 (DAC1)—Bit 13  
0 = The clock is not provided to the DAC1 module (the DAC1 module is disabled)  
1 = The clock is enabled to the DAC1 module  
6.3.9.4  
Digital-to-Analog Clock Enable 0 (DAC0)—Bit 12  
0 = The clock is not provided to the DAC0 module (the DAC0 module is disabled)  
1 = The clock is enabled to the DAC0 module  
6.3.9.5  
Reserved—Bit 11  
This bit field is reserved. It must be set to 0.  
6.3.9.6  
Analog-to-Digital Converter Clock Enable (ADC)—Bit 10  
0 = The clock is not provided to the ADC module (the ADC module is disabled)  
1 = The clock is enabled to the ADC module  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
103  
6.3.9.7  
Reserved—Bits 9–7  
This bit field is reserved. Each bit must be set to 0.  
6.3.9.8  
Inter-Integrated Circuit IPBus Clock Enable (I2C)—Bit 6  
0 = The clock is not provided to the I2C module (the I2C module is disabled)  
1 = The clock is enabled to the I2C module  
6.3.9.9  
QSCI 1 Clock Enable (QSCI1)—Bit 5  
0 = The clock is not provided to the QSCI1 module (the QSCI1 module is disabled)  
1 = The clock is enabled to the QSCI1 module  
6.3.9.10 QSCI 0 Clock Enable (QSCI0)—Bit 4  
0 = The clock is not provided to the QSCI0 module (the QSCI0 module is disabled)  
1 = The clock is enabled to the QSCI0 module  
6.3.9.11 QSPI 1 Clock Enable (QSPI1)—Bit 3  
0 = The clock is not provided to the QSPI1 module (the QSPI1 module is disabled)  
1 = The clock is enabled to the QSPI1 module  
6.3.9.12 QSPI 0 Clock Enable (QSPI0)—Bit 2  
0 = The clock is not provided to the QSPI0 module (the QSPI0 module is disabled)  
1 = The clock is enabled to the QSPI0 module  
6.3.9.13 Reserved—Bit 1  
This bit field is reserved. It must be set to 0.  
6.3.9.14 PWM Clock Enable (PWM)—Bit 0  
0 = The clock is not provided to the PWM module (the PWM module is disabled)  
1 = The clock is enabled to the PWM module  
6.3.10 Peripheral Clock Enable Register 1 (SIM_PCE1)  
See Section 6.3.9 for general information about Peripheral Clock Enable registers.  
Base + $D  
Read  
15  
14  
PIT2  
0
13  
PIT1  
0
12  
PIT0  
0
11  
10  
9
8
7
TB3  
0
6
TB2  
0
5
TB1  
0
4
TB0  
0
3
TA3  
0
2
TA2  
0
1
TA1  
0
0
TA0  
0
0
0
0
0
0
Write  
0
0
0
0
0
RESET  
Figure 6-11 Peripheral Clock Enable Register 1 (SIM_PCE1)  
56F8037/56F8027 Data Sheet, Rev. 8  
104  
FreescaleSemiconductor  
Register Descriptions  
6.3.10.1 Reserved—Bit 15  
This bit field is reserved. It must be set to 0.  
6.3.10.2 Programmable Interval Timer 2 Clock Enable (PIT2)—Bit 14  
0 = The clock is not provided to the PIT2 module (the PIT2 module is disabled)  
1 = The clock is enabled to the PIT2 module  
6.3.10.3 Programmable Interval Timer 1 Clock Enable (PIT1)—Bit 13  
0 = The clock is not provided to the PIT1 module (the PIT1 module is disabled)  
1 = The clock is enabled to the PIT1 module  
6.3.10.4 Programmable Interval Timer 0 Clock Enable (PIT0)—Bit 12  
0 = The clock is not provided to the PIT0 module (the PIT0 module is disabled)  
1 = The clock is enabled to the PIT0 module  
6.3.10.5 Reserved—Bits 11–8  
This bit field is reserved. Each bit must be set to 0.  
6.3.10.6 Quad Timer B, Channel 3 Clock Enable (TB3)—Bit 7  
0 = The clock is not provided to the Timer B3 module (the Timer B3 module is disabled)  
1 = The clock is enabled to the Timer B3 module  
6.3.10.7 Quad Timer B, Channel 2 Clock Enable (TB2)—Bit 6  
0 = The clock is not provided to the Timer B2 module (the Timer B2 module is disabled)  
1 = The clock is enabled to the Timer B2 module  
6.3.10.8 Quad Timer B, Channel 1 Clock Enable (TB1)—Bit 5  
0 = The clock is not provided to the Timer B1 module (the Timer B1 module is disabled)  
1 = The clock is enabled to the Timer B1 module  
6.3.10.9 Quad Timer B, Channel 0 Clock Enable (TB0)—Bit 4  
0 = The clock is not provided to the Timer B0 module (the Timer B0 module is disabled)  
1 = The clock is enabled to the Timer B0 module  
6.3.10.10 Quad Timer A, Channel 3 Clock Enable (TA3)—Bit 3  
0 = The clock is not provided to the Timer A3 module (the Timer A3 module is disabled)  
1 = The clock is enabled to the Timer A3 module  
6.3.10.11 Quad Timer A, Channel 2 Clock Enable (TA2)—Bit 2  
0 = The clock is not provided to the Timer A2 module (the Timer A2 module is disabled)  
1 = The clock is enabled to the Timer A2 module  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
105  
6.3.10.12 Quad Timer A, Channel 1 Clock Enable (TA1)—Bit 1  
0 = The clock is not provided to the Timer A1 module (the Timer A1 module is disabled)  
1 = The clock is enabled to the Timer A1 module  
6.3.10.13 Quad Timer A, Channel 0 Clock Enable (TA0)—Bit 0  
0 = The clock is not provided to the Timer A0 module (the Timer A0 module is disabled)  
1 = The clock is enabled to the Timer A0 module  
6.3.11 Stop Disable Register 0 (SD0)  
By default, peripheral clocks are disabled during Stop mode in order to maximize power savings. This  
register will allow an individual peripheral to operate in Stop mode. Since asserting an interrupt causes the  
system to return to Run mode, this feature is provided so that selected peripherals can be left operating in  
Stop mode for the purpose of generating a wake-up interrupt.  
For power-conscious applications, it is recommended that only a minimum set of peripherals be  
configured to remain operational during Stop mode.  
Peripherals should be put in a non-operating (disabled) configuration prior to entering Stop mode unless  
their corresponding Stop Disable control is set to 1. Refer to the 56F802x and 56F803x Peripheral  
Reference Manual for further details. Reads and writes cannot be made to a module that has its clock  
disabled.  
Note:  
The MSCAN module supports extended power management capabilities including Sleep,  
Stop-in-Wait, and Disable modes. MSCAN clocks are selected by MSCAN control registers. For  
details, refer to the 56F802x and 56F803x Peripheral Reference Manual.  
Base + $E  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
Read  
Write  
CMPB_ CMPA_ DAC1_ DAC0_  
ADC_  
SD  
I2C_ QSCI1 QSCI0 QSPI1 QSPI0  
PWM_  
SD  
SD  
SD  
SD  
SD  
SD  
_SD  
_SD  
_SD  
_SD  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-12 Stop Disable Register 0 (SD0)  
6.3.11.1 Comparator B Clock Stop Disable (CMPB_SD)—Bit 15  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE0  
register  
6.3.11.2 Comparator A Clock Stop Disable (CMPA_SD)—Bit 14  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE0  
register  
56F8037/56F8027 Data Sheet, Rev. 8  
106  
FreescaleSemiconductor  
Register Descriptions  
6.3.11.3 Digital-to-Analog Converter 1 Clock Stop Disable (DAC1_SD)—Bit 13  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE0  
register  
6.3.11.4 Digital-to-Analog Converter 0 Clock Stop Disable (DAC0_SD)—Bit 12  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE0  
register  
6.3.11.5 Reserved—Bit 11  
This bit field is reserved. It must be set to 0.  
6.3.11.6 Analog-to-Digital Converter Clock Stop Disable (ADC_SD)—Bit 10  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE0  
register  
6.3.11.7 Reserved—Bits 9–7  
This bit field is reserved. Each bit must be set to 0.  
6.3.11.8 Inter-Integrated Circuit Clock Stop Disable (I2C_SD)—Bit 6  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE0  
register  
6.3.11.9 QSCI1 Clock Stop Disable (QSCI1_SD)—Bit 5  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE0  
register  
6.3.11.10 QSCI0 Clock Stop Disable (QSCI0_SD)—Bit 4  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE0  
register  
6.3.11.11 QSPI1 Clock Stop Disable (QSPI1_SD)—Bit 3  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE0  
register  
6.3.11.12 QSPI0 Clock Stop Disable (QSPI0_SD)—Bit 2  
Each bit controls clocks to the indicated peripheral.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
107  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE0  
register  
6.3.11.13 Reserved—Bit 1  
This bit field is reserved. It must be set to 0.  
6.3.11.14 PWM Clock Stop Disable (PWM_SD)—Bit 0  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE0  
register  
6.3.12 Stop Disable Register 1 (SD1)  
See Section 6.3.11 for general information about Stop Disable Registers.  
Base + $F  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
PIT2_ PIT1_  
SD  
PIT0_  
SD  
TB3_ TB2_  
SD  
TB1_  
SD  
TB0_ TA3_  
SD  
TA2_ TA1_ TA0_  
SD  
SD  
SD  
SD  
SD  
SD  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-13 Stop Disable Register 1 (SD1)  
6.3.12.1 Reserved—Bit 15  
This bit field is reserved. It must be set to 0.  
6.3.12.2 Programmable Interval Timer 2 Clock Stop Disable (PIT2_SD)—Bit 14  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1  
register  
6.3.12.3 Programmable Interval Timer 1 Clock Stop Disable (PIT1_SD)—Bit 13  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1  
register  
6.3.12.4 Programmable Interval Timer 0 Clock Stop Disable (PIT0_SD)—Bit 12  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1  
register  
6.3.12.5 Reserved—Bits 11–8  
This bit field is reserved. Each bit must be set to 0.  
56F8037/56F8027 Data Sheet, Rev. 8  
108  
FreescaleSemiconductor  
Register Descriptions  
6.3.12.6 Quad Timer B, Channel 3 Clock Stop Disable (TB3_SD)—Bit 7  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1  
register  
6.3.12.7 Quad Timer B, Channel 2 Clock Stop Disable (TB2_SD)—Bit 6  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1  
register  
6.3.12.8 Quad Timer B, Channel 1 Clock Stop Disable (TB1_SD)—Bit 5  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1  
register  
6.3.12.9 Quad Timer B, Channel 0 Clock Stop Disable (TB0_SD)—Bit 4  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1  
register  
6.3.12.10 Quad Timer A, Channel 3 Clock Stop Disable (TA3_SD)—Bit 3  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1  
register  
6.3.12.11 Quad Timer A, Channel 2 Clock Stop Disable (TA2_SD)—Bit 2  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1  
register  
6.3.12.12 Quad Timer A, Channel 1 Clock Stop Disable (TA1_SD)—Bit 1  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1  
register  
6.3.12.13 Quad Timer A, Channel 0 Clock Stop Disable (TA0_SD)—Bit 0  
0 = The clock is disabled during Stop mode  
1 = The clock is enabled during Stop mode if the clock to this peripheral is enabled in the SIM_PCE1  
register  
6.3.13 I/O Short Address Location Register High (SIM_IOSAHI)  
In I/O short address mode, the instruction specifies only 6 LSBs of the effective address; the upper 18 bits  
are “hard coded” to a specific area of memory. This scheme allows efficient access to a 64-location area  
in peripheral space with single word instruction. Short address location registers specify the upper 18 bits  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
109  
of I/O address, which are “hard coded”. These registers allow access to peripherals using I/O short address  
mode, regardless of the physical location of the peripheral, as shown in Figure 6-14.  
Instruction Portion  
Hard Coded” Address Portion  
6 Bits from I/O Short Address Mode Instruction  
16 Bits from SIM_IOSALO Register  
2 bits from SIM_IOSAHI Register  
Full 24-Bit for Short I/O Address  
Figure 6-14 I/O Short Address Determination  
With this register set, software can set the SIM_IOSAHI and SIM_IOSALO registers to point to its  
peripheral registers and then use the I/O short addressing mode to access them.  
Note:  
Note:  
The default value of this register set points to the EOnCE registers.  
The pipeline delay between setting this register set and using short I/O addressing with the new value  
is five instruction cycles.  
Base + $10  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ISAL[23:22]  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
RESET  
Figure 6-15 I/O Short Address Location High Register (SIM_IOSAHI)  
6.3.13.1 Reserved—Bits 15—2  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.3.13.2 Input/Output Short Address Location (ISAL[23:22])—Bits 1–0  
This field represents the upper two address bits of the “hard coded” I/O short address.  
6.3.14 I/O Short Address Location Register Low (SIM_IOSALO)  
See Section 6.3.13 for general information about I/O short address location registers.  
56F8037/56F8027 Data Sheet, Rev. 8  
110  
FreescaleSemiconductor  
Register Descriptions  
Base + $11  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ISAL[21:6]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 6-16 I/O Short Address Location Low Register (SIM_IOSALO)  
6.3.14.1 Input/Output Short Address Location (ISAL[21:6])—Bits 15–0  
This field represents the lower 16 address bits of the “hard coded” I/O short address.  
6.3.15 Protection Register (SIM_PROT)  
This register provides write protection of selected control fields for safety-critical applications. The  
primary purpose is to prevent unsafe conditions due to the unintentional modification of these fields  
between the onset of a code runaway and a reset by the COP watchdog. The GPIO and Internal Peripheral  
Select Protection (GIPSP) field protects the contents of registers in the SIM and GPIO modules that control  
inter-peripheral signal muxing and GPIO configuration. The Peripheral Clock Enable Protection (PCEP)  
field protects the SIM registers’ contents, which contain peripheral clock controls. Some peripherals  
provide additional safety features. Refer to the 56F802x and 56F803x Peripheral Reference Manual for  
details.  
Flexibility is provided so that write protection control values may themselves be optionally locked  
(write-protected). Protection controls in this register have two bit values which determine the setting of the  
control and whether the value is locked. While a protection control remains unlocked, protection can be  
disabled and re-enabled by software. Once a protection control is locked, its value can only be altered by  
a chip reset, which restores its default non-locked value.  
Base + $12  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
PCEP  
GIPSP  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-17 Protection Register (SIM_PROT)  
6.3.15.1 Reserved—Bits 15–4  
This bit field is reserved. Each bit must be set to 0.  
6.3.15.2 Peripheral Clock Enable Protection (PCEP)—Bits 3–2  
These bits enable write protection of all fields in the PCEn, SDn, and PCR registers in the SIM module.  
00 = Write protection off (default)  
01 = Write protection on  
10 = Write protection off and locked until chip reset  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
111  
11 = Write protection on and locked until chip reset  
6.3.15.3 GPIO and Internal Peripheral Select Protection (GIPSP)—Bits 1–0  
These bits enable write protection of GPSn and IPSn registers in the SIM module and write protect all  
GPIOx_PEREN, GPIOx_PPOUTM and GPIOx_DRIVE registers in GPIO modules.  
00 = Write protection off (default)  
01 = Write protection on  
10 = Write protection off and locked until chip reset  
11 = Write protection on and locked until chip reset  
Note:  
The PWM fields in the CLKOUT register are also write protected by GIPSP. They are reserved for  
in-house test only.  
6.3.16 SIM GPIO Peripheral Select Register 0 for GPIOA (SIM_GPSA0)  
Most I/O pins have an associated GPIO function. In addition to the GPIO function, I/O can be configured  
to be one of several peripheral functions. The GPIOx_PEREN register within the GPIO module controls  
the selection between peripheral or GPIO control of the I/O pins. The GPIO function is selected when the  
GPIOx_PEREN bit for the I/O is 0. When the GPIOx_PEREN bit of the GPIO is 1, the fields in the GPSn  
registers select which peripheral function has control of the I/O. Figure 6-18 illustrates the output path to  
an I/O pin when an I/O has two peripheral functions. Similar muxing is required on peripheral function  
inputs to receive input from the properly selected I/O pin.  
GPIOA6_PEREN  
Register  
SIM_GPSA0  
Register  
GPIOA6  
0
GPIOA6 pin  
PWM  
FAULT0  
0
1
1
Timer A0  
Figure 6-18 Overall Control of Signal Source Using SIM_GPSnn Control  
In some cases, the user can choose peripheral function between several I/O, each of which have the option  
to be programmed to control a specific peripheral function. If the user wishes to use that function, only one  
of these I/O must be configured to control that peripheral function. If more than one I/O is configured to  
control the peripheral function, the peripheral output signal will fan out to each I/O, but the peripheral input  
signal will be the logical OR and AND of all the I/O signals.  
Complete lists of I/O muxings are provided in Table 2-3.  
The GPSn setting can be altered during normal operation, but a delay must be inserted between the time  
when one function is disabled and another function is enabled.  
56F8037/56F8027 Data Sheet, Rev. 8  
112  
FreescaleSemiconductor  
Register Descriptions  
Note:  
After reset, all I/O pins are GPIO, except the JTAG pins and the RESET pin.  
Base + $13  
15  
14  
13  
12  
GPS_A6  
0
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
Read  
Write  
GPS_A5  
GPS_A4  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-19 GPIO Peripheral Select Register 0 for GPIOA (SIM_GPSA0)  
6.3.16.1 Reserved—Bits 15–13  
This bit field is reserved. Each bit must be set to 0.  
6.3.16.2 Configure GPIOA6 (GPS_A6)—Bit 12  
This field selects the alternate function for GPIOA6.  
0 = FAULT0 - PWM FAULT0 Input (default)  
1 = TA0 - Timer A0  
6.3.16.3 Configure GPIOA5 (GPS_A5)—Bits 11–10  
This field selects the alternate function for GPIOA5.  
00 = PWM5 - PWM5 (default)  
01 = FAULT2 - PWM FAULT2 Input  
10 = TA3 - Timer A3  
11 = Reserved  
6.3.16.4 Configure GPIOA4 (GPS_A4)—Bits 9–8  
This field selects the alternate function for GPIOA4.  
00 = PWM4 - PWM4 (default)  
01 = FAULT1 - PWM FAULT1 Input  
10 = TA2 - Timer A2  
11 = Reserved  
6.3.16.5 Reserved—Bits 7–0  
This bit field is reserved. Each bit must be set to 0.  
6.3.17 SIM GPIO Peripheral Select Register 1 for GPIOA (SIM_GPSA1)  
See Section 6.3.16 for general information about GPIO Peripheral Select Registers.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
113  
Base + $14  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
GPS_  
A11  
GPS_  
A10  
GPS_A14  
GPS_A13  
GPS_A12  
GPS_A9  
GPS_A8  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-20 GPIO Peripheral Select Register 1 for GPIOA (SIM_GPSA1)  
6.3.17.1 Reserved—Bits 15–14  
This bit field is reserved. Each bit must be set to 0.  
6.3.17.2 Configure GPIOA14 (GPS_A14)—Bits 13–12  
This field selects the alternate function for GPIOA14.  
00 = TB3 - Timer B3 (default)  
01 = MOSI1 - QSPI1 Master Out/Slave In  
10 = TA3 - Timer A3  
11 = Reserved  
6.3.17.3 Configure GPIOA13 (GPS_A13)—Bits 11–10  
This field selects the alternate function for GPIOA13.  
00 = TB2 - Timer B2 (default)  
01 = MISO1 - QSPI1 Master In/Slave Out  
10 = TA2 - Timer A2  
11 = Reserved  
6.3.17.4 Configure GPIOA12 (GPS_A12)—Bits 9–8  
This field selects the alternate function for GPIOA12.  
00 = TB1- Timer B1 (default)  
01 = SCLK1 - QSPI1 Serial Clock  
10 = TA1 - Timer A1  
11 = Reserved  
6.3.17.5 Reserved—Bit 7  
This bit field is reserved. It must be set to 0.  
6.3.17.6 Configure GPIOA11 (GPS_A11)—Bit 6  
This field selects the alternate function for GPIOA11.  
0 = CMPBI2 - Comparator B Input 2 (default)  
1 = TB3 - Timer B3  
56F8037/56F8027 Data Sheet, Rev. 8  
114  
FreescaleSemiconductor  
Register Descriptions  
6.3.17.7 Reserved—Bit 5  
This bit field is reserved. It must be set to 0.  
6.3.17.8 Configure GPIOA10 (GPS_A10)—Bit 4  
This field selects the alternate function for GPIOA10.  
0 = CMPAI2- Comparator A Input 2 (default)  
1 = TB2 - Timer B2  
6.3.17.9 Configure GPIOA9 (GPS_A9)—Bits 3–2  
This field selects the alternate function for GPIOA9.  
00 = FAULT2 - PWM FAULT2 Input (default)  
01 = TA3 - Timer A3  
10 = CMPBI1 - Comparator B Input 1  
11 = Reserved  
6.3.17.10 Configure GPIOA8 (GPS_A8)—Bits 1–0  
This field selects the alternate function for GPIOA8.  
00 = FAULT1 - PWM FAULT1 Input (default)  
01 = TA2 - Timer A2  
10 = CMPAI1 - Comparator A Input 1  
11 = Reserved  
6.3.18 SIM GPIO Peripheral Select Register 0 for GPIOB (SIM_GPSB0)  
See Section 6.3.16 for general information about GPIO Peripheral Select Registers.  
Base + $15  
Read  
15  
14  
13  
12  
11  
10  
9
GPS_B4  
0
8
7
6
5
4
3
2
1
0
0
0
0
GPS_  
B1  
GPS_  
B0  
GPS_B6  
GPS_B5  
GPS_B3  
GPS_B2  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-21 GPIO Peripheral Select Register 0 for GPIOB (SIM_GPSB0)  
6.3.18.1 Reserved—Bit 15  
This bit field is reserved. It must be set to 0.  
6.3.18.2 Configure GPIOB6 (GPS_B6)—Bits 14–13  
This field selects the alternate function for GPIOB6.  
00 = RXD0 - QSCI0 Receive Data (default)  
01 = SDA - I2C Serial Data  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
115  
10 = CLKIN - External Clock Input  
11 = Reserved  
6.3.18.3 Configure GPIOB5 (GPS_B5)—Bits 12–11  
This field selects the alternate function for GPIOB5.  
00 = TA1 - Timer A1 (default)  
01 = FAULT3 - PWM FAULT3 Input  
10 = CLKIN - External Clock Input  
11 = Reserved  
6.3.18.4 Configure GPIOB4(GPS_B4)—Bits 10–8  
This field selects the alternate function for GPIOB4.  
000 = TA0 - Timer A0 (default)  
001 = CLKO - Clock Output  
010 = SS1 - QSPI1 Slave Select  
011 = TB0 - Timer B0  
100 = PSRC2 - PWM4 / PWM5 Pair External Source  
11x = Reserved  
1x1 = Reserved  
6.3.18.5 Configure GPIOB3 (GPS_B3)—Bits 7–6  
This field selects the alternate function for GPIOB3.  
00 = MOSI0 - QSPI0 Master Out/Slave In (default)  
01 = TA3 - Timer A3  
10 = PSRC1 - PWM2 / PWM3 Pair External Source  
11 = Reserved  
6.3.18.6 Configure GPIOB2 (GPS_B2)—Bits 5–4  
This field selects the alternate function for GPIOB2.  
00 = MISO0 QSPI0 Master In/Slave Out (default)  
01 = TA2 - Timer A2  
10 = PSRC0 - PWM0 / PWM1 Pair External Source  
11 = Reserved  
6.3.18.7 Reserved—Bit 3  
This bit field is reserved. It must be set to 0.  
6.3.18.8 Configure GPIOB1 (GPS_B1)—Bit 2  
This field selects the alternate function for GPIOB1.  
56F8037/56F8027 Data Sheet, Rev. 8  
116  
FreescaleSemiconductor  
Register Descriptions  
0 = SS0 - QSPI0 Slave Select (default)  
1 = SDA - I2C Serial Data  
6.3.18.9 Reserved—Bit 1  
This bit field is reserved. It must be set to 0.  
6.3.18.10 Configure GPIOB0 (GPS_B0)—Bits 0  
This field selects the alternate function for GPIOB0.  
0 = SCLK0 - QSPI0 Serial Clock (default)  
1 = SCL - I2C Serial Clock  
6.3.19 SIM GPIO Peripheral Select Register 1 for GPIOB (SIM_GPSB1)  
See Section 6.3.16 for general information about GPIO Peripheral Select Registers.  
Base + $16  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
GPS_  
B11  
GPS_  
B10  
GPS_  
B9  
GPS_  
B8  
GPS_  
B7  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-22 GPIO Peripheral Select Register 1 for GPIOB (SIM_GPSB1)  
6.3.19.1 Reserved—Bits 15–9  
This bit field is reserved. Each bit must be set to 0.  
6.3.19.2 Configure GPIOB11 (GPS_B11)—Bit 8  
This field selects the alternate function for GPIOB11.  
0 = CMPBO - Comparator B Output (default)  
1 = TB1 - Timer B1  
6.3.19.3 Reserved—Bit 7  
This bit field is reserved. It must be set to 0.  
6.3.19.4 Configure GPIOB10 (GPS_B10)—Bit 6  
This field selects the alternate function for GPIOB10.  
0 = CMPAO - Comparator A Output (default)  
1 = TB0 - Timer B0  
6.3.19.5 Reserved—Bit 5  
This bit field is reserved. It must be set to 0.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
117  
6.3.19.6 Configure GPIOB9 (GPS_B9)—Bit 4  
This field selects the alternate function for GPIOB9.  
0 = SDA - I2C Serial Data (default)  
1 = MSCANRX - MSCAN Receive Data  
6.3.19.7 Reserved—Bit 3  
This bit field is reserved. It must be set to 0.  
6.3.19.8 Configure GPIOB8 (GPS_B8)—Bit 2  
This field selects the alternate function for GPIOB8.  
0 = SCL - I2C Serial Clock (default)  
1 = MSCANTX - MSCAN Transmit Data  
6.3.19.9 Reserved—Bit 1  
This bit field is reserved. It must be set to 0.  
6.3.19.10 Configure GPIOB7 (GPS_B7)—Bit 0  
This field selects the alternate function for GPIOB7.  
0 = TXD0 - QSCI0 Transmit Data (default)  
1 = SCL - I2C Serial Clock  
6.3.20 SIM GPIO Peripheral Select Register for GPIOC and GPIOD  
(SIM_GPSCD)  
See Section 6.3.16 for general information about GPIO Peripheral Select Registers.  
Base + $17  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
GPS_  
D5  
GPS_  
C12  
GPS_  
C8  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-23 GPIO Peripheral Select Register for GPIOC and GPIOD (SIM_GPSCD)  
6.3.20.1 Reserved—Bits 15–13  
This bit field is reserved. Each bit must be set to 0.  
56F8037/56F8027 Data Sheet, Rev. 8  
118  
FreescaleSemiconductor  
Register Descriptions  
6.3.20.2 Configure GPIOD5 (GPS_D5)—Bit 12  
This field selects the alternate function for GPIOD5.  
0 = XTAL - External Crystal Oscillator Output (default)  
1 = CLKIN - External Clock Input  
6.3.20.3 Reserved—Bits 11–5  
This bit field is reserved. Each bit must be set to 0.  
6.3.20.4 Configure GPIOC12 (GPS_C12)—Bit 4  
This field selects the alternate function for GPIOC12.  
0 = ANB4 - ADCB, Channel 4 (default)  
1 = RXD1 - QSCI1 Receive Data  
6.3.20.5 Reserved—Bit 3  
This bit field is reserved. It must be set to 0.  
6.3.20.6 Configure GPIOC8 (GPS_C8)—Bit 2  
This field selects the alternate function for GPIOC8.  
0 = ANA4 - ADCA, Channel 4 (default)  
1 = TXD1 - QSCI1 Transmit Data  
6.3.20.7 Reserved—Bits 1—0  
This bit field is reserved. Each bit must be set to 0.  
6.3.21 Internal Peripheral Source Select Register 0 for Pulse Width  
Modulator (SIM_IPS0)  
The internal integration of peripherals provides input signal source selection for peripherals where an input  
signal to a peripheral can be fed from one of several sources. These registers are organized by peripheral  
type and provide a selection list for every peripheral input signal that has more than one alternative source  
to indicate which source is selected.  
If one of the alternative sources is GPIO, the setting in these registers must be made consistently with the  
settings in the GPSn and GPIOx_PEREN registers. Specifically, when an IPSn field is configured to select  
an I/O pin as the source, then GPSn register settings must configure only one I/O pin to feed this peripheral  
input function. Also, the GPIOx_PEREN bit for that I/O pin must be set to 1 to enable peripheral control  
of the I/O.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
119  
GPIOA5_PEREN  
Register  
SIM_GPSA0  
Register  
GPIOA5  
SIM_IPS0  
Register  
0
PWM5  
GPIOA5 pin  
00  
01  
10  
1
0
1
PWM  
FAULT2  
Timer A3  
Comparator A  
Output (Internal)  
Figure 6-24 Overall Control of Signal Source using SIM_IPSn Control  
IPSn settings should not be altered while an affected peripheral is in an enabled (operational)  
configuration. See the 56F802x and 56F803x Peripheral Reference Manual for details.  
Base + $18  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
IPS0_  
FAULT2  
IPS0_  
FAULT1  
IPS0_PSRC2  
0
IPS0_PSRC1  
0
IPS0_PSRC0  
0
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-25 Internal Peripheral Source Select Register for PWM (SIM_IPS0)  
6.3.21.1 Reserved—Bits 15–14  
This bit field is reserved. Each bit must be set to 0.  
6.3.21.2 Select Peripheral Input Source for FAULT2 (IPS0_FAULT2)—Bit 13  
This field selects the alternate input source signal to feed PWM input FAULT2.  
0 = I/O Pin (External) - Use PWM FAULT2 Input Pin (default)  
1 = CMPBO (Internal) - Use Comparator B Output  
6.3.21.3 Reserved—Bit 12  
This bit field is reserved. It must be set to 0.  
6.3.21.4 Select Peripheral Input Source for FAULT1 (IPS0_FAULT1)—Bit 11  
This field selects the alternate input source signal to feed PWM input FAULT1.  
0 = I/O pin (External) - Use PWM FAULT2 Input Pin (default)  
1 = CMPAO (Internal) - Use Comparator A Output  
56F8037/56F8027 Data Sheet, Rev. 8  
120  
FreescaleSemiconductor  
Register Descriptions  
6.3.21.5 Reserved—Bits 10–9  
This bit field is reserved. Each bit must be set to 0.  
6.3.21.6 Select Peripheral Input Source for PWM4/PWM5 Pair Source  
(IPS0_PSRC2)—Bits 8–6  
This field selects the alternate input source signal to feed PWM input PSRC2 as the PWM4/PWM5 pair  
source.  
000 = I/O Pin (External) - Use a PSRC2 input pin as PWM source (default)  
001 = TA3 (Internal) - Use Timer A3 output as PWM source  
010 = ADC SAMPLE2 (Internal) - Use ADC SAMPLE2 result as PWM source  
— If the ADC conversion result in SAMPLE2 is greater than the value programmed into the High Limit  
register HLMT2, then PWM4 is set to 0 and PWM5 is set to 1  
— If the ADC conversion result in SAMPLE2 is less than the value programmed into the Low Limit  
register LLMT2, then PWM4 is set to 1 and PWM5 is set to 0  
011 = CMPAO (Internal) - Use Comparator A output as PWM source  
100 = CMPBO (Internal) - Use Comparator B output as PWM source  
11x = Reserved  
1x1 = Reserved  
6.3.21.7 Select Peripheral Input Source for PWM2/PWM3 Pair Source  
(IPS0_PSRC1)—Bits 5–3  
This field selects the alternate input source signal to feed PWM input PSRC1 as the PWM2/PWM3 pair  
source.  
000 = I/O pin (External) - Use a PSRC1 input pin as PWM source (default)  
001 = TA2 (Internal) - Use Timer A2 output as PWM source  
010 = ADC SAMPLE1 (Internal) - Use ADC SAMPLE1 result as PWM source  
— If the ADC conversion result in SAMPLE1 is greater than the value programmed into the High Limit  
register HLMT1, then PWM2 is set to 0 and PWM3 is set to 1  
— If the ADC conversion result in SAMPLE1 is less than the value programmed into the Low Limit  
register LLMT1, then PWM2 is set to 1 and PWM3 is set to 0  
011 = CMPAO (Internal) - Use Comparator A output as PWM source  
100 = CMPBO (Internal) - Use Comparator B output as PWM source  
11x = Reserved  
1x1 = Reserved  
6.3.21.8 Select Peripheral Input Source for PWM0/PWM1 Pair Source  
(IPS0_PSRC0)—Bits 2–0  
This field selects the alternate input source signal to feed PWM input PSRC0 as the PWM0/PWM1 pair  
source.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
121  
000 = I/O pin (External) - Use a PSRC0 input pin as PWM source (default)  
001 = TA0 (Internal) - Use Timer A0 output as PWM source  
010 = ADC SAMPLE0 (Internal) - Use ADC SAMPLE0 result as PWM source  
— If the ADC conversion result in SAMPLE0 is greater than the value programmed into the High Limit  
register HLMT0, then PWM0 is set to 0 and PWM1 is set to 1  
— If the ADC conversion result in SAMPLE0 is less than the value programmed into the Low Limit  
register LLMT0, then PWM0 is set to 1 and PWM1 is set to 0  
011 = CMPAO (Internal) - Use Comparator A output as PWM source  
100 = CMPBO (Internal) - Use Comparator B output as PWM source  
11x = Reserved  
1x1 = Reserved  
6.3.22 Internal Peripheral Source Select Register 1 for Digital-to-Analog  
Converters (SIM_IPS1)  
See Section 6.3.21 for general information about Internal Peripheral Source Select registers.  
Base + $19  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
IPS1_DSYNC1  
0
IPS1_DSYNC0  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-26 Internal Peripheral Source Select Register for DACs (SIM_IPS1)  
6.3.22.1 Reserved—Bits 15–7  
This bit field is reserved. Each bit must be set to 0.  
6.3.22.2 Select Input Peripheral Source for SYNC Input to DAC 1  
(IPS1_DSYNC1)—Bits 6–4  
This field selects the alternate input source signal to feed DAC1 SYNC input.  
000 = PIT0 (Internal) - Use Programmable Interval Timer 0 Output as DAC SYNC input (default)  
001 = PIT1 (Internal) - Use Programmable Interval Timer 1 Output as DAC SYNC input  
010 = PIT2 (Internal) - Use Programmable Interval Timer 2 Output as DAC SYNC input  
011 = PWM SYNC (Internal) - Use PWM reload synchronization signal as DAC SYNC input  
100 = TA0 (Internal) - Use Timer A0 output as DAC SYNC input  
101 = TA1 (Internal) - Use Timer A1 output as DAC SYNC input  
11x = Reserved  
6.3.22.3 Reserved—Bit 3  
This bit field is reserved. It must be set to 0.  
56F8037/56F8027 Data Sheet, Rev. 8  
122  
FreescaleSemiconductor  
Register Descriptions  
6.3.22.4 Select Peripheral Input Source for SYNC Input to DAC 0  
(IPS1_DSYNC0)—Bits 2–0  
This field selects the alternate input source signal to feed DAC0 SYNC input.  
000 = PIT0 (Internal) - Use Programmable Interval Timer 0 Output as DAC SYNC input (default)  
001 = PIT1 (Internal) - Use Programmable Interval Timer 1 Output as DAC SYNC input  
010 = PIT2 (Internal) - Use Programmable Interval Timer 2 Output as DAC SYNC input  
011 = PWM SYNC (Internal) - Use PWM reload synchronization signal as DAC SYNC input  
100 = TA0 (Internal) - Use Timer A0 output as DAC SYNC input  
101 = TA1 (Internal) - Use Timer A1 output as DAC SYNC input  
11x = Reserved  
6.3.23 Internal Peripheral Source Select Register 2 for Quad Timer A  
(SIM_IPS2)  
See Section 6.3.21 for general information about Internal Peripheral Source Select registers.  
Base + $1A  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
IPS2_  
TA3  
IPS2_  
TA2  
IPS2_  
TA1  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-27 Internal Peripheral Source Select Register for TMRA (SIM_IPS2)  
6.3.23.1 Reserved—Bits 15–13  
This bit field is reserved. Each bit must be set to 0.  
6.3.23.2 Select Peripheral Input Source for TA3 (IPS2_TA3)—Bit 12  
This field selects the alternate input source signal to feed Quad Timer A, input 3.  
0 = I/O pin (External) - Use Timer A3 input/output pin  
1 = PWM SYNC (Internal) - Use PWM reload synchronization signal  
6.3.23.3 Reserved—Bits 11–9  
This bit field is reserved. Each bit must be set to 0.  
6.3.23.4 Select Peripheral Input Source for TA2 (IPS2_TA2)—Bit 8  
This field selects the alternate input source signal to feed Quad Timer A, input 2.  
0 = I/O pin (External) - Use Timer A2 input/output pin  
1 = CMPBO (Internal) - Use Comparator B output  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
123  
6.3.23.5 Reserved—Bits 7–5  
This bit field is reserved. Each bit must be set to 0.  
6.3.23.6 Select Peripheral Input Source for TA1 (IPS2_TA1)—Bit 4  
This field selects the alternate input source signal to feed Quad Timer A, input 1.  
0 = I/O pin (External) - Use Timer A1 input/output pin  
1 = CMPAO (Internal) - Use Comparator A output  
6.3.23.7 Reserved—Bits 3–0  
This bit field is reserved. Each bit must be set to 0.  
For Timer A to detect the PWM SYNC signal, the clock rate of both the PWM module and Timer A  
module must be identical, at either the system clock rate or 3X system clock rate.  
6.4 Clock Generation Overview  
The SIM uses the master clock (2X system clock) at a maximum of 64MHz from the OCCS module to  
produce a system clock at a maximum of 32MHz for the peripheral, core and memory. It divides the master  
clock by two and gates it with appropriate power mode and clock gating controls. A 3X system high-speed  
peripheral clock input from OCCS operates at three times the system clock at a maximum of 96MHz and  
2
can be an optional clock for PWM, Timer A, Timer B, and I C modules. These clocks are generated by  
gating the 3X system high-speed peripheral clock with appropriate power mode and clock gating controls.  
The OCCS configuration controls the operating frequency of the SIM’s master clocks. In the OCCS, either  
an external clock (CLKIN), a crystal oscillator, or the relaxation oscillator can be selected as the master  
clock source (MSTR_OSC). An external clock can be operated at any frequency up to 64MHz. The crystal  
oscillator can be operated only at a maximum of 8MHz. The relaxation oscillator can be operated at full  
speed (8MHz), standby speed (200kHz using ROSB), or powered down (using ROPD). An 8MHz  
MSTR_OSC can be multiplied to 196MHz using the PLL and postscaled to provide a variety of high-speed  
clock rates. Either the postscaled PLL output or MSTR_OSC signal can be selected to produce the master  
clocks to the SIM. When the PLL is selected, both the 3X system clock and the 2X system clock are  
enabled. If the PLL is not selected, the 3X system clock is disabled and the master clock is MSTR_OSC.  
In combination with the OCCS module, the SIM provides power modes (see Section 6.5), clock enables,  
and clock rate controls to provide flexible control of clocking and power utilization. The clock rate  
controls enable the high-speed clocking option for the two quad timers (TMRA and TMRB) and PWM,  
but requires the PLL to be on and selected. Refer to the 56F802x and 56F803x Peripheral Reference  
Manual for further details. The peripheral clock enable controls can be used to disable an individual  
peripheral clock when it is not used.  
6.5 Power-Saving Modes  
The 56F8037/56F8027 operates in one of five Power-Saving modes, as shown in Table 6-2.  
56F8037/56F8027 Data Sheet, Rev. 8  
124  
FreescaleSemiconductor  
Power-Saving Modes  
Table 6-2 Clock Operation in Power-Saving Modes  
Mode  
Core Clocks  
Peripheral Clocks  
Description  
Device is fully functional  
Run  
Wait  
Core and memory  
clocks enabled  
Peripheral clocks  
enabled  
Core and memory  
clocks disabled  
Peripheral clocks  
enabled  
Core executes WAIT instruction to enter this  
mode.  
Typically used for power-conscious applications.  
Possible recoveries from Wait mode to Run  
mode are:  
1. Any interrupt  
2. Executing a Debug mode entry command  
during the 56800E core JTAG interface  
3. Any reset (POR, external, software, COP)  
Stop  
Master clock generation in the OCCS  
remains operational, but the SIM disables  
the generation of system and peripheral  
clocks.  
Core executes STOP instruction to enter this  
mode.  
Possible recoveries from Stop mode to Run  
mode are:  
1. Interrupt from any peripheral configured in the  
CTRL register to operate in Stop mode (TA0-3,  
QSCI0, PIT0-1, CAN, CMPA-B)  
2. Low-voltage interrupt  
3. Executing a Debug mode entry command  
using the 56800E core JTAG interface  
4. Any reset (POR, external, software, COP)  
Standby  
The OCCS generates the master clock at a The user configures the OCCS and SIM to select  
reduced frequency (400kHz). The PLL is  
disabled and the high-speed peripheral  
option is not available. System and  
peripheral clocks operate at 200kHz.  
the relaxation oscillator clock source (PRECS),  
shut down the PLL (PLLPD), put the relaxation  
oscillator in Standby mode (ROSB), and put the  
large regulator in Standby (LRSTDBY). The  
device is fully operational, but operating at a  
minimum frequency and power configuration.  
Recovery requires reversing the sequence used  
to enter this mode (allowing for PLL lock time).  
Power-Down  
Master clock generation in the OCCS is  
completely shut down. All system and  
peripheral clocks are disabled.  
The user configures the OCCS and SIM to enter  
Standby mode as shown in the previous  
description, followed by powering down the  
oscillator (ROPD). The only possible recoveries  
from this mode are:  
1. External Reset  
2. Power-On Reset  
The power-saving modes provide additional power management options by disabling the clock,  
reconfiguring the voltage regulator clock generation to manage power utilization, as shown in Table 6-2.  
Run, Wait, and Stop modes provide methods of enabling/disabling the peripheral and/or core clocking as  
a group. Stop disable controls for an individual peripheral are provided in the SDn registers to override the  
default behavior of Stop mode. By asserting a peripheral’s Stop disable bit, the peripheral clock continues  
to operate in Stop mode. This is useful to generate interrupts which will recover the device from Stop mode  
to Run mode. Standby mode provides normal operation but at very low speed and power utilization. It is  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
125  
possible to invoke Stop or Wait mode while in Standby mode for even greater levels of power reduction.  
A 400kHz external clock can optionally be used in Standby mode to produce the required Standby 200kHz  
system clock rate. Power-down mode, which selects the ROSC clock source but shuts it off, fully disables  
the device and minimizes its power utilization but is only recoverable via reset.  
When the PLL is not selected and the system bus is operating at 200kHz or less, the large regulator can be  
put into its Standby mode (LRSTDBY) to reduce the power utilization of that regulator.  
All peripherals, except the COP/watchdog timer, run at the system clock frequency or optional 3X system  
2
clock for PWM, Timers, and I C. The COP timer runs at OSC_CLK / 1024. The maximum frequency of  
operation is 32MHz.  
6.6 Resets  
The SIM supports five sources of reset, as shown in Figure 6-28. The two asynchronous sources are the  
external reset pin and the Power-On Reset (POR). The three synchronous sources are the software reset  
(SW reset), which is generated within the SIM itself by writing the SIM_CTRL register in Section 6.3.1,  
the COP time-out reset (COP_TOR), and the COP loss-of-reference reset (COP_LOR). The reset  
generation module has three reset detectors, which resolve into four primary resets. These are outlined in  
Table 6-3. The JTAG circuitry is reset by the Power-On Reset.  
Table 6-3 Primary System Resets  
Reset Sources  
Reset Signal  
POR  
External  
Software  
COP  
Comments  
EXTENDED_POR  
X
Stretched version of POR released 64  
OSC_CLK cycles after POR deasserts  
CLKGEN_RST  
X
X
X
X
Released 32 OSC_CLK cycles after all reset  
sources, including EXTENDED_POR, have  
released  
PERIP_RST  
CORE_RST  
X
X
X
X
X
X
X
X
Releases 32 SYS_CLK cycles after the  
CLKGEN_RST is released  
Releases 32 SYS_CLK cycles after  
PERIP_RST is released  
Figure 6-28 provides a graphic illustration of the details in Table 6-3. Note that the POR_Delay blocks  
use the OSC_CLK as their time base, since other system clocks are inactive during this phase of reset.  
56F8037/56F8027 Data Sheet, Rev. 8  
126  
FreescaleSemiconductor  
Clocks  
EXTENDED_POR  
JTAG  
POR  
pulse shaper  
Power-On  
Reset  
(active low)  
Memory  
Subsystem  
Delay 64  
OSC_CLK  
Clock  
CLKGEN_RST  
OCCS  
COMBINED_RST  
External  
RESET IN  
(active low)  
PERIP_RST  
Delay 32  
OSC_CLK  
Clock  
RESET  
Peripherals  
pulse shaper  
Delay 32  
COP_TOR  
(active low)  
sys clocks  
SW Reset  
56800E  
pulse shaper  
Delay 32  
sys clocks  
COP_LOR  
(active low)  
pulse shaper  
Delay blocks assert immediately and  
deassert only after the programmed  
number of clock cycles.  
CORE_RST  
Figure 6-28 Sources of RESET Functional Diagram (Test modes not included)  
POR resets are extended 64 OSC_CLK clocks to stabilize the power supply and clock source. All resets  
are subsequently extended for an additional 32 OSC_CLK clocks and 64 system clocks as the various  
internal reset controls are released. Given the normal relaxation oscillator rate of 8MHz, the duration of a  
POR reset from when power comes on to when code is running is 28µS. An external reset generation  
circuit may also be used. A description of how these resets are used to initialize the clocking system and  
system modules is included in Section 6.7.  
6.7 Clocks  
The memory, peripheral and core clocks all operate at the same frequency (32MHz maximum) with the  
exception of the peripheral clocks for quad timers TMRA and TMRB and the PWM, which have the option  
to operate at 3X system clock. The SIM is responsible for clock distributions.  
While the SIM generates the ADC peripheral clock in the same way it generates all other peripheral clocks,  
the ADC standby and conversion clocks are generated by a direct interface between the ADC and the  
OCCS module.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
127  
The deassertion sequence of internal resets coordinates the device start up, including the clocking system  
start up. The sequence is described in the following steps:  
1. As power is applied, the Relaxation Oscillator starts to operate. When a valid operating voltage is  
reached, the POR reset will release.  
2. The release of POR reset permits operation of the POR reset extender. The POR extender generates  
an extended POR reset, which is released 64 OSC_CLK cycles after POR reset. This provides an  
additional time period for the clock source and power to stabilize.  
3. A Combined reset consists of the OR of the extended POR reset, the external reset, the COP reset  
and Software reset. The entire device, except for the POR extender, is held reset as long as  
Combined reset is asserted. The release of Combined reset permits operation of the CTRL register,  
the Synchronous reset generator, and the CLKGEN reset extender.  
4. The Synchronous reset generator generates a reset to the Software and COP reset logic. The COP  
and Software reset logic is released three OSC_CLK cycles after Combined reset deasserts. This  
provides a reasonable minimum duration to the reset for these specialized functions.  
5. The CLKGEN reset extender generates the CLKGEN reset used by the clock generation logic. The  
CLKGEN reset is released 32 OSC_CLK cycles after Combined reset deasserts. This provides a  
window in which the SIM stabilizes the master clock inputs to the clock generator.  
6. The release of CLKGEN reset permits operation of the clock generation logic and the Peripheral  
reset extender. The Peripheral reset extender generates the Peripheral reset, which is released 32  
SYS_CLK cycles after CLKGEN reset. This provides a window in which peripheral and core logic  
remain clocked, but in reset, so that synchronous resets can be resolved.  
7. The release of Peripheral reset permits operation of the peripheral logic and the Core reset extender.  
The Core reset extender generates the Core reset, which is released 32 SYS_CLK cycles after the  
Peripheral reset. This provides a window in which critical peripheral start-up functions, such as  
Flash Security in the Flash memory, can be implemented.  
8. The release of Core reset permits execution of code by the 56800E core and marks the end of the  
system start-up sequence.  
Figure 6-29 illustrates clock relationships to one another and to the various resets as the device comes out  
of reset. RST is assumed to be the logical AND of all active-low system resets (for example, POR, external  
reset, COP and Software reset). In the 56F8037/56F8027, this signal will be stretched by the SIM for a  
period of time (up to 96 OSC_CLK clock cycles, depending upon the status of the POR) to create the clock  
generation reset signal (CLKGEN_RST). The SIM should deassert CLKGEN_RST synchronously with  
the negative edge of OSC_CLK in order to avoid skew problems. CLKGEN_RST is delayed 32 SYS_CLK  
cycles to create the peripheral reset signal (PERIP_RST). PERIP_RST is then delayed by 32 SYS_CLK  
cycles to create CORE_RST. Both PERIP_RST and CORE_RST should be released on the negative edge  
of SYS_CLK_D as shown. This phased releasing of system resets is necessary to give some peripherals  
(for example, the Flash interface unit) set-up time prior to the 56800E core becoming active.  
56F8037/56F8027 Data Sheet, Rev. 8  
128  
FreescaleSemiconductor  
Interrupts  
Maximum Delay = 64 OSC_CLK cycles for POR reset extension and 32 OSC_CLK cycles  
for Combined reset extension  
RST  
MSTR_OSC  
Switch on falling OSC_CLK  
96 MSTR_OSC cycles  
CKGEN_RST  
2X SYS_CLK  
SYS_CLK  
SYS_CLK_D  
SYS_CLK_DIV2  
PERIP_RST  
32 SYS_CLK cycles delay  
Switch on falling SYS_CLK  
Switch on falling SYS_CLK  
32 SYS_CLK cycles delay  
CORE_RST  
Figure 6-29 Timing Relationships of Reset Signal to Clocks  
6.8 Interrupts  
The SIM generates no interrupts.  
Part 7 Security Features  
The 56F8037/56F8027 offers security features intended to prevent unauthorized users from reading the  
contents of the flash memory (FM) array. The 56F8037/56F8027’s flash security consists of several  
hardware interlocks that prevent unauthorized users from gaining access to the flash array.  
After flash security is set, an authorized user is still able to access on-chip memory if a user-defined  
software subroutine, which reads and transfers the contents of internal memory via serial communication  
peripherals, is included in the application software.  
7.1 Operation with Security Enabled  
After the user has programmed flash with the application code, the 56F8037/56F8027 can be secured by  
programming the security word $0002 into program memory location $00 7FF7. This non-volatile word  
will keep the device secured through reset and through power-down of the device. Refer to the flash  
memory chapter in the 56F802x and 56F803x Peripheral Reference Manual for the details. When flash  
security mode is enabled, the 56F8037/56F8027 will disable the core EOnCE debug capabilities. Normal  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
129  
program execution is otherwise unaffected.  
7.2 Flash Access Lock and Unlock Mechanisms  
There are several methods that effectively lock or unlock the on-chip flash.  
7.2.1  
Disabling EOnCE Access  
On-chip flash can be read by issuing commands across the EOnCE port, which is the debug interface for  
the 56800E CPU. The TCK, TMS, TDO, and TDI pins comprise a JTAG interface onto which the EOnCE  
port functionality is mapped. When the device boots, the chip-level JTAG TAP (Test Access Port) is active  
and provides the chip’s boundary scan capability and access to the ID register, but proper implementation  
of flash security will block any attempt to access the internal flash memory via the EOnCE port when  
security is enabled.  
7.2.2  
Flash Lockout Recovery Using JTAG  
If the device is secured, one lockout recovery mechanism is the complete erasure of the internal flash  
contents, including the configuration field, thus disabling security (the protection register is cleared). This  
does not compromise security, as the entire contents of the user’s secured code stored in flash are erased  
before security is disabled on the device on the next reset or power-up sequence.  
To start the lockout recovery sequence via JTAG, the JTAG public instruction  
(LOCKOUT_RECOVERY) must first be shifted into the chip-level TAP controller’s instruction register.  
Once the LOCKOUT_RECOVERY instruction has been shifted into the instruction register, the clock  
divider value must be shifted into the corresponding 7-bit data register. After the data register has been  
updated, the user must transition the TAP controller into the RUN-TEST/IDLE state for the lockout  
sequence to commence. The controller must remain in this state until the erase sequence is complete. Refer  
to the 56F802x and 56F803x Peripheral Reference Manual for more details, or contact Freescale.  
Note:  
Once the lockout recovery sequence has completed, the user must reset both the JTAG TAP controller  
and device to return to normal unsecured operation. Power-on reset will reset both too.  
7.2.3  
Flash Lockout Recovery using CodeWarrior  
CodeWarrior can unlock a device by selecting the Debug menu, then selecting DSP56800E, followed by  
Unlock Flash. Another mechanism is also built into CodeWarrior using the device’s memory  
configuration file. The command “Unlock_Flash_on_Connect 1” in the .cfg file accomplishes the same  
task as using the Debug menu.  
This lockout recovery mechanism is the complete erasure of the internal flash contents, including the  
configuration field, thus disabling security (the protection register is cleared).  
7.2.4  
Flash Lockout Recovery without mass erase  
A user can un-secure a secured device by programming the word $0000 into program memory location  
$00 7FF7. After completing the programming, both the JTAG TAP controller and the device must be reset  
in order to return to normal unsecured operation. Power-on reset will also reset both.  
56F8037/56F8027 Data Sheet, Rev. 8  
130  
FreescaleSemiconductor  
Product Analysis  
The user is responsible for directing the device to invoke the flash programming subroutine to reprogram  
the word $0000 into program memory location $00 7FF7. This is done by, for example, toggling a specific  
pin or downloading a user-defined key through serial interfaces.  
Note:  
Flash contents can only be programmed for 1s to 0s.  
7.3 Product Analysis  
The recommended method of unsecuring a secured device for product analysis of field failures is via the  
method described in section 7.2.4. The customer would need to supply Technical Support with the details  
of the protocol to access the subroutines in flash memory. An alternative method for performing analysis  
on a secured device would be to mass-erase and reprogram the flash with the original code, but modify the  
security word or not program the security word.  
Part 8 General Purpose Input/Output (GPIO)  
8.1 Introduction  
This section is intended to supplement the GPIO information found in the 56F802x and 56F803x  
Peripheral Reference Manual and contains only chip-specific information. This information supersedes  
the generic information in the 56F802x and 56F803x Peripheral Reference Manual.  
8.2 Configuration  
There are four GPIO ports defined on the 56F8037/56F8027. The width of each port, the associated  
peripheral and reset functions are shown in Table 8-1. The specific mapping of GPIO port pins is shown  
in Table 8-2. Additional details are shown in Tables 2-2 and 2-3.  
Table 8-1 GPIO Ports Configuration  
Available  
Pins in  
56F8037/56F  
8027  
GPIO Port  
Peripheral Function  
Reset Function  
PWM, Timer, QSPI, Comparator, Reset  
GPIO, RESET  
A
B
15  
14  
QSPI, I2C, PWM, Clock, MSCAN,  
Comparator, Timer  
GPIO  
ADC, Comparator, QSCI  
GPIO  
C
D
16  
8
Clock, Oscillator, DAC, JTAG  
GPIO, JTAG  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
131  
Table 8-2 GPIO External Signals Map  
LQFP  
Peripheral Function  
Package Pin  
Notes  
GPIO Function  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
GPIOA4  
PWM0  
56  
55  
47  
48  
43  
Defaults to A0  
Defaults to A1  
Defaults to A2  
Defaults to A3  
PWM1  
PWM2  
PWM3  
PWM4 / TA2 / FAULT1  
SIM register SIM_GPS is used to  
select between PWM4, TA2, and  
FAULT1.  
Defaults to A4  
GPIOA5  
GPIOA6  
PWM5 / TA3 / FAULT2  
FAULT0 / TA0  
39  
34  
SIM register SIM_GPS is used to  
select between PWM5, TA3, and  
FAULT2.  
Defaults to A5  
SIM register SIM_GPS is used to  
select between FAULT0 and TA0.  
Defaults to A6  
GPIOA7  
GPIOA8  
RESET  
31  
36  
Defaults to RESET  
FAULT1 / TA2 / CMPAI1  
SIM register SIM_GPS is used to  
select between FAULT1, TA2, and  
CMPAI1.  
Defaults to A8  
GPIOA9  
FAULT2 / TA3 / CMPBI1  
5
SIM register SIM_GPS is used to  
select between FAULT2, TA3, and  
CMPBI1.  
Defaults to A9  
GPIOA10  
GPIOA11  
GPIOA12  
GPIOA13  
GPIOA14  
TB2 / CMPAI2  
35  
6
SIM register SIM_GPS is used to  
select between TB2 and CMPAI2.  
Defaults to A10  
TB3 / CMPBI2  
SIM register SIM_GPS is used to  
select between TB3 and CMPBI2.  
Defaults to A11  
SCLK1 / TB1 / TA1  
MISO1 / TB2 / TA2  
MOSI1 / TB3 / TA3  
37  
44  
45  
SIM register SIM_GPS is used to  
select between SCLK1, TB1, and TA1.  
Defaults to A12  
SIM register SIM_GPS is used to  
select between MISO1, TB2, and TA2.  
Defaults to A13  
SIM register SIM_GPS is used to  
select between MOSI1, TB3, and TA3.  
Defaults to A14  
56F8037/56F8027 Data Sheet, Rev. 8  
132  
FreescaleSemiconductor  
Configuration  
Table 8-2 GPIO External Signals Map (Continued)  
LQFP  
Package Pin  
Notes  
GPIO Function  
Peripheral Function  
GPIOB0  
SCLK0 / SCL  
42  
SIM register SIM_GPS is used to  
select between SCLK and SCL.  
Defaults to B0  
GPIOB1  
GPIOB2  
SS0 / SDA  
2
SIM register SIM_GPS is used to  
select between SS0 and SDA.  
Defaults to B1  
MISO0 / TA2 / PSRC0  
33  
SIM register SIM_GPS is used to  
select between MISO0, TA2, and  
PSRC0.  
Defaults to B2  
GPIOB3  
GPIOB4  
GPIOB5  
MOSI0 / TA3 / PSRC1  
32  
38  
4
SIM register SIM_GPS is used to  
select between MOSI0, TA3 and  
PSRC1.  
Defaults to B3  
TA0 / CLKO / SS1 / TB0 /  
PSRC2  
SIM register SIM_GPS is used to  
select between TA0, CLKO, SS1, TB0,  
and PSRC2.  
Defaults to B4  
TA1 / FAULT3 / CLKIN  
SIM register SIM_GPS is used to  
select between TA1, FAULT3, and  
CLKIN.  
CLKIN functionality is enabled using  
the PLL Control Register within the  
OCCS block.  
Defaults to B5  
GPIOB6  
RXD0 / SDA / CLKIN  
1
SIM register SIM_GPS is used to  
select between RXD0, SDA, and  
CLKIN.  
CLKIN functionality is enabled using  
the PLL Control Register within the  
OCCS block.  
Defaults to B6  
GPIOB7  
GPIOB8  
GPIOB9  
GPIOB10  
TXD0 / SCL  
3
SIM register SIM_GPS is used to  
select between TXD0 and SCL.  
Defaults to B7  
SCL / CANTX  
SDA / CANRX  
TB0 / CMPAO  
54  
46  
30  
SIM register SIM_GPS is used to  
select between SCL and CANTX.  
Defaults to B8  
SIM register SIM_GPS is used to  
select between SDA and CANRX.  
Defaults to B9  
SIM register SIM_GPS is used to  
select between TB0 and CMPAO.  
Defaults to B10  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
133  
Table 8-2 GPIO External Signals Map (Continued)  
LQFP  
Package Pin  
Notes  
GPIO Function  
Peripheral Function  
GPIOB11  
TB1 / CMPBO  
60  
SIM register SIM_GPS is used to  
select between TB1 and CMPBO.  
Defaults to B11  
GPIOB12  
GPIOB13  
GPIOC0  
CANTX  
57  
58  
24  
Defaults to B12  
Defaults to B13  
CANRX  
ANA0 / CMPAI3  
SIM register SIM_GPS is used to  
select between ANA0 and CMPAI3.  
Defaults to C0  
GPIOC1  
GPIOC2  
ANA1  
22  
20  
Defaults to C1  
ANA2 / VREFHA  
SIM register SIM_GPS is used to  
select between ANA2 and VREFHA  
.
Defaults to C2  
GPIOC3  
GPIOC4  
ANA3 / VREFLA  
ANB0 / CMPBI3  
19  
10  
SIM register SIM_GPS is used to  
select between ANA3 and VREFLA  
.
Defaults to C3  
SIM register SIM_GPS is used to  
select between ANB0 and CMPBI3.  
Defaults to C4  
GPIOC5  
GPIOC6  
ANB1  
11  
13  
Defaults to C5  
ANB2 / VREFHB  
SIM register SIM_GPS is used to  
select between ANB2 and VREFHB  
.
Defaults to C6  
GPIOC7  
GPIOC8  
ANB3 / VREFLB  
ANA4 / TXD1  
14  
26  
SIM register SIM_GPS is used to  
select between ANB3 and VREFLB  
.
Defaults to C7  
SIM register SIM_GPS is used to  
select between ANA4 and TXD1.  
Defaults to C8  
GPIOC9  
ANA5  
21  
23  
25  
9
Defaults to C9  
Defaults to C10  
Defaults to C11  
GPIOC10  
GPIOC11  
GPIOC12  
ANA6  
ANA7  
ANB4 / RXD1  
SIM register SIM_GPS is used to  
select between ANB4 and RXD1.  
Defaults to C12  
GPIOC13  
GPIOC14  
GPIOC15  
GPIOD0  
GPIOD1  
ANB5  
ANB6  
ANB7  
TDI  
12  
62  
61  
59  
64  
Defaults to C13  
Defaults to C14  
Defaults to C15  
Defaults to TDI  
Defaults to TDO  
TDO  
56F8037/56F8027 Data Sheet, Rev. 8  
134  
FreescaleSemiconductor  
Reset Values  
Table 8-2 GPIO External Signals Map (Continued)  
LQFP  
Package Pin  
Notes  
GPIO Function  
Peripheral Function  
TCK  
GPIOD2  
GPIOD3  
GPIOD4  
GPIOD5  
29  
63  
53  
52  
Defaults to TCK  
Defaults to TMS  
Defaults to D4  
TMS  
EXTAL  
XTAL / CLKIN  
SIM register SIM_GPSCD is used to  
select between XTAL and CLKIN.  
Defaults to D5  
GPIOD6  
GPIOD7  
DAC0  
DAC1  
18  
15  
Defaults to D6  
Defaults to D7  
8.3 Reset Values  
Tables 8-1 and 8-2 detail registers for the 56F8037/56F8027; Figures 8-1 through 8-4 summarize register  
maps and reset values.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
135  
Add.  
Offset  
Register Acronym  
GPIOA_PUPEN  
15  
0
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
PU[15:0]  
1
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
RS  
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
R
W
.0  
D[15:0]  
0
GPIOA_DATA  
GPIOA_DDIR  
RS  
0
0
0
0
0
0
0
0
0
1
X
0
R
W
.0.  
DD[15:0]  
0
RS  
0
0
R
W
PE[15:0]  
0
GPIOA_PEREN  
GPIOA_IASSRT  
GPIOA_IEN  
RS  
0
0
R
W
IA[15:0]  
0
RS  
0
0
R
W
IEN[15:0]  
0
RS  
R
W
0
IEPOL[15:0]  
GPIOA_IEPOL  
GPIOA_IPEND  
GPIOA_IEDGE  
GPIOA_PPOUTM  
GPIOA_RDATA  
GPIOA_DRIVE  
RS  
0
0
0
0
0
R
W
IPR[15:0]  
RS  
0
0
0
0
1
0
0
0
1
R
W
IES[15:0]  
0
RS  
0
0
R
W
OEN[15:0]  
1
RS  
0
0
R
W
RAW DATA[15:0]  
RS  
0
0
X
X
X
R
W
DRIVE[15:0]  
RS  
0
0
0
0
0
R
W
Read as 0  
Reserved  
Reset  
RS  
Figure 8-1 GPIOA Register Map Summary  
56F8037/56F8027 Data Sheet, Rev. 8  
136  
FreescaleSemiconductor  
Reset Values  
Add.  
Offset  
Register Acronym  
GPIOB_PUPEN  
15  
0
14  
0
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
PU[15:0]  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
RS  
0
0
0
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
R
W
D[15:0]  
GPIOB_DATA  
GPIOB_DDIR  
RS  
0
0
0
0
0
0
R
W
DD[15:0]  
RS  
0
0
0
0
0
0
R
W
PE[15:0]  
GPIOB_PEREN  
GPIOB_IASSRT  
GPIOB_IEN  
RS  
0
0
0
0
0
0
R
W
IA[15:0]  
RS  
0
0
0
0
0
0
R
W
IEN[15:0]  
RS  
0
0
0
0
0
0
R
W
IEPOL[15:0]  
GPIOB_IEPOL  
GPIOB_IPEND  
GPIOB_IEDGE  
GPIOB_PPOUTM  
GPIOB_RDATA  
GPIOB_DRIVE  
RS  
0
0
0
0
0
0
R
W
IPR[15:0]  
RS  
0
0
0
0
0
0
R
W
IES[15:0]  
RS  
0
0
0
0
0
0
R
W
OEN[15:0]  
RS  
0
0
0
0
1
1
R
W
RAW DATA[15:0]  
RS  
0
0
0
0
X
0
X
X
X
0
R
W
DRIVE[15:0]  
RS  
0
0
0
0
0
R
W
Read as 0  
Reserved  
Reset  
RS  
Figure 8-2 GPIOB Register Map Summary  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
137  
Add.  
Offset  
Register Acronym  
GPIOC_PUPEN  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
PU[15:0]  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
RS  
1
0
0
0
0
0
0
0
0
1
X
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
R
W
D[15:0]  
GPIOC_DATA  
GPIOC_DDIR  
RS  
0
0
0
0
0
0
0
0
0
0
1
X
0
R
W
DD[15:0]  
RS  
0
0
R
W
PE[15:0]  
GPIOC_PEREN  
GPIOC_IASSRT  
GPIOC_IEN  
RS  
0
0
R
W
IA[15:0]  
RS  
0
0
R
W
IEN[15:0]  
RS  
0
0
R
W
IEPOL[15:0]  
GPIOC_IEPOL  
GPIOC_IPEND  
GPIOC_IEDGE  
GPIOC_PPOUTM  
GPIOC_RDATA  
GPIOC_DRIVE  
RS  
0
0
R
W
IPR[15:0]  
RS  
0
0
R
W
IES[15:0]  
RS  
0
0
R
W
OEN[15:0]  
RS  
1
1
R
W
RAW DATA[15:0]  
RS  
X
X
X
X
R
W
DRIVE[15:0]  
RS  
0
0
0
0
0
0
R
W
Read as 0  
Reserved  
Reset  
RS  
Figure 8-3 GPIOC Register Map Summary  
56F8037/56F8027 Data Sheet, Rev. 8  
138  
FreescaleSemiconductor  
Reset Values  
Add.  
Offset  
Register Acronym  
GPIOD_PUPEN  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
PU[15:0]  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
RS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
X
0
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
0
0
0
0
0
1
1
0
0
1
0
0
0
0
0
1
X
0
1
0
0
1
0
0
0
0
0
1
X
0
R
W
D[15:0]  
GPIOD_DATA  
GPIOD_DDIR  
RS  
0
0
R
W
DD[15:0]  
RS  
0
0
R
W
PE[15:0]  
GPIOD_PEREN  
GPIOD_IASSRT  
GPIOD_IEN  
RS  
0
1
R
W
IA[15:0]  
RS  
0
0
R
W
IEN[15:0]  
RS  
0
0
R
W
IEPOL[15:0]  
GPIOD_IEPOL  
GPIOD_IPEND  
GPIOD_IEDGE  
GPIOD_PPOUTM  
GPIOD_RDATA  
GPIOD_DRIVE  
RS  
0
0
R
W
IPR[15:0]  
RS  
0
0
R
W
IES[15:0]  
RS  
0
0
R
W
OEN[15:0]  
RS  
1
1
R
W
RAW DATA[15:0]  
RS  
X
0
X
X
X
0
R
W
DRIVE[15:0]  
RS  
0
0
0
0
R
W
Read as 0  
Reserved  
Reset  
RS  
Figure 8-4 GPIOD Register Map Summary  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
139  
Part 9 Joint Test Action Group (JTAG)  
9.1 56F8037/56F8027 Information  
Please contact your Freescale sales representative or authorized distributor for device/package-specific  
BSDL information.  
The TRST pin is not available in this package. The pin is tied to V in the package.  
DD  
The JTAG state machine is reset during POR and can also be reset via a soft reset by holding TMS high  
for five rising edges of TCK, as described in the 56F802x and 56F803x Peripheral Reference Manual.  
Part 10 Specifications  
10.1 General Characteristics  
The 56F8037/56F8027 is fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital  
inputs. The term “5V-tolerant” refers to the capability of an I/O pin, built on a 3.3V-compatible process  
technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture  
of devices designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V- and  
5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of 3.3V  
10% during normal operation without causing damage). This 5V-tolerant capability therefore offers the  
power savings of 3.3V I/O levels, combined with the ability to receive 5V levels without damage.  
Absolute maximum ratings in Table 10-1 are stress ratings only, and functional operation at the maximum  
is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent damage to  
the device.  
Unless otherwise stated, all specifications within this chapter apply over the temperature range of -40ºC to  
125ºC ambient temperature over the following supply ranges:  
V
= V  
= 0V, V = V  
= 3.0–3.6V, CL < 50pF, f = 32MHz  
SS  
SSA  
DD  
DDA  
OP  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or electrical  
fields. However, normal precautions are advised to  
avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused inputs are  
tied to an appropriate logic voltage level (either VDD or  
VSS).  
56F8037/56F8027 Data Sheet, Rev. 8  
140  
FreescaleSemiconductor  
General Characteristics  
Table 10-1 Absolute Maximum Ratings  
(VSS = 0V, VSSA = 0V)  
Characteristic  
Supply Voltage Range  
Symbol  
VDD  
Notes  
Min  
-0.3  
- 0.3  
- 0.3  
- 0.3  
- 0.3  
- 0.3  
- 0.4  
- 0.3  
Max  
4.0  
Unit  
V
Analog Supply Voltage Range  
ADC High Voltage Reference  
Voltage difference VDD to VDDA  
Voltage difference VSS to VSSA  
Digital Input Voltage Range  
Oscillator Voltage Range  
VDDA  
VREFHx  
VDD  
VSS  
VIN  
4.0  
V
4.0  
V
0.3  
V
0.3  
V
Pin Groups 1, 2  
Pin Group 4  
6.0  
V
VOSC  
VINA  
4.0  
V
Analog Input Voltage Range  
Pin Group 3  
4.0  
V
Input clamp current, per pin (VIN < 0)1  
Output clamp current, per pin (VO < 0)1  
VIC  
-20.0  
mA  
VOC  
-20.0  
4.0  
mA  
V
Output Voltage Range  
(Normal Push-Pull mode)  
Pin Group 1  
Pin Group 2  
Pin Group 5  
VOUT  
- 0.3  
Output Voltage Range  
(Open Drain mode)  
VOUTOD  
- 0.3  
- 0.3  
6.0  
4.0  
V
V
Output Voltage Range (DAC)  
VOUTDAC  
Ambient Temperature  
Industrial  
TA  
- 40  
- 55  
105  
150  
°C  
°C  
Storage Temperature Range  
(Extended Industrial)  
TSTG  
1. Continuous clamp current per pin is -2.0 mA  
Default Mode  
Pin Group 1: GPIO, TDI, TDO, TMS, TCK  
Pin Group 2: RESET, GPIOA7  
Pin Group 3: ADC and Comparator Analog Inputs  
Pin Group 4: XTAL, EXTAL  
Pin Group 5: DAC Analog Outputs  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
141  
10.1.1 ElectroStatic Discharge (ESD) Model  
Table 10-2 56F8037/56F8027 ESD Protection  
Characteristic  
Min  
Typ  
Max  
Unit  
ESD for Human Body Model (HBM)  
ESD for Machine Model (MM)  
2000  
200  
V
V
V
ESD for Charge Device Model (CDM)  
750  
6
Table 10-3 LQFP Package Thermal Characteristics  
Value  
(LQFP)  
Characteristic  
Symbol  
Unit  
Notes  
Comments  
Junction to ambient  
Natural convection  
Single layer board  
(1s)  
RJA  
41  
34  
°C/W  
°C/W  
2
Junction to ambient  
Natural convection  
Four layer board  
(2s2p)  
RJMA  
1, 2  
Junction to ambient  
(@200 ft/min)  
Single layer board  
(1s)  
RJMA  
34  
29  
°C/W  
°C/W  
2
Junction to ambient  
(@200 ft/min)  
Four layer board  
(2s2p)  
RJMA  
1, 2  
Junction to board  
RJB  
RJC  
JT  
24  
8
°C/W  
°C/W  
°C/W  
4
3
5
Junction to case  
Junction to package top  
Natural Convection  
2
1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application. Determined on 2s2p  
thermal test board.  
2. Junction to ambient thermal resistance, Theta-JA (R ), was simulated to be equivalent to the JEDEC specification JESD51-2  
JA  
in a horizontal configuration in natural convection. Theta-JA was also simulated on a thermal test board with two internal planes  
(2s2p, where “s” is the number of signal layers and “p” is the number of planes) per JESD51-6 and JESD51-7. The correct name  
for Theta-JA for forced convection or with the non-single layer boards is Theta-JMA.  
3. Junction to case thermal resistance, Theta-JC (R ), was simulated to be equivalent to the measured values using the cold plate  
JC  
technique with the cold plate temperature used as the “case” temperature. The basic cold plate measurement technique is de-  
scribed by MIL-STD 883D, Method 1012.1. This is the correct thermal metric to use to calculate thermal performance when the  
package is being used with a heat sink.  
4. Junction to board thermal resistance, Theta-JB (R ), is a metric of the thermal resistance from the junction to the printed circuit  
JB  
board determined per JESD51-8. Board temperature is measured on the top surface of the board near the package.  
5. Thermal Characterization Parameter, Psi-JT (Y ), is the “resistance” from junction to reference point thermocouple on top center  
JT  
of case as defined in JESD51-2. Y is a useful value to use to estimate junction temperature in steady state customer  
JT  
environments.  
6. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
56F8037/56F8027 Data Sheet, Rev. 8  
142  
FreescaleSemiconductor  
General Characteristics  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
7. See Section 12.1 for more details on thermal design considerations.  
Table 10-4 Recommended Operating Conditions  
(V  
= 0V, V  
= 0V, V = 0V)  
REFL x  
SSA SS  
Characteristic  
Supply voltage  
Symbol  
Notes  
Min  
Typ  
Max  
Unit  
VDD,  
3
3.3  
3.6  
V
VDDA  
ADC Reference Voltage High  
Voltage difference VDD to VDDA  
Voltage difference VSS to VSSA  
VREFHx  
VDD  
3.0  
-0.1  
-0.1  
VDDA  
0.1  
V
V
V
0
0
VSS  
0.1  
Device Clock Frequency  
Using relaxation oscillator  
Using external clock source  
FSYSCLK  
1
0
32  
32  
MHz  
Input Voltage High (digital inputs)  
Input Voltage Low (digital inputs)  
Oscillator Input Voltage High  
VIH  
VIL  
Pin Groups 1, 2  
Pin Groups 1, 2  
Pin Group 4  
2.0  
-0.3  
2.0  
5.5  
0.8  
V
V
V
VIHOSC  
VDDA + 0.3  
XTAL driven by an external clock source  
Oscillator Input Voltage Low  
VILOSC  
Pin Group 4  
-0.3  
0.8  
V
DAC Output Load Resistance  
DAC Output Load Capacitance  
RLD  
CLD  
IOH  
3K  
ohms  
pF  
400  
Output Source Current High at VOH min.)1  
Pin Group 1  
Pin Group 1  
-4  
-8  
mA  
mA  
When programmed for low drive strength  
When programmed for high drive strength  
Output Source Current Low (at VOL max.)1  
IOL  
Pin Groups 1, 2  
Pin Groups 1, 2  
4
8
When programmed for low drive strength  
When programmed for high drive strength  
Ambient Operating Temperature  
(Extended Industrial)  
TA  
NF  
-40  
105  
°C  
Flash Endurance  
(Program Erase Cycles)  
TA = -40°C to  
125°C  
10,000  
cycles  
Flash Data Retention  
TR  
TJ <= 85°C avg  
TJ <= 85°C avg  
15  
20  
years  
years  
Flash Data Retention with <100  
Program/Erase Cycles  
tFLRET  
1. Total chip source or sink current cannot exceed 75mA  
Note: Pin groups are detailed following Table 10-1  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
143  
10.2 DC Electrical Characteristics  
Table 10-5 DC Electrical Characteristics  
At Recommended Operating Conditions  
Test  
Conditions  
Characteristic  
Symbol  
Notes  
Min  
Typ  
Max  
Unit  
Output Voltage High  
Output Voltage Low  
VOH  
VOL  
IIH  
Pin Group 1  
Pin Groups 1, 2  
Pin Groups 1, 2  
2.4  
0
0.4  
V
V
IOH = IOHmax  
IOL = IOLmax  
Digital Input Current High (a)  
pull-up enabled or disabled  
+/- 2.5  
A  
VIN = 2.4V  
to 5.5V  
Comparator Input Current High  
Oscillator Input Current High  
IIHC  
IIHOSC  
IIL  
Pin Group 3  
Pin Group 3  
0
0
+/- 2  
+/- 2  
A  
A  
A  
VIN = VDDA  
VIN = VDDA  
VIN = 0V  
Digital Input Current Low1  
pull-up enabled  
pull-up disabled  
Pin Groups 1, 2  
-15  
-30  
0
-60  
+/- 2.5  
Comparator Input Current Low  
Oscillator Input Current Low  
DAC Output Voltage Range  
IILC  
Pin Group 3  
Pin Group 3  
Pin Group 5  
0
0
+/- 2  
+/- 2  
A  
A  
V
VIN = 0V  
VIN = 0V  
IILOSC  
VDAC  
Typically  
Typically  
VSSA  
+
VDDA -  
40mV  
40mV  
Output Current 1  
High Impedance State  
IOZ  
Pin Groups 1, 2  
Pin Groups 1, 2  
0
+/- 2.5  
A  
Schmitt Trigger Input Hysteresis  
Input Capacitance  
VHYS  
CIN  
0.35  
10  
V
pF  
pF  
Output Capacitance  
COUT  
10  
1. See Figure 10-1  
Note: Pin groups are detailed following Table 10-1  
56F8037/56F8027 Data Sheet, Rev. 8  
144  
FreescaleSemiconductor  
DC Electrical Characteristics  
2.0  
0.0  
- 2.0  
- 4.0  
- 6.0  
- 8.0  
- 10.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Volt  
Figure 10-1 I /I vs. V (Typical; Pull-Up Disabled)  
IN OZ  
IN  
Table 10-6 Current Consumption per Power Supply Pin  
Typical @ 3.3V, 25°C  
Maximum@ 3.6V, 25°C  
Mode  
Conditions  
1
1
IDDA  
IDDA  
IDD  
IDD  
RUN  
32MHz Device Clock  
48mA  
18.8mA  
Relaxation Oscillator on  
PLL powered on  
Continuous MAC instructions with fetches from  
Program Flash  
All peripheral modules enabled. TMR and PWM  
using 1X Clock  
ADC/DAC powered on and clocked  
Comparator powered on  
WAIT  
STOP  
32MHz Device Clock  
Relaxation Oscillator on  
PLL powered on  
Processor Core in WAIT state  
All Peripheral modules enabled. TMR and PWM  
using 1X Clock  
29mA  
0A  
A  
ADC/DAC/Comparator powered off  
4MHz Device Clock  
5.4mA  
Relaxation Oscillator on  
PLL powered off  
Processor Core in STOP state  
All peripheral module and core clocks are off  
ADC/DAC/Comparator powered off  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
145  
Table 10-6 Current Consumption per Power Supply Pin (Continued)  
Typical @ 3.3V, 25°C  
Maximum@ 3.6V, 25°C  
Mode  
Conditions  
1
1
IDDA  
IDDA  
IDD  
IDD  
STANDBY > STOP 100kHz Device Clock  
Relaxation Oscillator in Standby mode  
540A  
0A  
650A  
1A  
PLL powered off  
Processor Core in STOP state  
All peripheral module and core clocks are off  
ADC/DAC/Comparator powered off  
Voltage regulator in Standby mode  
POWERDOWN  
Device Clock is off  
440A  
0A  
550A  
1A  
Relaxation Oscillator powered off  
PLL powered off  
Processor Core in STOP state  
All peripheral module and core clocks are off  
ADC /DAC/Comparator powered off  
Voltage Regulator in Standby mode  
1. No Output Switching  
All ports configured as inputs  
All inputs Low  
No DC Loads  
Table 10-7 Power-On Reset Low-Voltage Parameters  
Typ  
2.7  
Max  
Unit  
Min  
2.58  
Characteristic  
Symbol  
VEI3.3  
VE12.5  
VEIH  
Low-Voltage Interrupt for 3.3V supply1  
V
V
Low-Voltage Interrupt for 2.5V supply2  
2.15  
50  
Low-Voltage Interrupt Recovery Hysteresis  
mV  
V
Power-On Reset3  
POR  
1.8  
1.9  
1. When V drops below V  
, an interrupt is generated.  
DD  
EI3.3  
2. When V drops below V  
, an interrupt is generated.  
DD  
EI32.5  
3. Power-On Reset occurs whenever the internally regulated 2.5V digital supply drops below 1.8V. While  
power is ramping up, this signal remains active for as long as the internal 2.5V is below 2.15V or the 3.3V  
1/O voltage is below 2.7V, no matter how long the ramp-up rate is. The internally regulated voltage is  
typically 100mV less than V during ramp-up until 2.5V is reached, at which time it self-regulates.  
DD  
10.2.1 Voltage Regulator Specifications  
The 56F8037/56F8027 has two on-chip regulators. One supplies the PLL and relaxation oscillator. It has  
no external pins and therefore has no external characteristics which must be guaranteed (other than proper  
operation of the device). The second regulator supplies approximately 2.5V to the 56F8037/56F8027’s  
core logic. This regulator requires an external 4.4F, or greater, capacitor for proper operation. Ceramic  
and tantalum capacitors tend to provide better performance tolerances. The output voltage can be  
56F8037/56F8027 Data Sheet, Rev. 8  
146  
FreescaleSemiconductor  
AC Electrical Characteristics  
measured directly on the V  
pin. The specifications for this regulator are shown in Table 10-8.  
CAP  
Table 10-8. Regulator Parameters  
Characteristic  
Short Circuit Current  
Symbol  
ISS  
Min  
Typical  
450  
Max  
650  
30  
Unit  
mA  
Short Circuit Tolerance  
(VCAP shorted to ground)  
TRSC  
minutes  
10.3 AC Electrical Characteristics  
Tests are conducted using the input levels specified in Table 10-5. Unless otherwise specified,  
propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured  
between the 10% and 90% points, as shown in Figure 10-2.  
Low  
VIL  
High  
VIH  
90%  
50%  
10%  
Input Signal  
Midpoint1  
Fall Time  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Rise Time  
Figure 10-2 Input Signal Measurement References  
Figure 10-3 shows the definitions of the following signal states:  
Active state, when a bus or signal is driven, and enters a low impedance state  
Tri-stated, when a bus or signal is placed in a high impedance state  
Data Valid state, when a signal level has reached VOL or VOH  
Data Invalid state, when a signal level is in transition between VOL and VOH  
Data2 Valid  
Data2  
Data1 Valid  
Data1  
Data3 Valid  
Data3  
Data  
Tri-stated  
Data Invalid State  
Data Active  
Data Active  
Figure 10-3 Signal States  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
147  
10.4 Flash Memory Characteristics  
Table 10-9 Flash Timing Parameters  
Characteristic  
Symbol  
Tprog  
Terase  
Tme  
Min  
20  
Typ  
Max  
40  
Unit  
s  
Program time1  
Erase time 2  
20  
ms  
ms  
Mass erase time  
100  
1. There is additional overhead which is part of the programming sequence. See the 56F802x and 56F803x Peripheral  
Reference Manual for details.  
2. Specifies page erase time. There are 512 bytes per page in the Program Flash memory.  
10.5 External Clock Operation Timing  
1
Table 10-10 External Clock Operation Timing Requirements  
Characteristic  
Symbol  
fosc  
Min  
4
Typ  
8
Max  
8
Unit  
MHz  
ns  
Frequency of operation (external clock driver)2  
Clock Pulse Width3  
tPW  
6.25  
3
External Clock Input Rise Time4  
trise  
ns  
External Clock Input Fall Time5  
tfall  
3
ns  
1. Parameters listed are guaranteed by design.  
2. See Figure 10-4 for details on using the recommended connection of an external clock driver.  
3. The chip may not function if the high or low pulse width is smaller than 6.25ns.  
4. External clock input rise time is measured from 10% to 90%.  
5. External clock input fall time is measured from 90% to 10%.  
VIH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
VIL  
tfall  
trise  
tPW  
tPW  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Figure 10-4 External Clock Timing  
56F8037/56F8027 Data Sheet, Rev. 8  
148  
FreescaleSemiconductor  
Phase Locked Loop Timing  
10.6 Phase Locked Loop Timing  
Table 10-11 PLL Timing  
Characteristic  
Symbol  
fosc  
Min  
4
Typ  
8
Max  
Unit  
MHz  
MHz  
MHz  
µs  
External reference crystal frequency for the PLL1  
Internal reference relaxation oscillator frequency for the PLL  
frosc  
fop  
96  
8
PLL output frequency2 (24 x reference frequency)  
PLL lock time3  
192  
40  
tplls  
100  
0.37  
Accumulated jitter using an 8MHz external crystal as the PLL source4  
Cycle-to-cycle jitter  
JA  
%
tjitterpll  
350  
ps  
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly. The PLL  
is optimized for 8MHz input.  
2. The core system clock will operate at 1/6 of the PLL output frequency.  
3. This is the time required after the PLL is enabled to ensure reliable operation.  
4. This is measured on the CLKO signal (programmed as System clock) over 264 System clocks at 32MHz System clock frequency  
and using an 8MHz oscillator frequency.  
10.7 Relaxation Oscillator Timing  
Table 10-12 Relaxation Oscillator Timing  
Characteristic  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Relaxation Oscillator output frequency1  
Normal Mode  
Standby Mode  
fop  
8.05  
200  
MHz  
kHz  
Relaxation Oscillator stabilization time2  
troscs  
1
3
ms  
ps  
Cycle-to-cycle jitter. This is measured on the CLKO  
signal (programmed prescaler_clock) over 264 clocks3  
tjitterrosc  
400  
Minimum tuning step size  
Maximum tuning step size  
.08  
40  
%
%
%
Variation over temperature -40C to 150ºC4  
+1.0 to -1.5 +3.0 to -3.0  
0 to +1 +2.0 to -2.0  
Variation over temperature 0C to 105ºC4  
%
1. Output frequency after factory trim.  
2. This is the time required from Standby to Normal mode transition.  
3. JA is required to meet QSCI requirements.  
4. See Figure 10-5  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
149  
8.16  
8.08  
8
7.92  
7.84  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
175  
Degrees C (Junction)  
Figure 10-5 Relaxation Oscillator Temperature Variation (Typical) After Trim  
56F8037/56F8027 Data Sheet, Rev. 8  
150  
FreescaleSemiconductor  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
10.8 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Note:  
All address and data buses described here are internal.  
1,2  
Table 10-13 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Characteristic  
Symbol  
tRA  
Typical Min  
Typical Max  
Unit  
ns  
See Figure  
Minimum RESET Assertion Duration  
4T  
10-6  
Minimum GPIO pin Assertion for Interrupt  
tIW  
2T  
96TOSC + 64T  
97TOSC + 65T  
6T  
ns  
RESET deassertion to First Address Fetch3  
tRDA  
tIF  
ns  
Delay from Interrupt Assertion to Fetch of first  
instruction (exiting Stop)  
ns  
1. In the formulas, T = system clock cycle and T = oscillator clock cycle. For an operating frequency of 32MHz, T = 31.25ns. At  
osc  
8MHz (used during Reset and Stop modes), T = 125ns.  
2. Parameters listed are guaranteed by design.  
3. During Power-On Reset, it is possible to use the 56F8037/56F8027 internal reset stretching circuitry to extend this period to  
2^21T.  
GPIO pin  
(Input)  
TIW  
Figure 10-6 GPIO Interrupt Timing (Negative Edge-Sensitive)  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
151  
10.9 Serial Peripheral Interface (SPI) Timing  
1
Table 10-14 SPI Timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Cycle time  
Master  
Slave  
tC  
10-7, 10-8,  
10-9, 10-10  
125  
62.5  
ns  
ns  
Enable lead time  
Master  
Slave  
tELD  
tELG  
tCH  
tCL  
10-10  
10-10  
31  
ns  
ns  
Enable lag time  
Master  
Slave  
125  
ns  
ns  
Clock (SCK) high time  
Master  
Slave  
10-7, 10-8,  
10-9, 10-10  
50  
31  
ns  
ns  
Clock (SCK) low time  
Master  
Slave  
10-10  
50  
31  
ns  
ns  
Data set-up time required for inputs  
Master  
Slave  
tDS  
tDH  
tA  
10-7, 10-8,  
10-9, 10-10  
20  
0
ns  
ns  
Data hold time required for inputs  
Master  
Slave  
10-7, 10-8,  
10-9, 10-10  
0
2
ns  
ns  
Access time (time to data active from  
high-impedance state)  
Slave  
10-10  
10-10  
4.8  
3.7  
15  
ns  
ns  
Disable time (hold time to high-impedance state)  
Slave  
tD  
15.2  
Data Valid for outputs  
Master  
Slave (after enable edge)  
tDV  
10-7, 10-8,  
10-9, 10-10  
4.5  
20.4  
ns  
ns  
Data invalid  
Master  
Slave  
tDI  
tR  
tF  
10-7, 10-8,  
10-9, 10-10  
0
0
ns  
ns  
Rise time  
Master  
Slave  
10-7, 10-8,  
10-9, 10-10  
11.5  
10.0  
ns  
ns  
Fall time  
Master  
Slave  
10-7, 10-8,  
10-9, 10-10  
9.7  
9.0  
ns  
ns  
1. Parameters listed are guaranteed by design.  
56F8037/56F8027 Data Sheet, Rev. 8  
152  
FreescaleSemiconductor  
Serial Peripheral Interface (SPI) Timing  
SS  
(Input)  
SS is held High on master  
tC  
tR  
tF  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tR  
tCL  
SCLK (CPOL = 1)  
(Output)  
tDH  
tCH  
tDS  
MISO  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDI(ref)  
(Input)  
tDV  
Bits 14–1  
MOSI  
(Output)  
Master MSB out  
tF  
Master LSB out  
tR  
Figure 10-7 SPI Master Timing (CPHA = 0)  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
153  
SS  
(Input)  
SS is held High on master  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tCL  
SCLK (CPOL = 1)  
(Output)  
tCH  
tDS  
tR  
tDH  
MISO  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDI(ref)  
(Input)  
tDV(ref)  
tDV  
Bits 14– 1  
MOSI  
(Output)  
Master MSB out  
tF  
Master LSB out  
tR  
Figure 10-8 SPI Master Timing (CPHA = 1)  
56F8037/56F8027 Data Sheet, Rev. 8  
154  
FreescaleSemiconductor  
Serial Peripheral Interface (SPI) Timing  
SS  
(Input)  
tC  
tF  
tELG  
tCL  
tR  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tCH  
tF  
tA  
tR  
tD  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
Slave LSB out  
tDI  
tDS  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 10-9 SPI Slave Timing (CPHA = 0)  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
155  
SS  
(Input)  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELG  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tDV  
tCH  
tR  
tD  
tA  
tF  
MISO  
Slave MSB out  
MSB in  
Bits 14–1  
tDV  
Slave LSB out  
(Output)  
tDS  
tDI  
tDH  
MOSI  
(Input)  
Bits 14–1  
LSB in  
Figure 10-10 SPI Slave Timing (CPHA = 1)  
10.10 Quad Timer Timing  
1, 2  
Table 10-15 Timer Timing  
Characteristic  
Timer input period  
Symbol  
PIN  
Min  
2T + 6  
1T + 3  
125  
Max  
Unit  
ns  
See Figure  
10-11  
Timer input high / low period  
Timer output period  
PINHL  
POUT  
ns  
10-11  
ns  
10-11  
Timer output high / low period  
POUTHL  
50  
ns  
10-11  
1. In the formulas listed, T = the clock cycle. For 32MHz operation, T = 31.25ns.  
2. Parameters listed are guaranteed by design.  
56F8037/56F8027 Data Sheet, Rev. 8  
156  
FreescaleSemiconductor  
Quad Timer Timing  
Timer Inputs  
PINHL  
PINHL  
PIN  
Timer Outputs  
POUTHL  
POUTHL  
POUT  
Figure 10-11 Timer Timing  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
157  
10.11 Queued Serial Communication Interface (QSCI) Timing  
1
Table 10-16 QSCI Timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Baud Rate2  
BR  
(fMAX/16)  
Mbps  
RXD3 Pulse Width  
TXD4 Pulse Width  
RXDPW  
TXDPW  
0.965/BR  
1.04/BR  
1.04/BR  
ns  
ns  
10-12  
0.965/BR  
10-13  
LIN Slave Mode  
Deviation of slave node clock from  
nominal clock rate before  
synchronization  
FTOL_UNSYNCH  
FTOL_SYNCH  
TBREAK  
-14  
-2  
14  
2
%
%
Deviation of slave node clock relative  
to the master node clock after  
synchronization  
Minimum break character length  
13  
11  
Master  
node bit  
periods  
Slavenode  
bit periods  
1. Parameters listed are guaranteed by design.  
2. f is the frequency of operation of the system clock in MHz, which is 32MHz for the 56F8037/56F8027 device.  
MAX  
3. The RXD pin in QSCI0 is named RXD0 and the RXD pin in QSCI1 is named RXD1.  
4. The TXD pin in QSCI0 is named TXD0 and the TXD pin in QSCI1 is named TXD1.  
RXD  
QSCI Receive  
data pin  
RXDPW  
(Input)  
Figure 10-12 RXD Pulse Width  
TXD  
QSCI Receive  
data pin  
TXDPW  
(Input)  
Figure 10-13 TXD Pulse Width  
56F8037/56F8027 Data Sheet, Rev. 8  
158  
FreescaleSemiconductor  
Freescale’s Scalable Controller Area Network (MSCAN) Timing  
10.12 Freescale’s Scalable Controller Area Network (MSCAN)  
Timing  
1
Table 10-17 MSCAN Timing  
Characteristic  
Baud rate  
Bus wake-up detection  
Symbol  
BRCAN  
Min  
Max  
1
Unit  
Mbps  
µs  
TWAKEUP  
TIPBUS  
1. Parameters listed are guaranteed by design  
MSCAN_RX  
CAN receive  
data pin  
TWAKEUP  
(Input)  
Figure 10-14 Bus Wake-up Detection  
2
10.13 Inter-Integrated Circuit Interface (I C) Timing  
2
Table 10-18 I C Timing  
Standard Mode  
Minimum Maximum  
Fast Mode  
Minimum Maximum  
Characteristic  
Symbol  
Unit  
SCL Clock Frequency  
fSCL  
0
100  
0
400  
kHz  
Hold time (repeated)  
START condition. After  
this period, the first clock  
pulse is generated.  
tHD; STA  
4.0  
0.6  
s  
LOW period of the SCL  
clock  
tLOW  
4.7  
4.0  
4.7  
1.3  
0.6  
0.6  
s  
s  
s  
s  
HIGH period of the SCL  
clock  
tHIGH  
Set-up time for a repeated  
START condition  
tSU; STA  
Data hold time for I2C bus  
devices  
01  
3.452  
01  
0.92  
tHD; DAT  
2503  
1003, 4  
Data set-up time  
tSU; DAT  
tr  
ns  
ns  
5
5
Rise time of both SDA and  
SCL signals  
1000  
300  
20 +0.1Cb  
Fall time of both SDA and  
SCL signals  
tf  
300  
300  
ns  
20 +0.1Cb  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
159  
2
Table 10-18 I C Timing (Continued)  
Standard Mode  
Minimum Maximum  
Fast Mode  
Characteristic  
Symbol  
tSU; STO  
tBUF  
Unit  
s  
Minimum  
Maximum  
Set-up time for STOP  
condition  
4.0  
4.7  
0.6  
Bus free time between  
STOP and START  
condition  
1.3  
0
s  
Pulse width of spikes that  
must be suppressed by  
the input filter  
tSP  
N/A  
N/A  
50  
ns  
2
1. The master mode I C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, a negative hold time can result, depending on the edge rates of the SDA and SCL lines.  
2. The maximum t  
must be met only if the device does not stretch the LOW period (t  
) of the SCL signal.  
HD; DAT  
LOW  
3. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.  
2
2
4. A Fast mode I C bus device can be used in a Standard mode I C bus system, but the requirement t  
>= 250ns  
SU; DAT  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal.  
If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
2
t
+ t  
= 1000 + 250 = 1250ns (according to the Standard mode I C bus specification) before the SCL line is  
rmax  
SU; DAT  
released.  
5. C = total capacitance of the one bus line in pF  
b
SDA  
t
f
t
SU; DAT  
t
t
t
t
t
t
SP  
t
r
BUF  
f
HD; STA  
r
LOW  
SCL  
t
t
t
SU; STA  
HD; STA  
SU; STO  
S
SR  
P
S
t
t
HIGH  
HD; DAT  
2
Figure 10-15 Timing Definition for Fast and Standard Mode Devices on the I C Bus  
56F8037/56F8027 Data Sheet, Rev. 8  
160  
FreescaleSemiconductor  
JTAG Timing  
10.14 JTAG Timing  
Table 10-19 JTAG Timing  
Characteristic  
Symbol  
Min  
DC  
50  
5
Max  
Unit  
MHz  
ns  
See Figure  
TCK frequency of operation1  
TCK clock pulse width  
fOP  
SYS_CLK/8  
10-16  
10-16  
10-17  
10-17  
10-17  
10-17  
tPW  
tDS  
tDH  
tDV  
tTS  
30  
30  
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
ns  
5
ns  
ns  
ns  
1. TCK frequency of operation must be less than 1/8 the processor rate.  
1/fOP  
tPW  
tPW  
VIH  
VM  
VM  
TCK  
(Input)  
VIL  
VM = VIL + (VIH – VIL)/2  
Figure 10-16 Test Clock Input Timing Diagram  
TCK  
(Input)  
tDS  
tDH  
TDI  
TMS  
Input Data Valid  
(Input)  
tDV  
TDO  
(Output)  
Output Data Valid  
tTS  
TDO  
(Output)  
Figure 10-17 Test Access Port Timing Diagram  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
161  
10.15 Analog-to-Digital Converter (ADC) Parameters  
1
Table 10-20 ADC Parameters  
Parameter  
DC Specifications  
Symbol  
Min  
Typ  
Max  
Unit  
Resolution  
RES  
fADIC  
RAD  
12  
0.1  
6
12  
5.33  
VREFH  
13  
Bits  
MHz  
V
ADC internal clock  
Conversion range  
VREFL  
ADC power-up time2  
tAIC cycles3  
tAIC cycles3  
tAIC cycles3  
tAIC cycles3  
tADPU  
Recovery from auto standby  
tREC  
tADC  
tADS  
0
6
1
1
Conversion time  
Sample time  
Accuracy  
Integral non-linearity4  
(Full input signal range)  
LSB5  
LSB5  
INL  
+/- 3  
+/- 5  
+/- 1  
Differential non-linearity  
DNL  
+/- .6  
Monotonicity  
GUARANTEED  
+/- 4  
Offset Voltage Internal Ref  
VOFFSET  
VOFFSET  
EGAIN  
+/- 9  
+/- 12  
mV  
mV  
Offset Voltage External Ref  
Gain Error (transfer gain)  
+/- 6  
.998 to 1.002  
1.01 to .99  
ADC Inputs6 (Pin Group 3)  
Input voltage (external reference)  
VADIN  
VADIN  
IIA  
VREFL  
VSSA  
VREFH  
VDDA  
+/- 2  
V
V
Input voltage (internal reference)  
Input leakage  
0
A  
VREFH current  
IVREFH  
IADI  
0
A  
Input injection current7, per pin  
Input capacitance  
3
mA  
pF  
CADI  
XIN  
See Figure 10-18  
See Figure 10-18  
Input impedance  
Ohms  
AC Specifications  
Signal-to-noise ratio  
SNR  
THD  
60  
60  
61  
58  
65  
64  
66  
62  
dB  
dB  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
Signal-to-noise plus distortion  
Effective Number Of Bits  
SFDR  
SINAD  
ENOB  
dB  
dB  
10.0  
Bits  
1. All measurements were made at V = 3.3V, V  
= 3.3V, and V = ground  
REFL  
DD  
REFH  
2. Includes power-up of ADC and V  
3. ADC clock cycles  
REF  
4. INL measured from V = V  
to V = V  
IN REFH  
IN  
REFL  
5. LSB = Least Significant Bit = 0.806mV  
6. Pin groups are detailed following Table 10-1.  
7. The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the  
ADC.  
56F8037/56F8027 Data Sheet, Rev. 8  
162  
FreescaleSemiconductor  
Equivalent Circuit for ADC Inputs  
10.16 Equivalent Circuit for ADC Inputs  
Figure 10-18 illustrates the ADC input circuit during sample and hold. S1 and S2 are always open/closed  
at the same time that S3 is closed/open. When S1/S2 are closed and S3 is open, one input of the sample  
and hold circuit moves to (V  
- V  
) / 2, while the other charges to the analog input voltage. When  
REFHx  
REFLx  
the switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended  
analog input is switched to a differential voltage centered about (V - V ) / 2. The switches  
REFHx  
REFLx  
switch on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). Note that  
there are additional capacitances associated with the analog input pad, routing, etc., but these do not filter  
into the S/H output voltage, as S1 provides isolation during the charge-sharing phase.  
One aspect of this circuit is that there is an on-going input current, which is a function of the analog input  
voltage, V , and the ADC clock frequency.  
REF  
125ESD Resistor  
8pF noise damping capacitor  
4
3
Analog Input  
S1  
C1  
S/H  
S3  
C2  
S2  
(VREFHx - VREFLx ) / 2  
2
1
C1 = C2 = 1pF  
1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pF  
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pF  
3. Equivalent resistance for the channel select mux; 100 ohms  
4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only  
connected to it at sampling time; 1.4pF  
Figure 10-18 Equivalent Circuit for A/D Loading  
10.17 Comparator (CMP) Parameters  
Table 10-21 CMP Parameters  
Parameter  
Conditions/Comments  
Symbol  
Min  
Typ  
Max  
Unit  
Input Offset Voltage1  
Within range of VDDA - .1V to  
VSSA + .1V  
VOFFSET  
±10  
±35  
mV  
Input Propagation Delay  
Power-up time  
tPD  
35  
45  
ns  
tCPU  
TBD  
TBD  
1. No guaranteed specification within 0.1V of V  
or V  
SSA  
DDA  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
163  
10.18 Digital-to-Analog Converter (DAC) Parameters  
Table 10-22 DAC Parameters  
Parameter  
Conditions/Comments  
Symbol  
Min  
Typ  
Max  
Unit  
DC Specifications  
Resolution  
12  
TBD  
TBD  
12  
2
bits  
µS  
Conversion time  
Conversion rate  
Power-up time  
500.000  
11  
conv/sec  
µS  
Time from release of PWRDWN  
signal until DACOUT signal is  
valid  
tDAPU  
Accuracy  
Integral non-linearity1  
LSB2  
LSB2  
Range of input digital words:  
410 to 3891 ($19A - $F33)  
5% to 95% of full range  
INL  
+/- 3  
+/- 8.0  
< - 1  
Differential non-linearity1  
Range of input digital words:  
410 to 3891 ($19A - $F33)  
5% to 95% of full range  
DNL  
+/- .8  
Monotonicity  
Offset error1  
> 6 sigma monotonicity,  
< 3.4 ppm non-monotonicity  
guaranteed  
+/- 25  
Range of input digital words:  
410 to 3891 ($19A - $F33)  
5% to 95% of full range  
VOFFSET  
+/- 40  
mV  
Gain error1  
Range of input digital words:  
410 to 3891 ($19A - $F33)  
5% to 95% of full range  
EGAIN  
+/- .5  
+/- 1.5  
%
DAC Output  
Output voltage range  
Within 40mV of either VREFLX or  
VREFHX  
VOUT  
VREFLX  
+.04V  
VREFHX  
- .04V  
V
Short circuit current  
DACOUT shorted to ground with  
input digital word = $FFF  
DACOUT shorted to VDDA with  
ISC  
ISC  
70  
50  
100  
75  
mA  
input digital word = $000  
AC Specifications  
Signal-to-noise ratio  
SNR  
TBD  
TBD  
dB  
dB  
Spurious free dynamic  
range  
SFDR  
Effective number of bits  
ENOB  
9
bits  
1. No guaranteed specification within 5% of V  
2. LSB = 0.806mV  
or V  
SSA  
DDA  
56F8037/56F8027 Data Sheet, Rev. 8  
164  
FreescaleSemiconductor  
Power Consumption  
10.19 Power Consumption  
See Section 10.1 for a list of IDD requirements for the 56F8037/56F8027. This section provides additional  
detail which can be used to optimize power consumption for a given application.  
Power consumption is given by the following equation:  
Total power = A: internal [static component]  
+B: internal [state-dependent component]  
+C: internal [dynamic component]  
+D: external [dynamic component]  
+E: external [static component]  
A, the internal [static component], is comprised of the DC bias currents for the oscillator, leakage currents,  
PLL, and voltage references. These sources operate independently of processor state or operating  
frequency.  
B, the internal [state-dependent component], reflects the supply current required by certain on-chip  
resources only when those resources are in use. These include RAM, Flash memory and the ADCs.  
2
C, the internal [dynamic component], is classic C*V *F CMOS power dissipation corresponding to the  
56800E core and standard cell logic.  
D, the external [dynamic component], reflects power dissipated on-chip as a result of capacitive loading  
2
on the external pins of the chip. This is also commonly described as C*V *F, although simulations on two  
of the I/O cell types used on the 56800E reveal that the power-versus-load curve does have a non-zero  
Y-intercept.  
Table 10-23 I/O Loading Coefficients at 10MHz  
Intercept  
Slope  
8mA drive  
4mA drive  
1.3  
0.11mW / pF  
0.11mW / pF  
1.15mW  
Power due to capacitive loading on output pins is (first order) a function of the capacitive load and  
frequency at which the outputs change. Table 10-23 provides coefficients for calculating power dissipated  
in the I/O cells as a function of capacitive load. In these cases:  
TotalPower = ((Intercept + Slope*Cload)*frequency/10MHz)  
where:  
Summation is performed over all output pins with capacitive loads  
TotalPower is expressed in mW  
Cload is expressed in pF  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
165  
Because of the low duty cycle on most device pins, power dissipation due to capacitive loads was found  
to be fairly low when averaged over a period of time.  
E, the external [static component], reflects the effects of placing resistive loads on the outputs of the  
2
device. Sum the total of all V /R or IV to arrive at the resistive load contribution to power. Assume V = 0.5  
for the purposes of these rough calculations. For instance, if there is a total of eight PWM outputs driving  
10mA into LEDs, then P = 8*.5*.01 = 40mW.  
In previous discussions, power consumption due to parasitics associated with pure input pins is ignored,  
as it is assumed to be negligible.  
56F8037/56F8027 Data Sheet, Rev. 8  
166  
FreescaleSemiconductor  
56F8037/56F8027 Package and Pin-Out Information  
Part 11 Packaging  
11.1 56F8037/56F8027 Package and Pin-Out Information  
This section contains package and pin-out information for the 56F8037/56F8027. This device comes in a  
64-pin Low-profile Quad Flat Pack (LQFP). Figure 11-1 shows the package outline, Figure 11-2 shows  
the mechanical parameters and Table 11-1 lists the pin-out.  
Orientation  
Mark  
GPIOA3 / PWM3  
GPIOB6 / RXD0 / SDA / CLKIN  
GPIOB1 / SS0 / SDA  
49  
GPIOA2 / PWM2  
Pin 1  
GPIOB7 / TXD0 / SCL  
GPIOB9 / SDA / CANRX  
GPIOA14 / MOSI1/ TB3 / TA3  
GPIOA13 / MISO1/ TB2 / TA2  
GPIOA4 / PWM4 / TA2 / FAULT1  
GPIOB0 / SCLK0 / SCL  
GPIOB5 / TA1 / FAULT3 / CLKIN  
GPIOA9 / FAULT2 / TA3 / CMPBI1  
GPIOA11 / TB3 / CMPBI2  
V
DD  
V
V
SS  
DD  
GPIOC12 / ANB4 / RXD1  
GPIOC4 / ANB0 / CMPBI3  
GPIOC5 / ANB1  
V
SS  
GPIOA5 / PWM5 / TA3 / FAULT2  
GPIOB4 / SS1 / TB0 / TA0 / PSRC2 / CLKO  
GPIOA12 / SCLK1 / TB1 / TA1  
GPIOA8 / FAULT1 / TA2 / CMPAI1  
GPIOA10 / TB2 / CMPAI2  
GPIOC13 / ANB5  
GPIOC6 / ANB2 / V  
REFHB  
GPIOC7 / ANB3 / V  
REFLB  
33  
GPIOA6 / FAULT0 / TA0  
GPIOD7 / DAC1  
17  
GPIOB2 / MISO0 / TA2 / PSRC0  
V
DDA  
Figure 11-1 Top View, 56F8037/56F8027 64-Pin LQFP Package  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
167  
1
Table 11-1 56F8037/56F8027 64-Pin LQFP Package Identification by Pin Number  
Pin  
#
Pin  
#
Pin  
#
Pin  
#
Signal Name  
Signal Name  
VSSA  
Signal Name  
Signal Name  
VCAP  
1
2
3
GPIOB6  
RXD0 / SDA / CLKIN  
17  
18  
19  
33  
34  
35  
GPIOB2  
MISO0 / TA2 / PSRC0  
49  
50  
51  
GPIOB1  
SS0 / SDA  
GPIOD6  
DAC0  
GPIOA6  
FAULT0 / TA0  
VDD  
GPIOB7  
GPIOC3  
GPIOA10  
VSS  
TXD0 / SCL  
ANA3 / VREFLA  
TB2 / CMPAI2  
4
5
6
GPIOB5  
TA1 / FAULT3 / CLKIN  
20  
21  
22  
GPIOC2  
ANA2 / VREFHA  
36  
37  
38  
GPIOA8  
FAULT1 / TA2 /  
CMPAI1  
52  
53  
54  
GPIOD5  
XTAL / CLKIN  
GPIOA9  
FAULT2 / TA3 /  
CMPBI1  
GPIOC9  
ANA5  
GPIOA12  
SCLK1 / TB1 / TA1  
GPIOD4  
EXTAL  
GPIOA11  
GPIOC1  
GPIOB4  
GPIOB8  
TB3 / CMPBI2  
ANA1  
SS1 / TB0 / TA0 /  
PSRC2 / CLKO  
SCL / CANTX  
7
8
VDD  
VSS  
23  
24  
25  
26  
27  
28  
29  
GPIOC10  
ANA6  
39  
40  
41  
42  
43  
44  
45  
GPIOA5  
PWM5 / TA3 / FAULT2  
55  
56  
57  
58  
59  
60  
61  
GPIOA1  
PWM1  
GPIOC0  
ANA0 & CMPAI3  
VSS  
GPIOA0  
PWM0  
9
GPIOC12  
ANB4 / RXD1  
GPIOC11  
ANA7  
VDD  
GPIOB12  
CANTX  
10  
11  
12  
13  
GPIOC4  
ANB0 & CMPBI3  
GPIOC8  
ANA4 / TXD1  
GPIOB0  
SCLK0 / SCL  
GPIOB13  
CANRX  
GPIOC5  
ANB1  
VSS  
GPIOA4  
PWM4 / TA2 / FAULT1  
TDI  
GPIOD0  
GPIOC13  
ANB5  
VCAP  
GPIOA13  
MISO1 / TB2 / TA2  
GPIOB11  
TB1 / CMPBO  
GPIOC6  
TCK  
GPIOA14  
GPIOC15  
ANB2 / VREFHB  
GPIOD2  
MOSI1 / TB3 / TA3  
ANB7  
14  
GPIOC7  
30  
GPIOB10  
46  
GPIOB9  
62  
GPIOC14  
ANB3 / VREFLB  
TB0 / CMPAO  
SDA / CANRX  
ANB6  
15  
16  
GPIOD7  
DAC1  
31  
32  
RESET  
GPIOA7  
47  
48  
GPIOA2  
PWM2  
63  
64  
TMS  
GPIOD3  
VDDA  
GPIOB3  
MOSI0 / TA3 /  
PSRC1  
GPIOA3  
PWM3  
TDO  
GPIOD1  
1. Alternate signals are in italic  
56F8037/56F8027 Data Sheet, Rev. 8  
168  
FreescaleSemiconductor  
56F8037/56F8027 Package and Pin-Out Information  
4X  
4X 16 TIPS  
0.2  
H
A-B  
D
0.2  
C
A-B D  
A2  
S
0.05  
64  
49  
(S)  
1
48  
2X R R1  
q 1  
0.25  
A
B
GAGE PLANE  
q
E
E1  
(L2)  
A1  
L
(L1)  
3X  
E1/2  
VIEW Y  
E/2  
VIEW AA  
16  
33  
17  
32  
NOTES:  
1. DIMENSIONS AND TOLERANCING PER ANSI Y14.5M,  
1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE DATUM H IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD WHERE  
THELEADEXITSTHEPLASTICBODYATTHE BOTTOM  
OF THE PARTING LINE.  
D
D1/2  
D/2  
D1  
4. DATUMS A, B AND D TO BE DETERMINED AT DATUM  
PLANE DATUM C.  
D
5. DIMENSIONS D AND E TO BE DETERMINED AT  
SEATING PLANE DATUM C.  
6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD  
PROTRUSION.ALLOWABLEPROTRUSIONIS0.25PER  
SIDE.  
7. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL NOT  
CAUSE THE b DIMENSION TO EXCEED 0.35. MINIMUM  
SPACE BETWEEN PROTRUSION AND ADJACENT  
LEAD OR PROTRUSION 0.07.  
4X (q2)  
H
A
0.08 C  
MILLIMETERS  
4X (q3)  
DIM MIN  
MAX  
1.60  
0.15  
1.45  
0.27  
0.23  
0.20  
0.16  
SEATING  
PLANE  
C
A
A1  
A2  
b
b1  
c
---  
VIEW AA  
0.05  
1.35  
0.17  
0.17  
0.09  
0.09  
c1  
D
12.00 BSC  
BASE METAL  
D1  
e
E
E1  
L
L1  
L2  
R1  
S
10.00 BSC  
0.50 BSC  
12.00 BSC  
10.00 BSC  
b1  
X
X=A, B OR D  
0.45  
0.75  
c1  
c
1.00 REF  
0.50 REF  
0.10  
0.20  
C
L
0.20 REF  
q
0   
7   
AB  
AB  
e/2  
PLATING  
q 1  
q 2  
q 3  
0
---  
b
12 REF  
60X  
e
M
12 REF  
0.08  
C A-B D  
VIEW Y  
SECTION AB-AB  
ROTATED 90 CLOCKWISE  
Figure 11-2 56F8037/56F8027 64-Pin LQFP Mechanical Information  
Please see www.freescale.com for the most current case outline.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
169  
Part 12 Design Considerations  
12.1 Thermal Design Considerations  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
x P )  
D
J
A
J  
where:  
o
T
R
= Ambient temperature for the package ( C)  
A
o
= Junction-to-ambient thermal resistance ( C/W)  
J  
P
= Power dissipation in the package (W)  
D
The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy  
estimation of thermal performance. Unfortunately, there are two values in common usage: the value  
determined on a single-layer board and the value obtained on a board with two planes. For packages such  
as the PBGA, these values can be different by a factor of two. Which value is closer to the application  
depends on the power dissipated by other components on the board. The value obtained on a single layer  
board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the  
internal planes is usually appropriate if the board has low-power dissipation and the components are well  
separated.  
When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal  
resistance and a case-to-ambient thermal resistance:  
R
= R  
+ R  
JA  
JC CA  
where:  
R
R
R
=
=
=
Package junction-to-ambient thermal resistance (°C/W)  
Package junction-to-case thermal resistance (°C/W)  
Package case-to-ambient thermal resistance (°C/W)  
JA  
JC  
CA  
R
is device related and cannot be influenced by the user. The user controls the thermal environment to  
JC  
change the case to ambient thermal resistance, R  
. For instance, the user can change the size of the heat  
CA  
sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit  
board, or change the thermal dissipation on the printed circuit board surrounding the device.  
To determine the junction temperature of the device in the application when heat sinks are not used, the  
Thermal Characterization Parameter () can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (x P )  
J
T
JT  
D
where:  
o
T
= Thermocouple temperature on top of package ( C)  
= Thermal characterization parameter ( C/W)  
T
o
JT  
P
= Power dissipation in package (W)  
D
56F8037/56F8027 Data Sheet, Rev. 8  
170  
FreescaleSemiconductor  
Electrical Design Considerations  
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the  
experimental difficulties with this technique, many engineers measure the heat sink temperature and then  
back-calculate the case temperature using a separate measurement of the thermal resistance of the  
interface. From this case temperature, the junction temperature is determined from the junction-to-case  
thermal resistance.  
12.2 Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or electrical  
fields. However, normal precautions are advised to  
avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
Use the following list of considerations to assure correct operation of the 56F8037/56F8027:  
Provide a low-impedance path from the board power supply to each VDD pin on the 56F8037/56F8027 and  
from the board ground to each VSS (GND) pin  
The minimum bypass requirement is to place 0.01–0.1µF capacitors positioned as close as possible to the  
package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of  
the VDD/VSS pairs, including VDDA/VSSA. Ceramic and tantalum capacitors tend to provide better  
tolerances.  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip VDD and VSS (GND)  
pins are as short as possible  
Bypass the VDD and VSS with approximately 100µF, plus the number of 0.1µF ceramic capacitors  
PCB trace lengths should be minimal for high-frequency signals  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance.  
This is especially critical in systems with higher capacitive loads that could create higher transient currents  
in the VDD and VSS circuits.  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
171  
Take special care to minimize noise levels on the VREF, VDDA, and VSSA pins  
Using separate power planes for VDD and VDDA and separate ground planes for VSS and VSSA are  
recommended. Connect the separate analog and digital power and ground planes as close as possible to  
power supply outputs. If both analog circuit and digital circuit are powered by the same power supply, it is  
advisable to connect a small inductor or ferrite bead in serial with both VDDA and VSSA traces.  
It is highly desirable to physically separate analog components from noisy digital components by ground  
planes. Do not place an analog trace in parallel with digital traces. It is also desirable to place an analog  
ground trace around an analog signal trace to isolate it from digital traces.  
Because the Flash memory is programmed through the JTAG/EOnCE port, QSPI, QSCI, or I2C, the  
designer should provide an interface to this port if in-circuit Flash programming is desired  
If desired, connect an external RC circuit to the RESET pin. The Resistor value should be in the range of  
4.7k—10k; the Capacitor value should be in the range of 0.22µf - 4.7µf.  
Add a 3.3k external pull-up on the TMS pin of the JTAG port to keep EOnce in a restate during normal  
operation if JTAG converter is not present  
During reset and after reset but before I/O initialization, all I/O pins are at input state with internal pull-up  
enable. The typical value of internal pull-up is around 110K. These internal pull-ups can be disabled by  
software.  
To eliminate PCB trace impedance effect, each ADC input should have a 33pf-10 ohm RC filter  
Device GPIOs have only a down (substrate) diode on the GPIO circuit. Devices do not have a positive clamp  
diode because GPIOs use a floating gate structure to tolerate 5V input. The absolute maximum clamp  
current is -20mA at Vin less than 0V. The continuous clamp current is -2mA at Vin less than 0V. If positive  
voltage spikes are a concern, a positive clamp is recommended.  
Part 13 Ordering Information  
Table 13-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor  
sales office or authorized distributor to determine availability and to order devices.  
Table 13-1 56F8037/56F8027 Ordering Information  
Ambient  
Temperature  
Range  
Supply  
Voltage  
Pin  
Count  
Frequency  
(MHz)  
Device  
Package Type  
Order Number  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
Low-Profile Quad Flat Pack (LQFP)  
MC56F8037  
MC56F8027  
MC56F8037  
MC56F8027  
3.0–3.6 V  
3.0–3.6 V  
3.0–3.6 V  
3.0–3.6 V  
64  
64  
64  
64  
32  
32  
32  
32  
-40° to + 105° C  
-40° to + 105° C  
-40° to + 125° C  
-40° to + 125° C  
MC56F8037VLH*  
MC56F8027VLH*  
MC56F8037MLH*  
MC56F8027MLH*  
* This package is RoHS compliant.  
56F8037/56F8027 Data Sheet, Rev. 8  
172  
FreescaleSemiconductor  
Electrical Design Considerations  
Part 14 Appendix  
Register acronyms are revised from previous device data sheets to provide a cleaner register description.  
A cross reference to legacy and revised acronyms are provided in the following table.  
Table 14-1 Legacy and Revised Acronyms  
Peripheral Reference  
Manual  
Memory  
Address  
Data Sheet  
Processor Expert  
Acronym  
Register Name  
New  
Legacy  
New  
Acronym  
Legacy  
Acronym  
Start  
End  
Acronym  
Acronym  
Analog-to-Digital Converter (ADC) Module  
Control 1 Register  
Control 2 Register  
CTRL1  
CTRL2  
ADCR1  
ADCR2  
ADZCC  
ADC_CTRL1  
ADC_CTRL2  
ADC_ZXCTRL  
ADC_ADCR1  
ADC_ADCR2  
ADC_ADZCC  
ADC_ADCR1  
ADC_ADCR2  
ADC_ADZCC  
0xF080  
0xF081  
0xF082  
Zero Crossing Control  
Register  
ZXCTRL  
Channel List 1  
Register  
CLIST1  
CLIST2  
CLIST3  
CLIST4  
SDIS  
ADLST1  
ADLST2  
ADC_CLIST1  
ADC_CLIST2  
ADC_CLIST3  
ADC_CLIST4  
ADC_SDIS  
ADC_ADLST1  
ADC_ADLST2  
ADC_ADCLST3  
ADC_ADCLST4  
ADC_ADSDIS  
ADC_ADLST1  
ADC_ADLST2  
ADC_ADCLST3  
ADC_ADCLST4  
ADC_ADSDIS  
0xF083  
0xF084  
0xF085  
0xF086  
0xF087  
Channel List 2  
Register  
Channel List 3  
Register  
Channel List 4  
Register  
Sample Disable  
Register  
ADSDIS  
ADSTAT  
Status Register  
STAT  
RDY  
ADC_STAT  
ADC_ADSTAT  
ADC_ADSTAT  
0xF088  
0xF089  
Conversion Ready  
Register  
ADC_CNRDY  
ADC_ADCNRDY  
ADC_ADCNRDY  
Limit Status Register  
LIMSTAT  
ZXSTAT  
ADLSTAT  
ADC_LIMSTAT  
ADC_ZXSTAT  
ADC_ADLSTAT  
ADC_ADLSTAT  
0xF08A  
0xF08B  
Zero Crossing Status  
Register  
ADZCSTAT  
ADC_ADZCSTAT  
ADC_ADZCSTAT  
Result 0-7 Registers  
Result 8-15 Registers  
RSLT0-7  
RSLT8-15  
LOLIM0-7  
ADRSLT0-7  
ADC_RSLT0-7  
ADC_RSLT8-15  
ADC_LOLIM0-7  
ADC_ADRSLT0-7  
ADC_ADRSLT8-15  
ADC_ADLLMT0-7  
ADC_ADRSLT0-7  
ADC_ADRSLT8-15  
ADC_ADLLMT0-7  
0xF08C 0XF093  
0xF094 0XF09B  
0XF09C 0XF0A3  
Low Limit 0-7  
Registers  
ADLLMT0-7  
ADHLMT0-7  
High Limit 0-7  
Registers  
HILIM0-7  
ADC_HILIM0-7  
ADC_ADHLMT0-7  
ADC_ADHLMT0-7  
0XF0A4 0XF0AB  
Offset 0-7 Registers  
OFFST0-7  
PWR  
ADOFS0-7  
ADPOWER  
ADC_OFFST0-7  
ADC_PWR  
ADC_ADOFS0-7  
ADC_ADPOWER  
ADC_ADOFS0-7  
ADC_ADPOWER  
0XF0AC 0XF0B3  
0XF0B4  
Power Control  
Register  
Calibration Register  
CAL  
ADC_CAL  
ADC_ADCAL  
ADC_ADCAL  
0XF0B5  
Computer Operating Properly (COP) Module  
Control Register  
Timeout Register  
Counter Register  
CTRL  
TOUT  
CNTR  
COPCTL  
COPTO  
COP_CTRL  
COP_TOUT  
COP_CNTR  
COPCTL  
COPTO  
COPCTL  
COPTO  
0XF120  
0XF121  
0XF122  
COPCTR  
COPCTR  
COPCTR  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
173  
Table 14-1 Legacy and Revised Acronyms (Continued)  
Peripheral Reference  
Data Sheet  
Memory  
Address  
Manual  
Processor Expert  
Register Name  
Acronym  
New  
Legacy  
New  
Legacy  
Start  
End  
Acronym  
Acronym  
Acronym  
Acronym  
Inter-Integrated Circuit Interface (I2C) Module  
Control Register  
CTRL  
TAR  
IBCR  
I2C_CTRL  
I2C_TAR  
I2C_IBCR  
I2CTAR  
I2C_IBCR  
I2C_TAR  
0xF280  
0xF282  
Target Address  
Register  
Slave Address  
Register  
SAR  
DATA  
I2C_SAR  
I2C_DATA  
I2CSAR  
I2C_SAR  
0xF242  
0xF288  
0xF28A  
Data Buffer &  
Command Register  
I2C_DATACMD  
I2C_SS_SCLHCNT  
I2C_DATACMD  
I2C_SS_SCLHCNT  
Standard Speed  
Clock SCL High  
Count Register  
SSHCNT  
I2C_SS_SCL_HCNT  
Standard Speed  
Clock SCL Low Count  
Register  
SSLCNT  
FSHCNT  
FSLCNT  
I2C_SS_SCL_LCNT  
I2C_FS_SCL_HCNT  
I2C_FS_SCL_LCNT  
I2C_SS_SCLLCNT  
I2C_FS_SCLHCNT  
I2C_FS_SCLLCNT  
I2C_SS_SCLLCNT  
I2C_FS_SCLHCNT  
I2C_FS_SCLLCNT  
0xF28C  
0xF28E  
0xF290  
Fast Speed Clock  
SCL High Count  
Register  
Fast Speed Clock  
SCL Low Count  
Register  
Interrupt Status  
Register  
ISTAT  
IENBL  
RISTAT  
RXFT  
I2C_INTR_STAT  
I2C_INTR_MASK  
I2C_INTRSTAT  
I2C_INTRMASK  
I2C_INTRSTAT  
I2C_INTRMASK  
I2C_RAW_INTRSTAT  
I2C_RXTL  
0xF296  
0xF298  
0xF29A  
0xF29C  
Interrupt Mask  
Register  
Raw Interrupt Status  
Register  
I2C_RAW_INTR_ STAT I2C_RAW_INTRSTAT  
I2C_RXTL  
Receive FIFO  
Threshold Level  
Register  
Transmit FIFO  
Threshold Level  
Register  
TXFT  
I2C_TXTL  
I2C_TXTL  
0xF29E  
0xF2A0  
Clear Combined &  
Individual Interrupts  
Register  
CLRINT  
I2C_CLRINTR  
I2C_CLRINTR  
Clear Receive Under  
Interrupt Register  
CLRRXUND  
CLRRXOVR  
CLRTXOVR  
CLRRDREQ  
CLRTXABRT  
I2C_CLR_RXUNDER  
I2C_CLROVER  
I2C_CLR_RXUNDER  
I2C_CLROVER  
0xF2A2  
0xF2A4  
0xF2A6  
0xF2A8  
0xF2AA  
Clear Receive Over  
Interrupt Register  
Clear Transmit Over  
Register  
I2C_CLR_TXOVER  
I2C_CLR_RDREQ  
I2C_CLR_TXABRT  
I2C_CLR_TXOVER  
I2C_CLR_RDREQ  
I2C_CLR_TXABRT  
Clear Read Required  
Interrupt Register  
Clear Transmit Abort  
Interrupt Register  
56F8037/56F8027 Data Sheet, Rev. 8  
174  
FreescaleSemiconductor  
Electrical Design Considerations  
Table 14-1 Legacy and Revised Acronyms (Continued)  
Peripheral Reference  
Manual  
Memory  
Address  
Data Sheet  
Processor Expert  
Acronym  
Register Name  
New  
Legacy  
New  
Acronym  
Legacy  
Acronym  
Start  
End  
Acronym  
Acronym  
Clear Receive Done  
Interrupt Register  
CLRRXDONE  
I2C_CLR_RXDONE  
I2C_CLRACTIVITY  
I2C_CLR_STOPDET  
I2C_CLR_STAR_DET  
I2C_CLR_GENCALL  
I2C_CLR_RXDONE  
I2C_CLRACTIVITY  
I2C_CLR_STOPDET  
I2C_CLR_STAR_DET  
I2C_CLR_GENCALL  
0xF2AC  
0xF2AE  
0xF2B0  
0xF2B2  
0xF2B4  
Clear Activity Interrupt  
Register  
CLRACT  
Clear Stop Detect  
Interrupt Register  
CLRSTPDET  
CLRSTDET  
CLRGC  
Clear Start Detect  
Interrupt Register  
Clear General Call  
Interrupt Register  
Enable Register  
Status Register  
ENBL  
STAT  
I2C_ENABLE  
I2C_STAT  
I2C_ENABLE  
I2C_STAT  
0xF2B6  
0xF2B8  
0xF2BA  
Transmit FIFO Level  
Register  
TXFLR  
I2C_TXFLR  
I2C_TXFLR  
Receive FIFO Level  
Register  
RXFLR  
I2C_RXFLR  
I2C_TX_ABRTSRC  
I2C_COMPARM1  
I2C_COMPARM2  
I2C_COMVER1  
I2C_COMVER2  
I2C_COMTYP1  
I2C_COMTYP2  
I2C_RXFLR  
I2C_TX_ABRTSRC  
I2C_COMPARM1  
I2C_COMPARM2  
I2C_COMVER1  
I2C_COMVER2  
I2C_COMTYP1  
I2C_COMTYP2  
0xF2BC  
0xF2C0  
0xF2FA  
0xF2FB  
0xF2FC  
0xF2FD  
0xF2FE  
0xF2FF  
Transmit Abort  
Source Register  
TXABRTSRC  
COMPARM1  
COMPARM2  
COMVER1  
COMVER2  
COMTYP1  
COMTYP2  
Component  
Parameter 1 Register  
Component  
Parameter 2 Register  
Component Version 1  
Register  
Component Version 2  
Register  
Component Type 1  
Register  
Component Type 2  
Register  
On-Clock Chip Synthesis (OCCS) Module  
Control Register  
Divide-By Register  
Status Register  
CTRL  
DIVBY  
STAT  
PLLCR  
PLLDB  
PLLSR  
OSCTL  
OCCS_CTRL  
OCCS_DIVBY  
OCCS_STAT  
OCCS_OCTRL  
PLLCR  
PLLDB  
PLLSR  
OSCTL  
PLLCR  
PLLDB  
PLLSR  
OSCTL  
0xF130  
0xF131  
0xF132  
0xF135  
Oscillator Control  
Register  
OCTRL  
Clock Check Register  
Protection Register  
Clock Divider Register  
CLKCHK  
PROT  
OCCS_CLCHK  
OCCS_PROT  
FM_CLKDIV  
FM_CNFG  
PLLCLCHK  
PLLPROT  
FMCLKD  
FMCR  
OCCS_CLCHK  
OCCS_PROT  
FMCLKD  
0xF136  
0xF137  
0xF400  
0xF401  
CLKDIV  
CNFG  
FMCLKD  
FMCR  
Configuration  
Register  
FMCR  
Security High Half  
Register  
SECHI  
FMSECH  
FM_SECHI  
FMSECH  
FMSECH  
0xF403  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
175  
Table 14-1 Legacy and Revised Acronyms (Continued)  
Peripheral Reference  
Data Sheet  
Memory  
Address  
Manual  
Processor Expert  
Register Name  
Acronym  
New  
Legacy  
New  
Legacy  
Start  
End  
Acronym  
Acronym  
Acronym  
Acronym  
Security Low Half  
Register  
SECLO  
FMSECL  
FM_SECLO  
FMSECL  
FMSECL  
0xF404  
Protection Register  
User Status Register  
Command Register  
Data Buffer Register  
PROT  
USTAT  
CMD  
FMPROT  
FMUSTAT  
FMCMD  
FM_PROT  
FM_USTAT  
FM_CMD  
FMPROT  
FMUSTAT  
FMCMD  
FMPROT  
FMUSTAT  
FMCMD  
0xF410  
0xF413  
0xF414  
0xF418  
0xF41B  
DATA  
OPT1  
FMDATA  
FMOPT1  
FM_DATA  
FM_OPT1  
FMDATA  
FMOPT1  
FMDATA  
FMOPT1  
Info Optional Data 1  
Register  
Test Array Signature  
Register  
TSTSIG  
FMTST_SIG  
FM_TSTSIG  
FMTST_SIG  
FMTST_SIG  
0xF41D  
General Purpose Input/Output (GPIO) Module  
x= A (n=0) B (n=1) C (n=2) D (n=3)  
Pull-Up Enable  
Register  
PUPEN  
PUR  
GPIOx_PUPEN  
GPIOx_PUR  
GPIO_x_PUR  
0xF1n0  
Data Register  
DATA  
DDIR  
DR  
GPIOx_DATA  
GPIOx_DDIR  
GPIOx_DR  
GPIO_x_DR  
0xF1n1  
0xF1n2  
Data Direction  
Register  
DDR  
GPIOx_DDR  
GPIO_x_DDR  
Peripheral Enable  
Register  
PEREN  
IASSRT  
IEN  
PER  
IAR  
GPIOx_PEREN  
GPIOx_IASSRT  
GPIOx_IEN  
GPIOx_PER  
GPIOx_IAR  
GPIO_x_PER  
GPIO_x_IAR  
0xF1n3  
0xF1n4  
0xF1n5  
0xF1n6  
0xF1n7  
0xF1n8  
Interrupt Assert  
Register  
Interrupt Enable  
Register  
IENR  
IPOLR  
IPR  
GPIOx_IENR  
GPIOx_IPOLR  
GPIOx_IPR  
GPIO_x_IENR  
GPIO_x_IPOLR  
GPIO_x_IPR  
Interrupt Polarity  
Register  
IPOL  
GPIOx_IPOL  
Interrupt Pending  
Register  
IPEND  
IEDGE  
GPIOx_IPEND  
GPIOx_IEDGE  
Interrupt  
IESR  
GPIOx_IESR  
GPIO_x_IESR  
Edge-Sensitive  
Register  
Push-Pull Mode  
Registers  
PPOUTM  
RDATA  
DRIVE  
PPMODE  
RAWDATA  
DRIVE  
GPIOx_PPOUTM  
GPIOx_RDATA  
GPIOx_DRIVE  
GPIOx_PPMODE  
GPIOx_RAWDATA  
GPIOx_DRIVE  
GPIO_x_PPMODE  
GPIO_x_RAWDATA  
GPIO_x_DRIVE  
0xF1n9  
0xF1nA  
0xF1nB  
Raw Data Input  
Register  
Output Drive Strength  
Register  
56F8037/56F8027 Data Sheet, Rev. 8  
176  
FreescaleSemiconductor  
Electrical Design Considerations  
Table 14-1 Legacy and Revised Acronyms (Continued)  
Peripheral Reference  
Manual  
Memory  
Address  
Data Sheet  
Processor Expert  
Acronym  
Register Name  
New  
Legacy  
New  
Acronym  
Legacy  
Acronym  
Start  
End  
Acronym  
Acronym  
Pulse Width Modulator (PWM) Module  
Control Register  
CTRL  
FCTRL  
FLTACK  
PMCTL  
PMFCTL  
PMFSA  
PWM_CTRL  
PWM_FCTRL  
PWM_FLTACK  
PWM_PMCTL  
PWM_PMCTL  
PWM_PMFCTL  
PWM_PMFSA  
0xF0C0  
0xF0C1  
0xF0C2  
Fault Control Register  
PWM_PMFCTL  
PWM_PMFSA  
Fault  
Status/Acknowledge  
Regis.  
Output Control  
Register  
OUT  
PMOUT  
PWM_OUT  
PWM_PMOUT  
PWM_PMOUT  
0xF0C3  
Counter Register  
CNTR  
PMCNT  
MCM  
PWM_CNTR  
PWM_CMOD  
PWM_PMCNT  
PWM_MCM  
PWM_PMCNT  
PWM_MCM  
0xF0C4  
0xF0C5  
Counter Modulo  
Register  
CMOD  
Value 0-5 Registers  
VAL0-5  
PMVAL0-5  
PWM_VAL0-5  
PWM_DTIM0-1  
PWM_PMVAL0-5  
PWM_PMVAL0-5  
0xF0C6 0xF0CB  
Deadtime 0-1  
Registers  
DTIM0-1  
PMDEADTM0-1  
PWM_PMDEADTM0-1 PWM_PMDEADTM0-1 0xF0CC 0xF0CD  
Disable Mapping 1-2  
Registers  
DMAP1-2  
PMDISMAP1-2  
PWM_DMAP1-2  
PWM_PMDISMAP1-2  
PWM_PMDISMAP1-2 0xF0CE 0xF0CF  
Configure Register  
CNFG  
PMCFG  
PMCCR  
PWM_CNFG  
PWM_CCTRL  
PWM_PMCFG  
PWM_PMCCR  
PWM_PMCFG  
PWM_PMCCR  
0xF0D0  
0xF0D1  
Channel Control  
Register  
CCTRL  
Port Register  
PORT  
PMPORT  
PMICCR  
PWM_PORT  
PWM_PMPORT  
PWM_PMICCR  
PWM_PMPORT  
PWM_PMICCR  
0xF0D2  
0xF0D3  
Internal Correction  
Control Register  
ICCTRL  
PWM_ICCTRL  
Source Control  
Register  
SCTRL  
SYNC  
PMSRC  
PWM_SCTRL  
PWM_SYNC  
PWM_PMSRC  
PWM_SYNC  
PWM_PMSRC  
PWM_SYNC  
0xF0D4  
0xF0D5  
Synchronization  
Window Register  
Fault Filter 0-3  
Register  
FFILT0-3  
PWM_FFILT0-3  
PWM_FFILT0-3  
PWM_FFILT0-3  
0xF0D6 0xF0D9  
Multi-Scalable Controller Area Network (MSCAN) Module  
Control 0 Register  
CTRL0  
CTRL1  
BTR0  
BTR1  
RFLG  
RIER  
CAN_CTRL0  
CAN_CTRL1  
CAN_BTR0  
CAN_BTR1  
CAN_RFLG  
CAN_RIER  
CANCTRL0  
CANCTRL1  
CANBTR0  
CANBTR1  
CANRFLG  
CANRIER  
0XF800  
0XF801  
0XF802  
0XF803  
0XF804  
0XF805  
Control 1 Register  
Bus Timing 0 Register  
Bus Timing 1 Register  
Receive Flag Register  
Receiver Interrupt  
Enable Register  
Transmitter Flag  
Register  
TFLG  
TIER  
CAN_TFLG  
CAN_TIER  
CAN_TARQ  
CANTFLG  
CANTIER  
CANTARQ  
0XF806  
0XF807  
0XF808  
Transmitter Interrupt  
Enable Register.  
Transmitter Msg Abort  
Request Register  
TARQ  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
177  
Table 14-1 Legacy and Revised Acronyms (Continued)  
Peripheral Reference  
Data Sheet  
Memory  
Address  
Manual  
Processor Expert  
Register Name  
Acronym  
New  
Legacy  
New  
Legacy  
Start  
End  
Acronym  
Acronym  
Acronym  
Acronym  
Transmitter Message  
Abort Acknowledge  
Register  
TAAK  
CAN_TAAK  
CANTAAK  
0XF809  
Transmitter FIFO  
Selection Register  
TBSEL  
IDAC  
CAN_TBSEL  
CAN_IDAC  
CANTBSEL  
CANIDAC  
0XF80A  
0XF80B  
Identifier Acceptance  
Control Register  
Miscellaneous  
Register  
MISC  
CAN_MISC  
CANMISC  
0XF80D  
Receive Error  
Register  
RXERR  
TXERR  
IDAR0-3  
IDMR0-3  
IDAR4-7  
IDMR4-7  
RXFG  
CAN_RXERR  
CAN_TXERR  
CAN_IDAR0-3  
CAN_IDMR0-3  
CAN_IDAR4-7  
CAN_IDMR4-7  
CAN_RXFG  
CAN_TXFG  
CANRXERR  
CANTXERR  
CANIDAR0-3  
CANIDMR0-3  
CANIDAR4-7  
CANIDMR4-7  
CANRXFG  
CANTXFG  
0XF80E  
Transmit Error  
Register  
0XF80F  
Identifier Acceptance  
0-3 Registers  
0xF810 0xF813  
0xF814 0xF817  
0xF818 0xF81B  
0xF81C 0xF81F  
0xF82F 0xF820  
0xF830 0xF83F  
Identifier Mask 0-3  
Registers  
Identifier Acceptance  
4-7 Register  
Identifier Mask 4-7  
Registers  
Foreground Receive  
FIFO Register  
Foreground Transmit  
FIFO Register  
TXFG  
Power Supervisor (PS) Module  
Control Register  
Status Register  
CTRL  
STAT  
LVICONTROL  
LVISTATUS  
PS_CTRL  
PS_STAT  
LVICONTROL  
LVISTATUS  
LVICTRL  
LVISR  
0xF140  
0xF141  
Queued Serial Communications Interface (QSCI) Module  
n= 0, 1  
Baud Rate Register  
Control 1 Register  
Control 2 Register  
Status Register  
RATE  
CTRL1  
CTRL2  
STAT  
QSCI_RATE  
QSCI_CTRL1  
QSCI_CTRL2  
QSCI_STAT  
QSCI_DATA  
QSCI_SCIBR  
QSCI_SCICR  
QSCI_SCICR2  
QSCI_SCISR  
QSCI_SCIDR  
0xF2n0  
0xF2n1  
0xF2n2  
0xF2n3  
0xF2n4  
Data Register  
DATA  
Queued Serial Peripheral Interface (QSPI) Module  
Status and Control  
Register  
SCTRL  
DSCTRL  
DRCV  
QSPI_SCTRL  
QSPI_SPSCR  
QSPI_SPDSR  
QSPI_SPDRR  
QSPI_SPDTR  
0xF2n0  
0xF2n1  
0xF2n2  
0xF2n3  
Data Size and Control  
Register  
QSPI_DSCTRL  
QSPI_DRCV  
QSPI_DXMIT  
Data Receive  
Register  
Data Transmit  
Register  
DXMIT  
56F8037/56F8027 Data Sheet, Rev. 8  
178  
FreescaleSemiconductor  
Electrical Design Considerations  
56F8037/56F8027 Data Sheet, Rev. 8  
Freescale Semiconductor  
179  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
RoHS-compliant and/or Pb-free versions of Freescale products have the  
functionality and electrical characteristics of their non-RoHS-compliant  
and/or non-Pb-free counterparts. For further information, see  
http://www.freescale.com or contact your Freescale sales representative.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,  
Inc. All other product or service names are the property of their respective owners.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc. 2008–2012. All rights reserved.  
MC56F8037  
Rev. 8  
04/2012  

相关型号:

935314082557

Microcontroller
NXP

935314087574

Microcontroller
NXP

935314156557

Multifunction Peripheral
NXP

935314173574

Microcontroller
NXP

935314192575

Analog Circuit
NXP

935314219557

Microcontroller
NXP

935314224557

Microcontroller
NXP

935314228518

Interface Circuit
NXP

935314228574

Interface Circuit
NXP

935314256518

Microprocessor Circuit
NXP

935314325518

Analog Circuit
NXP

935314325574

Analog Circuit
NXP