935351887557 [NXP]

Interface Circuit;
935351887557
型号: 935351887557
厂家: NXP    NXP
描述:

Interface Circuit

接口集成电路
文件: 总56页 (文件大小:1449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: CD1020  
Rev. 4, 7/2019  
NXP Semiconductors  
Technical Data  
22 channel multiple switch detection  
interface  
CD1020  
The CD1020 is a cost optimized switch detection interface device (MSDI)  
designed to detect the closing and opening of up to 22 switch contacts. The  
switch status, either open or closed, is transferred to the microprocessor unit  
(MCU) through a Serial Peripheral Interface (SPI). This SMARTMOS device also  
features a 22-to-1 analog multiplexer for reading the input channels as analog  
inputs. The analog selected input signal is buffered and provided on the AMUX  
output pin for the MCU to read.  
MULTIPLE SWITCH DETECTION INTERFACE  
The CD1020 device has two modes of operation, normal and low-power mode  
(LPM). Normal mode allows programming of the device and supplies switch  
contacts with pull-up or pull-down current as it monitors the change of state on  
the switches. The LPM provides low quiescent current, which makes the  
CD1020 ideal for automotive and industrial products requiring low sleep-state  
currents.  
ES SUFFIX (PB-FREE)  
98ASA00656D  
32-PIN QFN (WF-TYPE)  
Applications  
• Automotive  
The low cost MSDI is available in high power, space saving wettable flank  
5x5 mm QFN package.  
• Heating ventilation and air conditioning (HVAC)  
• Lighting  
• Central gateway/in-vehicle networking  
• Gasoline engine management  
Features  
• Fully functional operation 6.0 V ≤ VBATP ≤ 36 V  
• Full parametric operation 6.0 V ≤ VBATP ≤ 28 V  
• Operating switch input voltage range from –1.0 V to 36 V  
• Eight programmable inputs (switches to battery or ground)  
• 14 switch-to-ground inputs  
• Selectable wetting current (2, 8, 12, 16 mA)  
• Interfaces directly to an MCU using 3.3 V / 5.0 V SPI protocol  
• Selectable wake-up on change of state  
• Typical standby current IBATP = 30 μA and IDDQ = 10 μA  
• Active interrupt (INT_B) on change-of-switch state  
VDDQ  
Battery  
Power  
Supply  
CD1020  
SG1  
Battery  
VBATP  
SP0  
Power  
Supply  
WAKE_B  
MCU  
SP1  
SP7  
VDDQ  
INT_B  
CS_B  
INTB  
CSB  
MISO  
MISO  
MOSI  
SCLK  
MOSI  
SCLK  
SG0  
AN0  
AMUX  
SG12  
SG13  
EP  
GND  
Figure 1. CD1020 simplified application diagram  
© NXP B.V. 2019.  
Table of Contents  
1
2
3
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.1 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
4.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
4.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
4.4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
General IC functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.1 Battery voltage ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
6.2 Power sequencing conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Functional block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.1 State diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7.2 Low-power mode operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.3 Input functional block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
7.4 Oscillator and timer control functional block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
7.5 Temperature monitor and control functional block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.6 WAKE_B control functional block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.7 INT_B functional block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.8 AMUX functional block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7.9 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.10 SPI control register definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
8.1 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
8.2 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
8.3 Abnormal operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
9.1 Package mechanical dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
4
5
6
7
8
9
10 Reference section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
CD1020  
NXP Semiconductors  
2
1
Orderable parts  
This section describes the part numbers available to be purchased along with their differences.  
Table 1. Orderable part variations  
Temperature (T )  
Part number  
MC33CD1020AES  
Package  
Notes  
A
(1)  
–40 °C to 125 °C  
32-pin QFN (WF-type)  
Notes  
1.  
To order parts in tape and reel, add the R2 suffix to the part number.  
CD1020  
3
NXP Semiconductors  
2
Internal block diagram  
Inputs  
Internal 2.5 V  
VBATP  
SG0  
VBATP  
VBATP, VDDQ  
Internal 2.5 V/5.0 V  
Power On Reset  
Bandgap reference  
Sleep Power  
VBATP  
VDDQ  
Wetting (2.0 mA to 16 mA)  
Sustain (2.0 mA)  
Low Power Mode (1.0 mA)  
GND  
EP  
SG0  
Internal 2.5 V  
To SPI  
4.0 V  
reference  
SG1  
Oscillator  
and  
VBATP  
Clock control  
SG2  
SG5  
VBATP  
Internal 2.5 V  
Temperature  
Monitor and  
Control  
Wetting (2.0 mA to 16 mA)  
Sustain (2.0 mA)  
Low Power Mode (1.0 mA)  
VDDQ  
125 kΩ  
Internal 2.5 V  
SG5  
To SPI  
4.0 V  
reference  
WAKE_B  
INT_B  
WAKE_B control  
Internal 2.5 V  
VDDQ  
SGx  
125 kΩ  
VBATP  
Interrupt  
control  
Wetting (2.0 mA to 16 mA)  
Sustain (2.0 mA)  
Low Power Mode (1.0 mA)  
Internal 2.5 V  
SG13  
VDDQ  
To SPI  
4.0 V  
reference  
SPI Interface and  
Control  
125 kΩ  
CS_B  
SCLK  
MOSI  
MISO  
SP0-7  
VBATP  
VDDQ  
Mux control  
22  
Wetting (2.0 mA to 16 mA)  
Sustain (2.0 mA)  
VDDQ  
Low Power Mode (1.0 mA)  
+
-
AMUX  
SP0  
To SPI  
4.0 V  
SP1  
reference  
Wetting (2.0 mA to 16 mA)  
Sustain (2.0 mA)  
Low Power Mode (2.0 mA)  
SP7  
Figure 2. CD1020 internal block diagram  
CD1020  
NXP Semiconductors  
4
3
Pin connections  
3.1  
Pinout  
Transparent Top View  
32 31 30 29 28 27 26 25  
1
2
3
4
5
6
7
8
SP7  
SP0  
24  
23  
22  
21  
20  
19  
18  
17  
SP6  
SP1  
SP2  
SP3  
SG0  
SG1  
SG2  
SG3  
SP5  
SP4  
SG13  
SG12  
SG11  
SG10  
9
10 11 12 13 14 15 16  
Figure 3. QFN (WF-Type) pinouts  
3.2  
Pin definitions  
Table 2. CD1020 pin definitions  
Pin  
number Pin name Pin function  
QFN  
Formal name  
Definition  
29  
30  
31  
32  
GND  
MOSI  
SCLK  
CS_B  
Ground  
Input/SPI  
Input/SPI  
Input/SPI  
Ground  
Ground for logic, analog  
SPI Slave In  
Serial Clock  
Chip Select  
SPI control data input pin from the MCU  
SPI control clock input pin  
SPI control chip select input pin  
1 – 4  
21 – 24  
S P 0 – 3  
S P 4 – 7  
Input  
Programmable Switches 0–7 Switch to programmable input pins (SB or SG)  
Switch-to-Ground Inputs 0 –13 Switch-to-ground input pins  
5 – 11  
14 – 20  
SG0–6,  
SG7–13  
Input  
12  
13  
VBATP  
Power  
Battery Input  
Wake-up  
Battery supply input pin. Pin requires external reverse battery protection  
Open drain wake-up output. Designed to control a power supply enable pin.  
Input used to allow a wake-up from an external event.  
WAKE_B Input/Output  
Open-drain output to MCU. Used to indicate an input switch change of state.  
Used as an input to allow wake-up from LPM via an external INT_B falling  
event.  
25  
INT_B  
Input/Output  
Interrupt  
26  
27  
AMUX  
VDDQ  
Output  
Input  
Analog Multiplex Output  
Voltage Drain Supply  
Analog multiplex output  
3.3 V/5.0 V supply. Sets SPI communication level for the MISO driver and I/  
O level buffer  
CD1020  
5
NXP Semiconductors  
Table 2. CD1020 pin definitions (continued)  
Pin  
number Pin name Pin function  
QFN  
Formal name  
Definition  
28  
MISO  
EP  
Output/SPI  
Ground  
SPI Slave Out  
Exposed Pad  
Provides digital data from the CD1020 to the MCU  
It is recommended that the exposed pad is terminated to GND (pin 1) and  
system ground.  
CD1020  
NXP Semiconductors  
6
4
General product characteristics  
4.1  
Maximum ratings  
Table 3. Maximum ratings  
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Electrical ratings  
VBATP  
Description (rating)  
Min  
Max  
Unit  
Notes  
Battery voltage  
Supply voltage  
–0.3  
–0.3  
40  
V
V
VDDQ  
7.0  
CS_B, MOSI,  
MISO, SCLK  
SPI inputs/outputs  
–0.3  
7.0  
V
SGx, SPx  
AMUX  
Switch input range  
AMUX  
–14(2)  
–0.3  
–0.3  
–0.3  
38  
7.0  
7.0  
40  
V
V
V
V
INT_B  
INT_B  
WAKE_B  
WAKE_B  
ESD voltage  
V
• Human Body Model (HBM) (VBATP versus GND)  
CD1020  
• Human Body Model (HBM) (All other pins)  
• Machine Model (MM)  
• Charge Device Model (CDM) (Corners pins)  
• Charge Device Model (CDM) (All other pins)  
ESD1-2  
±2000  
±2000  
±200  
±750  
±500  
(3)  
V
V
V
V
V
V
ESD1-3  
ESD3-1  
ESD2-1  
ESD2-2  
Contact discharge  
• VBATP(5)  
V
V
V
±8000  
±8000  
±8000  
ESD5-3  
ESD5-4  
ESD6-2  
(4)  
• WAKE_B (series resistor 10 kΩ)  
• SGx and SPx pins with 100 nF capacitor (50 Ω series R)  
Notes  
2.  
Minimum value of –18 V is guaranteed by design for switch input voltage range (SGx, SPx).  
3.  
ESD testing is performed in accordance AEC Q100, with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), the Machine Model  
(MM) (CZAP = 200 pF, RZAP = 0 Ω), and the Charge Device Model (CDM).  
4.  
5.  
CZAP = 330 pF, RZAP = 2.0 kΩ (powered and unpowered) / CZAP = 150 pF, RZAP = 330 Ω (unpowered)  
External component requirements at system level:  
Cbulk = 100 μF aluminum electrolytic capacitor  
Cbypass= 100 nF ±37 % ceramic capacitor  
Reverse blocking diode from Battery to VBATP (0.6 V < VF < 1 V). See Figure 22, Typical application diagram.  
CD1020  
7
NXP Semiconductors  
4.2  
Thermal characteristics  
Table 4. Thermal ratings  
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
Description (rating)  
Min  
Max  
Unit  
Notes  
Thermal ratings  
Operating Temperature  
• Ambient  
TA  
TJ  
–40  
–40  
125  
150  
°C  
• Junction  
TSTG  
TPPRT  
Storage Temperature  
–65  
150  
°C  
°C  
Peak Package Reflow Temperature During Reflow  
Thermal resistance  
Junction-to-Ambient, Natural Convection, Single-Layer Board  
• 32 QFN  
(6) (7)  
RΘJA  
RΘJB  
RΘJC  
94  
12  
°C/W  
°C/W  
°C/W  
°C/W  
,
Junction-to-Board  
• 32 QFN  
(8)  
(9)  
Junction-to-Case (Bottom)  
• 32 QFN  
2.0  
2.0  
Junction-to-Package (Top), Natural convection  
• 32 QFN  
(10)  
Ψ
JT  
Package dissipation ratings  
Thermal shutdown  
TSD  
155  
3.0  
185  
15  
°C  
°C  
• 32 QFN  
Thermal shutdown hysteresis  
• 32 QFN  
TSDH  
Notes  
6.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board,  
respectively.  
7.  
8.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the  
board near the package.  
9.  
Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any interface resistance.  
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC  
JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
10.  
CD1020  
NXP Semiconductors  
8
4.3  
Operating conditions  
This section describes the operating conditions of the device. Conditions apply to the following data, unless otherwise noted.  
Table 5. Operating conditions  
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause a malfunction or permanent damage  
to the device.  
Symbol  
VBATP  
VDDQ  
Ratings  
Min  
6.0  
3.0  
Max  
36  
Unit  
V
Notes  
Battery voltage  
Supply voltage  
5.25  
V
CS_B, MOSI,  
MISO, SCLK  
SPI inputs / outputs  
3.0  
5.25  
V
SGx, SPx  
AMUX, INT_B  
WAKE_B  
Switch input range  
AMUX, INT_B  
WAKE_B  
–1.0  
0.0  
36  
5.25  
36  
V
V
V
0.0  
4.4  
Electrical characteristics  
4.4.1  
Static electrical characteristics  
Table 6. Static electrical characteristics  
TA = –40 °C to +125 °C, VDDQ = 3.1 V to 5.25 V, VBATP = 6.0 V to 28.0 V, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Notes  
Power input  
VBATP supply voltage POR  
VBATP(POR)  
2.7  
3.3  
3.8  
V
• VBATP supply Power-On-Reset voltage.  
VBATP undervoltage rising threshold  
VBATP undervoltage hysteresis  
VBATPUV  
VBATPUVHYS  
VBATPOV  
250  
32  
4.3  
4.5  
500  
37  
V
mV  
V
VBATP overvoltage rising threshold  
VBATP overvoltage hysteresis  
VBATPOVHYS  
1.5  
3.0  
V
VBATP supply current  
IBAT(ON)  
7.0  
12  
mA  
µA  
µA  
• All switches open, normal mode, tri-state disabled (all channels)  
VBATP low-power mode supply current (polling disabled)  
• Parametric VBATP, 6.0 V < VBATP < 28 V  
IBATP,IQ,LPM,P  
IPOLLING,IQ  
40  
20  
VBATP polling current  
(11)  
• Polling 64 ms, 11 inputs of wake enabled  
Normal mode (IVDDQ  
)
IVDDQ,NORMAL  
• SCLK, MOSI, WakeB = 0 V, CS_B, INT_B =VDDQ, no SPI  
communication, AMUX selected no input  
500  
µA  
Logic low-power mode supply current  
• SCLK, MOSI = 0 V, CS_B, INT_B, WAKE_B = VDDQ, no SPI  
communication  
IVDDQ,LPM  
10  
µA  
V
Ground Offset  
(20)  
VGNDOFFSET  
–1.0  
1.0  
• Ground offset of Global pins to IC ground  
VDDQUV  
VDDQ undervoltage falling threshold  
VDDQ undervoltage hysteresis  
2.2  
2.8  
V
VDDQUVHYS  
150  
350  
mV  
CD1020  
9
NXP Semiconductors  
Table 6. Static electrical characteristics (continued)  
TA = –40 °C to +125 °C, VDDQ = 3.1 V to 5.25 V, VBATP = 6.0 V to 28.0 V, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
Units  
Notes  
Switch input  
Leakage (SGx/SPx pins) to GND  
ILEAKSG_GND  
2.0  
2.0  
μA  
μA  
• Inputs tri-stated, analog mux selected for each input, voltage at  
SGx = VBATP  
Leakage (SGx/SPx pins) to battery  
ILEAKSG_BAT  
• Inputs tri-stated, analog mux selected for each input, voltage at  
SGx = GND  
SG sustain current / mode 0 wetting current  
• VBATP 6.0 to 28 V  
ISUSSG  
ISUSSB  
mA  
mA  
1.6  
2.0  
2.2  
2.4  
SB sustain current / mode 0 wetting current  
1.75  
2.85  
Wetting current level (SG and SB)  
• Mode 1 = 8 mA  
8
12  
16  
IWET  
mA  
• Mode 2 = 12 mA  
• Mode 3 = 16 mA  
SG wetting current tolerance  
• Mode 1 to 3  
IWETSG  
20  
20  
%
%
SB wetting current tolerance  
• Mode 1 to 3  
IWETSB  
(17)  
(18)  
VICTHR  
VICTHRLPM  
VICTHRH  
Switch detection threshold  
3.7  
100  
80  
4.0  
4.3  
300  
300  
V
Switch detection threshold low-power mode (SG only)  
Switch detection threshold hysteresis (4.0 V threshold)  
mV  
mV  
Input threshold 2.5 V,  
• Used for Comp Only  
VICTH2P5  
2.0  
2.5  
3.0  
V
Low-power mode polling current SG  
• VBATP 6.0 V to 28 V  
IACTIVEPOLLSG  
0.7  
1.0  
2.2  
1.44  
2.85  
mA  
mA  
IACTIVEPOLLSB  
Low-power mode polling current SB  
1.75  
Digital interface  
Tri-state leakage current (MISO)  
• VDDQ = 0.0 to VDDQ  
IHZ  
–2.0  
VDDQ * 0.25  
300  
2.0  
VDDQ * 0.7  
μA  
V
Input logic voltage thresholds  
• SI, SCLK, CS_B, INT_B  
VINLOGIC  
Input logic hysteresis  
VINLOGICHYS  
mV  
• SI, SCLK, CS_B, INT_B  
VINLOGICWAKE  
VINWAKEBHYS  
Input logic voltage threshold WAKE_B  
Input logic voltage hysteresis WAKE_B  
0.8  
1.25  
1.7  
V
200  
800  
mV  
SCLK / MOSI input current  
• SCLK / MOSI = 0 V  
ISCLK, IMOSI  
–3.0  
30  
3.0  
100  
10  
µA  
µA  
µA  
kΩ  
V
SCLK / MOSI pulldown current  
• SCLK / MOSI = VDDQ  
I
SCLK, IMOSI  
CS_B input current  
• CS_B = VDDQ  
ICS_BH  
–10  
CS_B pull-up resistor to VDDQ  
• CS_B = 0.0 V  
RCS_BL  
40  
125  
270  
VDDQ  
MISO high-side output voltage  
• IOHMISO = –1.0 mA  
VOHMISO  
VDDQ – 0.8  
CD1020  
NXP Semiconductors  
10  
Table 6. Static electrical characteristics (continued)  
TA = –40 °C to +125 °C, VDDQ = 3.1 V to 5.25 V, VBATP = 6.0 V to 28.0 V, unless otherwise noted.  
Symbol  
Characteristic  
Min  
Typ  
Max  
0.4  
20  
Units  
V
Notes  
MISO low-side output voltage  
VOLMISO  
• IOLMISO = 1.0 mA  
CIN  
Input Capacitance on SCLK, MOSI, Tri-state MISO (GBD)  
pF  
Analog MUX output  
Input offset voltage when selected as analog  
• ES suffix (QFN at TA = –40 °C to 25 °C)  
(19) (20)  
VOFFSET  
mV  
mV  
V
,
–15  
15  
50  
Analog operational amplifier output voltage  
• Sink 1.0 mA  
VOLAMUX  
Analog operational amplifier output voltage  
• Source 1.0 mA  
VOHAMUX  
INT_B  
VDDQ – 0.1  
INT_B output low voltage  
• IOUT = 1.0 mA  
VOLINT  
0.2  
0.5  
V
INT_B output high voltage  
• INT_B = Open-circuit  
VOHINT  
RPU  
VDDQ – 0.5  
125  
VDDQ  
270  
V
Pull-up resistor to VDDQ  
40  
kΩ  
µA  
Leakage current INT_B  
ILEAKINT_B  
Temperature limit  
tFLAG  
1.0  
• INT_B pulled up to VDDQ  
Temperature warning  
• First flag to trip  
105  
120  
135  
°C  
(19)  
(19)  
tLIM  
tLIM(HYS)  
Temperature monitor  
155  
5.0  
185  
15  
°C  
°C  
Temperature monitor hysteresis  
WAKE_B  
RWAKE_B(RPU)  
WAKE_B internal pull-up resistor to VDDQ  
40  
125  
270  
kΩ  
WAKE_B voltage high  
VWAKE_B(VOH)  
VDDQ – 1.0  
VDDQ  
V
• WAKE_B = Open-circuit  
WAKE_B voltage low  
VWAKE_B(VOL)  
0.4  
1.0  
V
• WAKE_B = 1.0 mA (RPU to VBATP = 16 V)  
WAKE_B leakage  
IWAKE_BLEAK  
Notes  
µA  
• WAKE_B pulled up to VBATP = 16 V through 10 kΩ  
11.  
12.  
13.  
Guaranteed by design  
During low voltage range operation SG wetting current may be limited when there is not enough headroom between VBATP and SG pin voltage.  
(ISUS(MAX)– ISUS(MIN)) X 100/ISUS(MIN)  
14.  
15.  
Sustain current source (SGs only)  
(IWET(MAX) – IWET(MIN)) X 100/IWET(MIN)  
16.  
17.  
Wetting current source (SGs only)  
The input comparator threshold decreases when VBATP ≤ 6.0 V.  
18.  
SP (as SB) only use the 4.0 V VICTHR for LPM wake-up detection.  
19.  
20.  
Guaranteed by characterization in the Development Phase, parameter not tested.  
AMUX output voltage deviates when there are negative inputs on other SGx/SPx pins.  
CD1020  
11  
NXP Semiconductors  
4.4.2  
Dynamic electrical characteristics  
Table 7. Dynamic electrical characteristics  
TA = –40 °C to +125 °C, VDDQ = 3.1 V to 5.25 V, VBATP = 6.0 V to 28 V, unless otherwise specified. All SPI timing is performed with a  
100 pF load on MISO, unless otherwise noted.  
Symbol  
General  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
POR to active time  
tACTIVE  
Switch input  
tPULSE(ON)  
250  
340  
450  
µs  
• Undervoltage to normal mode  
Pulse wetting current timer  
• Normal mode  
17  
20  
23  
ms  
µs  
Interrupt delay time  
• Normal mode  
tINT-DLY  
18.5  
Polling timer accuracy  
• Low-power mode  
tPOLLING_TIMER  
15  
%
tACTIVEPOLLSGTIME Tactivepoll timer SG  
Tactivepoll timer SB  
49.5  
58  
66.5  
µs  
tACTIVEPOLLSBTIME  
• SBPOLLTIME = 0  
• SBPOLLTIME = 1  
1.0  
49.5  
1.2  
58  
1.4  
66.5  
ms  
µs  
Input glitch filter timer  
• Normal mode  
tGLITCHTIMER  
AMUX output  
AMUXVALID  
5.0  
18  
µs  
AMUX access time (selected output to selected output)  
• CMUX = 1.0 nF, Rising edge of CS_B to selected  
(22)  
μs  
μs  
AMUX access time (tri-state to ON)  
AMUXVALIDTS  
20  
• CMUX = 1.0 nF, rising edge of CS_B to selected  
Oscillator  
OSCTOLLPM  
OSCTOLNOR  
Interrupt  
Oscillator tolerance at 192 kHz in low-power mode  
Oscillator tolerance normal mode at 4.0 MHz  
–15  
–15  
15  
15  
%
%
INT pulse duration  
INTPULSE  
90  
100  
110  
µs  
• Interrupt occurs or INT_B request  
SPI interface  
fOP  
Transfer frequency  
8.0  
MHz  
ns  
SCLK period  
Figure 6 - 1  
tSCK  
tLEAD  
tLAG  
160  
Enable lead time  
Figure 6 - 2  
140  
50  
ns  
ns  
ns  
Enable lag time  
Figure 6 - 3  
SCLK high time  
Figure 6 - 4  
tSCKHS  
56  
CD1020  
NXP Semiconductors  
12  
Table 7. Dynamic electrical characteristics (continued)  
TA = –40 °C to +125 °C, VDDQ = 3.1 V to 5.25 V, VBATP = 6.0 V to 28 V, unless otherwise specified. All SPI timing is performed with a  
100 pF load on MISO, unless otherwise noted.  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Notes  
SPI interface (continued)  
SCLK low time  
tSCKLS  
tSUS  
tHS  
56  
16  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 6 - 5  
MOSI input setup time  
Figure 6 - 6  
MOSI input hold time  
Figure 6 - 7  
MISO access time  
Figure 6 - 8  
tA  
116  
100  
116  
MISO disable time (21)  
Figure 6 - 9  
tDIS  
MISO output valid time  
Figure 6 - 10  
tVS  
MISO output hold time (no cap on MISO)  
Figure 6 - 11  
tHO  
20  
Rise time  
(21)  
(21)  
tRO  
30  
Figure 6 - 12  
Fall time  
tFO  
30  
Figure 6 - 13  
CS_B negated time  
Figure 6 - 14  
tCSN  
500  
WAKE-UP  
tCSB_WAKEUP  
Notes  
(23)  
LPM mode wake-up time triggered by edge of CS_B  
755  
1000  
µs  
21.  
22.  
Guaranteed by characterization.  
AMUX settling time to be within the 10 mV offset specification. AMUXVALID is dependent on the voltage step applied on the input SGx/SPx pin or  
the difference between the first and second channel selected as the multiplexed analog output. See Figure 8 for a typical AMUX access time VS  
voltage step waveform.  
23.  
The parameter is guaranteed at VBATP = 6.0 V to 28 V.  
LPM CLK  
SG_Pin  
tglitchTIMER  
Input Glitch  
filter timer  
500ns  
tINT-DLY  
INT_B  
Figure 4. Glitch filter and interrupt delay timers  
CD1020  
13  
NXP Semiconductors  
LPM CLK  
SG_Pin  
tINT-DLY  
INTPulse  
INT_B  
Figure 5. Interrupt pulse timer  
3
14  
CSb  
1
4
2
8
SCLK  
5
10  
9
11  
DON'T  
CARE  
MISO  
MOSI  
DATA  
MSB OUT  
LSB OUT  
12 13  
7
6
MSB IN  
DATA  
LSB IN  
Figure 6. SPI timing diagram  
+5.0 V  
4.0 V  
VDDQ  
MISO  
1kohm  
1.0 V  
MISO  
0 V  
1kohm  
9
CS_B  
Figure 7. MISO loading for disable time measurement  
CD1020  
NXP Semiconductors  
14  
AMUX settling time vs voltage step  
Figure 8. AMUX access time waveform  
5
General description  
The CD1020 is designed to detect the closing and opening of up to 22 switch contacts. The switch status, either open or closed, is  
transferred to the microprocessor unit (MCU) through a serial peripheral interface (SPI). Individually selectable input currents are available  
in normal and low-power (LPM) modes, as needed for the application.  
The CD1020 also features a 22-to-1 analog multiplexer for reading inputs as analog. The analog input signal is buffered and provided on  
the AMUX output pin for the MCU to read.  
The CD1020 has two modes of operation, normal and Low-Power Mode (LPM). Normal mode allows programming of the device and  
supplies switch contacts with pull-up or pull-down current as it monitors the change of state of switches. The LPM provides low quiescent  
current, which makes the CD1020 ideal for products requiring low sleep-state currents.  
5.1  
Features  
Fully functional operation from 6.0 V to 36 V  
Full parametric operation from 6.0 V to 28 V  
Low-power mode current IBATP = 30 μA and IDDQ = 10 μA  
22 Switch detection channels  
14 Switch-to-Ground (SG) inputs  
Eight Programmable switch (SP) inputs  
Switch-to-Ground (SG) or Switch-to-Battery (SB)  
Operating switch input voltage range from –1.0 V to 36 V  
Selectable wetting current (2, 8, 12, 16 mA)  
Programmable wetting operation (pulse or continuous)  
Selectable wake-up on change of state  
22-to-1 Analog Multiplexer  
Buffered AMUX output from SG/SP channels  
Active interrupt (INT_B) on change-of-switch state  
Direct MCU Interface through 3.3 V / 5.0 V SPI protocol  
CD1020  
15  
NXP Semiconductors  
5.2  
Functional block diagram  
CD1020 Functional Internal Block Diagram  
Switch Status Detection  
Input Power  
VBATP  
Battery Supply  
VDDQ  
Logic Supply  
8 x Programmable Switch  
14 x Switch to Ground  
SG0 – SG13  
SP0 – SP7  
Bias & References  
Switch to Ground (SG)  
Only  
Switch to Ground (SG)  
Switch to Battery (SB)  
1.25 V internal Bandgap  
4.0 V SW detection reference.  
Selectable Wetting Current Level  
192 kHz  
LPM Oscillator  
4.0 MHz  
Oscillator  
Pulse/Continuous Wetting Current  
Analog Multiplexer (AMUX)  
22 to 1 SPI AMUX select  
Logic and Control  
WAKE_B I/O  
INT_B I/O  
SPI Serial Communication & Registers  
SPx/SGx Inputs to AMUX  
Fault Detection and Protection  
Over Temperature  
OV Detection  
Protection  
Modes of Operation  
Normal Mode  
Low Power Mode  
VBATP UV detect  
SPI Error detect  
SPI communication/  
Switch status read  
Programmable Polling/  
Interrupt Time  
HASH error detect  
Figure 9. Functional block diagram  
CD1020  
NXP Semiconductors  
16  
6
General IC functional description  
The CD1020 device interacts with many connections outside the module and near the end user. The IC detects changes in switch state  
and reports the information to the MCU via the SPI protocol. The input pins generally connect to switches located outside the module and  
in proximity to battery in car harnesses. Consequently, the IC must have some external protection including an ESD capacitor and series  
resistors, to ensure the energy from the various pulses are limited at the IC.  
The IC requires a blocking diode be used on the VBATP pin to protect from a reverse battery condition. The inputs are capable of surviving  
reverse battery without a blocking diode, due to an internal blocking diode from the input to the power supply (VBATP). This arrangement  
ensures that there is no backfeeding of voltage/current into the IC, when the voltage on the input is higher than the VBATP pin.  
6.1  
Battery voltage ranges  
The CD1020 device operates from 6.0 V ≤ VBATP ≤ 36 V and is capable to withstand up to 40 V. Voltages in excess of 40 V must be  
clamped externally in order to protect the IC from destruction. The VBATP pin must be isolated from the main battery node by a diode.  
6.1.1  
Load dump (overvoltage)  
During load dump, the CD1020 operates properly up to the VBATP overvoltage. Voltages greater than load dump (~32 V) cause the current  
sources to be limited to ~2.0 mA, but the register values are maintained. Upon leaving this overvoltage condition, the original setup is  
returned and normal operation begins again.  
6.1.2  
Jump start (double battery)  
During a jump start (double battery) condition, the device functions normally and meets all the specified parametric values. No internal  
faults are set and no abnormal operation noted as a result of operating in this range.  
6.1.3  
Normal battery range  
The normal voltage range is fully functional with all parametrics in the given specification.  
6.1.4  
Undervoltage  
In the undervoltage range, the SPI can work normally, but the device functions are not guaranteed.  
6.1.5  
Undervoltage lockout  
During undervoltage lockout, the MISO output is tri-stated to avoid any data from being transmitted from the CD1020. Any CS_B pulses  
are ignored in this voltage range. If the battery enters this range at any point (even during a SPI word), the CD1020 ignores the word and  
enters lockout mode. A SPI bit register is available to notify the MCU that the CD1020 has seen an undervoltage lockout condition once  
the battery is high enough to leave this range.  
6.1.6  
Power-On-Reset (POR) activated  
The Power-On-Reset is activated when the VBATP is within the 2.7 V to 3.8 V range. During the POR all SPI registers are reset to default  
values and SPI operation is disabled. The CD1020 is initialized after the POR is de-asserted. A SPI bit in the device configuration register  
is used to note a POR occurrence and all SPI registers are reset to the default values.  
6.1.7  
No operation  
The device does not function and no switch detection is possible.  
CD1020  
17  
NXP Semiconductors  
VBATP  
(IC Level)  
Battery Voltage  
(System Level)  
41 V  
Over Voltage  
37 V  
40 V  
Overvoltage  
Functional  
36 V  
28 V  
Load Dump  
29 V  
Normal Mode  
Full Parametrics  
Normal  
Battery  
6.0 V  
4.5 V  
7.0 V  
Low Battery  
5.5 V  
Undervoltage  
Undervoltage lockout  
POR  
5.3 V  
3.7 V  
4.3 V  
2.7 V  
Reset  
No Operation  
0 V  
0 V  
Figure 10. Battery voltage range  
6.2  
Power sequencing conditions  
The chip uses two supplies as inputs into the device for various usage. The pins are VBATP and VDDQ. The VBATP pin is the power  
supply for the chip where the internal supplies are generated and power supply for the SG circuits. The VDDQ pin is used for the I/O buffer  
supply to talk to the MCU or other logic level devices, as well as AMUX. The INT_B pin is held low upon POR until the IC is ready to  
operate and communicate. Power can be applied in various ways to the CD1020. The following sections describe the possible states.  
6.2.1  
VBATP before VDDQ  
The normal condition for operation is the application of VBATP and then VDDQ. The chip begins to operate logically in the default state but  
without the ability to drive logic pins. When the VDDQ supply is available, the chip is able to communicate correctly. The IC maintains its  
logical state (register settings) with functional behavior consistent with logical state. No SPI communications can occur.  
6.2.2  
VDDQ before VBATP  
The VDDQ supply in some cases may be available before the VBATP supply is ready. In this scenario, there is no back feeding current into  
the VDDQ pin that could potentially turn on the device into an unknown state. VDDQ is isolated from VBATP circuits and the device is off  
until VBATP is applied; when VBATP is available the device powers up the internal rails and logic within tACTIVE time. Communication is  
undefined until the tACTIVE time and becomes available after this time frame.  
6.2.3  
VBATP okay, VDDQ lost  
After power up, it is possible that the VDDQ may turn off or be lost. In this case, the chip remains in the current state but is not able to  
communicate. After the VDDQ pin is available again, the chip is ready to communicate.  
6.2.4  
VDDQ okay, VBATP lost  
After power up, the VBATP supply could be lost. The operation is consistent as when VDDQ is available before VBATP  
.
CD1020  
NXP Semiconductors  
18  
7
Functional block description  
7.1  
State diagram  
IC OFF  
VBATP applied  
RESET  
SPI RESET  
command  
VBAT too low:  
POR  
VBAT applied >  
por  
VBATP > UV  
threshold  
UV  
OV / OT  
Iwet-> Isus  
VBATP > OV  
or OT  
Wait 50 μs  
Read fuses  
VBATP  
UV  
<
Not VBATP > OV  
or OT  
Run  
Normal Mode  
Detect change in switch  
status (opn/close)  
Wake  
Event  
SPI CMD  
Polling time expires  
Low Power  
Mode  
Polling  
Polling timer initiates  
Figure 11. CD1020 state diagram  
7.1.1  
State machine  
After power up, the IC enters into the device state machine, as illustrated in Figure 11. The voltage on VBATP begins to power the internal  
oscillators and regulator supplies. The POR is based on the internal 2.5 V digital core rail. When the internal logic regulator reaches  
approximately 1.8 V (typically 3.3 V on the VBATP node), the IC enters into the UV range. Below the POR threshold, the IC is in RESET  
mode where no activity occurs.  
CD1020  
19  
NXP Semiconductors  
7.1.2  
UV: undervoltage lockout  
After the POR circuit has reset the logic, the IC is in undervoltage. In this state, the IC remembers all register conditions, but is in a lockout  
mode, where no SPI communication is allowed. The AMUX is inactive and the current sources are off. The user does not receive a valid  
response from the MISO, as it is disabled in this state. The chip oscillators (4.0 MHz for most normal mode activities, 192 kHz for LPM,  
and limited normal mode functions) are turned on in the UV state. The chip moves to the Read fuses state when the VBATP voltage rises  
above the UV threshold (~4.3 V rising). The internal fuses read in approximately 50 μs and the chip enters the normal mode.  
7.1.3  
Normal mode  
In normal mode, the chip operates as selected in the available registers. Any command may be loaded in normal mode, although not all  
(low-power mode) registers are used in the normal mode. All the LPM registers must be programmed in Normal mode as the SPI is not  
active in LPM. The normal mode of the chip is used to:  
Operate the AMUX  
Communicate via the SPI  
Interrupt the IC, wetting and sustain currents, and the thresholds available to use  
The WAKE_B pin is asserted (low) in normal mode and can be used to enable a power supply (ENABLE_B). Various fault detections are  
available in this mode including overvoltage, overtemperature, thermal warning, SPI errors, and Hash faults.  
7.1.4  
Low-power mode  
When the user needs to lower the IC current consumption, a low-power mode is used. The only method to enter LPM is through a SPI  
word. After the chip is in low-power mode, the majority of circuitry is turned off including most power rails, the 4.0 MHz oscillator, and all  
the fault detection circuits. This mode is the lowest current consumption mode on the chip. If a fault occurs while the chip is in this mode,  
the chip does not see or register the fault (does not report via the SPI when awakened). Some items may wake the IC in this mode,  
including the interrupt timer, falling edge of INT_B, CS_B, or WAKE_B (configurable), or a comparator-only mode switch detection.  
7.1.5  
Polling mode  
The CD1020 uses a polling mode that periodically (selectable in LPM config register) interrogates the input pins to determine in what state  
the pins are, and decides if there was a change of state from when the chip was in normal mode. There are various configurations for this  
mode, which allow the user greater flexibility in operation. This mode uses the current sources to pull up (SG) or pull down (SB) to  
determine if a switch is open or closed. More information is available in section 7.2, “Low-power mode operation".  
In the case of a low VBATP, the polling pauses and waits until the VBATP rises out of UV or a POR occurs. The pause of the polling ensures  
all of the internal rails, currents, and thresholds are up at the required levels to accurately detect open or closed switches. The chip does  
not wake-up in this condition and simply waits for the VBATP voltage to rise or cause a POR.  
After the polling ends, the chip either returns to the low-power mode, or enters normal mode when a wake event is detected. Other events  
may wake the chip as well, such as the falling edge of CS_B, INT_B, or WAKE_B (configurable). A comparator only mode switch detection  
is always on in LPM or Polling mode, therefore, a change of state for those inputs would effectively wake the IC in Polling mode as well.  
If the Wake-up enable bits are disabled on all channels (SG and SP), the device will not wake up with a change of state on any of the  
input pins. In this case, the device will disable the polling timer to allow the lowest current consumption during low-power mode.  
7.2  
Low-power mode operation  
Low-power mode (LPM) is used to reduce system quiescent currents. LPM may be entered only by sending the Enter Low-power mode  
command. All register settings programmed in normal mode are maintained while in LPM.  
The CD1020 exits LPM and enter normal mode when any of the following events occur:  
• Input switch change of state (when enabled)  
• Falling edge of WAKE_B (as set by the device configuration register)  
• Falling edge of INT_B (with VDDQ = 5.0 V)  
• Falling edge of CS_B (with VDDQ = 5.0 V)  
• Power-On-Reset (POR)  
The VDDQ supply may be removed from the device during LPM, however removing VDDQ from the device disables a wake-up from falling  
edge of INT_B and CS_B. The IC checks the status of VDDQ after a falling edge of WAKE_B (as selected in the device configuration  
CD1020  
NXP Semiconductors  
20  
register), INT_B and CS_B. The IC returns to LPM and does not report a Wake event, if VDDQ is low. If the VDDQ is high, the IC wakes up  
and reports the Wake event. In cases where CS_B is used to wake the device, the first MISO data message is not valid.  
The LPM command contains setting of the polling timer, as shown in Table 23. The polling timer is used periodically to poll the inputs  
during low-power mode to check for change of states. The tACTIVEPOLL time is the length of time the part is active during the polling timer  
to check for change of state. The low-power mode voltage threshold allows the user to determine the noise immunity versus lower current  
levels that polling allows. Figure 13 shows the polling operation.  
When an input is determined to meet the condition Open (when entering LPM), yet while Open (on polling event) the chip does not  
continue the polling event for that input(s) to lower current in the chip (Figure 12 shows SG, SB is logically the same).  
Compare voltage to initial  
(Delta > 0.25 or > 4.0v)  
End Polling (current off if  
no change detected)  
LPM Voltage threshold  
(~0.25v)  
Voltage on SG pin  
55µs  
Polling timer  
(64ms def)  
Figure 12. Low-power mode polling check  
Go To LPM  
CS_B  
64ms (config)  
Normal  
Normal  
Mode  
LPM  
Polling Time  
Polling startup  
Tactive time  
20us  
78us  
58us  
330uA  
IC Current  
20uA  
0uA  
X * 1mA SG  
(2mA SB)  
Load  
Current  
Figure 13. Low-power mode typical timing  
CD1020  
21  
NXP Semiconductors  
VBATP  
VDDQ  
Wake up from Interrupt  
Timer expire  
WAKE_B  
INT_B  
CS_B  
SGn  
Wake up from  
Closed Switch  
Power – up  
Normal Mode  
Tri-state  
Command  
Sleep  
Command  
Normal  
Mode  
Sleep  
Command  
Normal  
Mode  
Sleep  
Command  
Sleep Mode  
Sleep Mode  
Figure 14. Low-power mode to normal mode operation  
7.3  
Input functional block  
The SGx pins are switch-to-ground inputs only (pull-up current sources).  
The SPx pins are configurable as either switch-to-ground or switch-to-battery (pull-up and pull-down current sources).  
The input is compared with a 4.0 V (input comparator threshold configurable) reference. Voltages greater than the input comparator  
threshold value are considered open for SG pins and closed for SB configuration.  
Voltages less than the input comparator threshold value are considered closed for SG pins and open for the SB configurations.  
Programming features are defined in the SPI control register definition section of this data sheet.  
The input comparator has hysteresis with the thresholds based on the closing of the switch (falling on SG, rising on SB).  
The user must take care to keep power conditions within acceptable limits (package is capable of 2.0 W). Using many of the inputs with  
continuous wetting current levels causes overheating of the IC and may cause an overtemperature (OT) event to occur.  
CD1020  
NXP Semiconductors  
22  
VBATP  
Pre-reg = ~8v  
8, 12, 16  
mA  
2.0  
mA  
1.0mA  
(LPM)  
To AMUX  
To SPI  
4.0 V ref comparator  
Or  
250mV Delta V  
Or  
2.5v Comparator only  
Figure 15. SG block diagram  
CD1020  
23  
NXP Semiconductors  
Figure 16. SP block diagram  
7.4  
Oscillator and timer control functional block  
Two oscillators are generated in this block. A 4.0 MHz clock is used in normal mode only, as well as a low-power mode 192 kHz clock,  
which is on all the time. All timers are generated from these oscillators. The oscillator accuracy is 15 % for both, the 4.0 MHz clock and  
the 192 kHz clock. No calibration is needed and the accuracy is over voltage and temperature.  
CD1020  
NXP Semiconductors  
24  
7.5  
Temperature monitor and control functional block  
The device has multiple thermal limit (tLIM) cells to detect thermal excursions in excess of 155 °C. The tLIM cells from various locations on  
the IC are logically ORed together and communicated to the MCU as one tLIM fault. When the tLIM value is seen, the wetting current is  
lowered to 2.0 mA until the temperature has decreased beyond the tLIM(HYS) value (the sustain current remains on or as selected). A  
hysteresis value of 15 °C exists to keep the device from cycling.  
A thermal flag also exists to alert the system to increasing temperatures more than approximately 120 °C.  
7.6  
WAKE_B control functional block  
The WAKE_B pin can operate as an open-drain output or a wake-up input. In the normal mode, the WAKE_B pin is LOW. In the low-  
power mode, the WAKE_B pin is pulled HIGH. The WAKE_B pin has an internal pull-up to VDDQ supply with an internal series diode to  
allow an external pull-up to VBATP if required.  
As an input, in low-power mode with the WAKE_B pin pulled HIGH, when commanded LOW by MCU, the falling edge of WAKE_B places  
the CD1020 in normal mode. In low-power mode if VDDQ goes low, the WAKE_B pin can still wake the device based on the status of the  
WAKE_B bit in the device configuration register, this allows the user to pull the WAKE_B pin up to VBATP such that it can be used in  
VDDQ off setup.  
As an output, WAKE_B pin can drive either an MCU input or the EnableB of a regulator (possibly for VDDQ). WAKE_B is driven low during  
normal mode regardless of the state of VDDQ. When the CD1020 is in LPM, the WAKE_B pin is released and is expected to be pulled up  
internally to VDDQ or externally to VBATP. When a valid wake-up event is detected, the CD1020 wakes up from LPM and the WAKE_B is  
driven Low (regardless of the state of VDDQ).  
7.7  
INT_B functional block  
INT_B is an input/output pin in the CD1020 device to indicate an interrupt event has occurred, as well as receiving interrupts from other  
devices when the INT_B pins are wired ORed. The INT_B pin is an open-drain output with an internal pull-up to VDDQ. In normal mode,  
a switch state change triggers the INT_B pin (when enabled). The INT_B pin and INT_B bit in the SPI register are latched on the falling  
edge of CS_B. This permits the MCU to determine the origin of the interrupt. When two CD1020 devices are used, only the device initiating  
the interrupt has the INT_B bit set. The INT_B pin and INTflg bit are cleared 1.0 μs after the falling edge of CS B. The INT_B pin does not  
clear with the rising edge of CS_B if a switch contact change has occurred while CS_B was Low.  
In a multiple CD1020 device system with WAKE_B High and VDDQ on (low-power mode), the falling edge of INT_B places the device in  
normal mode. The INT_B has the option of a pulsed output (pulsed low for INTpulse duration) or a latched low output. The default case is  
the latched low operation; the pulsed option is selectable via the SPI.  
An INT_B request by the MCU can be done by a SPI word and results in an INTPULSE of 100 μs duration on the INT_B pin.  
The chip causes an INT_B assertion for the following cases:  
A change of state is detected  
Any Wake-up event  
Any faults detected  
After a POR, the INT_B pin states asserted during startup until the chip is ready to communicate  
7.8  
AMUX functional block  
The analog voltage-on-switch inputs may be read by the MCU using the analog command. See Table 36. Internal to the IC is a 22-to-1  
analog multiplexer. The voltage present on the selected input pin is buffered and made available on the AMUX output pin. The output pin  
is clamped to a maximum of VDDQ, regardless of the higher voltages present on the input pin. After an input has been selected as the  
analog, the corresponding bit in the next MISO data stream is logic [0]. When selecting a channel to be read as analog input, the user can  
also set the current level allowed in the AMUX output. Current level can be set to the programmed wetting current for the selected channel  
or set to high impedance as defined in Table 35.  
When selecting an input to be sent to the AMUX output, that input is not polled or a wake-up enabled input from low-power mode. The  
user should set the AMUX to ‘No input selected’ before entering low-power mode. The AMUX pin is not active during low-power mode.  
CD1020  
25  
NXP Semiconductors  
7.9  
Serial peripheral interface (SPI)  
The CD1020 contains a serial peripheral interface consisting of Serial Clock (SCLK), Serial Data Out (MISO), Serial Data In (MOSI), and  
Chip Select Bar (CS_B). The SPI interface is used to provide configuration, control, and status functions; the user may read the registers’  
contents as well as read some status bits of the IC. This device is configured as a SPI slave.  
All SPI transmissions to the CD1020 must be done in exact increments of 32 bits (modulo 0 is ignored as well). The CD1020 contains a  
data valid method via SCLK input to keep non-modulo 32-bit transmissions from being written into the IC. The SPI module also provides  
a daisy chain capability to accommodate MOSI to MISO wrap around (see Figure 20).  
The SPI registers have a hashing technique to ensure that the registers are consistent with the programmed values. If the hashed value  
does not match the register status, a SPI bit is set as well as an interrupt to alert the MCU to this issue.  
7.9.1  
Chip select low (CS_B)  
The CS_B input selects this device for serial transfers. On the falling edge of CS_B, the MISO pin is released from tri-state mode, and all  
status information are latched in the SPI shift register. While CS_B is asserted, register data is shifted in the MOSI pin and shifted out the  
MISO pin on each subsequent SCLK. On the rising edge of CS_B, the MISO pin is tri-stated and the fault register reloaded (latched) with  
the current filtered status data. To allow sufficient time to reload the fault registers, the CS_B pin must remain low for a minimum of tCSN  
prior to going high again.  
The CS_B input contains a pull-up current source to VDDQ to command the de-asserted state should an open-circuit condition occur.  
This pin has threshold compatible voltages allowing proper operation with microprocessors using a 3.3 V to 5.0 V supply.  
7.9.2  
Serial clock (SCLK)  
The SCLK input is the clock signal input for synchronization of serial data transfer. This pin has threshold-compatible voltages allowing  
proper operation with microprocessors using a 3.3 V to 5.0 V supply.  
When CS_B is asserted, both the Master Microprocessor and this device latch input data on the rising edge of SCLK. The SPI master  
typically shifts data out on the falling edge of SCLK, while this device shifts data out on the rising edge of SCLK, to allow more time to  
drive the MISO pin to the proper level.  
This input is used as the input for the modulo 32-bit counter validation. Any SPI transmissions which are NOT exact multiples of 32 bits  
(i.e. clock edges) is treated as an illegal transmission. The entire frame is aborted and no information is changed in the configuration or  
control registers.  
7.9.3  
Serial data output (MISO)  
The MISO output pin is in a tri-state condition when CS_B is negated. When CS_B is asserted, MISO is driven to the state of the MSB of  
the internal register and start shifting out the requested data from the MSB to the LSB. This pin supplies a ‘rail to rail’ output, depending  
on the voltage at the VDDQ pin.  
7.9.4  
Serial data input (MOSI)  
The MOSI input takes data from the master microprocessor while CS_B is asserted. The MSB is the first bit of each word received on  
MOSI and the LSB is the last bit of each word received on MOSI. This pin has threshold-level compatible input voltages allowing proper  
operation with microprocessors using a 3.3 V to 5.0 V (VDDQ) supply.  
CD1020  
NXP Semiconductors  
26  
CS_B  
Control word  
Configure words  
MOSI/  
SCLK  
...  
20  
31 30 29 28 27 26 25 24 23 22 21  
3
2
1
0
MISO  
INTflg  
Fault Status  
Switch Status Register  
SG/SP input status  
Figure 17. First SPI operation (after POR)  
CS_B  
CS_B  
Next Control word  
Next Configure words  
Control word  
Configure word  
MOSI/  
SCLK  
MOSI/  
SCLK  
...  
...  
20  
31 30 29 28 27 26 25 24 23 22 21  
3
2
1
0
20  
31 30 29 28 27 26 25 24 23 22 21  
3
2
1
0
MISO  
MISO  
Previous Address  
Previous command data  
Control Word  
Configure Word  
Figure 18. SPI write operation  
CS_B  
CS_B  
Next Control word  
Next Configure words  
Control word (READ)  
DON’T CARE  
MOSI/  
SCLK  
MOSI/  
SCLK  
...  
...  
20  
31 30 29 28 27 26 25 24 23 22 21  
3
2
1
0
20  
31 30 29 28 27 26 25 24 23 22 21  
3
2
1
0
MISO  
MISO  
Previous Address  
Previous command data  
Control Word (READ)  
Register Data  
Figure 19. SPI read operation  
CD1020  
27  
NXP Semiconductors  
CSb  
SCLK  
DI  
DO  
1st IC  
CSb  
SCLK  
MISO  
MISI  
CSb  
SCLK  
DI  
DO  
MCU  
2nd IC  
CSb  
SCLK  
DI  
DO  
3rd IC  
CSb  
Don' t Care  
- 3rd IC  
- 2nd IC  
- 1st IC  
MOSI  
MOSI  
MOSI  
MOSI- 1st IC  
MCU MISO  
MISO - 1st IC  
MOSI-2nd IC  
MISO  
MOSI  
- 2st IC  
- 3rd IC  
MISO - 3rd IC  
MCU MOSI  
- 3rd IC  
- 2nd IC - 1st IC  
MISO  
Don' t Care  
MISO  
MISO  
Figure 20. Daisy chain SPI operation  
CD1020  
NXP Semiconductors  
28  
7.10 SPI control register definition  
A 32-bit SPI allows the system microprocessor to configure the CD1020 for each input as well as read out the status of each input. The  
SPI also allows the Fault Status and INTflg bits to be read via the SPI. The SPI MOSI bit definitions are given in Table 8:  
Table 8. MOSI input register bit definition  
Register #  
0
Register name  
Address  
R/W  
0
SPI check  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
1
1
1
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
0
02/03  
04/05  
06/07  
08/09  
0A/0B  
0C/0D  
16/17  
18/19  
1A/1B  
1C/1D  
1E/1F  
20/21  
22/23  
24/25  
26/27  
28/29  
2A/2B  
2C/2D  
2E/2F  
39  
Device configuration register  
Tri-state SP register  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
1
Tri-state SG register  
Wetting current level SP register  
Wetting current level SG register 0  
Wetting current level SG register 1  
Continuous wetting current SP register  
Continuous Wetting Current SG Register  
Interrupt enable SP register  
Interrupt enable SG register  
Low-power mode configuration  
Wake-up enable register SP  
Wake-up enable register SG  
Comparator only SP  
Comparator only SG  
LPM voltage threshold SP configuration  
LPM voltage threshold SG configuration  
Polling current SP configuration  
Polling current SG configuration  
Enter low-power mode  
3A/3B  
3E  
AMUX control register  
0/1  
0
Read switch status  
42  
Fault status register  
0
47  
Interrupt request  
1
49  
Reset register  
1
The 32-bit SPI word consists of a command word (8-bit) and three configure words (24-bit). The 8-MSB bits are the command bits that  
select what type of configuration is to occur. The remaining 24-bits are used to select the inputs to be configured.  
• Bit 31 – 24 = Command word: Use to select what configuration is to occur (example: setting wake-up enable command)  
• Bit 23 – 0 = SGn input select word: Use these bits in conjunction with the command word to determine which input is set up.  
Configuration registers may be read or written to. To read the contents of a configuration register, send the register address + ‘0’ on the  
LSB of the command word; the contents of the corresponding register will be shifted out of the MISO buffer in the next SPI cycle. When  
a Read command is sent. The answer (in the next SPI transaction) includes the Register address in the upper byte (see Figure 19).  
Read example:  
• Send 0x0C00_0000 Receive: 8000_0000 (for example after a POR)  
• Send 0x0000_0000 Receive: 0C00_0000 (address + register data)  
The first response from the device after a POR event is a Read Status register (0x3Exxxxxx where x is the status of the inputs). This is  
the same for exiting the low-power mode (see Figure 17).  
CD1020  
29  
NXP Semiconductors  
To write into a configuration register, send the register Address + ‘1’ on the LSB of the command word and the configuration data on the  
next 24 bits. The new value of the register will be shifted out of the MISO buffer in the next SPI cycle, along with the register address.  
Table 9 provides a general overview of the functional SPI commands and configuration bits.  
Table 9. Functional SPI register map  
Commands  
[31-25]  
Address R/W  
0000000  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SPI check  
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Device Configuration  
0000001 0/1  
FS  
INT  
X
X
X
X
X
X
X
X
X
X
X
X
Tri-State Enable SP  
0000010 0/1  
0000011 0/1  
0000100 0/1  
0000101 0/1  
0000110 0/1  
FS  
FS  
INT  
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
Tri-State Enable SG  
X
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
Wetting Current Level SP  
Wetting Current Level SG 0  
Wetting Current Level SG 1  
SP7[2-0]  
SG7[2-0]  
INT  
SP6[2-0]  
SG6[2-0]  
X
SP5[2-0]  
SG5[2-0]  
SG13[2-0]  
SP4[2-0]  
SG4[2-0]  
SG12[2-0]  
SP3[2-0]  
SG3[2-0]  
SG11[2-0]  
SP2[2-0]  
SG2[2-0]  
SG10[2-0]  
SP1[2-0]  
SG1[2-0]  
SG9[2-0]  
SP0[2-0]  
SG0[2-0]  
SG8[2-0]  
FS  
FS  
X
X
X
X
X
X
Continuous Wetting Current  
Enable SP  
0001011 0/1  
0001100 0/1  
INT  
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
Continuous Wetting Current  
Enable SG  
FS  
X
X
X
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
Interrupt Enable SP  
Interrupt Enable SG  
0001101 0/1  
0001110 0/1  
FS  
FS  
INT  
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
Low-power mode  
configuration  
0001111 0/1  
FS  
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
poll3 poll2 poll1 poll0  
Wake-Up Enable SP  
0010000 0/1  
0010001 0/1  
0010010 0/1  
0010011 0/1  
0010100 0/1  
0010101 0/1  
FS  
FS  
FS  
FS  
FS  
FS  
INT  
INT  
INT  
INT  
INT  
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
Wake-Up Enable SG  
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
LPM Comparator Only SP  
LPM Comparator Only SG  
LPM Voltage Threshold SP  
LPM Voltage Threshold SG  
X
X
X
X
X
X
X
X
X
X
X
X
LPM Polling current config  
SP  
0010110 0/1  
0010111 0/1  
FS  
FS  
INT  
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0  
LPM Polling current config  
SG  
SG13 SG12 SG11 SG10 SG9 SG8 SG7 SG6 SG5 SG4 SG3 SG2 SG1 SG0  
Enter Low-power mode  
0011100  
1
FS  
FS  
INT  
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
AMUX Channel Select SPI  
0011101 0/1  
asett asel5 asel4 asel3 asel2 asel1 asel0  
Read Switch Status  
0011111  
0100001  
0
0
Fault Status  
X
Interrupt Pulse Request  
Reset  
0100011  
0100100  
1
1
FS  
X
INT  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Notes  
24.  
25.  
FS = FAULT STATUS (available for reading on MISO return word)  
INT = INTflg (available for reading on MISO return word)  
CD1020  
NXP Semiconductors  
30  
7.10.1 SPI check  
The MCU may check the communication with the IC by using the SPI Check register. The MCU sends the command, and the response  
during the next SPI transaction will be 0x123456. The SPI Check command does not return Fault Status or INTflg bit, thus interrupts will  
not be cleared.  
Table 10. SPI check command  
Register address  
[31–25]  
R
[24]  
0
SPI data bits [23 – 0]  
bits [23 – 16]  
0000_0000  
0000_000  
bits [15 – 8]  
0000_0000  
bits [7 – 0]  
0000_0000  
MISO return word  
0x00123456  
7.10.2 Device configuration register  
The device has various configuration settings that are global in nature. The configuration settings are as follows:  
• When the CD1020 is in the overvoltage region, a Logic [0] on the VBATP OV bit limits the wetting current on all input channels to 2 mA,  
and the CD1020 will not be able to enter into the low-power mode. A Logic [1] allows the device to operate normally even in the  
overvoltage region. The OV flag will be set when the device enters in the OV region, regardless of the value of the VBATP OV bit.  
• WAKE_B can be used to enable an external power supply regulator to supply the VDDQ voltage rail. When the WAKE_B VDDQ check  
bit is a Logic [0], the WAKE_B pin is expected to be pulled up internally or externally to VDDQ and VDDQ is expected to go low,  
therefore, the CD1020 does not wake up on the falling edge of WAKE_B. A Logic [1], assumes the user is using an external pull-up to  
VBATP or VDDQ (when VDDQ is not expected to be off) and the IC wakes up on a falling edge of WAKE_B.  
• INT_B out is used to select how the INT_B pin operates when an interrupt occurs. The IC is able to pulse low [1] or latch low [0].  
• Inputs SP0-7 may be programmable for switch-to-battery or switch-to-ground. These input types are defined using the settings  
command. To set a SPn input for switch-to-battery, a logic [1] for the appropriate bit must be set. To set a SPn input for switch-to-  
ground, a logic [0] for the appropriate bit must be set. The MCU may change or update the programmable switch register via software  
at any time in normal mode. Regardless of the setting, when the SPn input switch is closed a logic [1] is placed in the serial output  
response register.  
CD1020  
31  
NXP Semiconductors  
Table 11. Device configuration register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0000_001  
0/1  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
SBPOLL  
TIME  
VBATP OV  
disable  
WAKE_B  
VDDQ Check  
Unused  
INT_B out  
Unused  
Unused  
Default on POR  
0
0
bit 6  
SP6  
1
0
0
1
0
0
0
bit 7  
SP7  
bit 5  
SP5  
1
bit 4  
SP4  
1
bit 3  
SP3  
1
bit 2  
SP2  
1
bit 1  
SP1  
1
bit 0  
SP0  
1
1
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 – 0]  
Register Data  
0000_001[R/W]  
INTflg  
STATUS  
Table 12. Device configuration bits definition  
Bit  
Functions  
Default value  
Description  
23–14  
Unused  
0
Unused  
Select the polling time for SP channels configured as SB.  
• A logic [0] set the active polling timer to 1ms,  
• A logic [1] sets the active polling timer to 55 μs.  
13  
12  
SBPOLLTIME  
0
0
VBATP Overvoltage protection  
• 0 – Enabled  
VBATP OV  
Disable  
• 1 – Disable  
Enable/Disable WAKE_B to wake-up the device on falling edge when VDDQ is not present.  
• 0 – WAKE_B is pulled up to VDDQ (internally and/or externally). WAKE_B is ignored while in LPM if VDDQ  
is low.  
• 1 – WAKE_B is externally pulled up to VBATP or VDDQ and wakes upon a falling edge of the WAKE_B pin  
regardless of the VDDQ status.(VDDQ is not expected to go low)  
WAKE_B  
VDDQ Check  
11  
1
Interrupt pin behavior  
10  
Int_B_Out  
Unused  
0
00  
• 0 – INT pin stays low when interrupt occurs  
• 1 – INT pin pulse low and return high  
9–8  
7–0  
Unused  
Configure the SP pin as Switch to Battery (SB) or Switch to ground (SG)  
• 0 – Switch to Ground  
SP7 – SP0  
1111_1111  
• 1 – Switch to Battery  
CD1020  
NXP Semiconductors  
32  
7.10.3 Tri-state SP register  
The tri-state command is use to set the input nodes as high-impedance (Table 13). By setting the tri-state register bit to logic [1], the input  
is high-impedance regardless of the Wetting current setting. The configurable comparator (4.0 V default) on each input remains active.  
The MCU may change or update the tri-state register via software at any time in normal mode. The tri-state register defaults to 1 (inputs  
are tri-stated). Any inputs in tri-state are still polled in LPM, but the current source is not active during this time. The determination of  
change of state occurs at the end of the tACTIVEPOLL and the wake-up decision is made.  
Table 13. Tri-state SP register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0000_010  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
1
0
bit 6  
SP6  
1
0
0
0
0
0
0
bit 5  
SP5  
1
bit 4  
SP4  
1
bit 3  
SP3  
1
bit 2  
SP2  
1
bit 1  
SP1  
1
bit 0  
SP0  
1
MISO return word  
bit [23]  
bit [22]  
bits [21 – 0]  
Register Data  
FAULT  
STATUS  
0000_010[R/W]  
INTflg  
7.10.4 Tri-state SG register  
The tri-state command is used to set the input nodes as high-impedance (Table 14). By setting the tri-state register bit to logic [1], the  
input is high-impedance regardless of the Wetting command setting. The configurable comparator (4.0 V default) on each input remains  
active. The MCU may change or update the tri-state register via software at any time in normal mode. The tri-state register defaults to 1  
(inputs are tri-stated. Any inputs in tri-state are still polled in LPM but the current source is not active during this time. The determination  
of change of state occurs at the end of the tACTIVEPOLL and the wake-up decision is made.  
Table 14. Tri-state SG register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0000_011  
0/1  
Unused  
0
0
0
bit 13  
SG13  
1
0
bit 12  
SG12  
1
0
bit 11  
SG11  
1
0
bit 10  
SG10  
1
0
0
bit 15  
bit 14  
bit 9  
SG9  
1
bit 8  
SG8  
1
Unused  
Default on POR  
0
0
bit 6  
SG6  
1
bit 7  
SG7  
1
bit 5  
SG5  
1
bit 4  
SG4  
1
bit 3  
SG3  
1
bit 2  
SG2  
1
bit 1  
SG1  
1
bit 0  
SG0  
1
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 – 0]  
Register Data  
0000_011[R/W]  
INTflg  
STATUS  
CD1020  
33  
NXP Semiconductors  
7.10.5 Wetting current level SP register  
The IC contains configurable wetting currents (Default = 16 mA). Three bits are used to control each individual input pin with the values  
set in Table 15. The MCU may change or update the wetting current register via software at any time in normal mode.  
Table 15. Wetting current level SP register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit [23 – 21]  
SP7 [2–0]  
110  
bit [20 – 18]  
SP6[2–0]  
110  
bit [17 – 16]  
SP5[2–1]  
11  
0000_100  
0/1  
bit [15]  
SP5[0]  
0
bit [14 – 12]  
SP4 [2–0]  
110  
bit [11 – 9]  
SP3[2–0]  
110  
bit [8]  
SP2[2]  
1
Default on POR  
bit [7 – 6]  
bit [5 – 3]  
SP1[2–0]  
110  
bit [2 – 0]  
SP0[2–0]  
110  
SP2[1–0]  
10  
MISO return word  
bits [23 – 0]  
Register Data  
0000_100[R/W]  
See Table 18 for the selectable Wetting Current level values for both SPx and SGx pins.  
7.10.6 Wetting current level SG register 0  
The IC contains configurable wetting currents (Default = 16 mA). Three bits are used to control each individual input pin with the values  
set in Table 16. The MCU may change or update the wetting current register via software at any time in normal mode.  
Table 16. Wetting current level SG register 0  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit [23 – 21]  
SG7 [2–0]  
110  
bit [20 – 18]  
SG6[2–0]  
110  
bit [17 – 16]  
SG5[2–1]  
11  
0000_101  
0/1  
bit [15]  
SG5[0]  
0
bit [14 – 12]  
SG4 [2–0]  
110  
bit [11 – 9]  
SG3[2–0]  
110  
bit [8]  
SG2[2]  
1
Default on POR  
bit [7 – 6]  
bit [5 – 3]  
SG1[2–0]  
110  
bit [2 – 0]  
SG0[2–0]  
110  
SG2[1–0]  
10  
MISO return word  
bits [23 – 0]  
Register Data  
0000_101[R/W]  
See Table 18 for the selectable Wetting Current level values for both SPx and SGx pins.  
CD1020  
NXP Semiconductors  
34  
7.10.7 Wetting current level SG register 1  
The IC contains configurable wetting currents (Default = 16 mA). Three bits are used to control each individual input pin with the values  
set in Table 17. The MCU may change or update the wetting current register via software at any time in normal mode.  
Table 17. Wetting current level SG register 1  
Register address R/W  
SPI data bits [23 – 0]  
bit [20 – 18]  
[31–25]  
[24]  
bit [23 – 21]  
bit [17 – 16]  
SG13[2–1]  
11  
0000_110  
0/1  
Unused  
0
bit [15]  
SG13[0]  
0
bit [14 – 12]  
bit [11 – 9]  
SG11[2–0]  
110  
bit [8]  
SG12 [2–0]  
110  
SG10[2]  
1
Default on POR  
bit [7 – 6]  
bit [5 – 3]  
SG9[2–0]  
110  
bit [2 – 0]  
SG8[2–0]  
110  
SG10[1–0]  
10  
MISO return word  
bits [23 – 0]  
Register Data  
0000_110[R/W]  
See Table 18 for the selectable Wetting Current level values for both SPx and SGx pins.  
Table 18. SPx/SGx selectable wetting current levels  
SPx/SGx[2–1]  
Wetting current level  
bit 2  
bit 1  
0
0
1
1
0
1
0
1
2.0 mA  
8.0 mA  
12 mA  
16 mA  
Notes  
26.  
bit 0 is 0  
CD1020  
35  
NXP Semiconductors  
7.10.8 Continuous wetting current SP register  
Each switch input has a designated 20 ms timer. The timer starts when the specific switch input crosses the comparator threshold. When  
the 20 ms timer expires, the contact current is reduced from the configured wetting current (16 mA) to the Sustain current. The wetting  
current is defined to be an elevated level that reduces to the lower sustain current level after the timer has expired. With multiple wetting  
current timers disabled, power dissipation for the IC must be considered.  
The MCU may change or update the continuous wetting current register via software at any time in normal mode. This allows the MCU to  
control the amount of time wetting current is applied to the switch contact. Programming the continuous wetting current bit to logic [0]  
operates normally with a higher wetting current followed by sustain current after 20 ms (pulsed Wetting current operation). Programming  
to logic [1] enables the continuous wetting current (Table 19) and results in a full time wetting current level. The continuous wetting current  
register defaults to 0 (pulse wetting current operation).  
Table 19. Continuous wetting current SP register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0001_011  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
0
0
bit 6  
SP6  
0
0
0
0
0
0
0
bit 5  
SP5  
0
bit 4  
SP4  
0
bit 3  
SP3  
0
bit 2  
SP2  
0
bit 1  
SP1  
0
bit 0  
SP0  
0
MISO return word  
bit [23]  
bit [22]  
bits [21 – 0]  
Register Data  
FAULT  
STATUS  
0001_011[R/W]  
INTflg  
7.10.9 Continuous Wetting Current SG Register  
Each switch input has a designated 20 ms timer. The timer starts when the specific switch input crosses the comparator threshold. When  
the 20 ms timer expires, the contact current is reduced from the configured wetting current (16 mA) to 2.0 mA. The wetting current is  
defined to be at an elevated level that reduces to the lower sustain current level after the timer has expired. With multiple wetting current  
timers disabled, power dissipation for the IC must be considered.  
The MCU may change or update the continuous wetting current register via software at any time in normal mode. This allows the MCU to  
control the amount of time wetting current is applied to the switch contact. Programming the continuous wetting current bit to logic [0]  
operates normally with a higher wetting current followed by sustain current after 20 ms (Pulse wetting current operation). Programming to  
logic [1] enables the continuous wetting current (Table 20) and results in a full-time-wetting current level. The continuous wetting current  
register defaults to 0 (pulse wetting current operation).  
CD1020  
NXP Semiconductors  
36  
Table 20. Continuous wetting current SG register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0001_100  
0/1  
Unused  
0
0
0
bit 13  
SG13  
0
0
bit 12  
SG12  
0
0
bit 11  
SG11  
0
0
bit 10  
SG10  
0
0
0
bit 15  
bit 14  
bit 9  
SG9  
0
bit 8  
SG8  
0
Unused  
Default on POR  
0
0
bit 6  
SG6  
0
bit 7  
SG7  
0
bit 5  
SG5  
0
bit 4  
SG4  
0
bit 3  
SG3  
0
bit 2  
SG2  
0
bit 1  
SG1  
0
bit 0  
SG0  
0
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 – 0]  
0001_100[R/W]  
INTflg  
Register Data  
STATUS  
Switch to  
Switch to  
Ground Closed  
Ground open  
IWET  
Continuous wetting  
current enabled  
0 ma  
0 ma  
IWET  
Continuous wetting  
current disabled  
ISUS=~2mA  
20 ms  
Figure 21. Pulsed/continuous wetting current configuration  
CD1020  
37  
NXP Semiconductors  
7.10.10 Interrupt enable SP register  
The interrupt register defines the inputs that are allowed to Interrupt the CD1020 normal mode. Programming the interrupt bit to logic [0]  
disables the specific input from generating an interrupt. Programming the interrupt bit to logic [1] enables the specific input to generate an  
interrupt with switch change of state The MCU may change or update the interrupt register via software at any time in normal mode. The  
Interrupt register defaults to logic [1] (Interrupt enabled).  
Table 21. Interrupt enable SP register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0001_101  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
1
0
bit 6  
SP6  
1
0
0
0
0
0
0
bit 5  
SP5  
1
bit 4  
SP4  
1
bit 3  
SP3  
1
bit 2  
SP2  
1
bit 1  
SP1  
1
bit 0  
SP0  
1
MISO return word  
bit [23]  
bit [22]  
bits [21 – 0]  
Register Data  
FAULT  
STATUS  
0001_101[R/W]  
INTflg  
7.10.11 Interrupt enable SG register  
The interrupt register defines the inputs that are allowed to Interrupt the CD1020 normal mode. Programming the interrupt bit to logic [0]  
disables the specific input from generating an interrupt. Programming the interrupt bit to logic [1] enables the specific input to generate an  
interrupt with switch change of state The MCU may change or update the interrupt register via software at any time in normal mode. The  
Interrupt register defaults to logic [1] (Interrupt enabled).  
Table 22. Interrupt enable SG register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0001_110  
0/1  
Unused  
0
0
0
bit 13  
SG13  
1
0
bit 12  
SG12  
1
0
bit 11  
SG11  
1
0
bit 10  
SG10  
1
0
0
bit 15  
bit 14  
bit 9  
SG9  
1
bit 8  
SG8  
1
Unused  
Default on POR  
0
0
bit 6  
SG6  
1
bit 7  
SG7  
1
bit 5  
SG5  
1
bit 4  
SG4  
1
bit 3  
SG3  
1
bit 2  
SG2  
1
bit 1  
SG1  
1
bit 0  
SG0  
1
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 – 0]  
Register Data  
0001_110[R/W]  
INTflg  
STATUS  
CD1020  
NXP Semiconductors  
38  
7.10.12 Low-power mode configuration  
The device has poll[3-0] to set the normal polling rate for the IC. The polling rate is the time between polling events. The current sources  
become active at this time for a time of tACTIVESGPOLLING or tACTIVESBPOLLING for SG or SB channels respectively.  
Table 23. Low-power mode configuration register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0001_111  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
0
0
0
0
0
0
0
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
poll3  
1
bit 2  
poll2  
1
bit 1  
poll1  
1
bit 0  
poll0  
1
Unused  
0
0
0
0
MISO return word  
bit [23]  
bit [22]  
bits [21 – 0]  
Register Data  
FAULT  
STATUS  
0001_111[R/W]  
INTflg  
Table 24. Low-power mode configuration bits definition  
Bit  
Functions  
Default value  
Description  
23 – 4  
Unused  
0
Unused  
Set the polling rate for switch detection  
• 0000 – 3.0 ms  
• 0001 – 6.0 ms  
• 0010 – 12 ms  
• 0011 – 24 ms  
• 0100 – 48 ms  
• 0101 – 68 ms  
• 0110 – 76 ms  
• 0111 – 128 ms  
• 1000 – 32 ms  
• 1001 – 36 ms  
• 1010 – 40 ms  
• 1011 – 44 ms  
• 1100 – 52 ms  
• 1101 – 56 ms  
• 1110 – 60 ms  
3 – 0  
poll[3–0]  
1111  
• 1111 – 64 ms (default)  
CD1020  
39  
NXP Semiconductors  
7.10.13 Wake-up enable register SP  
The wake-up register defines the inputs that are allowed to wake the CD1020 from low-power mode. Programming the wake-up bit to  
logic [0] disables the specific input from waking the IC (Table 25). Programming the wake-up bit to logic [1] enables the specific input to  
wake-up with switch change of state The MCU may change or update the wake-up register via software at any time in normal mode. The  
Wake-up register defaults to logic [1] (wake-up enabled). If all channels (SG and SB) have the Wake-up bit disabled, the device disables  
the polling timer to reduce the current consumption during low-power mode.  
Table 25. Wake-up enable SP register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_000  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
1
0
bit 6  
SP6  
1
0
0
0
0
0
0
bit 5  
SP5  
1
bit 4  
SP4  
1
bit 3  
SP3  
1
bit 2  
SP2  
1
bit 1  
SP1  
1
bit 0  
SP0  
1
MISO return word  
bit [23]  
bit [22]  
bits [21 – 0]  
Register Data  
FAULT  
STATUS  
0010_000[R/W]  
INTflg  
7.10.14 Wake-up enable register SG  
The wake-up register defines the inputs that are allowed to wake the CD1020 from low-power mode. Programming the wake-up bit to  
logic [0] disables the specific input from waking the IC (Table 26). Programming the wake-up bit to logic [1] enables the specific input to  
wake-up with any switch change of state The MCU may change or update the wake-up register via software at any time in normal mode.  
The Wake-up register defaults to logic [1] (wake-up enabled). If all channels (SG and SB) have the Wake-up bit disabled, the device  
disables the polling timer to reduce the current consumption during low-power mode.  
Table 26. Wake-up enable SG register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_001  
0/1  
Unused  
0
0
0
bit 13  
SG13  
1
0
bit 12  
SG12  
1
0
bit 11  
SG11  
1
0
bit 10  
SG10  
1
0
0
bit 15  
bit 14  
bit 9  
SG9  
1
bit 8  
SG8  
1
Unused  
Default on POR  
0
0
bit 6  
SG6  
1
bit 7  
SG7  
1
bit 5  
SG5  
1
bit 4  
SG4  
1
bit 3  
SG3  
1
bit 2  
SG2  
1
bit 1  
SG1  
1
bit 0  
SG0  
1
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 – 0]  
Register Data  
0010_001[R/W]  
INTflg  
STATUS  
CD1020  
NXP Semiconductors  
40  
7.10.15 Comparator only SP  
The comparator only register allows the input comparators to be active during LPM with no polling current. In this case, the inputs can  
receive a digital signal on the order of the LPM clock cycle and wake-up on a change of state. This register is intended to be used for  
signals that are driven by an external chip and drive to 5.0 V.  
Table 27. Comparator only SP Register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_010  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
0
0
bit 6  
SP6  
0
0
0
0
0
0
0
bit 5  
SP5  
0
bit 4  
SP4  
0
bit 3  
SP3  
0
bit 2  
SP2  
0
bit 1  
SP1  
0
bit 0  
SP0  
0
MISO return word  
bit [23]  
bit [22]  
bits [21 – 0]  
Register Data  
FAULT  
STATUS  
0010_010[R/W]  
INTflg  
7.10.16 Comparator only SG  
The comparator only register allows the input comparators to be active during LPM with no polling current. In this case, the inputs can  
receive a digital signal on the order of the LPM clock cycle and wake-up on a change of state. This register is intended to be used for  
signals that are driven by an external chip and drive to 5.0 V.  
Table 28. Comparator only SG register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_011  
0/1  
Unused  
0
0
0
bit 13  
SG13  
0
0
bit 12  
SG12  
0
0
bit 11  
SG11  
0
0
bit 10  
SG10  
0
0
0
bit 15  
bit 14  
bit 9  
SG9  
0
bit 8  
SG8  
0
Unused  
Default on POR  
0
0
bit 6  
SG6  
0
bit 7  
SG7  
0
bit 5  
SG5  
0
bit 4  
SG4  
0
bit 3  
SG3  
0
bit 2  
SG2  
0
bit 1  
SG1  
0
bit 0  
SG0  
0
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 – 0]  
Register Data  
0010_011[R/W]  
INTflg  
STATUS  
CD1020  
41  
NXP Semiconductors  
7.10.17 LPM voltage threshold SP configuration  
The CD1020 is able to use different voltage thresholds to wake-up from LPM. When configured as SG, a Logic [0] means the input will  
use the LPM delta voltage threshold to determine the state of the switch. A Logic [1] means the input uses the Normal threshold (VICTHR)  
to determine the state of the switch. When configured as an SB, it only uses the 4.0 V threshold regardless of the status of the LPM voltage  
threshold bit. The user must ensure that the correct current level is set to allow the crossing of the normal mode threshold (typically 4.0 V).  
Table 29. LPM voltage threshold configuration SP register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_100  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
0
0
bit 6  
SP6  
0
0
0
0
0
0
0
bit 5  
SP5  
0
bit 4  
SP4  
0
bit 3  
SP3  
0
bit 2  
SP2  
0
bit 1  
SP1  
0
bit 0  
SP0  
0
MISO return word  
bit [23]  
bit [22]  
bits [21 – 0]  
Register Data  
FAULT  
STATUS  
0010_100[R/W]  
INTflg  
7.10.18 LPM voltage threshold SG configuration  
This means the input uses the LPM delta voltage threshold to determine the state of the switch. A Logic [1] means the input uses the  
Normal threshold to determine the state of the switch. The user must ensure that the correct current level is set to allow the crossing of  
the normal mode threshold (typically 4.0 V)  
Table 30. LPM voltage threshold configuration SG register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_101  
0/1  
Unused  
0
0
0
bit 13  
SG13  
0
0
bit 12  
SG12  
0
0
bit 11  
SG11  
0
0
bit 10  
SG10  
0
0
0
bit 15  
bit 14  
bit 9  
SG9  
0
bit 8  
SG8  
0
Unused  
Default on POR  
0
0
bit 6  
SG6  
0
bit 7  
SG7  
0
bit 5  
SG5  
0
bit 4  
SG4  
0
bit 3  
SG3  
0
bit 2  
SG2  
0
bit 1  
SG1  
0
bit 0  
SG0  
0
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 – 0]  
Register Data  
0010_101[R/W]  
INTflg  
STATUS  
CD1020  
NXP Semiconductors  
42  
7.10.19 Polling current SP configuration  
The normal polling current for LPM is 2.2 mA for SB channels and 1.0 mA for SG channels, A logic [0] selects the normal polling current  
for each individual channel. The user may choose to select the IWET current value as defined in the wetting current level registers by writing  
a Logic [1] on this bit; this will result in higher LPM currents but may be used in cases when a higher polling current is needed.  
Table 31. Polling current configuration SP register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_110  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
bit 7  
SP7  
0
0
bit 6  
SP6  
0
0
0
0
0
0
0
bit 5  
SP5  
0
bit 4  
SP4  
0
bit 3  
SP3  
0
bit 2  
SP2  
0
bit 1  
SP1  
0
bit 0  
SP0  
0
MISO return word  
bit [23]  
bit [22]  
bits [21 – 0]  
Register Data  
FAULT  
STATUS  
0010_110[R/W]  
INTflg  
7.10.20 Polling current SG configuration  
A Logic [0] selects the normal polling current for LPM =1.0 mA. The user may choose to select the IWET current value as defined in the  
wetting current registers for LPM by writing a Logic [1] in this bit; this results in higher LPM currents but may be used in cases when a  
higher polling current is needed.  
Table 32. Polling current configuration SG register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0010_111  
0/1  
Unused  
0
0
0
bit 13  
SG13  
0
0
bit 12  
SG12  
0
0
bit 11  
SG11  
0
0
bit 10  
SG10  
0
0
0
bit 15  
bit 14  
bit 9  
SG9  
0
bit 8  
SG8  
0
Unused  
Default on POR  
0
0
bit 6  
SG6  
0
bit 7  
SG7  
0
bit 5  
SG5  
0
bit 4  
SG4  
0
bit 3  
SG3  
0
bit 2  
SG2  
0
bit 1  
SG1  
0
bit 0  
SG0  
0
MISO return word  
bit [23]  
FAULT  
bit [22]  
bits [21 – 0]  
Register Data  
0010_111[R/W]  
INTflg  
STATUS  
CD1020  
43  
NXP Semiconductors  
7.10.21 Enter low-power mode  
Low-power mode (LPM) is used to reduce system quiescent currents. Low-power mode may be entered only by sending the low-power  
command. When returning to normal mode, all register settings is maintained.  
The Enter Low-power mode register is write only and has the effect of going to LPM and beginning operation as selected (polling, interrupt  
timer). When returning form low-power mode, the first SPI transaction will return the Fault Status and the intflg bit set to high, as well as  
the actual status of the Input pins.  
Table 33. Enter low-power mode command  
Register address  
[31–25]  
W
[24]  
1
SPI data bits [23 – 0]  
bits [23 – 16]  
0000_0000  
bits [15 – 8]  
0000_0000  
bits [7 – 0]  
0000_0000  
0011_100  
MISO return word  
7.10.22 AMUX control register  
The analog voltage on switch inputs may be read by the MCU using the analog command (Table 34). Internal to the CD1020 is a 22-to-1  
analog multiplexer. The voltage present on the selected input pin is buffered and made available on the AMUX output pin. The AMUX  
output pin is clamped to a maximum of VDDQ volts regardless of the higher voltages present on the input pin. After an input has been  
selected as the analog, the corresponding bit in the next MISO data stream is logic [0].  
Setting the current to wetting current (configurable) may be useful for reading sensor inputs. The MCU may change or update the analog  
select register via software at any time in normal mode. The analog select defaults to no input.  
Table 34. Slow polling SG register  
Register address R/W  
SPI data bits [23 – 0]  
[31–25]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0011_101  
0/1  
Unused  
Unused  
0
0
0
0
0
0
0
0
bit 15  
bit 14  
bit 13  
bit 12  
bit 11  
bit 10  
bit 9  
bit 8  
Default on POR  
0
0
bit 6  
asett0  
0
0
0
0
0
0
0
bit 7  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
Unused  
0
asel[5–0]  
0
0
0
0
0
0
MISO return word  
bit [23]  
bit [22]  
bits [21 – 0]  
FAULT  
STATUS  
0011_101[R/W]  
INTflg  
Register Data  
Table 35. AMUX current select  
asett[0]  
Zsource  
0
1
hi Z (default)  
IWET  
CD1020  
NXP Semiconductors  
44  
Table 36. AMUX channel select  
asel 5  
asel 4  
asel3  
0
asel 2  
asel 1  
asel 0  
Analog channel select  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
No Input Selected  
SG0  
0
0
SG1  
0
SG2  
0
SG3  
0
SG4  
0
SG5  
0
SG6  
1
SG7  
1
SG8  
1
SG9  
1
SG10  
SG11  
SG12  
SG13  
SP0  
1
1
1
1
0
SP1  
0
SP2  
0
SP3  
0
SP4  
0
SP5  
0
SP6  
0
SP7  
7.10.23 Read switch status  
The Read switch status register is used to determine the state of each of the inputs and is read only. All of the inputs (SGn and SPn) are  
returned after the next command is sent. A Logic [1] means the switch is closed while a Logic [0] is an open switch.  
Included in the status register are two more bits, the Fault Status bit and intflg bit. The Fault Status bit is a combination of the extended  
status bits and the wetting current fault bits. If any of these bits are set, the Fault Status bit is set. The intflg bit is set when an interrupt  
occurs on this device.  
After POR, both the Fault Status bit and the intflg bit are set high to indicate an interrupt due to a POR occurring. The intflg bit will be  
cleared upon reading the Read Switch Status register, and the Fault Status bit will remain high until the Fault status register is read and  
thus the POR fault bit and all other fault flags are cleared.  
The Fault Status and Intflg bits are semi-global flags, if a fault or an interrupt occurs, these bit will be returned after writing or reading any  
command, except for the SPICheck and the Wetting Current configuration registers, which use those bits to set/display the device  
configuration.  
CD1020  
45  
NXP Semiconductors  
Table 37. Read switch status command  
Register address  
[31–25]  
R
SPI data bits [23 – 0]  
[24]  
bit 23  
bit 22  
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
FAULT  
STATUS  
0011_111  
0
INTflg  
SP7  
SP6  
SP5  
SP4  
SP3  
SP2  
1
bit 15  
SP1  
X
1
bit 14  
SP0  
X
X
bit 13  
SG13  
X
X
bit 12  
SG12  
X
X
bit 11  
SG11  
X
X
bit 10  
SG10  
X
X
X
bit 9  
SG9  
X
bit 8  
SG8  
X
Default After POR  
bit 7  
SG7  
X
bit 6  
SG6  
X
bit 5  
SG5  
X
bit 4  
SG4  
X
bit 3  
SG3  
X
bit 2  
SG2  
X
bit 1  
SG1  
X
bit 0  
SG0  
X
MISO return word  
bit [23]  
bit [22]  
bits [21–14]  
SP7 –SP0 Switch Status  
bits [13–0]  
SG13 – SG0 Switch Status  
FAULT  
STATUS  
0011_1110  
INTflg  
The fault/status diagnostic capability consists of one internal 24-bit register. The content of the fault/status register is shown in Table 38.  
Bits 0 – 21 show the status of each input where logic [1] is a closed switch and logic [0] is an open switch. In addition to input status  
information, fault status such as die over-temp, Hash fault, SPI errors, as well as interrupts are reported.  
A SPI read cycle is initiated by a CS_B logic ‘1’ to ‘0’ transition, followed by 32 SCLK cycles to shift the fault/status registers out the MISO  
pin. The INT_B pin is cleared 1.0 ms after the falling edge of CS_B. The fault is immediately set again if the fault condition is still present.  
The Fault Status bit sets any time a Fault occurs, and the Fault register (Table 39) must be read in order to clear the Fault status flag.  
The intflg bit sets anytime an interrupt event occurs (change of state on switch, any fault status bit gets set). Any SPI message that will  
return intflg bit will clear this flag, even if the event is still occurring. For example an overtemp, will cause an interrupt. The interrupt can  
be cleared but the chip will not interrupt again, based on the overtemp until that fault has gone away.  
Table 38. MISO output register definition  
MISO  
Response  
Sends  
Bit 23 : Fault Status:  
• 0 = No Fault  
• 1 = Indicates a fault has occurred and should be viewed in the fault status register.  
Bit 22 : Intflg:  
• 0 = No Change of state  
• 1 = Change of state detected.  
Bit 21 – 0 : SPx /SGx input status:  
• 0 = Open switch  
• 1 = Closed switch  
CD1020  
NXP Semiconductors  
46  
7.10.24 Fault status register  
To read the fault status bits, the user should first send a message to the IC with the fault status register address followed by any given  
second command. The MISO response from the second command will contain the fault flags information.  
Table 39. Fault status register  
Register address  
[31–25]  
R
[24]  
0
SPI data bits [23 – 0]  
bit 23  
Unused  
0
bit 22  
INTflg  
1
bit 21  
bit 20  
bit 19  
bit 18  
bit 17  
bit 16  
0100_001  
Unused  
0
bit 13  
Unused  
0
0
0
0
0
bit 9  
0
bit 8  
Unused  
0
bit 15  
bit 14  
bit 12  
bit 11  
bit 10  
SPI error  
X
Hash Fault  
X
0
0
0
0
Default After POR  
bit 7  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
WAKE_B  
Wake  
UV  
OV  
TempFlag  
X
OT  
X
INT_B Wake  
X
SPI Wake  
X
POR  
X
X
X
X
MISO return word  
bit [23]  
bit [22]  
bits [21–0]  
FAULT/FLAG BITS  
FAULT  
STATUS  
0100_0010  
INTflg  
Table 40. MISO response for fault status command  
Bit  
Functions  
Default value  
Description  
23  
Unused  
0
Unused  
Reports that an Interrupt has occurred, user should read the status register to determine cause.  
• Set: Various (SGx change of state, SPx change of state, Extended status bits).  
• Reset: Clear of fault or read of Status register  
22  
21–11  
10  
INTflg  
Unused  
SPI error  
X
0
Unused  
Any SPI error generates a bit (Wrong address, incorrect modulo).  
• Set: SPI message error.  
X
• Reset: Read fault status register and no SPI errors.  
SPI register and hash mismatch.  
9
8
7
Hash Fault  
Unused  
UV  
X
0
• Set: Mismatch between SPI registers and hash.  
• Reset: No mismatch and SPI flag read.  
Unused  
Reports that low VBATP voltage was in undervoltage range  
• Set: Voltage drops below UV level.  
X
• Reset: VBATP rises above UV level and flag read (SPI)  
Report that the voltage on VBATP was higher than OV threshold  
• Set: Voltage at VBATP rises above overvoltage threshold.  
• Reset: Overvoltage condition is over and flag read (SPI)  
6
5
4
OV  
Temp Flag  
OT  
X
X
X
Temperature warning to note elevated IC temperature  
• Set: tLIM warning threshold is passed.  
• Reset: Temperature drops below thermal warning threshold + hysteresis and flag read (SPI)  
Tlim event occurred on the IC  
• Set: Tlim warning threshold is passed.  
• Reset: Temperature drops below thermal warning threshold + hysteresis and flag read (SPI)  
CD1020  
47  
NXP Semiconductors  
Table 40. MISO response for fault status command (continued)  
Part awakens via an external INT_B falling edge  
3
2
1
0
INT_B Wake  
WAKE_B Wake  
SPI Wake  
X
X
X
X
• Set: INT_B Wakes the part from LPM (external falling edge)  
• Reset: flag read (SPI).  
Part awakens via an external WAKE_B falling edge  
• Set: External WAKE_B falling edge seen  
• Reset: flag read (SPI).  
Part awaken via a SPI message  
• Set: SPI message wakes the IC from LPM  
• Reset: flag read (SPI).  
Reports a POR event occurred.  
POR  
• Set: Voltage at VBATP pin dropped below VBATP(POR) voltage  
• Reset: flag read (SPI)  
7.10.25 Interrupt request  
The MCU may request an Interrupt pulse of duration 100 μs by sending the Interrupt request command. After an Interrupt request  
command, the CD1020 returns the Interrupt request command word, as well as the Fault status and INTflg bits set if a fault/interrupt event  
occurred. Sending an interrupt request command does not set the INTflg bit itself.  
Table 41. Interrupt request command  
Register address  
[31–25]  
W
[24]  
1
SPI data bits [23 – 0]  
bits [23 – 16]  
0000_0000  
0100_011  
bits [15 – 8]  
0000_0000  
bits [7 – 0]  
0000_0000  
MISO return word  
bit [23]  
bit [22]  
bits [21–0]  
FAULT  
STATUS  
0100_0111  
INTflg  
0
7.10.26 Reset register  
Writing to this register causes all of the SPI registers to reset.  
Table 42. Reset command  
Register address  
[31–25]  
W
[24]  
1
SPI data bits [23 – 0]  
bits [23 – 16]  
0000_0000  
0100_100  
bits [15 – 8]  
0000_0000  
bits [7 – 0]  
0000_0000  
MISO return word  
bit [23]  
bit [22]  
bits [21–0]  
FAULT  
STATUS  
0011_1110  
INTflg  
Switch Status  
CD1020  
NXP Semiconductors  
48  
8
Typical applications  
8.1  
Application diagram  
BATTERY  
ES3AB-13-F  
VDDQ  
VBATP  
A
C
VBATP  
C24  
C26  
C25  
D1 C22  
100uF  
+
0.1uF 1000PF  
0.1uF  
R23  
10K  
R36  
10K  
0
0
U3  
SG0  
SG1  
SG2  
SG3  
SG4  
SG5  
SG6  
SG7  
SG8  
SG9  
SG10  
SG11  
SG12  
SG13  
SG0  
SG1  
SG2  
SG3  
SG4  
SG5  
SG6  
SG7  
SG8  
SG9  
SG10  
SG11  
SG12  
SG13  
5
1
SP0  
SP1  
SP2  
SP3  
SP4  
SP5  
SP6  
SP7  
SP0  
SP1  
SP2  
SP3  
SP4  
SP5  
SP6  
SP7  
R1  
100  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
100  
SG0  
6
SP0  
SP1  
SP2  
SP3  
SP4  
SP5  
SP6  
SP7  
2
R2  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
SG1  
7
3
4
21  
22  
23  
24  
R3  
SG2  
8
R4  
SG3  
9
R5  
SG4  
10  
R6  
SG5  
11  
R7  
SG6  
14  
R8  
SG7  
15  
R9  
SG8  
16  
26  
25  
13  
R10  
R11  
R12  
R13  
R14  
SG9  
17  
AMUX  
INT  
SG10  
18  
INT_B  
SG11  
19  
SG12  
20  
WAKE_B  
SG13  
32  
WAKE  
CS_B  
SCLK  
30  
28  
MOSI  
MISO  
CS  
31  
MOSI  
MISO  
SCLK  
CD1020  
R22  
1K  
0
to MCU  
ADC  
AMUX  
0
C23  
1000PF  
0
0
Figure 22. Typical application diagram  
8.2  
Bill of materials  
Table 43. Bill of materials  
Item Quantity  
Reference  
Value  
Description  
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10,  
C11, C12, C13, C14, C24, C26, C31, C32,  
C33, C34, C35, C36, C37, C38  
1
24  
0.1 μF  
CAP CER 0.1 µF 100 V X7R 10 % 0603  
2
3
4
2
1
1
C23, C25  
C22  
1.0 nF  
100 μF  
CAP CER 1000 pF 100 V 10 % X7R 0603  
CAP ALEL 100 µF 50 V 20 % – SMD  
DIODE RECT 3.0 A 50 V AEC-Q101 SMB  
D1  
R1, R2, R3, R4, R5, R6, R7, R8, R9, R10,  
R11, R12, R13, R14, R24, R25, R26, R27,  
R28, R29, R30, R31  
5
22  
100 Ω  
RES MF 100 Ω 0.5 W 1% 0805  
6
7
8
9
1
1
1
1
R23  
R36  
R22  
U3  
10 kΩ  
10 kΩ  
RES MF 10 kΩ 0.5 W 5 % 0805 (optional)  
RES MF 10 kΩ 0.5 W 5 % 0805  
RES MF 1 kΩ 0.5 W 5 % 0805  
1.0 kΩ  
CD1020  
IC MULTIPLE DETECTION SWITCH INTERFACE QFN 32-pin  
CD1020  
49  
NXP Semiconductors  
8.3  
Abnormal operation  
The CD1020 could be subject to various conditions considered abnormal as defined within this section.  
8.3.1  
Reverse battery  
This device with applicable external components will not be damaged by exposure to reverse battery conditions of –14 V. This test is  
performed for a period of one minute at 25 °C. In addition, this negative voltage condition does not force any of the logic level I/O pins to  
a negative voltage less than –0.6 V at 10 mA or to a positive voltage greater the 5.0 V. This ensures protection of the digital device  
interfacing with this device.  
8.3.2  
Ground offset  
The applicable driver outputs and/or current sense inputs are capable of operation with a ground offset of 1.0 V. The device will not be  
damaged by exposure to this condition and will maintain specified functionality. AMUX output voltage deviates when there are negative  
ground offsets on other SGx/SPx pins.  
8.3.3  
Shorts to ground  
All I/Os of the device that are available at the module connector are protected against shorts to ground with maximum ground offset  
considered, i.e. –1.0 V referenced to device ground or other application specific value. The device will not be damaged by this condition.  
8.3.4  
Shorts to battery  
All I/Os of the device that are available at the module connector are protected against a short to battery (voltage value is application  
dependent, there may be cases where short to jump start or load dump voltage values are required). The device will not be damaged by  
this condition.  
8.3.5  
Unpowered shorts to battery  
All I/Os of the device that are available at the module connector are protected against unpowered (battery to the module is open) shorts  
to battery per application specifics. The device will not be damaged by this condition, will not enable any outputs nor backfeed onto the  
power rails (VBATP, VDDQ) or the digital I/O pins.  
8.3.6  
Loss of module ground  
The definition of a loss of ground condition at the device level is that all pins of the IC detects very low impedance-to-battery. The  
nomenclature is suited to a test environment. In the application, a loss of ground condition results in all I/O pins floating to battery voltage,  
while all externally referenced I/O pins are, at worst case, pulled to ground. All applicable driver outputs and current sense inputs are  
protected against excessive leakage current due to loads that are referenced to an external ground (high-side drivers).  
8.3.7  
Loss of module battery  
The loss of battery condition at the parts level is that the power input pins of the IC see infinite impedance to the battery supply voltage  
(depending upon the application) but there is some undefined impedance looking from these pins to ground. All applicable driver outputs  
and current sense inputs are protected against excessive leakage current due to loads that are referenced to an external battery  
connection (low-side drivers).  
CD1020  
NXP Semiconductors  
50  
9
Packaging  
9.1  
Package mechanical dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and  
perform a keyword search for the drawing’s document number.  
Table 44. Packaging information  
Package  
Suffix  
Package outline drawing number  
32-pin QFN (WF-type)  
ES  
98ASA00656D  
CD1020  
51  
NXP Semiconductors  
CD1020  
NXP Semiconductors  
52  
CD1020  
53  
NXP Semiconductors  
CD1020  
NXP Semiconductors  
54  
10 Reference section  
Table 45. CD1020 reference documents  
Reference  
Description  
CDF-AEC-Q100  
Q-1000  
Stress Test Qualification For Automotive Grade Integrated Circuits  
Qualification Specification for Integrated Circuits  
Specification Conformance  
SQ-1001  
ISO 7637  
Electrical Disturbances from Conduction and Coupling  
Electromagnetic Compatibility  
ISO 61000  
11 Revision history  
Revision  
Date  
Description of changes  
1.0  
6/2017  
Initial release  
Changed document specification state from Product Preview to Advance Information  
Table 3, Maximum ratings  
Deleted VESD6-1, description, parameter, and footnote 5  
Table 6, Static electrical characteristics  
Added footnote ‘AMUX output voltage deviates when there are negative inputs on other SGx/SPx pins.’ to  
VGNDOFFSET and VOFFSET  
Table 7, Dynamic electrical characteristics  
Deleted iINT-TIMER row  
2.0  
2/2018  
Section 7.8, deleted last sentence of section, ‘Since the device is required...’  
Table 11, Device configuration register  
Changed bit 9 from Aconfig1 to Unused  
Changed bit 8 from Aconfig0 to Unused  
Section 7.10.22, AMUX control register  
Changed ‘Internal to the CD1020 is a 24-to-1...’ to ‘Internal to the CD1020 is a 22-to-1...’  
Section 8.2, Bill of materials  
Changed item 9 from ‘...SWITCH INTERFACE SOIC32’ to ‘...SWITCH INTERFACE QFN 32 pin’  
Changed document status from Advance Information to Technical Data  
Added tCSB_WAKEUP parameter to Table 7  
3.0  
4.0  
7/2018  
7/2019  
Updated Figure 22 and Table 43, Bill of materials as per CIN 201907004I  
CD1020  
55  
NXP Semiconductors  
Information in this document is provided solely to enable system and software implementers to use NXP products.  
There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits  
based on the information in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
NXP.com  
Web Support:  
http://www.nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular  
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical"  
parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications,  
and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each  
customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor  
the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the  
following address:  
http://www.nxp.com/terms-of-use.html.  
NXP, the NXP logo, Freescale, the Freescale logo and SMARTMOS are trademarks of NXP Semiconductors B.V.  
All other product or service names are the property of their respective owners. All rights reserved.  
© NXP B.V. 2019  
Document Number: CD1020  
Rev. 4  
7/2019  

相关型号:

935351921557

Multifunction Peripheral
NXP

935351922557

Multifunction Peripheral
NXP

935352043557

Multifunction Peripheral
NXP

935352045557

Multifunction Peripheral
NXP

935352046557

Multifunction Peripheral
NXP

935352047557

Multifunction Peripheral
NXP

935352721557

Multifunction Peripheral
NXP

935352756128

RF Power Field-Effect Transistor
NXP

935352792528

RISC Microcontroller
NXP

935352982518

Multifunction Peripheral
NXP

935352982557

Multifunction Peripheral
NXP

935353606557

RISC Microprocessor
NXP