GTL2009 [NXP]

3-bit GTL Front-Side Bus frequency comparator; 3位GTL前端总线频率比较
GTL2009
型号: GTL2009
厂家: NXP    NXP
描述:

3-bit GTL Front-Side Bus frequency comparator
3位GTL前端总线频率比较

文件: 总17页 (文件大小:88K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GTL2009  
3-bit GTL Front-Side Bus frequency comparator  
Rev. 01 — 22 September 2005  
Product data sheet  
1. General description  
The GTL2009 is designed for the Nocona and Dempsey/Blackford dual Intel Xeon  
processor platforms to compare the Front-Side Bus (FSB) frequency settings and set the  
common FSB frequency at the lowest setting if both processor slots are occupied or the  
FSB setting of the occupied processor slot if only one processor is being used. A default  
FSB frequency of 100 MHz is initially set upon power-up when VDD is greater than 1.5 V.  
Magnitude comparisons and frequency multiplexing to compute the common FSB  
frequency occurs when the two 3-bit FSB GTL inputs from the chip sets are valid. The  
common FSB frequency GTL outputs switch from the default frequency to the computed  
frequency when the GTL reference voltage input (VREF) crosses a static 0.6 V internally  
generated input comparator reference voltage. The GTL2009 then continually monitors  
the FSB frequency and slot occupied inputs for any further changes.  
The Nocona and Dempsey/Blackford Xeon processors specify a VTT of 1.2 V and 1.1 V,  
as well as a nominal Vref of 0.76 V and 0.73 V respectively. To allow for future voltage level  
changes that may extend Vref to 0.63 of VTT (minimum of 0.693 V with VTT of 1.1 V) the  
GTL2009 allows a minimum Vref of 0.66 V. Characterization results show that there is little  
DC or AC performance variation between these levels.  
The GTL2009 is a companion chip to the GTL2006 platform health management  
GTL-to-LVTTL translator and the newer GTL2007 that adds an enable function that  
disables the error output to the monitoring agent for platforms that monitor the individual  
error conditions from each processor.  
2. Features  
Compares FSB frequency inputs to set the lowest frequency as the common bus  
frequency.  
Operates at a range of GTL signal levels  
3.0 V to 3.6 V operation  
LVTTL I/O are not 5 V tolerant  
Companion chip to GTL2006 and GTL2007  
ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per  
JESD22-A115 and 1000 V CDM per JESD22-C101  
Latch-up testing is done to JEDEC Standard JESD78, which exceeds 500 mA  
Available in TSSOP16 package  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
3. Quick reference data  
Table 1:  
Quick reference data  
Tamb = 25 °C  
Symbol Parameter  
Conditions  
Min  
Typ  
Max Unit  
tPLH  
LOW-to-HIGH propagation delay; CL = 30 pF;  
3.0  
16.5  
30  
ns  
BI to BO  
VDD = 3.3 V  
tPHL  
HIGH-to-LOW propagation delay;  
BI to BO  
2.3  
16.2  
30  
ns  
4. Ordering information  
Table 2:  
Ordering information  
Type number Topside  
mark  
Package  
Name  
Description  
Version  
GTL2009PW GTL2009 TSSOP16 plastic thin shrink small outline package;  
16 leads; body width 4.4 mm  
SOT403-1  
5. Functional diagram  
GTL2009  
V
DD  
VREF  
START-UP  
common  
FSB  
A B  
1 = B  
A
BSEL1  
BO1  
BO2  
BO3  
BSEL2  
BSEL3  
MUX  
B
default output is  
101 = 100 MHz  
A - BSEL1  
A - BSEL2  
A - BSEL3  
1BI1  
1BI2  
1BI3  
GTL to TTL  
A
A B  
AO2  
AO1  
A - Occupied#  
active LOW  
active LOW  
1AI  
COMPARE  
equal  
B - Occupied#  
B - BSEL1  
B - BSEL2  
B - BSEL3  
2AI  
2BI1  
2BI2  
2BI3  
B
GTL to TTL  
V
SS  
002aaa997  
If B - Occupied only, then A B = 1.  
If A - Occupied only, then A B = 0.  
If A and B - Occupied, then A B = 1 if A frequency higher than B frequency.  
Pin assignment: A = LVTTL, B = GTL, I = Input, O = Output.  
Refer to Section 7.2 “Default conditions input”.  
Fig 1. Functional diagram of GTL2009  
9397 750 13556  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 22 September 2005  
2 of 17  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
6. Pinning information  
6.1 Pinning  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
1BI1  
1BI2  
1BI3  
1AI  
DD  
VREF  
BO3  
BO2  
BO1  
AO2  
AO1  
GTL2009PW  
2AI  
2BI1  
2BI2  
2BI3  
V
SS  
002aaa996  
Fig 2. Pin configuration for TSSOP16  
6.2 Pin description  
Table 3:  
Symbol  
Pin description  
Pin Type  
Description  
supply voltage  
Vref input voltage  
BSEL3  
VDD  
1
supply  
VREF  
BO3  
BO2  
BO1  
AO2  
AO1  
VSS  
2
Vref  
3
GTL output  
GTL output  
GTL output  
LVTTL output  
LVTTL output  
ground  
4
BSEL2  
5
BSEL1  
6
A B  
7
equal  
8
ground supply  
B-BSEL3  
B-BSEL2  
B-BSEL1  
B-occupied  
A-occupied  
A-BSEL3  
A-BSEL2  
A-BSEL1  
2BI3  
2BI2  
2BI1  
2AI  
9
GTL input  
GTL input  
GTL input  
LVTTL input  
LVTTL input  
GTL input  
GTL input  
GTL input  
10  
11  
12  
13  
14  
15  
16  
1AI  
1BI3  
1BI2  
1BI1  
9397 750 13556  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 22 September 2005  
3 of 17  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
7. Functional description  
Refer to Figure 1 “Functional diagram of GTL2009”.  
7.1 Function tables  
Table 4:  
FSB frequency selection  
BSEL3  
BSEL2  
BSEL1  
FSB  
H
L
L
H
H
H
L
100 MHz  
133 MHz  
166 MHz  
200 MHz  
266 MHz  
333 MHz  
400 MHz  
reserved  
L
L
H
H
L
L
L
L
H
H
H
L
L
H
H
L
H
Table 5:  
FSB frequency comparison  
Default on start-up is 101  
Processor A FSB  
Processor B FSB  
Pins BO1/BO2/BO3  
Common FSB frequency  
A B  
A B  
B
A < B  
A < B  
A
not occupied  
A
B
B
not occupied  
A = B  
A
A = B  
A or B  
Table 6:  
FSB the same output  
Processor A FSB  
Processor B FSB  
Compare  
Pin AO1  
A frequency = B frequency  
A > B  
A < B  
A = B  
A > B  
A < B  
A = B  
no  
L
L
H
no  
yes  
Table 7:  
Pin 1AI  
A-occupied  
L
FSB processor A greater than or equal to processor B output  
Pin 2AI  
B-occupied  
L
Compare  
Pin AO2  
A frequency > B frequency  
yes  
yes  
no  
yes  
X
L
H
H
L
H
L
no  
L
yes  
no  
yes  
no  
H
H
X
H
no  
X
H
9397 750 13556  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 22 September 2005  
4 of 17  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
7.2 Default conditions input  
The FSB GTL output data is masked and a specific default value (100 MHz) is inserted  
upon power-up when VDD is greater than 1.5 V. The FSB GTL output data is unmasked  
and valid data is supplied when the VREF input crosses a static 0.6 V internally generated  
input comparator reference voltage. For slowly rising GTL VTT supply (0.7 V/500 µs), the  
switch-over happens at the 0.6 V threshold. For fast rising GTL VTT supply (0.7 V/100 ns),  
the switch-over typically occurs between 350 ns to 1.5 µs after the 0.6 V threshold is  
exceeded.  
The AO1 and AO2 outputs do not have ‘default conditions’ like those assigned to the GTL  
outputs. Instead, these two pins will power-up according to the conditions applied to the  
1A1 and 2A1 input pins as shown in Table 8. If the slot is occupied, the input is LOW.  
Table 8:  
AO1 and AO2 power-up conditions  
H = HIGH; L = LOW.  
1AI  
L
2AI  
L
VDD  
AO1  
L
AO2  
L
<1.5 V  
>1.5 V  
<1.5 V  
>1.5 V  
<1.5 V  
>1.5 V  
<1.5 V  
>1.5 V  
L
L
H
L
H
L
L
H
H
L
L
L
L
H
H
H
H
L
L
L
L
H
L
H
H
L
H
H
It is important to note that the AO1 and AO2 outputs may be valid a little before 1.5 V and  
will rise with VDD. Valid outputs from the system level perspective will be achieved after  
VDD is in regulation, VTT ramps up, and after the internal propagation delay of the  
GTL2009. No firm answer for this can be given since the time it takes for VDD to be in  
regulation varies from 100 ms to 1000 ms, and the rise time of VTT is unknown. The  
GTL2009 outputs are valid after the GTL inputs are valid plus 19.6 ns (worst-case  
propagation delay of the GTL-to-LVTTL path).  
9397 750 13556  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 22 September 2005  
5 of 17  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
8. Application design-in information  
V
V
TT  
TT  
R
56  
2R  
V
1BI1  
1BI2  
1BI3  
1AI  
DD  
PROCESSOR  
VREF  
BO3  
BO2  
BO1  
AO2  
AO1  
A
common  
front-side bus  
slot A occupied  
slot B occupied  
2AI  
2BI1  
2BI2  
2BI3  
PROCESSOR  
B
V
SS  
002aaa998  
Fig 3. Application diagram  
8.1 Frequently asked questions  
Question 1: When the GTL2009 is unpowered, the LVTTL inputs may be pulled up to  
3.3 V and we want to make sure that there is no leakage path to the power rail under this  
condition. Are the LVTTL inputs high-impedance when the device is unpowered and will  
there be any leakage?  
Answer 1: When the device is unpowered, the LVTTL inputs will be in a high-impedance  
state and will not leak to VDD if they are pulled HIGH or LOW while the device is  
unpowered.  
Question 2: What is the condition of the GTL and LVTTL output pins when the device is  
unpowered?  
Answer 2: The open-drain GTL outputs will not leak to the power supply if they are pulled  
HIGH or allowed to float while the device is unpowered. The GTL inputs will also not leak  
to the power supply under the same conditions. The LVTTL totem pole outputs, however,  
are not open-drain type outputs and there will be current flow on these pins if they are  
pulled HIGH when VDD is at ground.  
9397 750 13556  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 22 September 2005  
6 of 17  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
9. Limiting values  
Table 9:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). [1]  
Voltages are referenced to VSS (ground = 0 V).  
Symbol Parameter  
Conditions  
Min  
Max  
+4.6  
50  
+4.6  
50  
50  
+4.6  
+4.6  
24  
Unit  
V
VDD  
IIK  
supply voltage  
0.5  
input clamping current  
input voltage  
VI < 0 V  
-
mA  
V
[3]  
[3]  
VI  
A port (LVTTL)  
0.5  
B port (GTL)  
-
mA  
mA  
V
IOK  
VO  
output clamping current  
output voltage  
VO < 0 V  
-
[3]  
[3]  
output in Off or HIGH state; A port  
0.5  
output in Off or HIGH state; B port  
0.5  
V
IOL  
LOW-state output current[4]  
A port  
B port  
A port  
-
mA  
mA  
mA  
°C  
°C  
-
30  
IOH  
Tstg  
Tj  
HIGH-state output current[5]  
storage temperature  
-
24  
+150  
+125  
60  
[2]  
junction temperature  
-
[1] Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the  
device at these or any other conditions beyond those indicated under Section 10 “Recommended operating conditions” is not implied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
[2] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction  
temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.  
[3] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.  
[4] Current into any output in the LOW state.  
[5] Current into any output in the HIGH state.  
10. Recommended operating conditions  
Table 10: Recommended operating conditions  
Symbol  
VDD  
VTT  
Parameter  
Conditions  
Min  
Typ  
Max  
3.6  
-
Unit  
V
supply voltage  
termination voltage  
reference voltage  
input voltage  
3.0  
3.3  
GTL  
-
1.2  
V
Vref  
GTL  
0.66  
0.8  
1.1  
3.6  
3.6  
-
V
VI  
A port  
0
3.3  
V
B port  
0
VTT  
V
VIH  
VIL  
HIGH-state input voltage  
LOW-state input voltage  
A port  
2
-
-
-
-
-
-
-
-
V
B port  
Vref + 0.050  
-
V
A port  
-
0.8  
V
B port  
-
Vref 0.050  
V
IOH  
IOL  
HIGH-state output current  
LOW-state output current  
A port  
-
–12  
12  
mA  
mA  
mA  
°C  
A port  
-
B port  
-
15  
Tamb  
ambient temperature  
operating in free air  
40  
+85  
9397 750 13556  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 22 September 2005  
7 of 17  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
11. Static characteristics  
Table 11: Static characteristics  
Over recommended operating conditions. Voltages are referenced to VSS (ground = 0 V). Tamb = 40 °C to +85 °C.  
Symbol Parameter  
VOH HIGH-level output voltage; A port  
Conditions  
Min  
Typ [1]  
Max  
Unit  
[2]  
VDD = 3.0 V to 3.6 V;  
VDD 0.2 2.99  
-
V
IOH = 100 µA  
[2]  
[2]  
[2]  
[2]  
VDD = 3.0 V; IOH = 16 mA  
VDD = 3.0 V; IOL = 8 mA  
VDD = 3.0 V; IOL = 12 mA  
VDD = 3.0 V; IOL = 15 mA  
VDD = 3.6 V; VI = VDD  
2.1  
2.37  
-
V
VOL  
LOW-level output voltage; A port  
-
-
-
-
-
-
-
-
0.27  
0.4  
0.55  
0.4  
± 1  
± 1  
± 1  
± 1  
10  
V
0.4  
V
LOW-level output voltage; B port  
input current; A port  
0.11  
V
II  
-
µA  
µA  
µA  
µA  
mA  
VDD = 3.6 V; VI = 0 V  
-
input current; B port  
VDD = 3.6 V; VI = VTT or VSS  
VDD = 3.6 V; VO = VTT  
-
ILO  
IDD  
output leakage current; B port  
supply current; A or B port  
-
VDD = 3.6 V; VI = VDD or VSS  
IO = 0 mA  
;
5.5  
[3]  
IDD  
additional quiescent supply current; VDD = 3.6 V; VI = VDD 0.6 V  
-
32  
500  
µA  
A port or control inputs  
Cio  
input/output capacitance; A port  
input/output capacitance; B port  
VO = 3.0 V or 0 V  
VO = VTT or 0 V  
-
-
7.8  
4.5  
-
-
pF  
pF  
[1] All typical values are measured at VDD = 3.3 V and Tamb = 25 °C.  
[2] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.  
[3] This is the increase in supply current for each input that is at the specified LVTTL voltage level, rather than VDD or VSS  
.
9397 750 13556  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 22 September 2005  
8 of 17  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
12. Dynamic characteristics  
Table 12: Dynamic characteristics  
VDD = 3.3 V ± 0.3 V  
Symbol Parameter  
Conditions  
Limits  
Vref = 0.76 V;  
TT = 1.2 V  
Min Typ [1] Max  
Unit  
Vref = 0.73 V;  
TT = 1.1 V  
Min Typ [1] Max  
V
V
tPLH  
tPHL  
tPLH  
tPHL  
tPLH  
tPHL  
LOW-to-HIGH propagation delay; AI to AO Figure 4and  
Figure 8  
1.4  
2.0  
2.6  
2.8  
3.0  
2.3  
7.9  
9.0  
14.5  
16.0  
30.0  
25.0  
30.0  
30.0  
1.4  
2.0  
2.5  
2.9  
3.0  
2.3  
7.8  
8.8  
14.5 ns  
HIGH-to-LOW propagation delay; AI to AO  
16.0 ns  
30.5 ns  
25.0 ns  
30.0 ns  
30.0 ns  
LOW-to-HIGH propagation delay; BI to AO Figure 6  
HIGH-to-LOW propagation delay; BI to AO  
16.3  
13.9  
16.5  
16.2  
16.5  
14.0  
16.5  
16.2  
LOW-to-HIGH propagation delay; BI to BO Figure 7  
HIGH-to-LOW propagation delay; BI to  
BO  
tPLH  
tPHL  
LOW-to-HIGH propagation delay; AI to BO Figure 5  
2.1  
1.4  
7.9  
7.3  
14.0  
13.5  
2.0  
1.5  
8.3  
7.7  
14.5 ns  
14.0 ns  
HIGH-to-LOW propagation delay; AI to  
BO  
[1] All typical values are at VDD = 3.3 V and Tamb = 25 °C.  
9397 750 13556  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 22 September 2005  
9 of 17  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
12.1 AC waveforms  
VM = 1.5 V at VDD 3.0 V for A ports; VM = Vref for B ports.  
t
3.0 V  
p
V
OH  
input  
1.5 V  
1.5 V  
V
V
M
M
0 V  
0 V  
t
t
PHL  
PLH  
002aaa999  
V
V
TT  
OL  
VM = 1.5 V for A port and Vref for B port.  
VOH = 3 V for A port and VTT for B port  
tp = pulse duration  
output  
V
V
ref  
ref  
002aab000  
Fig 4. Pulse duration  
Fig 5. Propagation delay, A port to B port  
V
1
V
TT  
TT  
input  
V
V
input  
V
V
ref  
ref  
ref  
ref  
1
/ V  
3
/ V  
3 TT  
TT  
t
t
PHL  
PLH  
t
t
PHL  
PLH  
V
V
V
OH  
OL  
TT  
OL  
output  
1.5 V  
1.5 V  
output  
V
V
ref  
ref  
V
002aab001  
002aab003  
PRR 10 MHz; Zo = 50 ; tr 2.5 ns; tf 2.5 ns  
Fig 6. Propagation delay, BI to AO  
Fig 7. Propagation delay, BI to BO  
3.0 V  
0 V  
3.0 V  
0 V  
input  
1.5 V  
1.5 V  
input  
1.5 V  
1.5 V  
t
t
t
t
PHL  
PLH  
PHL  
PLH  
V
V
V
OH  
OL  
OH  
1.5 V  
output  
1.5 V  
output  
1.5 V  
1.5 V  
V
OL  
002aab004  
002aab664  
Fig 8. Propagation delay, AI to AO  
Fig 9. Propagation delay, 1AI to AO2  
9397 750 13556  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 22 September 2005  
10 of 17  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
13. Test information  
V
DD  
V
V
I
O
PULSE  
GENERATOR  
D.U.T.  
R
500 Ω  
C
50 pF  
L
L
R
T
002aab006  
Fig 10. Load circuitry for A outputs  
V
TT  
V
DD  
50 Ω  
V
V
O
I
PULSE  
GENERATOR  
D.U.T.  
C
30 pF  
L
R
T
002aab007  
Fig 11. Load circuit for B outputs  
Definitions:  
RL load resistor  
CL load capacitance includes jig and probe capacitance.  
RT termination resistance should be equal to Zo of pulse generators.  
9397 750 13556  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 22 September 2005  
11 of 17  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
14. Package outline  
TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm  
SOT403-1  
D
E
A
X
c
y
H
v
M
A
E
Z
9
16  
Q
(A )  
3
A
2
A
A
1
pin 1 index  
θ
L
p
L
1
8
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
5.1  
4.9  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.40  
0.06  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT403-1  
MO-153  
Fig 12. Package outline SOT403-1 (TSSOP16)  
9397 750 13556  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 22 September 2005  
12 of 17  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
15. Soldering  
15.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
15.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
15.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
9397 750 13556  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 22 September 2005  
13 of 17  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
15.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
15.5 Package related soldering information  
Table 13: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
9397 750 13556  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 22 September 2005  
14 of 17  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
16. Abbreviations  
Table 14: Abbreviations  
Acronym  
CDM  
ESD  
Definition  
Charged Device Model  
Electrostatic Discharge  
Front-Side Bus  
FSB  
GTL  
Gunning Transceiver Logic  
Human Body Model  
HBM  
LVTTL  
MM  
Low Voltage Transistor-Transistor Logic  
Machine Model  
PRR  
Pulse Rate Repetition  
17. Revision history  
Table 15: Revision history  
Document ID  
Release date Data sheet status  
20050922 Product data sheet  
Change notice Doc. number  
9397 750 13556  
Supersedes  
GTL2009_1  
-
-
9397 750 13556  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 22 September 2005  
15 of 17  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
18. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
19. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
21. Trademarks  
Notice — All referenced brands, product names, service names and  
20. Disclaimers  
trademarks are the property of their respective owners.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
22. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 13556  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Product data sheet  
Rev. 01 — 22 September 2005  
16 of 17  
GTL2009  
Philips Semiconductors  
3-bit GTL Front-Side Bus frequency comparator  
23. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
7.1  
7.2  
Functional description . . . . . . . . . . . . . . . . . . . 4  
Function tables . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Default conditions input . . . . . . . . . . . . . . . . . . 5  
8
8.1  
9
Application design-in information . . . . . . . . . . 6  
Frequently asked questions . . . . . . . . . . . . . . . 6  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Recommended operating conditions. . . . . . . . 7  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 8  
Dynamic characteristics . . . . . . . . . . . . . . . . . . 9  
AC waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 10  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 11  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 12  
10  
11  
12  
12.1  
13  
14  
15  
15.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 13  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 13  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 14  
Package related soldering information . . . . . . 14  
15.2  
15.3  
15.4  
15.5  
16  
17  
18  
19  
20  
21  
22  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 15  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 16  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Contact information . . . . . . . . . . . . . . . . . . . . 16  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 22 September 2005  
Document number: 9397 750 13556  
Published in The Netherlands  

相关型号:

GTL2009PW

3-bit GTL Front-Side Bus frequency comparator
NXP

GTL2010

10-bit GTL Processor Voltage Clamp
NXP

GTL2010

10-BIT BIDIRECTIONAL LOW-VOLTAGE TRANSLATOR
TI

GTL2010BS

10-bit bidirectional low voltage translator
NXP

GTL2010BS-T

NXP bidirectional low-voltage translators
NXP

GTL2010DB

VOLTAGE CLAMP|MOS|TSSOP|24PIN|PLASTIC
ETC

GTL2010PW

10-bit GTL Processor Voltage Clamp
NXP

GTL2010PW,112

GTL2010 - 10-bit bidirectional low voltage translator TSSOP2 24-Pin
NXP

GTL2010PW-T

NXP bidirectional low-voltage translators
NXP

GTL2010PWDH

10-bit GTL Processor Voltage Clamp
NXP

GTL2010_07

10-BIT BIDIRECTIONAL LOW-VOLTAGE TRANSLATOR
TI

GTL2012

2-bit LVTTL to GTL transceiver
NXP