GTL2010PW,112 [NXP]

GTL2010 - 10-bit bidirectional low voltage translator TSSOP2 24-Pin;
GTL2010PW,112
型号: GTL2010PW,112
厂家: NXP    NXP
描述:

GTL2010 - 10-bit bidirectional low voltage translator TSSOP2 24-Pin

光电二极管 接口集成电路
文件: 总20页 (文件大小:118K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GTL2010  
10-bit bidirectional low voltage translator  
Rev. 06 — 3 March 2008  
Product data sheet  
1. General description  
The Gunning Transceiver Logic - Transceiver Voltage Clamps (GTL-TVC) provide  
high-speed voltage translation with low ON-state resistance and minimal propagation  
delay. The GTL2010 provides 10 NMOS pass transistors (Sn and Dn) with a common gate  
(GREF) and a reference transistor (SREF and DREF). The device allows bidirectional  
voltage translations between 1.0 V and 5.0 V without use of a direction pin.  
When the Sn or Dn port is LOW, the clamp is in the ON-state and a low resistance  
connection exists between the Sn and Dn ports. Assuming the higher voltage is on the Dn  
port, when the Dn port is HIGH the voltage on the Sn port is limited to the voltage set by  
the reference transistor (SREF). When the Sn port is HIGH, the Dn port is pulled to VCC by  
the pull-up resistors. This functionality allows a seamless translation between higher and  
lower voltages selected by the user, without the need for directional control.  
All transistors have the same electrical characteristics and there is minimal deviation from  
one output to another in voltage or propagation delay. This is a benefit over discrete  
transistor voltage translation solutions, since the fabrication of the transistors is  
symmetrical. Because all transistors in the device are identical, SREF and DREF can be  
located on any of the other ten matched Sn/Dn transistors, allowing for easier board  
layout. The translator's transistors provide excellent ESD protection to lower voltage  
devices and at the same time protect less ESD-resistant devices.  
2. Features  
I 10-bit bidirectional low voltage translator  
I Allows voltage level translation between 1.0 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.3 V, and 5 V  
buses, which allows direct interface with GTL, GTL+, LVTTL/TTL and 5 V CMOS levels  
I Provides bidirectional voltage translation with no direction pin  
I Low 6.5 ON-state resistance (Ron) between input and output pins (Sn/Dn)  
I Supports hot insertion  
I No power supply required: will not latch up  
I 5 V tolerant inputs  
I Low standby current  
I Flow-through pinout for ease of printed-circuit board trace routing  
I ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per  
JESD22-A115, and 1000 V CDM per JESD22-C101  
I Packages offered: TSSOP24, HVQFN24  
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
3. Applications  
I Any application that requires bidirectional or unidirectional voltage level translation  
from any voltage from 1.0 V to 5.0 V to any voltage from 1.0 V to 5.0 V  
I The open-drain construction with no direction pin is ideal for bidirectional low voltage  
(for example, 1.0 V, 1.2 V, 1.5 V or 1.8 V) processor I2C-bus port translation to the  
normal 3.3 V and/or 5.0 V I2C-bus signal levels or GTL/GTL+ translation to LVTTL/TTL  
signal levels  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
GTL2010PW  
GTL2010BS  
TSSOP24  
plastic thin shrink small outline package; 24 leads;  
body width 4.4 mm  
SOT355-1  
HVQFN24  
plastic thermal enhanced very thin quad flat package; SOT616-1  
no leads; 24 terminals; body 4 × 4 × 0.85 mm  
4.1 Ordering options  
Table 2.  
Ordering options  
Type number  
GTL2010PW  
GTL2010BS  
Topside mark  
GTL2010  
2010  
Temperature range  
40 °C to +85 °C  
40 °C to +85 °C  
5. Functional diagram  
DREF  
GREF  
D1  
D10  
SREF  
S1  
S10  
002aac059  
Fig 1. Functional diagram  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
2 of 20  
 
 
 
 
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
6. Pinning information  
6.1 Pinning  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GND  
SREF  
S1  
GREF  
DREF  
D1  
terminal 1  
index area  
3
4
S2  
D2  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
S2  
S3  
S4  
S5  
S6  
S7  
D2  
D3  
D4  
D5  
D6  
D7  
5
S3  
D3  
6
S4  
D4  
GTL2010PW  
GTL2010BS  
7
S5  
D5  
8
S6  
D6  
9
S7  
D7  
10  
11  
12  
S8  
D8  
S9  
D9  
002aac058  
S10  
D10  
002aac057  
Transparent top view  
Fig 2. Pin configuration for TSSOP24  
Fig 3. Pin configuration for HVQFN24  
6.2 Pin description  
Table 3.  
Symbol  
Pin description  
Pin  
Description  
TSSOP24  
HVQFN24  
22[1]  
GND  
1
2
ground (0 V)  
SREF  
23  
source of reference transistor  
S1 to S10  
3, 4, 5, 6, 7, 8, 9, 24, 1, 2, 3, 4, 5, 6, Port S1 to Port S10  
10, 11, 12 7, 8, 9  
D1 to D10  
22, 21, 20, 19, 18, 19, 18, 17, 16, 15, Port D1 to Port D10  
17, 16, 15, 14, 13 14, 13, 12, 11, 10  
DREF  
GREF  
23  
24  
20  
21  
drain of reference transistor  
gate of reference transistor  
[1] HVQFN24 package die supply ground is connected to both GND pin and exposed center pad. GND pin  
must be connected to supply ground for proper device operation. For enhanced thermal, electrical, and  
board level performance, the exposed pad needs to be soldered to the board using a corresponding  
thermal pad on the board and for proper heat conduction through the board, thermal vias need to be  
incorporated in the printed-circuit board in the thermal pad region.  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
3 of 20  
 
 
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
7. Functional description  
Refer also to Figure 1 “Functional diagram”.  
7.1 Function selection  
Table 4.  
Function selection, HIGH-to-LOW translation  
Assumes Dn is at the higher voltage level.  
H = HIGH voltage level; L = LOW voltage level; X = Don’t care  
GREF[1]  
DREF  
SREF[2]  
Input Dn  
Output Sn  
Transistor  
H
H
H
L
H
H
H
L
0 V  
X
H
L
X
off  
on  
on  
off  
[3]  
VT  
VT  
L[4]  
VT  
0 V VT  
X
X
[1] GREF should be at least 1.5 V higher than SREF for best translator operation.  
[2] VT is equal to the SREF voltage.  
[3] Sn is not pulled up or pulled down.  
[4] Sn follows the Dn input LOW.  
Table 5.  
Function selection, LOW-to-HIGH translation  
Assumes Dn is at the higher voltage level.  
H = HIGH voltage level; L = LOW voltage level; X = Don’t care  
GREF[1]  
DREF  
SREF[2]  
Input Sn  
Output Dn  
Transistor  
H
H
H
L
H
H
H
L
0 V  
X
X
off  
VT  
VT  
L
H[3]  
L[4]  
X
nearly off  
VT  
on  
off  
0 V VT  
X
[1] GREF should be at least 1.5 V higher than SREF for best translator operation.  
[2] VT is equal to the SREF voltage.  
[3] Dn is pulled up to VCC through an external resistor.  
[4] Dn follows the Sn input LOW.  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
4 of 20  
 
 
 
 
 
 
 
 
 
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
8. Application design-in information  
8.1 Bidirectional translation  
For the bidirectional clamping configuration, higher voltage to lower voltage or lower  
voltage to higher voltage, the GREF input must be connected to DREF and both pins  
pulled to HIGH side VCC through a pull-up resistor (typically 200 k). A filter capacitor on  
DREF is recommended. The processor output can be totem pole or open-drain (pull-up  
resistors may be required) and the chip set output can be totem pole or open-drain  
(pull-up resistors are required to pull the Dn outputs to VCC). However, if either output is  
totem pole, data must be unidirectional or the outputs must be 3-stateable and the outputs  
must be controlled by some direction control mechanism to prevent HIGH-to-LOW  
contentions in either direction. If both outputs are open-drain, no direction control is  
needed. The opposite side of the reference transistor (SREF) is connected to the  
processor core power supply voltage. When DREF is connected through a 200 kresistor  
to a 3.3 V to 5.5 V VCC supply and SREF is set between 1.0 V to (VCC 1.5 V), the output  
of each Sn has a maximum output voltage equal to SREF and the output of each Dn has  
a maximum output voltage equal to VCC  
.
1.8 V  
1.5 V  
1.2 V  
1.0 V  
5 V  
200 k  
totem pole or  
open-drain I/O  
GND  
SREF  
S1  
GREF  
DREF  
D1  
V
V
CORE  
CC  
CPU I/O  
CHIPSET I/O  
S2  
D2  
increase bit size  
by using 10-bit GTL2010  
or 22-bit GTL2000  
3.3 V  
V
CC  
S3  
S4  
S5  
Sn  
D3  
D4  
D5  
Dn  
CHIPSET I/O  
002aac060  
Typical bidirectional voltage translation.  
Fig 4. Bidirectional translation to multiple higher voltage levels such as an I2C-bus  
application  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
5 of 20  
 
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
8.2 Unidirectional down translation  
For unidirectional clamping, higher voltage to lower voltage, the GREF input must be  
connected to DREF and both pins pulled to the higher side VCC through a pull-up resistor  
(typically 200 k). A filter capacitor on DREF is recommended. Pull-up resistors are  
required if the chip set I/Os are open-drain. The opposite side of the reference transistor  
(SREF) is connected to the processor core supply voltage. When DREF is connected  
through a 200 kresistor to a 3.3 V to 5.5 V VCC supply and SREF is set between 1.0 V  
to (VCC 1.5 V), the output of each Sn has a maximum output voltage equal to SREF.  
1.8 V  
1.5 V  
1.2 V  
1.0 V  
5 V  
200 kΩ  
easy migration to lower voltage  
as processor geometry shrinks  
GND  
SREF  
S1  
GREF  
DREF  
D1  
V
V
CORE  
CC  
CPU I/O  
CHIPSET I/O  
S2  
D2  
totem pole I/O  
002aac061  
Typical unidirectional HIGH-to-LOW voltage translation.  
Fig 5. Unidirectional down translation to protect low voltage processor pins  
8.3 Unidirectional up translation  
For unidirectional up translation, lower voltage to higher voltage, the reference transistor is  
connected the same as for a down translation. A pull-up resistor is required on the higher  
voltage side (Dn or Sn) to get the full HIGH level, since the GTL-TVC device will only pass  
the reference source (SREF) voltage as a HIGH when doing an up translation. The driver  
on the lower voltage side only needs pull-up resistors if it is open-drain.  
1.8 V  
1.5 V  
1.2 V  
1.0 V  
5 V  
200 kΩ  
easy migration to lower voltage  
as processor geometry shrinks  
GND  
SREF  
S1  
GREF  
DREF  
D1  
V
V
CORE  
CC  
CPU I/O  
CHIPSET I/O  
S2  
D2  
totem pole I/O  
or open-drain  
002aac062  
Typical unidirectional LOW-to-HIGH voltage translation.  
Fig 6. Unidirectional down translation to protect low voltage processor pins  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
6 of 20  
 
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
8.4 Sizing pull-up resistor  
The pull-up resistor value needs to limit the current through the pass transistor when it is  
in the ‘on’ state to about 15 mA. This will guarantee a pass voltage of 260 mV to 350 mV.  
If the current through the pass transistor is higher than 15 mA, the pass voltage will also  
be higher in the ‘on’ state. To set the current through each pass transistor at 15 mA, the  
pull-up resistor value is calculated as shown in Equation 1:  
pull-up voltage (V) 0.35 V  
resistor value (Ω) =  
(1)  
-------------------------------------------------------------------------------  
0.015 A  
Table 6 summarizes resistor values for various reference voltages and currents at 15 mA  
and also at 10 mA and 3 mA. The resistor value shown in the + 10 % column or a larger  
value should be used to ensure that the pass voltage of the transistor would be 350 mV or  
less. The external driver must be able to sink the total current from the resistors on both  
sides of the GTL-TVC device at 0.175 V, although the 15 mA only applies to current  
flowing through the GTL-TVC device. See application note AN10145, “Bi-directional low  
voltage translators” for more information.  
Table 6.  
Voltage  
Pull-up resistor values  
Pull-up resistor value ()[1]  
15 mA[2]  
10 mA[2]  
3 mA[2]  
Nominal  
Nominal  
310  
197  
143  
97  
+ 10 %[3]  
Nominal  
465  
+ 10 %[3]  
+ 10 %[3]  
1705  
1082  
788  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
1.5 V  
1.2 V  
341  
217  
158  
106  
85  
512  
1550  
983  
717  
483  
383  
283  
295  
325  
215  
237  
145  
160  
532  
77  
115  
127  
422  
57  
63  
85  
94  
312  
[1] Calculated for VOL = 0.35 V.  
[2] Assumes output driver VOL = 0.175 V at stated current.  
[3] + 10 % to compensate for VCC range and resistor tolerance.  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
7 of 20  
 
 
 
 
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
9. Limiting values  
Table 7.  
Limiting values[1]  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter Conditions  
Min  
0.5  
0.5  
0.5  
0.5  
0.5  
-
Max  
+7.0  
+7.0  
+7.0  
+7.0  
+7.0  
50  
Unit  
V
[2]  
[2]  
[2]  
[2]  
[2]  
VSREF  
VDREF  
VGREF  
VSn  
voltage on pin SREF  
voltage on pin DREF  
voltage on pin GREF  
voltage on port Sn  
voltage on port Dn  
V
V
V
VDn  
V
IREFK  
ISK  
diode current on reference pins VI < 0 V  
mA  
mA  
mA  
mA  
diode current Port Sn  
diode current Port Dn  
clamp current per channel  
VI < 0 V  
VI < 0 V  
-
50  
IDK  
-
50  
IMAX  
channel in  
ON-state  
-
±128  
Tstg  
storage temperature  
65  
+150  
°C  
[1] The performance capability of a high-performance integrated circuit in conjunction with its thermal  
environment can create junction temperatures which are detrimental to reliability. The maximum junction  
temperature of this integrated circuit should not exceed 150 °C.  
[2] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings  
are observed.  
10. Recommended operating conditions  
Table 8.  
Recommended operating conditions  
Symbol Parameter  
Conditions  
Min  
0
Typ  
Max  
5.5  
5.5  
5.5  
5.5  
64  
Unit  
V
VI/O  
voltage on an input/output pin Sn, Dn  
-
-
-
-
-
-
[1]  
VSREF  
VDREF  
VGREF  
IPASS  
Tamb  
voltage on pin SREF  
voltage on pin DREF  
voltage on pin GREF  
pass transistor current  
ambient temperature  
0
V
0
V
0
V
-
mA  
°C  
operating in free air  
40  
+85  
[1]  
VSREF VDREF 1.5 V for best results in level shifting applications.  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
8 of 20  
 
 
 
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
11. Static characteristics  
Table 9.  
Static characteristics  
Tamb = 40 °C to +85 °C, unless otherwise specified.  
Symbol  
Parameter  
LOW-level output voltage VCC = 3.0 V; VSREF = 1.365 V;  
Sn or VDn = 0.175 V; Iclamp = 15.2 mA  
II = 18 mA; VGREF = 0 V  
Conditions  
Min  
Typ[1]  
Max  
Unit  
VOL  
-
260  
350  
mV  
V
VIK  
input clamping voltage  
-
-
-
-
-
1.2  
V
ILI(G)  
Cig  
gate input leakage current VI = 5 V; VGREF = 0 V  
input capacitance at gate VI = 3 V or 0 V  
-
5
-
µA  
pF  
pF  
56  
7.4  
Cio(off)  
off-state input/output  
capacitance  
VO = 3 V or 0 V; VGREF = 0 V  
-
Cio(on)  
Ron  
on-state input/output  
capacitance  
VO = 3 V or 0 V; VGREF = 3 V  
-
18.6  
-
pF  
[2]  
ON-state resistance  
VI = 0 V; IO = 64 mA  
VGREF = 4.5 V  
-
-
-
-
-
-
-
-
3.5  
4.4  
5.5  
67  
9
5
VGREF = 3 V  
7
VGREF = 2.3 V  
9
VGREF = 1.5 V  
115  
15  
10  
80  
70  
[2]  
[2]  
[2]  
[2]  
VI = 0 V; IO = 30 mA; VGREF = 1.5 V  
VI = 2.4 V; IO = 15 mA; VGREF = 4.5 V  
VI = 2.4 V; IO = 15 mA; VGREF = 3 V  
VI = 1.7 V; IO = 15 mA; VGREF = 2.3 V  
7
58  
50  
[1] All typical values are measured at Tamb = 25 °C.  
[2] Measured by the voltage drop between the Sn and the Dn terminals at the indicated current through the switch. ON-state resistance is  
determined by the lowest voltage of the two (Sn or Dn) terminals.  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
9 of 20  
 
 
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
12. Dynamic characteristics  
12.1 Dynamic characteristics for translator-type application  
Table 10. Dynamic characteristics  
Tamb = 40 °C to +85 °C; Vref = 1.365 V to 1.635 V; VCC1 = 3.0 V to 3.6 V; VCC2 = 2.36 V to 2.64 V; GND = 0 V; tr = tf 3.0 ns;  
unless otherwise specified. Refer to Figure 9.  
Symbol  
tPLH  
Parameter  
Conditions  
Min  
0.5  
0.5  
Typ[1]  
1.5  
Max  
5.5  
Unit  
ns  
[2][3]  
[2][3]  
LOW-to-HIGH propagation delay  
HIGH-to-LOW propagation delay  
Sn to Dn; Dn to Sn  
Sn to Dn; Dn to Sn  
tPHL  
1.5  
5.5  
ns  
[1] All typical values are measured at VCC1 = 3.3 V, VCC2 = 2.5 V, Vref = 1.5 V and Tamb = 25 °C.  
[2] Propagation delay guaranteed by characterization.  
[3] Cio(on)(max) of 30 pF and Cio(off)(max) of 15 pF is guaranteed by design.  
V
I
input  
V
V
M
M
GND  
t
t
PLH0  
PHL0  
V
V
V
V
CC2  
test jig output  
HIGH-to-LOW  
LOW-to-HIGH  
V
M
V
M
OL  
t
t
PLH  
PHL  
t
t
PLH1  
PHL1  
CC2  
DUT output  
HIGH-to-LOW  
LOW-to-HIGH  
V
V
M
M
OL  
002aac063  
VM = 1.5 V; VI = GND to 3.0 V  
Fig 7. The input (Sn) to output (Dn) propagation delays  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
10 of 20  
 
 
 
 
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
12.2 Dynamic characteristics for CBT-type application  
Table 11. Dynamic characteristics  
Tamb = 40 °C to +85 °C; VGREF = 5 V ± 0.5 V; GND = 0 V; CL = 50 pF; unless otherwise specified. Refer to Figure 10.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
tPD  
propagation delay  
-
-
250  
ps  
[1] This parameter is warranted but not production tested. The propagation delay is based on the RC time constant of the typical ON-state  
resistance of the switch and a load capacitance of 50 pF, when driven by an ideal voltage source (zero output impedance).  
3.0 V  
input  
1.5 V  
1.5 V  
0 V  
V
t
t
PHL  
PLH  
OH  
output  
1.5 V  
1.5 V  
V
OL  
002aab664  
tPD = the maximum of tPLH or tPHL  
.
VM = 1.5 V; VI = GND to 3.0 V.  
Fig 8. Input (Sn) to output (Dn) propagation delays  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
11 of 20  
 
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
13. Test information  
V
V
V
V
CC1  
200 kΩ  
CC2  
150 Ω  
CC2  
CC2  
150 Ω  
150 Ω  
DREF  
SREF  
GREF  
D1  
S1  
D10  
S10  
DUT  
test jig  
V
ref  
pulse  
generator  
002aac064  
Fig 9. Load circuit for translator-type applications  
R
L
7 V  
S1  
from output under test  
open  
GND  
500 Ω  
C
50 pF  
R
L
500 Ω  
L
002aab667  
Test data are given in Table 12.  
CL = load capacitance; includes jig and probe capacitance.  
RL = load resistance.  
Fig 10. Load circuit for CBT-type application  
Table 12. Test data  
Test  
Load  
CL  
Switch  
RL  
tPD  
50 pF  
50 pF  
50 pF  
500 Ω  
500 Ω  
500 Ω  
open  
7 V  
tPLZ, tPZL  
tPHZ, tPZH  
open  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
12 of 20  
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
14. Package outline  
TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm  
SOT355-1  
D
E
A
X
c
H
v
M
A
y
E
Z
13  
24  
Q
A
2
(A )  
3
A
A
1
pin 1 index  
θ
L
p
L
1
12  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
7.9  
7.7  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.5  
0.2  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT355-1  
MO-153  
Fig 11. Package outline SOT355-1 (TSSOP24)  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
13 of 20  
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
HVQFN24: plastic thermal enhanced very thin quad flat package; no leads;  
24 terminals; body 4 x 4 x 0.85 mm  
SOT616-1  
B
A
D
terminal 1  
index area  
A
A
1
E
c
detail X  
e
1
C
1/2 e  
y
y
C
1
e
v
M
M
C
C
A
B
b
7
12  
w
L
13  
6
e
e
E
h
2
1/2 e  
1
18  
terminal 1  
index area  
24  
19  
X
D
h
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
(1)  
(1)  
UNIT  
mm  
A
b
c
E
e
e
e
2
y
D
D
E
L
v
w
y
1
1
h
1
h
max.  
0.05 0.30  
0.00 0.18  
4.1  
3.9  
2.25  
1.95  
4.1  
3.9  
2.25  
1.95  
0.5  
0.3  
0.05  
0.1  
1
0.2  
0.5  
2.5  
2.5  
0.1 0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
01-08-08  
02-10-22  
SOT616-1  
- - -  
MO-220  
- - -  
Fig 12. Package outline SOT616-1 (HVQFN24)  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
14 of 20  
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
15. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
15.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
15.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
15.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
15 of 20  
 
 
 
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
15.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 13) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 13 and 14  
Table 13. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 14. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 13.  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
16 of 20  
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 13. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
16. Abbreviations  
Table 15. Abbreviations  
Acronym  
CDM  
CMOS  
DUT  
Description  
Charged Device Model  
Complementary Metal Oxide Semiconductor  
Device Under Test  
ESD  
ElectroStatic Discharge  
GTL  
Gunning Transceiver Logic  
Human Body Model  
HBM  
I2C-bus  
LVTTL  
MM  
Inter IC bus  
Low Voltage Transistor-Transistor Logic  
Machine Model  
NMOS  
TTL  
Negative-channel Metal Oxide Semiconductor  
Transistor-Transistor Logic  
Transceiver Voltage Clamps  
TVC  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
17 of 20  
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
17. Revision history  
Table 16. Revision history  
Document ID  
GTL2010_6  
Release date  
Data sheet status  
Change notice  
Supersedes  
20080303  
Product data sheet  
-
GTL2010_5  
Modifications:  
The format of this data sheet has been redesigned to comply with the new identity guidelines of  
NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
Table 7 “Limiting values[1]: deleted (old) table note [1] (statement is now in Section 18.3  
“Disclaimers”)  
Table 9 “Static characteristics”:  
Ron maximum value for condition VI = 0 V; IO = 64 mA; VGREF = 1.5 V changed from 105 to  
115 Ω  
Symbol “IIH, gate input leakage” changed to “ILI(G), gate input leakage current”  
GTL2010_5  
(9397 750 13854)  
20040728  
20030502  
20030401  
20000830  
19990405  
Product data sheet  
-
GTL2010_4  
GTL2010_3  
GTL2010_2  
GTL2010_1  
-
GTL2010_4  
(9397 750 11458)  
Product data  
853-2153 29981 of  
2003 May 01  
GTL2010_3  
(9397 750 11352)  
Product data  
853-2153 29603 of  
2003 Feb 28  
GTL2010_2  
(9397 750 07462)  
Product specification  
Product specification  
853-2153 24452 of  
2000 Aug 30  
GTL2010_1  
-
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
18 of 20  
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
18.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
18.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
18.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
19. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
GTL2010_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 3 March 2008  
19 of 20  
 
 
 
 
 
 
GTL2010  
NXP Semiconductors  
10-bit bidirectional low voltage translator  
20. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2  
3
4
4.1  
5
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
Functional description . . . . . . . . . . . . . . . . . . . 4  
7.1  
Function selection. . . . . . . . . . . . . . . . . . . . . . . 4  
8
Application design-in information . . . . . . . . . . 5  
Bidirectional translation. . . . . . . . . . . . . . . . . . . 5  
Unidirectional down translation. . . . . . . . . . . . . 6  
Unidirectional up translation . . . . . . . . . . . . . . . 6  
Sizing pull-up resistor . . . . . . . . . . . . . . . . . . . . 7  
8.1  
8.2  
8.3  
8.4  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Recommended operating conditions. . . . . . . . 8  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 9  
10  
11  
12  
12.1  
Dynamic characteristics . . . . . . . . . . . . . . . . . 10  
Dynamic characteristics for translator-type  
application. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Dynamic characteristics for CBT-type  
12.2  
application. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
13  
14  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 12  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 13  
15  
Soldering of SMD packages . . . . . . . . . . . . . . 15  
Introduction to soldering . . . . . . . . . . . . . . . . . 15  
Wave and reflow soldering . . . . . . . . . . . . . . . 15  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 15  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 16  
15.1  
15.2  
15.3  
15.4  
16  
17  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 18  
18  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 19  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 19  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
18.1  
18.2  
18.3  
18.4  
19  
20  
Contact information. . . . . . . . . . . . . . . . . . . . . 19  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2008.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 3 March 2008  
Document identifier: GTL2010_6  
 

相关型号:

GTL2010PW-T

NXP bidirectional low-voltage translators
NXP

GTL2010PWDH

10-bit GTL Processor Voltage Clamp
NXP

GTL2010_07

10-BIT BIDIRECTIONAL LOW-VOLTAGE TRANSLATOR
TI

GTL2012

2-bit LVTTL to GTL transceiver
NXP

GTL2012DC

2-bit LVTTL to GTL transceiver
NXP

GTL2012DC,125

GTL2012 - 2-bit LVTTL to GTL transceiver SSOP 8-Pin
NXP

GTL2012DP

2-bit LVTTL to GTL transceiver
NXP

GTL2012DP,118

GTL2012 - 2-bit LVTTL to GTL transceiver TSSOP 8-Pin
NXP

GTL2014

4-bit LVTTL to GTL transceiver
NXP

GTL2014PW

4-bit LVTTL to GTL transceiver
NXP

GTL2014PW,118

GTL2014 - 4-bit LVTTL to GTL transceiver TSSOP 14-Pin
NXP

GTL2018

8-bit LVTTL to GTL transceiver
NXP