ISP1705AET,118 [NXP]

IC UNIVERSAL SERIAL BUS CONTROLLER, PBGA36, 3.5 X 3.5 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, PLASTIC, SOT912-1, TFBGA-36, Bus Controller;
ISP1705AET,118
型号: ISP1705AET,118
厂家: NXP    NXP
描述:

IC UNIVERSAL SERIAL BUS CONTROLLER, PBGA36, 3.5 X 3.5 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, PLASTIC, SOT912-1, TFBGA-36, Bus Controller

时钟 外围集成电路
文件: 总89页 (文件大小:437K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISP1705  
ULPI Hi-Speed USB transceiver  
Rev. 01 — 13 June 2008  
Product data sheet  
1. General description  
The ISP1705 is a UTMI+ Low Pin Interface (ULPI) Hi-Speed Universal Serial Bus (USB)  
transceiver that is fully compliant with Universal Serial Bus Specification Rev. 2.0,  
On-The-Go Supplement to the USB 2.0 Specification Rev. 1.3 and UTMI+ Low Pin  
Interface (ULPI) Specification Rev. 1.1.  
The ISP1705 can transmit and receive USB data at high speed (480 Mbit/s), full speed  
(12 Mbit/s) and low speed (1.5 Mbit/s), and provides a pin-optimized, physical layer  
front-end attachment to the USB host, peripheral or OTG controller with Single Data Rate  
(SDR) or Dual Data Rate (DDR) ULPI link. The ISP1705 can transparently transmit and  
receive UART signaling.  
It is ideal for use in portable electronic devices, such as mobile phones, digital still  
cameras, digital video cameras, Personal Digital Assistants (PDAs) and digital audio  
players. It allows USB Application-Specific Integrated Circuits (ASICs), Programmable  
Logic Devices (PLDs) or any system chip set to interface with the physical layer of the  
USB through an 8-pin (DDR) or 12-pin (SDR) interface.  
The ISP1705 can interface to devices with digital I/O voltages in the range of 3.0 V to  
3.6 V.  
The ISP1705 is available in HVQFN36 and TFBGA36 packages.  
2. Features  
I Fully complies with:  
N USB: Universal Serial Bus Specification Rev. 2.0  
N OTG: On-The-Go Supplement to the USB 2.0 Specification Rev. 1.3  
N ULPI: UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1  
I Interfaces to USB host, peripheral or OTG cores; optimized for portable devices or  
system ASICs with built-in ULPI link  
I Complete Hi-Speed USB physical front-end solution that supports high speed  
(480 Mbit/s), full speed (12 Mbit/s) and low speed (1.5 Mbit/s)  
N Integrated 45 Ω ± 10 % high-speed termination resistors, 1.5 kΩ ± 5 % full-speed  
device pull-up resistor, and 15 kΩ ± 5 % host termination resistors  
N Integrated parallel-to-serial and serial-to-parallel converters to transmit and receive  
N USB clock and data recovery to receive USB data up to ±500 ppm  
N Insertion of stuff bits during transmit and discarding of stuff bits during receive  
N Non-Return-to-Zero Inverted (NRZI) encoding and decoding  
N Supports bus reset, suspend, resume and high-speed detection handshake (chirp)  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
I Complete USB OTG physical front-end that supports Host Negotiation Protocol (HNP)  
and Session Request Protocol (SRP)  
N Supports external charge pump or external VBUS power switch  
N Complete control over USB termination resistors  
N Data line and VBUS pulsing session request methods  
N Integrated VBUS voltage comparators  
N Integrated cable (ID) detector  
I Flexible system integration and very low power consumption, optimized for portable  
devices  
N 3.0 V to 4.5 V supply voltage input range  
N Internal voltage regulator supplies 2.7 V or 3.3 V and 1.8 V  
N Supports interfacing I/O voltage of 3.0 V to 3.6 V; separate I/O voltage supply pins  
minimize crosstalk  
N Power down internal regulators in Power-down mode when VCC(I/O) is not present  
or when the chip is not selected  
N Typical operating current of 13 mA to 32 mA, depending on the USB speed and  
bus utilization  
N Typical current consumption ICC is 70 µA in suspend mode and 0.5 µA in  
Power-down mode  
N 3-state ULPI interface by the CHIP_SEL or CHIP_SEL_N pin, allowing bus reuse  
by other applications  
I Highly optimized ULPI compliant  
N 60 MHz, 8-pin or 12-pin interface between the core and the transceiver, including a  
4-bit DDR bus or an 8-bit SDR bus  
N DDR or SDR interface selectable by pin  
N Supports 60 MHz output clock configuration  
N Integrated Phase-Locked Loop (PLL) supporting input clock frequencies of  
13 MHz, 19.2 MHz, 24 MHz or 26 MHz  
N Crystal or clock frequency selectable by pin  
N Fully programmable ULPI-compliant register set  
N 3-pin or 6-pin full-speed or low-speed serial mode  
N Internal Power-On Reset (POR) circuit  
I UART interface:  
N Supports transparent UART signaling on DP and DM pins for the UART accessory  
application  
N 2.7 V UART signaling on DP and DM pins  
N Entering UART mode by register setting  
N Exiting UART mode by asserting STP or by toggling the CHIP_SEL or  
CHIP_SEL_N pin  
I Full industrial grade operating temperature range from 40 °C to +85 °C  
I ESD compliance:  
N JESD22-A114D 2 kV contact Human Body Model (HBM)  
N JESD22-A115-A 200 V Machine Model (MM)  
N JESD22-C101-C 500 V Charged Device Model (CDM)  
N IEC 61000-4-2 8 kV contact on the DP and DM pins  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
2 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
I Available in small HVQFN36 and TFBGA36 Restriction of Hazardous Substances  
(RoHS) compliant, halogen-free and lead-free packages  
3. Applications  
I Digital still camera  
I Digital TV  
I Digital Video Disc (DVD) recorder  
I External storage device, for example:  
N Magneto-Optical (MO) drive  
N Optical drive (CD-ROM, CD-RW, CD-DVD)  
N Zip drive  
I Mobile phone  
I MP3 player  
I PDA  
I Printer  
I Scanner  
I Set-Top Box (STB)  
I Video camera  
4. Ordering information  
Table 1.  
Ordering information  
Type number Package  
Name  
Description  
Version  
ISP1705HN  
HVQFN36 plastic thermal enhanced very thin quad flat package; SOT818-1  
no leads; 36 terminals; body 5 × 5 × 0.85 mm  
ISP1705AET TFBGA36  
plastic thin fine-pitch ball grid array package; 36 balls; SOT912-1  
body 3.5 × 3.5 × 0.8 mm  
5. Marking  
Table 2.  
Marking codes  
Type number  
ISP1705HN  
ISP1705AET  
Marking code[1]  
1705  
705A  
[1] The package marking is the first line of text on the IC package and can be used for IC identification.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
3 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
6. Block diagram  
29  
CLOCK  
1, 2, 24,  
25, 27, 28,  
30, 36  
USB DATA  
SERIALIZER  
6
ULPI  
INTERFACE  
CONTROLLER  
DP  
8
HI-SPEED  
USB ATX  
DATA  
[7:0]  
ULPI  
INTERFACE  
19  
22  
23  
DIR  
TERMINATION  
RESISTORS  
5
USB DATA  
DESERIALIZER  
REGISTER  
MAP  
DM  
STP  
NXT  
DATA0  
UART  
BUFFER  
DATA1  
7
DDR OR SDR  
SELECTION  
CFG0  
OTG MODULE  
ISP1705  
34  
CHIP_SEL_N  
CHIP_SEL  
ID  
9
ID  
DETECTOR  
35  
31  
32  
CLOCK  
FREQUENCY  
SELECTION  
CFG1  
CFG2  
V
BUS  
COMPARATORS  
13  
V
BUS  
SRP CHARGE  
AND DISCHARGE  
RESISTORS  
GLOBAL  
CLOCKS  
PLL  
16  
XTAL1  
XTAL2  
CRYSTAL  
OSCILLATOR  
17  
14  
10  
PORT  
POWER  
CONTROL  
3, 21, 26, 33  
PSW_N  
FAULT  
interface voltage  
internal power  
V
CC(I/O)  
18  
12  
20  
4
POWER-ON  
RESET  
RESET_N  
RREF  
REG1V8  
REG3V3  
POR  
BAND GAP  
REFERENCE  
VOLTAGE  
V
REF  
8
VOLTAGE  
REGULATOR  
V
CC  
15  
11  
004aaa994  
GND  
n.c.  
This figure shows the HVQFN pinout. For the TFBGA ballout, see Table 3.  
Fig 1. Block diagram  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
4 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
7. Pinning information  
7.1 Pinning  
terminal 1  
index area  
DATA1  
DATA0  
1
2
3
4
5
6
7
8
9
27 DATA5  
26  
V
CC(I/O)  
V
25 DATA6  
24 DATA7  
23 NXT  
CC(I/O)  
RREF  
DM  
DP  
ISP1705HN  
22 STP  
CFG0  
21 V  
CC(I/O)  
V
CC  
20 RESET_N  
19 DIR  
ID  
004aaa995  
Transparent top view  
Fig 2. Pin configuration HVQFN36  
ball A1  
index area  
ISP1705AET  
1
2
3
4
5
6
A
B
C
D
E
F
004aab094  
Transparent top view  
Fig 3. Pin configuration TFBGA36  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
5 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
7.2 Pin description  
Table 3.  
Pin description  
Symbol[1]  
Pin  
Type[2] Description[3]  
HVQFN36  
TFBGA36  
(ISP1705HN) (ISP1705AET)  
DATA1  
DATA0  
1
2
A1  
B1  
I/O  
I/O  
ULPI data pin 1  
3-state output; plain input  
ULPI data pin 0  
3-state output; plain input  
VCC(I/O)  
RREF  
DM  
3
4
5
B2  
C2  
C1  
P
input I/O supply voltage; 3.0 V to 3.6 V; a 0.1 µF decoupling  
capacitor is recommended  
AI/O  
AI/O  
resistor reference; connect through a 12 kΩ ± 1 % resistor to  
GND  
connect to the Dpin of the USB connector  
USB mode: Dinput or output  
UART mode: TXD output  
DP  
6
7
D1  
E1  
AI/O  
connect to the D+ pin of the USB connector  
USB mode: D+ input or output  
UART mode: RXD input  
During UART mode, an internal 125 kΩ ± 20 % pull-up resistor is  
present on this pin.  
CFG0  
I
select SDR or DDR ULPI interface:  
SDR: connect this pin to GND  
DDR: connect this pin to REG3V3  
plain input; TTL  
VCC  
8
F3  
D3  
E2  
P
I
input supply voltage or battery source; 3.0 V to 4.5 V  
Remark: Below 3.0 V, USB full-speed and low-speed  
transactions are not guaranteed to work, though some devices  
may work with the ISP1705 at these voltages.  
ID  
9
identification (ID) pin of the micro-USB connector; if this pin is not  
in use, connect it directly to the REG3V3 pin (an internal 400 kΩ  
pull-up resistor is present on this pin)  
plain input; TTL  
FAULT  
10  
I
input for the VBUS digital overcurrent or fault detector signal; if this  
pin is not in use, connect it to GND  
plain input, 5 V tolerant  
not connected  
n.c.  
11  
12  
F1, F2  
E3  
-
REG3V3  
P
3.3 V regulator output for USB mode or 2.7 V regulator output for  
UART mode; requires parallel 0.1 µF and 4.7 µF capacitors;  
internally powers ATX and other analog circuits; must not be used  
to power external circuits  
VBUS  
13  
14  
F4  
D4  
AI/O  
OD  
connect to the VBUS pin of the USB connector; if this pin is not in  
use, leave it open (RI(idle)(VBUS) is present on this pin)  
PSW_N  
active-LOW external VBUS power switch or external charge pump  
enable  
open-drain output, 4 mA current sinking capability, 5 V tolerant  
ground  
GND  
15  
C5, D2, E4  
-
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
6 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 3.  
Pin description …continued  
Symbol[1]  
Pin  
Type[2] Description[3]  
HVQFN36  
TFBGA36  
(ISP1705HN) (ISP1705AET)  
XTAL1  
16  
17  
18  
F5  
F6  
E6  
AI/O  
AI/O  
P
crystal oscillator or clock input; 1.8 V peak input allowed;  
frequency depends on status on the CFG1 pin  
XTAL2  
crystal oscillator output; when a crystal oscillator is used, leave  
this pin open  
REG1V8  
1.8 V regulator output; requires parallel 0.1 µF and 4.7 µF  
capacitors; internally powers the digital core; must not be used to  
power external circuits  
DIR  
19  
20  
E5  
C4  
O
I
ULPI direction signal  
3-state output  
RESET_N  
active-LOW, asynchronous reset input  
plain input  
VCC(I/O)  
STP  
21  
22  
B5  
D6  
P
I
input I/O supply voltage; 3.0 V to 3.6 V; a 0.1 µF decoupling  
capacitor is recommended  
ULPI stop signal  
plain input  
NXT  
23  
24  
25  
D5  
C6  
B6  
O
ULPI next signal  
3-state output  
DATA7  
DATA6  
I/O  
I/O  
ULPI data pin 7  
3-state output; plain input  
ULPI data pin 6  
3-state output; plain input  
VCC(I/O)  
DATA5  
26  
27  
-
P
input I/O supply voltage; 3.0 V to 3.6 V; a 0.1 µF decoupling  
capacitor is recommended  
A6  
I/O  
ULPI data pin 5  
3-state output; plain input  
ULPI data pin 4  
DATA4  
28  
29  
A5  
A4  
I/O  
O
3-state output; plain input  
CLOCK  
60 MHz clock output when crystal is attached or clock is applied  
on the XTAL1 pin  
3-state output  
DATA3  
CFG1  
CFG2  
VCC(I/O)  
30  
31  
32  
33  
A3  
B4  
B3  
I/O  
ULPI data pin 3  
3-state output; plain input  
I
I
select crystal or clock frequency with CFG2; see Table 6  
plain input  
select crystal or clock frequency with CFG1; see Table 6  
plain input  
-
P
I
input I/O supply voltage; 3.0 V to 3.6 V; a 0.1 µF decoupling  
capacitor is recommended  
CHIP_SEL_N 34  
C3  
active-LOW chip select input; when this pin is not in use, connect  
it to GND  
plain input  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
7 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 3.  
Pin description …continued  
Symbol[1]  
Pin  
Type[2] Description[3]  
HVQFN36  
TFBGA36  
(ISP1705HN) (ISP1705AET)  
CHIP_SEL  
35  
-
I
active-HIGH chip select input; when this pin is not in use, connect  
it to VCC(I/O)  
plain input  
DATA2  
GND  
36  
A2  
-
I/O  
P
ULPI data pin 2  
3-state output; plain input  
ground  
exposed die  
pad  
[1] Symbol names ending with underscore N (for example, NAME_N) indicate active-LOW signals.  
[2] I = input; O = output; I/O = digital input/output; OD = open-drain output; AI/O = analog input/output; P = power supply or ground pin.  
[3] A detailed description of these pins can be found in Section 8.12.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
8 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
8. Functional description  
8.1 ULPI interface controller  
The ISP1705 provides a 12-pin interface that is compliant with UTMI+ Low Pin Interface  
(ULPI) Specification Rev. 1.1. This interface must be connected to a USB link.  
The ULPI interface controller provides the following functions:  
ULPI-compliant interface and register set  
Allows full control over the USB peripheral or host functionality  
Parses the USB transmit and receive data  
Prioritizes the USB receive data, USB transmit data, interrupts and register operations  
Low-power mode  
Transparent UART mode  
3-pin serial mode  
6-pin serial mode  
Generates RXCMDs (status updates)  
Maskable interrupts  
For more information on the ULPI protocol, see Section 10.  
8.2 USB serializer and deserializer  
The USB data serializer prepares data to transmit on the USB bus. To transmit data, the  
USB link sends a transmit command and data on the ULPI bus. The serializer performs  
parallel-to-serial conversion, bit stuffing and NRZI encoding. For packets with a PID, the  
serializer adds a SYNC pattern to the start of the packet, and an EOP pattern to the end  
of the packet. When the serializer is busy and cannot accept any more data, the ULPI  
interface controller deasserts NXT.  
The USB data deserializer decodes data received from the USB bus. When data is  
received, the deserializer strips the SYNC and EOP patterns, and then performs  
serial-to-parallel conversion, NRZI decoding and discarding of stuff bits on the data  
payload. The ULPI interface controller sends data to the USB link by asserting DIR, and  
then asserting NXT whenever a byte is ready. The deserializer also detects various  
receive errors, including bit stuff errors, elasticity buffer underrun or overrun, and  
byte-alignment errors.  
8.3 Hi-Speed USB (USB 2.0) ATX  
The Hi-Speed USB ATX block is an analog front-end containing the circuitry needed to  
transmit, receive and terminate the USB bus in high speed, full speed and low speed, for  
USB peripheral, host or OTG implementations. The following circuitry is included:  
Differential drivers to transmit data at high speed, full speed and low speed  
Differential and single-ended receivers to receive data at high speed, full speed and  
low speed  
Squelch circuit to detect high-speed bus activity  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
9 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
High-speed disconnect detector  
45 high-speed bus terminations on pins DP and DM  
1.5 kpull-up resistor on pin DP  
15 kbus terminations on pins DP and DM  
For details on controlling resistor settings, see Table 15.  
8.4 Voltage regulator  
The ISP1705 contains a built-in voltage regulator that conditions the VCC supply for use  
inside the ISP1705. The voltage regulator:  
Supports input supply range 3.0 V < VCC < 4.5 V.  
Can be supplied from a battery with the voltage range mentioned above.  
Supplies internal digital circuitry with 1.8 V and analog circuitry with 3.3 V or 2.7 V.  
In USB mode, automatically bypasses the internal 3.3 V regulator when VCC < 3.5 V:  
the internal analog circuitry directly draws power from the VCC pin. In UART mode, the  
bypass switch will be disabled.  
Will be shut down when VCC(I/O) is not present or when chip select is deasserted.  
8.5 Crystal oscillator and PLL  
The ISP1705 has a built-in crystal oscillator and a Phase-Locked Loop (PLL) for clock  
generation. When a crystal is in use, the built-in crystal oscillator generates a square wave  
clock for internal use. A square wave clock of the same frequency can also be driven  
directly into the XTAL1 pin. Using an existing square wave clock can save the cost of a  
crystal and also reduce the board space. The crystal or clock frequencies supported are  
13 MHz, 19.2 MHz, 24 MHz and 26 MHz.  
The PLL takes the square wave clock from the crystal oscillator and multiplies or divides it  
into various frequencies for internal use.  
The PLL produces the following frequencies, irrespective of the clock source:  
1.5 MHz for low-speed USB data  
12 MHz for full-speed USB data  
60 MHz clock for the ULPI interface controller  
480 MHz for high-speed USB data  
Other internal frequencies for data conversion and data recovery  
8.6 UART buffer  
The UART buffer includes circuits to support the transparent UART signaling between the  
DATA0 or DATA1 pin and the DM or DP pin.  
When the ISP1705 is put into UART mode, it acts as a voltage level shifter between the  
following pins:  
From DATA0 (VCC(I/O) level) to DM (2.7 V level) for the UART TXD signaling path.  
From DP (2.7 V level) to DATA1 (VCC(I/O) level) for the UART RXD signaling path.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
10 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
8.7 OTG module  
This module contains several sub-blocks that provide all the functionality required by the  
USB OTG specification. Specifically, it provides the following circuits:  
The ID detector to sense the ID pin of the micro-USB cable. The ID pin dictates which  
device is initially configured as a host and which as a peripheral.  
VBUS comparators to determine the VBUS voltage level. This is required for the VBUS  
detection, SRP and HNP.  
Resistors to temporarily charge and discharge VBUS. This is required for SRP.  
8.7.1 ID detector  
The ID detector detects which end of the micro-USB cable is plugged in. The ID detector  
must first be enabled by setting the ID_PULLUP register bit to logic 1. If the ISP1705  
senses a state of the ID pin that is different from the previously reported state, an RXCMD  
status update will be sent to the USB link, or an interrupt will be asserted.  
If the micro-B end of the cable is plugged in (or nothing is plugged in), the ISP1705  
will report that ID_GND is logic 1. The USB link must be in the B-device state.  
If the micro-A end of the cable is plugged in, the ISP1705 will report that ID_GND is  
logic 0. The USB link must be in the A-device state.  
The ID pin has a weak pull-up resistor (RweakPU(ID)) permanently enabled to avoid the  
floating condition.  
8.7.2 VBUS comparators  
The ISP1705 provides three comparators to detect the VBUS voltage level. The  
comparators are explained in the following subsections.  
8.7.2.1 VBUS valid comparator  
This comparator is used by hosts and A-devices to determine whether the voltage on  
VBUS is at a valid level for operation. The ISP1705 minimum threshold for the VBUS valid  
comparator is 4.4 V. Any voltage on VBUS below this threshold is considered invalid.  
During power-up, it is expected that the comparator output will be ignored.  
8.7.2.2 Session valid comparator  
The session valid comparator is a TTL-level input that determines when VBUS is high  
enough for a session to start. Peripherals, A-devices and B-devices use this comparator to  
detect when a session is started. The A-device also uses this comparator to determine  
when a session is completed. The session valid threshold of the ISP1705 is between  
0.8 V to 2.0 V.  
8.7.2.3 Session end comparator  
The session end comparator determines when VBUS is below the B-device session end  
threshold of 0.2 V to 0.8 V. The B-device uses this threshold to determine when a session  
has ended.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
11 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
8.7.3 SRP charge and discharge resistors  
The ISP1705 provides on-chip resistors for short-term charging and discharging of VBUS  
.
These are used by the B-device to request a session, prompting the A-device to restore  
the VBUS voltage. First, the B-device makes sure that VBUS is fully discharged from the  
previous session by setting the DISCHRG_VBUS register bit to logic 1 and waiting for  
SESS_END to be logic 1. Then the B-device charges VBUS by setting the CHRG_VBUS  
register bit to logic 1. The A-device sees that VBUS is charged above the session valid  
threshold and starts a session by turning on the VBUS voltage.  
8.8 Port power control  
For an OTG or host application, the ISP1705 uses the PSW_N pin to control the external  
power switch for the VBUS 5 V supply. The overcurrent detector output of the external  
power switch can be connected to the FAULT pin of the ISP1705 to indicate to the ULPI  
link the VBUS overcurrent status. For the connection scheme, see Figure 4.  
When the FAULT pin is not used, connect it to GND.  
+5 V  
POWER  
SWITCH  
WITH  
FAULT  
PSW_N  
FAULT  
V
BUS  
INDICATOR  
ISP1705  
V
BUS  
001aai189  
Fig 4. Digital overcurrent detection scheme  
8.9 Band gap reference voltage  
The band gap circuit provides a stable internal voltage reference to bias the analog  
circuitry. This band gap circuit requires an accurate external reference resistor. Connect a  
12 kΩ ± 1 % resistor between the RREF pin and GND.  
8.10 Power-On Reset (POR)  
An internal POR pulse is generated when REG1V8 rises above VPOR(trip). The internal  
POR pulse will be generated whenever REG1V8 drops below VPOR(trip) for more than  
tw(REG1V8_L)  
.
To give a better view of the functionality, Figure 5 shows a possible curve of REG1V8. The  
internal POR starts with logic 0 at t0. At t1, the detector will see the passing of the trip  
level so that a POR pulse is generated to reset all internal circuits. If REG1V8 dips from t2  
to t3 for greater than tw(REG1V8_L), another POR pulse is generated. If the dip from t4 to t5  
is less than tw(REG1V8_L), the internal POR pulse will not be generated and will remain  
LOW.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
12 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
REG1V8  
V
POR(trip)  
t4  
t3  
t5  
t0  
t1  
t2  
POR  
004aab023  
Fig 5. Internal power-on reset timing  
8.11 Power-up, reset and bus idle sequence  
Figure 6 shows a typical start-up sequence.  
On power-up, the ISP1705 performs an internal power-on reset and asserts DIR to  
indicate to the link that the ULPI bus cannot be used. When the internal PLL is stable, the  
ISP1705 deasserts DIR and drives a 60 MHz clock on the CLOCK pin. The power-up time  
depends on the VCC supply rise time, the crystal start-up time, and the PLL start-up time  
tstartup(PLL). When DIR is deasserted, the link must drive the data bus to a valid level. By  
default, the link must drive data to LOW. Before beginning USB packets, the link must set  
the RESET bit in the FUNC_CTRL register (see Section 11.5) to reset the ISP1705. After  
the RESET bit is set, the ISP1705 will assert DIR until the internal reset completes. The  
ISP1705 will automatically deassert DIR and clear the RESET bit when the reset has  
completed. After every reset, an RXCMD is sent to the link to update USB status  
information. After this sequence, the ULPI bus is ready for use and the link can start USB  
operations.  
If chip select is non-active, the ISP1705 will be kept in Power-down mode. In Power-down  
mode, all ULPI interface pins will be put in 3-state, the internal regulator will be shut down,  
and the total current consumption in Power-down mode will be less than that in low-power  
mode.  
The link can do a hardware reset to the ISP1705 by toggling chip select. The  
recommended sequence is:  
1. De-activate chip select.  
2. Wait for at least tPWRDN  
3. Activate chip select.  
.
If the low-power mode is entered when VCC(I/O) is lost, see Table 9.  
The recommended power-up sequence for the link is:  
1. Apply the VCC and VCC(I/O) voltage.  
2. Activate chip select.  
3. The link waits for at least tPWRUP, ignoring all the ULPI pin statuses.  
4. The link may start to detect the DIR status level. If DIR is detected LOW, the link may  
send a RESET command.  
The ULPI interface is ready for use.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
13 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
V
CC  
V
CC(I/O)  
CHIP_SEL_N  
REG1V8  
t
PWRUP  
Internal  
POR  
XTAL1  
bus idle  
internal clocks stable  
RESET command  
t
+ t  
d(det)clk(osc) startup(PLL)  
CLOCK  
(output)  
DATA[7:0]  
TXCMD  
D
RXCMD  
internal reset  
update  
DIR  
STP  
NXT  
t1 t2  
t3  
t4  
t5  
t6  
004aaa987  
t1 = VCC is applied to the ISP1705.  
t2 = VCC(I/O) is turned on. ULPI interface pins CLOCK, DATA[7:0], DIR and NXT are in 3-state as long as chip select is  
non-active.  
t3 = Chip select turns from non-active to active. The ISP1705 regulator starts to turn on. ULPI pads are not in 3-state and may  
drive to either LOW or HIGH. It is recommended that the link ignores ULPI pins status during tPWRUP  
.
t4 = Power-on reset threshold is reached and the POR pulse is generated. After the POR pulse, ULPI pins are driven to a  
defined level. DIR is driven to HIGH and the other pins are driven to LOW.  
t5 = The PLL is stabilized after td(det)clk(osc) + tstartup(PLL). The CLOCK pin starts to output 60 MHz. The DIR pin will transition  
from HIGH to LOW. The link must drive DATA[7:0] and STP to LOW as the idle state. The link will then issue a reset command  
to initialize the ISP1705.  
t6 = The power-up sequence is completed and the ULPI bus interface is ready for use.  
Fig 6. Power-up and reset sequence required before the ULPI bus is ready for use  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
14 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
8.11.1 Interface protection  
By default, the ISP1705 enables a weak pull-up resistor on STP. If the STP pin is  
unexpectedly HIGH at any time, the ISP1705 will protect the ULPI interface by enabling  
weak pull-down resistors on DATA[7:0].  
The interface protect feature prevents unwanted activity of the ISP1705 whenever the  
ULPI interface is not correctly driven by the link. For example, when the link powers up  
more slowly than the ISP1705.  
The interface protect feature can be disabled by setting the INTF_PROT_DIS bit to logic 1.  
8.11.2 Interface behavior with respect to RESET_N  
The use of the RESET_N pin is optional. When RESET_N is asserted (LOW), all logic in  
the ISP1705 will be reset, including the analog circuitry and ULPI registers. During reset,  
the link must drive DATA[7:0] and STP to LOW; otherwise undefined behavior may result.  
When RESET_N is deasserted (HIGH), 60 MHz clock will start. Figure 7 shows the ULPI  
interface behavior when RESET_N is asserted (LOW), and subsequently deasserted  
(HIGH). The behavior of Figure 7 applies only when chip select is asserted. If RESET_N  
is not used, it must be connected to VCC(I/O)  
.
CLOCK  
RESET_N  
DATA[7:0]  
Hi-Z (input)  
Hi-Z (input)  
Hi-Z (link must drive)  
Hi-Z (link must drive)  
Hi-Z (input)  
DIR  
Hi-Z (input)  
STP  
NXT  
004aab065  
Fig 7. Interface behavior with respect to RESET_N  
8.11.3 Interface behavior with respect to chip select  
The use of chip select as a power-down control signal is optional. When chip select is  
deasserted, the ISP1705 will 3-state ULPI pins and power-down the internal circuitry. If  
chip select is not used as a power-down control signal, CHIP_SEL_N must be connected  
to LOW. Figure 8 shows the ULPI interface behavior when chip select is asserted and  
subsequently deasserted.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
15 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
t
PWRDN  
Hi-Z (ignored)  
CLOCK  
CHIP_SEL_N  
DATA[7:0]  
DIR  
Hi-Z (input)  
Hi-Z (ignored)  
Hi-Z  
Hi-Z (ignored)  
Hi-Z  
Hi-Z (input)  
STP  
NXT  
004aaa988  
Fig 8. Interface behavior with respect to chip select  
8.12 Detailed description of pins  
8.12.1 DATA[7:0]  
Bidirectional data bus pins. The USB link must drive DATA[7:0] to LOW when the ULPI bus  
is idle. When the link has data to transmit to the PHY, it drives a nonzero value. Weak  
pull-down resistors are incorporated into DATA[7:0] pins as part of the interface protect  
feature. For details, see Section 8.11.1.  
DATA[7:0] pins can also be 3-stated when chip select is deasserted.  
These pins can be reconfigured to carry various data types when the chip is not in  
synchronous mode. For details, see Section 9.2.  
8.12.2 VCC(I/O)  
The input supply power pin that sets the I/O voltage level. A 0.1 µF decoupling capacitor is  
recommended on each VCC(I/O) pin. VCC(I/O) powers the on-chip pads of the following pins:  
CFG1  
CFG2  
CHIP_SEL  
CHIP_SEL_N  
CLOCK  
DATA[7:0]  
DIR  
NXT  
STP  
RESET_N  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
16 of 89  
ISP1705  
NXP Semiconductors  
8.12.3 RREF  
ULPI Hi-Speed USB transceiver  
Resistor reference analog I/O pin. A 12 kΩ ± 1 % resistor must be connected between the  
RREF pin and GND. This provides an accurate voltage reference that biases internal  
analog circuitry. Less accurate resistors cannot be used. It will affect the biasing current  
for analog circuits, thus the USB signal quality.  
8.12.4 DP and DM  
When the ISP1705 is in USB mode, the DP pin functions as the USB data plus line, and  
the DM pin functions as the USB data minus line.  
When the ISP1705 is in transparent UART mode, the DP pin functions as the UART RXD  
input pin, and the DM pin functions as the UART TXD output pin.  
The DP and DM pins must be connected to the D+ and Dpins of the USB receptacle.  
8.12.5 CFG0  
This input pin is used to select the SDR or DDR interface. For the SDR interface, connect  
this pin to GND. For the DDR interface, connect this pin to REG3V3.  
8.12.6 VCC  
Main input supply voltage for the ISP1705. The ISP1705 operates correctly when VCC is  
between 3.0 V and 4.5 V. A 0.1 µF decoupling capacitor is recommended.  
8.12.7 ID  
For OTG applications, the ID (identification) pin is connected to the ID pin of the micro-AB  
receptacle. As defined in On-The-Go Supplement to the USB 2.0 Specification Rev. 1.3,  
the ID pin dictates the initial role of the link. If ID is detected as HIGH, the link must  
assume the role of a peripheral. If ID is detected as LOW, the link must assume a host  
role. Roles can be swapped at a later time by using HNP.  
The ISP1705 provides an internal pull-up resistor (RUP(ID)) to sense the state of the ID pin.  
The pull-up resistor must first be enabled by setting the ID_PULLUP register bit to logic 1.  
If the state of ID has changed, the ISP1705 will send an RXCMD or interrupt to the link. If  
the link does not receive any RXCMD or interrupt by time tID, then the ID state has not  
changed.  
The ISP1705 also provides an internal weak pull-up resistor (RweakPU(ID)). This weak  
pull-up resistor is always enabled to avoid a possible floating condition on the ID pin.  
8.12.8 FAULT  
This pin is used to detect the VBUS fault condition. If the function is not used, this pin must  
be connected to ground to avoid floating input.  
If an external VBUS overcurrent or fault detection circuit is used, the output fault indicator of  
that circuit can be connected to the FAULT input pin. The USE_EXT_VBUS_IND bit in the  
OTG_CTRL register (see Section 11.7) and the IND_PASSTHRU bit in the INTF_CTRL  
register (see Section 11.6) must be set to logic 1. The ISP1705 will inform the link of VBUS  
fault events by sending RXCMDs on the ULPI bus.  
The FAULT input pin is mapped to the A_VBUS_VLD bit in RXCMD. Any changes to the  
FAULT input will trigger RXCMD carrying the FAULT condition with A_VBUS_VLD.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
17 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
For details, see Section 10.3.2 and Section 10.3.3.  
8.12.9 REG3V3 and REG1V8  
These are output voltage pins from the internal regulator. These supplies are used  
internally to power digital and analog circuits.  
For proper operation of the regulator, pins REG3V3 and REG1V8 must each be  
connected to a 0.1 µF capacitor in parallel with a 4.7 µF low ESR capacitor.  
REG3V3 powers on-chip pads of the following pins:  
CFG0  
DM  
DP  
FAULT  
ID  
PSW_N  
RREF  
8.12.10 VBUS  
This I/O pin acts as an input to VBUS comparators, and also as a power supply pin for SRP  
charge and discharge resistors. For details, see Figure 9.  
The VBUS pin requires a capacitive load. Table 4 provides the recommended capacitor  
values for various applications.  
Table 4.  
Recommended VBUS capacitor value  
Application  
OTG  
VBUS capacitor (CVBUS  
1 µF to 6.5 µF, 10 V  
120 µF ± 20 %, 10 V  
1 µF to 10 µF, 10 V  
)
Standard host  
Standard peripheral  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
18 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
REG3V3  
CHRG_VBUS  
ISP1705  
R
UP(VBUS)  
V
BUS  
comparators  
V
BUS  
R
R
DN(VBUS)  
I(idle)(VBUS)  
DISCHRG_  
VBUS  
004aab045  
Fig 9. VBUS pin internal pull-up and pull-down scheme  
8.12.11 PSW_N  
The PSW_N pin is an active-LOW open-drain output pin. It is used to control external  
charge pumps or VBUS power switches to supply VBUS. When in use, an external pull-up  
resistor is required. This allows for per-port or ganged power control.  
To enable the external power source by driving PSW_N to LOW, the link must set the  
DRV_VBUS_EXT bit in the OTG_CTRL register (see Section 11.7) to logic 1.  
Table 5 summarizes settings to drive 5 V on VBUS  
.
Table 5.  
OTG_CTRL register power control bits  
DRV_VBUS_EXT  
Power source used  
0
1
external 5 V VBUS power source disabled (PSW_N = HIGH)  
external 5 V VBUS power source enabled (PSW_N = LOW)  
8.12.12 XTAL1 and XTAL2  
XTAL1 is the crystal oscillator input, and XTAL2 is the crystal oscillator output. The  
allowed crystal or clock frequency on the XTAL1 pin is selectable by the CFG1 and CFG2  
pins, as shown in Table 6.  
Table 6.  
Pin CFG1  
LOW  
Allowed crystal or clock frequency on the XTAL1 pin  
Pin CFG2  
LOW  
Allowed crystal or clock frequency on the XTAL1 pin  
19.2 MHz  
26 MHz  
24 MHz  
13 MHz  
LOW  
HIGH  
HIGH  
LOW  
HIGH  
HIGH  
When a clock is driven into XTAL1, XTAL2 must be left open.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
19 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
If a crystal is attached, it requires a capacitor on each terminal of the crystal to GND. The  
recommended crystal specification and required external capacitors are given in Table 7  
and Table 8.  
Table 7.  
External capacitor values for 13 MHz or 19.2 MHz clock frequency  
Load capacitance CL of the  
crystal[1]  
Maximum series resistance RS of  
the crystal[1]  
External capacitor  
XTAL value  
C
10 pF  
20 pF  
< 180 Ω  
< 100 Ω  
18 pF  
39 pF  
[1] Specified by the crystal manufacturer.  
Table 8.  
External capacitor values for 24 MHz or 26 MHz clock frequency  
Load capacitance CL of the  
crystal[1]  
Maximum series resistance RS of  
the crystal[1]  
External capacitor  
XTAL value  
C
10 pF  
20 pF  
< 140 Ω  
< 60 Ω  
18 pF  
39 pF  
[1] Specified by the crystal manufacturer.  
8.12.13 DIR  
ULPI direction output pin. Synchronous to the rising edge of CLOCK. Controls the  
direction of the data bus. By default, the ISP1705 holds DIR at LOW, causing the data bus  
to be an input. When DIR is LOW, the ISP1705 listens for data from the link. The ISP1705  
pulls DIR to HIGH only when it has data to send to the link, which is for one of two  
reasons:  
To send data (USB receive or register reads) and RXCMD status updates to the link.  
To block the link from driving the data bus during power-up, reset and low power  
(suspend) mode.  
This pin can be 3-stated when chip select is deasserted.  
8.12.14 RESET_N  
An active-LOW asynchronous reset pin that resets all circuits in the ISP1705. The  
ISP1705 contains an internal power-on reset circuit, and therefore using the RESET_N  
pin is optional. If RESET_N is not used, it must be connected to VCC(I/O)  
.
For details on using RESET_N, see Section 8.11.2.  
8.12.15 STP  
ULPI stop input pin. Synchronous to the rising edge of CLOCK. The link must assert STP  
to signal the end of a USB transmit packet or a register write operation. When DIR is  
asserted, the link can optionally assert STP for one clock cycle to abort the ISP1705,  
causing it to deassert DIR in the next clock cycle.  
8.12.16 NXT  
ULPI next data output pin. Synchronous to the rising edge of CLOCK. The ISP1705 holds  
NXT at LOW, by default. When DIR is LOW and the link is sending data to the ISP1705,  
NXT will be asserted to notify the link to provide the next data byte. When DIR is HIGH  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
20 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
and the ISP1705 is sending data to the link, NXT will be asserted to notify the link that  
another valid byte is on the bus. NXT is not used for register read data or the RXCMD  
status update.  
This pin can be 3-stated when chip select is deasserted.  
8.12.17 CLOCK  
A 60 MHz interface clock to synchronize the ULPI bus. All ULPI pins are synchronous to  
the rising edge of CLOCK.  
The ISP1705 provides two clocking options:  
A crystal is attached between the XTAL1 and XTAL2 pins.  
A clock is driven into the XTAL1 pin, with the XTAL2 pin left unconnected.  
8.12.18 CFG1, CFG2  
These input pins are used to select the crystal or clock frequency. For details, see Table 6.  
8.12.19 CHIP_SEL, CHIP_SEL_N  
When chip select is deasserted, ULPI pins DATA[7:0], CLOCK, DIR and NXT are 3-stated  
and the STP input is ignored; internal circuits are powered-down as well.  
When chip select is asserted, the ISP1705 will operate normally.  
Both the CHIP_SEL and CHIP_SEL_N pins must be asserted for the chip select to  
function. If any of the two is deasserted, the chip will enter Power-down mode.  
8.12.20 GND  
Global ground signal. To ensure the correct operation of the ISP1705, GND must be  
soldered to the cleanest available ground.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
21 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
9. Modes of operation  
9.1 Power modes  
When both VCC(I/O) and VCC are not powered, there will be no leakage from the VBUS pin  
to all the remaining pins, including VCC and VCC(I/O). Applying VBUS within the normal  
range will not damage the ISP1705 chip.  
When both VCC and VCC(I/O) are powered and are within the operating voltage range, the  
ISP1705 will be fully functional as in normal mode.  
When VCC(I/O) is powered and the VCC voltage is below the operating range of the  
ISP1705, the application system must detect the low voltage condition and set chip select  
to deassert (that is, put the ISP1705 in Power-down mode). This is to protect the ULPI and  
USB interfaces from driving wrong levels. Under this condition, the VCC(I/O) voltage will not  
leak to USB pins (VBUS, DP, DM and ID) and the VCC pin. All the digital pins (see  
Section 8.12.2) powered by VCC(I/O) are configured as high-impedance inputs. These pins  
must be driven to a defined state or terminated by using pull-up or pull-down resistors to  
avoid a floating input condition. Other pins (see Section 8.12.9) are not powered.  
9.1.1 Normal mode  
In normal mode, both VCC and VCC(I/O) are powered. Chip select is asserted. The ISP1705  
is fully functional.  
9.1.2 Power-down mode  
When VCC(I/O) is not present or when chip select is deasserted, the ISP1705 is put into  
Power-down mode. In this mode, internal regulators are powered down to keep the VCC  
current to a minimum. The voltage on the VCC pin will not leak to the VCC(I/O) and/or VBUS  
pins. In this mode, the ISP1705 pin states are given in Table 9.  
Table 9.  
Pin states in Power-down mode  
Pin name[1]  
Pin state when  
CC(I/O) is not  
present  
Pin state when VCC(I/O) is  
present and chip select  
is not active  
V
VCC  
3.0 V to 4.5 V  
not powered[2]  
not powered[2]  
not powered[2]  
3.0 V to 4.5 V  
3.0 V to 3.6 V  
HIGH  
VCC(I/O)  
CHIP_SEL, CHIP_SEL_N  
CFG1, CFG2, RESET_N, CLOCK, STP, NXT,  
DIR, DATA[7:0]  
3.0 V to 3.3 V  
CFG0, DP, DM, VBUS, ID, REG1V8, REG3V3,  
XTAL1, XTAL2, RREF, PSW_N, FAULT  
not powered[2]  
not powered[2]  
[1] When I/O pins are not powered, the input buffer is disabled and will ignore the external input level. The input  
pins, however, should not be driven by another voltage source to prevent leakage.  
[2] These pins must not be externally driven to HIGH. Otherwise, the ISP1705 behavior is undefined and  
leakage current will occur.  
When VCC(I/O) is not present, all the digital pins (see Section 8.12.2) that are powered by  
VCC(I/O) are not powered. Other pins (see Section 8.12.9) are also not powered.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
22 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
When the ISP1705 is put into Power-down mode by disabling chip select, all the digital  
pins (see Section 8.12.2) that are powered by VCC(I/O) are configured as high-impedance  
inputs. These pins must be driven to defined states or terminated by using pull-up or  
pull-down resistors to avoid a floating input condition. Other pins (see Section 8.12.9) are  
not powered. In this mode, minimum current will be drawn by VCC(I/O) to detect the chip  
select status.  
9.2 ULPI modes  
The ISP1705 ULPI interface can be programmed to operate in five modes. In each mode,  
the signals on the data bus are reconfigured as described in the following subsections.  
Setting more than one mode will lead to undefined behavior.  
9.2.1 Synchronous mode  
This is default mode. On power-up, and when CLOCK is stable, the ISP1705 will enter  
synchronous mode.  
In synchronous mode, the link must synchronize all ULPI signals to CLOCK, meeting the  
set-up and hold times as defined in Section 15.  
This mode is used by the link to perform the following tasks:  
High-speed detection handshake (chirp)  
Transmit and receive USB packets  
Read from and write to registers  
Receive USB status updates (RXCMDs) from the ISP1705  
For more information on various synchronous mode protocols, see Section 10.  
Table 10. ULPI signal description  
Signal name Direction on  
the ISP1705[1]  
Signal description  
CLOCK  
O
60 MHz interface clock: When a crystal is attached or a clock is driven into the XTAL1  
pin, the ISP1705 will drive a 60 MHz output clock.  
During low-power, serial and UART modes, the clock can be turned off to save power.  
DATA[7:0]  
I/O  
8-bit data bus: In synchronous mode, the link drives DATA[7:0] to LOW by default. The  
link initiates transfers by sending a nonzero data pattern called a TXCMD (transmit  
command). In synchronous mode, the direction of DATA[7:0] is controlled by DIR.  
Contents of DATA[7:0] lines must be ignored for exactly one clock cycle whenever DIR  
changes state. This is called a turnaround cycle.  
Data lines have fixed directions and different meanings in low-power, 3-pin serial and  
UART modes.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
23 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 10. ULPI signal description …continued  
Signal name Direction on  
the ISP1705[1]  
Signal description  
DIR  
O
Direction: Controls the direction of data bus DATA[7:0].  
In synchronous mode, the ISP1705 drives DIR to LOW by default, making the data bus an  
input so the ISP1705 can listen for TXCMD from the link. The ISP1705 drives DIR to  
HIGH only when it has data for the link. When DIR and NXT are HIGH, the byte on the  
data bus contains decoded USB data. When DIR is HIGH and NXT is LOW, the byte  
contains status information called an RXCMD (receive command). The only exception to  
this rule is when the PHY returns register read data, where NXT is also LOW, replacing  
the usual RXCMD byte. Every change in DIR causes a turnaround cycle on the data bus,  
during which DATA[7:0] is not valid and must be ignored by the link.  
DIR is always asserted during low-power, serial and UART modes.  
STP  
NXT  
I
Stop: In synchronous mode, the link drives STP to HIGH for one cycle after the last byte  
of data is sent to the ISP1705. The link can optionally assert STP to force DIR to be  
deasserted.  
In low-power, serial and UART modes, the link holds STP at HIGH to wake up the  
ISP1705, causing the ULPI bus to return to synchronous mode.  
O
Next: In synchronous mode, the ISP1705 drives NXT to HIGH to throttle data. If DIR is  
LOW, the ISP1705 asserts NXT to notify the link to place the next data byte on DATA[7:0]  
in the following clock cycle. If DIR is HIGH, the ISP1705 asserts NXT to notify the link that  
a valid USB data byte is on DATA[7:0] in the current cycle. The ISP1705 always drives an  
RXCMD when DIR is HIGH and NXT is LOW, unless register read data is to be returned  
to the link in the current cycle.  
NXT is not used in low-power, serial and UART modes.  
[1] I = input; O = output.  
9.2.2 Low-power mode  
When the USB bus is idle, the link can place the ISP1705 into low-power mode (also  
called suspend mode). In low-power mode, the data bus definition changes to that shown  
in Table 11. To enter low-power mode, the link sets the SUSPENDM bit in the  
FUNC_CTRL register (see Section 11.5) to logic 0. To exit low-power mode, the link  
asserts the STP signal. After exiting low-power mode, the ISP1705 will send an RXCMD  
to the link if a change was detected in any interrupt source, and the change still exists. An  
RXCMD may not be sent if the interrupt condition is removed before exiting.  
The ISP1705 will draw only suspend current from the VCC supply; see Table 53.  
During low-power mode, the clock on XTAL1 may be stopped. The clock must be started  
again before asserting STP to exit low-power mode.  
For more information on low-power mode enter and exit protocols, refer to UTMI+ Low Pin  
Interface (ULPI) Specification Rev. 1.1.  
Table 11. Signal mapping during low-power mode  
Signal  
Maps to  
Direction[1] Description  
LINESTATE0  
DATA0  
O
combinatorial LINESTATE0 directly driven by  
the analog receiver  
LINESTATE1  
DATA1  
O
combinatorial LINESTATE1 directly driven by  
the analog receiver  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
24 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 11. Signal mapping during low-power mode …continued  
Signal  
Maps to  
Direction[1] Description  
Reserved  
DATA2  
O
reserved; the ISP1705 will drive this pin to  
LOW  
INT  
DATA3  
O
active-HIGH interrupt indication; will be  
asserted and latched whenever any  
unmasked interrupt occurs  
Reserved  
DATA[7:4]  
O
reserved; the ISP1705 will drive these pins to  
LOW  
[1] I = input; O = output.  
9.2.3 6-pin full-speed or low-speed serial mode  
If the link requires a 6-pin serial interface to transmit and receive full-speed or low-speed  
USB data, it can set the ISP1705 to 6-pin serial mode. In 6-pin serial mode, the data bus  
definition changes to that shown in Table 12. To enter 6-pin serial mode, the link sets the  
6PIN_FSLS_SERIAL bit in the INTF_CTRL register (see Section 11.6) to logic 1. To exit  
6-pin serial mode, the link asserts the STP signal. This is provided primarily for links that  
contain legacy full-speed or low-speed functionality, providing a more cost-effective  
upgrade path to high-speed functionality. An interrupt pin is also provided to inform the link  
of USB events. If the link requires CLOCK to be running during 6-pin serial mode, the  
CLOCK_SUSPENDM register bit must be set to logic 1 before entering 6-pin serial mode.  
For more information on 6-pin serial mode enter and exit protocols, refer to UTMI+ Low  
Pin Interface (ULPI) Specification Rev. 1.1.  
Table 12. Signal mapping for 6-pin serial mode  
Signal  
Maps to  
Direction[1] Description  
TX_ENABLE DATA0  
I
active-HIGH transmit enable  
TX_DAT  
TX_SE0  
INT  
DATA1  
DATA2  
DATA3  
I
transmit differential data on DP and DM  
transmit single-ended zero on DP and DM  
I
O
active-HIGH interrupt indication; will be asserted and  
latched whenever any unmasked interrupt occurs  
RX_DP  
DATA4  
DATA5  
DATA6  
DATA7  
O
O
O
O
single-ended receive data from DP  
RX_DM  
RX_RCV  
Reserved  
single-ended receive data from DM  
differential receive data from DP and DM  
reserved; the ISP1705 will drive this pin to LOW  
[1] I = input; O = output.  
9.2.4 3-pin full-speed or low-speed serial mode  
If the link requires a 3-pin serial interface to transmit and receive full-speed or low-speed  
USB data, it can set the ISP1705 to 3-pin serial mode. In 3-pin serial mode, the data bus  
definition changes to that shown in Table 13. To enter 3-pin serial mode, the link sets the  
3PIN_FSLS_SERIAL bit in the INTF_CTRL register (see Section 11.6) to logic 1. To exit  
3-pin serial mode, the link asserts the STP signal. This is provided primarily for links that  
contain legacy full-speed or low-speed functionality, providing a more cost-effective  
upgrade path to high-speed functionality. An interrupt pin is also provided to inform the link  
of USB events. If the link requires CLOCK to be running during 3-pin serial mode, the  
CLOCK_SUSPENDM register bit must be set to logic 1 before entering 3-pin serial mode.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
25 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
For more information on 3-pin serial mode enter and exit protocols, refer to UTMI+ Low  
Pin Interface (ULPI) Specification Rev. 1.1.  
Table 13. Signal mapping for 3-pin serial mode  
Signal  
Maps to  
Direction[1] Description  
TX_ENABLE DATA0  
I
active-HIGH transmit enable  
DAT  
SE0  
DATA1  
DATA2  
I/O  
transmit differential data on DP and DM when  
TX_ENABLE is HIGH  
receive differential data from DP and DM when  
TX_ENABLE is LOW  
I/O  
transmit single-ended zero on DP and DM when  
TX_ENABLE is HIGH  
receive single-ended zero from DP and DM when  
TX_ENABLE is LOW  
INT  
DATA3  
O
O
active-HIGH interrupt indication; will be asserted  
and latched whenever any unmasked interrupt  
occurs  
Reserved  
DATA[7:4]  
reserved; the ISP1705 will drive these pins to LOW  
[1] I = input; O = output.  
9.2.5 Transparent UART mode  
In transparent UART mode, the ISP1705 functions as a voltage level shifter between  
following pins:  
From pin DATA0 (VCC(I/O) level) to pin DM (2.7 V level).  
From pin DP (2.7 V level) to pin DATA1 (VCC(I/O) level).  
The USB transceiver is used to drive the UART transmitting signal on the DM line. The  
rise time and the fall time of the transmitting signal is determined by whether a full-speed  
or low-speed transceiver is in use. It is recommended to use a low-speed transceiver if the  
UART bit rate is below 921 kbit/s for better EMI performance. If the UART bit rate is equal  
to or above 921 kbit/s, a full-speed transceiver can be used.  
In transparent UART mode, data bus definitions change to that shown in Table 14.  
Table 14. UART signal mapping  
Signal  
TXD  
Maps to  
DATA0  
DATA1  
Direction[1] Description  
I
UART TXD signal that is routed to the DM pin  
RXD  
O
O
UART RXD signal that is routed from the DP pin  
Reserved DATA2  
reserved; the ISP1705 will drive this pin to LOW in UART  
mode  
INT DATA3  
O
O
active-HIGH interrupt indication; will be asserted and  
latched whenever any unmasked interrupt occurs  
Reserved DATA[7:4]  
[1] I = input; O = output.  
reserved; the ISP1705 will drive these pins to LOW in  
UART mode  
Transparent UART mode is entered by setting some register bits in ULPI registers. The  
recommended sequence is:  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
26 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
1. Set the XCVRSELECT[1:0] bits in the FUNC_CTRL register (see Section 11.5) to 10b  
(low speed) or 01b (full speed). This setting affects the rise time and the fall time of  
the UART transmitting signal on the DM line.  
2. Set the DP_PULLDOWN and DM_PULLDOWN bits in the OTG_CTRL register (see  
Section 11.7) to logic 0.  
3. Set the TERMSELECT bit in the FUNC_CTRL register (see Section 11.5) to logic 0  
(power-on default value).  
Remark: Mandatory when a full-speed driver is used and optional for a low-speed  
driver.  
4. Set the TXD_EN and RXD_EN bits in the CARKIT_CTRL register (see Section 11.14)  
to logic 1. These two bits must be set together in one TXCMD.  
5. Set the CARKIT_MODE bit in the INTF_CTRL register (see Section 11.6) to logic 1.  
Remark: The CARKIT_MODE, TXD_EN and RXD_EN bits must be set to logic 1.  
The sequence of setting these register bits is ignored.  
After the register configuration is complete:  
1. A weak pull-up resistor will be enabled on the DP and DATA0 pins. This is to avoid the  
possible floating condition on these input pins when UART mode is enabled.  
2. The 39 serial termination resistors on the DP and DM pins will be enabled.  
3. One clock cycle after DIR goes from LOW to HIGH, the ISP1705 will drive the data  
bus for five clock cycles. This is to charge the DATA0 pin to a HIGH level for a slow  
link. However, the link can start driving DATA0 to HIGH immediately after the  
turnaround cycle.  
4. UART buffers between DATA0 or DATA1 and DM or DP are enabled. Transparent  
UART mode is entered.  
Remark: The DP pin will be slowly charged up to HIGH by the weak pull-up resistor.  
The time needed depends on the capacitive loading on DP.  
By default, the clock is powered down when the ISP1705 enters UART mode. If the link  
requires CLOCK to be running in UART mode, it can set the CLOCK_SUSPENDM bit in  
the INTF_CTRL register (see Section 11.6) to logic 1 before entering UART mode.  
Transparent UART mode is exited by asserting the STP pin to HIGH or by toggling chip  
select.  
The INT pin (DATA3) is asserted and latched whenever an unmasked interrupt event  
occurs. When the link detects INT as HIGH, it must wake up the PHY from transparent  
UART mode by asserting STP. When the PHY is in synchronous mode, the link can read  
the USB_INTR_L register (see Section 11.11) to determine the source of the interrupt.  
Note that the ISP1705 does not implement the optional Carkit Interrupt registers.  
An alternative way to exit UART mode is to set chip select to non-active for more than  
tPWRDN and then set it to active. A power-on reset will be generated and the ULPI bus will  
be put in default synchronous mode.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
27 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
(1)  
(2)  
CLOCK  
CLOCK  
turnaround  
TXCMD  
(REGW)  
DATA[7:0]  
0001 0001  
UART mode signals  
DATA  
DIR  
STP  
NXT  
UART  
mode  
004aaa865  
(1) Clock remains powered when the CLOCK_SUSPENDM register bit is set to logic 1.  
(2) Clock is powered down when the CLOCK_SUSPENDM register bit is logic 0 (default).  
Fig 10. Interface behavior when entering UART mode  
(1)  
CLOCK  
(2)  
CLOCK  
turnaround  
synchronous  
mode signals  
UART mode signals  
0000 0000  
DATA[7:0]  
DIR  
STP  
NXT  
UART  
mode  
004aaa867  
(1) Clock remains powered when the CLOCK_SUSPENDM register bit is set to logic 1.  
(2) Clock is powered down when the CLOCK_SUSPENDM register bit is logic 0 (default).  
Fig 11. Interface behavior when exiting UART mode  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
28 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
9.3 USB state transitions  
A Hi-Speed USB peripheral, host or OTG device handles more than one electrical state as  
defined in Universal Serial Bus Specification Rev. 2.0 and On-The-Go Supplement to the  
USB 2.0 Specification Rev. 1.3. The ISP1705 accommodates various states through  
register settings of the XCVRSELECT[1:0], TERMSELECT, OPMODE[1:0],  
DP_PULLDOWN and DM_PULLDOWN bits.  
Table 15 summarizes operating states. The values of register settings in Table 15 will  
force resistor settings as also given in Table 15. Resistor setting signals are defined as  
follows:  
RPU_DP_EN enables the 1.5 kpull-up resistor on DP  
RPD_DP_EN enables the 15 kpull-down resistor on DP  
RPD_DM_EN enables the 15 kpull-down resistor on DM  
HSTERM_EN enables the 45 termination resistors on DP and DM  
It is up to the link to set the desired register settings.  
Table 15. Operating states and their corresponding resistor settings  
Signaling mode  
Register settings  
Internal resistor settings  
XCVR  
SELECT  
[1:0]  
TERM  
SELECT [1:0]  
OPMODE  
DP_  
PULL PULL  
DOWN DOWN  
DM_  
RPU_  
DP_EN  
RPD_  
DP_EN  
RPD_  
DM_EN EN  
HSTERM_  
General settings  
3-state drivers  
XXb  
01b  
Xb  
0b  
01b  
00b  
Xb  
1b  
Xb  
1b  
0b  
0b  
0b  
1b  
0b  
1b  
0b  
0b  
Power up or  
VBUS < VB_SESS_END  
Host settings  
Host chirp  
00b  
00b  
X1b  
01b  
0b  
0b  
1b  
1b  
10b  
00b  
00b  
00b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
0b  
0b  
0b  
0b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
0b  
0b  
Host high-speed  
Host full-speed  
Host high-speed or  
full-speed suspend  
Host high-speed or  
full-speed resume  
01b  
1b  
10b  
1b  
1b  
0b  
1b  
1b  
0b  
Host low-speed  
10b  
10b  
1b  
1b  
00b  
00b  
1b  
1b  
1b  
1b  
0b  
0b  
1b  
1b  
1b  
1b  
0b  
0b  
Host low-speed  
suspend  
Host low-speed  
resume  
10b  
1b  
0b  
10b  
10b  
1b  
1b  
1b  
1b  
0b  
0b  
1b  
1b  
1b  
1b  
0b  
1b  
Host Test J or Test K 00b  
Peripheral settings  
Peripheral chirp  
00b  
00b  
1b  
0b  
10b  
00b  
0b  
0b  
0b  
0b  
1b  
0b  
0b  
0b  
0b  
0b  
0b  
1b  
Peripheral high  
speed  
Peripheral full speed 01b  
1b  
00b  
0b  
0b  
1b  
0b  
0b  
0b  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
29 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 15. Operating states and their corresponding resistor settings …continued  
Signaling mode  
Register settings  
Internal resistor settings  
XCVR  
SELECT  
[1:0]  
TERM  
SELECT [1:0]  
OPMODE  
DP_  
PULL PULL  
DOWN DOWN  
DM_  
RPU_  
DP_EN  
RPD_  
DP_EN  
RPD_  
DM_EN EN  
HSTERM_  
Peripheral high  
speed or full speed  
suspend  
01b  
1b  
1b  
0b  
00b  
10b  
10b  
0b  
0b  
0b  
0b  
0b  
0b  
1b  
1b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
0b  
1b  
Peripheral high  
speed or full speed  
resume  
01b  
Peripheral Test J or 00b  
Test K  
OTG settings  
OTG device  
peripheral chirp  
00b  
00b  
1b  
0b  
10b  
00b  
0b  
0b  
1b  
1b  
1b  
0b  
0b  
0b  
1b  
1b  
0b  
1b  
OTG device  
peripheral high  
speed  
OTG device  
peripheral full speed  
01b  
01b  
1b  
1b  
00b  
00b  
0b  
0b  
1b  
1b  
1b  
1b  
0b  
0b  
1b  
1b  
0b  
0b  
OTG device  
peripheral high  
speed and full speed  
suspend  
OTG device  
01b  
00b  
1b  
0b  
10b  
10b  
0b  
0b  
1b  
1b  
1b  
0b  
0b  
0b  
1b  
1b  
0b  
1b  
peripheral high  
speed and full speed  
resume  
OTG device  
peripheral Test J or  
Test K  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
30 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
10. Protocol description  
10.1 ULPI references  
The ISP1705 provides a 12-pin ULPI interface to communicate with the link. It is highly  
recommended that users of the ISP1705 read UTMI+ Specification Rev. 1.0 and UTMI+  
Low Pin Interface (ULPI) Specification Rev. 1.1.  
Commands between the ISP1705 and the link are described in the following subsections.  
10.2 TXCMD  
By default, the link must drive the ULPI bus to its idle state of 00h. To send commands and  
USB packets, the link drives a nonzero value on DATA[7:0] to the ISP1705 by sending a  
byte called TXCMD. Commands include USB packet transmissions, and register reads  
and writes. Once the TXCMD is interpreted and accepted by the ISP1705, the NXT signal  
is asserted and the link can follow up with the required number of data bytes. The TXCMD  
byte format is given in Table 16. Any values other than those in Table 16 are illegal and will  
result in undefined behavior.  
Various TXCMD packet and register sequences are given in later sections.  
Table 16. TXCMD byte format  
Command Command Command  
type name code payload  
DATA[7:6] DATA[5:0]  
Command Command description  
name  
Idle  
00b  
00 0000b  
NOOP  
NOPID  
No operation. 00h is the idle value of the  
data bus. The link must drive NOOP by  
default.  
Packet  
transmit  
01b  
00 0000b  
Transmit USB data that does not have a  
PID, such as chirp and resume signaling.  
The ISP1705 starts transmitting only  
after accepting the next data byte.  
00 XXXXb  
10 1111b  
PID  
Transmit USB packet. DATA[3:0]  
indicates USB packet identifier PID[3:0].  
Register  
write  
10b  
11b  
EXTW  
Extended register write command  
(optional). The 8-bit address must be  
provided after the command is accepted.  
XX XXXXb  
10 1111b  
REGW  
EXTR  
Register write command with 6-bit  
immediate address.  
Register  
read  
Extended register read command  
(optional). The 8-bit address must be  
provided after the command is accepted.  
XX XXXXb  
REGR  
Register read command with 6-bit  
immediate address.  
10.3 RXCMD  
The ISP1705 communicates status information to the link by asserting DIR and sending  
an RXCMD byte on the data bus. The RXCMD data byte format follows UTMI+ Low Pin  
Interface (ULPI) Specification Rev. 1.1 and is given in Table 17.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
31 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
The ISP1705 will automatically send an RXCMD whenever there is a change in any of the  
RXCMD data fields. The link must be able to accept an RXCMD at any time; including  
single RXCMDs, back-to-back RXCMDs, and RXCMDs at any time during USB receive  
packets when NXT is LOW. An example is shown in Figure 12. For details and diagrams,  
refer to UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1.  
Table 17. RXCMD byte format  
DATA  
Name  
Description and value  
1 to 0  
LINESTATE LINESTATE signals: For a definition of LINESTATE, see Section 10.3.1.  
DATA0 — LINESTATE0  
DATA1 — LINESTATE1  
3 to 2  
VBUS state  
Encoded VBUS voltage state: For an explanation of the VBUS state,  
see Section 10.3.2.  
5 to 4  
RxEvent  
ID  
Encoded USB event signals: For an explanation of RxEvent,  
see Section 10.3.4.  
6
7
Reflects the state of the ID pin. Valid 50 ms after ID_PULLUP is set to  
logic 1.  
ALT_INT  
By default, this signal is not used and is not needed in typical designs.  
Optionally, the link can enable the BVALID_RISE and/or BVALID_FALL  
bits in the PWR_CTRL register (see Section 11.15). Corresponding  
changes in BVALID will cause an RXCMD to be sent to the link with the  
ALT_INT bit asserted.  
CLOCK  
Single RXCMD  
turnaround  
Back-to-back RXCMDs  
RXCMD RXCMD  
turnaround  
turnaround  
turnaround  
RXCMD  
[
]
DATA 7:0  
DIR  
STP  
NXT  
004aaa695  
Fig 12. Single and back-to-back RXCMDs from the ISP1705 to the link  
10.3.1 Linestate encoding  
LINESTATE[1:0] reflects the current state of DP and DM. Whenever the ISP1705 detects  
a change in DP or DM, an RXCMD will be sent to the link with the new LINESTATE[1:0]  
value. The value given on LINESTATE[1:0] depends on the setting of various registers.  
Table 18 shows the LINESTATE[1:0] encoding for upstream facing ports, which applies to  
peripherals. Table 19 shows the LINESTATE[1:0] encoding for downstream facing ports,  
which applies to host controllers. Dual-role devices must choose the correct table,  
depending on whether it is in peripheral or host mode.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
32 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 18. LINESTATE[1:0] encoding for upstream facing ports: peripheral  
DP_PULLDOWN = 0.[1]  
Mode  
Value  
Full speed  
01, 11  
1
High speed  
00  
Chirp  
00  
XCVRSELECT[1:0]  
TERMSELECT  
LINESTATE[1:0]  
0
1
00  
01  
SE0  
squelch  
!squelch  
squelch  
FS-J  
!squelch and  
HS_Differential_Receiver_Output  
10  
11  
FS-K  
SE1  
invalid  
invalid  
!squelch and  
!HS_Differential_Receiver_Output  
invalid  
[1] !squelch indicates inactive squelch. !HS_Differential_Receiver_Output indicates inactive  
HS_Differential_Receiver_Output.  
Table 19. LINESTATE[1:0] encoding for downstream facing ports: host  
DP_PULLDOWN and DM_PULLDOWN = 1.[1]  
Mode  
Value Low  
Full  
High speed Chirp  
speed speed  
XCVRSELECT[1:0]  
TERMSELECT  
OPMODE[1:0]  
10  
01, 11 00  
00  
0
1
1
0
X
X
00, 01 or 11 10  
LINESTATE[1:0]  
00  
01  
SE0  
LS-K  
SE0  
FS-J  
squelch  
!squelch  
squelch  
!squelch and  
HS_Differential_Receiver_Output  
10  
11  
LS-J  
SE1  
FS-K  
SE1  
invalid  
invalid  
!squelch and  
!HS_Differential_Receiver_Output  
invalid  
[1] !squelch indicates inactive squelch. !HS_Differential_Receiver_Output indicates inactive  
HS_Differential_Receiver_Output.  
10.3.2 VBUS state encoding  
USB devices must monitor the VBUS voltage for purposes such as overcurrent detection,  
starting a session and SRP. The VBUS state field in the RXCMD is an encoding of the  
voltage level on VBUS  
.
The SESS_END and SESS_VLD indicators in the VBUS state are directly taken from the  
internal comparators built-in to the ISP1705, and encoded as shown in Table 17 and  
Table 20.  
Table 20. Encoded VBUS voltage state  
Value VBUS voltage  
SESS_END SESS_VLD A_VBUS_VLD  
00  
01  
10  
11  
VBUS < VB_SESS_END  
1
0
X
X
0
0
1
X
0
0
0
1
VB_SESS_END VBUS < VA_SESS_VLD  
VA_SESS_VLD VBUS < VA_VBUS_VLD  
VBUS VA_VBUS_VLD  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
33 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
The A_VBUS_VLD indicator in the VBUS state provides several options and must be  
configured based on current draw requirements. A_VBUS_VLD can input from one or  
more VBUS voltage indicators, as shown in Figure 13.  
A description on how to use and select the VBUS state encoding is given in Section 10.3.3.  
A_VBUS_VLD comparator  
internal A_VBUS_VLD  
V
BUS  
(0, X)  
(1, 0)  
RXCMD  
A_VBUS_VLD  
complement  
output  
FAULT indicator  
FAULT  
(1, 1)  
IND_COMPL  
USE_EXT_VBUS_IND,  
IND_PASSTHRU  
004aaa698  
Fig 13. RXCMD A_VBUS_VLD indicator source  
10.3.3 Using and selecting the VBUS state encoding  
The VBUS state encoding is shown in Table 20. The ISP1705 will send an RXCMD to the  
link whenever there is a change in the VBUS state. To receive VBUS state updates, the link  
must first enable the corresponding interrupts in the USB_INTR_EN_R and  
USB_INTR_EN_F registers.  
The link can use the VBUS state to monitor VBUS and take appropriate actions. Table 21  
shows the recommended usage for typical applications.  
Table 21. VBUS indicators in RXCMD required for typical applications  
Application  
A_VBUS_VLD  
SESS_VLD  
SESS_END  
Standard host  
Standard peripheral  
OTG A-device  
OTG B-device  
yes  
no  
no  
no  
no  
no  
yes  
yes  
yes  
yes  
yes  
no  
10.3.3.1 Standard USB host controllers  
For standard hosts, the system must be able to provide 500 mA on VBUS in the range of  
4.75 V to 5.25 V. An external circuit must be used to detect overcurrent conditions. If the  
external overcurrent detector provides a digital fault signal, then the fault signal must be  
connected to the ISP1705 FAULT input pin, and the link must do the following:  
1. Set the IND_COMPL bit in the INTF_CTRL register (see Section 11.6) to logic 0 or  
logic 1, depending on the polarity of the external fault signal.  
2. Set the USE_EXT_VBUS_IND bit in the OTG_CTRL register (see Section 11.7) to  
logic 1.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
34 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
3. If it is not necessary to qualify the fault indicator with the internal A_VBUS_VLD  
comparator, set the IND_PASSTHRU bit in the INTF_CTRL register (see  
Section 11.6) to logic 1.  
10.3.3.2 Standard USB peripheral controllers  
Standard peripherals must be able to detect when VBUS is at a sufficient level for  
operation. SESS_VLD must be enabled to detect the start and end of USB peripheral  
operations. Detection of A_VBUS_VLD and SESS_END thresholds is not needed for  
standard peripherals.  
10.3.3.3 OTG devices  
When an OTG device is configured as an OTG A-device, it must be able to provide a  
minimum of 8 mA on VBUS. If the OTG A-device provides less than 100 mA, then there is  
no need for an overcurrent detection circuit because the internal A_VBUS_VLD  
comparator is sufficient. If the OTG A-device provides more than 100 mA on VBUS, an  
overcurrent detector must be used and Section 10.3.3.1 applies. The OTG A-device also  
uses SESS_VLD to detect when an OTG B-device is initiating VBUS pulsing SRP.  
When an OTG device is configured as an OTG B-device, SESS_VLD must be used to  
detect when VBUS is at a sufficient level for operation. SESS_END must be used to detect  
when VBUS has dropped to a LOW level, allowing the B-device to safely initiate VBUS  
pulsing SRP.  
10.3.4 RxEvent encoding  
The RxEvent field (see Table 22) of the RXCMD informs the link of information related  
packets received on the USB bus. RxActive and RxError are defined in USB 2.0  
Transceiver Macrocell Interface (UTMI) Specification Ver. 1.05. HostDisconnect is defined  
in UTMI+ Specification Rev. 1.0. A short definition is also given in the following  
subsections.  
Table 22. Encoded USB event signals  
Value  
00  
RxActive  
RxError  
HostDisconnect  
0
1
1
X
0
0
1
X
0
0
0
1
01  
11  
10  
10.3.4.1 RxActive  
When the ISP1705 has detected a SYNC pattern on the USB bus, it signals an RxActive  
event to the link. An RxActive event can be communicated using two methods. The first  
method is for the ISP1705 to simultaneously assert DIR and NXT. The second method is  
for the ISP1705 to send an RXCMD to the link with the RxActive field in the RxEvent bits  
set to logic 1. The link must be capable of detecting both methods. RxActive frames the  
receive packet from the first byte to the last byte.  
The link must assume that RxActive is set to logic 0 when indicated in an RXCMD or when  
DIR is deasserted, whichever occurs first.  
The link uses RxActive to time high-speed packets and ensure that bus turnaround times  
are met. For more information on the USB packet timing, see Section 10.6.1.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
35 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
10.3.4.2 RxError  
When the ISP1705 has detected an error while receiving a USB packet, it deasserts NXT  
and sends an RXCMD with the RxError field set to logic 1. The received packet is no  
longer valid and must be dropped by the link.  
10.3.4.3 HostDisconnect  
HostDisconnect is encoded into the RxEvent field of the RXCMD. HostDisconnect is valid  
only when the ISP1705 is configured as a host (both DP_PULLDOWN and  
DM_PULLDOWN are set to logic 1), and indicates to the host controller when a peripheral  
is connected (0b) or disconnected (1b). The host controller must enable HostDisconnect  
by setting the HOST_DISCON_R and HOST_DISCON_F bits in the USB_INTR_EN_R  
and USB_INTR_EN_F registers, respectively. Changes in HostDisconnect will cause the  
PHY to send an RXCMD to the link with the updated value.  
10.4 Register read and write operations  
Figure 14 shows register read and write sequences. The ISP1705 supports immediate  
addressing and extended addressing register operations. Extended register addressing is  
optional for links. Note that register operations will be aborted if the ISP1705 asserts DIR  
during the operation. When a register operation is aborted, the link must retry until  
successful. For more information on register operations, refer to UTMI+ Low Pin Interface  
(ULPI) Specification Rev. 1.1.  
CLOCK  
TXCMD  
(REGW) D  
TXCMD  
(REGR)  
TXCMD  
(EXTW) AD  
TXCMD  
(EXTW) AD  
D
D
D
DATA[7:0]  
immediate  
register write  
extended  
register write  
immediate  
register read  
extended  
register read  
DIR  
STP  
NXT  
004aaa710  
AD indicates the address byte, and D indicates the data byte.  
Fig 14. Example of register write, register read, extended register write and extended register read  
10.5 USB reset and high-speed detection handshake (chirp)  
Figure 15 shows the sequence of events for USB reset and high-speed detection  
handshake (chirp). The sequence is shown for hosts and peripherals. Figure 15 does not  
show all RXCMD updates, and timing is not to scale. The sequence is as follows:  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
36 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
1. USB reset: The host detects a peripheral attachment as low-speed if DM is HIGH and  
as full-speed if DP is HIGH. If a host detects a low-speed peripheral, it does not follow  
the remainder of this protocol. If a host detects a full-speed peripheral, it resets the  
peripheral by writing to the FUNC_CTRL register (see Section 11.5) and setting  
XCVRSELECT[1:0] = 00b (high speed) and TERMSELECT = 0b that drives SE0 on  
the bus (DP and DM connected to ground through 45 ). The host also sets  
OPMODE[1:0] = 10b for correct chirp transmit and receive. The start of SE0 is labeled  
t0.  
Remark: To receive chirp signaling, the host must also consider the high-speed  
differential receiver output. The host controller must interpret LINESTATE as shown in  
Table 19.  
2. High-speed detection handshake (chirp)  
a. Peripheral chirp: After detecting SE0 for no less than 2.5 µs, if the peripheral is  
capable of high speed, it sets XCVRSELECT[1:0] to 00b (high speed) and  
OPMODE[1:0] to 10b (chirp). The peripheral immediately follows this with a  
TXCMD (NOPID), transmitting a Chirp K for no less than 1 ms and ending no more  
than 7 ms after reset time t0. If the peripheral is in low-power mode, it must wake  
up its clock within 5.6 ms, leaving 200 µs for the link to start transmitting the  
Chirp K, and 1.2 ms for the Chirp K to complete (worst case with 10 % slow clock).  
b. Host chirp: If the host does not detect the peripheral chirp, it must continue  
asserting SE0 until the end of reset. If the host detects the peripheral Chirp K for  
no less than 2.5 µs, then no more than 100 µs after the bus leaves the Chirp K  
state, the host sends a TXCMD (NOPID) with an alternating sequence of Chirp Ks  
and Js. Each Chirp K or Chirp J must last no less than 40 µs and no longer than  
60 µs.  
c. High speed idle: The peripheral must detect a minimum of Chirp K-J-K-J-K-J. Each  
Chirp K and Chirp J must be detected for at least 2.5 µs. The peripheral sets  
TERMSELECT = 0b and OPMODE[1:0] = 00b after seeing the minimum chirp  
sequence. The peripheral is now in high-speed mode and sees !squelch (01b on  
LINESTATE). When the peripheral sees squelch (10b on LINESTATE), it knows  
that the host has completed chirp and waits for Hi-Speed USB traffic to begin. After  
transmitting the chirp sequence, the host changes OPMODE[1:0] to 00b and  
begins sending USB packets.  
For more information, refer to UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
37 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
USB reset  
high-speed detection handshake (chirp)  
t0  
peripheral chirp  
host chirp  
HS idle  
TXCMD  
(REGW)  
TXCMD  
(REGW)  
TXCMD  
NOPID  
SE0  
K
00  
K
...  
J
K
J
DATA  
[7:0]  
DIR  
STP  
NXT  
00 (HS)  
01 (FS)  
XCVR  
SELECT  
TERM  
SELECT  
00 (normal)  
00 (normal)  
J (01b)  
01 (chirp)  
OP  
MODE  
squelch  
(00b)  
SE0 (00b)  
host chirp K (10b) or chirp J (01b)  
peripheral chirp K (10b)  
squelch (00b)  
LINE  
STATE  
RXCMDs  
TXCMD  
TXCMD  
(REGW)  
TXCMD  
NOPID  
(REGW)  
00  
K
J
K
J
00  
SE0  
K
K
...  
K
K
J
DATA  
[7:0]  
DIR  
STP  
NXT  
01 (FS)  
00 (HS)  
XCVR  
SELECT  
TERM  
SELECT  
00 (normal)  
10 (chirp)  
00 (normal)  
OP  
MODE  
squelch  
(00b)  
!squelch  
(01b)  
squelch (00b)  
peripheral chirp K (10b)  
J (01b)  
SE0 (00b)  
host chirp K or J (10b or 01b)  
LINE  
STATE  
DP  
DM  
001aai188  
Timing is not to scale.  
Fig 15. USB reset and high-speed detection handshake (chirp) sequence  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
38 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
10.6 USB packet transmit and receive  
An example of a packet transmit and receive is shown in Figure 16. For details on USB  
packets, refer to UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1.  
ISP1705  
deasserts  
DIR, causing  
ISP1705  
asserts DIR,  
causing  
turnaround  
cycle  
link sends  
the next data;  
ISP1705  
ISP1705  
sends  
RXCMD  
(NXT LOW)  
ISP1705  
sends  
ISP1705  
accepts  
TXCMD  
link sends  
TXCMD  
link signals ULPI bus  
end of data is idle  
USB data turnaround  
accepts  
(NXT HIGH)  
cycle  
CLOCK  
turnaround RXCMD  
DATA  
turnaround  
[
]
TXCMD  
DATA  
DATA 7:0  
DIR  
STP  
NXT  
004aab046  
Fig 16. Example of using the ISP1705 to transmit and receive USB data  
10.6.1 USB packet timing  
10.6.1.1 ISP1705 pipeline delays  
The ISP1705 delays (in clock cycles) are shown in Table 23. For detailed description, refer  
to UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1, Section 3.8.2.6.2.  
Table 23. PHY pipeline delays  
Parameter name  
High-speed PHY  
delay  
Full-speed PHY  
delay  
Low-speed PHY  
delay  
RXCMD delay (J and K)  
RXCMD delay (SE0)  
TX start delay  
4
4
4
4
4 to 6  
16 to 18  
1 to 2  
3 to 4  
6 to 9  
5 to 6  
5 to 6  
6 to 10  
74 to 75  
TX end delay (packets)  
TX end delay (SOF)  
RX start delay  
not applicable  
not applicable  
not applicable  
17 to 18  
not applicable  
not applicable  
not applicable  
122 to 123  
RX end delay  
10.6.1.2 Allowed link decision time  
The amount of clock cycles allocated to the link to respond to a received packet and  
correctly receive back-to-back packets is given in Table 24. Link designs must follow the  
values given in Table 24 for correct USB system operation. Examples of high-speed  
packet sequences and timing are shown in Figure 17 and Figure 18. For details, refer to  
UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1, Section 3.8.2.6.3.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
39 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 24. Link decision times  
Packet sequence High-speed Full-speed Low-speed Definition  
link delay  
link delay link delay  
Transmit-Transmit 15 to 24  
(host only)  
7 to 18 77 to 247  
Number of clock cycles a host link must wait before driving  
the TXCMD for the second packet.  
In high speed, the link starts counting from the assertion of  
STP for the first packet.  
In full speed, the link starts counting from the RXCMD,  
indicating LINESTATE has changed from SE0 to J for the first  
packet. The timing given ensures inter-packet delays of 2 bit  
times to 6.5 bit times.  
Receive-Transmit  
(host or peripheral)  
1 to 14  
7 to 18  
77 to 247  
Number of clock cycles the link must wait before driving the  
TXCMD for the transmit packet.  
In high speed, the link starts counting from the end of the  
receive packet; deassertion of DIR or an RXCMD indicating  
RxActive is LOW.  
In full speed or low speed, the link starts counting from the  
RXCMD, indicating LINESTATE has changed from SE0 to J  
for the receive packet. The timing given ensures inter-packet  
delays of 2 bit times to 6.5 bit times.  
Receive-Receive  
(peripheral only)  
1
1
1
Minimum number of clock cycles between consecutive  
receive packets. The link must be capable of receiving both  
packets.  
Transmit-Receive  
(host or peripheral)  
92  
80  
718  
Host or peripheral transmits a packet and will time-out after  
this number of clock cycles if a response is not received. Any  
subsequent transmission can occur after this time.  
USB interpacket delay (88 to 192 high-speed bit times)  
DP or  
DM  
IDLE  
EOP  
SYNC  
D0  
DATA  
CLOCK  
D
N1  
D
N
D1  
TXCMD  
DATA  
[7:0]  
DIR  
STP  
NXT  
link decision time (15 to 24 clocks)  
TX start delay  
TX end delay (two to five clocks)  
(one to two clocks)  
004aaa712  
Fig 17. High-speed transmit-to-transmit packet timing  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
40 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
USB interpacket delay (8 to 192 high-speed bit times)  
IDLE  
DP or  
DM  
EOP  
SYNC  
DATA  
CLOCK  
D
N
D
N4  
D
N2  
D0  
D1  
TXCMD  
DATA  
[7:0]  
turnaround  
D
N3  
D
N1  
DIR  
STP  
NXT  
link decision time (1 to 14 clocks)  
RX end delay  
(three to eight clocks)  
TX start delay  
(one to two clocks)  
004aaa713  
Fig 18. High-speed receive-to-transmit packet timing  
10.7 Preamble  
Preamble packets are headers to low-speed packets that must travel over a full-speed  
bus, between a host and a hub. To enter preamble mode, the link sets  
XCVRSELECT[1:0] = 11b in the FUNC_CTRL register (see Section 11.5). When in  
preamble mode, the ISP1705 operates just as in full-speed mode, and sends all data with  
the full-speed rise time and fall time. Whenever the link transmits a USB packet in  
preamble mode, the ISP1705 will automatically send a preamble header at full-speed bit  
rate before sending the link packet at low-speed bit rate. The ISP1705 will ensure a  
minimum gap of four full-speed bit times between the last bit of the full-speed PRE PID  
and the first bit of the low-speed packet SYNC. The ISP1705 will drive a J for at least one  
full-speed bit time after sending the PRE PID, after which the pull-up resistor can hold the  
J state on the bus. An example transmit packet is shown in Figure 19.  
In preamble mode, the ISP1705 can also receive low-speed packets from the full-speed  
bus.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
41 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
CLOCK  
D1  
D0  
TXCMD (low-speed packet ID)  
DATA[7:0]  
DIR  
STP  
NXT  
FS  
PRE ID  
IDLE (min  
4 FS bits)  
LS D0  
LS D1  
LS SYNC  
LS PID  
FS SYNC  
DP or DM  
004aaa714  
DP and DM timing is not to scale.  
Fig 19. Preamble sequence  
10.8 USB suspend and resume  
10.8.1 Full-speed or low-speed host-initiated suspend and resume  
Figure 20 illustrates how a host or a hub places a full-speed or low-speed peripheral into  
suspend and sometime later initiates resume signaling to wake-up the downstream  
peripheral. Note that Figure 20 timing is not to scale, and does not show all RXCMD  
LINESTATE updates.  
The sequence of events for a host and a peripheral, both with ISP1705, is as follows:  
1. Idle: Initially, the host and the peripheral are idle. The host has its 15 kpull-down  
resistors enabled (DP_PULLDOWN and DM_PULLDOWN are set to 1b) and 45 Ω  
terminations are disabled (TERMSELECT is set to 1b). The peripheral has the 1.5 kΩ  
pull-up resistor connected to DP for full speed or DM for low speed (TERMSELECT is  
set to 1b).  
2. Suspend: When the peripheral sees no bus activity for 3 ms, it enters the suspend  
state. The peripheral link places the PHY into low-power mode by clearing the  
SUSPENDM bit in the FUNC_CTRL register (see Section 11.5), causing the PHY to  
draw only suspend current. The host may or may not be powered down.  
3. Resume K: When the host wants to wake up the peripheral, it sets OPMODE[1:0] to  
10b and transmits a K for at least 20 ms. The peripheral link sees the resume K on  
LINESTATE, and asserts STP to wake up the PHY.  
4. EOP: When STP is asserted, the ISP1705 on the host side automatically appends an  
EOP of two bits of SE0 at low-speed bit rate, followed by one bit of J. The ISP1705 on  
the host side knows to add the EOP because DP_PULLDOWN and DM_PULLDOWN  
are set to 1b for a host. After the EOP is completed, the host link sets OPMODE[1:0]  
to 00b for normal operation. The peripheral link sees the EOP and also resumes  
normal operation.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
42 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
EOP  
idle  
idle  
suspend  
resume K  
TXCMD  
(REGW)  
TXCMD  
NOPID  
K
...  
K
TXCMD  
K
DATA  
[
]
7:0  
DIR  
STP  
NXT  
OPMODE  
10b  
00b  
00b  
LINE  
STATE  
K
SE0  
J
J
CLOCK  
TXCMD  
(REGW)  
LINESTATE J  
LINESTATE K  
SE0  
J
DATA  
[
]
7:0  
DIR  
STP  
NXT  
00b  
OPMODE  
10b  
00b  
SUSPENDM  
LINE  
STATE  
K
SE0  
J
J
DP  
DM  
004aab123  
Timing is not to scale.  
Fig 20. Full speed suspend and resume  
10.8.2 High speed suspend and resume  
Figure 21 illustrates how a host or a hub places a high-speed enabled peripheral into  
suspend and then initiates resume signaling. The high-speed peripheral will wake up and  
return to high-speed operations. Note that Figure 21 timing is not to scale, and does not  
show all RXCMD LINESTATE updates.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
43 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
The sequence of events related to a host and a peripheral, both with ISP1705, is as  
follows:  
1. High speed idle: Initially, the host and the peripheral are idle. The host has its 15 kΩ  
pull-down resistors enabled (DP_PULLDOWN and DM_PULLDOWN are set to 1b)  
and 45 terminations enabled (TERMSELECT is set to 0b). The peripheral has its  
45 terminations enabled (TERMSELECT is set to 0b).  
2. Full speed suspend: When the peripheral sees no bus activity for 3 ms, it enters the  
suspend state. The peripheral link places the ISP1705 into full-speed mode  
(XCVRSELECT is set to 01b), removes 45 terminations, and enables the 1.5 kΩ  
pull-up resistor on DP (TERMSELECT is set to 1b). The peripheral link then places  
the ISP1705 into low-power mode by clearing SUSPENDM, causing the ISP1705 to  
draw only suspend current. The host also changes the ISP1705 to full speed,  
(XCVRSELECT is set to 01b), removes 45 terminations (TERMSELECT is set to  
1b), and then may or may not be powered down.  
3. Resume K: When the host wants to wake up the peripheral, it sets OPMODE to 10b  
and transmits a full-speed K for at least 20 ms. The peripheral link sees the resume K  
(10b) on LINESTATE, and asserts STP to wake up the ISP1705.  
4. High-speed traffic: The host link sets high speed (XCVRSELECT is set to 00b), and  
enables its 45 terminations (TERMSELECT is set to 0b). The peripheral link sees  
SE0 on LINESTATE and also sets high speed (XCVRSELECT is set to 00b), and  
enables its 45 terminations (TERMSELECT is set to 0b). The host link sets  
OPMODE to 00b for normal high-speed operation.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
44 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
FS suspend  
resume K  
HS idle  
HS idle  
TXCMD  
(REGW)  
TXCMD  
(REGW)  
TXCMD  
(REGW)  
TXCMD  
NOPID  
K
K
...  
K
DATA  
[
]
7:0  
DIR  
STP  
NXT  
XCVR  
01b  
00b  
00b  
SELECT  
TERM  
SELECT  
OP  
10b  
00b  
00b  
MODE  
!SQUELCH  
(01b)  
!SQUELCH SQUELCH  
FS J (01b)  
FS K (10b)  
SQUELCH (00b)  
(01b)  
(00b)  
LINE  
STATE  
CLOCK  
TXCMD  
(REGW)  
TXCMD  
(REGW)  
LINESTATE K  
LINESTATE J  
SE0  
DATA  
[
]
7:0  
DIR  
STP  
NXT  
XCVR  
SELECT  
01b  
00b  
00b  
TERM  
SELECT  
OP  
MODE  
00b  
10b  
00b  
SUSPENDM  
!SQUELCH  
(01b)  
!SQUELCH  
(01b)  
SQUELCH  
(00b)  
FS K (10b)  
SQUELCH (00b)  
FS J (01b)  
LINE  
STATE  
DP  
DM  
004aab124  
Timing is not to scale.  
Fig 21. High speed suspend and resume  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
45 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
10.8.3 Remote wake-up  
The ISP1705 supports peripherals that initiate remote wake-up resume. When placed into  
USB suspend, the peripheral link remembers at what speed it was originally operating.  
Depending on the original speed, the link follows one of the protocols detailed here. In  
Figure 22, timing is not to scale, and not all RXCMD LINESTATE updates are shown.  
The sequence of events related to a host and a peripheral, both with ISP1705, is as  
follows:  
1. Both the host and the peripheral are assumed to be in low-power mode.  
2. The peripheral begins remote wake-up by re-enabling its clock and setting its  
SUSPENDM bit to 1b.  
3. The peripheral begins driving K on the bus to signal resume. Note that the peripheral  
link must assume that LINESTATE is K (01b) while transmitting because it will not  
receive any RXCMDs.  
4. The host recognizes the resume, re-enables its clock and sets its SUSPENDM bit.  
5. The host takes over resume driving within 1 ms of detecting the remote wake-up.  
6. The peripheral stops driving resume.  
7. The peripheral sees the host continuing to drive the resume.  
8. The host stops driving resume and the ISP1705 automatically adds the EOP to the  
end of the resume. The peripheral recognizes the EOP as the end of resume.  
9. Both the host and the peripheral revert to normal operation by writing 00b to  
OPMODE. If the host or the peripheral was previously in high-speed mode, it must  
revert to high speed before the SE0 of the EOP is completed. This can be achieved by  
writing XCVRSELECT[1:0] = 00b and TERMSELECT = 0b after LINESTATE indicates  
SE0.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
46 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
TXCMD  
NOPID  
TXCMD  
REGW  
TXCMD  
REGW  
00h  
LINESTATE  
DATA  
[
]
7:0  
DIR  
STP  
NXT  
XCVR  
SELECT  
01b (FS), 10b (LS)  
00b (HS only)  
TERM  
SELECT  
0b (HS only)  
00b  
OP  
MODE  
10b  
TXCMD  
REGW  
TXCMD  
REGW  
TXCMD  
NOPID  
LINESTATE  
00h  
RXCMD  
RXCMD  
RXCMD  
DATA  
[
]
7:0  
DIR  
STP  
NXT  
00b (HS only)  
0b (HS only)  
XCVR  
SELECT  
00b (HS), 01b (FS), 10b (LS)  
TERM  
SELECT  
OP  
MODE  
10b  
00b  
004aaa718  
Timing is not to scale.  
Fig 22. Remote wake-up from low-power mode  
10.9 No automatic SYNC and EOP generation (optional)  
This setting allows the link to turn off the automatic SYNC and EOP generation, and must  
be used for high-speed packets only. It is provided for backwards compatibility with legacy  
controllers that include SYNC and EOP bytes in the data payload when transmitting  
packets. The ISP1705 will not automatically generate SYNC and EOP patterns when  
OPMODE[1:0] is set to 11b. The ISP1705 will still NRZI encode data and perform bit  
stuffing. An example of a sequence is shown in Figure 23. The link must always send  
packets using the TXCMD (NOPID) type. The ISP1705 does not provide a mechanism to  
control bit stuffing in individual bytes, but will automatically turn off bit stuffing for EOP  
when STP is asserted with data set to FEh. If data is set to 00h when STP is asserted, the  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
47 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
PHY will not transmit any EOP. The ISP1705 will also detect if the PID byte is A5h,  
indicating an SOF packet, and automatically send a long EOP when STP is asserted. To  
transmit chirp and resume signaling, the link must set OPMODE to 10b.  
CLOCK  
... ...  
TXCMD  
00h  
00h 00h 80h PID D1 D2 D3  
D
N 1  
D
N
FEh  
DATA  
[7:0]  
DIR  
STP  
NXT  
TXVALID  
TXREADY  
TXBIT  
STUFF  
ENABLE  
IDLE  
SYNC  
PID  
DATA PAYLOAD  
EOP  
IDLE  
DP, DM  
004aab125  
Fig 23. Transmitting USB packets without automatic SYNC and EOP generation  
10.10 On-The-Go operations  
On-The-Go (OTG) is a supplement to Universal Serial Bus Specification Rev. 2.0 that  
allows a portable USB device to assume the role of a limited USB host by defining  
improvements, such as a small connector and low power. Non-portable devices, such as  
standard hosts and embedded hosts, can also benefit from OTG features.  
The ISP1705 OTG PHY is designed to support all the tasks specified in the OTG  
supplement. The ISP1705 provides the front end analog support for Host Negotiation  
Protocol (HNP) and Session Request Protocol (SRP) for dual-role devices. The  
supporting components include:  
Voltage comparators  
A_VBUS_VLD  
SESS_VLD (session valid, can be used for both A-session and B-session valid)  
SESS_END (session end)  
Pull-up and pull-down resistors on DP and DM  
ID detector indicates if micro-A or micro-B plug is inserted  
Charge and discharge resistors on VBUS  
The following subsections describe how to use the ISP1705 OTG components.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
48 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
10.10.1 OTG comparators  
The ISP1705 provides comparators that conform to On-The-Go Supplement to the  
USB 2.0 Specification Rev. 1.3 requirements of VA_VBUS_VLD, VA_SESS_VLD, VB_SESS_VLD  
and VB_SESS_END. In this data sheet, VA_SESS_VLD and VB_SESS_VLD are combined into  
VA_SESS_VLD. Comparators are described in Section 8.7.2. Changes in comparator values  
are communicated to the link by RXCMDs as described in Section 10.3.2. Control over  
comparators is described in Section 11.8 to Section 11.11.  
10.10.2 Pull-up and pull-down resistors  
The USB resistors on DP and DM can be used to initiate data-line pulsing SRP. The link  
must set the required bus state using the mode settings in Table 15.  
10.10.3 ID detection  
The ISP1705 provides an internal pull-up resistor to sense the state of the ID pin. The  
pull-up resistor must first be enabled by setting the ID_PULLUP register bit to logic 1. If  
the state of pin ID has changed, the ISP1705 will send an RXCMD or interrupt to the link  
by time tID. If the link does not receive any RXCMD or interrupt by tID, then the ID state has  
not changed.  
10.10.4 VBUS charge and discharge resistors  
A pull-up resistor, RUP(VBUS), is provided to perform VBUS pulsing SRP. A B-device is  
allowed to charge VBUS above the session valid threshold to request the host to turn on  
the VBUS voltage.  
A pull-down resistor, RDN(VBUS), is provided for a B-device to discharge VBUS. This is done  
whenever the A-device turns off the VBUS voltage; the B-device can use the pull-down  
resistor to ensure VBUS is below VB_SESS_END before starting a session.  
For details, refer to On-The-Go Supplement to the USB 2.0 Specification Rev. 1.3.  
10.11 Serial modes  
The ISP1705 supports both 6-pin serial mode and 3-pin serial mode, controlled by  
bits 6PIN_FSLS_SERIAL and 3PIN_FSLS_SERIAL of the INTF_CTRL register (see  
Section 11.6). For details, refer to UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1,  
Section 3.10.  
Figure 24 and Figure 25 provide examples of 6-pin serial mode and 3-pin serial mode,  
respectively.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
49 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
TRANSMIT  
DATA  
RECEIVE  
SYNC  
SYNC  
DATA  
EOP  
EOP  
DATA0  
(TX_ENABLE)  
DATA1  
(TX_DAT)  
DATA2  
(TX_SE0)  
DATA4  
(RX_DP)  
DATA5  
(RX_DM)  
DATA6  
(RX_RCV)  
DP  
DM  
004aaa692  
Fig 24. Example of transmit followed by receive in 6-pin serial mode  
TRANSMIT  
RECEIVE  
DATA  
DATA  
SYNC  
SYNC  
EOP  
EOP  
DATA0  
(TX_ENABLE)  
DATA1  
(TX_DAT/  
RX_RCV)  
DATA2  
(TX_SE0/  
RX_SE0)  
DP  
DM  
004aaa693  
Fig 25. Example of transmit followed by receive in 3-pin serial mode  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
50 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
10.12 Aborting transfers  
The ISP1705 supports aborting transfers on the ULPI bus. For details, refer to UTMI+ Low  
Pin Interface (ULPI) Specification Rev. 1.1, Section 3.8.4.  
10.13 Avoiding contention on the ULPI data bus  
Because the ULPI data bus is bidirectional, avoid situations in which both the link and the  
PHY simultaneously drive the data bus.  
The following points must be considered while implementing the data bus drive control on  
the link.  
After power-up and clock stabilization, default states are as follows:  
The ISP1705 drives DIR to LOW.  
The data bus is input to the ISP1705.  
The ULPI link data bus is output, with all data bus lines driven to LOW.  
When the ISP1705 wants to take control of the data bus to initiate a data transfer, it  
changes the DIR state from LOW to HIGH.  
At this point, the link must disable its output buffers. This must be as fast as possible so  
the link must use a combinational path from DIR.  
The ISP1705 will not immediately enable its output buffers, but will delay the enabling of  
its buffers until the next clock edge, avoiding bus contention.  
When the data transfer is no longer required by the ISP1705, it changes DIR from HIGH to  
LOW and starts to immediately turn off its output drivers. The link senses the change of  
DIR from HIGH to LOW, but delays enabling its output buffers for one CLOCK cycle,  
avoiding data bus contention.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
51 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
11. Register map  
Table 25. Register map  
Field name  
Size (bit)  
Address (6 bit)  
R[1]  
References  
W[2]  
S[3]  
-
C[4]  
-
VENDOR_ID_LOW  
VENDOR_ID_HIGH  
PRODUCT_ID_LOW  
PRODUCT_ID_HIGH  
FUNC_CTRL  
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
00h  
-
Section 11.1 on page 52  
Section 11.2 on page 52  
Section 11.3 on page 53  
Section 11.4 on page 53  
Section 11.5 on page 53  
Section 11.6 on page 55  
Section 11.7 on page 56  
Section 11.8 on page 58  
Section 11.9 on page 58  
Section 11.10 on page 59  
Section 11.11 on page 59  
Section 11.12 on page 60  
Section 11.13 on page 61  
Section 11.14 on page 61  
-
01h  
-
-
-
02h  
-
-
-
03h  
-
-
-
04h to 06h  
07h to 09h  
0Ah to 0Ch  
0Dh to 0Fh  
10h to 12h  
13h  
04h  
07h  
0Ah  
0Dh  
10h  
-
05h  
08h  
0Bh  
0Eh  
11h  
-
06h  
09h  
0Ch  
0Fh  
12h  
-
INTF_CTRL  
OTG_CTRL  
USB_INTR_EN_R  
USB_INTR_EN_F  
USB_INTR_STAT  
USB_INTR_L  
14h  
-
-
-
DEBUG  
15h  
-
-
-
SCRATCH  
16h to 18h  
19h to 1Bh  
1Ch to 3Ch  
3Dh to 3Fh  
16h  
19h  
-
17h  
1Ah  
-
18h  
1Bh  
-
CARKIT_CTRL  
Reserved  
PWR_CTRL  
3Dh  
3Eh  
3Fh  
Section 11.15 on page 62  
[1] Read (R): A register can be read. Read-only if this is the only mode given.  
[2] Write (W): The pattern on the data bus will be written over all bits of a register.  
[3] Set (S): The pattern on the data bus is OR-ed with and written to a register.  
[4] Clear (C): The pattern on the data bus is a mask. If a bit in the mask is set, then the corresponding register bit will be set to zero  
(cleared).  
11.1 VENDOR_ID_LOW register  
Table 26 shows the bit description of the register.  
Table 26. VENDOR_ID_LOW - Vendor ID low register (address R = 00h) bit description  
Legend: * reset value  
Bit  
Symbol  
Access Value  
CCh*  
Description  
7 to 0 VENDOR_  
ID_LOW[7:0]  
R
Vendor ID low: Lower byte of the NXP vendor ID  
supplied by USB-IF; fixed value of CCh  
11.2 VENDOR_ID_HIGH register  
Table 27 shows the bit description of the register.  
Table 27. VENDOR_ID_HIGH - Vendor ID high register (address R = 01h) bit description  
Legend: * reset value  
Bit  
Symbol  
Access Value  
04h*  
Description  
7 to 0 VENDOR_  
ID_HIGH[7:0]  
R
Vendor ID high: Upper byte of the NXP vendor ID  
supplied by USB-IF; fixed value of 04h  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
52 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
11.3 PRODUCT_ID_LOW register  
The bit description of the register is given in Table 28.  
Table 28. PRODUCT_ID_LOW - Product ID low register (address R = 02h) bit description  
Legend: * reset value  
Bit  
Symbol  
Access Value  
05h*  
Description  
7 to 0 PRODUCT_ID_  
LOW[7:0]  
R
Product ID low: Lower byte of the NXP product  
ID number; fixed value of 05h  
11.4 PRODUCT_ID_HIGH register  
The bit description of the register is given in Table 29.  
Table 29. PRODUCT_ID_HIGH - Product ID high register (address R = 03h) bit description  
Legend: * reset value  
Bit  
Symbol  
Access Value  
17h*  
Description  
7 to 0 PRODUCT_ID_  
HIGH[7:0]  
R
Product ID high: Upper byte of the NXP product  
ID number; fixed value of 17h  
11.5 FUNC_CTRL register  
This register controls UTMI function settings of the PHY. The bit allocation of the register  
is given in Table 30.  
Table 30. FUNC_CTRL - Function control register (address R = 04h to 06h, W = 04h, S = 05h, C = 06h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved SUSPENDM  
RESET  
OPMODE[1:0]  
TERM  
XCVRSELECT[1:0]  
SELECT  
Reset  
0
1
0
0
0
0
0
1
Access  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
Table 31. FUNC_CTRL - Function control register (address R = 04h to 06h, W = 04h, S = 05h, C = 06h) bit  
description  
Bit  
7
Symbol  
Description  
-
reserved  
6
SUSPENDM  
Suspend: Active-LOW PHY suspend.  
Places the PHY into low-power mode. The PHY will power down all blocks, except the  
full-speed receiver, OTG comparators and ULPI interface pins.  
To come out of low-power mode, the link must assert STP. The PHY will automatically clear  
this bit when it exits low-power mode.  
0b — Low-power mode  
1b — Powered  
5
RESET  
Reset: Active-HIGH transceiver reset.  
After the link sets this bit, the PHY will assert DIR and reset the digital core. This does not  
reset the ULPI interface or the ULPI register set.  
When the reset is completed, the PHY will deassert DIR and automatically clear this bit,  
followed by an RXCMD update to the link.  
The link must wait for DIR to be deasserted before using the ULPI bus.  
0b — Do not reset  
1b — Reset  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
53 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 31. FUNC_CTRL - Function control register (address R = 04h to 06h, W = 04h, S = 05h, C = 06h) bit  
description …continued  
Bit  
Symbol  
Description  
4 to 3  
OPMODE[1:0]  
Operation mode: Selects the required bit-encoding style during transmit.  
00b — Normal operation  
01b — Non-driving  
10b — Disable bit-stuffing and NRZI encoding  
11b — Do not automatically add SYNC and EOP when transmitting; must be used only for  
high-speed packets  
2
TERMSELECT  
Termination select: Controls the internal 1.5 kfull-speed pull-up resistor and 45 Ω  
high-speed terminations. Control over bus resistors changes, depending on  
XCVRSELECT[1:0], OPMODE[1:0], DP_PULLDOWN and DM_PULLDOWN, as shown in  
Table 15.  
1 to 0  
XCVRSELECT[1:0] Transceiver select: Selects the required transceiver speed.  
00b — Enable the high-speed transceiver  
01b — Enable the full-speed transceiver  
10b — Enable the low-speed transceiver  
11b — Enable the full-speed transceiver for low-speed packets (full-speed preamble is  
automatically prefixed)  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
54 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
11.6 INTF_CTRL register  
The INTF_CTRL register enables alternative interfaces. All of these modes are optional  
features provided for legacy link cores. Setting more than one of these fields results in  
undefined behavior. Table 32 provides the bit allocation of the register.  
Table 32. INTF_CTRL - Interface control register (address R = 07h to 09h, W = 07h, S = 08h, C = 09h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
INTF_  
PROT_DIS  
IND_PASS  
THRU  
IND_  
COMPL  
reserved  
CLOCK_  
SUSPENDM  
CARKIT_  
MODE  
3PIN_  
FSLS_  
SERIAL  
6PIN_  
FSLS_  
SERIAL  
Reset  
0
0
0
0
0
0
0
0
Access  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
Table 33. INTF_CTRL - Interface control register (address R = 07h to 09h, W = 07h, S = 08h,  
C = 09h) bit description  
Bit Symbol  
Description  
7
INTF_PROT_DIS  
Interface protect disable: Controls circuitry built into the ISP1705  
to protect the ULPI interface when the link 3-states STP and  
DATA[7:0]. When this bit is enabled, the ISP1705 will automatically  
detect when the link stops driving STP.  
0b — Enables the interface protect circuit. The ISP1705 attaches  
a weak pull-up resistor on STP. If STP is unexpectedly HIGH, the  
ISP1705 attaches weak pull-down resistors on DATA[7:0],  
protecting data inputs  
1b — Disables the interface protect circuit, detaches weak  
pull-down resistors on DATA[7:0], and a weak pull-up resistor on  
STP  
6
5
IND_PASSTHRU  
Indicator pass-through: Controls whether the complement output  
is qualified with the internal A_VBUS_VLD comparator before  
being used in the VBUS state in RXCMD.  
0b — The complement output signal is qualified with the internal  
A_VBUS_VLD comparator  
1b — The complement output signal is not qualified with the  
internal A_VBUS_VLD comparator  
IND_COMPL  
Indicator complement: Informs the PHY to invert the FAULT input  
signal, generating the complement output.  
0b — The ISP1705 will not invert the FAULT signal  
1b — The ISP1705 will invert the FAULT signal  
reserved  
4
3
-
CLOCK_SUSPENDM Clock suspend: Active-LOW clock suspend.  
Powers down the internal clock circuitry only. By default, the clock  
will not be powered in 6-pin serial mode or 3-pin serial mode.  
Valid only in 6-pin serial mode and 3-pin serial mode. Valid only  
when SUSPENDM is set to logic 1, otherwise this bit is ignored.  
0b — Clock will not be powered in 3-pin or 6-pin serial mode or  
UART mode  
1b — Clock will be powered in 3-pin and 6-pin serial mode or  
UART mode  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
55 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 33. INTF_CTRL - Interface control register (address R = 07h to 09h, W = 07h, S = 08h,  
C = 09h) bit description …continued  
Bit Symbol  
Description  
2
CARKIT_MODE  
Carkit mode: Changes the ULPI interface to the carkit interface  
(UART mode). Bits TXD_EN and RXD_EN in the CARKIT_CTRL  
register (see Section 11.14) must change as well. The PHY must  
automatically clear this bit when carkit mode is exited.  
0b — Disable carkit mode  
1b — Enable carkit mode  
1
3PIN_FSLS_SERIAL  
6PIN_FSLS_SERIAL  
3-pin full-speed low-speed serial mode: Changes the ULPI  
interface to a 3-bit serial interface. The ISP1705 will automatically  
clear this bit when 3-pin serial mode is exited.  
0b — Full-speed or low-speed packets are sent using the parallel  
interface  
1b — Full-speed or low-speed packets are sent using the 3-pin  
serial interface  
0
6-pin full-speed low-speed serial mode: Changes the ULPI  
interface to a 6-bit serial interface. The ISP1705 will automatically  
clear this bit when 6-pin serial mode is exited.  
0b — Full-speed or low-speed packets are sent using the parallel  
interface  
1b — Full-speed or low-speed packets are sent using the 6-pin  
serial interface  
11.7 OTG_CTRL register  
This register controls various OTG functions of the ISP1705. The bit allocation of the  
OTG_CTRL register is given in Table 34.  
Table 34. OTG_CTRL - OTG control register (address R = 0Ah to 0Ch, W = 0Ah, S = 0Bh, C = 0Ch) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
USE_EXT_  
VBUS_IND VBUS_EXT  
DRV_  
reserved  
CHRG_  
VBUS  
DISCHRG_ DM_PULL  
DP_PULL  
DOWN  
ID_PULL  
UP[1]  
VBUS  
DOWN  
Reset  
0
0
0
0
0
1
1
0
Access  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
[1] A weak pull-up, which can detect ID correctly, is present when the ID_PULLUP bit is disabled. It is, however, mandatory that the link  
enables ID_PULLUP.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
56 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 35. OTG_CTRL - OTG control register (address R = 0Ah to 0Ch, W = 0Ah, S = 0Bh,  
C = 0Ch) bit description  
Bit Symbol  
Description  
7
USE_EXT_  
Use external VBUS indicator: Informs the PHY to use an external  
VBUS_IND  
VBUS overcurrent indicator.  
0b — Use the internal OTG comparator  
1b — Use the external VBUS valid indicator signal input from the  
FAULT pin  
6
DRV_VBUS_EXT  
Drive VBUS external: Controls the external charge pump or 5 V supply  
by the PSW_N pin.  
0b — PSW_N is HIGH  
1b — PSW_N to LOW  
5
4
reserved  
-
CHRG_VBUS  
Charge VBUS: Charges VBUS through a resistor. Used for the VBUS  
pulsing of SRP. The link must first check that VBUS is discharged (see  
bit DISCHRG_VBUS), and that both the DP and DM data lines have  
been LOW (SE0) for 2 ms.  
0b — Do not charge VBUS  
1b — Charge VBUS  
3
DISCHRG_VBUS  
Discharge VBUS: Discharges VBUS through a resistor. If the link sets  
this bit to logic 1, it waits for an RXCMD indicating that SESS_END  
has changed from logic 0 to logic 1, and then resets this bit to logic 0  
to stop the discharge.  
0b — Do not discharge VBUS  
1b — Discharge VBUS  
2
1
0
DM_PULLDOWN  
DP_PULLDOWN  
ID_PULLUP  
DM pull down: Enables the 15 kpull-down resistor on DM.  
0b — pull-down resistor is not connected to DM  
1b — pull-down resistor is connected to DM  
DP pull down: Enables the 15 kpull-down resistor on DP.  
0b — Pull-down resistor is not connected to DP  
1b — Pull-down resistor is connected to DP  
ID pull up: Connects a pull-up to the ID line and enables sampling of  
the ID level. Disabling the ID line sampler will reduce the PHY power  
consumption.  
0b — Disable sampling of the ID line  
1b — Enable sampling of the ID line  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
57 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
11.8 USB_INTR_EN_R register  
The bits in this register enable interrupts and RXCMDs to be sent when the corresponding  
bits in the USB_INTR_STAT register change from logic 0 to logic 1. By default, all  
transitions are enabled. Table 36 shows the bit allocation of the register.  
Table 36. USB_INTR_EN_R - USB interrupt enable rising register (address R = 0Dh to 0Fh, W = 0Dh, S = 0Eh,  
C = 0Fh) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved  
ID_GND_R  
SESS_  
END_R  
SESS_  
VALID_R  
VBUS_  
VALID_R DISCON_R  
HOST_  
Reset  
0
0
0
1
1
1
1
1
Access  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
Table 37. USB_INTR_EN_R - USB interrupt enable rising register (address R = 0Dh to 0Fh,  
W = 0Dh, S = 0Eh, C = 0Fh) bit description  
Bit  
7 to 5  
4
Symbol  
Description  
-
reserved  
ID_GND_R  
ID ground rise: Enables interrupts and RXCMDs for logic 0 to  
logic 1 transitions on ID_GND  
3
2
1
SESS_END_R  
SESS_VALID_R  
VBUS_VALID_R  
Session end rise: Enables interrupts and RXCMDs for logic 0 to  
logic 1 transitions on SESS_END  
Session valid rise: Enables interrupts and RXCMDs for logic 0  
to logic 1 transitions on SESS_VLD  
VBUS valid rise: Enables interrupts and RXCMDs for logic 0 to  
logic 1 transitions on A_VBUS_VLD  
0
HOST_DISCON_R Host disconnect rise: Enables interrupts and RXCMDs for  
logic 0 to logic 1 transitions on HOST_DISCON  
11.9 USB_INTR_EN_F register  
The bits in this register enable interrupts and RXCMDs to be sent when the corresponding  
bits in the USB_INTR_STAT register change from logic 1 to logic 0. By default, all  
transitions are enabled. See Table 38.  
Table 38. USB_INTR_EN_F - USB interrupt enable falling register (address R = 10h to 12h, W = 10h, S = 11h,  
C = 12h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved  
ID_GND_F  
SESS_  
END_F  
SESS_  
VALID_F  
VBUS_  
VALID_F  
HOST_  
DISCON_F  
Reset  
0
0
0
1
1
1
1
1
Access  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
58 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 39. USB_INTR_EN_F - USB interrupt enable falling register (address R = 10h to 12h,  
W = 10h, S = 11h, C = 12h) bit description  
Bit  
7 to 5  
4
Symbol  
Description  
-
reserved  
ID_GND_F  
ID ground fall: Enables interrupts and RXCMDs for logic 1 to  
logic 0 transitions on ID_GND.  
3
2
1
SESS_END_F  
SESS_VALID_F  
VBUS_VALID_F  
Session end fall: Enables interrupts and RXCMDs for logic 1 to  
logic 0 transitions on SESS_END.  
Session valid fall: Enables interrupts and RXCMDs for logic 1 to  
logic 0 transitions on SESS_VLD.  
VBUS valid fall: Enables interrupts and RXCMDs for logic 1 to  
logic 0 transitions on A_VBUS_VLD.  
0
HOST_DISCON_F  
Host disconnect fall: Enables interrupts and RXCMDs for logic 1  
to logic 0 transitions on HOST_DISCON.  
11.10 USB_INTR_STAT register  
This register (see Table 40) indicates the current value of the interrupt source signal.  
Table 40. USB_INTR_STAT - USB interrupt status register (address R = 13h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved  
ID_GND  
SESS_  
END  
SESS_  
VALID  
VBUS_  
VALID  
HOST_  
DISCON  
Reset  
X
R
X
R
X
R
0
0
0
0
0
Access  
R
R
R
R
R
Table 41. USB_INTR_STAT - USB interrupt status register (address R = 13h) bit description  
Bit  
7 to 5  
4
Symbol  
-
Description  
reserved  
ID_GND  
SESS_END  
ID ground: Reflects the current state of the ID detector circuit.  
3
Session end: Reflects the current value of the session end  
voltage comparator.  
2
1
SESS_VALID  
VBUS_VALID  
Session valid: Reflects the current value of the session valid  
voltage comparator.  
VBUS valid: Reflects the current value of the VBUS valid voltage  
comparator.  
0
HOST_DISCON  
Host disconnect: Reflects the current value of the host  
disconnect detector.  
11.11 USB_INTR_L register  
The bits of the USB_INTR_L register are automatically set by the ISP1705 when an  
unmasked change occurs on the corresponding interrupt source signal. The ISP1705 will  
automatically clear all bits when the link reads this register, or when the PHY enters  
low-power mode.  
Remark: It is optional for the link to read this register when the clock is running because  
all signal information will automatically be sent to the link through the RXCMD byte.  
The bit allocation of this register is given in Table 42.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
59 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 42. USB_INTR_L - USB interrupt latch register (address R = 14h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved  
ID_GND_L  
SESS_  
END_L  
SESS_  
VALID_L  
VBUS_  
VALID_L  
HOST_  
DISCON_L  
Reset  
0
0
0
0
0
0
0
0
Access  
R
R
R
R
R
R
R
R
Table 43. USB_INTR_L - USB interrupt latch register (address R = 14h) bit description  
Bit  
Symbol  
Description  
7 to 5 reserved  
-
4
3
2
1
ID_GND_L  
ID ground latch: Automatically set when an unmasked event occurs  
on ID_GND. Cleared when this register is read.  
SESS_END_L  
SESS_VALID_L  
VBUS_VALID_L  
Session end latch: Automatically set when an unmasked event  
occurs on SESS_END. Cleared when this register is read.  
Session valid latch: Automatically set when an unmasked event  
occurs on SESS_VLD. Cleared when this register is read.  
VBUS valid latch: Automatically set when an unmasked event occurs  
on A_VBUS_VLD. Cleared when this register is read.  
0
HOST_DISCON_L Host disconnect latch: Automatically set when an unmasked event  
occurs on HOST_DISCON. Cleared when this register is read.  
11.12 DEBUG register  
The bit allocation of the DEBUG register is given in Table 44. This register indicates the  
current value of signals useful for debugging.  
Table 44. DEBUG - Debug register (address R = 15h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved  
LINE  
LINE  
STATE1  
STATE0  
Reset  
0
0
0
0
0
0
0
0
Access  
R
R
R
R
R
R
R
R
Table 45. DEBUG - Debug register (address R = 15h) bit description  
Bit  
7 to 2  
1
Symbol  
-
Description  
reserved  
LINESTATE1  
LINESTATE0  
Line state 1: Contains the current value of LINESTATE 1  
Line state 0: Contains the current value of LINESTATE 0  
0
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
60 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
11.13 SCRATCH register  
This is a 1-byte empty register for testing purposes, see Table 46.  
Table 46. SCRATCH - Scratch register (address R = 16h to 18h, W = 16h, S = 17h, C = 18h)  
bit description  
Bit  
Symbol  
Access Value Description  
7 to 0 SCRATCH[7:0] R/W/S/C 00h  
Scratch: This is an empty register byte for testing  
purposes. Software can read, write, set and clear  
this register. The functionality of the PHY will not be  
affected.  
11.14 CARKIT_CTRL register  
This register controls transparent UART mode. This register is only valid when the  
CARKIT_MODE bit in the INTF_CTRL register (see Section 11.6) is set. When entering  
UART mode, set the CARKIT_MODE bit, and then set the TXD_EN and RXD_EN bits.  
After entering UART mode, the ULPI interface is not available. When exiting UART mode,  
assert the STP pin or perform a hardware reset using chip select.  
For bit allocation, see Table 47.  
Table 47. CARKIT_CTRL - Carkit control register (address R = 19h to 1Bh, W = 19h, S = 1Ah, C = 1Bh) bit  
allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
Reset  
Access  
reserved  
RXD_EN  
0
TXD_EN  
0
reserved  
0
0
0
0
0
0
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
Table 48. CARKIT_CTRL - Carkit control register (address R = 19h to 1Bh, W = 19h,  
S = 1Ah, C = 1Bh) bit description  
Bit  
7 to 4  
3
Symbol  
-
Description  
reserved; the link must never write logic 1 to these bits  
RXD_EN  
RXD enable: Routes the UART RXD signal from the DP pin to the  
DATA1 pin. This bit will automatically be cleared when UART mode is  
exited.  
2
TXD_EN  
-
TXD enable: Routes the UART TXD signal from the DATA0 pin to the  
DM pin. This bit will automatically be cleared when UART mode is  
exited.  
1 to 0  
reserved; the link must never write logic 1 to these bits  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
61 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
11.15 PWR_CTRL register  
This vendor-specific register controls the power feature of the ISP1705. The bit allocation  
of the register is given in Table 49.  
Table 49. PWR_CTRL - Power control register (address R = 3Dh to 3Fh, W = 3Dh, S = 3Eh, C = 3Fh) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved  
DP_WKPU_  
EN  
BVALID_  
FALL  
BVALID_  
RISE  
reserved  
Reset  
0
0
0
0
0
0
0
0
Access  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
R/W/S/C  
Table 50. PWR_CTRL - Power control register (address R = 3Dh to 3Fh, W = 3Dh, S = 3Eh,  
C = 3Fh) bit description  
Bit  
7 to 5  
4
Symbol  
Description  
-
reserved; the link must never write logic 1 to these bits  
DP_WKPU_EN DP weak pull-up enable: Enable the weak pull-up resistor on the DP  
pin (RweakUP(DP)) in synchronous mode when VBUS is above the  
VA_SESS_VLD threshold. Note that when the ISP1705 is in UART  
mode, the DP weak pull-up will be enabled, regardless of the value of  
this register bit.  
0 — DP weak pull-up is disabled.  
1 — DP weak pull-up is enabled when VBUS > VA_SESS_VLD  
.
3
BVALID_FALL  
BVALID fall: Enables RXCMDs for HIGH-to-LOW transitions on  
BVALID. When BVALID changes from HIGH to LOW, the ISP1705  
will send an RXCMD to the link with the ALT_INT bit set to logic 1.  
This bit is optional and is not necessary for OTG devices. This bit is  
provided for debugging purposes. Disabled by default.  
2
BVALID_RISE  
BVALID rise: Enables RXCMDs for LOW-to-HIGH transitions on  
BVALID. When BVALID changes from LOW to HIGH, the ISP1705  
will send an RXCMD to the link with the ALT_INT bit set to logic 1.  
This bit is optional and is not necessary for OTG devices. This bit is  
provided for debugging purposes. Disabled by default.  
1 to 0  
-
reserved; the link must never write logic 1 to these bits  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
62 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
12. Limiting values  
Table 51. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
VCC supply voltage  
VCC(I/O) input/output supply voltage  
Conditions  
Min  
Max  
+5.5  
+4.6  
+5.5  
Unit  
V
0.5  
0.5  
0.5  
0.5  
V
VI  
input voltage  
on pins PSW_N and FAULT  
V
on pins CLOCK, STP, DATA[7:0], CFG1,  
CFG2, RESET_N, CHIP_SEL and  
CHIP_SEL_N  
VCC(I/O) + 0.5 V  
on pins ID and CFG0  
0.5  
0.5  
0.5  
0.5  
2  
+4.6  
+2.5  
+4.6  
+5.5  
+2  
V
on pin XTAL1  
V
[1]  
[2]  
on pins DP and DM  
V
on pin VBUS  
V
VESD  
electrostatic discharge  
voltage  
human body model (JESD22-A114D)  
machine model (JESD22-A115-A)  
charged device model (JESD22-C101-C)  
IEC 61000-4-2 contact on pins DP and DM  
kV  
V
200  
500  
8  
+200  
+500  
+8  
V
[3]  
kV  
mA  
°C  
Ilu  
latch-up current  
-
100  
Tstg  
storage temperature  
60  
+125  
[1] The ISP1705 has been tested according to the additional requirements listed in Universal Serial Bus Specification Rev. 2.0,  
Section 7.1.1. The short circuit withstand test and the AC stress test were performed for 24 hours, and the ISP1705 was found to be fully  
operational after the test completed.  
[2] When an external series resistor is added to the VBUS pin, it can withstand higher voltages for longer periods of time because the  
resistor limits the current flowing into the VBUS pad. For example, with an external 1 kresistor, VBUS can tolerate 10 V for at least  
5 seconds. Actual performance may vary depending on the resistor used and whether other components are connected to VBUS  
.
[3] The ISP1705 has been tested in-house according to the IEC 61000-4-2 standard on the DP and DM pins. It is recommended that  
customers perform their own ESD tests, depending on application requirements.  
13. Recommended operating conditions  
Table 52. Recommended operating conditions  
Symbol  
VCC  
Parameter  
Conditions  
Min  
3.0  
3.0  
0
Typ  
3.6  
3.3  
-
Max  
4.5  
Unit  
V
supply voltage  
VCC(I/O)  
VI  
input/output supply voltage  
input voltage  
3.6  
V
on pins PSW_N, FAULT and VBUS  
5.25  
VCC(I/O)  
V
on pins CLOCK, STP, DATA[7:0],  
CFG1, CFG2, RESET_N,  
0
-
V
CHIP_SEL and CHIP_SEL_N  
on pins DP, DM, ID and CFG0  
on pin XTAL1  
0
-
3.6  
V
0
-
1.95  
+125  
+85  
V
Tj  
junction temperature  
ambient temperature  
40  
40  
-
°C  
°C  
Tamb  
+25  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
63 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
14. Static characteristics  
Table 53. Static characteristics: supply pins  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values refer to VCC = 3.6 V; VCC(I/O) = 3.3 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
VPOR(trip)  
ICC  
Parameter  
power-on reset trip voltage on REG1V8 pin  
supply current Power-down mode (VCC(I/O) is  
Conditions  
Min  
0.95  
-
Typ  
-
Max  
1.5  
10  
Unit  
V
0.5  
µA  
lost or chip select is  
non-active)  
full-speed transceiver; bus idle;  
no USB activity  
-
-
13  
-
-
mA  
mA  
full-speed transceiver; 100 %  
transmission; no inter-packet  
delay  
25.65  
high-speed transceiver; 100 %  
transmission; no inter-packet  
delay  
-
55.30  
-
mA  
low-power mode (bit  
SUSPENDM is logic 0); VBUS  
valid detector disabled (bits  
VBUS_VALID_R and  
VBUS_VALID_F are cleared)  
for host  
-
-
-
70  
100  
330  
-
µA  
µA  
µA  
for peripheral  
240  
750  
UART mode; low-speed  
transceiver; idle  
UART mode; full-speed  
transceiver; idle  
-
-
-
600  
-
µA  
µA  
mA  
ICC(I/O)(stat) static supply current on  
pin VCC(I/O)  
Power-down mode (chip select  
is non-active)  
-
10  
-
[1]  
ICC(I/O)  
supply current on  
pin VCC(I/O)  
ULPI bus idle; 15 pF load on  
pin CLOCK  
2
[1] The actual value of ICC(I/O) varies depending on the capacitance loading, interface voltage and bus activity. Use the value provided here  
only as a reference.  
Table 54. Static characteristics: digital pins  
Digital pins: CLOCK, DIR, STP, NXT, DATA[7:0], CHIP_SEL_N, CHIP_SEL, CFG1, CFG2 and RESET_N; unless otherwise  
specified.  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values refer to VCC = 3.6 V; VCC(I/O) = 3.3 V; Tamb = +25 °C; unless otherwise specified.  
Symbol Parameter  
Input levels  
Conditions  
Min  
Typ  
Max  
Unit  
VIH  
VIL  
ILI  
HIGH-level input voltage  
0.7VCC(I/O)  
-
-
-
-
V
LOW-level input voltage  
input leakage current  
-
0.3VCC(I/O)  
+1  
V
1  
µA  
Output levels  
VOH  
HIGH-level output voltage  
IOL = +2 mA  
V
CC(I/O) 0.4 -  
-
V
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
64 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 54. Static characteristics: digital pins …continued  
Digital pins: CLOCK, DIR, STP, NXT, DATA[7:0], CHIP_SEL_N, CHIP_SEL, CFG1, CFG2 and RESET_N; unless otherwise  
specified.  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values refer to VCC = 3.6 V; VCC(I/O) = 3.3 V; Tamb = +25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
VOL  
IOH  
IOL  
LOW-level output voltage  
IOH = 2 mA  
-
-
-
-
0.4  
HIGH-level output current  
LOW-level output current  
VOH = VCC(I/O) 0.4 V  
VOL = 0.4 V  
8
8
-
-
mA  
mA  
Impedance  
ZL  
load impedance  
45  
-
65  
Pull-up and pull-down  
Ipu  
pull-up current  
interface protect enabled;  
STP pin only; VI = 0 V  
30  
50  
80  
µA  
UART mode; DATA0 pin only  
30  
50  
80  
µA  
µA  
Ipd  
pull-down current  
interface protect enabled;  
DATA[7:0] pins only;  
VI = VCC(I/O)  
25  
50  
95  
Capacitance  
Cin input capacitance  
-
-
2.9  
pF  
Table 55. Static characteristics: digital input pin FAULT  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
VIL  
Parameter  
Conditions  
Min  
-
Typ  
Max  
Unit  
V
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
-
-
-
-
0.8  
VIH  
2.0  
1  
-
-
V
IIL  
VI = 0 V  
-
µA  
µA  
IIH  
VI = 5.25 V  
1
Table 56. Static characteristics: digital output pin PSW_N  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
3.0[1]  
-
Typ  
Max  
5.25  
0.4  
1
Unit  
V
VOH  
VOL  
IOH  
IOL  
HIGH-level output voltage external pull-up resistor connected  
-
-
-
-
LOW-level output voltage  
HIGH-level output current  
LOW-level output current  
IOL = 4 mA  
V
external pull-up resistor connected  
VO = 0.4 V  
-
µA  
mA  
4.0  
-
[1] When VOH is less than VO(REG3V3), ICC may increase because of the cross current.  
Table 57. Static characteristics: analog pins (DP, DM)  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values refer to VCC = 3.6 V; VCC(I/O) = 3.3 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Original USB transceiver (full speed and low speed)  
Input levels (differential data receiver)  
VDI  
differential input sensitivity voltage  
|VDP VDM  
|
0.2  
-
-
V
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
65 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 57. Static characteristics: analog pins (DP, DM) …continued  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values refer to VCC = 3.6 V; VCC(I/O) = 3.3 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VCM  
differential common mode voltage  
range  
includes VDI range  
0.8  
-
2.5  
V
Input levels (single-ended receivers)  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
-
-
-
0.8  
-
V
V
VIH  
2.0  
Output levels  
VOL  
LOW-level output voltage  
HIGH-level output voltage  
output signal crossover voltage  
pull-up on DP; RL = 1.5 kΩ  
to 3.6 V  
0.0  
2.8  
1.3  
-
-
-
0.3  
3.6  
2.0  
V
V
V
VOH  
pull-down on pins DP and  
DM; RL = 15 kto GND  
VCRS  
excluding the first transition  
from the idle state  
Termination  
VTERM  
termination voltage for upstream  
facing port pull-up  
for 1.5 kpull-up resistor  
3.0  
-
3.6  
V
Resistance  
RUP(DP)  
pull-up resistance on pin DP  
1425  
100  
1500  
125  
1575  
150  
RweakUP(DP) weak pull-up resistance on pin DP  
bit DP_WKPU_EN = 1 and  
kΩ  
VBUS > VA_SESS_VLD  
Hi-Speed USB transceiver (HS)  
Input levels  
VHSSQ  
high-speed squelch detection  
threshold voltage (differential signal  
amplitude)  
100  
525  
-
-
150  
625  
mV  
mV  
VHSDSC  
high-speed disconnect detection  
threshold voltage (differential signal  
amplitude)  
VHSDI  
high-speed differential input sensitivity |VDP VDM  
|
300  
-
-
-
mV  
mV  
VHSCM  
high-speed data signaling common  
mode voltage range (guideline for  
receiver)  
includes VDI range  
50  
+500  
Output levels  
VHSOI  
high-speed idle level voltage  
10  
10  
-
-
+10  
+10  
mV  
mV  
VHSOL  
high-speed data signaling LOW-level  
voltage  
VHSOH  
high-speed data signaling HIGH-level  
voltage  
360  
-
440  
mV  
VCHIRPJ  
VCHIRPK  
Leakage current  
Chirp J level (differential voltage)  
700  
-
-
1100  
mV  
mV  
Chirp K level (differential voltage)  
900  
500  
ILZ  
off-state leakage current  
1.0  
-
-
+1.0  
5
µA  
Capacitance  
Cin  
input capacitance  
pin to GND  
-
pF  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
66 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 57. Static characteristics: analog pins (DP, DM) …continued  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values refer to VCC = 3.6 V; VCC(I/O) = 3.3 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Resistance  
RDN(DP)  
pull-down resistance on pin DP  
pull-down resistance on pin DM  
14.25  
14.25  
15  
15  
15.75  
15.75  
kΩ  
kΩ  
RDN(DM)  
Termination  
ZO(drv)(DP)  
ZO(drv)(DM)  
ZINP  
driver output impedance on pin DP  
driver output impedance on pin DM  
steady-state drive  
steady-state drive  
40.5  
40.5  
1
45  
45  
-
49.5  
49.5  
-
input impedance exclusive of  
MΩ  
pull-up/pull-down (for low-/full-speed)  
UART mode  
Input levels  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
pin DP  
pin DP  
-
-
-
0.8  
-
V
V
VIH  
2.35  
Output levels  
VOL  
LOW-level output voltage  
HIGH-level output voltage  
pin DM; IOL = 4 mA  
-
-
-
0.3  
-
V
V
VOH  
pin DM; IOH = +4 mA  
2.4  
Table 58. Static characteristics: analog pin VBUS  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values refer to VCC = 3.6 V; VCC(I/O) = 3.3 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Comparators  
VA_VBUS_VLD  
VA_SESS_VLD  
A-device VBUS valid voltage  
A-device session valid voltage  
4.4  
0.8  
-
-
4.75  
2.0  
-
V
for A-device and B-device  
1.6  
100  
V
Vhys(A_SESS_VLD) A-device session valid hysteresis for A-device and B-device  
voltage  
mV  
VB_SESS_END  
Resistance  
RUP(VBUS)  
B-device session end voltage  
0.2  
-
0.8  
V
pull-up resistance on pin VBUS  
connect to REG3V3 when  
CHRG_VBUS = 1  
281  
656  
680  
-
-
RDN(VBUS)  
pull-down resistance on pin VBUS connect to GND when  
DISCHRG_VBUS = 1  
1200  
RI(idle)(VBUS)  
idle input resistance on pin VBUS not in Power-down mode  
75  
40  
90  
-
100  
100  
kΩ  
kΩ  
chip deasserted  
(Power-down mode)  
VCC(I/O) lost (Power-down  
mode)  
140  
-
220  
kΩ  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
67 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 59. Static characteristics: analog pin CFG0  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Input levels  
VIL  
VIH  
ILI  
LOW-level input voltage  
HIGH-level input voltage  
input leakage current  
-
-
-
-
0.8  
-
V
2.0  
1  
V
+1  
µA  
Table 60. Static characteristics: ID detection circuit  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values refer to VCC = 3.6 V; VCC(I/O) = 3.3 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
tID  
Parameter  
Conditions  
Min  
50  
Typ  
-
Max  
-
Unit  
ms  
V
ID detection time  
Vth(ID)  
RUP(ID)  
ID detector threshold voltage  
ID pull-up resistance  
1.0  
40  
-
2.0  
60  
bit ID_PULLUP = 1  
bit ID_PULLUP = 0  
50  
400  
3.3  
kΩ  
kΩ  
V
RweakPU(ID) weak pull-up resistance on pin ID  
VPU(ID) pull-up voltage on pin ID  
320  
3.0  
480  
3.6  
Table 61. Static characteristics: resistor reference  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
SUSPENDM = HIGH.  
Typical values refer to VCC = 3.6 V; VCC(I/O) = 3.3 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VO(RREF)  
output voltage on pin RREF  
-
1.22  
-
V
Table 62. Static characteristics: regulator  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
SUSPENDM = HIGH.  
Typical values refer to VCC = 3.6 V; VCC(I/O) = 3.3 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
1.65  
3.0  
Typ  
1.8  
Max  
1.95  
3.6  
Unit  
V
VO(REG1V8) output voltage from internal 1.8 V regulator  
VO(REG3V3) output voltage from internal 3.3 V regulator not in UART mode  
in UART mode  
3.3  
V
2.5  
2.77  
2.9  
V
Table 63. Static characteristics: pin XTAL1  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
VIL  
Parameter  
Conditions  
Min  
-
Typ  
Max  
0.37  
-
Unit  
V
LOW-level input voltage  
HIGH-level input voltage  
-
-
VIH  
1.32  
V
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
68 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
15. Dynamic characteristics  
Table 64. Dynamic characteristics: reset and power  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tW(POR)  
internal power-on reset  
pulse width  
0.2  
-
-
µs  
tw(REG1V8_H)  
tw(REG1V8_L)  
tW(RESET_N)  
REG1V8 HIGH pulse width  
REG1V8 LOW pulse width  
-
-
-
-
2
µs  
µs  
ns  
-
11  
-
external RESET_N pulse  
width  
200  
tstartup(PLL)  
td(det)clk(osc)  
PLL start-up time  
measured after td(det)clk(osc)  
-
-
-
-
640  
640  
µs  
µs  
oscillator clock detector  
delay  
measured from regulator  
start-up time  
tPWRUP  
regulator start-up time  
4.7 µF ± 20 % capacitor  
each on the REG1V8 and  
REG3V3 pins  
-
-
-
-
1
ms  
ms  
tPWRDN  
regulator power-down time  
4.7 µF ± 20 % capacitor  
each on the REG1V8 and  
REG3V3 pins  
100  
Table 65. Dynamic characteristics: clock applied to XTAL1  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values refer to VCC = 3.6 V; VCC(I/O) = 3.3 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
MHz  
MHz  
MHz  
MHz  
ps  
fi(XTAL1)  
input frequency on pin XTAL1 see Table 6  
-
-
-
-
-
-
26.000  
24.000  
19.300  
13.000  
-
-
see Table 6  
see Table 6  
see Table 6  
-
-
-
tjit(i)(XTAL1)RMS RMS input jitter on pin XTAL1  
200  
200  
fi(XTAL1)  
input frequency tolerance on  
pin XTAL1  
-
ppm  
[1]  
δi(XTAL1)  
tr(XTAL1)  
tf(XTAL1)  
input duty cycle on pin XTAL1 for the first transaction  
-
-
-
50  
-
-
%
rise time on pin XTAL1  
fall time on pin XTAL1  
only for square wave input  
only for square wave input  
5
5
ns  
ns  
-
[1] The internal PLL is triggered only on the positive edge from the crystal oscillator. Therefore, the duty cycle is not critical.  
Table 66. Dynamic characteristics: CLOCK output  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values refer to VCC = 3.6 V; VCC(I/O) = 3.3 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fo(AV)(CLOCK)  
average output frequency on  
pin CLOCK  
59.970  
60.000  
60.030  
MHz  
tjit(o)(CLOCK)RMS RMS output jitter on pin CLOCK  
-
-
500  
55  
ps  
%
δo(CLOCK)  
output clock duty cycle on pin CLOCK  
45  
50  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
69 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 67. Dynamic characteristics: digital I/O pins (SDR)  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified. See Figure 30.  
Typical values refer to VCC = 3.6 V; VCC(I/O) = 3.3 V; Tamb = +25 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tsu(STP) STP set-up time with respect to  
the rising edge of pin CLOCK  
input-only pin (STP)  
6.0  
-
-
ns  
tsu(DATA) DATA set-up time with respect to bidirectional pins (DATA[7:0]) as inputs  
the rising edge of pin CLOCK  
6.0  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
pF  
th(STP)  
STP hold time with respect to the input-only pin (STP)  
rising edge of pin CLOCK  
0.0  
-
th(DATA) DATA hold time with respect to  
the rising edge of pin CLOCK  
bidirectional pins (DATA[7:0]) as inputs  
0.0  
-
td(DIR)  
DIR output delay with respect to output-only pin DIR  
-
-
-
-
9.0  
9.0  
9.0  
20  
the rising edge of pin CLOCK  
td(NXT)  
NXT output delay with respect to output-only pin NXT  
the rising edge of pin CLOCK  
td(DATA) DATA output delay with respect to bidirectional pins as output (DATA[7:0])  
the rising edge of pin CLOCK  
[1]  
CL  
load capacitance  
pins DATA[7:0], CLOCK, DIR, NXT, STP  
[1] Load capacitance on each ULPI pin.  
Table 68. Dynamic characteristics: digital I/O pins (DDR)  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified. See Figure 30.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tsu(STP)  
STP set-up time with respect to input-only pin (STP)  
the rising edge of pin CLOCK  
6.0  
-
-
ns  
[1][2]  
tsu(DATA) DATA set-up time with respect to bidirectional pins (DATA[3:0]) as inputs  
the rising edge of pin CLOCK  
4.0  
0.0  
0.0  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
th(STP)  
th(DATA)  
td(DIR)  
td(NXT)  
td(DATA)  
CL  
STP hold time with respect to the input-only pin (STP)  
rising edge of pin CLOCK  
-
[2]  
DATA hold time with respect to  
the rising edge of pin CLOCK  
bidirectional pins (DATA[7:0]) as inputs  
-
DIR output delay with respect to output-only pin DIR  
the rising edge of pin CLOCK  
9.0  
9.0  
4.4  
NXT output delay with respect to output-only pin NXT  
the rising edge of pin CLOCK  
-
[2]  
[3]  
DATA output delay with respect  
to the rising edge of pin CLOCK  
bidirectional pins (DATA[3:0]) as output  
-
load capacitance  
pins DATA[3:0], CLOCK, DIR, NXT, STP  
td = 4 ns  
-
-
-
-
10  
15  
pF  
pF  
td = 4.4 ns  
[1] Note that the value exceeds that specified in UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1.  
[2] Also with respect to the falling edge of pin CLOCK.  
[3] Load capacitance on each ULPI pin.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
70 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 69. Dynamic characteristics: analog I/O pins (DP, DM) in USB mode  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Typical values refer to VCC = 3.6 V; VCC(I/O) = 3.3 V; Tamb = +25 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
High-speed driver characteristics; see Figure 26  
tHSR  
tHSF  
rise time (10 % to 90 %)  
fall time (10 % to 90 %)  
drive 45 to GND on DP and DM  
drive 45 to GND on DP and DM  
500  
500  
-
-
-
-
ps  
ps  
Full-speed driver characteristics; see Figure 26  
tFR  
rise time  
fall time  
CL = 50 pF; 10 % to 90 % of |VOH VOL  
|
|
4
-
-
-
20  
ns  
ns  
%
tFF  
CL = 50 pF; 10 % to 90 % of |VOH VOL  
4
20  
tFRFM  
differential rise and fall time tFR / tFF; excluding the first transition from  
matching the idle state  
90  
111.1  
Low-speed driver characteristics; see Figure 26  
tLR  
transition time: rise time  
transition time: fall time  
rise and fall time matching  
CL = 200 pF to 600 pF; 1.5 kpull-up on  
75  
75  
80  
-
-
-
300  
300  
125  
ns  
ns  
%
DM enabled; 10 % to 90 % of |VOH VOL  
|
tLF  
CL = 200 pF to 600 pF; 1.5 kpull-up on  
DM enabled; 10 % to 90 % of |VOH VOL  
|
tLRFM  
tLR / tLF; excluding the first transition from  
the idle state  
Table 70. Dynamic characteristics: analog I/O pins (DP, DM) in transparent UART mode  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Full-speed driver characteristics (DM only)  
tr(UART)  
tf(UART)  
tPLH(drv)  
rise time for UART TXD  
fall time for UART TXD  
CL = 185 pF; 0.37 V to 2.16 V  
CL = 185 pF; 2.16 V to 0.37 V  
CL = 185 pF; DATA0 to DM  
25  
25  
-
-
-
-
75  
75  
39  
ns  
ns  
ns  
driver propagation delay  
(LOW to HIGH)  
tPHL(drv)  
driver propagation delay  
(HIGH to LOW)  
CL = 185 pF; DATA0 to DM  
-
-
34  
ns  
Low-speed driver characteristics (DM only)  
tr(UART)  
tf(UART)  
tPLH(drv)  
rise time for UART TXD  
fall time for UART TXD  
CL = 185 pF; 0.37 V to 2.16 V  
CL = 185 pF; 2.16 V to 0.37 V  
CL = 185 pF; DATA0 to DM  
100  
100  
-
-
-
-
400  
400  
614  
ns  
ns  
ns  
driver propagation delay  
(LOW to HIGH)  
tPHL(drv)  
driver propagation delay  
(HIGH to LOW)  
CL = 185 pF; DATA0 to DM  
-
-
614  
ns  
Full-speed receiver characteristics (DP only)  
tPLH(rcv)  
receiver propagation delay  
(LOW to HIGH)  
DP to DATA1  
-
-
-
-
7
7
ns  
ns  
tPHL(rcv)  
receiver propagation delay  
(HIGH to LOW)  
DP to DATA1  
Low-speed receiver characteristics (DP only)  
tPLH(rcv)  
receiver propagation delay  
(LOW to HIGH)  
DP to DATA1  
-
-
-
-
7
7
ns  
ns  
tPHL(rcv)  
receiver propagation delay  
(HIGH to LOW)  
DP to DATA1  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
71 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 71. Dynamic characteristics: analog I/O pins (DP, DM) in serial mode  
VCC = 3.0 V to 4.5 V; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Driver timing (valid only for serial mode)  
tPLH(drv) driver propagation delay (LOW to  
HIGH)  
TX_DAT, TX_SE0 to DP, DM;  
see Figure 27  
-
-
-
-
11  
11  
ns  
ns  
tPHL(drv) driver propagation delay (HIGH to  
LOW)  
TX_DAT, TX_SE0 to DP, DM;  
see Figure 27  
tPHZ  
tPLZ  
tPZH  
tPZL  
driver disable delay from HIGH level TX_ENABLE to DP, DM; see Figure 28  
driver disable delay from LOW level TX_ENABLE to DP, DM; see Figure 28  
-
-
-
-
-
-
-
-
12  
12  
20  
20  
ns  
ns  
ns  
ns  
driver enable delay to HIGH level  
driver enable delay to LOW level  
TX_ENABLE to DP, DM; see Figure 28  
TX_ENABLE to DP, DM; see Figure 28  
Receiver timing (valid only for serial mode)  
Differential receiver  
tPLH(rcv) receiver propagation delay (LOW to DP, DM to RX_RCV, RX_DP and RX_DM;  
HIGH) see Figure 29  
-
-
-
-
17  
17  
ns  
ns  
tPHL(rcv) receiver propagation delay (HIGH to DP, DM to RX_RCV, RX_DP and RX_DM;  
LOW)  
see Figure 29  
Single-ended receiver  
tPLH(se) single-ended propagation delay  
(LOW to HIGH)  
DP, DM to RX_RCV, RX_DP and RX_DM;  
see Figure 29  
-
-
-
-
17  
17  
ns  
ns  
tPHL(se) single-ended propagation delay  
(HIGH to LOW)  
DP, DM to RX_RCV, RX_DP and RX_DM;  
see Figure 29  
1.8 V  
0.9 V  
logic input 0.9 V  
t
, t , t  
HSF FF LF  
t
, t , t  
HSR FR LR  
0 V  
V
t
t
PHL(drv)  
OH  
PLH(drv)  
90 %  
90 %  
V
OH  
differential  
data lines  
V
V
CRS  
CRS  
10 %  
10 %  
V
OL  
V
OL  
004aaa861  
004aaa573  
Fig 26. Rise time and fall time  
Fig 27. Timing of TX_DAT and TX_SE0 to DP and DM  
2.0 V  
1.8 V  
differential  
data lines  
V
V
CRS  
CRS  
logic  
input  
0.9 V  
0.9 V  
0.8 V  
0 V  
t
t
t
PHL(rcv)  
PLH(rcv)  
PLH(se)  
t
t
t
PHZ  
PZH  
t
PHL(se)  
t
PLZ  
PZL  
V
OH  
V
OH  
V
0.3 V  
OH  
0.9 V  
0.9 V  
logic output  
differential  
data lines  
V
CRS  
V
+ 0.3 V  
OL  
V
OL  
V
004aaa574  
001aai187  
OL  
Fig 28. Timing of TX_ENABLE to DP and DM  
Fig 29. Timing of DP and DM to RX_RCV, RX_DP and  
RX_DM  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
72 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
CLOCK  
t
t
su(STP) h(STP)  
CONTROL IN  
(STP)  
t
t
su(DATA)  
h(DATA)  
DATA IN  
(8-BIT)  
t
,
d(DIR)  
t
d(NXT)  
CONTROL OUT  
(DIR, NXT)  
t
,
d(DIR)  
t
t
d(NXT)  
d(DATA)  
DATA OUT  
(8-BIT)  
004aaa722  
Fig 30. ULPI timing interface  
16. Application information  
Table 72. Recommended bill of materials  
Designator Application  
Part type  
Remark  
Cbypass  
highly recommended for all  
applications  
0.1 µF ± 20 %  
-
Cfilter  
highly recommended for all  
applications  
4.7 µF ± 20 %  
use a LOW ESR capacitor (0.2 to 2 ) for best  
performance  
CVBUS  
mandatory for peripherals  
mandatory for host  
mandatory for OTG  
in all applications  
1 µF to 10 µF  
120 µF (min)  
1 µF to 6.5 µF  
18 pF ± 20 %  
-
use low ESR capacitor  
use low ESR capacitor  
use low ESR capacitor  
-
CXTAL  
DESD  
recommended to prevent  
damages from ESD  
IP4359CX4/LF; Wafer-Level Chip-Scale Package  
(WLCSP); ESD IEC 61000-4-2 level 4; ±15 kV contact;  
±15 kV air discharge compliant protection.  
Note: ISP1705 and IP4359CX4/LF together have an IEC  
61000-4-2 contact discharge tolerance of ±20 kV.  
RRREF  
mandatory in all applications  
12 kΩ ± 1 %  
-
-
RS(VBUS)  
recommended for peripherals 1 kΩ ± 5 %  
or external 5 V applications  
Rpullup  
recommended; for applications 10 kΩ  
with an external VBUS supply  
controlled by PSW_N  
-
xtal  
mandatory in all applications  
19.2 MHz  
24 MHz  
CL = 10 pF; RS < 220 ; CXTAL = 18 pF  
CL = 10 pF; RS < 160 ; CXTAL = 18 pF  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
73 of 89  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
V
CC  
V
CC(I/O)  
V
C
bypass  
V
CC  
CHIP_SEL  
CLOCK  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
NXT  
CC(I/O)  
8
3
35  
29  
2
CHIP_SEL  
CLOCK  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
NXT  
C
C
C
C
bypass  
bypass  
bypass  
bypass  
V
V
V
CC(I/O)  
CC(I/O)  
CC(I/O)  
21  
26  
33  
20  
13  
5
1
RESET_N  
36  
30  
28  
27  
25  
24  
23  
22  
19  
16  
7
R
S(VBUS)  
V
V
BUS  
BUS  
1
2
3
4
5
6
USB  
PERIPHERAL  
CONTROLLER  
DM  
DP  
D−  
D+  
6
USB  
STANDARD-B  
RECEPTACLE  
FAULT  
ID  
GND  
10  
9
ISP1705  
C
VBUS  
A1  
A2  
SHIELD  
SHIELD  
IP4359CX4/LF  
B1  
B2  
(1)  
CFG2  
32  
31  
11  
14  
4
D
ESD  
(1)  
STP  
CFG1  
STP  
DIR  
n.c.  
DIR  
C
XTAL1  
XTAL1  
CFG0  
PSW_N  
004aab061  
R
RREF  
RREF  
REG3V3  
XTAL2  
REG1V8  
18  
34  
12  
17  
CHIP_SEL_N  
C
C
filter  
C
C
filter  
bypass  
bypass  
15  
GND  
This figure shows the HVQFN pinout. For the TFBGA ballout, see Table 3.  
(1) Connect to either GND or VCC(I/O), depending on the clock frequency used. See Table 6.  
Fig 31. ISP1705 in peripheral-only application  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
V
CC  
V
CC(I/O)  
+5 V  
C
bypass  
V
8
CC  
IN  
FAULT  
BUS  
SWITCH  
V
CHIP_SEL  
CLOCK  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
NXT  
CC(I/O)  
35  
29  
2
CHIP_SEL  
CLOCK  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
3
V
R
pullup  
C
C
bypass  
bypass  
V
V
V
CC(I/O)  
CC(I/O)  
CC(I/O)  
ON OUT  
21  
26  
33  
20  
13  
5
C
C
bypass  
bypass  
1
RESET_N  
36  
30  
28  
27  
25  
24  
23  
22  
19  
7
R
S(VBUS)  
V
V
BUS  
BUS  
DM  
DP  
ID  
1
2
3
4
5
6
7
8
9
D−  
D+  
ID  
OTG  
CONTROLLER  
DATA5  
DATA6  
DATA7  
NXT  
6
9
ISP1705  
USB  
MICRO-AB  
RECEPTACLE  
GND  
FAULT  
10  
32  
31  
34  
11  
14  
17  
16  
C
VBUS  
A1  
A2  
SHIELD  
SHIELD  
SHIELD  
SHIELD  
(1)  
CFG2  
IP4359CX4/LF  
STP  
(1)  
CFG1  
STP  
B1  
B2  
D
ESD  
DIR  
CHIP_SEL_N  
n.c.  
DIR  
CFG0  
004aab062  
R
RREF  
RREF  
PSW_N  
XTAL2  
4
REG3V3  
12  
18  
xtal  
REG1V8  
C
C
C
XTAL1  
bypass  
filter  
15  
C
filter  
bypass  
C
XTAL  
C
XTAL  
GND  
This figure shows the HVQFN pinout. For the TFBGA ballout, see Table 3.  
(1) Connect to either GND or VCC(I/O), depending on the crystal frequency used. See Table 6.  
Fig 32. ISP1705 in OTG application  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
V
CC  
+5 V  
V
CC(I/O)  
V
C
bypass  
IN  
FAULT  
BUS  
SWITCH  
V
8
CC  
V
CHIP_SEL  
CLOCK  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
DATA6  
DATA7  
NXT  
CC(I/O)  
CC(I/O)  
CC(I/O)  
CC(I/O)  
R
CHIP_SEL  
CLOCK  
DATA0  
DATA1  
DATA2  
DATA3  
pullup  
3
35  
29  
2
C
C
bypass  
bypass  
ON OUT  
V
21  
26  
33  
20  
4
C
C
bypass  
bypass  
V
V
1
RESET_N  
36  
30  
28  
27  
25  
24  
23  
22  
19  
7
R
RREF  
RREF  
DM  
V
BUS  
1
2
3
4
5
6
USB HOST  
CONTROLLER  
D−  
DATA4  
DATA5  
DATA6  
DATA7  
NXT  
5
DP  
D+  
USB  
6
STANDARD-A  
RECEPTACLE  
C
VBUS  
FAULT  
ID  
GND  
ISP1705  
10  
9
SHIELD  
SHIELD  
A1  
A2  
(1)  
CFG2  
IP4359CX4/LF  
32  
31  
11  
14  
12  
16  
17  
B1  
B2  
(1)  
STP  
CFG1  
STP  
D
ESD  
DIR  
n.c.  
PSW_N  
REG3V3  
XTAL1  
DIR  
CFG0  
004aab063  
V
BUS  
13  
CHIP_SEL_N  
REG1V8  
34  
18  
C
C
filter  
bypass  
xtal  
XTAL2  
15  
GND  
C
XTAL  
C
XTAL  
C
C
filter  
bypass  
This figure shows the HVQFN pinout. For the TFBGA ballout, see Table 3.  
(1) Connect to either GND or VCC(I/O), depending on the crystal frequency used. See Table 6.  
Fig 33. ISP1705 in host application  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
17. Package outline  
HVQFN36: plastic thermal enhanced very thin quad flat package; no leads;  
36 terminals; body 5 x 5 x 0.85 mm  
SOT818-1  
D
B
A
terminal 1  
index area  
A
E
A
1
c
detail X  
C
y
e
1
y
v
M
C
C
A B  
1 C  
e
b
w
M
10  
18  
L
19  
9
e
e
2
E
h
1
27  
terminal 1  
index area  
36  
28  
X
D
h
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
(1)  
(1)  
UNIT  
A
b
c
D
D
E
E
e
e
1
e
2
L
v
w
y
y
1
1
h
h
max  
0.05 0.30  
0.00 0.18  
5.1  
4.9  
3.75  
3.45  
5.1  
4.9  
3.75  
3.45  
0.5  
0.3  
mm  
1
0.2  
0.4  
3.2  
3.2  
0.1  
0.05 0.05  
0.1  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
JEITA  
- - -  
SOT818-1  
- - -  
03-06-13  
MO-220  
Fig 34. Package outline SOT818-1 (HVQFN36)  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
77 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
TFBGA36: plastic thin fine-pitch ball grid array package; 36 balls; body 3.5 x 3.5 x 0.8 mm  
SOT912-1  
D
B
A
E
ball A1  
index area  
A
2
A
A
1
detail X  
e
1
1/2 e  
e
C
y
M
M
v
C A  
C
B
b
y
w
C
1
F
E
D
C
B
A
e
e
2
1/2 e  
ball A1  
index area  
1
2
3
4
5
6
X
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
1
A
2
b
D
E
e
e
e
2
v
w
y
y
1
1
max  
0.25 0.90 0.35  
0.15 0.75 0.25  
3.6  
3.4  
3.6  
3.4  
mm  
1.15  
0.5  
2.5  
2.5  
0.15 0.05 0.08  
0.1  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
JEITA  
05-08-09  
05-09-01  
- - -  
- - -  
- - -  
SOT912-1  
Fig 35. Package outline SOT912-1 (TFBGA36)  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
78 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
18. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
18.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
18.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
18.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
79 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
18.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 36) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 73 and 74  
Table 73. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 74. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 36.  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
80 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 36. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
19. Abbreviations  
Table 75. Abbreviations  
Acronym  
ASIC  
ATX  
Description  
Application Specific Integrated Circuit  
Analog USB Transceiver  
Charged Device Model  
Compact Disc - Digital Video Disc  
Compact Disc - Read-Only Memory  
Compact Disc - ReWritable  
Dual Data Rate  
CDM  
CD-DVD  
CD-ROM  
CD-RW  
DDR  
EMI  
ElectroMagnetic Interference  
End-Of-Packet  
EOP  
ESD  
ElectroStatic Discharge  
Effective Series Resistance  
Field Programmable Gate-Array  
Full Speed  
ESR  
FPGA  
FS  
HBM  
HNP  
HS  
Human Body Model  
Host Negotiation Protocol  
High Speed  
ID  
Identification  
IEC  
International Electrotechnical Commission  
Low Speed  
LS  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
81 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
Table 75. Abbreviations …continued  
Acronym  
Description  
MM  
Machine Model  
NRZI  
OTG  
Non-Return to Zero Inverted  
On-The-Go  
PDA  
Personal Digital Assistant  
Physical  
PHY  
PID  
Packet Identifier  
PLL  
Phase-Locked Loop  
Power-On Reset  
POR  
RoHS  
RXCMD  
RXD  
Restriction of Hazardous Substances  
Receive Command  
Receive Data  
SDR  
Single Data Rate  
Single-Ended Zero  
System-On-Chip  
SE0  
SOC  
SOF  
Start-Of-Frame  
SRP  
Session Request Protocol  
Synchronous  
SYNC  
TTL  
Transistor-Transistor Logic  
Transmit Command  
Transmit Data  
TXCMD  
TXD  
UART  
ULPI  
USB  
Universal Asynchronous Receiver-Transmitter  
UTMI+ Low Pin Interface  
Universal Serial Bus  
USB-IF  
UTMI  
UTMI+  
WLCSP  
USB Implementers Forum  
USB Transceiver Macrocell Interface  
USB Transceiver Macrocell Interface Plus  
Wafer-Level Chip-Scale Package  
20. Glossary  
A-device — An OTG device with an attached micro-A plug.  
B-device — An OTG device with an attached micro-B plug.  
Link — ASIC, SOC or FPGA that contains the USB host or peripheral core.  
PHY — Physical layer containing the USB transceiver.  
21. References  
[1] Universal Serial Bus Specification Rev. 2.0  
[2] On-The-Go Supplement to the USB 2.0 Specification Rev. 1.3  
[3] UTMI+ Low Pin Interface (ULPI) Specification Rev. 1.1  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
82 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
[4] UTMI+ Specification Rev. 1.0  
[5] USB 2.0 Transceiver Macrocell Interface (UTMI) Specification Ver. 1.05  
[6] Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)  
(JESD22-A114D)  
[7] Electrostatic Discharge (ESD) Sensitivity Testing Machine Model (MM)  
(JESD22-A115-A)  
[8] Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components  
(JESD22-C101-C)  
[9] Electromagnetic compatibility (EMC) - Part 4-2: Testing and measurement  
techniques - Electrostatic discharge immunity test (IEC 61000-4-2)  
22. Revision history  
Table 76. Revision history  
Document ID  
Release date  
20080613  
Data sheet status  
Change notice  
Supersedes  
ISP1705_1  
Product data sheet  
-
-
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
83 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
23. Legal information  
23.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
23.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
23.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
23.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
24. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
84 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
25. Tables  
Table 1. Ordering information . . . . . . . . . . . . . . . . . . . . .3  
Table 2. Marking codes . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Table 3. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Table 4. Recommended VBUS capacitor value . . . . . . .18  
Table 5. OTG_CTRL register power control bits . . . . . .19  
Table 6. Allowed crystal or clock frequency on the  
XTAL1 pin . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Table 7. External capacitor values for 13 MHz or  
19.2 MHz clock frequency . . . . . . . . . . . . . . . .20  
Table 8. External capacitor values for 24 MHz or  
26 MHz clock frequency . . . . . . . . . . . . . . . . .20  
Table 9. Pin states in Power-down mode . . . . . . . . . . .22  
Table 10. ULPI signal description . . . . . . . . . . . . . . . . . .23  
Table 11. Signal mapping during low-power mode . . . . .24  
Table 12. Signal mapping for 6-pin serial mode . . . . . . .25  
Table 13. Signal mapping for 3-pin serial mode . . . . . . .26  
Table 14. UART signal mapping . . . . . . . . . . . . . . . . . . .26  
Table 15. Operating states and their corresponding  
resistor settings . . . . . . . . . . . . . . . . . . . . . . . .29  
Table 16. TXCMD byte format . . . . . . . . . . . . . . . . . . . . .31  
Table 17. RXCMD byte format . . . . . . . . . . . . . . . . . . . . .32  
Table 18. LINESTATE[1:0] encoding for upstream  
facing ports: peripheral . . . . . . . . . . . . . . . . . .33  
Table 19. LINESTATE[1:0] encoding for downstream  
facing ports: host . . . . . . . . . . . . . . . . . . . . . . .33  
Table 20. Encoded VBUS voltage state . . . . . . . . . . . . . .33  
Table 21. VBUS indicators in RXCMD required for  
typical applications . . . . . . . . . . . . . . . . . . . . . .34  
Table 22. Encoded USB event signals . . . . . . . . . . . . . .35  
Table 23. PHY pipeline delays . . . . . . . . . . . . . . . . . . . . .39  
Table 24. Link decision times . . . . . . . . . . . . . . . . . . . . .40  
Table 25. Register map . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Table 26. VENDOR_ID_LOW - Vendor ID low register  
(address R = 00h) bit description . . . . . . . . . . .52  
Table 27. VENDOR_ID_HIGH - Vendor ID high  
C = 09h) bit allocation . . . . . . . . . . . . . . . . . . . 55  
Table 33. INTF_CTRL - Interface control register  
(address R = 07h to 09h, W = 07h, S = 08h,  
C = 09h) bit description . . . . . . . . . . . . . . . . . . 55  
Table 34. OTG_CTRL - OTG control register  
(address R = 0Ah to 0Ch, W = 0Ah, S = 0Bh,  
C = 0Ch) bit allocation . . . . . . . . . . . . . . . . . . . 56  
Table 35. OTG_CTRL - OTG control register  
(address R = 0Ah to 0Ch, W = 0Ah, S = 0Bh,  
C = 0Ch) bit description . . . . . . . . . . . . . . . . . 57  
Table 36. USB_INTR_EN_R - USB interrupt enable  
rising register (address R = 0Dh to 0Fh,  
W = 0Dh, S = 0Eh, C = 0Fh) bit allocation . . . 58  
Table 37. USB_INTR_EN_R - USB interrupt enable  
rising register (address R = 0Dh to 0Fh,  
W = 0Dh, S = 0Eh, C = 0Fh) bit description . . 58  
Table 38. USB_INTR_EN_F - USB interrupt enable  
falling register (address R = 10h to 12h,  
W = 10h, S = 11h, C = 12h) bit allocation . . . . 58  
Table 39. USB_INTR_EN_F - USB interrupt enable  
falling register (address R = 10h to 12h,  
W = 10h, S = 11h, C = 12h) bit description . . . 59  
Table 40. USB_INTR_STAT - USB interrupt status  
register (address R = 13h) bit allocation . . . . . 59  
Table 41. USB_INTR_STAT - USB interrupt status  
register (address R = 13h) bit description . . . . 59  
Table 42. USB_INTR_L - USB interrupt latch  
register (address R = 14h) bit allocation . . . . . 60  
Table 43. USB_INTR_L - USB interrupt latch  
register (address R = 14h) bit description . . . . 60  
Table 44. DEBUG - Debug register (address R = 15h)  
bit allocation . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 45. DEBUG - Debug register (address R = 15h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 46. SCRATCH - Scratch register (address  
R = 16h to 18h, W = 16h, S = 17h, C = 18h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 47. CARKIT_CTRL - Carkit control register  
(address R = 19h to 1Bh, W = 19h, S = 1Ah,  
C = 1Bh) bit allocation . . . . . . . . . . . . . . . . . . . 61  
Table 48. CARKIT_CTRL - Carkit control register  
(address R = 19h to 1Bh, W = 19h, S = 1Ah,  
C = 1Bh) bit description . . . . . . . . . . . . . . . . . . 61  
Table 49. PWR_CTRL - Power control register  
(address R = 3Dh to 3Fh, W = 3Dh, S = 3Eh,  
C = 3Fh) bit allocation . . . . . . . . . . . . . . . . . . . 62  
Table 50. PWR_CTRL - Power control register  
(address R = 3Dh to 3Fh, W = 3Dh, S = 3Eh,  
register (address R = 01h) bit description . . . .52  
Table 28. PRODUCT_ID_LOW - Product ID low  
register (address R = 02h) bit description . . . .53  
Table 29. PRODUCT_ID_HIGH - Product ID high  
register (address R = 03h) bit description . . . .53  
Table 30. FUNC_CTRL - Function control register  
(address R = 04h to 06h, W = 04h, S = 05h,  
C = 06h) bit allocation . . . . . . . . . . . . . . . . . . .53  
Table 31. FUNC_CTRL - Function control register  
(address R = 04h to 06h, W = 04h, S = 05h,  
C = 06h) bit description . . . . . . . . . . . . . . . . . .53  
Table 32. INTF_CTRL - Interface control register  
(address R = 07h to 09h, W = 07h, S = 08h,  
continued >>  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
85 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
C = 3Fh) bit description . . . . . . . . . . . . . . . . . .62  
Table 51. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . .63  
Table 52. Recommended operating conditions . . . . . . . .63  
Table 53. Static characteristics: supply pins . . . . . . . . . .64  
Table 54. Static characteristics: digital pins . . . . . . . . . . .64  
Table 55. Static characteristics: digital input pin  
FAULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Table 56. Static characteristics: digital output pin  
PSW_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Table 57. Static characteristics: analog pins (DP, DM) . .65  
Table 58. Static characteristics: analog pin VBUS . . . . . .67  
Table 59. Static characteristics: analog pin CFG0 . . . . . .68  
Table 60. Static characteristics: ID detection circuit . . . .68  
Table 61. Static characteristics: resistor reference . . . . .68  
Table 62. Static characteristics: regulator . . . . . . . . . . . .68  
Table 63. Static characteristics: pin XTAL1 . . . . . . . . . . .68  
Table 64. Dynamic characteristics: reset and power . . . .69  
Table 65. Dynamic characteristics: clock applied to  
XTAL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Table 66. Dynamic characteristics: CLOCK output . . . . .69  
Table 67. Dynamic characteristics: digital I/O pins  
(SDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Table 68. Dynamic characteristics: digital I/O pins  
(DDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
Table 69. Dynamic characteristics: analog I/O pins  
(DP, DM) in USB mode . . . . . . . . . . . . . . . . . .71  
Table 70. Dynamic characteristics: analog I/O pins  
(DP, DM) in transparent UART mode . . . . . . . .71  
Table 71. Dynamic characteristics: analog I/O pins  
(DP, DM) in serial mode . . . . . . . . . . . . . . . . . .72  
Table 72. Recommended bill of materials . . . . . . . . . . . .73  
Table 73. SnPb eutectic process (from J-STD-020C) . . .80  
Table 74. Lead-free process (from J-STD-020C) . . . . . .80  
Table 75. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . .81  
Table 76. Revision history . . . . . . . . . . . . . . . . . . . . . . . .83  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
86 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
26. Figures  
Fig 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Fig 2. Pin configuration HVQFN36. . . . . . . . . . . . . . . . . .5  
Fig 3. Pin configuration TFBGA36 . . . . . . . . . . . . . . . . . .5  
Fig 4. Digital overcurrent detection scheme. . . . . . . . . .12  
Fig 5. Internal power-on reset timing . . . . . . . . . . . . . . .13  
Fig 6. Power-up and reset sequence required before  
the ULPI bus is ready for use. . . . . . . . . . . . . . . .14  
Fig 7. Interface behavior with respect to RESET_N. . . .15  
Fig 8. Interface behavior with respect to chip select . . .16  
Fig 9.  
VBUS pin internal pull-up and pull-down scheme .19  
Fig 10. Interface behavior when entering UART mode . .28  
Fig 11. Interface behavior when exiting UART mode. . . .28  
Fig 12. Single and back-to-back RXCMDs from the  
ISP1705 to the link. . . . . . . . . . . . . . . . . . . . . . . .32  
Fig 13. RXCMD A_VBUS_VLD indicator source . . . . . . .34  
Fig 14. Example of register write, register read,  
extended register write and extended  
register read. . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Fig 15. USB reset and high-speed detection  
handshake (chirp) sequence . . . . . . . . . . . . . . . .38  
Fig 16. Example of using the ISP1705 to transmit and  
receive USB data. . . . . . . . . . . . . . . . . . . . . . . . .39  
Fig 17. High-speed transmit-to-transmit packet timing. . .40  
Fig 18. High-speed receive-to-transmit packet timing . . .41  
Fig 19. Preamble sequence. . . . . . . . . . . . . . . . . . . . . . .42  
Fig 20. Full speed suspend and resume . . . . . . . . . . . . .43  
Fig 21. High speed suspend and resume . . . . . . . . . . . .45  
Fig 22. Remote wake-up from low-power mode . . . . . . .47  
Fig 23. Transmitting USB packets without automatic  
SYNC and EOP generation . . . . . . . . . . . . . . . . .48  
Fig 24. Example of transmit followed by receive  
in 6-pin serial mode . . . . . . . . . . . . . . . . . . . . . . .50  
Fig 25. Example of transmit followed by receive  
in 3-pin serial mode . . . . . . . . . . . . . . . . . . . . . . .50  
Fig 26. Rise time and fall time . . . . . . . . . . . . . . . . . . . . .72  
Fig 27. Timing of TX_DAT and TX_SE0 to DP and DM. .72  
Fig 28. Timing of TX_ENABLE to DP and DM. . . . . . . . .72  
Fig 29. Timing of DP and DM to RX_RCV, RX_DP  
and RX_DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Fig 30. ULPI timing interface . . . . . . . . . . . . . . . . . . . . . .73  
Fig 31. ISP1705 in peripheral-only application . . . . . . . .74  
Fig 32. ISP1705 in OTG application . . . . . . . . . . . . . . . .75  
Fig 33. ISP1705 in host application . . . . . . . . . . . . . . . . .76  
Fig 34. Package outline SOT818-1 (HVQFN36) . . . . . . .77  
Fig 35. Package outline SOT912-1 (TFBGA36). . . . . . . .78  
Fig 36. Temperature profiles for large and small  
components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
87 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
27. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
8.12.15 STP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
8.12.16 NXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
8.12.17 CLOCK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
8.12.18 CFG1, CFG2 . . . . . . . . . . . . . . . . . . . . . . . . . 21  
8.12.19 CHIP_SEL, CHIP_SEL_N . . . . . . . . . . . . . . . 21  
8.12.20 GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
9
9.1  
Modes of operation . . . . . . . . . . . . . . . . . . . . . 22  
Power modes . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power-down mode . . . . . . . . . . . . . . . . . . . . . 22  
ULPI modes . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Synchronous mode . . . . . . . . . . . . . . . . . . . . 23  
Low-power mode . . . . . . . . . . . . . . . . . . . . . . 24  
6-pin full-speed or low-speed serial mode . . . 25  
3-pin full-speed or low-speed serial mode . . . 25  
Transparent UART mode . . . . . . . . . . . . . . . . 26  
USB state transitions . . . . . . . . . . . . . . . . . . . 29  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
9.1.1  
9.1.2  
9.2  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
9.2.5  
9.3  
8
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.7.1  
8.7.2  
8.7.2.1  
8.7.2.2  
8.7.2.3  
8.7.3  
8.8  
Functional description . . . . . . . . . . . . . . . . . . . 9  
ULPI interface controller . . . . . . . . . . . . . . . . . . 9  
USB serializer and deserializer. . . . . . . . . . . . . 9  
Hi-Speed USB (USB 2.0) ATX . . . . . . . . . . . . . 9  
Voltage regulator. . . . . . . . . . . . . . . . . . . . . . . 10  
Crystal oscillator and PLL. . . . . . . . . . . . . . . . 10  
UART buffer . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
OTG module . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
ID detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
VBUS comparators. . . . . . . . . . . . . . . . . . . . . . 11  
10  
10.1  
10.2  
10.3  
10.3.1  
10.3.2  
10.3.3  
Protocol description . . . . . . . . . . . . . . . . . . . . 31  
ULPI references . . . . . . . . . . . . . . . . . . . . . . . 31  
TXCMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
RXCMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Linestate encoding. . . . . . . . . . . . . . . . . . . . . 32  
VBUS valid comparator . . . . . . . . . . . . . . . . . . 11  
Session valid comparator . . . . . . . . . . . . . . . . 11  
Session end comparator. . . . . . . . . . . . . . . . . 11  
SRP charge and discharge resistors . . . . . . . 12  
Port power control. . . . . . . . . . . . . . . . . . . . . . 12  
Band gap reference voltage . . . . . . . . . . . . . . 12  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . 12  
Power-up, reset and bus idle sequence . . . . . 13  
Interface protection. . . . . . . . . . . . . . . . . . . . . 15  
Interface behavior with respect to  
VBUS state encoding. . . . . . . . . . . . . . . . . . . . 33  
Using and selecting the VBUS state encoding. 34  
10.3.3.1 Standard USB host controllers. . . . . . . . . . . . 34  
10.3.3.2 Standard USB peripheral controllers . . . . . . . 35  
10.3.3.3 OTG devices . . . . . . . . . . . . . . . . . . . . . . . . . 35  
8.9  
8.10  
8.11  
8.11.1  
8.11.2  
10.3.4  
RxEvent encoding . . . . . . . . . . . . . . . . . . . . . 35  
10.3.4.1 RxActive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
10.3.4.2 RxError. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
10.3.4.3 HostDisconnect . . . . . . . . . . . . . . . . . . . . . . . 36  
RESET_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Interface behavior with respect to  
8.11.3  
10.4  
10.5  
Register read and write operations . . . . . . . . 36  
USB reset and high-speed detection  
chip select. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Detailed description of pins . . . . . . . . . . . . . . 16  
DATA[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
VCC(I/O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
RREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
DP and DM . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
CFG0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
8.12  
handshake (chirp) . . . . . . . . . . . . . . . . . . . . . 36  
USB packet transmit and receive . . . . . . . . . . 39  
USB packet timing . . . . . . . . . . . . . . . . . . . . . 39  
8.12.1  
8.12.2  
8.12.3  
8.12.4  
8.12.5  
8.12.6  
8.12.7  
8.12.8  
8.12.9  
10.6  
10.6.1  
10.6.1.1 ISP1705 pipeline delays. . . . . . . . . . . . . . . . . 39  
10.6.1.2 Allowed link decision time . . . . . . . . . . . . . . . 39  
10.7  
10.8  
10.8.1  
Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
USB suspend and resume . . . . . . . . . . . . . . . 42  
Full-speed or low-speed host-initiated  
VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
FAULT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
REG3V3 and REG1V8 . . . . . . . . . . . . . . . . . . 18  
suspend and resume . . . . . . . . . . . . . . . . . . . 42  
High speed suspend and resume . . . . . . . . . 43  
Remote wake-up . . . . . . . . . . . . . . . . . . . . . . 46  
No automatic SYNC and EOP generation  
10.8.2  
10.8.3  
10.9  
8.12.10 VBUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
8.12.11 PSW_N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
8.12.12 XTAL1 and XTAL2. . . . . . . . . . . . . . . . . . . . . . 19  
8.12.13 DIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
8.12.14 RESET_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
(optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
On-The-Go operations . . . . . . . . . . . . . . . . . . 48  
10.10  
continued >>  
ISP1705_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 13 June 2008  
88 of 89  
ISP1705  
NXP Semiconductors  
ULPI Hi-Speed USB transceiver  
10.10.1 OTG comparators . . . . . . . . . . . . . . . . . . . . . . 49  
10.10.2 Pull-up and pull-down resistors. . . . . . . . . . . . 49  
10.10.3 ID detection. . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
10.10.4  
10.11  
10.12  
10.13  
VBUS charge and discharge resistors . . . . . . . 49  
Serial modes. . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Aborting transfers . . . . . . . . . . . . . . . . . . . . . . 51  
Avoiding contention on the ULPI data bus . . . 51  
11  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
VENDOR_ID_LOW register . . . . . . . . . . . . . . 52  
VENDOR_ID_HIGH register. . . . . . . . . . . . . . 52  
PRODUCT_ID_LOW register . . . . . . . . . . . . . 53  
PRODUCT_ID_HIGH register . . . . . . . . . . . . 53  
FUNC_CTRL register . . . . . . . . . . . . . . . . . . . 53  
INTF_CTRL register . . . . . . . . . . . . . . . . . . . . 55  
OTG_CTRL register . . . . . . . . . . . . . . . . . . . . 56  
USB_INTR_EN_R register . . . . . . . . . . . . . . . 58  
USB_INTR_EN_F register . . . . . . . . . . . . . . . 58  
USB_INTR_STAT register. . . . . . . . . . . . . . . . 59  
USB_INTR_L register. . . . . . . . . . . . . . . . . . . 59  
DEBUG register . . . . . . . . . . . . . . . . . . . . . . . 60  
SCRATCH register . . . . . . . . . . . . . . . . . . . . . 61  
CARKIT_CTRL register . . . . . . . . . . . . . . . . . 61  
PWR_CTRL register. . . . . . . . . . . . . . . . . . . . 62  
11.1  
11.2  
11.3  
11.4  
11.5  
11.6  
11.7  
11.8  
11.9  
11.10  
11.11  
11.12  
11.13  
11.14  
11.15  
12  
13  
14  
15  
16  
17  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 63  
Recommended operating conditions. . . . . . . 63  
Static characteristics. . . . . . . . . . . . . . . . . . . . 64  
Dynamic characteristics . . . . . . . . . . . . . . . . . 69  
Application information. . . . . . . . . . . . . . . . . . 73  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 77  
18  
Soldering of SMD packages . . . . . . . . . . . . . . 79  
Introduction to soldering . . . . . . . . . . . . . . . . . 79  
Wave and reflow soldering . . . . . . . . . . . . . . . 79  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 79  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 80  
18.1  
18.2  
18.3  
18.4  
19  
20  
21  
22  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 83  
23  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 84  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 84  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
23.1  
23.2  
23.3  
23.4  
24  
25  
26  
27  
Contact information. . . . . . . . . . . . . . . . . . . . . 84  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2008.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 13 June 2008  
Document identifier: ISP1705_1  

相关型号:

ISP1705HN,518

USB Bus Controller, CMOS, PQCC36, 5 X 5 MM, 0.85 MM HEIGHT, ROHS COMPLIANT, PLASTIC, MO-220, SOT818-1, HVQFN-36
NXP

ISP1760

Hi-Speed Universal Serial Bus host controller for embedded applications
NXP

ISP1760BE

Hi-Speed Universal Serial Bus host controller for embedded applications
NXP

ISP1760ET

Bus Controller, PBGA128,
PHILIPS

ISP1760ET-T

Hi-Speed Universal Serial Bus host controller for embedded applications - Application: printer, STB, DVD recorder, DTV, media player, PDA ; Bus interface: USB at HS (480 Mbit/s), FS (12 Mbit/s) and LS (1.5 Mbit/s) data rates ; Downstream ports: 3 ; Features: memory mapped CPU I/F to any 32-bit or16 bit I/F; Integrated patent-pending Transaction Translator supports single EHCI for HS, FS and LS transfers ; Operating/supply voltage (MAX.-Vcc,Vp,VDD): core 1.8 V; dual supply 3.0 V to 3.6 V, digital I/O I/F 1.65 V to 3.6 V V
NXP

ISP1761

Hi-Speed Universal Serial Bus On-The-Go controller
NXP

ISP1761BE

Hi-Speed Universal Serial Bus On-The-Go controller
NXP

ISP1761BE,518

IC UNIVERSAL SERIAL BUS CONTROLLER, PQFP128, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT425-1, LQFP-128, Bus Controller
NXP

ISP1761BE,551

IC UNIVERSAL SERIAL BUS CONTROLLER, PQFP128, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT425-1, LQFP-128, Bus Controller
NXP

ISP1761BE-T

Hi-Speed Universal Serial Bus On-The-Go controller - Application: STB, DVD recorder, DTV, media player, printer, PDA, DSC, DVC, mobile phone ; Bus interface: USB at HS (480 Mbit/s), FS (12 Mbit/s) and LS (1.5 Mbit/s) data rates ; Downstream ports: 2 ; Features: memory mapped CPU I/F to any 32-bit or16 bit I/F; 1 OTG port; Integrated patent-pending Transaction Translator supports single EHCI for HS, FS and LS transfers ; Operating/supply voltage (MAX.-Vcc,Vp,VDD): core 1.8 V; dual supply 3.0 V to 3.6 V, digital I/O I/F 1.65 V to 3.6 V V
NXP

ISP1761ET

Hi-Speed Universal Serial Bus On-The-Go controller
NXP

ISP1761ET,518

IC UNIVERSAL SERIAL BUS CONTROLLER, PBGA128, 9 X 9 MM, 0.80 MM HEIGHT, PLASTIC, MO-195, SOT857-1, TFBGA-128, Bus Controller
NXP