ISP1760 [NXP]

Hi-Speed Universal Serial Bus host controller for embedded applications; 针对嵌入式应用的高速通用串行总线主控制器
ISP1760
型号: ISP1760
厂家: NXP    NXP
描述:

Hi-Speed Universal Serial Bus host controller for embedded applications
针对嵌入式应用的高速通用串行总线主控制器

控制器
文件: 总105页 (文件大小:428K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISP1760  
Hi-Speed Universal Serial Bus host controller for embedded  
applications  
Rev. 01 — 8 November 2004  
Product data sheet  
1. General description  
The ISP1760 is a Hi-Speed Universal Serial Bus (USB) Host Controller with a generic  
processor interface. It integrates one Enhanced Host Controller Interface (EHCI), one  
Transaction Translator (TT) and three transceivers. The Host Controller portion of the  
ISP1760 and the three transceivers comply to Universal Serial Bus Specification Rev. 2.0.  
The EHCI portion of the ISP1760 is adapted from Enhanced Host Controller Interface  
Specification for Universal Serial Bus Rev. 1.0.  
The integrated high-performance Hi-Speed USB transceivers enable the ISP1760 to  
handle all Hi-Speed USB transfer speed modes: high-speed (480 Mbit/s), full-speed  
(12 Mbit/s) and low-speed (1.5 Mbit/s). The three downstream ports allow simultaneous  
connection of three devices at different speeds (high-speed, full-speed and low-speed).  
The generic processor interface allows the ISP1760 to be connected to various  
processors as a memory-mapped resource. The ISP1760 is a slave host: it does not  
require ‘bus-mastering’ capabilities of the host system bus. The interface is configurable,  
ensuring compatibility with a variety of processors. Data transfer can be performed on  
16 bits or 32 bits, using Programmed Input/Output (PIO) or Direct Memory Access (DMA)  
with major control signals configurable as active LOW or active HIGH.  
Integration of the TT allows connection to full-speed and low-speed devices, without the  
need of integrating Open Host Controller Interface (OHCI) or Universal Host Controller  
Interface (UHCI). Instead of dealing with two sets of software drivers—EHCI and OHCI or  
UHCI—you need to deal with only one set—EHCI—that dramatically reduces software  
complexity and IC cost.  
2. Features  
The Host Controller portion of the ISP1760 complies with Universal Serial Bus  
Specification Rev. 2.0  
The EHCI portion of the ISP1760 is adapted from Enhanced Host Controller Interface  
Specification for Universal Serial Bus Rev. 1.0  
Contains three integrated Hi-Speed transceivers that support the high-speed,  
full-speed and low-speed modes  
Integrates a TT for Original USB (full-speed and low-speed) device support  
Up to 64-kbyte internal memory (8 k x 64 bits) accessible through a generic processor  
interface; operation in multitasking environments is made possible by the  
implementation of virtual segmentation mechanism with bank switching on task  
request  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Generic processor interface (nonmultiplexed and variable latency) with a configurable  
32-bit or 16-bit external data bus; the processor interface can be defined as  
variable-latency or SRAM type (memory mapping)  
Slave DMA support for reducing the load of the host system CPU during the data  
transfer to or from the memory  
Integrated phase-locked loop (PLL) with a 12 MHz crystal or an external clock input  
Integrated multiconfiguration FIFO  
Optimized ‘msec-based’ or ‘multi-msec-based’ Philips Transfer Descriptor (PTD)  
interrupt  
Tolerant I/O for low voltage CPU interface (1.65 V to 3.6 V)  
3.3 V-to-5.0 V external power supply input  
Integrated 5.0 V-to-1.8 V or 3.3 V-to-1.8 V voltage regulator (internal 1.8 V for  
low-power core)  
Internal power-on reset and low-voltage reset  
Supports suspend and remote wake-up  
Target current consumption:  
Normal operation; one port in high-speed active: ICC < 100 mA  
Suspend mode: Isusp < 150 µA at the room temperature  
Built-in configurable overcurrent circuitry (digital or analog overcurrent protection)  
Available in LQFP128 package.  
3. Applications  
The ISP1760 can be used to implement a Hi-Speed USB compliant Host Controller  
connected to most of the CPUs present in the market today, having a generic processor  
interface with demultiplexed address and data bus. This is because of the efficient  
slave-type interface of the ISP1760.  
The internal architecture of the ISP1760 is such that it can be used in a large spectrum of  
applications requiring a high-performance internal Host Controller.  
3.1 Examples of a multitude of possible applications  
Set-top box: for connecting external high-performance mass storage devices  
Mobile phone: for connecting various USB devices  
Personal Digital Assistant (PDA): for connecting a large variety of USB devices  
Printer: for connecting external memory card readers, allowing direct printing  
Digital Still Camera (DSC): for printing to an external USB printer, for direct printing  
Mass storage: for connecting external memory card readers or other mass storage  
devices, for direct back-up.  
The low power consumption and deep power management modes of the ISP1760  
make it particularly suitable for use in portable devices.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
2 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
4. Ordering information  
Table 1:  
Ordering information  
Type number Package  
Name  
Description  
Version  
ISP1760BE  
LQFP128  
plastic low profile quad flat package; 128 leads;  
body 14 x 20 x 1.4 mm  
SOT425-1  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
3 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
5. Block diagram  
V
CC(I/O)  
37 to 39, 41 to 43,  
45 to 47, 49, 51,  
52, 54, 56 to 58,  
60 to 62, 64 to 66,  
68 to 70, 72 to 74,  
76 to 78, 80  
10, 40, 48, 59, 67,  
75, 83, 94, 104, 115  
ISP1760  
11  
12  
13  
XTAL1  
XTAL2  
CLKIN  
PLL  
PTD AND PAYLOAD MEMORY:  
RISC PROCESSOR  
INTERFACE:  
16-bit  
or  
INTERNAL MEMORY  
UP TO 64 KBYTES  
30 MHz  
60 MHz  
DATA[15:0]/DATA[31:0]  
32-bit  
MEMORY  
82, 84, 86, 87,  
89, 91 to 93,  
95 to 98,  
VIRTUAL SEGMENTATION  
MANAGEMENT  
FOR MULTITASKING SUPPORT  
UNIT  
+
122  
119  
100 to 103, 105  
17  
RESET_N  
GLOBAL CONTROL  
AND POWER  
MANAGEMENT  
INTERRUPT  
CONTROL  
+
A[17:1]  
SUSPEND/  
WAKEUP_N  
106  
107  
108  
112  
114  
116  
CS_N  
RD_N  
WR_N  
IRQ  
MEMORY  
ARBITER  
AND FIFO  
SLAVE DMA  
CONTROLLER  
POWER-ON RESET  
110  
V
+
BAT_ON_N  
AND V  
ON  
BAT  
HARDWARE  
CONFIGURATION  
REGISTERS  
DREQ  
DACK  
5, 50,  
85, 118  
5 V-TO-1.8 V  
VOLTAGE  
REGULATOR  
V
REG(1V8)  
CC(5V0)  
EHCI AND  
OPERATIONAL  
REGISTERS  
6, 7  
V
TRANSACTION  
TRANSLATOR  
AND RAM  
5 V-TO-3.3 V  
VOLTAGE  
9
PIE  
V
REG(3V3)  
REGULATOR  
USB FULL-SPEED AND LOW SPEED DATA PATH  
USB HIGH-SPEED DATA PATH  
DIGITAL  
AND ANALOG  
OVERCURRENT  
DETECTION  
2
REF5V  
PORT ROUTING OR CONTROL LOGIC + HOST AND HUB PORT STATUS  
HI-SPEED  
USB ATX3  
HI-SPEED  
USB ATX2  
HI-SPEED  
USB ATX1  
4, 8, 14, 17, 24,  
31, 36, 44, 53,  
55, 63, 71, 79,  
88, 90, 99, 109,  
121, 123  
16  
18 21 127  
23  
30  
1
15  
22 27  
26 25  
DM2  
28 128  
33 32 35  
29 34  
20 19  
004aaa435  
GND  
RREF2  
DM3  
GND  
DP2  
RREF1  
RREF3 DP3  
DP1  
DM1  
OC2_N  
GND  
GND  
GND  
GND  
OC3_N  
GND  
OC1_N  
PSW1_N  
PSW2_N  
PSW3_N  
Fig 1. Block diagram.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
4 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
6. Pinning information  
6.1 Pinning  
1
102  
ISP1760BE  
38  
65  
004aaa505  
Fig 2. Pin configuration (LQFP128).  
6.2 Pin description  
Table 2:  
Pin description  
Symbol[1] Pin Type[2] Description  
OC3_N  
REF5V  
1
2
AI  
AI  
port 3 analog (5 V input) and digital overcurrent input; if not used,  
connect to VCC(I/O) through a 10 kresistor  
5 V reference input for analog OC detector; connect a 100 nF  
decoupling capacitor  
TEST  
3
4
5
-
connect to ground  
analog ground  
GND  
-
VREG(1V8)  
P
core power output (1.8 V); internal 1.8 V for the digital core; used for  
decoupling; connect a 100 nF capacitor  
VCC(5V0)  
VCC(5V0)  
6
7
P
P
input to internal regulators (3.0 V to 5.5 V); connect a 100 nF  
decoupling capacitor  
input to internal regulators (3.0 V to 5.5 V); connect a 100 nF  
decoupling capacitor  
GND  
8
9
-
oscillator ground  
VREG(3V3)  
P
regulator output (3.3 V); for decoupling only; connect a 100 nF  
capacitor and a 4.7 µF to 10 µF capacitor  
VCC(I/O)  
XTAL1  
10  
11  
P
digital supply; 1.65 V to 3.6 V; connect a 100 nF decoupling  
capacitor  
AI  
12 MHz crystal connection input; connect to ground if an external  
clock is used; see Table 84  
XTAL2  
CLKIN  
12  
13  
AO  
I
12 MHz crystal connection output  
12 MHz oscillator or clock input; connect to VCC(I/O) when not in use  
3.3 V tolerant  
digital ground  
GND  
14  
-
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
5 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 2:  
Pin description…continued  
Symbol[1] Pin Type[2] Description  
GND  
15  
16  
-
RREF1 ground  
RREF1  
AI  
reference resistor connection; connect a 12 kΩ ± 1 % resistor  
between this pin and the RREF1 ground  
GND  
17  
18  
19  
20  
21  
-
analog ground for port 1  
DM1  
AI/O  
-
downstream data minus port 1  
analog ground  
GND  
DP1  
AI/O  
OD  
downstream data plus port 1  
power switch port 1, active LOW  
output pad, push-pull open-drain, 8 mA output drive, 5 V tolerant  
RREF2 ground  
PSW1_N  
GND  
22  
23  
-
RREF2  
AI  
reference resistor connection; connect a 12 kΩ ± 1 % resistor  
between this pin and the RREF2 ground  
GND  
24  
25  
26  
27  
28  
-
analog ground for port 2  
DM2  
AI/O  
-
downstream data minus port 2  
analog ground  
GND  
DP2  
AI/O  
OD  
downstream data plus port 2  
power switch port 2, active LOW  
output pad, push-pull open-drain, 8 mA output drive, 5 V tolerant  
RREF3 ground  
PSW2_N  
GND  
29  
30  
-
RREF3  
AI  
reference resistor connection; connect a 12 kΩ ± 1 % resistor  
between this pin and the RREF3 ground  
GND  
31  
32  
33  
34  
35  
-
analog ground for port 3  
DM3  
AI/O  
-
downstream data minus port 3  
analog ground  
GND  
DP3  
AI/O  
OD  
downstream data plus port 3  
power switch port 3, active LOW  
output pad, push-pull open-drain, 8 mA output drive, 5 V tolerant  
digital ground  
PSW3_N  
GND  
36  
37  
-
DATA0  
I/O  
data bit 0 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
DATA1  
DATA2  
38  
39  
I/O  
I/O  
data bit 1 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
data bit 2 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
VCC(I/O)  
DATA3  
40  
41  
P
digital supply; 1.65 V to 3.6 V; connect a 100 nF decoupling  
capacitor  
I/O  
data bit 3 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
6 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 2:  
Pin description…continued  
Symbol[1] Pin Type[2] Description  
DATA4  
42  
I/O  
data bit 4 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
DATA5  
43  
I/O  
data bit 5 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
GND  
44  
45  
-
digital ground  
DATA6  
I/O  
data bit 6 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
DATA7  
DATA8  
46  
47  
I/O  
I/O  
data bit 7 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
data bit 8 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
VCC(I/O)  
DATA9  
48  
49  
P
digital supply; 1.65 V to 3.6 V; connect a 100 nF decoupling  
capacitor  
I/O  
data bit 9 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
VREG(1V8)  
DATA10  
50  
51  
P
core power output (1.8 V); internal 1.8 V for the digital core; used for  
decoupling; connect a 100 nF capacitor  
I/O  
data bit 10 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
DATA11  
52  
I/O  
data bit 11 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
GND  
53  
54  
-
core ground  
DATA12  
I/O  
data bit 12 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
GND  
55  
56  
-
digital ground  
DATA13  
I/O  
data bit 13 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
DATA14  
DATA15  
VCC(I/O)  
57  
58  
59  
I/O  
I/O  
P
data bit 14 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
data bit 15 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
digital supply; 1.65 V to 3.6 V; connect a 100 nF decoupling  
capacitor  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
7 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 2:  
Pin description…continued  
Symbol[1] Pin Type[2] Description  
DATA16  
DATA17  
DATA18  
60  
61  
62  
I/O  
I/O  
I/O  
data bit 16 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
data bit 17 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
data bit 18 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
GND  
63  
64  
-
digital ground  
DATA19  
I/O  
data bit 19 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
DATA20  
DATA21  
65  
66  
I/O  
I/O  
data bit 20 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
data bit 21 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
VCC(I/O)  
DATA22  
67  
68  
P
digital supply; 1.65 V to 3.6 V; connect a 100 nF decoupling  
capacitor  
I/O  
data bit 22 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
DATA23  
DATA24  
69  
70  
I/O  
I/O  
data bit 23 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
data bit 24 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
GND  
71  
72  
-
digital ground  
DATA25  
I/O  
data bit 25 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
DATA26  
DATA27  
73  
74  
I/O  
I/O  
data bit 26 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
data bit 27 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
VCC(I/O)  
DATA28  
75  
76  
P
digital supply; 1.65 V to 3.6 V; connect a 100 nF decoupling  
capacitor  
I/O  
data bit 28 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
8 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 2:  
Pin description…continued  
Symbol[1] Pin Type[2] Description  
DATA29  
77  
I/O  
data bit 29 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
DATA30  
78  
I/O  
data bit 30 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
GND  
79  
80  
-
digital ground  
DATA31  
I/O  
data bit 31 input and output  
bidirectional pad, push-pull input, three-state output, 4 mA output  
drive, 3.3 V tolerant  
TEST  
A1  
81  
82  
-
I
connect to ground  
address pin 1  
input, 3.3 V tolerant  
VCC(I/O)  
A2  
83  
84  
P
I
digital supply; 1.65 V to 3.6 V; connect a 100 nF decoupling  
capacitor  
address pin 2  
input, 3.3 V tolerant  
VREG(1V8)  
85  
P
core power output (1.8 V); internal 1.8 V for the digital core; used for  
decoupling; connect a 100 nF capacitor and a 4.7 µF to 10 µF  
capacitor  
A3  
A4  
86  
87  
I
I
address pin 3  
input, 3.3 V tolerant  
address pin 4  
input, 3.3 V tolerant  
core ground  
GND  
A5  
88  
89  
-
I
address pin 5  
input, 3.3 V tolerant  
digital ground  
GND  
A6  
90  
91  
-
I
address pin 6  
input, 3.3 V tolerant  
address pin 7  
A7  
A8  
92  
93  
I
I
input, 3.3 V tolerant  
address pin 8  
input, 3.3 V tolerant  
VCC(I/O)  
A9  
94  
95  
P
I
digital supply; 1.65 V to 3.6 V; connect a 100 nF decoupling  
capacitor  
address pin 9  
input, 3.3 V tolerant  
address pin 10  
A10  
A11  
A12  
96  
97  
98  
I
I
I
input, 3.3 V tolerant  
address pin 11  
input, 3.3 V tolerant  
address pin 12  
input, 3.3 V tolerant  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
9 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 2:  
Pin description…continued  
Symbol[1] Pin Type[2] Description  
GND  
A13  
99  
-
I
digital ground  
100  
address pin 13  
input, 3.3 V tolerant  
address pin 14  
A14  
A15  
A16  
101  
102  
103  
I
I
I
input, 3.3 V tolerant  
address pin 15  
input, 3.3 V tolerant  
address pin 16  
input, 3.3 V tolerant  
VCC(I/O)  
A17  
104  
105  
P
I
digital voltage; 1.65 V to 3.6 V; connect a 100 nF decoupling  
capacitor  
address pin 17  
input, 3.3 V tolerant  
CS_N  
106  
I
chip select signal that indicates the area being accessed; active  
LOW  
input, 3.3 V tolerant  
read enable; active LOW  
input, 3.3 V tolerant  
write enable; active LOW  
input, 3.3 V tolerant  
digital ground  
RD_N  
WR_N  
107  
108  
109  
I
I
-
GND  
VBAT_ON_N  
110 OD  
to indicate the presence of a minimum 3.3 V on pins 6 and 7  
(open-drain); connect to VCC(I/O) through a 10 kpull-up resistor  
output pad, push-pull open-drain, 8 mA output drive, 5 V tolerant  
not connected  
n.c.  
111  
112  
-
IRQ  
O
Host Controller interrupt signal  
output pad, 4 mA drive, 3.3 V tolerant  
not connected  
n.c.  
113  
114  
-
DREQ  
O
DMAC request for the Host Controller  
output pad, 4 mA drive, 3.3 V tolerant  
VCC(I/O)  
DACK  
115  
116  
P
I
digital voltage; 1.65 V to 3.6 V; connect a 100 nF decoupling  
capacitor  
Host Controller DMA request acknowledgment; when not in use,  
connect to VCC(I/O) through a 10 kpull-up resistor  
input, 3.3 V tolerant  
connect to ground  
TEST  
117  
118  
-
VREG(1V8)  
P
core power output (1.8 V); internal 1.8 V for the digital core; used for  
decoupling; connect a 100 nF capacitor  
SUSPEND/ 119 I/OD  
WAKEUP_  
N
Host Controller suspend and wake-up; three-state suspend output  
(active LOW) and wake-up input circuits are connected together  
HIGH = output is three-state; ISP1760 is in suspend mode;  
connect to VCC(I/O) through an external 10 kpull-up resistor  
LOW = output is LOW; ISP1760 is not in suspend mode.  
output pad, open-drain, 4 mA output drive, 3.3 V tolerant  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
10 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 2:  
Pin description…continued  
Symbol[1] Pin Type[2] Description  
TEST  
GND  
120  
121  
-
-
I
pull up to VCC(I/O)  
core ground  
RESET_N 122  
external power-up reset; active LOW  
input, 3.3 V tolerant  
GND  
123  
124  
125  
126  
-
-
-
-
analog ground  
TEST  
TEST  
TEST  
OC1_N  
connect a 220 nF capacitor between this pin and pin 125  
connect a 220 nF capacitor between this pin and pin 124  
connect to 3.3 V  
127 AI  
port 1 analog (5 V input) and digital overcurrent input; if not used,  
connect to VCC(I/O) through a 10 kresistor  
OC2_N  
128 AI  
port 2 analog (5 V input) and digital overcurrent input; if not used,  
connect to VCC(I/O) through a 10 kresistor  
[1] Symbol names ending with underscore N (for example, NAME_N) represent active LOW signals.  
[2] I = input only; O = output only; I/O = digital input/output; OD = open-drain output; AI/O = analog  
input/output; AI = analog input; P = power.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
11 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
7. Functional description  
7.1 ISP1760 internal architecture: Advanced Philips Slave Host Controller  
and hub  
The EHCI block and the Hi-Speed USB hub block are the main components of the  
Advanced Philips Slave Host Controller.  
The EHCI is the latest generation design, with improved data bandwidth. The EHCI in the  
ISP1760 is adapted from Enhanced Host Controller Interface Specification for Universal  
Serial Bus Rev. 1.0.  
The internal Hi-Speed USB hub block replaces the companion Host Controller block used  
in the original PCI Hi-Speed USB Host Controllers to handle the full-speed and low-speed  
modes. The hardware architecture in the ISP1760 is simplified to help reduce cost and  
development time, by eliminating the additional work involved in implementing the OHCI  
software required to support the full-speed and low-speed modes.  
Figure 3 shows the internal architecture of the ISP1760. The ISP1760 implements the  
EHCI that has an internal port—the Root Hub port (not available externally)—on which the  
internal hub is connected. The three external ports are always routed to the internal hub.  
The internal hub is a Hi-Speed USB (USB 2.0) hub including the TT.  
Remark: The root hub must be enabled and the internal hub must be enumerated.  
Enumerate the internal hub as if it is externally connected. For details, refer to ISP176x  
Linux Programming Guide (AN10042).  
At the Host Controller reset and initialization, the internal Root Hub port will be polled until  
a new connection is detected, showing the connection of the internal hub.  
The internal Hi-Speed USB hub is enumerated using a sequence similar to a standard  
Hi-Speed USB hub enumeration sequence, and the polling on the Root Hub is stopped  
because the internal Hi-Speed USB hub will never be disconnected. When enumerated,  
the internal hub will report the three externally available ports.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
12 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
EHCI  
ROOT HUB  
PORTSC1  
ENUMERATION  
AND POLLING USING  
ACTUAL PTDs  
INTERNAL HUB (TT)  
PORT2  
PORT1  
PORT3  
EXTERNAL  
PORTS  
004aaa513  
Fig 3. Internal hub.  
7.2 Host Controller buffer memory block  
7.2.1 General considerations  
The internal addressable Host Controller buffer memory is 63 kbytes. The 63-kbyte  
effective memory size is the result of subtracting the size of registers (1 kbyte) from the  
total addressable memory space defined in the ISP1760 (64 kbytes). This is the optimized  
value for achieving the highest performance with a minimal cost.  
The ISP1760 is a slave Host Controller. This means that it does not need access to the  
local bus of the system to transfer data from the memory of the system to the ISP1760  
internal memory, unlike the case of the original PCI Hi-Speed USB Host Controllers.  
Therefore, correct data must be transferred to both the Philips Transfer Descriptor (PTD)  
area and the payload area by Parallel I/O (PIO) (CPU access) or programmed DMA.  
The ‘slave-host’ architecture ensures better compatibility with most of the processors  
present in the market today because not all processors allow a ‘bus-master’ on the local  
bus. It also allows better load balancing of the processor’s local bus because only the  
internal bus arbiter of the processor controls the transfer of data dedicated to USB. This  
prevents the local bus from being busy when other more important transfers may be in the  
queue; and therefore achieving a ‘linear’ system data flow that has less impact on other  
processes running at the same time.  
The considerations mentioned are also the main reason for implementing the prefetching  
technique, instead of using a READY signal. The resulting architecture avoids ‘freezing’ of  
the local bus (by asserting READY), enhancing the ISP1760 memory access time, and  
avoiding introduction of programmed additional wait states. For details, see Section 7.3  
and Section 8.3.8.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
13 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
The total amount of memory allocated to the payload determines the maximum transfer  
size specified by a PTD—a larger internal memory size results in less CPU interruption for  
transfer programming. This means less time spent in context switching, resulting in better  
CPU usage.  
A larger buffer also implies a larger amount of data can be transferred. The transfer,  
however, can be done over a longer period of time, to maintain the overall system  
performance. Each transfer of the USB data on the USB bus can span for up to a few  
milliseconds before requiring further CPU intervention for data movement.  
The internal architecture of the ISP1760 allows a flexible definition of the memory buffer  
for optimization of the data transfer on the CPU extension bus and the USB. It is possible  
to implement various data transfer schemes, depending on the number and type of USB  
devices present (for example: push-pull—data can be written to half of the memory while  
data in the other half is being accessed by the Host Controller and sent on the USB bus).  
This is useful especially when a high-bandwidth ‘continuous or periodic’ data flow is  
required.  
Through an analysis of the hardware and software environment regarding the usual data  
flow and performance requirements of most embedded systems, Philips has determined  
the optimal size for the internal buffer as approximately 64 kbytes.  
7.2.2 Structure of the ISP1760 Host Controller memory  
The 63-kbyte internal memory consists of the PTD area and the payload area.  
Both the PTD and payload memory zones are divided into three dedicated areas for each  
main type of USB transfer: isochronous (ISO), interrupt (INT) and Acknowledged Transfer  
List (ATL). As shown in Table 3, the PTD areas for ISO, INT and ATL are grouped at the  
beginning of the memory, occupying the address range 0400h to 0FFFh, following the  
address space of the registers. The payload or data area occupies the next memory  
address range 1000h to FFFFh, meaning that 60 kbytes of memory are allocated for the  
payload data.  
A maximum of 32 PTD areas and their allocated payload areas can be defined for each  
type of transfer. The structure of a PTD is similar for every transfer type and consists of  
eight Double Words (DWs) that must be correctly programmed for a correct USB data  
transfer. The reserved bits of a PTD must be set to logic 0. A detailed description of the  
PTD structure can be found in Section 9.  
The transfer size specified by the PTD determines the contiguous USB data transfer that  
can be performed without any CPU intervention. The respective payload memory area  
must be equal to the transfer size defined. The maximum transfer size is flexible and can  
be optimized, depending on the number and nature of USB devices or PTDs defined and  
their respective MaxPacketSize.  
The CPU will program the DMA to transfer the necessary data in the payload memory.  
The next CPU intervention will be required only when the current transfer is completed  
and DMA programming is necessary to transfer the next data payload. This is normally  
signaled by the IRQ that is generated by the ISP1760 on completing the current PTD,  
meaning all the data in the payload area was sent on the USB bus. The external IRQ  
signal is asserted according to the settings in the IRQ Mask OR or IRQ Mask AND  
registers, see Section 8.4.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
14 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
The RAM is structured in blocks of PTDs and payloads so that while the USB is executing  
on an active transfer-based PTD, the processor can simultaneously fill up another block  
area in the RAM. A PTD and its payload can then be updated on-the-fly without stopping  
or delaying any other USB transaction or corrupting the RAM data.  
Some of the design features are:  
The address range of the internal RAM buffer is from 0400h to FFFFh.  
The internal memory contains isochronous, interrupt and asynchronous PTDs, and  
respective defined payloads.  
All accesses to the internal memory are double-word aligned.  
Internal memory address range calculation:  
Memory address = (CPU address – 0400h) (shift right >> 3). Base address is 0400h.  
Table 3:  
Memory address  
Memory map  
ISO  
CPU address  
Memory address  
0000h to 007Fh  
0080h to 00FFh  
0100h to 017Fh  
0180h to 1FFFh  
0400h to 07FFh  
0800h to 0BFFh  
0C00h to 0FFFh  
1000h to FFFFh  
INT  
ATL  
Payload  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
15 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
PTD1  
PTD2  
63 kbytes  
ISOCHRONOUS  
PTD32  
PTD1  
PTD2  
INTERRUPT  
PTD32  
PTD1  
PTD2  
REGISTERS  
ASYNC  
PTD32  
PAYLOAD  
D[15:0]/D[31:0]  
USB HIGH-SPEED  
HOST AND  
TRANSACTION  
TRANSLATOR  
(FULL-SPEED  
USB BUS  
MEMORY MAPPED  
A[17:1]  
PAYLOAD  
INPUT/OUTPUT,  
MEMORY  
MANAGEMENT  
UNIT,  
CS_N  
RD_N  
WR_N  
IRQ  
MICRO-  
PROCESSOR  
AND LOW-SPEED)  
SLAVE DMA  
CONTROLLER  
AND  
PAYLOAD  
INTERRUPT  
CONTROL  
address  
240 MB/s  
data (64 bits)  
DREQ  
DACK  
ARBITER  
004aaa436  
control signals  
Fig 4. Memory segmentation and access block diagram.  
Both the CPU interface logic and the USB Host Controller require access to the internal  
ISP1760 RAM at the same time. The internal arbiter controls these accesses to the  
internal memory, organized internally on a 64-bit data bus width, allowing a maximum  
bandwidth of 240 MB/s. This bandwidth avoids any bottleneck on accesses both from the  
CPU interface and the internal USB Host Controller.  
7.3 Accessing the ISP1760 Host Controller memory: PIO and DMA  
The CPU interface of the ISP1760 can be configured for a 16-bit or 32-bit data bus width.  
When the ISP1760 is configured for a 16-bit data bus width, the upper unused 16 data  
lines must be pulled up to VCC(I/O). This can be achieved by connecting DATA[31:16] lines  
together to a single 10 kpull-up resistor. The 16-bit or 32-bit data bus width  
configuration is done by programming bit 8 of the HW Mode Control register. This will  
determine the register and memory access types in both PIO and DMA modes to all  
internal blocks: Host Controller, Peripheral Controller and OTG Controller. All accesses  
must be word-aligned for 16-bit mode and double-word aligned for 32-bit mode, where  
one word = 16 bits. When accessing the Host Controller registers in 16-bit mode, the  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
16 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
register access must always be completed using two subsequent accesses. In the case of  
a DMA transfer, the 16-bit or 32-bit data bus width configuration will determine the number  
of bursts that will complete a certain transfer length.  
In PIO mode, CS_N, WR_N and RD_N are used to access registers and memory. In DMA  
mode, the data validation is performed by DACK—instead of CS_N—together with the  
WR_N and RD_N signals. The DREQ signal will always be asserted as soon as the  
ISP1760 DMA is enabled, as described in the following section.  
7.3.1 PIO mode access—memory read cycle  
The following method has been implemented to reduce the read access timing in the case  
of a memory read:  
The Memory register contains the starting address and the bank selection to read  
from the memory. Before every new read cycle of the same or different banks, an  
appropriate value is written to this register.  
Once a value is written to this register, the address is stored in the FIFO of that bank  
and is then used to prefetch data for the memory read of that bank.  
For every subsequent read operation executed at a contiguous address, the address  
pointer corresponding to that bank is automatically incremented to prefetch the next  
data to be sent to the CPU.  
Memory read accesses for multiple banks can be interleaved. In this case, the FIFO  
block handles the MUXing of appropriate data to the CPU.  
The address written to the Memory register is incremented and used to successively  
prefetch data from the memory irrespective of the value on the address bus for each  
bank, until a new value for a bank is written to the Memory register.  
For example, consider the following sequence of operations:  
Write the starting (read) address 4000h and bank1 = 01 to the Memory register.  
When RD_N is asserted for three cycles with A[17:16] = 01, the returned data  
corresponds to addresses 4000h, 4004h and 4008h.  
Remark: Once 4000h is written to the Memory register for bank1, the bank select  
value determines the successive incremental addresses used to fetch the data.  
That is, the fetching of data is independent of the address on A[15:0] lines.  
Write the starting (read) address 4100h and bank2 = 10 to the Memory register.  
When RD_N is asserted for four cycles with A[17:16] = 10, the returned data  
corresponds to addresses 4100h, 4104h, 4108h and 410Ch.  
Consequently, the RD_N assertion with A[17:16] = 01 will return data from 400Ch  
because the bank1 read stopped there in the previous cycle. Also, RD_N  
assertions with A[17:16] = 010 will now return data from 4110h because the bank2  
read stopped there in the previous cycle.  
7.3.2 PIO mode access—memory write cycle  
The PIO memory write access is similar to a normal memory access. It is not necessary  
to set the prefetching address before a write cycle to the memory.  
The ISP1760 internal write address will not be automatically incremented during  
consecutive write accesses, unlike in a series of ISP1760 memory read cycles. The  
memory write address must be incremented before every access.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
17 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
7.3.3 PIO mode access—register read cycle  
The PIO register read access is similar to a general register access. It is not necessary to  
set a prefetching address before a register read.  
The ISP1760 register read address will not be automatically incremented during  
consecutive read accesses, unlike in a series of ISP1760 memory read cycles. The  
ISP1760 register read address must be correctly specified before every access.  
7.3.4 PIO mode access—register write cycle  
The PIO register write access is similar to a general register access. It is not necessary to  
set a prefetching address before a register write.  
The ISP1760 register write address will not be automatically incremented during  
consecutive write accesses, unlike in a series of ISP1760 memory read cycles. The  
ISP1760 register write address must be correctly specified before every access.  
7.3.5 DMA—read and write operations  
The internal ISP1760 Host Controller DMA is a slave DMA. The host system processor or  
DMA must ensure the data transfer to or from the ISP1760 memory.  
The ISP1760 DMA supports a DMA burst length of 1, 4, 8 and 16 cycles for both the 16-bit  
and 32-bit data bus width. DREQ will be asserted at the beginning of the first burst of a  
DMA transfer and will be deasserted on the last cycle (RD_N or WR_N active pulse) of  
that burst. It will be reasserted shortly after the DACK deassertion, as long as the DMA  
transfer counter was not reached. DREQ will be deasserted on the last cycle when the  
DMA transfer counter is reached and will not reasserted until the DMA reprogramming is  
performed. Both the DREQ and DACK signals are programmable as active LOW or active  
HIGH, according to the system requirements.  
The DMA start address must be initialized in the respective register, and the subsequent  
transfers will automatically increment the internal ISP1760 memory address. A register or  
memory access or access to other system memory can occur in between DMA bursts,  
whenever the bus is released because DACK is deasserted, without affecting the DMA  
transfer counter or the current address.  
Any memory area can be accessed by the system’s DMA at any starting address because  
there are no predefined memory blocks. The DMA transfer must start on a word or Double  
Word address, depending on whether the data bus width is set to 16 bit or 32 bit. DMA is  
the most efficient method to initialize the payload area, to reduce the CPU usage and  
overall system loading.  
The ISP1760 does not implement EOT to signal the end of a DMA transfer. If  
programmed, an interrupt may be generated by the ISP1760 at the end of the DMA  
transfer.  
The slave DMA of the ISP1760 will issue a DREQ to the DMA controller of the system to  
indicate that it is programmed for transfer and data is ready. The system DMA controller  
may also start a transfer without the need of the DREQ, if the ISP1760 memory is  
available for the data transfer and the ISP1760 DMA programming is completed.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
18 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
It is also possible that the system’s DMA will perform a memory-to-memory type of  
transfer between the system memory and the ISP1760 memory. The ISP1760 will be  
accessed in the PIO mode. Consequently, memory read operations must be preceded by  
initializing the Memory register (address 033Ch), as described in Section 7.3.1. No IRQ  
will be generated by the ISP1760 on completing the DMA transfer but an internal  
processor interrupt may be generated to signal that the DMA transfer is completed. This is  
mainly useful in implementing the double-buffering scheme for data transfer to optimize  
the USB bandwidth.  
The ISP1760 DMA programming involves:  
Set the active levels of signals DREQ and DACK in the HW Mode Control register.  
The DMA Start Address register contains the first memory address at which the data  
transfer will start. It must be word-aligned in the 16-bit data bus mode and double  
word aligned in the 32-bit data bus mode.  
The programming of the DMA Configuration register specifies:  
The type of transfer that will be performed: read or write  
The burst size—expressed in bytes—is specified, regardless of the data bus width.  
For the same burst size, a double number of cycles will be generated in the 16-bit  
mode data bus width as compared to the 32-bit mode.  
The transfer length—expressed in number of bytes—defines the number of bursts.  
The DREQ will be deasserted and asserted to generate the next burst, as long as  
there are bytes to be transferred. At the end of a transfer, the DREQ will be  
deasserted and an IRQ can be generated if DMAEOTINT (bit 3 in the Interrupt  
register) is set. The maximum DMA transfer size is equal to the maximum memory  
size. The transfer size can be an odd or even number of bytes, as required. If the  
transfer size is an odd number of bytes, the number of bytes transferred by the  
system’s DMA is equal to the next multiple of two for the 16-bit data bus width or  
four for the 32-bit data bus width. For a write operation, however, only the specified  
odd number of bytes in the ISP1760 memory will be affected.  
Enable ENABLE_DMA (bit 1) of the DMA Configuration register to determine the  
assertion of DREQ immediately after setting the bit.  
After programming the preceding parameters, the system’s DMA may be enabled (waiting  
for the DREQ to start the transfer or immediate transfer may be started).  
The programming of the system’s DMA must match the ISP1760 DMA parameters  
programmed above. Only one DMA transfer may take place at a time. A PIO mode data  
transfer may occur simultaneously with a DMA data transfer, in the same or a different  
memory area.  
7.4 Interrupts  
The ISP1760 will assert an IRQ according to the source or event in the Interrupt register.  
The main steps to enable the IRQ assertion are:  
1. Set GLOBAL_INTR_EN (bit 0) in the HW Mode Control register.  
2. Define the IRQ active as level or edge in INTR_LEVEL (bit 1) of the HW Mode Control  
register.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
19 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
3. Define the IRQ polarity as active LOW or active HIGH in INTR_POL (bit 2) of the HW  
Mode Control register. These settings must match the IRQ settings of the host  
processor.  
By default, interrupt is level-triggered and active LOW.  
4. Program the individual interrupt enable bits in the Interrupt Enable register. The  
software will need to clear the interrupt status bits in the Interrupt register before  
enabling individual interrupt enable bits.  
Additional IRQ characteristics can be adjusted in the Edge Interrupt Count register, as  
necessary, applicable only when IRQ is set to be edge-active (a pulse of a defined width is  
generated every time IRQ is active).  
Bits 15 to 0 of the Edge Interrupt Count register define the IRQ pulse width. The maximum  
pulse width that can be programmed is FFFFh, corresponding to a 1 ms pulse width. This  
setting is necessary for certain processors that may require a different minimum IRQ  
pulse width than the default value. The default IRQ pulse width set at power on is  
approximately 500 ns.  
Bits 31 to 24 of the Edge Interrupt Count register define the minimum interval between  
two interrupts to avoid frequent interrupts to the CPU. The default value of 00h attributed  
to these bits determines the normal IRQ generation, without any delay. When a delay is  
programmed and the IRQ becomes active after the respective delay, several IRQ events  
may have already occurred.  
All the interrupt events are represented by the respective bits allocated in the Interrupt  
register. There is no mechanism to show the order or the moment of occurrence of an  
interrupt.  
The asserted bits in the Interrupt register can be cleared by writing back the same value to  
the Interrupt register. This means that writing logic 1 to each of the set bits will reset the  
corresponding bits to the initial inactive state.  
The IRQ generation rules that apply according to the preceding settings are:  
If an event of interrupt occurs but the respective bit in the Interrupt Enable register is  
not set, then the respective Interrupt register bit is set but the interrupt signal is not  
asserted.  
An interrupt will be generated when interrupt is enabled and the respective bit in the  
Interrupt Enable register is set.  
For a level trigger, an interrupt signal remains asserted until the processor clears the  
Interrupt register by writing logic 1 to clear the Interrupt register bits that are set.  
If an interrupt is made edge-sensitive and is asserted, writing to clear the Interrupt  
register will not have any effect because the interrupt will be asserted for a prescribed  
amount of clock cycles.  
The clock stopping mechanism does not affect the generation of an interrupt. This is  
useful during the suspend and resume cycles, when an interrupt is generated to  
signal a wake-up event.  
The IRQ generation can also be conditioned by programming the IRQ Mask OR and  
IRQ Mask AND registers. Setting some of the bits in these registers to logic 1 will  
determine the IRQ generation only when the respective AND or OR conditions of  
completing the respective PTDs is met.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
20 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
With the help of the IRQ Mask AND and IRQ Mask OR registers for each type of  
transfer—ISO, INT and bulk—software can determine which PTDs get priority and an  
interrupt will be generated when the AND or OR conditions are met. The PTDs that are  
set will wait until the respective bits of the remaining PTDs are set and then all PTDs  
generate an interrupt request to the CPU together.  
The registers definition shows that the AND or OR conditions are applicable to the same  
category of PTDs—ISO, INT, ATL.  
When an IRQ is generated, the PTD Done Map registers and the respective V bits will  
show which PTDs were completed.  
The rules that apply to the IRQ Mask AND or IRQ Mask OR settings are:  
The OR mask has a higher priority over the AND mask. An IRQ is generated if bit n of  
the done map is set and the corresponding bit n of the OR Mask register is set.  
If the OR mask for any done bit is not set, then the AND mask comes into picture. An  
IRQ is generated if all the corresponding done bits of the AND Mask register are set.  
For example: If bits 2, 4 and 10 are set in the AND Mask register, an IRQ is generated  
only if bits 2, 4, 10 of the done map are set.  
If using the IRQ interval setting for the bulk PTD, an interrupt will only occur at the  
regular time interval as programmed in the ATL Done Timeout register. Even if an  
interrupt event occurs before the timeout of the register, no IRQ will be generated until  
the time is up.  
For an example on using the IRQ Mask AND or IRQ Mask OR registers without the ATL  
Done Timeout register, see Table 4.  
The AND function: Activate the IRQ only if PTDs 1, 2 and 4 are done.  
The OR function: If any of the PTDs 7, 8 or 9 are done, an IRQ for each of the PTD will be  
raised.  
Table 4:  
Using the IRQ Mask AND or IRQ Mask OR registers  
PTD  
1
AND register OR register  
Time  
1 ms  
-
PTD done  
IRQ  
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
-
-
2
-
3
-
-
4
3 ms  
-
1
-
active because of AND  
5
-
6
-
-
-
7
5 ms  
6 ms  
7 ms  
1
1
1
active because of OR  
active because of OR  
active because of OR  
8
9
7.5 Phase-Locked Loop (PLL) clock multiplier  
The internal PLL requires a 12 MHz input, which can be a 12 MHz crystal or a 12 MHz  
clock already existing in the system with a precision better than 50 ppm. This allows the  
use of a low-cost 12 MHz crystal that also minimizes Electro-Magnetic Interference (EMI).  
When an external crystal is used, make sure the CLKIN pin is connected to VCC(I/O)  
.
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
21 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
The PLL block generates all the main internal clocks required for normal functionality of  
various blocks: 30 MHz, 48 MHz and 60 MHz.  
No external components are required for the PLL operation.  
7.6 Power management  
The ISP1760 implements a flexible power management scheme, allowing various power  
saving stages.  
The usual powering scheme implies programming EHCI registers and the internal  
Hi-Speed USB (USB 2.0) hub in the same way it is done in the case of a PCI Hi-Speed  
USB Host Controller with a Hi-Speed USB hub attached.  
When the ISP1760 is in suspend mode, the main internal clocks will be stopped to ensure  
minimum power consumption. An internal LazyClock of 100 kHz ± 40 % will continue  
running. This allows initiating a resume on one of the following events:  
External USB device connect or disconnect  
Assertion of the CS_N signal because of any access to the ISP1760  
Driving the SUSPEND/WAKEUP_N pin to a LOW level.  
The SUSPEND/WAKEUP_N pin is a bidirectional pin. This pin should be connected to  
one of the GPIO pins of a processor.  
The awake state can be verified by reading the LOW level of this pin. If the level is HIGH,  
it means that the ISP1760 is in the suspend state.  
The SUSPEND/WAKEUP_N pin requires a pull-up because in the ISP1760 suspended  
state the pin becomes three-state and can be pulled down, driving it externally by  
switching the processor’s GPIO line to the output mode to generate the ISP1760 wake-up.  
The SUSPEND/WAKEUP_N pin is a three-state output. It is also an input to the internal  
wake-up logic.  
When in suspend mode, the ISP1760 internal wake-up circuitry will sense the status of  
the SUSPEND/WAKEUP_N pin:  
If it remains pulled-up, no wake-up is generated because a HIGH is sensed by the  
internal wake-up circuit.  
If the pin is externally pulled LOW (for example, by the GPIO line or just as a test by  
jumper), the input to the wake-up circuitry becomes LOW and the wake-up is  
internally initiated.  
The resume state has a clock-off count timer defined by bits 31 to 16 of the Power Down  
Control register. The default value of this timer is 10 ms, meaning that the resume state  
will be maintained for 10 ms. If during this time, the RUN/STOP bit in the USBCMD  
register is set to logic 1, the Host Controller will go into a permanent resume—the normal  
functional state. If the RUN/STOP bit is not set during the time determined by the clock-off  
count, the ISP1760 will switch back to suspend mode after the specified time. The  
maximum delay that can be programmed in the clock-off count field is approximately  
500 ms.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
22 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Additionally, the Power Down Control register allows the ISP1760 internal blocks to be  
disabled for lower power consumption as defined in Table 5.  
The lowest suspend current that can be achieved is approximately 100 µA at room  
temperature. The suspend current will increase with the increase in temperature, with  
approximately 300 µA at 40 °C and up to a typical 1 mA at 85 °C. The system is not in  
suspend mode when its temperature increases above 40 °C. Therefore, even a 1 mA  
current consumption by the ISP1760 (in suspend mode) can be considered negligible. In  
normal environmental conditions, when the system is in suspend mode, the maximum  
ISP1760 temperature will be approximately 40 °C (determined by the ambient  
temperature) so the ISP1760 maximum suspend current will be below 300 µA. An  
alternative solution to achieve a very low suspend current is to completely switch off the  
VCC(5V0) power input by using an external PMOS transistor, controlled by one of the GPIO  
pins of the processor. This is possible because the ISP1760 can be used in the hybrid  
mode, which allows only the VCC(I/O) powered on to avoid loading of the system bus.  
The time from wake-up to suspend will be approximately 100 ms when the ISP1760  
power is always on.  
It is necessary to wait for the CLK_RDY interrupt assertion before programming the  
ISP1760 because internal clocks are stopped during deep-sleep suspend and restarted  
after the first wake-up event. The occurrence of the CLK_RDY interrupt means that the  
internal clocks are running and the normal functionality is achieved.  
It is estimated that the CLK_RDY interrupt will be generated less than 100 µs after the  
wake-up event, if the power to the ISP1760 was on during suspend.  
If the ISP1760 is used in the hybrid mode and VCC(5V0) is off during suspend, a 2 ms reset  
pulse is required when the power is switched back to on, before starting to program the  
resume state. This will ensure that the internal clocks are running and all logics reach a  
stable initial state.  
7.7 Overcurrent detection  
The ISP1760 can implement a digital or analog overcurrent detection scheme. Bit 15 of  
the HW Mode Control register can be programmed to select the analog or digital  
overcurrent detection. An analog overcurrent detection circuit is integrated on-chip. The  
main features of this circuit are self reporting, automatic resetting, low-trip time and low  
cost. This circuit offers an easy solution at no extra hardware cost on the board. The port  
power will be automatically disabled by the ISP1760 on an overcurrent event occurrence,  
by deasserting the PSWn_N signal without any software intervention.  
When using the integrated analog overcurrent detection, the range of the overcurrent  
detection voltage for the ISP1760 is 45 mV to 100 mV. Calculation of the external  
components should be based on the 45 mV value, with the actual overcurrent detection  
threshold usually positioned in the middle of the interval.  
For an overcurrent limit of 500 mA per port, a PMOS with RDSON of approximately 100 mΩ  
is required. If a PMOS with a lower RDSON is used, analog overcurrent detection can be  
adjusted using a series resistor; see Figure 5.  
VPMOS = VTRIP = VTRIP(intrinsic) (IOC(nom) × Rtd), where:  
VPMOS = voltage drop on PMOS  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
23 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
IOC(nom) = 1 µA.  
5 V  
I
OC  
(1)  
R
td  
PSWn_N  
OCn_N  
REF5V  
ISP1760  
004aaa662  
(1) Rtd is optional.  
Fig 5. Adjusting analog overcurrent detection limit (optional).  
The digital overcurrent scheme requires using an external power switch with integrated  
overcurrent detection, such as: LM3526, MIC2526 (2 ports) or LM3544 (4 ports). These  
devices are controlled by PSWn_N signals corresponding to each port. In the case of  
overcurrent occurrence, these devices will assert OCn_N signals. On OCn_N assertion,  
the ISP1760 cuts off the port power by deasserting PSWn_N. The external integrated  
power switch will also automatically cut-off the port power in the case of an overcurrent  
event, by implementing thermal shutdown. An internal delay filter of 1 ms to 3 ms will  
prevent false overcurrent reporting because of in-rush currents when plugging a USB  
device.  
7.8 Power supply  
Figure 6 shows the ISP1760 power supply connection.  
ISP1760  
V
V
V
V
V
CC(5V0)  
CC(I/O)  
3.3 V to 5 V  
100 nF  
6, 7  
10, 40, 48,  
59, 67, 75,  
83, 94,  
1.65 V to 3.6 V  
100 nF  
104, 115  
REG(1V8)  
REG(1V8)  
85  
100 nF  
10 µF  
5, 50, 118  
100 nF  
REG(3V3)  
10 µF  
9
100 nF  
004aaa533  
Fig 6. ISP1760 power supply connection.  
Rev. 01 — 8 November 2004  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
24 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Figure 7 shows the most commonly used power supply connection.  
ISP1760  
V
V
, V  
)
6, 7, 10,  
40, 48, 59,  
67, 75, 83,  
94, 104, 115  
CC(5V0) CC(I/O  
3.3 V  
100 nF  
REG(1V8)  
85  
100 nF  
10 µF  
V
V
REG(1V8)  
5, 50, 118  
100 nF  
REG(3V3)  
10 µF  
9
100 nF  
004aaa534  
Fig 7. Most commonly used power supply connection.  
7.9 Power-on reset (POR)  
When VCC(5V0) is directly connected to the RESET_N pin, the internal POR pulse width  
(tPORP) will be typically 800 ns. The pulse is started when VCC(5V0) rises above VTRIP  
(1.2 V).  
To give a better view of the functionality, Figure 8 shows a possible curve of VCC(5V0) with  
dips at t2–t3 and t4–t5. If the dip at t4–t5 is too short (that is, < 11 µs), the internal POR  
pulse will not react and will remain LOW. The internal POR starts with a 1 at t0. At t1, the  
detector will see the passing of the trip level and a delay element will add another tPORP  
before it drops to 0.  
The internal POR pulse will be generated whenever VCC(5V0) drops below VTRIP for more  
than 11 µs.  
V
V
CC(5V0)  
TRIP  
t4  
t0  
t1  
t
t3  
t5  
t2  
(1)  
PORP  
t
PORP  
PORP  
004aaa584  
(1) PORP = power-on reset pulse.  
Fig 8. Internal power-on reset timing.  
The RESET_N pin can be either connected to VCC(I/O) (using the internal POR circuit) or  
externally controlled (by the microcontroller, ASIC, and so on). Figure 9 shows the  
availability of the clock with respect to the external POR.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
25 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
RESET_N  
EXTERNAL CLOCK  
004aaa583  
A
Stable external clock is available at A.  
Fig 9. Clock with respect to the external power-on reset.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
26 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
8. Registers  
Table 5 shows the bit description of the registers.  
All registers range from 0000h to 03FFh. These registers can be read or written as  
double word, that is 32-bit data. In the case of a 16-bit data bus width, two subsequent  
accesses are necessary to complete the register read or write cycle.  
Operational registers range from 0000h to 01FFh. Configuration registers range from  
0300h to 03FFh.  
Table 5:  
Address  
Register overview  
Register  
Reset value  
References  
EHCI capability registers  
0000h  
0002h  
0004h  
0008h  
CAPLENGTH  
20h  
Section 8.1.1 on page 28  
Section 8.1.2 on page 28  
Section 8.1.3 on page 28  
Section 8.1.4 on page 29  
HCIVERSION  
HCSPARAMS  
HCCPARAMS  
0100h  
0000 0011h  
0000 0086h  
EHCI operational registers  
0020h  
0024h  
0028h  
002Ch  
0030h  
0060h  
0064h  
0130h  
0134h  
0138h  
0140h  
0144h  
0148h  
0150h  
0154h  
0158h  
USBCMD  
0008 0000h  
0000 1000h  
0000 0000h  
0000 0000h  
0000 0000h  
0000 0000h  
0000 2000h  
0000 0000h  
FFFF FFFFh  
0000 0000h  
0000 0000h  
FFFF FFFFh  
0000 0000h  
0000 0000h  
FFFF FFFFh  
0000 0000h  
-
Section 8.2.1 on page 30  
Section 8.2.2 on page 31  
Section 8.2.3 on page 32  
Section 8.2.4 on page 33  
Section 8.2.5 on page 34  
Section 8.2.6 on page 34  
Section 8.2.7 on page 35  
Section 8.2.8 on page 36  
Section 8.2.9 on page 37  
Section 8.2.10 on page 37  
Section 8.2.11 on page 37  
Section 8.2.12 on page 38  
Section 8.2.13 on page 38  
Section 8.2.14 on page 38  
Section 8.2.15 on page 38  
Section 8.2.16 on page 39  
-
USBSTS  
USBINTR  
FRINDEX  
CTRLDSSEGMENT  
CONFIGFLAG  
PORTSC1  
ISO PTD Done Map  
ISO PTD Skip Map  
ISO PTD Last PTD  
INT PTD Done Map  
INT PTD Skip Map  
INT PTD Last PTD  
ATL PTD Done Map  
ATL PTD Skip Map  
ATL PTD Last PTD  
0200h–02FFh reserved  
Configuration registers  
0300h  
0304h  
0308h  
030Ch  
0330h  
0334h  
0338h  
033Ch  
HW Mode Control  
0000 0000h  
0001 1761h  
0000 0000h  
0000 0000h  
0000 0000h  
0000 0000h  
0000 0000h  
0000 0000h  
Section 8.3.1 on page 39  
Section 8.3.2 on page 41  
Section 8.3.3 on page 41  
Section 8.3.4 on page 41  
Section 8.3.5 on page 42  
Section 8.3.6 on page 43  
Section 8.3.7 on page 44  
Section 8.3.8 on page 44  
Chip ID  
Scratch  
SW Reset  
DMA Configuration  
Buffer Status  
ATL Done Timeout  
Memory  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
27 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 5:  
Address  
0340h  
Register overview…continued  
Register  
Reset value  
References  
Edge Interrupt Count  
DMA Start Address  
Power Down Control  
Port 1 Control  
0000 000Fh  
0000 0000h  
03E8 1BA0h  
0086 0086h  
Section 8.3.9 on page 45  
Section 8.3.10 on page 46  
Section 8.3.11 on page 46  
Section 8.3.12 on page 48  
0344h  
0354h  
0374h  
Interrupt registers  
0310h  
0314h  
0318h  
031Ch  
0320h  
0324h  
0328h  
032Ch  
Interrupt  
0000 0000h  
0000 0000h  
0000 0000h  
0000 0000h  
0000 0000h  
0000 0000h  
0000 0000h  
0000 0000h  
Section 8.4.1 on page 50  
Section 8.4.2 on page 51  
Section 8.4.3 on page 53  
Section 8.4.4 on page 53  
Section 8.4.5 on page 53  
Section 8.4.6 on page 54  
Section 8.4.7 on page 54  
Section 8.4.8 on page 54  
Interrupt Enable  
ISO IRQ Mask OR  
INT IRQ Mask OR  
ATL IRQ Mask OR  
ISO IRQ Mask AND  
INT IRQ Mask AND  
ATL IRQ Mask AND  
8.1 EHCI capability registers  
8.1.1 CAPLENGTH register (R: 0000h)  
The bit description of the Capability Length (CAPLENGTH) register is given in Table 6.  
Table 6:  
Bit  
CAPLENGTH register: bit description  
Symbol  
Access  
Value  
Description  
7 to 0 CAPLENGTH  
[7:0]  
R
20h  
Capability Length: This is used as an offset. It  
is added to the register base to find the  
beginning of the operational register space.  
8.1.2 HCIVERSION register (R: 0002h)  
Table 7 shows the bit description of the Host Controller Interface Version Number  
(HCIVERSION) register.  
Table 7:  
Bit  
HCIVERSION register: bit description  
Symbol  
Access Value  
0100h  
Description  
15 to 0  
HCIVERSION  
[15:0]  
R
Host Controller Interface Version Number: It  
contains a BCD encoding of the version number of  
the interface to which the Host Controller interface  
conforms.  
8.1.3 HCSPARAMS register (R: 0004h)  
The Host Controller Structural Parameters (HCSPARAMS) register is a set of fields that  
are structural parameters. The bit allocation is given in Table 8.  
Table 8:  
Bit  
HCSPARAMS register: bit allocation  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
reserved  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
28 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Bit  
23  
22  
21  
20  
19  
18  
17  
16  
Symbol  
DPN[3:0]  
reserved  
P_INDI  
CATOR  
Reset  
Access  
Bit  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
9
0
R
8
15  
14  
13  
12  
11  
10  
Symbol  
Reset  
Access  
Bit  
N_CC[3:0]  
reserved  
N_PCC[3:0]  
0
R
0
R
6
0
R
5
0
R
0
R
3
0
R
2
0
R
1
0
R
0
7
4
Symbol  
Reset  
Access  
PRR  
0
PPC  
1
N_PORTS[3:0]  
0
0
0
0
0
1
R
R
R
R
R
R
R
R
Table 9:  
HCSPARAMS register: bit description  
Bit  
Symbol  
Description[1]  
31 to 24  
-
reserved; write logic 0  
23 to 20 DPN[3:0]  
Debug Port Number: This field identifies which of the Host  
Controller ports is the debug port.  
19 to 17  
16  
-
reserved; write logic 0  
P_INDICATOR Port Indicators: This bit indicates whether the ports support port  
indicator control.  
15 to 12 N_CC[3:0]  
Number of Companion Controller: This field indicates the number  
of companion controllers associated with this Hi-Speed USB Host  
Controller.  
11 to 8  
7
N_PCC[3:0]  
PRR  
Number of Ports per Companion Controller: This field indicates  
the number of ports supported per companion Host Controller.  
Port Routing Rules: This field indicates the method used for  
mapping ports to the companion controllers.  
6 to 5  
4
-
reserved; write logic 0  
PPC  
Port Power Control: This field indicates whether the Host Controller  
implementation includes port power control.  
3 to 0  
N_PORTS[3:0] N_Ports: This field specifies the number of physical downstream  
ports implemented on this Host Controller.  
[1] For details on register bit description, refer to Enhanced Host Controller Interface Specification for Universal  
Serial Bus Rev. 1.0.  
8.1.4 HCCPARAMS register (R: 0008h)  
The Host Controller Capability Parameters (HCCPARAMS) register is a four-byte register,  
and the bit allocation is given in Table 10.  
Table 10: HCCPARAMS register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
reserved  
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
29 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Bit  
23  
22  
21  
20  
19  
18  
17  
16  
Symbol  
Reset  
Access  
Bit  
reserved  
0
R
0
R
0
R
0
R
0
R
0
R
0
R
9
0
R
8
15  
14  
13  
12  
11  
10  
Symbol  
Reset  
Access  
Bit  
EECP[7:0]  
0
R
7
0
R
6
0
R
5
0
R
4
0
R
3
0
0
R
0
R
R
2
ASPC  
1
1
0
Symbol  
Reset  
Access  
IST[3:0]  
reserved  
PFLF  
1
64AC  
0
1
0
0
0
0
R
R
R
R
R
R
R
R
Table 11: HCCPARAMS register: bit description  
Bit  
Symbol  
Description[1]  
31 to 16  
15 to 8  
-
reserved; write logic 0  
EECP[7:0] EHCI Extended Capabilities Pointer: Default = implementation  
dependent. This optional field indicates the existence of a capabilities list.  
7 to 4  
IST[3:0]  
Isochronous Scheduling Threshold: Default = implementation  
dependent. This field indicates, relative to the current position of the  
executing Host Controller, where software can reliably update the  
isochronous schedule.  
3
2
-
reserved; write logic 0  
ASPC  
Asynchronous Schedule Park Capability: Default = implementation  
dependent. If this bit is set to logic 1, the Host Controller supports the park  
feature for high-speed queue heads in the Asynchronous Schedule.  
1
0
PFLF  
64AC  
Programmable Frame List Flag: Default = implementation dependent. If  
this bit is cleared, the system software must use a frame list length of  
1024 elements with this Host Controller.  
If PFLF is set, the system software can specify and use a smaller frame  
list and configure the host through the FLS field of the USBCMD register.  
64-bit Addressing Capability: This field contains the addressing range  
capability.  
[1] For details on register bit description, refer to Enhanced Host Controller Interface Specification for Universal  
Serial Bus Rev. 1.0.  
8.2 EHCI operational registers  
8.2.1 USBCMD register (R/W: 0020h)  
The USB Command (USBCMD) register indicates the command to be executed by the  
serial Host Controller. Writing to this register causes a command to be executed. Table 12  
shows the USBCMD register bit allocation.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
30 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 12: USBCMD register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
0
R/W  
23  
R/W  
22  
R/W  
21  
R/W  
R/W  
19  
R/W  
18  
R/W  
17  
R/W  
16  
20  
Symbol  
Reset  
Access  
Bit  
ITC[7:0]  
0
0
0
0
1
0
0
R/W  
9
0
R/W  
8
R/W  
15  
R/W  
14  
R/W  
13  
R/W  
12  
R/W  
11  
R/W  
10  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
R/W  
7
0
R/W  
6
0
R/W  
5
0
0
R/W  
3
0
R/W  
2
0
0
R/W  
0
R/W  
R/W  
4
reserved[1]  
0
1
HCRESET  
0
Symbol  
Reset  
Access  
LHCR  
0
RS  
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] The reserved bits should always be written with the reset value.  
Table 13: USBCMD register: bit description  
Bit Symbol  
Description[1]  
31 to 24 reserved; write logic 0  
23 to 16 ITC[7:0]  
-
Interrupt Threshold Control: This field is used by the system software to  
select the maximum rate at which the Host Controller will issue interrupts.  
15 to 8  
7
-
reserved  
LHCR  
Light Host Controller Reset (optional): If implemented, it allows the  
driver software to reset the EHCI controller without affecting the state of  
the ports or the relationship to the companion Host Controllers. If not  
implemented, a read of this field will always return logic 0.  
6 to 2  
1
-
reserved  
HCRESET Host Controller Reset: This control bit is used by the software to reset  
the Host Controller.  
0
RS  
Run/Stop: 1 = Run, 0 = Stop. When set, the Host Controller executes the  
schedule.  
[1] For details on register bit description, refer to Enhanced Host Controller Interface Specification for Universal  
Serial Bus Rev. 1.0.  
8.2.2 USBSTS register (R/W: 0024h)  
The USB Status (USBSTS) register indicates pending interrupts and various states of the  
Host Controller. The status resulting from a transaction on the serial bus is not indicated in  
this register. Software clears the register bits by writing ones to them. The bit allocation is  
given in Table 14.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
31 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 14: USBSTS register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
0
R/W  
23  
R/W  
22  
R/W  
21  
R/W  
R/W  
19  
R/W  
18  
R/W  
17  
R/W  
16  
20  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
R/W  
9
0
R/W  
8
R/W  
15  
R/W  
14  
R/W  
13  
R/W  
12  
R/W  
11  
R/W  
10  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
R/W  
7
0
R/W  
6
0
R/W  
5
1
R/W  
4
0
R/W  
3
0
R/W  
2
0
R/W  
1
0
R/W  
0
Symbol  
Reset  
Access  
reserved[1]  
FLR  
0
PCD  
0
reserved[1]  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] The reserved bits should always be written with the reset value.  
Table 15: USBSTS register: bit description  
Bit  
31 to 4 -  
Symbol Description[1]  
reserved; write logic 0  
3
FLR  
Frame List Rollover: The Host Controller sets this bit to logic 1 when the  
Frame List Index rolls over from its maximum value to zero.  
2
PCD  
Port Change Detect: The Host Controller sets this bit to logic 1 when any port,  
where the PO bit is cleared, has a change to a one or a FPR bit changes to a  
one as a result of a J-K transition detected on a suspended port.  
1 to 0  
-
reserved  
[1] For details on register bit description, refer to Enhanced Host Controller Interface Specification for Universal  
Serial Bus Rev. 1.0.  
8.2.3 USBINTR register (R/W: 0028h)  
The USB Interrupt Enable (USBINTR) register enables and disables reporting of the  
corresponding interrupt to the software. When a bit is set and the corresponding interrupt  
is active, an interrupt is generated to the host. Interrupt sources that are disabled in this  
register still appear in USBSTS to allow the software to poll for events. The USBINTR  
register bit allocation is given in Table 16.  
Table 16: USBINTR register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
reserved[1]  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
32 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Bit  
23  
22  
21  
20  
19  
18  
17  
16  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
R/W  
9
0
R/W  
8
R/W  
15  
R/W  
14  
R/W  
13  
R/W  
R/W  
11  
R/W  
10  
12  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
R/W  
7
0
R/W  
6
0
R/W  
5
0
R/W  
4
0
R/W  
3
0
R/W  
2
0
R/W  
1
0
R/W  
0
Symbol  
Reset  
Access  
reserved[1]  
FLRE  
0
PCIE  
0
reserved[1]  
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] The reserved bits should always be written with the reset value.  
Table 17: USBINTR register: bit description  
Bit Symbol  
Description[1]  
31 to 4 reserved  
-
3
FLRE  
PCIE  
-
Frame List Rollover Enable: When this bit is set and the FLR bit in the  
USBSTS register is set, the Host Controller issues an interrupt. The  
interrupt is acknowledged by software clearing bit FLR.  
2
Port Change Interrupt Enable: When this bit is set and the PCD bit in the  
USBSTS register is set, the Host Controller issues an interrupt. The  
interrupt is acknowledged by software clearing bit PCD.  
1 to 0  
reserved  
[1] For details on register bit description, refer to Enhanced Host Controller Interface Specification for Universal  
Serial Bus Rev. 1.0.  
8.2.4 FRINDEX register (R/W: 002Ch)  
The Frame Index (FRINDEX) register is used by the Host Controller to index into the  
periodic frame list. The register updates every 125 µs (once each microframe). Bits n to 3  
are used to select a particular entry in the Periodic Frame List during periodic schedule  
execution. The number of bits used for the index depends on the size of the frame list as  
set by the system software in the FLS (Frame List Size) field of the USBCMD register.  
This register must be written as a Double Word. A Word-only write (16-bit mode) produces  
undefined results. This register cannot be written unless the Host Controller is in the  
halted state as indicated by the HCH (HCHalted) bit. A write to this register while the RS  
(Run/Stop) bit is set produces undefined results. Writes to this register also affect the SOF  
value. The bit allocation is given in Table 18.  
Table 18: FRINDEX register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
reserved[1]  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
33 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Bit  
23  
22  
21  
20  
19  
18  
17  
16  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
R/W  
9
0
R/W  
8
R/W  
15  
R/W  
14  
R/W  
13  
R/W  
R/W  
11  
R/W  
10  
12  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
FRINDEX[13:8]  
0
R/W  
7
0
R/W  
6
0
R/W  
5
0
R/W  
4
0
R/W  
3
0
R/W  
2
0
R/W  
1
0
R/W  
0
Symbol  
Reset  
Access  
FRINDEX[7:0]  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] The reserved bits should always be written with the reset value.  
Table 19: FRINDEX register: bit description  
Bit  
Symbol  
Description[1]  
31 to 14 -  
reserved  
13 to 0 FRINDEX[13:0] Frame Index: Bits in this register are used for the frame number in the  
SOF packet and as the index into the Frame List. The value in this  
register increments at the end of each time frame (for example,  
microframe).  
[1] For details on register bit description, refer to Enhanced Host Controller Interface Specification for Universal  
Serial Bus Rev. 1.0.  
8.2.5 CTRLDSSEGMENT register (R/W: 0030h)  
The Control Data Structure Segment (CTRLDSSEGMENT) register corresponds to the  
most significant address bits (63 to 32) for all EHCI data structures. If the 64AC (64-bit  
Addressing Capability) field in HCCPARAMS is cleared, then this register is not used and  
software cannot write to it (reading from this register returns zero).  
If the 64AC (64-bit Addressing Capability) field in HCCPARAMS is set, this register is used  
with link pointers to construct 64-bit addresses to EHCI control data structures. This  
register is concatenated with the link pointer from either the PERIODICLISTBASE,  
ASYNCLISTADDR, or any control data structure link field to construct a 64-bit address.  
This register allows the host software to locate all control data structures within the same  
4 gigabytes memory segment.  
8.2.6 CONFIGFLAG register (R/W: 0060h)  
The bit allocation of the Configure Flag (CONFIGFLAG) register is given in Table 20.  
Table 20: CONFIGFLAG register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
reserved[1]  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
34 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Bit  
23  
22  
21  
20  
19  
18  
17  
16  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
R/W  
9
0
R/W  
8
R/W  
15  
R/W  
14  
R/W  
13  
R/W  
R/W  
11  
R/W  
10  
12  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
R/W  
7
0
R/W  
6
0
R/W  
5
0
0
R/W  
3
0
R/W  
2
0
R/W  
1
0
R/W  
0
R/W  
4
reserved[1]  
0
Symbol  
Reset  
Access  
CF  
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] The reserved bits should always be written with the reset value.  
Table 21: CONFIGFLAG register: bit description  
Bit  
Symbol Description[1]  
31 to 1  
0
-
reserved  
CF  
Configure Flag: The host software sets this bit as the last action when it is  
configuring the Host Controller. This bit controls the default port-routing  
control logic.  
[1] For details on register bit description, refer to Enhanced Host Controller Interface Specification for Universal  
Serial Bus Rev. 1.0.  
8.2.7 PORTSC1 register (R/W: 0064h)  
The Port Status and Control (PORTSC) register (bit allocation: Table 22) is in the power  
well. It is reset by hardware only when the auxiliary power is initially applied or in response  
to a Host Controller reset. The initial conditions of a port are:  
No peripheral connected  
Port disabled.  
If the port has power control, software cannot change the state of the port until it sets the  
port power bits. Software must not attempt to change the state of the port until the power  
is stable on the port (maximum delay is 20 ms from the transition).  
Table 22: PORTSC1 register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
0
R/W  
23  
R/W  
22  
R/W  
21  
R/W  
R/W  
19  
R/W  
18  
R/W  
17  
R/W  
16  
20  
Symbol  
Reset  
Access  
reserved[1]  
PTC[3:0]  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
35 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Bit  
15  
14  
13  
PO  
1
12  
11  
10  
9
8
Symbol  
Reset  
Access  
Bit  
PIC[1:0]  
PP  
LS[1:0]  
reserved[1]  
PR  
0
R
0
R
0
0
R/W  
3
0
R/W  
2
0
R/W  
1
0
R/W  
5
R/W  
R
7
6
4
reserved[1]  
0
0
ECCS  
0
Symbol  
Reset  
Access  
SUSP  
0
FPR  
0
PED  
0
ECSC  
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
[1] The reserved bits should always be written with the reset value.  
Table 23: PORTSC1 register: bit description  
Bit Symbol  
Description[1]  
31 to 20 reserved  
-
19 to 16 PTC[3:0]  
Port Test Control: When this field is zero, the port is not operating in a  
test mode. A non-zero value indicates that it is operating in test mode  
indicated by the value.  
15 to 14 PIC[1:0]  
Port Indicator Control: Writing to this field has no effect if the  
P_INDICATOR bit in the HCSPARAMS register is logic 0.  
For a description on how these bits are implemented, refer to Universal  
Serial Bus Specification Rev. 2.0. [2]  
13  
12  
PO  
PP  
Port Owner: This bit unconditionally goes to logic 0 when the configured  
bit in the CONFIGFLAG register makes a logic 0 to logic 1 transition. This  
bit unconditionally goes to logic 1 whenever the configured bit is logic 0.  
Port Power: The function of this bit depends on the value of the PPC (Port  
Power Control) field in the HCSPARAMS register.  
11 to 10 LS[1:0]  
Line Status: This field reflect the current logical levels of the DP (bit 11)  
and DM (bit 10) signal lines.  
9
8
-
reserved  
PR  
Port Reset: Logic 1 means the port is in the reset state. Logic 0 means  
the port is not in reset. [2]  
7
6
SUSP  
FPR  
Suspend: Logic 1 means the port is in the suspend state. Logic 0 means  
the port is not suspended. [2]  
Force Port Resume: Logic 1 means resume detected or driven on the  
port. Logic 0 means no resume (K-state) detected or driven on the port. [2]  
5 to 3  
-
reserved  
2
1
PED  
ECSC  
Port Enabled/Disabled: Logic 1 means enable. Logic 0 means disable. [2]  
Connect Status Change: Logic 1 means change in ECCS. Logic 0  
means no change. [2]  
0
ECCS  
Current Connect Status: Logic 1 indicates a device is present on the  
port. Logic 0 indicates no device is present. [2]  
[1] For details on register bit description, refer to Enhanced Host Controller Interface Specification for Universal  
Serial Bus Rev. 1.0.  
[2] These fields read logic 0, if the PP (Port Power) bit in register PORTSC1 is logic 0.  
8.2.8 ISO PTD Done Map register (R: 0130h)  
The bit description of the register is given in Table 24.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
36 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 24: ISO PTD Done Map register: bit description  
Bit Symbol Access Value Description  
31 to 0 ISO_PTD_DONE_  
MAP[31:0]  
R
0000 0000h ISO PTD Done Map: Done map for each  
of the 32 PTDs for the ISO transfer  
This register represents a direct map of the done status of the 32 PTDs. The bit  
corresponding to a certain PTD will be set to logic 1 as soon as that PTD execution is  
completed. Reading the Done Map register will clear all the bits that are set to logic 1, and  
the next reading will reflect the updated status of new executed PTDs.  
8.2.9 ISO PTD Skip Map register (R/W: 0134h)  
Table 25 shows the bit description of the register.  
Table 25: ISO PTD Skip Map register: bit description  
Bit  
Symbol  
Access Value  
Description  
31 to 0 ISO_PTD_SKIP_ R/W  
MAP[31:0]  
FFFF FFFFh  
ISO PTD Skip Map: Skip map for each  
of the 32 PTDs for the ISO transfer.  
When a bit in the PTD Skip Map is set to logic 1 that PTD will be skipped although its V bit  
may be set. The information in that PTD is not processed. For example, NextPTDPointer  
will not affect the order of processing of PTDs. The Skip bit should not be normally set on  
the position indicated by NextPTDPointer.  
8.2.10 ISO PTD Last PTD register (R/W: 0138h)  
Table 26 shows the bit description of the ISO PTD Last PTD register.  
Table 26: ISO PTD Last PTD register: bit description  
Bit  
Symbol  
Access Value  
Description  
31 to 0 ISO_PTD_LAST_ R/W  
PTD[31:0]  
0000 0000h ISO PTD last PTD: Last PTD of the  
32 PTDs is indicated by the 32 bitmap.  
1h — One PTD in ISO  
2h — Two PTDs in ISO  
4h — Three PTDs in ISO.  
Once the LastPTD bit corresponding to a PTD is set, this will be the last PTD processed  
(checking V = 1) in that PTD category. Subsequently, the process will restart with the first  
PTD (of that group). This is useful to reduce the time in which all the PTDs (the respective  
memory space) would be checked, especially if only a few PTDs are defined. The  
LastPTD bit must be normally set to a higher position than any other position indicated by  
the NextPTDPointer from an active PTD.  
8.2.11 INT PTD Done Map register (R: 0140h)  
The bit description of the register is given in Table 27.  
Table 27: INT PTD Done Map register: bit description  
Bit  
Symbol  
Access Value  
Description  
31 to 0 INT_PTD_DONE_  
MAP[31:0]  
R
0000 0000h INT PTD Done Map: Done map for each  
of the 32 PTDs for the INT transfer  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
37 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
This register represents a direct map of the done status of the 32 PTDs. The bit  
corresponding to a certain PTD will be set to logic 1 as soon as that PTD execution is  
completed. Reading the Done Map register will clear all the bits that are set to logic 1, and  
the next reading will reflect the updated status of new executed PTDs.  
8.2.12 INT PTD Skip Map register (R/W: 0144h)  
Table 28 shows the bit description of the INT PTD Skip Map register.  
Table 28: INT PTD Skip Map register: bit description  
Bit  
Symbol  
Access Value  
Description  
31 to 0 INT_PTD_SKIP_ R/W  
MAP[31:0]  
FFFF FFFFh  
INT PTD Skip Map: Skip map for each  
of the 32 PTDs for the INT transfer  
When a bit in the PTD Skip Map is set to logic 1 that PTD will be skipped although its V bit  
may be set. The information in that PTD is not processed. For example, NextPTDPointer  
will not affect the order of processing of PTDs. The Skip bit should not be normally set on  
the position indicated by NextPTDPointer.  
8.2.13 INT PTD Last PTD register (R/W: 0148h)  
The bit description of the register is given in Table 29.  
Table 29: INT PTD Last PTD register: bit description  
Bit  
Symbol  
Access Value  
Description  
31 to 0 INT_PTD_LAST R/W  
_PTD[31:0]  
0000 0000h INT PTD Last PTD: Last PTD of the  
32 PTDs as indicated by the 32 bitmap.  
1h — One PTD in INT  
2h — Two PTDs in INT  
3h — Three PTDs in INT.  
Once the LastPTD bit corresponding to a PTD is set, this will be the last PTD processed  
(checking V = 1) in that PTD category. Subsequently, the process will restart with the first  
PTD (of that group). This is useful to reduce the time in which all the PTDs (the respective  
memory space) would be checked, especially if only a few PTDs are defined. The  
LastPTD bit must be normally set to a higher position than any other position indicated by  
the NextPTDPointer from an active PTD.  
8.2.14 ATL PTD Done Map register (R: 0150h)  
Table 30 shows the bit description of the ATL PTD Done Map register.  
Table 30: ATL PTD Done Map register: bit description  
Bit  
Symbol  
Access  
Value  
Description  
31 to 0 ATL_PTD_DONE  
_MAP[31:0]  
R
0000 0000h  
ATL PTD Done Map: Done map for  
each of the 32 PTDs for the ATL transfer  
This register represents a direct map of the done status of the 32 PTDs. The bit  
corresponding to a certain PTD will be set to logic 1 as soon as that PTD execution is  
completed. Reading the Done Map register will clear all the bits that are set to logic 1, and  
the next reading will reflect the updated status of new executed PTDs.  
8.2.15 ATL PTD Skip Map register (R/W: 0154h)  
The bit description of the register is given in Table 31.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
38 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 31: ATL PTD Skip Map register: bit description  
Bit  
Symbol  
Access Value  
Description  
31 to 0 ATL_PTD_SKIP R/W  
_MAP[31:0]  
FFFF FFFFh  
ATL PTD Skip Map: Skip map for each of  
the 32 PTDs for the ATL transfer  
When a bit in the PTD Skip Map is set to logic 1 that PTD will be skipped although its V bit  
may be set. The information in that PTD is not processed. For example, NextPTDPointer  
will not affect the order of processing of PTDs. The Skip bit should not be normally set on  
the position indicated by NextPTDPointer.  
8.2.16 ATL PTD Last PTD register (R/W: 0158h)  
The bit description of the ATL PTD Last PTD register is given in Table 32.  
Table 32: ATL PTD Last PTD register: bit description  
Bit  
Symbol  
Access Value  
R/W 0000 0000h  
Description  
31 to 0 ATL_PTD_  
LAST_PTD  
ATL PTD Last PTD: Last PTD of the  
32 PTDs as indicated by the 32 bitmap.  
[31:0]  
1h — One PTD in ATL  
2h — Two PTDs in ATL  
4h — Three PTDs in ATL.  
Once the LastPTD bit corresponding to a PTD is set, this will be the last PTD processed  
(checking V = 1) in that PTD category. Subsequently, the process will restart with the first  
PTD (of that group). This is useful to reduce the time in which all the PTDs (the respective  
memory space) would be checked, especially if only a few PTDs are defined. The  
LastPTD bit must be normally set to a higher position than any other position indicated by  
the NextPTDPointer from an active PTD.  
8.3 Configuration registers  
8.3.1 HW Mode Control register (R/W: 0300h)  
Table 33 shows the bit allocation of the register.  
Table 33: HW Mode Control register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
ALL_ATX_  
RESET  
reserved[1]  
Reset  
Access  
Bit  
0
0
0
0
0
0
0
0
R/W  
23  
R/W  
22  
R/W  
21  
R/W  
20  
R/W  
19  
R/W  
18  
R/W  
17  
R/W  
16  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
R/W  
9
0
R/W  
8
R/W  
15  
R/W  
14  
R/W  
13  
R/W  
12  
R/W  
11  
R/W  
10  
Symbol  
ANA_DIGI  
_OC  
reserved[1]  
DATA_BUS  
_WIDTH  
Reset  
0
0
0
0
0
0
0
1
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
39 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Bit  
7
6
5
4
3
2
1
0
Symbol  
reserved  
DACK_  
POL  
DREQ_  
POL  
reserved[1]  
INTR_POL  
INTR_  
LEVEL  
GLOBAL_  
INTR_EN  
Reset  
0
0
0
0
0
0
0
0
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] The reserved bits should always be written with the reset value.  
Table 34: HW Mode Control register: bit description  
Bit  
Symbol  
Description  
31  
ALL_ATX_  
RESET  
All ATX Reset: For debugging purposes (not used normally).  
1 — Enable reset, then write back logic 0  
0 — No reset.  
30 to 16  
15  
-
reserved; write logic 0  
ANA_DIGI_OC Analog Digital Overcurrent: This bit selects analog or digital  
overcurrent detection on pins OC1_N, OC2_N and OC3_N.  
0 — Digital overcurrent  
1 — Analog overcurrent.  
14 to 9  
8
-
reserved; write logic 0  
DATA_BUS_  
WIDTH  
Data Bus Width:  
0 — defines a 16-bit data bus width  
1 — sets a 32-bit data bus width.  
reserved; write logic 0  
7
6
-
DACK_POL  
DACK Polarity:  
1 — indicates that the DACK input is active HIGH  
0 — indicates active LOW.  
DREQ Polarity:  
5
DREQ_POL  
1 — indicates that the DREQ output is active HIGH  
0 — indicates active LOW.  
reserved; write logic 0  
4 to 3  
2
-
INTR_POL  
Interrupt Polarity:  
0 — active LOW  
1 — active HIGH.  
1
0
INTR_LEVEL  
Interrupt Level:  
0 — INT level triggered  
1 — INT is edge triggered. A pulse of certain width is generated.  
GLOBAL_INTR Global Interrupt Enable: This bit must be set to logic 1 to enable the  
_EN  
IRQ signal assertion.  
0 — IRQ assertion is disabled. IRQ will never be asserted,  
regardless of other settings or IRQ events.  
1 — IRQ assertion is enabled. IRQ will be asserted according to the  
Interrupt Enable register, and events setting and occurrence.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
40 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
8.3.2 Chip ID register (R: 0304h)  
Read this register to get the ID of the ISP1760. The upper word of the register contains  
the hardware version number and the lower word contains the chip ID. Table 35 shows the  
bit description of the register.  
Table 35: Chip ID register: bit description  
Bit  
Symbol  
Access Value  
0001 1761h  
Description  
31 to 0 CHIPID  
[31:0]  
R
Chip ID: This register represents the hardware  
version number (0001h) and the chip ID (1761h).  
Remark: The chip ID is for internal use to identify  
the ISP176x product family.  
8.3.3 Scratch register (R/W: 0308h)  
This register is for testing and debugging purposes only. The value read back must be the  
same as the value that was written. The bit description of this register is given in Table 36.  
Table 36: Scratch register: bit description  
Bit  
Symbol  
Access Value  
Description  
31 to 0 SCRATCH[31:0] R/W  
0000 0000h Scratch: For testing and debugging  
purposes  
8.3.4 SW Reset register (R/W: 030Ch)  
Table 37 shows the bit allocation of the register.  
Table 37: SW Reset register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
0
R/W  
23  
R/W  
22  
R/W  
21  
R/W  
R/W  
19  
R/W  
18  
R/W  
17  
R/W  
16  
20  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
R/W  
9
0
R/W  
8
R/W  
15  
R/W  
14  
R/W  
13  
R/W  
12  
R/W  
11  
R/W  
10  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
R/W  
7
0
R/W  
6
0
R/W  
5
0
R/W  
4
0
R/W  
3
0
R/W  
2
0
R/W  
1
0
R/W  
0
Symbol  
reserved[1]  
RESET_  
HC  
RESET_  
ALL  
Reset  
0
0
0
0
0
0
0
0
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] The reserved bits should always be written with the reset value.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
41 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 38: SW Reset register: bit description  
Bit  
Symbol  
Description  
31 to 2  
1
-
reserved; write logic 0  
RESET_HC Reset Host Controller: Reset only the Host Controller-specific registers  
(only registers with address below 300h).  
0 — No reset  
1 — Enable reset.  
0
RESET_ALL Reset All: Reset all the Host Controller and CPU interface registers.  
0 — No reset  
1 — Enable reset.  
8.3.5 DMA Configuration register (R/W: 0330h)  
The bit allocation of the DMA Configuration register is given in Table 39.  
Table 39: DMA Configuration register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
Bit  
DMA_COUNTER[23:16]  
0
0
0
0
0
0
0
0
R/W  
23  
R/W  
22  
R/W  
21  
R/W  
20  
R/W  
19  
R/W  
18  
R/W  
17  
R/W  
16  
Symbol  
Reset  
Access  
Bit  
DMA_COUNTER[15:8]  
0
0
0
0
0
0
0
R/W  
9
0
R/W  
8
R/W  
15  
R/W  
14  
R/W  
13  
R/W  
12  
R/W  
11  
R/W  
10  
Symbol  
Reset  
Access  
Bit  
DMA_COUNTER[7:0]  
0
R/W  
7
0
R/W  
6
0
R/W  
5
0
R/W  
4
0
R/W  
3
0
R/W  
2
0
R/W  
1
0
R/W  
0
Symbol  
reserved[1]  
BURST_LEN[1:0]  
ENABLE_ DMA_READ  
DMA  
_WRITE_  
SEL  
Reset  
0
0
0
0
0
0
0
0
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] The reserved bits should always be written with the reset value.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
42 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 40: DMA Configuration register: bit description  
Bit  
Symbol  
Description  
31 to 8  
DMA_COUNTER DMA Counter: The number of bytes to be transferred (read or  
[23:0]  
write).  
Remark: Different number of bursts will be generated for the  
same transfer length programmed in 16-bit and 32-bit modes  
because DMA_COUNTER is in number of bytes.  
7 to 4  
3 to 2  
-
reserved  
BURST_LEN[1:0] DMA Burst Length:  
00 — Single DMA burst  
01 — 4-cycle DMA burst  
10 — 8-cycle DMA burst  
11 — 16-cycle DMA burst.  
1
0
ENABLE_DMA  
Enable DMA:  
0 — Terminate DMA  
1 — Enable DMA.  
DMA_READ_  
WRITE_SEL  
DMA Read/Write Select: Indicates if the DMA operation is a  
write or read (to or from the ISP1760).  
0 — DMA write to the ISP1760 internal RAM is set  
1 — DMA read from the ISP1760 internal RAM.  
8.3.6 Buffer Status register (R/W: 0334h)  
Table 41 shows the bit allocation of the Buffer Status register.  
Table 41: Buffer Status register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
0
R/W  
23  
R/W  
22  
R/W  
21  
R/W  
R/W  
19  
R/W  
18  
R/W  
17  
R/W  
16  
20  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
R/W  
9
0
R/W  
8
R/W  
15  
R/W  
14  
R/W  
13  
R/W  
12  
R/W  
11  
R/W  
10  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
R/W  
7
0
R/W  
6
0
R/W  
0
R/W  
4
0
R/W  
3
0
R/W  
2
0
R/W  
1
0
R/W  
0
5
Symbol  
reserved[1]  
ISO_BUF_ INT_BUF_ ATL_BUF_  
FILL  
FILL  
FILL  
Reset  
0
0
0
0
0
0
0
0
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] The reserved bits should always be written with the reset value.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
43 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 42: Buffer Status register: bit description  
Bit  
Symbol  
Description  
31 to 3  
2
-
reserved  
ISO_BUF_ ISO Buffer Filled:  
FILL  
1 — Indicates one of the ISO PTDs is filled, and the ISO PTD area will  
be processed  
0 — Indicates there is no PTD in this area. Therefore, processing of  
the ISO PTDs will be completely skipped.  
1
0
INT_BUF_  
FILL  
INT Buffer Filled:  
1 — Indicates one of the INT PTDs is filled, and the INT PTD area will  
be processed  
0 — Indicates there is no PTD in this area. Therefore, processing of  
the INT PTDs will be completely skipped.  
ATL_BUF_  
FILL  
ATL Buffer Filled:  
1 — Indicates one of the ATL PTDs is filled, and the ATL PTD area will  
be processed  
0 — Indicates there is no PTD in this area. Therefore, processing of  
the ATL PTDs will be completely skipped.  
8.3.7 ATL Done Timeout register (R/W: 0338h)  
The bit description of the ATL Done Timeout register is given in Table 43.  
Table 43: ATL Done Timeout register: bit description  
Bit  
Symbol  
Access Value  
Description  
31 to 0 ATL_DONE R/W  
_TIMEOUT  
0000 0000h ATL Done Timeout: This register determines the  
ATL done timeout interrupt. This register defines  
the timeout in ms after which the ISP1760 asserts  
the INT line, if enabled. It is applicable to the ATL  
done PTDs only.  
[31:0]  
8.3.8 Memory register (R/W: 033Ch)  
The Memory register contains the base memory read address and the respective bank.  
This register needs to be set only before a first memory read cycle. Once written, the  
address will be latched for the bank and will be incremented for every read of that bank,  
until a new address for that bank is written to change the address pointer.  
The bit description of the register is given in Table 44.  
Table 44: Memory register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
0
R/W  
23  
R/W  
22  
R/W  
21  
R/W  
R/W  
19  
R/W  
18  
R/W  
17  
R/W  
16  
20  
Symbol  
Reset  
Access  
reserved[1]  
MEM_BANK_SEL[1:0]  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
44 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
Reset  
Access  
Bit  
START_ADDR_MEM_READ[15:8]  
0
R/W  
7
0
R/W  
6
0
R/W  
5
0
R/W  
4
0
R/W  
3
0
R/W  
2
0
R/W  
1
0
R/W  
0
Symbol  
Reset  
Access  
START_ADDR_MEM_READ[7:0]  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] The reserved bits should always be written with the reset value.  
Table 45: Memory register: bit description  
Bit  
Symbol  
Description  
31 to 18  
17 to 16  
-
reserved  
MEM_BANK_ Memory Bank Select: Up to four memory banks can be selected.  
SEL[1:0]  
For details on internal memory read description, see Section 7.3.1.  
Applicable to PIO mode memory read or write data transfers only.  
15 to 0  
START_  
Start Address for Memory Read Cycles: The start address for a  
ADDR_MEM_ series of memory read cycles at incremental addresses in a  
READ[15:0]  
contiguous space. Applicable to PIO mode memory read data  
transfers only.  
8.3.9 Edge Interrupt Count register (R/W: 0340h)  
Table 46 shows the bit allocation of the register.  
Table 46: Edge Interrupt Count register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
Bit  
MIN_WIDTH[7:0]  
0
0
0
0
0
0
0
0
R/W  
23  
R/W  
22  
R/W  
21  
R/W  
20  
R/W  
19  
R/W  
18  
R/W  
17  
R/W  
16  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
R/W  
9
0
R/W  
8
R/W  
15  
R/W  
14  
R/W  
13  
R/W  
12  
R/W  
11  
R/W  
10  
Symbol  
Reset  
Access  
Bit  
NO_OF_CLK[15:8]  
0
R/W  
7
0
R/W  
6
0
R/W  
5
0
R/W  
4
0
R/W  
3
0
R/W  
2
0
R/W  
1
0
R/W  
0
Symbol  
Reset  
Access  
NO_OF_CLK[7:0]  
0
0
0
0
1
1
1
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] The reserved bits should always be written with the reset value.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
45 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 47: Edge Interrupt Count register: bit description  
Bit  
Symbol  
Description  
31 to 24  
MIN_  
WIDTH[7:0]  
Minimum Width: Indicates the minimum width between two edge  
interrupts in µSOFs (1 µSOF = 125 µs). This is not valid for level  
interrupts. A count of zero means that interrupts occur as and when an  
event occurs.  
23 to 16  
15 to 0  
-
reserved  
NO_OF_  
CLK[15:0]  
Number of Clocks: Count in number of clocks that the edge interrupt  
must be kept asserted on the interface. The default IRQ pulse width is  
approximately 500 ns.  
8.3.10 DMA Start Address register (W: 0344h)  
This register defines the start address select for the DMA read and write operations. See  
Table 48 for the bit allocation.  
Table 48: DMA Start Address register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
reserved[1]  
0
0
0
0
0
0
0
0
W
23  
W
22  
W
21  
W
20  
W
19  
W
18  
W
17  
W
16  
Symbol  
Reset  
Access  
Bit  
0
0
0
0
0
0
0
W
9
0
W
8
W
15  
W
14  
W
13  
W
12  
W
11  
W
10  
Symbol  
Reset  
Access  
Bit  
START_ADDR_DMA[15:8]  
0
W
7
0
W
6
0
W
5
0
W
4
0
W
3
0
W
2
0
W
1
0
W
0
Symbol  
Reset  
Access  
START_ADDR_DMA[7:0]  
0
0
0
0
0
0
0
0
W
W
W
W
W
W
W
W
[1] The reserved bits should always be written with the reset value.  
Table 49: DMA Start Address register: bit description  
Bit  
Symbol  
Description  
31 to 16  
15 to 0  
-
reserved  
START_ADDR Start Address for DMA: The start address for DMA read or write  
_DMA[15:0] cycles.  
8.3.11 Power Down Control register (R/W: 0354h)  
This register is used to turn off power to the internal blocks of the ISP1760 to obtain  
maximum power savings. Table 50 shows the bit allocation of the register.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
46 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 50: Power Down Control register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
Bit  
CLK_OFF_COUNTER[15:8]  
0
0
0
0
0
0
1
1
R/W  
23  
R/W  
22  
R/W  
21  
R/W  
20  
R/W  
19  
R/W  
18  
R/W  
17  
R/W  
16  
Symbol  
Reset  
Access  
Bit  
CLK_OFF_COUNTER[7:0]  
1
1
R/W  
1
0
1
0
0
R/W  
9
0
R/W  
8
R/W  
15  
R/W  
13  
R/W  
12  
R/W  
11  
R/W  
10  
14  
Symbol  
reserved[1]  
PORT3_  
PD  
PORT2_  
PD  
VBATDET_  
PWR  
reserved[1]  
Reset  
Access  
Bit  
0
R/W  
7
0
R/W  
6
0
R/W  
5
1
R/W  
4
1
R/W  
3
0
R/W  
2
1
R/W  
1
1
R/W  
0
Symbol  
reserved[1]  
BIASEN  
VREG_ON OC3_PWR OC2_PWR OC1_PWR HC_CLK_  
EN  
Reset  
1
0
1
0
0
0
0
0
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] The reserved bits should always be written with the reset value.  
Table 51: Power Down Control register: bit description  
Bit[1]  
Symbol Description  
31 to 16 CLK_OFF Clock Off Counter: Determines the wake-up status duration after any  
_COUNTER wake-up event before the ISP1760 goes back into suspend mode. This  
[15:0]  
timeout is applicable only if, during the given interval, the Host  
Controller is not programmed back to the normal functionality.  
03E8h — The default value. It determines the default wake-up interval  
of 10 ms. A value of zero implies that the Host Controller never wakes  
up on any of the events. This may be useful when using the ISP1760 as  
a peripheral to save power by permanently programming the Host  
Controller in suspend.  
FFFFh — The maximum value. It determines a maximum wake-up time  
of 500 ms.  
The setting of this register is based on the 100 kHz ± 40 % LazyClock  
frequency. It is a multiple of 10 µs period. In 16-bit mode, a write  
operation to these bits with any value will determine a fixed wake-up  
time of 50 ms.  
15 to 13  
12  
-
reserved  
PORT3_  
PD  
Port 3 Pull-Down: Controls port 3 pull-down resistors.  
0 — Port 3 pull-down resistors are connected in suspend  
1 — Port 3 pull-down resistors are not connected in suspend.  
Port 2 Pull-Down: Controls port 2 pull-down resistors.  
0 — Port 2 internal pull-down resistors are connected in suspend  
1 — Port 2 internal pull-down resistors are not connected in suspend.  
11  
PORT2_  
PD  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
47 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 51: Power Down Control register: bit description…continued  
Bit[1]  
Symbol  
Description  
BAT Detector Powered: Controls the power to the VBAT detector.  
10  
VBATDET_  
PWR  
V
0 — VBAT detector is powered or enabled in suspend  
1 — VBAT detector is not powered or disabled in suspend.  
reserved; write logic 0  
9 to 6  
5
-
BIASEN  
BIAS Circuits Powered: Controls the power to internal BIAS circuits.  
0 — Internal BIAS circuits are not powered in suspend  
1 — Internal BIAS circuits are powered in suspend.  
4
3
VREG_ON  
OC3_PWR  
VREG Powered: Enables or disables the internal 3.3 V and 1.8 V  
regulators when the ISP1760 is in suspend.  
0 — Internal regulators are powered in suspend  
1 — Internal regulators are not powered in suspend.  
OC3_N Powered: Controls the powering of the overcurrent detection  
circuitry for port 3.  
0 — Overcurrent detection is powered on or enabled during suspend.  
1 — Overcurrent detection is powered off or disabled during suspend.  
This may be useful when connecting a faulty device while the system is  
in standby.  
2
1
0
OC2_PWR  
OC1_PWR  
OC2_N Powered: Controls the powering of the overcurrent detection  
circuitry for port 2.  
0 — Overcurrent detection powered-on or enabled during suspend.  
1 — Overcurrent detection powered-off or disabled during suspend.  
This may be useful when connecting a faulty device while the system is  
in standby.  
OC1_N Powered: Controls the powering of the overcurrent detection  
circuitry for port 1.  
0 — Overcurrent detection powered-on or enabled during suspend.  
1 — Overcurrent detection powered-off or disabled during suspend.  
This may be useful when connecting a faulty device while the system is  
in standby.  
HC_CLK_  
EN  
Host Controller Clock Enabled: Controls internal clocks during  
suspend.  
0 — Clocks are disabled during suspend. This is the default value. Only  
the LazyClock of 100 kHz ± 40 % will be left running in suspend if this  
bit is logic 0. If clocks are stopped during suspend, CLKREADY IRQ will  
be generated when all clocks are running stable.  
1 — All clocks are enabled even in suspend.  
[1] For a 32-bit operation, the default wake-up counter value is 10 µs. For a 16-bit operation, the wake-up  
counter value is 50 ms. In the 16-bit operation, read and write back the same value on initialization.  
8.3.12 Port 1 Control register (R/W: 0374h)  
The values read from the lower 16 bits and the upper 16 bits of this register are always the  
same. Table 52 shows the bit allocation of the register.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
48 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 52: Port 1 Control register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
R/W  
0
0
0
R/W  
23  
R/W  
22  
R/W  
21  
R/W  
R/W  
18  
R/W  
17  
R/W  
16  
20  
19  
Symbol  
PORT1_  
INIT2  
reserved[1]  
Reset  
Access  
Bit  
1
0
0
0
0
1
1
R/W  
9
0
R/W  
8
R/W  
15  
R/W  
14  
R/W  
13  
R/W  
12  
R/W  
11  
R/W  
10  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
R/W  
7
0
R/W  
6
0
R/W  
5
0
R/W  
4
0
R/W  
3
0
R/W  
2
0
R/W  
0
R/W  
0
1
Symbol  
PORT1_  
INIT1  
reserved[1]  
PORT1_POWER[1:0]  
reserved[1]  
Reset  
0
0
0
1
0
1
1
0
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] The reserved bits should always be written with the reset value.  
Table 53: Port 1 Control register: bit description  
Bit[1]  
Symbol  
Description  
31 to 24 -  
reserved; write logic 0  
23  
PORT1_  
Port 1 Initialization 2: Write logic 1 at the ISP1760 initialization. It will  
INIT2  
clear both this bit and bit 7. Affects only port 1.  
22 to 8  
7
-
reserved; write logic 0  
PORT1_  
INIT1  
Port 1 Initialization 1: Must be reset to logic 0 at power-up initialization  
for correct operation of port 1. Correct Host Controller functionality is not  
ensured if set to logic 1 (affects only port 1). To clear this bit, logic 1 must  
be written to bit 23 during the ISP1760 initialization.  
This is not required for the normal functionality of port 2 and port 3.  
reserved  
6 to 5  
4 to 3  
-
PORT1_  
Port 1 Power: Set these bits to 11b. These bits must be set to enable  
POWER[1:0] port 1 power.  
2 to 0  
- reserved; write logic 0  
[1] For correct port 1 initialization, write 0080 0018h to this register after power on.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
49 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
8.4 Interrupt registers  
8.4.1 Interrupt register (R/W: 0310h)  
The bits of this register indicate the interrupt source, defining the events that determined  
the INT generation. Clearing the bits that were set because of the events listed is done by  
writing back logic 1 to the respective position. All bits must be reset before enabling new  
interrupt events. These bits will be set, regardless of the setting of bit GLOBAL_INTR_EN  
in the HW Mode Control register. Table 54 shows the bit allocation of the Interrupt register.  
Table 54: Interrupt register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
0
R/W  
23  
R/W  
22  
R/W  
21  
R/W  
R/W  
19  
R/W  
18  
R/W  
17  
R/W  
16  
20  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
0
R/W  
15  
R/W  
14  
R/W  
13  
R/W  
12  
R/W  
11  
R/W  
10  
R/W  
R/W  
9
8
Symbol  
Reset  
Access  
Bit  
reserved[1]  
ISO_IRQ  
ATL_IRQ  
0
R/W  
0
R/W  
6
0
R/W  
5
0
R/W  
4
0
R/W  
3
0
R/W  
2
0
R/W  
1
0
R/W  
7
0
Symbol  
INT_IRQ  
CLK  
HC_SUSP reserved[1]  
DMA  
reserved[1]  
SOFITLINT  
READY  
EOTINT  
Reset  
0
0
0
0
0
0
0
0
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] The reserved bits should always be written with the reset value.  
Table 55: Interrupt register: bit description  
Bit  
Symbol  
-
Description  
31 to 10  
9
reserved; write logic 0  
ISO_IRQ  
ISO IRQ: Indicates that an IRQ was asserted because an ISO PTD was  
completed, or the PTDs corresponding to the bits set in the ISO IRQ  
Mask AND or ISO IRQ Mask OR register bits combination were  
completed.  
0 — No IRQ assertion determined by the completion of ISO PTDs  
1 — IRQ asserted because of completing ISO PTDs.  
For details, see Section 7.4.  
8
ATL_IRQ  
ATL IRQ: Indicates that an IRQ was asserted because an ATL PTD was  
completed, or the PTDs corresponding to the bits set in the ATL IRQ  
Mask AND or ATL IRQ Mask OR register bits combination were  
completed.  
0 — No IRQ assertion determined by the completion of ATL PTDs  
1 — IRQ asserted because of completing ATL PTD.  
For details, see Section 7.4.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
50 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 55: Interrupt register: bit description…continued  
Bit  
Symbol  
Description  
7
INT_IRQ  
INT IRQ: Indicates that an IRQ was asserted because an INT PTD was  
completed, or the PTDs corresponding to the bits set in the INT IRQ  
Mask AND or INT IRQ Mask OR register bits combination were  
completed.  
0 — No IRQ assertion determined by the completion of INT PTDs  
1 — IRQ asserted because of completing INT PTD.  
For details, see Section 7.4.  
6
5
CLKREADY Clock Ready: Indicates that an IRQ was asserted as the internal clock  
signals are running stable. Useful after a power-on or wake-up cycle.  
0 — No CLKREADY event has occurred  
1 — INT generated because of a CLKREADY event.  
HC_SUSP Host Controller Suspend: Indicates that the Host Controller has  
entered suspend mode.  
0 — No INT generated because of the Host Controller entering suspend  
mode  
1 — INT generated because of the Host Controller entering suspend  
mode.  
If the ISR accesses the ISP1760, it will wake up for the time specified in  
bits 31 to 16 of the Power Down Control register.  
4
3
-
reserved; write logic 0  
DMAEOT  
INT  
DMA EOT Interrupt: Indicates DMA transfer completion.  
0 — DMA transfer is not complete  
1 — IRQ asserted because the DMA transfer is complete.  
reserved; write logic 0  
2 to 1  
0
-
SOFITLINT SOT ITL Interrupt:  
0 — No SOF event has occurred  
1 — An SOF event has occurred.  
8.4.2 Interrupt Enable register (R/W: 0314h)  
This register allows enabling or disabling of the IRQ generation because of various events  
as described in Table 56.  
Table 56: Interrupt Enable register: bit allocation  
Bit  
31  
30  
29  
28  
27  
26  
25  
24  
Symbol  
Reset  
Access  
Bit  
reserved[1]  
0
0
0
0
0
0
0
0
R/W  
23  
R/W  
22  
R/W  
21  
R/W  
R/W  
19  
R/W  
18  
R/W  
17  
R/W  
16  
20  
Symbol  
Reset  
Access  
reserved[1]  
0
0
0
0
0
0
0
0
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
51 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Bit  
15  
14  
13  
12  
11  
10  
9
8
Symbol  
reserved[1]  
ISO_IRQ_  
E
ATL_IRQ  
_E  
Reset  
Access  
Bit  
0
R/W  
0
R/W  
6
0
0
R/W  
4
0
R/W  
3
0
R/W  
2
0
R/W  
1
0
R/W  
0
R/W  
7
5
Symbol  
INT_IRQ_E  
CLK  
READY _E  
HCSUSP_ reserved[1]  
E
DMAEOT  
INT _E  
reserved[1]  
SOFITLINT  
_E  
Reset  
0
0
0
0
0
0
0
0
Access  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
[1] The reserved bits should always be written with the reset value.  
Table 57: Interrupt Enable register: bit description  
Bit  
Symbol  
Description  
31 to 10  
9
-
reserved; write logic 0  
ISO_IRQ_E ISO IRQ Enable: Controls the IRQ assertion because of completing  
one or more ISO PTDs matching the ISO IRQ Mask AND or  
ISO IRQ Mask OR register bits combination.  
0 — No IRQ will be asserted because of completing ISO PTDs  
1 — IRQ will be asserted.  
For details, see Section 7.4.  
8
7
ATL_IRQ_E ATL IRQ Enable: Controls the IRQ assertion because of completing  
one or more ATL PTDs matching the ATL IRQ Mask AND or  
ATL IRQ Mask OR register bits combination.  
0 — No IRQ will be asserted because of completing ATL PTDs  
1 — IRQ will be asserted.  
For details, see Section 7.4.  
INT_IRQ_E INT IRQ Enable: Controls the IRQ assertion because of completing  
one or more INT PTDs matching the INT IRQ Mask AND or  
INT IRQ Mask OR register bits combination.  
0 — No IRQ will be asserted because of completing INT PTDs  
1 — IRQ will be asserted.  
For details, see Section 7.4.  
6
5
CLKREADY Clock Ready Enable: Enables the IRQ assertion when internal clock  
_E  
signals are running stable. Useful after power-on or wake-up.  
0 — No IRQ will be generated after a CLKREADY_E event has  
occurred  
1 — IRQ will be generated after a CLKREADY_E event.  
HCSUSP_E Host Controller Suspend Enable: Enables the IRQ generation when  
the Host Controller enters suspend mode.  
0 — No IRQ will be generated because of the Host Controller entering  
suspend mode  
1 — IRQ will be generated at the Host Controller entering suspend  
mode.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
52 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 57: Interrupt Enable register: bit description…continued  
Bit  
4
Symbol  
Description  
-
reserved; write logic 0  
3
DMAEOT  
INT_E  
DMA EOT Interrupt Enable: Controls assertion of IRQ on the DMA  
transfer completion.  
0 — No IRQ will be generated after the DMA transfer is completed  
1 — IRQ will be asserted because of the DMA transfer completion.  
reserved; must be written with logic 0  
2 to 1  
0
-
SOFITLINT SOT ITL Interrupt Enable: Controls the IRQ generation at every SOF  
_E  
occurrence.  
0 — No IRQ will be generated on an SOF occurrence  
1 — IRQ will be asserted at every SOF.  
8.4.3 ISO IRQ Mask OR register (R/W: 0318h)  
Each bit of this register corresponds to one of the 32 ISO PTDs defined, and is a  
hardware IRQ mask for each PTD done map. See Table 58 for bit description. For details,  
see Section 7.4.  
Table 58: ISO IRQ Mask OR register: bit description  
Bit  
Symbol  
Access Value  
Description  
31 to 0 ISO_IRQ_ R/W  
MASK_OR  
0000 0000h ISO IRQ Mask OR: Represents a direct map for  
ISO PTDs 31 to 0.  
[31:0]  
0 — No OR condition defined between ISO PTDs  
1 — The bits corresponding to certain PTDs are set  
to logic 1 to define a certain OR condition.  
8.4.4 INT IRQ Mask OR register (R/W: 031Ch)  
Each bit of this register (see Table 59) corresponds to one of the 32 INT PTDs defined,  
and is a hardware IRQ mask for each PTD done map. For details, see Section 7.4.  
Table 59: INT IRQ Mask OR register: bit description  
Bit  
Symbol  
Access Value  
Description  
31 to 0 INT_IRQ_ R/W  
MASK_OR  
0000 0000h  
INT IRQ Mask OR: Represents a direct map for  
INT PTDs 31 to 0.  
[31:0]  
0 — No OR condition defined between INT PTDs  
31 to 0  
1 — The bits corresponding to certain PTDs are  
set to logic 1 to define a certain OR condition.  
8.4.5 ATL IRQ Mask OR register (R/W: 0320h)  
Each bit of this register corresponds to one of the 32 ATL PTDs defined, and is a  
hardware IRQ mask for each PTD done map. See Table 60 for bit description. For details,  
see Section 7.4.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
53 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 60: ATL IRQ Mask OR register: bit description  
Bit Symbol Access Value Description  
31 to 0 ATL_IRQ_ R/W  
MASK_OR  
0000 0000h ATL IRQ Mask OR: Represents a direct map for ATL  
PTDs 31 to 0.  
[31:0]  
0 — No OR condition defined between the ATL  
PTDs  
1 — The bits corresponding to certain PTDs are set  
to logic 1 to define a certain OR condition.  
8.4.6 ISO IRQ Mask AND register (R/W: 0324h)  
Each bit of this register corresponds to one of the 32 ISO PTDs defined, and is a  
hardware IRQ mask for each PTD done map. For details, see Section 7.4.  
Table 61 provides the bit description of the register.  
Table 61: ISO IRQ Mask AND register: bit description  
Bit  
Symbol  
Access Value  
Description  
31 to 0 ISO_IRQ_ R/W  
MASK_  
0000 0000h ISO IRQ Mask AND: Represents a direct map for  
ISO PTDs 31 to 0.  
AND[31:0]  
0 — No AND condition defined between ISO PTDs  
1 — The bits corresponding to certain PTDs are set  
to logic 1 to define a certain AND condition  
between the 32 INT PTDs.  
8.4.7 INT IRQ Mask AND register (R/W: 0328h)  
Each bit of this register (see Table 62) corresponds to one of the 32 INT PTDs defined,  
and is a hardware IRQ mask for each PTD done map. For details, see Section 7.4.  
Table 62: INT IRQ Mask AND register: bit description  
Bit  
Symbol  
Access Value  
Description  
31 to 0 INT_IRQ_ R/W  
MASK_  
0000 0000h INT IRQ Mask AND: Represents a direct map for  
INT PTDs 31 to 0.  
AND[31:0]  
0 — No OR condition defined between INT PTDs  
1 — The bits corresponding to certain PTDs are set  
to logic 1 to define a certain AND condition between  
the 32 INT PTDs.  
8.4.8 ATL IRQ Mask AND register (R/W: 032Ch)  
Each bit of this register corresponds to one of the 32 ATL PTDs defined, and is a  
hardware IRQ mask for each PTD done map. For details, see Section 7.4.  
Table 63 shows the bit description of the register.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
54 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 63: ATL IRQ Mask AND register: bit description  
Bit Symbol Access Value Description  
31 to 0 ATL_IRQ_ R/W  
MASK_  
0000 0000h ATL IRQ Mask AND: Represents a direct map for  
ATL PTDs 31 to 0.  
AND[31:0]  
0 — No OR condition defined between ATL PTDs  
1 — The bits corresponding to certain PTDs are set  
to logic 1 to define a certain AND condition between  
the 32 ATL PTDs.  
9. Philips Transfer Descriptor  
The standard EHCI data structures as described in Enhanced Host Controller Interface  
Specification for Universal Serial Bus Rev. 1.0 are optimized for the bus master operation  
that is managed by the hardware state machine.  
The PTD structures of the ISP1760 are translations of the EHCI data structures that are  
optimized for the ISP1760, while keeping the architecture of the EHCI data structures the  
same. This is because the ISP1760 is a slave Host Controller and has no bus master  
capability.  
EHCI manages schedules in two lists: periodic and asynchronous. The data structures  
are designed to provide the maximum flexibility required by USB, minimize memory traffic,  
and hardware and software complexity. The ISP1760 controller executes transactions for  
devices by using a simple shared-memory schedule. This schedule consists of data  
structures organized into three lists.  
qISO — Isochronous transfer  
qINTL — Interrupt transfer  
qATL — Asynchronous transfer; for the control and bulk transfers.  
The system software maintains two lists for the Host Controller: periodic and  
asynchronous. The root of the periodic schedule—the PERIODICLISTBASE register—is  
the physical memory base address of the periodic frame list. The periodic frame list is an  
array memory pointer. The objects referenced from the frame list must be valid schedule  
data structures. The asynchronous list base is also a common list of queue heads  
(endpoints) that are served in a schedule. These endpoint data structures are further  
linked to the EHCI transfer descriptor that is the valid schedule (queue PTD).  
The Periodic Schedule Enable (ISO_BUF_FULL and INT_BUF_FULL) or Asynchronous  
Schedule Enable (ATL_BUF_FULL) bits can enable traversal to these lists. Enabling a list  
indicates the presence of valid schedule in the list. The system software starts at these  
points, schedules the first transfer inside the shared memory of the ISP1760, and sets up  
the ATL, INTL or ITL bit corresponding to the type of transfer scheduled in the shared  
memory.  
The ISP1760 has a maximum of 32 ISO, 32 INTL and 32 ATL PTDs. These PTDs are  
used as channels to transfer data from the shared memory to the USB bus. These  
channels are allocated and deallocated on receiving the transfer from the core USB driver.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
55 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Multiple transfers are scheduled to the shared memory for various endpoints by traversing  
the next link pointer provided by the EHCI data structure, until it reaches the terminate bit  
in a microframe. If a schedule is enabled, the Host Controller starts executing from the  
ISO schedule, before it goes to the INTL schedule, and then to the ATL schedule.  
The EHCI periodic and asynchronous lists are traversed by the software according to the  
EHCI traversal rule, and executed only from the asynchronous schedule after it  
encounters the end of the periodic schedule. The Host Controller traverses the ISO, INTL  
and ATL schedules. It fetches the element and begins traversing the graph of linked  
schedule data structures.  
The last bit identifies the end of the schedule for each type of transfer, indicating the rest  
of the channels are empty. Once a transition is completed, the Host Controller executes  
from the next transfer descriptor in the schedule until the end of the microframe.  
The completion of a transfer is indicated to the software by the interrupt that can be  
grouped over the various PTDs by using the AND or OR registers that are available for  
each schedule type (ISO, INTL and ATL). These registers are simple logic registers to  
decide the group and individual PTDs that can interrupt the CPU for a schedule, when the  
logical conditions of the done bit is true in the shared memory that completes the interrupt.  
Interrupts are of four types and the latency can be programmed in multiples of µSOF  
(125 µs).  
ISO interrupt  
INTL interrupt  
ATL Interrupt  
SOF—start of frame interrupt for the data transfer.  
A static PTD that schedules inside the ISP1760 shared memory allows using the  
NextPTD mechanism that will enable the Host Controller driver to schedule the multiple  
PTDs that are of single endpoint and reduce the interrupt to the CPU.  
The NextPTD traversal rules defined by the ISP1760 hardware are:  
1. Start the ATL header traversal.  
2. If the current PTD is active and not done, perform the transaction.  
3. Follow the next link pointer.  
4. If PTD is not active and done, jump to the next PTD.  
5. If the next link pointer is NULL, it means the end of the traversal.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
56 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
START PTD  
SCHEDULE  
follow the next link pointer  
follow the next link pointer  
no  
yes  
PTD DONE?  
INCREMENT  
THE PTD  
horizontal  
vertical  
link pointer  
link pointer  
EXECUTE  
THE PTD  
EXECUTE  
THE PTD  
(1)  
null pointer  
END THE  
END THE  
SCHEDULE  
SCHEDULE  
004aaa585  
(1) The NULL pointer terminates goes to the next link.  
Fig 10. NextPTD traversal rule.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
57 of 105  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
9.1 High-speed bulk IN and OUT, Queue Head Asynchronous (QHA) (patent-pending)  
Table 64: High-speed bulk IN and OUT, QHA: bit allocation  
Bit  
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32  
DW7  
DW5  
DW3  
reserved  
reserved  
[1]  
A
H
B
X
P
D
T
Cerr  
[1:0]  
NakCnt[3:0]  
reserved  
NrBytesTransferred[14:0] (32 kbytes for high-speed)  
DW1  
reserved  
S
EP  
Type  
[1:0]  
Token  
[1:0]  
DeviceAddress[6:0]  
EndPt[3:0]  
31 to 34  
Bit  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
DW6  
DW4  
DW2  
DW0  
reserved  
reserved  
J
NextPTDPointer[4:0]  
reserved  
[1]  
reserved  
RL[3:0]  
DataStartAddress[15:0]  
NrBytesToTransfer[14:0] (32 kbytes for high-speed)  
[2]  
[1]  
Mult  
[1:0]  
MaxPacketLength[10:0]  
V
[1] Reserved.  
[2] EndPt[0].  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 65: High-speed bulk IN and OUT, QHA: bit description  
Bit  
Symbol  
reserved  
reserved  
reserved  
Access  
Description  
DW7  
63 to 32  
DW6  
31 to 0  
DW5  
63 to 32  
DW4  
31 to 6  
5
-
-
-
-
-
-
reserved  
J
-
0; not applicable for QHA.  
SW — writes  
Jump:  
0 — To increment the PTD pointer  
1 — To enable the next PTD branching.  
Next PTD Counter: Next PTD branching assigned by the PTD pointer.  
4 to 0  
NextPTDPointer  
[4:0]  
SW — writes  
DW3  
63  
A
SW — sets  
Active: Write the same value as that in V.  
HW — resets  
HW — writes  
HW — writes  
62  
61  
H
B
Halt: This bit correspond to the Halt bit of the Status field of QH.  
Babble: This bit correspond to the Babble Detected bit in the Status  
field of the iTD, SiTD or QH.  
1 — When babbling is detected, A and V are set to 0.  
60  
X
HW — writes  
Error: This bit corresponds to the Transaction Error bit in the Status  
field of iTD, SiTD or QH (Exec_Trans, the signal name is xacterr).  
0 — No PID error.  
1 — If there are PID errors, this bit is set active. The A and V bits are  
also set to inactive. This transaction is retried three times.  
59  
58  
reserved  
P
-
-
HW — writes  
Ping: For high-speed transactions, this bit corresponds to the Ping  
state bit in the Status field of a QH.  
0 — Ping is not set.  
1 — Ping is set.  
Software sets this bit to 0.  
57  
DT  
HW — updates  
SW — writes  
Data Toggle: This bit is filled by software to start a PTD. If  
NrBytesToTransfer[14:0] is not complete, software needs to read this  
value and then write back the same value to continue.  
56 to 55  
Cerr[1:0]  
HW — writes  
SW — writes  
Error Counter. This field corresponds to the Cerr[1:0] field in QH. The  
default value of this field is zero for isochronous transactions.  
00 — The transaction will not retry.  
11 — The transaction will retry three times. Hardware will decrement  
these values. When the transaction has tried three times, X error will  
be updated.  
54 to 51  
NakCnt[3:0]  
reserved  
HW — writes  
SW — writes  
NAK Counter. This field corresponds to the NAKCnt field in QH.  
Software writes for the initial PTD launch. The V bit is reset if NakCnt  
decrements to zero and RL is a non-zero value. It reloads from RL if  
transaction is ACKed.  
50 to 47  
-
-
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
59 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 65: High-speed bulk IN and OUT, QHA: bit description…continued  
Bit  
Symbol  
Access  
Description  
46 to 32  
NrBytesTransferred HW — writes  
Number of Bytes Transferred: This field indicates the number of  
bytes sent or received for this transaction. If Mult[1:0] is greater than  
one, it is possible to store intermediate results in this field.  
[14:0]  
SW — writes  
0000  
DW2  
31 to 29  
28 to 25  
reserved  
RL[3:0]  
-
Set to 0 for QHA.  
SW — writes  
Reload: If RL is set to 0h, hardware ignores the NakCnt value. RL and  
NakCnt are set to the same value before a transaction.  
24  
reserved  
-
Always 0 for QHA.  
23 to 8  
DataStartAddress SW — writes  
[15:0]  
Data Start Address: This is the start address for the data that will be  
sent or received on or from the USB bus. This is the internal memory  
address and not the direct CPU address.  
RAM address = (CPU address 400h)/8  
7 to 0  
DW1  
63 to 47  
46  
reserved  
-
-
reserved  
S
-
Always 0 for QHA.  
SW — writes  
This bit indicates whether a split transaction has to be executed:  
0 — High-speed transaction  
1 — Split transaction.  
45 to 44  
43 to 42  
EPType[1:0]  
Token[1:0]  
SW — writes  
SW — writes  
Transaction type:  
00 — Control  
10 — Bulk.  
Token: Identifies the token Packet Identifier (PID) for this transaction:  
00 — OUT  
01 — IN  
10 — SETUP  
11 — PING (written by hardware only).  
41 to 35  
DeviceAddress[6:0] SW — writes  
Device Address: This is the USB address of the function containing  
the endpoint that is referred to by this buffer.  
34 to 32  
DW0  
EndPt[3:1]  
SW — writes  
Endpoint: This is the USB address of the endpoint within the function.  
31  
EndPt[0]  
Mult[1:0]  
SW — writes  
SW — writes  
Endpoint: This is the USB address of the endpoint within the function.  
30 to 29  
Multiplier: This field is a multiplier used by the Host Controller as the  
number of successive packets the Host Controller may submit to the  
endpoint in the current execution.  
For QHA, this is a copy of the Async Schedule Park mode count, if the  
Async Schedule Park mode is enabled. These EHCI registers need to  
be set to reflect multiple cycles. Applicable for high-speed only.  
Set this field to 01b. You can also set it to 11b and 10b depending on  
your application. 00b is undefined.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
60 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 65: High-speed bulk IN and OUT, QHA: bit description…continued  
Bit  
Symbol  
Access  
Description  
28 to 18  
MaxPacketLength SW — writes  
[10:0]  
Maximum Packet Length: This field indicates the maximum number  
of bytes that can be sent to or received from an endpoint in a single  
data packet. The maximum packet size for a bulk transfer is 512 bytes.  
The maximum packet size for the isochronous transfer is also variable  
at any whole number.  
17 to 3  
NrBytesToTransfer SW — writes  
[14:0]  
Number of Bytes to Transfer: This field indicates the number of bytes  
that can be transferred by this data structure. It is used to indicate the  
depth of the DATA eld (32 kbytes).  
2 to 1  
0
reserved  
V
-
-
SW — sets  
Valid:  
HW — resets  
0 — This bit is deactivated when the entire PTD is executed—across  
µSOF and SOF—or when a fatal error is encountered.  
1 — Software updates to one when there is payload to be sent or  
received even across ms boundary. The current PTD is active.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
61 of 105  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
9.2 High-speed isochronous IN and OUT, isochronous Transfer Descriptor (iTD) (patent-pending)  
Table 66: High-speed isochronous IN and OUT, iTD: bit allocation  
Bit  
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32  
ISOIN_7[11:0] ISOIN_6[11:0] ISOIN_5[7:0]  
ISOIN_2[7:0] ISOIN_0[11:0]  
NrBytesTransferred[14:0] (32 kbytes for high-speed)  
DW7  
DW5  
DW3  
DW1  
ISOIN_1[11:0]  
A
H
B
reserved  
reserved  
S
EP  
Token  
[1:0]  
DeviceAddress[6:0]  
EndPt[3:0]  
34 to 31  
Type  
[1:0]  
Bit  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
DW6  
ISOIN_5[3:0] ISOIN_4[11:0] ISOIN_3[11:0]  
ISOIN_2[3:0]  
DW4 Status7[2:0] Status6[2:0] Status5[2:0] Status4[2:0] Status3[2:0] Status2[2:0] Status1[2:0] Status0[2:0]  
µSA[7:0]  
DW2  
DW0  
reserved  
DataStartAddress[15:0]  
µFrame[7:0]  
[2]  
[1]  
Mult  
[1:0]  
MaxPacketLength[10:0]  
NrBytesToTransfer[14:0] (32 kbytes for high-speed)  
V
[1] Reserved.  
[2] EndPt[0].  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 67: High-speed isochronous IN and OUT, iTD: bit description  
Bit  
Symbol  
Access  
Description  
DW7  
63 to 52  
ISOIN_7[11:0]  
ISOIN_6[11:0]  
ISOIN_5[7:0]  
HW — writes  
HW — writes  
HW — writes  
Bytes received during µSOF7, if µSA[7] is set to 1 and frame number  
is correct.  
51 to 40  
39 to 32  
Bytes received during µSOF6, if µSA[6] is set to 1 and frame number  
is correct.  
Bytes received during µSOF5 (bits 11 to 4), if µSA[5] is set to 1 and  
frame number is correct.  
DW6  
31 to 28  
ISOIN_5[3:0]  
ISOIN_4[11:0]  
ISOIN_3[11:0]  
ISOIN_2[3:0]  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
Bytes received during µSOF5 (bits 3 to 0), if µSA[5] is set to 1 and  
frame number is correct.  
27 to 16  
15 to 4  
3 to 0  
Bytes received during µSOF4, if µSA[4] is set to 1 and frame number  
is correct.  
Bytes received during µSOF3, if µSA[3] is set to 1 and frame number  
is correct.  
Bytes received during µSOF2 (bits 11 to 8), if µSA[2] is set to 1 and  
frame number is correct.  
DW5  
63 to 56  
ISOIN_2[7:0]  
ISOIN_1[11:0]  
ISOIN_0[11:0]  
HW — writes  
HW — writes  
HW — writes  
Bytes received during µSOF2 (bits 7 to 0), if µSA[2] is set to 1 and  
frame number is correct.  
55 to 44  
43 to 32  
Bytes received during µSOF1, if µSA[1] is set to 1 and frame number  
is correct.  
Bytes received during µSOF0, if µSA[0] is set to 1 and frame number  
is correct.  
DW4  
31 to 29  
28 to 26  
25 to 23  
22 to 20  
19 to 17  
16 to 14  
13 to 11  
10 to 8  
Status7[2:0]  
Status6[2:0]  
Status5[2:0]  
Status4[2:0]  
Status3[2:0]  
Status2[2:0]  
Status1[2:0]  
Status0[2:0]  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
ISO IN or OUT status at µSOF7  
ISO IN or OUT status at µSOF6  
ISO IN or OUT status at µSOF5  
ISO IN or OUT status at µSOF4  
ISO IN or OUT status at µSOF3  
ISO IN or OUT status at µSOF2  
ISO IN or OUT status at µSOF1  
Status of the payload on the USB bus for this µSOF after ISO has  
been delivered.  
Bit 0 — Transaction Error (IN and OUT)  
Bit 1 — Babble (IN token only)  
Bit 2 — underrun (OUT token only).  
7 to 0  
µSA[7:0]  
SW — writes  
(0 => 1)  
µSOF Active: When the frame number of bits DW1[7:3] match the  
frame number of USB bus, these bits are checked for 1 before they are  
sent for µSOF. For example: If µSA[7:0] = 1, 1, 1, 1, 1, 1, 1, 1: send  
ISO every µSOF of the entire ms. If µSA[7:0] = 0, 1, 0, 1, 0, 1, 0, 1:  
send ISO only on µSOF0, µSOF2, µSOF4 and µSOF6.  
HW — writes  
(1 => 0)  
After processing  
DW3  
63  
A
H
SW — sets  
Active: This bit is the same as the Valid bit.  
62  
HW — writes  
Halt: Only one bit for the entire ms. When this bit is set, the Valid bit is  
reset. The device decides to stall an endpoint.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
63 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 67: High-speed isochronous IN and OUT, iTD: bit description…continued  
Bit  
Symbol  
B
Access  
Description  
61  
HW — writes  
Babble: Not applicable here.  
Set to 0 for isochronous.  
60 to 47  
46 to 32  
reserved  
-
NrBytesTransferred HW — writes  
[14:0]  
Number of Bytes Transferred: This field indicates the number of  
bytes sent or received for this transaction. If Mult[1:0] is greater than  
one, it is possible to store intermediate results in this field.  
NrBytesTransferred[14:0] is 32 kbytes per PTD.  
DW2  
31 to 24  
23 to 8  
reserved  
-
Set to 0 for isochronous.  
DataStartAddress SW — writes  
[15:0]  
Data Start Address: This is the start address for the data that will be  
sent or received on or from the USB bus. This is the internal memory  
address and not the direct CPU address.  
RAM address = (CPU address 400h)/8  
Bits 2 to 0 — Don’t care  
7 to 0  
µFrame[7:0]  
SW — writes  
Bits 7 to 3 — Frame number that this PTD will be sent for ISO OUT or  
IN.  
DW1  
63 to 47  
46  
reserved  
S
-
-
SW — writes  
This bit indicates whether a split transaction has to be executed.  
0 — High-speed transaction  
1 — Split transaction.  
45 to 44  
43 to 42  
EPType[1:0]  
Token[1:0]  
SW — writes  
SW — writes  
Endpoint type:  
01 — Isochronous.  
Token: This field indicates the token PID for this transaction:  
00 — OUT  
01 — IN.  
41 to 35  
DeviceAddress[6:0] SW — writes  
Device Address: This is the USB address of the function containing  
the endpoint that is referred to by this buffer.  
34 to 32  
DW0  
EndPt[3:1]  
SW — writes  
Endpoint: This is the USB address of the endpoint within the function.  
31  
EndPt[0]  
Mult[1:0]  
SW — writes  
SW — writes  
Endpoint: This is the USB address of the endpoint within the function.  
30 to 29  
This field is a multiplier counter used by the Host Controller as the  
number of successive packets the Host Controller may submit to the  
endpoint in the current execution.  
For isochronous OUT and IN:  
If Mult[1:0] is 01 — Data Toggle is Data0  
If Mult[1:0] is 10 — Data Toggle is Data1  
If Mult[1:0] is 11 — Data Toggle is Data2, and so on.  
For details, refer to Enhanced Host Controller Interface Specification  
for Universal Serial Bus Rev. 1.0 Appendix D.  
28 to 18  
MaxPacketLength SW — writes  
[10:0]  
Maximum Packet Length: This field indicates the maximum number  
of bytes that can be sent to or received from the endpoint in a single  
data packet. The maximum packet size for an isochronous transfer is  
1024 bytes. The maximum packet size for the isochronous transfer is  
also variable at any whole number.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
64 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 67: High-speed isochronous IN and OUT, iTD: bit description…continued  
Bit  
Symbol  
Access  
Description  
17 to 3  
NrBytesToTransfer SW — writes  
[14:0]  
Number of Bytes Transferred: This field indicates the number of  
bytes that can be transferred by this data structure. It is used to  
indicate the depth of the DATA eld (32 kbytes).  
2 to 1  
0
reserved  
V
-
-
HW — resets  
SW — sets  
0 — This bit is deactivated when the entire PTD is executed—across  
µSOF and SOF—or when a fatal error is encountered.  
1 — Software updates to one when there is payload to be sent or  
received even across ms boundary. The current PTD is active.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
65 of 105  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
9.3 High-speed interrupt IN and OUT, Queue Head Periodic (QHP) (patent-pending)  
Table 68: High-speed interrupt IN and OUT, QHP: bit allocation  
Bit  
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32  
INT_IN_7[11:0] INT_IN_6[11:0] INT_IN_5[7:0]  
INT_IN_2[7:0] INT_IN_0[11:0]  
reserved NrBytesTransferred[14:0] (32 kbytes for high-speed)  
DW7  
DW5  
DW3  
INT_IN_1[11:0]  
reserved  
A
H
D
T
Cerr  
[1:0]  
DW1  
reserved  
S
EP  
Type  
[1:0]  
Token  
[1:0]  
DeviceAddress[6:0]  
EndPt[3:0]  
31 to 34  
Bit  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
DW6  
INT_IN_5[3:0] INT_IN_4[11:0] INT_IN_3[11:0]  
INT_IN_2[3:0]  
DW4 Status7[2:0] Status6[2:0] Status5[2:0] Status4[2:0] Status3[2:0] Status2[2:0] Status1[2:0] Status0[2:0]  
µSA[7:0]  
DW2  
DW0  
reserved  
DataStartAddress[15:0]  
µFrame[7:0]  
[2]  
[1]  
Mult  
[1:0]  
MaxPacketLength[10:0]  
NrBytesToTransfer[14:0] (32 kbytes for high-speed)  
V
[1] Reserved.  
[2] EndPt[0].  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 69: High-speed interrupt IN and OUT, QHP: bit description  
Bit  
Symbol  
Access  
Description  
DW7  
63 to 52 INT_IN_7[[11:0] HW — writes  
Bytes received during µSOF7, if µSA[7] is set to 1 and frame number is  
correct.  
51 to 40 INT_IN_6[11:0] HW — writes  
Bytes received during µSOF6, if µSA[6] is set to 1 and frame number is  
correct.  
39 to 32 INT_IN_5[7:0]  
HW — writes  
HW — writes  
Bytes received during µSOF5 (bits 7 to 0), if µSA[5] is set to 1 and frame  
number is correct.  
DW6  
31 to 28 INT_IN_5[3:0]  
Bytes received during µSOF5 (bits 3 to 0), if µSA[5] is set to 1 and frame  
number is correct.  
27 to 16 INT_IN_4[11:0] HW — writes  
Bytes received during µSOF4, if µSA[4] is set to 1 and frame number is  
correct.  
15 to 4  
3 to 0  
DW5  
INT_IN_3[11:0] HW — writes  
Bytes received during µSOF3, if µSA[3] is set to 1 and frame number is  
correct.  
INT_IN_2[3:0]  
HW — writes  
HW — writes  
Bytes received during µSOF2 (bits 11 to 8), if µSA[2] is set to 1 and frame  
number is correct.  
63 to 56 INT_IN_2[7:0]  
Bytes received during µSOF2 (bits 7 to 0), if µSA[2] is set to 1 and frame  
number is correct.  
55 to 44 INT_IN_1[11:0] HW — writes  
43 to 32 INT_IN_0[11:0] HW — writes  
DW4  
Bytes received during µSOF1, if µSA[1] is set to 1 and frame number is  
correct.  
Bytes received during µSOF0, if µSA[0] is set to 1 and frame number is  
correct.  
INT OUT or IN  
31 to 29 Status7[2:0]  
28 to 26 Status6[2:0]  
25 to 23 Status5[2:0]  
22 to 20 Status4[2:0]  
19 to 17 Status3[2:0]  
16 to 14 Status2[2:0]  
13 to 11 Status1[2:0]  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
INT IN or OUT status of µSOF7  
INT IN or OUT status of µSOF6  
INT IN or OUT status of µSOF5  
INT IN or OUT status of µSOF4  
INT IN or OUT status of µSOF3  
INT IN or OUT status of µSOF2  
INT IN or OUT status of µSOF1  
10 to 8  
Status0[2:0]  
Status of the payload on the USB bus for this µSOF after INT has been  
delivered.  
Bit 0 — Transaction Error (IN and OUT)  
Bit 1 — Babble (IN token only)  
Bit 2 — underrun (OUT token only).  
7 to 0  
µSA[7:0]  
SW — writes  
(0 => 1)  
When the frame number of bits DW1[7:3] match the frame number of the  
USB bus, these bits are checked for 1 before they are sent for µSOF. For  
example: When µSA[7:0] = 1, 1, 1, 1, 1, 1, 1, 1: send INT for every µSOF of  
the entire ms. When µSA[7:0] = 0, 1, 0, 1, 0, 1, 0, 1: send INT for µSOF0,  
µSOF2, µSOF4 and µSOF6. When µSA[7:0] = 1, 0, 0, 0, 1, 0, 0, 0 = send  
INT for every fourth µSOF.  
HW — writes  
(1 => 0)  
After processing  
DW3  
63  
A
HW — writes  
SW — writes  
Active: Write the same value as that in V.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
67 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 69: High-speed interrupt IN and OUT, QHP: bit description…continued  
Bit  
Symbol  
Access  
Description  
62  
H
HW — writes  
-
Halt: Transaction is halted.  
61 to 58 reserved  
57 DT  
-
HW — writes  
SW — writes  
Data Toggle: Set the Data Toggle bit to start the PTD. Software writes the  
current transaction toggle value. Hardware writes the next transaction toggle  
value.  
56 to 55 Cerr[1:0]  
54 to 47 reserved  
HW — writes  
SW — writes  
-
Error Counter. This field corresponds to the Cerr[1:0] field in the QH. The  
default value of this field is zero for isochronous transactions.  
-
46 to 32 NrBytes  
Transferred  
[14:0]  
HW — writes  
Number of Bytes Transferred: This field indicates the number of bytes sent  
or received for this transaction. If Mult[1:0] is greater than one, it is possible  
to store intermediate results in this field.  
DW2  
31 to 24 reserved  
-
-
23 to 8  
DataStart  
Address  
[15:0]  
SW — writes  
Data Start Address: This is the start address for the data that will be sent or  
received on or from the USB bus. This is the internal memory address and  
not the direct CPU address.  
RAM address = (CPU address 400h)/8  
7 to 0  
µFrame[7:0]  
SW — writes  
Bits 7 to 3 represent the polling rate for ms-based polling.  
The INT polling rate is defined as 2(b – 1) µSOF, where b is 1 to 9.  
When b is 1, 2, 3 or 4, use µSA to define polling because the rate is equal to  
or less than 1 ms. Bits 7 to 3 are set to 0. Polling checks µSA bits for µSOF  
rates.  
b
1
2
3
4
5
6
7
8
9
rate  
1 µSOF  
2 µSOF  
4 µSOF  
1 ms  
µFrame[7:3]  
µSA[7:0]  
11111111  
0
0
10101010 or 01010101  
any 2 bits set  
any 1 bit set  
0
0
2 ms  
1
any 1 bit set  
4 ms  
10 to 11  
100 to 111  
1000 to 1111  
10000 to 11111  
any 1 bit set  
8 ms  
any 1 bit set  
16 ms  
32 ms  
any 1 bit set  
any 1 bit set  
DW1  
63 to 47 reserved  
46  
-
-
S
SW — writes  
This bit indicates if a split transaction has to be executed:  
0 — High-speed transaction  
1 — Split transaction.  
45 to 44 EPType[1:0]  
43 to 42 Token[1:0]  
SW — writes  
SW — writes  
Endpoint type:  
11 — Interrupt.  
Token: This field indicates the token PID for this transaction:  
00 — OUT  
01 — IN.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
68 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 69: High-speed interrupt IN and OUT, QHP: bit description…continued  
Bit  
Symbol  
Access  
Description  
41 to 35 DeviceAddress SW — writes  
Device Address: This is the USB address of the function containing the  
[6:0]  
endpoint that is referred to by the buffer.  
34 to 32 EndPt[3:1]  
SW — writes  
Endpoint: This is the USB address of the endpoint within the function.  
DW0  
31  
EndPt[0]  
SW — writes  
SW — writes  
Endpoint: This is the USB address of the endpoint within the function.  
30 to 29 Mult[1:0]  
Multiplier: This field is a multiplier counter used by the Host Controller as  
the number of successive packets the Host Controller may submit to the  
endpoint in the current execution.  
Set this field to 01b. You can also set it to 11b and 10b depending on your  
application. 00b is undefined.  
28 to 18 MaxPacket  
Length[10:0]  
SW — writes  
SW — writes  
Maximum Packet Length: This field indicates the maximum number of  
bytes that can be sent to or received from the endpoint in a single data  
packet.  
17 to 3  
NrBytesTo  
Number of Bytes to Transfer: This field indicates the number of bytes can  
be transferred by this data structure. It is used to indicate the depth of the  
DATA eld (32 kbytes).  
Transfer[14:0]  
2 to 1  
0
reserved  
V
-
-
SW — sets  
Valid:  
HW — resets  
0 — This bit is deactivated when the entire PTD is executed—across µSOF  
and SOF—or when a fatal error is encountered.  
1 — Software updates to one when there is payload to be sent or received  
even across ms boundary. The current PTD is active.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
69 of 105  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
9.4 Start and complete split for bulk, Queue Head Asynchronous Start Split and Start Complete  
(QHA-SS/SC) (patent-pending)  
Table 70: Start and complete split for bulk, QHASS/SC: bit allocation  
Bit  
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32  
DW7  
DW5  
DW3  
reserved  
reserved  
[1]  
A
H
B
X
S
C
D
T
Cerr  
[1:0]  
NakCnt[3:0]  
reserved  
NrBytesTransferred[14:0]  
DeviceAddress[6:0]  
[1]  
DW1  
HubAddress[6:0]  
PortNumber[6:0]  
SE[1:0]  
S
EP  
Type  
[1:0]  
Token  
[1:0]  
EndPt[3:0]  
(31 to 34)  
Bit  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
DW6  
DW4  
DW2  
DW0  
reserved  
reserved  
J
NextPTDAddress[4:0]  
reserved  
[1]  
reserved  
RL[3:0]  
DataStartAddress[15:0]  
NrBytesToTransfer[14:0] (32 kbytes for high-speed)  
[2]  
[1]  
[1]  
MaxPacketLength[10:0]  
V
[1] Reserved.  
[2] EndPt[0].  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 71: Start and complete split for bulk, QHASS/SC: bit description  
Bit  
Symbol  
Access  
Description  
DW7  
63 to 32 reserved  
-
-
-
-
-
-
-
DW6  
31 to 0  
reserved  
DW5  
63 to 32 reserved  
DW4  
31 to 6  
5
reserved  
J
-
SW — writes  
0 — To increment the PTD pointer  
1 — To enable the next PTD branching.  
Next PTD branching assigned by the PTD pointer.  
4 to 0  
NextPTDPointer  
[1:0]  
SW — writes  
DW3  
63  
A
SW — sets  
Active: Write the same value as that in V.  
HW — resets  
HW — writes  
HW — writes  
62  
61  
H
B
Halt: This bit correspond to the Halt bit of the Status field of QH.  
Babble: This bit correspond to the Babble Detected bit in the Status  
field of the iTD, SiTD or QH.  
1 — when babbling is detected, A and V are set to 0.  
60  
59  
X
Transaction Error: This bit corresponds to the Transaction Error bit in  
the status field.  
SC  
SW — writes 0  
HW — updates  
Start/Complete:  
0 — Start split  
1 — Complete split.  
58  
57  
reserved  
DT  
-
-
HW — writes  
SW — writes  
HW — updates  
SW — writes  
Data Toggle: Set the Data Toggle bit to start for the PTD.  
56 to 55 Cerr[1:0]  
Error Counter: This field contains the error count for start and complete  
split (QHASS). When an error has no response or bad response,  
Cerr[1:0] will be decremented to zero and then Valid will be set to zero.  
A NAK or NYET will reset Cerr[1:0]. For details, refer to Enhanced Host  
Controller Interface Specification for Universal Serial Bus Rev. 1.0  
Section 4.12.1.2.  
If retry has insufficient time at the beginning of a new SOF, the first PTD  
must be this retry. This can be accomplished by if aperiodic PTD is not  
advanced.  
54 to 51 NakCnt[3:0]  
50 to 47 reserved  
HW — writes  
SW — writes  
-
NAK Counter. The V bit is reset if NakCnt decrements to zero and RL  
is a non-zero value. Not applicable to isochronous split transactions.  
-
46 to 32 NrBytesTransferred HW — writes  
Number of Bytes Transferred: This field indicates the number of bytes  
[14:0]  
sent or received for this transaction.  
DW2  
31 to 29 reserved  
-
-
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
71 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 71: Start and complete split for bulk, QHASS/SC: bit description…continued  
Bit  
Symbol  
Access  
Description  
28 to 25 RL[3:0]  
SW — writes  
Reload. If RL is set to 0h, hardware ignores the NakCnt value. Set RL  
and NakCnt to the same value before a transaction. For full-speed and  
low-speed transactions, set this field to 0000b. Not applicable to  
isochronous start split and complete split.  
24  
reserved  
-
-
23 to 8  
DataStartAddress SW — writes  
[15:0]  
Data Start Address: This is the start address for the data that will be  
sent or received on or from the USB bus. This is the internal memory  
address and not the direct CPU address.  
RAM address = (CPU address 400h)/8  
7 to 0  
reserved  
-
-
DW1  
63 to 57 HubAddress[6:0]  
56 to 50 PortNumber[6:0]  
49 to 48 SE[1:0]  
SW — writes  
SW — writes  
SW — writes  
Hub Address: This indicates the hub address. Zero for the internal or  
embedded hub.  
Port Number: This indicates the port number of the hub or embedded  
TT.  
This depends on the endpoint type and direction. It is valid only for split  
transactions. The following applies to start split and complete split only.  
Bulk Control  
S
1
0
E
0
0
Remarks  
low-speed  
full-speed  
I/O  
I/O  
-
I/O  
I/O  
47  
46  
reserved  
S
-
SW — writes  
This bit indicates whether a split transaction has to be executed:  
0 — High-speed transaction  
1 — Split transaction.  
45 to 44 EPType[1:0]  
43 to 42 Token[1:0]  
SW — writes  
SW — writes  
Endpoint Type:  
00 — Control  
10 — Bulk.  
Token: This field indicates the PID for this transaction.  
00 — OUT  
01 — IN  
10 — SETUP.  
41 to 35 DeviceAddress  
[6:0]  
SW — writes  
SW — writes  
Device Address: This is the USB address of the function containing the  
endpoint that is referred to by this buffer.  
34 to 32 EndPt[3:1]  
Endpoint: This is the USB address of the endpoint within the function.  
DW0  
31  
EndPt[0]  
SW — writes  
-
Endpoint: This is the USB address of the endpoint within the function.  
30 to 29 reserved  
-
28 to 18 MaximumPacket  
Length[10:0]  
SW — writes  
Maximum Packet Length: This field indicates the maximum number of  
bytes that can be sent to or received from an endpoint in a single data  
packet. The maximum packet size for full-speed is 64 bytes as defined  
in the Universal Serial Bus Specification Rev. 2.0.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
72 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 71: Start and complete split for bulk, QHASS/SC: bit description…continued  
Bit  
Symbol  
Access  
Description  
17 to 3  
NrBytesToTransfer SW — writes  
[14:0]  
Number of Bytes to Transfer: This field indicates the number of bytes  
that can be transferred by this data structure. It is used to indicate the  
depth of the DATA eld.  
2 to 1  
0
reserved  
V
-
-
SW — sets  
Valid:  
HW — resets  
0 — This bit is deactivated when the entire PTD is executed—across  
µSOF and SOF—or when a fatal error is encountered.  
1 — Software updates to one when there is payload to be sent or  
received even across ms boundary. The current PTD is active.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
73 of 105  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
9.5 Start and complete split for isochronous, Split isochronous Transfer Descriptor (SiTD)  
(patent-pending)  
Table 72: Start and complete split for isochronous, SiTD: bit allocation  
Bit  
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32  
DW7  
DW5  
DW3  
reserved  
ISO_IN_7[7:0]  
µSCS[7:0][2]  
ISO_IN_2[7:0]  
ISO_IN_1[7:0]  
ISO_IN_0[7:0]  
[1]  
A
H
B
X
S
C
reserved  
NrBytesTransferred[11:0]  
D
T
DW1  
HubAddress[6:0]  
PortNumber[6:0]  
reserved  
S
EP  
Type  
[1:0]  
Token  
[1:0]  
DeviceAddress[6:0]  
EndPt[3:0]  
(31 to 34)  
Bit  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
DW6  
DW4  
ISO_IN_6[7:0]  
ISO_IN_5[7:0]  
ISO_IN_4[7:0]  
ISO_IN_3[7:0]  
Status7  
[2:0]  
Status6  
[2:0]  
Status5  
[2:0]  
Status4  
[2:0]  
Status3  
[2:0]  
Status2  
[2:0]  
Status1  
[2:0]  
Status0  
[2:0]  
µSA[7:0]  
DW2  
DW0  
reserved  
DataStartAddress[15:0]  
µFrame[7:0] (full-speed)  
[3]  
[1]  
[1]  
TT_MPS_Len[10:0]  
NrBytesToTransfer[14:0] (1 kbyte for full-speed)  
V
[1] Reserved.  
[2] Note the change in the position of USCS[7:0] and NrBytesReceived_CS_IN.  
[3] EndPt[0].  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 73: Start and complete split for isochronous, SiTD: bit description  
Bit  
Symbol  
Access  
Description  
DW7  
63 to 40 reserved  
-
-
39 to 32 ISO_IN_7[7:0]  
HW — writes  
Bytes received during µSOF7, if µSA[7] is set to 1 and frame number is  
correct.  
DW6  
31 to 24 ISO_IN_6[7:0]  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
Bytes received during µSOF6, if µSA[6] is set to 1 and frame number is  
correct.  
23 to 16 ISO_IN_5[7:0]  
Bytes received during µSOF5, if µSA[5] is set to 1 and frame number is  
correct.  
15 to 8  
7 to 0  
DW5  
ISO_IN_4[7:0]  
ISO_IN_3[7:0]  
Bytes received during µSOF4, if µSA[4] is set to 1 and frame number is  
correct.  
Bytes received during µSOF3, if µSA[3] is set to 1 and frame number is  
correct.  
63 to 56 ISO_IN_2[7:0]  
55 to 48 ISO_IN_1[7:0]  
47 to 40 ISO_IN_0[7:0]  
39 to 32 µSCS[7:0]  
HW — writes  
HW — writes  
HW — writes  
Bytes received during µSOF2 (bits 7 to 0), if µSA[2] is set to 1 and  
frame number is correct.  
Bytes received during µSOF1, if µSA[1] is set to 1 and frame number is  
correct.  
Bytes received during µSOF0 if µSA[0] is set to 1 and frame number is  
correct.  
SW — writes  
(0 => 1)  
All bits can be set to one for every transfer. It specifies which µSOF the  
complete split needs to be sent. Valid only for IN. Start split (SS) and  
complete split (CS) active bits—µSA = 0000 0001, µS CS = 0000  
0100—will cause SS to execute in µFrame0 and CS in µFrame2.  
HW — writes  
(1 => 0)  
After processing  
DW4  
31 to 29 Status7[2:0]  
28 to 26 Status6[2:0]  
25 to 23 Status5[2:0]  
22 to 20 Status4[2:0]  
19 to 17 Status3[2:0]  
16 to 14 Status2[2:0]  
13 to 11 Status1[2:0]  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
isochronous IN or OUT status of µSOF7  
isochronous IN or OUT status of µSOF6  
isochronous IN or OUT status of µSOF5  
isochronous IN or OUT status of µSOF4  
isochronous IN or OUT status of µSOF3  
isochronous IN or OUT status of µSOF2  
isochronous IN or OUT status of µSOF1  
isochronous IN or OUT status of µSOF0  
Bit 0 — Transaction Error (IN and OUT)  
Bit 1 — Babble (IN token only)  
10 to 8  
Status0[2:0]  
Bit 2 — underrun (OUT token only).  
7 to 0  
µSA[7:0]  
SW — writes  
Specifies which µSOF the start split needs to be placed.  
(0 => 1)  
For OUT token: When the frame number of bits DW1(7-3) matches the  
frame number of the USB bus, these bits are checked for one before  
they are sent for the µSOF.  
HW — writes  
(1 => 0)  
After processing For IN token: Only µSOF0, µSOF1, µSOF2 or µSOF3 can be set to 1.  
Nothing can be set for µSOF4 and above.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
75 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 73: Start and complete split for isochronous, SiTD: bit description…continued  
Bit  
Symbol  
Access  
Description  
DW3  
63  
A
SW — sets  
Active: Write the same value as that in V.  
HW — resets  
HW — writes  
62  
61  
60  
59  
H
Halt: The Halt bit is set when any microframe transfer status has a  
stalled or halted condition.  
B
HW — writes  
HW — writes  
Babble: This bit corresponds to bit 1 of Status0 to Status7 for every  
microframe transfer status.  
X
Transaction Error: This bit corresponds to bit 0 of Status0 to Status7  
for every microframe transfer status.  
SC  
SW — writes 0  
HW — updates  
Start/Complete:  
0 — Start split  
1 — Complete split.  
58  
57  
reserved  
DT  
-
-
HW — writes  
SW — writes  
-
Data Toggle: Set the Data Toggle bit to start for the PTD.  
56 to 44 reserved  
-
43 to 32 NrBytesTransferred HW — writes  
Number of Bytes Transferred: This field indicates the number of bytes  
[11:0]  
sent or received for this transaction.  
DW2  
31 to 24 reserved  
-
-
23 to 8  
DataStartAddress  
[15:0]  
SW — writes  
Data Start Address: This is the start address for the data that will be  
sent or received on or from the USB bus. This is the internal memory  
address and not the CPU address.  
7 to 0  
µFrame[7:0]  
SW — writes  
Bits 7 to 3 determine which frame to execute.  
DW1  
63 to 57 HubAddress  
[6:0]  
SW — writes  
SW — writes  
Hub Address: This indicates the hub address. Zero for the internal or  
embedded hub.  
56 to 50 PortNumber  
[6:0]  
Port Number: This indicates the port number of the hub or embedded  
TT.  
49 to 47 reserved  
-
-
46  
S
SW — writes  
This bit indicates whether a split transaction has to be executed:  
0 — High-speed transaction  
1 — Split transaction.  
Transaction type:  
45 to 44 EPType[1:0]  
43 to 42 Token[1:0]  
SW — writes  
SW — writes  
01 — Isochronous.  
Token PID for this transaction:  
00 — OUT  
01 — IN.  
41 to 35 Device  
Address[6:0]  
SW — writes  
SW — writes  
Device Address: This is the USB address of the function containing the  
endpoint that is referred to by this buffer.  
34 to 32 EndPt[3:1]  
Endpoint: This is the USB address of the endpoint within the function.  
DW0  
31  
EndPt[0]  
SW — writes  
Endpoint: This is the USB address of the endpoint within the function.  
30 to 29 reserved  
-
-
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
76 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 73: Start and complete split for isochronous, SiTD: bit description…continued  
Bit  
Symbol  
Access  
Description  
28 to 18 TT_MPS_Len  
[10:0]  
SW — writes  
Transaction Translator Maximum Packet Size Length: This field  
indicates the maximum number of bytes that can be sent per start split  
depending on the number of total bytes needed. If the total bytes to be  
sent for the entire ms is greater than 188 bytes, this field should be set  
to 188 bytes for an OUT token and 192 byes for an IN token. Otherwise,  
this field should be equal to the total bytes sent.  
17 to 3  
NrBytesTo  
Transfer  
[14:0]  
SW — writes  
Number of Bytes to Transfer: This field indicates the number of bytes  
that can be transferred by this data structure. It is used to indicate the  
depth of the DATA eld. This field is restricted to 1023 bytes because in  
SiTD the maximum allowable payload for a full-speed device is  
1023 bytes. This field indirectly becomes the maximum packet size of  
the downstream device.  
2 to 1  
0
reserved  
V
-
-
SW — sets  
0 — This bit is deactivated when the entire PTD is executed—across  
µSOF and SOF—or when a fatal error is encountered.  
HW — resets  
1 — Software updates to one when there is payload to be sent or  
received even across ms boundary. The current PTD is active.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
77 of 105  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
9.6 Start and complete split for interrupt (patent-pending)  
Table 74: Start and complete split for interrupt: bit allocation  
Bit  
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32  
DW7  
DW5  
DW3  
reserved  
INT_IN_7[7:0]  
INT_IN_2[7:0]  
INT_IN_1[7:0]  
INT_IN_0[7:0]  
µSCS[7:0]  
[1]  
A
H
B
X
S
C
D
T
Cerr  
[1:0]  
reserved  
SE[1:0]  
NrBytesTransferred[11:0] (4 kbytes for full-speed and  
low-speed)  
DW1  
HubAddress[6:0]`  
PortNumber[6:0]  
-
S
EP  
Token  
[1:0]  
DeviceAddress[6:0]  
EndPt  
[3:0]  
Type  
[1:0]  
Bit  
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
DW6  
DW4  
INT_IN_6[7:0]  
INT_IN_5[7:0]  
INT_IN_4[7:0]  
INT_IN_3[7:0]  
Status7  
[2:0]  
Status6  
[2:0]  
Status5  
[2:0]  
Status4  
[2:0]  
Status3  
[2:0]  
Status2  
[2:0]  
Status1  
[2:0]  
Status0  
[2:0]  
µSA[7:0]  
DW2  
DW0  
reserved  
DataStartAddress[15:0]  
µFrame[7:0] (full-speed and  
low-speed)  
[2]  
[1]  
[1]  
MaxPacketLength[10:0]  
NrBytesToTransfer[14:0] (4 kbytes for full-speed and low-speed)  
V
[1] Reserved.  
[2] EndPt[0].  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 75: Start and complete split for interrupt: bit description  
Bit  
Symbol  
Access  
Description  
DW7  
63 to 40 reserved  
-
-
39 to 32 INT_IN_7[7:0]  
HW — writes  
Bytes received during µSOF7, if µSA[7] is set to 1 and frame number is  
correct. The new value continuously overwrites the old value.  
DW6  
31 to 24 INT_IN_6[7:0]  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
Bytes received during µSOF6, if µSA[6] is set to 1 and frame number is  
correct. The new value continuously overwrites the old value.  
23 to 16 INT_IN_5[7:0]  
Bytes received during µSOF5, if µSA[5] is set to 1 and frame number is  
correct. The new value continuously overwrites the old value.  
15 to 8  
7 to 0  
DW5  
INT_IN_4[7:0]  
INT_IN_3[7:0]  
Bytes received during µSOF4, if µSA[4] is set to 1 and frame number is  
correct. The new value continuously overwrites the old value.  
Bytes received during µSOF3, if µSA[3] is set to 1 and frame number is  
correct. The new value continuously overwrites the old value.  
63 to 56 INT_IN_2[7:0]  
HW — writes  
Bytes received during µSOF2 (bits 7 to 0), if µSA[2] is set to 1 and  
frame number is correct. The new value continuously overwrites the old  
value.  
55 to 48 INT_IN_1[7:0]  
47 to 40 INT_IN_0[7:0]  
39 to 32 µSCS[7:0]  
HW — writes  
HW — writes  
Bytes received during µSOF1, if µSA[1] is set to 1 and frame number is  
correct. The new value continuously overwrites the old value.  
Bytes received during µSOF0 if µSA[0] is set to 1 and frame number is  
correct. The new value continuously overwrites the old value.  
SW — writes (0 => 1) All bits can be set to one for every transfer. It specifies which µSOF the  
complete split needs to be sent. Valid only for IN. Start split (SS) and  
complete split (CS) active bits—µSA = 0000 0001, µS CS = 0000  
0100—will cause SS to execute in µFrame0 and CS in µFrame2.  
HW — writes  
(1 => 0)  
After processing  
DW4  
31 to 29 Status7[2:0]  
28 to 26 Status6[2:0]  
25 to 23 Status5[2:0]  
22 to 20 Status4[2:0]  
19 to 17 Status3[2:0]  
16 to 14 Status2[2:0]  
13 to 11 Status1[2:0]  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
HW — writes  
interrupt IN or OUT status of µSOF7  
interrupt IN or OUT status of µSOF6  
interrupt IN or OUT status of µSOF5  
interrupt IN or OUT status of µSOF4  
interrupt IN or OUT status of µSOF3  
interrupt IN or OUT status of µSOF2  
interrupt IN or OUT status of µSOF1  
interrupt IN or OUT status of µSOF0  
Bit 0 — Transaction Error (IN and OUT)  
Bit 1 — Babble (IN token only)  
10 to 8  
Status0[2:0]  
Bit 2 — underrun (OUT token only).  
7 to 0  
µSA[7:0]  
SW — writes (0 => 1) Specifies which µSOF the start split needs to be placed.  
HW — writes  
(1 => 0)  
For OUT token: When the frame number of bits DW1(7-3) matches the  
frame number of the USB bus, these bits are checked for one before  
they are sent for the µSOF.  
After processing  
For IN token: Only µSOF0, µSOF1, µSOF2 or µSOF3 can be set to 1.  
Nothing can be set for µSOF4 and above.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
79 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 75: Start and complete split for interrupt: bit description…continued  
Bit  
Symbol  
Access  
Description  
DW3  
63  
A
SW — sets  
Active: Write the same value as that in V.  
HW — resets  
HW — writes  
62  
61  
60  
59  
H
Halt: The Halt bit is set when any microframe transfer status has a  
stalled or halted condition.  
B
HW — writes  
HW — writes  
Babble: This bit corresponds to bit 1 of Status0 to Status7 for every  
microframe transfer status.  
X
Transaction Error: This bit corresponds to bit 0 of Status0 to Status7  
for every microframe transfer status.  
SC  
SW — writes 0  
HW — updates  
Start/Complete:  
0 — Start split  
1 — Complete split.  
58  
57  
reserved  
DT  
-
-
HW — writes  
SW — writes  
HW — writes  
SW — writes  
Data Toggle: For an interrupt transfer, set correct bit to start the PTD.  
56 to 55 Cerr[1:0]  
Error Counter. This field corresponds to the Cerr[1:0] field in QH.  
00 — The transaction will not retry.  
11 — The transaction will retry three times. Hardware will decrement  
these values. When the transaction has tried three times, X error will be  
updated.  
54 to 44 reserved  
-
-
43 to 32 NrBytes  
Transferred  
[11:0]  
HW — writes  
Number of Bytes Transferred: This field indicates the number of  
bytes sent or received for this transaction.  
DW2  
31 to 24 reserved  
-
-
23 to 8  
DataStart  
Address[15:0]  
SW — writes  
Data Start Address: This is the start address for the data that will be  
sent or received on or from the USB bus. This is the internal memory  
address and not the CPU address.  
7 to 0  
µFrame[7:0]  
SW — writes  
Bits 7 to 3 is the ms polling rate. Polling rate is defined as 2(b 1) µSOF;  
where b = 4 to 16. When b is 4, every ms is executed.  
b
4
5
6
7
Rate  
2
Bits 7 to 3  
00001  
4
00010 or 00011  
00100 or 00101  
01000 or 01001 up to 32 ms  
8
16  
DW1  
63 to 57 HubAddress  
[6:0]  
SW — writes  
SW — writes  
Hub Address: This indicates the hub address. Zero for the internal or  
embedded hub.  
56 to 50 PortNumber  
[6:0]  
Port Number: This indicates the port number of the hub or embedded  
TT.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
80 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 75: Start and complete split for interrupt: bit description…continued  
Bit  
Symbol  
Access  
Description  
49 to 48 SE[1:0]  
SW — writes  
This depends on the endpoint type and direction. It is valid only for split  
transactions. The following applies to start split and complete split only.  
Interrupt  
S
1
0
E
0
0
Remarks  
low-speed  
full-speed  
I/O  
I/O  
-
47  
46  
reserved  
S
-
SW — writes  
This bit indicates whether a split transaction has to be executed:  
0 — High-speed transaction  
1 — Split transaction.  
Transaction type:  
45 to 44 EPType[1:0]  
43 to 42 Token[1:0]  
SW — writes  
SW — writes  
11 — Interrupt.  
Token PID for this transaction:  
00 — OUT  
01 — IN.  
41 to 35 DeviceAddress SW — writes  
Device Address: This is the USB address of the function containing  
[6:0]  
the endpoint that is referred to by this buffer.  
34 to 32 EndPt[3:1]  
SW — writes  
Endpoint: This is the USB address of the endpoint within the function.  
DW0  
31  
EndPt[0]  
SW — writes  
-
Endpoint: This is the USB address of the endpoint within the function.  
30 to 29 reserved  
-
28 to 18 MaxPacket  
Length[10:0]  
SW — writes  
Maximum Packet Length: This field indicates the maximum number of  
bytes that can be sent to or received from an endpoint in a single data  
packet. The maximum packet size for the full-speed and low-speed  
devices is 64 bytes as defined in the Universal Serial Bus Specification  
Rev. 2.0.  
17 to 3  
NrBytesTo  
Transfer[14:0]  
SW — writes  
Number of Bytes to Transfer: This field indicates the number of bytes  
that can be transferred by this data structure. It is used to indicate the  
depth of the DATA eld. The maximum total number of bytes for this  
transaction is 4 kbytes.  
2 to 1  
0
reserved  
V
-
-
SW — sets  
0 — This bit is deactivated when the entire PTD is executed—across  
µSOF and SOF—or when a fatal error is encountered.  
HW — resets  
1 — Software updates to one when there is payload to be sent or  
received even across ms boundary. The current PTD is active.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
81 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
10. Power consumption  
Table 76: Power consumption  
Number of ports working  
One port working (high-speed)  
VCC = 5.0 V, VCC(I/O) = 3.3 V  
VCC = 3.3 V, VCC(I/O) = 3.3 V  
VCC = 5.0 V, VCC(I/O) = 1.8 V  
VCC = 3.3 V, VCC(I/O) = 1.8 V  
Two ports working (high-speed)  
VCC = 5.0 V, VCC(I/O) = 3.3 V  
VCC = 3.3 V, VCC(I/O) = 3.3 V  
VCC = 5.0 V, VCC(I/O) = 1.8 V  
VCC = 3.3 V, VCC(I/O) = 1.8 V  
Three ports working (high-speed)  
VCC = 5.0 V, VCC(I/O) = 3.3 V  
VCC = 3.3 V, VCC(I/O) = 3.3 V  
VCC = 5.0 V, VCC(I/O) = 1.8 V  
VCC = 3.3 V, VCC(I/O) = 1.8 V  
ICC  
ICC(I/O)  
90 mA  
77 mA  
82 mA  
77 mA  
<10 µA  
<10 µA  
<10 µA  
<10 µA  
110 mA  
97 mA  
102 mA  
97 mA  
<10 µA  
<10 µA  
<10 µA  
<10 µA  
130 mA  
117 mA  
122 mA  
117 mA  
<10 µA  
<10 µA  
<10 µA  
<10 µA  
Remark: The idle operating current, that is, when the ISP1760 is in operational  
mode—initialized and without any devices connected, is 70 mA. The additional current  
consumption on ICC is below 1 mA per port in the case of full-speed and low-speed  
devices.  
Remark: Deep-sleep suspend mode ensures the lowest power consumption when VCC is  
always supplied to the ISP1760. In this case, the suspend current is typically about  
100 µA at room temperature. The suspend current may increase if the ambient  
temperature increases. For details, see Section 7.6.  
Remark: In hybrid mode, when VCC is disconnected ICC(I/O) will be generally below  
100 µA. The average value is 60 µA to 70 µA.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
82 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
11. Limiting values  
Table 77: Absolute maximum ratings  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VCC(I/O)  
VCC(5V0)  
Ilu  
Parameter  
Conditions  
Min  
0.5  
0.5  
-
Max  
+3.6  
+5.5  
100  
Unit  
V
supply voltage  
supply voltage  
V
latch-up current  
VI < 0 or VI > VCC  
mA  
V
Vesd  
electrostatic discharge voltage  
storage temperature  
ILI < 1 µA  
4000  
40  
+4000  
+125  
Tstg  
°C  
12. Recommended operating conditions  
Table 78: Recommended operating conditions  
Symbol  
Parameter  
Conditions  
Min  
3.0  
Typ  
3.3  
1.8  
-
Max  
3.6  
Unit  
V
VCC(I/O)  
supply voltage  
VCC(I/O) = 3.3 V  
VCC(I/O) = 1.8 V  
1.65  
3.0  
1.95  
5.5  
V
VCC(5V0)  
Tamb  
supply voltage  
V
operating temperature  
40  
-
+85  
°C  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
83 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
13. Static characteristics  
Table 79: Static characteristics: digital pins  
Digital pins: A[17:1], DATA[31:0], CS_N, RD_N, WR_N, DACK, DREQ, IRQ, RESET_N, SUSPEND/WAKEUP_N, CLKIN,  
OC1_N, OC2_N, OC3_N.  
OC1_N, OC2_N and OC3_N are used as digital overcurrent pins; VCC(I/O) = 3.0 V to 3.6 V; Tamb = 40 °C to +85 °C; unless  
otherwise specified  
Symbol Parameter  
Conditions  
Min  
2.0  
-
Typ  
Max  
-
Unit  
V
VIH  
VIL  
HIGH-level input voltage  
-
LOW-level input voltage  
hysteresis voltage  
-
0.8  
0.7  
0.4  
-
V
Vhys  
VOL  
VOH  
IIL  
0.4  
-
-
V
LOW-level output voltage  
HIGH-level output voltage  
input leakage current  
input pin capacitance  
IOL = 3 mA  
-
V
2.4  
-
-
V
0 < VIN <VCC(I/O)  
-
1
µA  
pF  
CIN  
-
2.75  
-
Table 80: Static characteristics: digital pins  
Digital pins: A[17:1], DATA[31:0], CS_N, RD_N, WR_N, DACK, DREQ, IRQ, RESET_N, SUSPEND/WAKEUP_N, CLKIN,  
OC1_N, OC2_N, OC3_N.  
OC1_N, OC2_N and OC3_N are used as digital overcurrent pins; VCC(I/O) = 1.65 V to 1.95 V; Tamb = 40 °C to +85 °C;  
unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
VIH  
VIL  
HIGH-level input voltage  
1.2  
-
-
LOW-level input voltage  
hysteresis voltage  
-
-
0.5  
V
Vhys  
VOL  
VOH  
IIL  
0.4  
-
0.7  
V
LOW-level output voltage  
HIGH-level output voltage  
input leakage current  
input pin capacitance  
IOL = 3 mA  
-
-
0.22VCC(I/O)  
V
0.8VCC(I/O)  
-
-
V
0 < VIN <VCC(I/O)  
-
-
-
1
-
µA  
pF  
CIN  
2.75  
Table 81: Static characteristics: PSW1_N, PSW2_N, PSW3_N  
VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
0.4  
-
Unit  
V
VOL  
VOH  
LOW-level output voltage IOL = 8 mA, pull-up to VCC(5V0)  
HIGH-level output voltage pull-up to VCC(I/O)  
-
-
-
VCC(I/O)  
V
Table 82: Static characteristics: USB interface block (pins DM1 to DM3 and DP1 to DP3)  
VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Input levels for high-speed  
VHSSQ  
VHSDSC  
VHSCM  
squelch detection threshold  
(differential signal amplitude)  
squelch detected  
-
-
-
-
-
-
100  
-
mV  
mV  
mV  
mV  
mV  
no squelch detected  
150  
625  
-
disconnect detection threshold disconnect detected  
(differential signal amplitude)  
-
disconnect not detected  
525  
+500  
data signaling common mode  
voltage range  
50  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
84 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 82: Static characteristics: USB interface block (pins DM1 to DM3 and DP1 to DP3)…continued  
VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Output levels for high-speed  
VHSOI  
idle state  
10  
-
-
-
-
+10  
440  
+10  
1100  
mV  
mV  
mV  
mV  
VHSOH  
VHSOL  
VCHIRPJ  
data signaling HIGH  
data signaling LOW  
360  
10  
700[1]  
Chirp J level (differential  
voltage)  
VCHIRPK Chirp K level (differential  
voltage)  
900[1]  
-
500  
mV  
Input levels for full-speed and low-speed  
VIH  
HIGH-level input voltage (drive)  
2.0  
2.7  
-
-
-
V
V
VIHZ  
HIGH-level input voltage  
(floating)  
3.6  
VIL  
LOW-level input voltage  
-
-
-
-
0.8  
-
V
V
V
VDI  
VCM  
differential input sensitivity  
differential common mode range  
|VDP VDM  
|
0.2  
0.8  
2.5  
Output levels for full-speed and low-speed  
VOH  
HIGH-level output voltage  
LOW-level output voltage  
SEI  
2.8  
0
-
-
-
-
3.6  
0.3  
-
V
V
V
V
VOL  
VOSEI  
VCRS  
0.8  
1.3  
output signal crossover point  
voltage  
2.0  
[1] The HS termination resistor is disabled, and the pull-up resistor is connected. Only during reset, when both the hub and the device are  
capable of the high-speed operation.  
Table 83: Static characteristics: REF5V  
VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIH  
HIGH-level input voltage  
-
5
-
V
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
85 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
14. Dynamic characteristics  
Table 84: Dynamic characteristics: system clock timing  
Symbol Parameter  
Crystal oscillator  
Conditions  
Min  
Typ  
Max  
Unit  
fclk  
clock frequency[1]  
crystal[2]  
oscillator  
-
-
12  
12  
-
-
MHz  
MHz  
External clock input  
J
external clock jitter  
-
-
-
-
-
500  
ps  
%
V
δ
clock duty cycle  
amplitude  
50  
1.8  
-
-
Vclk  
-
tCR, tCF rise time and fall time  
3
ns  
[1] Recommended accuracy of the clock frequency is 50 ppm for the crystal and oscillator. The oscillator used depends on VCC(I/O)  
[2] Recommended values for external capacitors when using a crystal are 22 pF to 27 pF.  
.
Table 85: Dynamic characteristics: CPU interface block  
VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
SR output slew rate (rise, fall)  
Conditions  
Min  
Typ  
Max  
Unit  
standard load  
1
-
4
V/ns  
Table 86: Dynamic characteristics: high-speed source electrical characteristics  
VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Driver characteristics  
Conditions  
Min  
Typ  
Max  
Unit  
tHSR  
tHSF  
high-speed differential rise time  
high-speed differential fall time  
10 % to 90 %  
90 % to 10 %  
500  
500  
40.5  
-
-
ps  
ps  
-
-
ZHSDRV drive output resistance (this also includes the RS resistor  
45  
49.5  
serves as a high-speed  
termination)  
Clock timing  
tHSDRAT data rate  
tHSFRAM microframe interval  
479.76  
124.9375  
1
-
-
-
480.24  
Mbit/s  
µs  
125.0625  
tHSRFI  
consecutive microframe interval  
difference  
four  
high-speed  
bit times  
ns  
Table 87: Dynamic characteristics: full-speed source electrical characteristics  
VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Driver characteristics  
Conditions  
Min  
Typ  
Max  
Unit  
tFR  
rise time  
CL = 50 pF; 10 % to 90 % of  
4
-
-
-
20  
ns  
ns  
%
|VOH VOL  
CL = 50 pF; 90 % to 10 % of  
|VOH VOL  
|
tFF  
fall time  
4
20  
|
tFRFM  
differential rise and fall time  
matching  
90  
111.1  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
86 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
Table 87: Dynamic characteristics: full-speed source electrical characteristics…continued  
VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
ZDRV driver output resistance for  
Conditions  
Min  
Typ  
Max  
Unit  
28  
-
44  
the driver that is not  
high-speed capable  
Data timing: see Figure 11  
tFDEOP  
source jitter for differential full-speed timing  
transition to SEO transition  
2  
-
+5  
ns  
tFEOPT  
tFEOPR  
source SE0 interval of EOP  
160  
82  
-
-
175  
-
ns  
ns  
receiver SE0 interval of  
EOP  
tLDEOP  
source jitter for differential low-speed timing  
transition to SEO transition  
40  
-
+100  
ns  
tLEOPT  
tLEOPR  
source SE0 interval of EOP  
1.25  
670  
-
-
1.5  
-
µs  
receiver SE0 interval of  
EOP  
ns  
tFST  
width of SE0 interval during  
differential transaction  
-
-
14  
ns  
Table 88: Dynamic characteristics: low-speed source electrical characteristics  
VCC(I/O) = 1.65 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Driver characteristics  
Conditions  
Min  
Typ  
Max  
Unit  
tLR  
rise time  
fall time  
75  
75  
90  
-
-
-
300  
300  
125  
ns  
ns  
%
tLF  
tLRFM  
differential rise and fall time  
matching  
T
PERIOD  
+3.3 V  
crossover point  
extended  
crossover point  
differential  
data lines  
0 V  
differential data to  
SE0/EOP skew  
N × T + t  
source EOP width: t  
EOPT  
receiver EOP width: t  
EOPR  
mgr776  
PERIOD  
DEOP  
TPERIOD is the bit duration corresponding with the USB data rate.  
Full-speed timing symbols have a subscript prefix ‘F’, low-speed timing symbols have a prefix ‘L.  
Fig 11. USB source differential data-to-EOP transition skew and EOP width.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
87 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
14.1 PIO timing  
14.1.1 Register or memory write  
t
h31  
A[17:1]  
address 01  
address 02  
t
su21  
t
h21  
CS_N  
t
su31  
t
w11  
WR_N  
T
t
cy11  
su11  
t
h11  
DATA  
data 01  
data 02  
004aaa527  
Fig 12. Register or memory write.  
Table 89: Register or memory write  
VCC(I/O) = 1.65 V to 1.95 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
th11  
Parameter  
Min  
2
Max  
Unit  
data hold after WR_N HIGH  
CS_N hold after WR_N HIGH  
address hold after WR_N HIGH  
WR_N pulse width  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
th21  
1
th31  
2
tw11  
17  
36  
5
Tcy11  
tsu11  
tsu21  
tsu31  
WR_N to WR_N cycle time  
data set up time before WR_N HIGH  
address set up time before WR_N HIGH  
CS_N set up time before WR_N HIGH  
5
5
Table 90: Register or memory write  
VCC(I/O) = 3.3 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
th11  
Parameter  
Min  
2
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
data hold after WR_N HIGH  
CS_N hold after WR_N HIGH  
address hold after WR_N HIGH  
WR_N pulse width  
-
-
-
-
-
-
-
-
th21  
1
th31  
2
tw11  
17  
36  
5
Tcy11  
tsu11  
tsu21  
tsu31  
WR_N to WR_N cycle time  
data set up time before WR_N HIGH  
address set up time before WR_N HIGH  
CS_N set up time before WR_N HIGH  
5
5
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
88 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
14.1.2 Register read  
t
su12  
A[17:1]  
address 01  
address 02  
t
su22  
CS_N  
RD_N  
t
d22  
t
w12  
T
cy12  
DATA  
004aaa524  
t
d12  
Fig 13. Register read.  
Table 91: Register read  
VCC(I/O) = 1.65 V to 1.95 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
tsu12  
tsu22  
tw12  
Parameter  
Min  
0
Max  
Unit  
ns  
address set up time before RD_N LOW  
CS_N set up time before RD_N LOW  
RD_N pulse width  
-
0
-
ns  
td12  
-
-
ns  
td12  
data valid time after RD_N LOW  
data valid time after RD_N HIGH  
read-to-read cycle time  
35  
1
-
ns  
td22  
-
ns  
Tcy12  
40  
ns  
Table 92: Register read  
VCC(I/O) = 3.3 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
tsu12  
tsu22  
tw12  
Parameter  
Min  
0
Max  
Unit  
ns  
address set up time before RD_N LOW  
CS_N set up time before RD_N LOW  
RD_N pulse width  
-
0
-
ns  
td12  
-
-
ns  
td12  
data valid time after RD_N LOW  
data valid time after RD_N HIGH  
read-to-read cycle time  
22  
1
-
ns  
td22  
-
ns  
Tcy12  
36  
ns  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
89 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
14.1.3 Memory read  
A[17:1]  
DATA  
address = 33C  
data  
address 1  
address 2  
address 3  
data 3  
t
su23  
data 1  
data 2  
CS_N  
t
t
d13  
WR_N  
t
p13  
d23  
RD_N  
004aaa523  
T
cy13  
t
w13  
t
su13  
Fig 14. Memory read.  
Table 93: Memory read  
VCC(I/O) = 1.65 V to 1.95 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
tp13  
Parameter  
Min  
90  
40  
-
Max  
Unit  
ns  
initial prefetch time  
-
Tcy13  
td13  
memory RD_N cycle time  
data valid time after RD_N LOW  
data available time after RD_N HIGH  
RD_N pulse width  
-
ns  
31  
1
ns  
td23  
-
ns  
tw13  
td13  
0
ns  
tsu13  
tsu23  
CS_N setup time before RD_N LOW  
address setup time before RD_N LOW  
-
-
ns  
0
ns  
Table 94: Memory read  
VCC(I/O) = 3.3 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
tp13  
Parameter  
Min  
90  
36  
-
Max  
Unit  
ns  
initial prefetch time  
-
Tcy13  
td13  
memory RD_N cycle time  
data valid time after RD_N LOW  
data available time after RD_N HIGH  
RD_N pulse width  
-
ns  
20  
1
ns  
td23  
-
ns  
tw13  
td13  
0
ns  
tsu13  
tsu23  
CS_N setup time before RD_N LOW  
address setup time before RD_N LOW  
-
-
ns  
0
ns  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
90 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
14.2 DMA timing  
In the following sections:  
Polarity of DACK is active HIGH  
Polarity of DREQ is active HIGH.  
14.2.1 Single cycle: DMA read  
t
a44  
DREQ  
DACK  
RD_N  
DATA  
t
t
a34  
a14  
t
w14  
td14  
t
a24  
004aaa530  
Fig 15. DMA read (single cycle).  
Table 95: DMA read (single cycle)  
VCC(I/O) = 1.65 V to 1.95 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
ta14  
Parameter  
Min  
0
Max  
Unit  
ns  
DACK assertion time after DREQ assertion  
RD_N assertion time after DACK assertion  
data valid time after RD_N assertion  
RD_N pulse width  
-
ta24  
0
-
ns  
td14  
-
24  
-
ns  
tw14  
td14  
23  
ns  
ta34  
DREQ deassertion time after RD_N assertion  
-
ns  
ta44  
DREQ deassertion to next DREQ assertion time -  
56  
ns  
Table 96: DMA read (single cycle)  
VCC(I/O) = 3.3 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
ta14  
Parameter  
Min  
0
Max  
Unit  
ns  
DACK assertion time after DREQ assertion  
RD_N assertion time after DACK assertion  
data valid time after RD_N assertion  
RD_N pulse width  
-
ta24  
0
-
ns  
td14  
-
20  
-
ns  
tw14  
td14  
11  
ns  
ta34  
DREQ deassertion time after RD_N assertion  
-
ns  
ta44  
DREQ deassertion to next DREQ assertion time -  
56  
ns  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
91 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
14.2.2 Single cycle: DMA write  
t
cy15  
DREQ  
DACK  
t
t
a15  
a35  
t
w15  
t
t
a25  
h25  
t
su15  
WR_N  
DATA  
t
h15  
data  
data 1  
004aaa525  
DREQ and DACK are active HIGH.  
Fig 16. DMA write (single cycle).  
Table 97: DMA write (single cycle)  
VCC(I/O) = 1.65 V to 1.95 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Min  
0
Max  
Unit  
ns  
ta15  
ta25  
th15  
th25  
tsu15  
ta35  
tcy15  
DACK assertion time after DREQ assertion  
-
-
-
-
-
-
-
WR_N assertion time after DACK assertion  
data hold time after WR_N deassertion  
DACK hold time after WR_N deassertion  
data set-up time before WR_N deassertion  
DREQ deassertion time after WR_N assertion  
1
ns  
3
ns  
0
ns  
5.5  
22  
82  
ns  
ns  
last DACK strobe deassertion to next DREQ  
assertion time  
ns  
tw15  
WR_N pulse width  
22  
-
ns  
Table 98: DMA write (single cycle)  
VCC(I/O) = 3.3 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Min  
0
Max  
Unit  
ns  
ta15  
ta25  
th15  
th25  
tsu15  
ta35  
tcy15  
DACK assertion time after DREQ assertion  
-
-
-
-
-
-
-
WR_N assertion time after DACK assertion  
data hold time after WR_N deassertion  
DACK hold time after WR_N deassertion  
data set-up time before WR_N deassertion  
DREQ deassertion time after WR_N assertion  
1
ns  
2
ns  
0
ns  
5.5  
8.9  
82  
ns  
ns  
last DACK strobe deassertion to next DREQ  
assertion time  
ns  
tw15  
WR_N pulse width  
22  
-
ns  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
92 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
14.2.3 Multicycle: DMA read  
t
t
a46  
a36  
DREQ  
DACK  
t
a16  
t
T
a26  
cy16  
t
w16  
RD_N  
DATA  
t
d16  
data n-1  
data n  
data 1  
data 0  
004aaa531  
DREQ and DACK are active HIGH.  
Fig 17. DMA read (multicycle burst).  
Table 99: DMA read (multicycle burst)  
VCC(I/O) = 1.65 V to 1.95 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Min  
0
Max  
Unit  
ns  
ta16  
ta26  
td16  
tw16  
Tcy16  
ta36  
DACK assertion after DREQ assertion time  
-
RD_N assertion after DACK assertion time  
data valid time after RD_N assertion  
RD_N pulse width  
0
-
ns  
-
31  
-
ns  
td16  
40  
20  
ns  
read-to-read cycle time  
-
ns  
DREQ deassertion time after last burst RD_N  
deassertion  
-
ns  
ta46  
DACK deassertion to next DREQ assertion time -  
82  
ns  
Table 100: DMA read (multicycle burst)  
VCC(I/O) = 3.3 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Min  
0
Max  
Unit  
ns  
ta16  
ta26  
td16  
tw16  
Tcy16  
ta36  
DACK assertion after DREQ assertion time  
-
RD_N assertion after DACK assertion time  
data valid time after RD_N assertion  
RD_N pulse width  
0
-
ns  
-
16  
-
ns  
td16  
36  
11  
ns  
read-to-read cycle time  
-
ns  
DREQ deassertion time after last burst RD_N  
deassertion  
-
ns  
ta46  
DACK deassertion to next DREQ assertion time -  
82  
ns  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
93 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
14.2.4 Multicycle: DMA write  
t
a57  
DREQ  
DACK  
WR_N  
DATA  
t
a17  
t
h27  
t
t
T
a37  
su17  
cy17  
t
w17  
t
a47  
t
a27  
t
h17  
data n-1  
data 1  
data 2  
data n  
004aaa526  
Fig 18. DMA write (multicycle burst).  
Table 101: DMA write (multicycle burst)  
VCC(I/O) = 1.65 V to 1.95 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Min  
51  
5
Max  
Unit  
ns  
Tcy17  
tsu17  
th17  
DMA write cycle time  
-
-
-
-
-
-
data setup time before WR_N deassertion  
data hold time after WR_N deassertion  
DACK assertion time after DREQ assertion  
WR_N assertion time after DACK assertion  
ns  
2
ns  
ta17  
0
ns  
ta27  
2
ns  
ta37  
DREQ deassertion time at last strobe (WR_N)  
assertion  
20  
ns  
th27  
ta47  
tw17  
ta57  
DACK hold time after WR_N deassertion  
strobe deassertion to next strobe assertion time  
WR_N pulse width  
0
-
ns  
ns  
ns  
ns  
34  
17  
-
-
-
DACK deassertion to next DREQ assertion time  
82  
Table 102: DMA write (multicycle burst)  
VCC(I/O) = 3.3 V to 3.6 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol Parameter  
Min  
51  
5
Max  
Unit  
ns  
Tcy17  
tsu17  
th17  
DMA write cycle time  
-
-
-
-
-
-
data setup time before WR_N deassertion  
data hold time after WR_N deassertion  
DACK assertion time after DREQ assertion  
WR_N assertion time after DACK assertion  
ns  
2
ns  
ta17  
0
ns  
ta27  
1
ns  
ta37  
DREQ deassertion time at last strobe (WR_N)  
assertion  
0
ns  
th27  
ta47  
tw17  
ta57  
DACK hold time after WR_N deassertion  
strobe deassertion to next strobe assertion time  
WR_N pulse width  
0
-
ns  
ns  
ns  
ns  
34  
17  
-
-
-
DACK deassertion to next DREQ assertion time  
82  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
94 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
15. Package outline  
LQFP128: plastic low profile quad flat package; 128 leads; body 14 x 20 x 1.4 mm  
SOT425-1  
y
X
A
102  
103  
65  
64  
Z
E
e
H
A
E
2
A
E
(A )  
3
A
1
θ
w M  
p
L
L
p
b
pin 1 index  
detail X  
39  
38  
128  
1
v
M
A
Z
w M  
D
b
p
e
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 20.1 14.1  
0.17 0.09 19.9 13.9  
22.15 16.15  
21.85 15.85  
0.75  
0.45  
0.81 0.81  
0.59 0.59  
mm  
1.6  
0.25  
1
0.2 0.12 0.1  
0.5  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-20  
SOT425-1  
136E28  
MS-026  
Fig 19. Package outline (LQFP128).  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
95 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
16. Soldering  
16.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
16.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
16.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
96 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 to 4 seconds at 250 °C or  
265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
16.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 to 5 seconds between 270 and 320 °C.  
16.5 Package related soldering information  
Table 103: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, USON, VFBGA  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
97 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
17. Abbreviations  
Table 104: Abbreviations  
Acronym  
ATL  
Description  
Acknowledged Transfer List  
Direct Memory Access  
Digital Still Camera  
DMA  
DSC  
EHCI  
EMI  
Enhanced Host Controller Interface  
Electro-Magnetic Interference  
full-speed  
FS  
HC  
Host Controller  
HS  
high-speed  
INT  
INTerrupt  
ISO  
isochronous  
iTD  
isochronous Transfer Descriptor  
Isochronous (ISO) Transfer List  
low-speed  
ITL  
LS  
OHCI  
PDA  
PLL  
Open Host Controller Interface  
Personal Digital Assistant  
Phase-Locked Loop  
PIO  
Programmed Input/Output  
Philips Transfer Descriptor  
Queue Head Asynchronous  
Queue Head Periodic  
PTD  
QHA  
QHP  
QHA-SS/SC  
SiTD  
TT  
Queue Head Asynchronous-Start Split/Start Complete  
Split isochronous Transfer Descriptor  
Transaction Translator  
UHCI  
USB  
Universal Host Controller Interface  
Universal Serial Bus  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
98 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
18. References  
[1] Universal Serial Bus Specification Rev. 2.0  
[2] Enhanced Host Controller Interface Specification for Universal Serial Bus Rev. 1.0  
[3] On-The-Go Supplement to the USB Specification Rev. 1.0a  
[4] Embedded Systems Design with the ISP176x (AN10043)  
[5] ISP176x Linux Programming Guide (AN10042)  
[6] Interfacing the ISP76x to the Intel® PXA250 Processor (AN10037).  
19. Revision history  
Table 105: Revision history  
Document ID  
Release date Data sheet status  
20041108 Product data sheet  
Change notice Doc. number  
9397 750 13257  
Supersedes  
ISP1760_1  
-
-
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
99 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
20. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
21. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
23. Trademarks  
Intel — is a registered trademark of Intel Corporation.  
22. Disclaimers  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
24. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
100 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
25. Tables  
Table 1: Ordering information . . . . . . . . . . . . . . . . . . . . .3  
Table 2: Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Table 3: Memory address . . . . . . . . . . . . . . . . . . . . . . .15  
Table 4: Using the IRQ Mask AND or IRQ Mask OR  
Table 48: DMA Start Address register: bit allocation . . . 46  
Table 49: DMA Start Address register: bit description . . 46  
Table 50: Power Down Control register: bit allocation . . 47  
Table 51: Power Down Control register: bit description . 47  
Table 52: Port 1 Control register: bit allocation . . . . . . . . 49  
Table 53: Port 1 Control register: bit description . . . . . . . 49  
Table 54: Interrupt register: bit allocation . . . . . . . . . . . . 50  
Table 55: Interrupt register: bit description . . . . . . . . . . . 50  
Table 56: Interrupt Enable register: bit allocation . . . . . . 51  
Table 57: Interrupt Enable register: bit description . . . . . 52  
Table 58: ISO IRQ Mask OR register: bit description . . . 53  
Table 59: INT IRQ Mask OR register: bit description . . . 53  
Table 60: ATL IRQ Mask OR register: bit description . . . 54  
Table 61: ISO IRQ Mask AND register: bit description . . 54  
Table 62: INT IRQ Mask AND register: bit description . . 54  
Table 63: ATL IRQ Mask AND register: bit description . . 55  
Table 64: High-speed bulk IN and OUT, QHA: bit  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 65: High-speed bulk IN and OUT, QHA: bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 66: High-speed isochronous IN and OUT, iTD: bit  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 67: High-speed isochronous IN and OUT, iTD: bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 68: High-speed interrupt IN and OUT, QHP: bit  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 69: High-speed interrupt IN and OUT, QHP: bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Table 70: Start and complete split for bulk, QHASS/SC: bit  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Table 5: Register overview . . . . . . . . . . . . . . . . . . . . . .27  
Table 6: CAPLENGTH register: bit description . . . . . . .28  
Table 7: HCIVERSION register: bit description . . . . . . .28  
Table 8: HCSPARAMS register: bit allocation . . . . . . . .28  
Table 9: HCSPARAMS register: bit description . . . . . . .29  
Table 10: HCCPARAMS register: bit allocation . . . . . . . .29  
Table 11: HCCPARAMS register: bit description . . . . . . .30  
Table 12: USBCMD register: bit allocation . . . . . . . . . . .31  
Table 13: USBCMD register: bit description . . . . . . . . . .31  
Table 14: USBSTS register: bit allocation . . . . . . . . . . . .32  
Table 15: USBSTS register: bit description . . . . . . . . . . .32  
Table 16: USBINTR register: bit allocation . . . . . . . . . . .32  
Table 17: USBINTR register: bit description . . . . . . . . . .33  
Table 18: FRINDEX register: bit allocation . . . . . . . . . . .33  
Table 19: FRINDEX register: bit description . . . . . . . . . .34  
Table 20: CONFIGFLAG register: bit allocation . . . . . . .34  
Table 21: CONFIGFLAG register: bit description . . . . . .35  
Table 22: PORTSC1 register: bit allocation . . . . . . . . . . .35  
Table 23: PORTSC1 register: bit description . . . . . . . . . .36  
Table 24: ISO PTD Done Map register: bit description . .37  
Table 25: ISO PTD Skip Map register: bit description . . .37  
Table 26: ISO PTD Last PTD register: bit description . . .37  
Table 27: INT PTD Done Map register: bit description . .37  
Table 28: INT PTD Skip Map register: bit description . . .38  
Table 29: INT PTD Last PTD register: bit description . . .38  
Table 30: ATL PTD Done Map register: bit description . .38  
Table 31: ATL PTD Skip Map register: bit description . . .39  
Table 32: ATL PTD Last PTD register: bit description . . .39  
Table 33: HW Mode Control register: bit allocation . . . . .39  
Table 34: HW Mode Control register: bit description . . . .40  
Table 35: Chip ID register: bit description . . . . . . . . . . . .41  
Table 36: Scratch register: bit description . . . . . . . . . . . .41  
Table 37: SW Reset register: bit allocation . . . . . . . . . . .41  
Table 38: SW Reset register: bit description . . . . . . . . . .42  
Table 39: DMA Configuration register: bit allocation . . . .42  
Table 40: DMA Configuration register: bit description . . .43  
Table 41: Buffer Status register: bit allocation . . . . . . . . .43  
Table 42: Buffer Status register: bit description . . . . . . . .44  
Table 43: ATL Done Timeout register: bit description . . .44  
Table 44: Memory register: bit allocation . . . . . . . . . . . . .44  
Table 45: Memory register: bit description . . . . . . . . . . .45  
Table 46: Edge Interrupt Count register: bit allocation . .45  
Table 47: Edge Interrupt Count register: bit description .46  
Table 71: Start and complete split for bulk, QHASS/SC: bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Table 72: Start and complete split for isochronous, SiTD: bit  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Table 73: Start and complete split for isochronous, SiTD: bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Table 74: Start and complete split for interrupt: bit  
allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Table 75: Start and complete split for interrupt: bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Table 76: Power consumption . . . . . . . . . . . . . . . . . . . . . 82  
Table 77: Absolute maximum ratings . . . . . . . . . . . . . . . 83  
Table 78: Recommended operating conditions . . . . . . . . 83  
Table 79: Static characteristics: digital pins . . . . . . . . . . 84  
Table 80: Static characteristics: digital pins . . . . . . . . . . 84  
Table 81: Static characteristics: PSW1_N, PSW2_N,  
PSW3_N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Table 82: Static characteristics: USB interface block (pins  
continued >>  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
101 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
DM1 to DM3 and DP1 to DP3) . . . . . . . . . . . .84  
Table 83: Static characteristics: REF5V . . . . . . . . . . . . .85  
Table 84: Dynamic characteristics: system clock timing .86  
Table 85: Dynamic characteristics: CPU interface block .86  
Table 86: Dynamic characteristics: high-speed source  
electrical characteristics . . . . . . . . . . . . . . . . .86  
Table 87: Dynamic characteristics: full-speed source  
electrical characteristics . . . . . . . . . . . . . . . . .86  
Table 88: Dynamic characteristics: low-speed source  
electrical characteristics . . . . . . . . . . . . . . . . .87  
Table 89: Register or memory write . . . . . . . . . . . . . . . .88  
Table 90: Register or memory write . . . . . . . . . . . . . . . .88  
Table 91: Register read . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Table 92: Register read . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Table 93: Memory read . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Table 94: Memory read . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Table 95: DMA read (single cycle) . . . . . . . . . . . . . . . . . .91  
Table 96: DMA read (single cycle) . . . . . . . . . . . . . . . . . .91  
Table 97: DMA write (single cycle) . . . . . . . . . . . . . . . . .92  
Table 98: DMA write (single cycle) . . . . . . . . . . . . . . . . .92  
Table 99: DMA read (multicycle burst) . . . . . . . . . . . . . .93  
Table 100:DMA read (multicycle burst) . . . . . . . . . . . . . .93  
Table 101:DMA write (multicycle burst) . . . . . . . . . . . . . .94  
Table 102:DMA write (multicycle burst) . . . . . . . . . . . . . .94  
Table 103:Suitability of surface mount IC packages for wave  
and reflow soldering methods . . . . . . . . . . . . .97  
Table 104:Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . .98  
Table 105:Revision history . . . . . . . . . . . . . . . . . . . . . . . .99  
continued >>  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
102 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
26. Figures  
Fig 1. Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Fig 2. Pin configuration (LQFP128). . . . . . . . . . . . . . . . .5  
Fig 3. Internal hub.. . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Fig 4. Memory segmentation and access block  
diagram.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Fig 5. Adjusting analog overcurrent detection limit  
(optional).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Fig 6. ISP1760 power supply connection. . . . . . . . . . . .24  
Fig 7. Most commonly used power supply connection. .25  
Fig 8. Internal power-on reset timing. . . . . . . . . . . . . . .25  
Fig 9. Clock with respect to the external power-on  
reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Fig 10. NextPTD traversal rule. . . . . . . . . . . . . . . . . . . . .57  
Fig 11. USB source differential data-to-EOP transition skew  
and EOP width. . . . . . . . . . . . . . . . . . . . . . . . . . .87  
Fig 12. Register or memory write. . . . . . . . . . . . . . . . . . .88  
Fig 13. Register read. . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
Fig 14. Memory read.. . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Fig 15. DMA read (single cycle). . . . . . . . . . . . . . . . . . . .91  
Fig 16. DMA write (single cycle). . . . . . . . . . . . . . . . . . . .92  
Fig 17. DMA read (multicycle burst). . . . . . . . . . . . . . . . .93  
Fig 18. DMA write (multicycle burst). . . . . . . . . . . . . . . . .94  
Fig 19. Package outline (LQFP128). . . . . . . . . . . . . . . . .95  
continued >>  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
103 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
27. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
8.2.10  
8.2.11  
8.2.12  
8.2.13  
8.2.14  
8.2.15  
8.2.16  
8.3  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
8.3.6  
8.3.7  
8.3.8  
8.3.9  
8.3.10  
8.3.11  
8.3.12  
8.4  
ISO PTD Last PTD register (R/W: 0138h) . . . 37  
INT PTD Done Map register (R: 0140h). . . . . 37  
INT PTD Skip Map register (R/W: 0144h) . . . 38  
INT PTD Last PTD register (R/W: 0148h) . . . 38  
ATL PTD Done Map register (R: 0150h) . . . . 38  
ATL PTD Skip Map register (R/W: 0154h) . . . 38  
ATL PTD Last PTD register (R/W: 0158h) . . . 39  
Configuration registers. . . . . . . . . . . . . . . . . . 39  
HW Mode Control register (R/W: 0300h) . . . . 39  
Chip ID register (R: 0304h) . . . . . . . . . . . . . . 41  
Scratch register (R/W: 0308h) . . . . . . . . . . . . 41  
SW Reset register (R/W: 030Ch). . . . . . . . . . 41  
DMA Configuration register (R/W: 0330h) . . . 42  
Buffer Status register (R/W: 0334h) . . . . . . . . 43  
ATL Done Timeout register (R/W: 0338h) . . . 44  
Memory register (R/W: 033Ch) . . . . . . . . . . . 44  
Edge Interrupt Count register (R/W: 0340h) . 45  
DMA Start Address register (W: 0344h) . . . . 46  
Power Down Control register (R/W: 0354h) . . 46  
Port 1 Control register (R/W: 0374h) . . . . . . . 48  
Interrupt registers. . . . . . . . . . . . . . . . . . . . . . 50  
Interrupt register (R/W: 0310h) . . . . . . . . . . . 50  
Interrupt Enable register (R/W: 0314h) . . . . . 51  
ISO IRQ Mask OR register (R/W: 0318h) . . . 53  
INT IRQ Mask OR register (R/W: 031Ch) . . . 53  
ATL IRQ Mask OR register (R/W: 0320h) . . . 53  
ISO IRQ Mask AND register (R/W: 0324h) . . 54  
INT IRQ Mask AND register (R/W: 0328h) . . 54  
ATL IRQ Mask AND register (R/W: 032Ch) . . 54  
2
3
3.1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Examples of a multitude of possible  
applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
4
5
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
7
7.1  
Functional description . . . . . . . . . . . . . . . . . . 12  
ISP1760 internal architecture: Advanced Philips  
Slave Host Controller and hub . . . . . . . . . . . . 12  
Host Controller buffer memory block . . . . . . . 13  
General considerations. . . . . . . . . . . . . . . . . . 13  
Structure of the ISP1760 Host Controller  
memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Accessing the ISP1760 Host Controller memory:  
PIO and DMA . . . . . . . . . . . . . . . . . . . . . . . . . 16  
PIO mode access—memory read cycle . . . . . 17  
PIO mode access—memory write cycle. . . . . 17  
PIO mode access—register read cycle . . . . . 18  
PIO mode access—register write cycle . . . . . 18  
DMA—read and write operations . . . . . . . . . . 18  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Phase-Locked Loop (PLL) clock multiplier . . . 21  
Power management . . . . . . . . . . . . . . . . . . . . 22  
Overcurrent detection . . . . . . . . . . . . . . . . . . . 23  
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Power-on reset (POR) . . . . . . . . . . . . . . . . . . 25  
7.2  
7.2.1  
7.2.2  
7.3  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.4  
7.5  
7.6  
7.7  
7.8  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.4.6  
8.4.7  
8.4.8  
9
9.1  
Philips Transfer Descriptor. . . . . . . . . . . . . . . 55  
High-speed bulk IN and OUT, Queue Head  
Asynchronous (QHA) (patent-pending) . . . . . 58  
High-speed isochronous IN and OUT,  
7.9  
8
8.1  
Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
EHCI capability registers . . . . . . . . . . . . . . . . 28  
CAPLENGTH register (R: 0000h). . . . . . . . . . 28  
HCIVERSION register (R: 0002h) . . . . . . . . . 28  
HCSPARAMS register (R: 0004h) . . . . . . . . . 28  
HCCPARAMS register (R: 0008h) . . . . . . . . . 29  
EHCI operational registers . . . . . . . . . . . . . . . 30  
USBCMD register (R/W: 0020h). . . . . . . . . . . 30  
USBSTS register (R/W: 0024h) . . . . . . . . . . . 31  
USBINTR register (R/W: 0028h). . . . . . . . . . . 32  
FRINDEX register (R/W: 002Ch) . . . . . . . . . . 33  
CTRLDSSEGMENT register (R/W: 0030h) . . 34  
CONFIGFLAG register (R/W: 0060h). . . . . . . 34  
PORTSC1 register (R/W: 0064h) . . . . . . . . . . 35  
ISO PTD Done Map register (R: 0130h). . . . . 36  
ISO PTD Skip Map register (R/W: 0134h) . . . 37  
9.2  
isochronous Transfer Descriptor (iTD)  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.2  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
8.2.5  
8.2.6  
8.2.7  
8.2.8  
8.2.9  
(patent-pending). . . . . . . . . . . . . . . . . . . . . . . 62  
High-speed interrupt IN and OUT, Queue Head  
Periodic (QHP) (patent-pending) . . . . . . . . . . 66  
Start and complete split for bulk, Queue Head  
Asynchronous Start Split and Start Complete  
(QHA-SS/SC) (patent-pending) . . . . . . . . . . . 70  
Start and complete split for isochronous, Split  
isochronous Transfer Descriptor (SiTD)  
9.3  
9.4  
9.5  
9.6  
(patent-pending). . . . . . . . . . . . . . . . . . . . . . . 74  
Start and complete split for interrupt  
(patent-pending). . . . . . . . . . . . . . . . . . . . . . . 78  
10  
11  
Power consumption . . . . . . . . . . . . . . . . . . . . 82  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 83  
continued >>  
9397 750 13257  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data sheet  
Rev. 01 — 8 November 2004  
104 of 105  
ISP1760  
Philips Semiconductors  
Embedded Hi-Speed USB host controller  
12  
13  
Recommended operating conditions. . . . . . . 83  
Static characteristics. . . . . . . . . . . . . . . . . . . . 84  
14  
14.1  
Dynamic characteristics . . . . . . . . . . . . . . . . . 86  
PIO timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Register or memory write . . . . . . . . . . . . . . . . 88  
Register read . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Memory read . . . . . . . . . . . . . . . . . . . . . . . . . 90  
DMA timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Single cycle: DMA read . . . . . . . . . . . . . . . . . 91  
Single cycle: DMA write . . . . . . . . . . . . . . . . . 92  
Multicycle: DMA read . . . . . . . . . . . . . . . . . . . 93  
Multicycle: DMA write . . . . . . . . . . . . . . . . . . . 94  
14.1.1  
14.1.2  
14.1.3  
14.2  
14.2.1  
14.2.2  
14.2.3  
14.2.4  
15  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 95  
16  
16.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 96  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 96  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 97  
Package related soldering information . . . . . . 97  
16.2  
16.3  
16.4  
16.5  
17  
18  
19  
20  
21  
22  
23  
24  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 98  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 99  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 100  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Contact information . . . . . . . . . . . . . . . . . . . 100  
© Koninklijke Philips Electronics N.V. 2004  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 8 November 2004  
Document number: 9397 750 13257  
Published in The Netherlands  

相关型号:

ISP1760BE

Hi-Speed Universal Serial Bus host controller for embedded applications
NXP

ISP1760ET

Bus Controller, PBGA128,
PHILIPS

ISP1760ET-T

Hi-Speed Universal Serial Bus host controller for embedded applications - Application: printer, STB, DVD recorder, DTV, media player, PDA ; Bus interface: USB at HS (480 Mbit/s), FS (12 Mbit/s) and LS (1.5 Mbit/s) data rates ; Downstream ports: 3 ; Features: memory mapped CPU I/F to any 32-bit or16 bit I/F; Integrated patent-pending Transaction Translator supports single EHCI for HS, FS and LS transfers ; Operating/supply voltage (MAX.-Vcc,Vp,VDD): core 1.8 V; dual supply 3.0 V to 3.6 V, digital I/O I/F 1.65 V to 3.6 V V
NXP

ISP1761

Hi-Speed Universal Serial Bus On-The-Go controller
NXP

ISP1761BE

Hi-Speed Universal Serial Bus On-The-Go controller
NXP

ISP1761BE,518

IC UNIVERSAL SERIAL BUS CONTROLLER, PQFP128, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT425-1, LQFP-128, Bus Controller
NXP

ISP1761BE,551

IC UNIVERSAL SERIAL BUS CONTROLLER, PQFP128, 14 X 20 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT425-1, LQFP-128, Bus Controller
NXP

ISP1761BE-T

Hi-Speed Universal Serial Bus On-The-Go controller - Application: STB, DVD recorder, DTV, media player, printer, PDA, DSC, DVC, mobile phone ; Bus interface: USB at HS (480 Mbit/s), FS (12 Mbit/s) and LS (1.5 Mbit/s) data rates ; Downstream ports: 2 ; Features: memory mapped CPU I/F to any 32-bit or16 bit I/F; 1 OTG port; Integrated patent-pending Transaction Translator supports single EHCI for HS, FS and LS transfers ; Operating/supply voltage (MAX.-Vcc,Vp,VDD): core 1.8 V; dual supply 3.0 V to 3.6 V, digital I/O I/F 1.65 V to 3.6 V V
NXP

ISP1761ET

Hi-Speed Universal Serial Bus On-The-Go controller
NXP

ISP1761ET,518

IC UNIVERSAL SERIAL BUS CONTROLLER, PBGA128, 9 X 9 MM, 0.80 MM HEIGHT, PLASTIC, MO-195, SOT857-1, TFBGA-128, Bus Controller
NXP

ISP1761ET,551

USB Bus Controller, CMOS, PBGA128, 9 X 9 MM, 0.80 MM HEIGHT, PLASTIC, MO-195, SOT857-1, TFBGA-128
NXP

ISP1761ET-S

暂无描述
NXP