LH75411N0Q100C0,55 [NXP]

LH75411N0Q100C0SOT486-1;
LH75411N0Q100C0,55
型号: LH75411N0Q100C0,55
厂家: NXP    NXP
描述:

LH75411N0Q100C0SOT486-1

时钟 外围集成电路
文件: 总62页 (文件大小:604K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IMPORTANT NOTICE  
Dear customer,  
As from June 1st, 2007 NXP Semiconductors has acquired the LH7xxx ARM Microcontrollers from  
Sharp Microelectronics. The following changes are applicable to the attached data sheet. In data  
sheets where the previous Sharp or Sharp Corporation references remain, please use the new  
links as shown below.  
For www.sharpsma.com use www.nxp.com/microcontrollers  
for indicated sales addresses use salesaddresses@nxp.com (email)  
The copyright notice at the bottom of each page (or elsewhere in the document, depending on the  
version)  
- Copyright © (year) by SHARP Corporation.  
is replaced with:  
- © NXP B.V. (year). All rights reserved.  
If you have any questions related to the data sheet, please contact our nearest sales office via  
e-mail or phone (details via salesaddresses@nxp.com). Thank you for your cooperation and  
understanding, In addition to that the Annex A (attached hereto) is added to the document.  
NXP Semiconductors  
LH75401/LH75411  
System-on-Chip  
Product data sheet  
• JTAG Debug Interface and Boundary Scan  
• Single 3.3 V Supply  
DESCRIPTION  
The NXP BlueStreak LH75401/LH75411 family con-  
sists of two low-cost 16/32-bit System-on-Chip (SoC)  
devices.  
• 5 V Tolerant Digital I/O  
– XTALIN and XTAL32IN inputs are 1.8 V ± 10 %  
• LH75401 — contains the superset of features.  
• 144-pin LQFP Package  
• LH75411 — similar to LH75401, without CAN 2.0B.  
40C to +85C Operating Temperature  
COMMON FEATURES  
• Highly Integrated System-on-Chip  
• ARM7TDMI-S™ Core  
Unique Features of the LH75401  
• Color and Grayscale Liquid Crystal Display (LCD)  
Controller  
– 12-bit (4,096) Direct Mode Color, up to VGA  
– 8-bit (256) Direct or Palettized Color, up to SVGA  
– 4-bit (16) Direct Mode Color/Grayscale, up to XGA  
– 12-bit Video Bus  
– Supports STN, TFT, HR-TFT, and AD-TFT  
Displays.  
• High Performance (84 MHz CPU Speed)  
– Internal PLL Driven or External Clock Driven  
– Crystal Oscillator/Internal PLL Can Operate with  
Input Frequency Range of 14 MHz to 20 MHz  
• 32 kB On-chip SRAM  
– 16 kB Tightly Coupled Memory (TCM) SRAM  
– 16 kB Internal SRAM  
• CAN Controller that supports CAN version 2.0B.  
• Clock and Power Management  
Unique Features of the LH75411  
– Low Power Modes: Standby, Sleep, Stop  
• Color and Grayscale LCD Controller (LCDC)  
– 12-bit (4,096) Direct Mode Color, up to VGA  
– 8-bit (256) Direct or Palettized Color, up to SVGA  
– 4-bit (16) Direct Mode Color/Grayscale, up to XGA  
– 12-bit Video Bus  
• Eight Channel, 10-bit Analog-to-Digital Converter  
• Integrated Touch Screen Controller  
• Serial interfaces  
– Two 16C550-type UARTs supporting baud rates  
up to 921,600 baud (requires crystal frequency of  
14.756 MHz).  
– Supports STN, TFT, HR-TFT, and AD-TFT  
Displays.  
– One 82510-type UART supporting baud rates up  
to 3,225,600 baud (requires a system clock of  
70 MHz).  
• Synchronous Serial Port  
– Motorola SPI™  
– National Semiconductor Microwire™  
– Texas Instruments SSI  
• Real-Time Clock (RTC)  
• Three Counter/Timers  
– Capture/Compare/PWM Compatibility  
– Watchdog Timer (WDT)  
• Low-Voltage Detector  
Product data sheet  
1
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
ORDERING INFORMATION  
Table 1. Ordering information  
Package  
Type number  
Version  
Name  
Description  
plastic low profile quad flat package; 144 leads;  
body 20 x 20 x 1.4 mm  
LH75401N0Q100C0  
LH75411N0Q100C0  
LQFP144  
LQFP144  
SOT486-1  
SOT486-1  
plastic low profile quad flat package; 144 leads;  
body 20 x 20 x 1.4 mm  
2
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
LH75401 BLOCK DIAGRAM  
LH75401  
14 to 20 MHz 32.768 kHz  
OSCILLATOR,  
PLL, POWER  
MANAGEMENT, and  
RESET CONTROL  
REAL TIME  
CLOCK  
76-BIT GENERAL  
PURPOSE I/O  
INTERNAL  
16KB SRAM  
AHB  
INTERFACE  
ARM7TDMI-S  
I/O  
VECTORED  
INTERRUPT  
CONTROLLER  
CONFIGURATION  
TCM  
16KB SRAM  
SYNCHRONOUS  
SERIAL PORT  
4 CHANNEL  
DMA  
CONTROLLER  
TIMER (3)  
STATIC  
MEMORY  
CONTROLLER  
ADVANCED  
PERIPHERAL  
BUS BRIDGE  
WATCHDOG  
TIMER  
COLOR  
LCD  
CONTROLLER  
CAN 2.0B  
UART (3)  
BROWNOUT  
DETECTOR  
ADVANCED  
LCD  
LINEAR  
REGULATOR  
INTERFACE  
8 CHANNEL  
10-BIT ADC  
TOUCH PANEL  
INTERFACE  
ADVANCED HIGH  
ADVANCED  
PERFORMANCE  
BUS (AHB)  
PERPHERAL  
BUS (APB)  
LH75401-1  
Figure 1. LH75401 Block Diagram  
Product data sheet  
Rev. 02 19 March 2009  
3
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
LH75411 BLOCK DIAGRAM  
LH75411  
14 to 20 MHz 32.768 kHz  
OSCILLATOR,  
PLL, POWER  
MANAGEMENT, and  
RESET CONTROL  
REAL TIME  
CLOCK  
76-BIT GENERAL  
PURPOSE I/O  
INTERNAL  
16KB SRAM  
AHB  
INTERFACE  
ARM 7TDMI-S  
I/O  
VECTORED  
INTERRUPT  
CONTROLLER  
CONFIGURATION  
TCM  
16KB SRAM  
SYNCHRONOUS  
SERIAL PORT  
4 CHANNEL  
DMA  
CONTROLLER  
TIMER (3)  
STATIC  
MEMORY  
CONTROLLER  
ADVANCED  
PERIPHERAL  
BUS BRIDGE  
WATCHDOG  
TIMER  
COLOR  
LCD  
UART (3)  
CONTROLLER  
BROWNOUT  
DETECTOR  
8 CHANNEL  
10-BIT ADC  
ADVANCED  
LCD  
INTERFACE  
LINEAR  
REGULATOR  
TOUCH PANEL  
INTERFACE  
ADVANCED HIGH  
ADVANCED  
PERFORMANCE  
BUS (AHB)  
PERPHERAL  
BUS (APB)  
LH75411-1  
Figure 2. LH75411 Block Diagram  
4
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
PIN CONFIGURATION  
1
108  
LH75400/  
LH75401/  
LH75410/  
LH75411  
36  
73  
002aad207  
Figure 3. LH75401/LH75411 pin configuration  
Product data sheet  
Rev. 02 19 March 2009  
5
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
LH75401 Numerical Pin Listing  
Table 2. LH75401 Numerical Pin List  
PIN FUNCTION  
NO. AT RESET  
FUNCTION FUNCTION FUNCTION OUTPUT  
BUFFER  
BEHAVIOR DURING  
NOTES  
2
3
TYPE  
DRIVE  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
None  
8 mA  
8 mA  
None  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
TYPE  
RESET  
Pull-up  
Pull-up  
1
2
PA7  
PA6  
VDD  
PA5  
PA4  
PA3  
PA2  
VSS  
PA1  
PA0  
VDDC  
D7  
D15  
D14  
I/O  
Bidirectional  
Bidirectional  
1
1
I/O  
3
Power  
I/O  
4
D13  
D12  
D11  
D10  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
1
1
1
1
Pull-up  
Pull-up  
Pull-up  
Pull-up  
5
I/O  
6
I/O  
7
I/O  
8
Ground  
I/O  
9
D9  
D8  
Bidirectional  
Bidirectional  
1
1
Pull-up  
Pull-up  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
I/O  
Power  
I/O  
Bidirectional  
Bidirectional  
Pull-up  
Pull-up  
D6  
I/O  
VSSC  
D5  
Ground  
I/O  
Bidirectional  
Bidirectional  
Pull-up  
Pull-up  
D4  
I/O  
VDD  
D3  
Power  
I/O  
Bidirectional  
Bidirectional  
Bidirectional  
Pull-up  
Pull-up  
Pull-up  
D2  
I/O  
D1  
I/O  
21  
22  
23  
24  
25  
26  
27  
D0  
I/O  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
Bidirectional  
Output  
Pull-up  
HIGH  
nWE  
nOE  
PB5  
PB4  
VSS  
PB3  
3
Output  
HIGH  
3
nWAIT  
nBLE1  
Bidirectional  
Bidirectional  
Pull-up  
1, 3  
1, 3  
Pull-up  
Ground  
nBLE0  
nCS3  
nCS2  
nCS1  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
1, 3  
1, 3  
1, 3  
1, 3  
Pull-up  
Pull-up  
Pull-up  
Pull-up  
28  
29  
30  
PB2  
PB1  
PB0  
8 mA  
8 mA  
8 mA  
31  
32  
33  
34  
35  
36  
37  
38  
nCS0  
PC7  
PC6  
VDD  
PC5  
PC4  
PC3  
PC2  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
Output  
3
1
1
Pull-up  
A23  
A22  
Bidirectional  
Bidirectional  
Pull-down  
Pull-down  
Power  
A21  
A20  
A19  
A18  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Pull-down  
Pull-down  
Pull-down  
Pull-down  
1
1
1
1
6
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
Table 2. LH75401 Numerical Pin List (Cont’d)  
PIN FUNCTION  
NO. AT RESET  
FUNCTION FUNCTION FUNCTION OUTPUT  
BUFFER  
TYPE  
BEHAVIOR DURING  
NOTES  
2
3
TYPE  
DRIVE  
RESET  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
PC1  
PC0  
VSS  
VDD  
A15  
A17  
A16  
8 mA  
8 mA  
None  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
None  
None  
None  
None  
8 mA  
None  
None  
4 mA  
None  
8 mA  
6 mA  
6 mA  
8 mA  
None  
8 mA  
2 mA  
6 mA  
2 mA  
None  
Bidirectional  
Bidirectional  
Pull-down  
Pull-down  
1
1
Ground  
Power  
Output  
Output  
Output  
Output  
Output  
LOW  
LOW  
LOW  
LOW  
LOW  
A14  
A13  
A12  
A11  
VSS  
A10  
Ground  
Output  
Output  
Output  
Output  
Output  
LOW  
LOW  
LOW  
LOW  
LOW  
A9  
A8  
A7  
A6  
VDD  
A5  
Power  
Output  
Output  
Output  
Output  
LOW  
LOW  
LOW  
LOW  
A4  
A3  
A2  
VSS  
A1  
Ground  
Output  
Output  
Input  
LOW  
LOW  
A0  
nRESETIN  
TEST2  
TEST1  
TMS  
RTCK  
TCK  
TDI  
Pull-up  
Pull-up  
Pull-up  
Pull-up  
2, 3  
2
Input  
Input  
2
Input  
2
Output  
Input  
Input  
Pull-up  
2
TDO  
LINREGEN  
Output  
Input  
5
3
71 nRESETOUT  
Output  
Bidirectional  
Bidirectional  
Bidirectional  
72  
73  
74  
75  
76  
77  
78  
79  
80  
PD6  
PD5  
INT6  
INT5  
INT4  
DREQ  
DACK  
Pull-down  
Pull-up  
1
1, 2  
1
PD4  
UARTRX1  
VDDC  
PD3  
Power  
INT3  
INT2  
INT1  
INT0  
UARTTX1  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Pull-up  
Pull-up  
1
1
PD2  
PD1  
1, 2  
1
PD0  
VSSC  
Ground  
Product data sheet  
Rev. 02 19 March 2009  
7
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
Table 2. LH75401 Numerical Pin List (Cont’d)  
PIN FUNCTION  
NO. AT RESET  
FUNCTION FUNCTION FUNCTION OUTPUT  
BUFFER  
TYPE  
BEHAVIOR DURING  
NOTES  
2
3
TYPE  
DRIVE  
RESET  
81  
82  
nPOR  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
4 mA  
4 mA  
4 mA  
4 mA  
8 mA  
2 mA  
4 mA  
None  
4 mA  
4 mA  
4 mA  
4 mA  
4 mA  
None  
4 mA  
4 mA  
4 mA  
4 mA  
4 mA  
4 mA  
None  
8 mA  
8 mA  
8 mA  
Input  
Pull-up  
2, 3  
4
XTAL32IN  
Input  
83 XTAL32OUT  
Output  
84  
85  
86  
87  
88  
89  
VSSA_PLL  
VDDA_PLL  
XTALIN  
Ground  
Power  
Input  
4
XTALOUT  
VSSA_ADC  
AN3 (LR/Y-)  
Output  
Ground  
PJ7  
PJ6  
PJ5  
PJ4  
PJ3  
PJ2  
PJ1  
PJ0  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
90 AN4 (Wiper)  
91 AN9  
92 AN2 (LL/Y+)  
93 AN8  
94 AN1 (UR/X-)  
95 AN6  
96 AN0 (UL/X+)  
97  
VDDA_ADC  
VDD  
PE7  
PE6  
PE5  
PE4  
PE3  
PE2  
PE1  
VSS  
PE0  
PF6  
Power  
Power  
98  
99  
SSPFRM  
SSPCLK  
SSPRX  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Pull-up  
Pull-down  
Pull-up  
1
1
1
1
1
1
1
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
SSPTX  
Pull-down  
Pull-up  
CANTX  
UARTTX0  
UARTRX0  
CANRX  
UARTTX2  
Pull-up  
Pull-up  
Ground  
UARTRX2  
CTCAP2B  
CTCAP2A  
CTCAP1B  
CTCAP1A  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Pull-up  
1
2
CTCMP2B  
CTCMP2A  
CACMP1B  
CTCMP1A  
PF5  
PF4  
2
PF3  
VDD  
PF2  
Power  
CTCAP0E  
CTCAP0D  
CTCAP0C  
CTCAP0B  
CTCAP0A  
CTCLK  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
2
2
2
PF1  
PF0  
PG7  
PG6  
PG5  
VSS  
PG4  
PG3  
PG2  
CTCMP0B  
CTCMP0A  
Ground  
LCDVEEEN  
LCDVDDEN  
LCDMOD  
Bidirectional  
Bidirectional  
Bidirectional  
LCDDSPLEN LCDREV  
8
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
Table 2. LH75401 Numerical Pin List (Cont’d)  
PIN FUNCTION  
NO. AT RESET  
FUNCTION FUNCTION FUNCTION OUTPUT  
BUFFER  
TYPE  
BEHAVIOR DURING  
RESET  
NOTES  
2
3
TYPE  
DRIVE  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
PG1  
PG0  
PH7  
VDD  
VSS  
PH6  
PH5  
PH4  
PH3  
PH2  
PH1  
VDD  
PH0  
PI7  
LCDCLS  
LCDPS  
8 mA  
8 mA  
8 mA  
None  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
Bidirectional  
Bidirectional  
Bidirectional  
LCDDCLK  
Power  
Ground  
LCDLP  
LCDFP  
LCDHRLP  
LCDSPS  
LCDSPL  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
LCDEN  
LCDVD11  
LCDVD10  
LCDVD9  
Power  
LCDVD8  
LCDVD7  
LCDVD6  
LCDVD5  
LCDVD4  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
PI6  
PI5  
PI4  
VSS  
PI3  
Ground  
LCDVD3  
LCDVD2  
LCDVD1  
LCDVD0  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
PI2  
PI1  
PI0  
NOTES:  
1. Signal is selectable as pull-up, pull-down, or no pull-up/pull-down via the I/O Configuration peripheral.  
2. CMOS Schmitt trigger input.  
3. Signals preceded with ‘n’ are active LOW.  
4. Crystal Oscillator Inputs should be driven to 1.8 V ±10 % (MAX.)  
5. LINREGEN activation requires a 0 pull-up to VDD.  
Product data sheet  
Rev. 02 19 March 2009  
9
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
LH75401 Signal Descriptions  
Table 3. LH75401 Signal Descriptions  
PIN NO. SIGNAL NAME  
TYPE  
DESCRIPTION  
NOTES  
MEMORY INTERFACE (MI)  
1
2
4
5
6
7
9
10  
12  
D[15:0]  
Input/Output Data Input/Output Signals  
1
13  
15  
16  
18  
19  
20  
21  
22  
23  
24  
25  
27  
28  
29  
30  
31  
nWE  
Output  
Output  
Input  
Static Memory Controller Write Enable  
2
nOE  
Static Memory Controller Output Enable  
Static Memory Controller External Wait Control  
Static Memory Controller Byte Lane Strobe  
Static Memory Controller Byte Lane Strobe  
Static Memory Controller Chip Select  
Static Memory Controller Chip Select  
Static Memory Controller Chip Select  
Static Memory Controller Chip Select  
2
nWAIT  
nBLE1  
nBLE0  
nCS3  
nCS2  
nCS1  
nCS0  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
2
Output  
Output  
Output  
Output  
Output  
Output  
32  
33  
35  
36  
37  
38  
39  
40  
43  
44  
45  
46  
47  
49  
50  
51  
52  
53  
55  
56  
57  
58  
60  
61  
A[23:0]  
Output  
Address Signals  
1
DMA CONTROLLER (DMAC)  
DMA Request  
72  
73  
DREQ  
DACK  
Input  
1
1
Output  
DMA Acknowledge  
10  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NOTES  
NXP Semiconductors  
Table 3. LH75401 Signal Descriptions (Cont’d)  
PIN NO. SIGNAL NAME  
TYPE  
DESCRIPTION  
COLOR LCD CONTROLLER (CLCDC)  
120  
120  
121  
122  
122  
123  
124  
125  
128  
128  
129  
129  
130  
130  
LCDMOD  
LCDVEEEN  
LCDVDDEN  
LCDDSPLEN  
LCDREV  
LCDCLS  
LCDPS  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Signal Used by the Row Driver (AD-TFT, HR-TFT only)  
Analog Supply Enable (AC Bias SIgnal)  
Digital Supply Enable  
1
1
1
1
1
1
1
1
LCD Panel Power Enable  
Reverse Signal (AD-TFT, HR-TFT only)  
Clock to the Row Drivers (AD-TFT, HR-TFT only)  
Power Save (AD-TFT, HR-TFT only)  
LCD Panel Clock  
LCDDCLK  
LCDLP  
Line Synchronization Pulse (STN), Horizontal Synchronization Pulse (TFT)  
Latch Pulse (AD-TFT, HR-TFT only)  
1
1
1
1
1
1
LCDHRLP  
LCDFP  
Frame Pulse (STN), Vertical Synchronization Pulse (TFT)  
Row Driver Counter Reset Signal (AD-TFT, HR-TFT only)  
LCD Data Enable  
LCDSPS  
LCDEN  
LCDSPL  
Start Pulse Left (AD-TFT, HR-TFT only)  
131  
132  
133  
135  
136  
137  
138  
139  
141  
142  
143  
144  
LCDVD[11:0]  
Output  
LCD Panel Data bus  
1
SYNCHRONOUS SERIAL PORT (SSP)  
SSP Serial Frame  
99  
SSPFRM  
SSPCLK  
SSPRX  
SSPTX  
Output  
Output  
Input  
1
1
1
1
100  
101  
102  
SSP Clock  
SSP RXD  
Output  
SSP TXD  
UART0 (U0)  
103  
104  
UARTTX0  
UARTRX0  
Output  
Input  
UART0 Transmitted Serial Data Output  
UART0 Received Serial Data Input  
UART1 (U1)  
1
1
74  
76  
UARTRX1  
UARTTX1  
Input  
UART1 Received Serial Data Input  
UART1 Transmitted Serial Data Output  
UART2 (U2)  
1
1
Output  
105  
107  
UARTTX2  
UARTRX2  
Output  
Input  
UART2 Transmitted Serial Data Output  
UART2 Received Serial Data Input  
CONTROLLER AREA NETWORK (CAN)  
CAN Transmitted Serial Data Output  
CAN Received Serial Data Input  
1
1
103  
104  
CANTX  
CANRX  
Output  
Input  
1
1
Product data sheet  
Rev. 02 19 March 2009  
11  
LH75401/LH75411  
System-on-Chip  
NOTES  
NXP Semiconductors  
Table 3. LH75401 Signal Descriptions (Cont’d)  
PIN NO. SIGNAL NAME  
TYPE  
DESCRIPTION  
ANALOG-TO-DIGITAL CONVERTER (ADC)  
89  
90  
91  
92  
93  
94  
95  
96  
AN3 (LR/Y-)  
AN4 (Wiper)  
AN9  
AN2 (LL/Y+)  
AN8  
AN1 (UR/X-)  
AN6  
AN0 (UL/X+)  
Input  
ADC Inputs  
1
TIMER 0  
117  
116  
115  
114  
113  
CTCAP0[A:E]  
Input  
Timer 0 Capture Inputs  
1
117  
116  
CTCMP0[A:B]  
CTCLK  
Output  
Input  
Timer 0 Compare Outputs  
1
1
118  
Common External Clock  
TIMER 1  
111  
110  
CTCAP1[A:B]  
Input  
Timer 1 Capture Inputs  
1
111  
110  
CTCMP1[A:B]  
CTCLK  
Output  
Input  
Timer 1 Compare Outputs  
1
1
118  
Common External Clock  
TIMER 2  
109  
108  
CTCAP2[A:B]  
Input  
Timer 2 Capture Inputs  
1
109  
108  
CTCMP2[A:B]  
CTCLK  
Input  
Input  
Timer 2 Compare Outputs  
1
1
118  
Common External Clock  
GENERAL PURPOSE INPUT/OUTPUT (GPIO)  
1
2
4
5
6
7
9
10  
PA7  
PA6  
PA5  
PA4  
PA3  
PA2  
PA1  
PA0  
Input/Output General Purpose I/O Signals - Port A  
Input/Output General Purpose I/O Signals - Port B  
Input/Output General Purpose I/O Signals - Port C  
1
1
1
24  
25  
27  
28  
29  
30  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
32  
33  
35  
36  
37  
38  
39  
40  
PC7  
PC6  
PC5  
PC4  
PC3  
PC2  
PC1  
PC0  
12  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
Table 3. LH75401 Signal Descriptions (Cont’d)  
PIN NO. SIGNAL NAME  
TYPE  
DESCRIPTION  
NOTES  
72  
73  
74  
76  
77  
78  
79  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
Input/Output General Purpose I/O Signals - Port D  
1
89  
90  
91  
92  
93  
94  
95  
96  
PJ7  
PJ6  
PJ5  
PJ4  
PJ3  
PJ2  
PJ1  
PJ0  
Input  
General Purpose I/O Signals - Port J  
1
99  
PE7  
PE6  
PE5  
PE4  
PE3  
PE2  
PE1  
PE0  
100  
101  
102  
103  
104  
105  
107  
Input/Output General Purpose I/O Signals - Port E  
Input/Output General Purpose I/O Signals - Port F  
Input/Output General Purpose I/O Signals - Port G  
1
1
1
108  
109  
110  
111  
113  
114  
115  
PF6  
PF5  
PF4  
PF3  
PF2  
PF1  
PF0  
116  
117  
118  
120  
121  
122  
123  
124  
PG7  
PG6  
PG5  
PG4  
PG3  
PG2  
PG1  
PG0  
125  
128  
129  
130  
131  
132  
133  
135  
PH7  
PH6  
PH5  
PH4  
PH3  
PH2  
PH1  
PH0  
Input/Output General Purpose I/O Signals - Port H  
1
1
136  
137  
138  
139  
141  
142  
143  
144  
PI7  
PI6  
PI5  
PI4  
PI3  
PI2  
PI1  
PI0  
Input/Output General Purpose I/O Signals - Port I  
RESET, CLOCK, AND POWER CONTROLLER (RCPC)  
62  
71  
72  
nRESETIN  
nRESETOUT  
INT6  
Input  
Output  
Input  
User Reset Input  
2
2
1
System Reset Output  
External Interrupt Input 6  
Product data sheet  
Rev. 02 19 March 2009  
13  
LH75401/LH75411  
System-on-Chip  
NOTES  
NXP Semiconductors  
Table 3. LH75401 Signal Descriptions (Cont’d)  
PIN NO. SIGNAL NAME  
TYPE  
DESCRIPTION  
73  
74  
76  
77  
78  
79  
81  
82  
83  
86  
87  
INT5  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Output  
External Interrupt Input 5  
External Interrupt Input 4  
External Interrupt Input 3  
External Interrupt Input 2  
External Interrupt Input 1  
External Interrupt Input 0  
Power-on Reset Input  
1
1
1
1
1
1
2
INT4  
INT3  
INT2  
INT1  
INT0  
nPOR  
XTAL32IN  
XTAL32OUT  
XTALIN  
XTALOUT  
32.768 kHz Crystal Clock Input  
32.768 kHz Crystal Clock Output  
Crystal Clock Input  
Crystal Clock Output  
TEST INTERFACE  
63  
64  
65  
66  
67  
68  
69  
TEST2  
TEST1  
TMS  
Input  
Input  
Test Mode Pin 2  
Test Mode Pin 1  
Input  
JTAG Test Mode Select Input  
Returned JTAG Test Clock Output  
JTAG Test Clock Input  
RTCK  
TCK  
Output  
Input  
TDI  
Input  
JTAG Test Serial Data Input  
JTAG Test Data Serial Output  
POWER AND GROUND (GND)  
TDO  
Output  
3
17  
34  
42  
54  
VDD  
Power  
I/O Ring VDD  
98  
112  
126  
134  
8
26  
41  
48  
59  
VSS  
Power  
I/O Ring VSS  
106  
119  
127  
140  
11  
75  
VDDC  
VSSC  
Power  
Power  
Core VDD supply (Output if Linear Regulator Enabled, Otherwise Input)  
Core VSS  
14  
80  
70  
84  
85  
88  
97  
LINREGEN  
VSSA_PLL  
VDDA_PLL  
VSSA_ADC  
VDDA_ADC  
Input  
Power  
Power  
Power  
Power  
Linear Regulator Enable  
PLL Analog VSS  
PLL Analog VDD Supply  
A-to-D converter Analog VSS  
A-to-D converter Analog VDD Supply  
NOTES:  
1. These pin numbers have multiplexed functions.  
2. Signals preceded with ‘n’ are active LOW.  
14  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
LH75411 Numerical Pin Listing  
Table 4. LH75411 Numerical Pin List  
PIN FUNCTION  
NO. AT RESET  
FUNCTION FUNCTION FUNCTION OUTPUT  
BUFFER  
TYPE  
BEHAVIOR DURING  
NOTES  
2
3
TYPE  
DRIVE  
RESET  
1
PA7  
PA6  
VDD  
PA5  
PA4  
PA3  
PA2  
VSS  
PA1  
PA0  
VDDC  
D7  
D15  
D14  
I/O  
I/O  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
None  
8 mA  
8 mA  
None  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
Bidirectional  
Bidirectional  
Pull-up  
Pull-up  
1
1
2
3
Power  
I/O  
4
D13  
D12  
D11  
D10  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Pull-up  
Pull-up  
Pull-up  
Pull-up  
1
1
1
1
5
I/O  
6
I/O  
7
I/O  
8
Ground  
I/O  
9
D9  
D8  
Bidirectional  
Bidirectional  
Pull-up  
Pull-up  
1
1
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
I/O  
Power  
I/O  
Bidirectional  
Bidirectional  
Pull-up  
Pull-up  
D6  
I/O  
VSSC  
D5  
Ground  
I/O  
Bidirectional  
Bidirectional  
Pull-up  
Pull-up  
D4  
I/O  
VDD  
D3  
Power  
I/O  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Output  
Pull-up  
Pull-up  
Pull-up  
Pull-up  
HIGH  
D2  
I/O  
D1  
I/O  
D0  
I/O  
nWE  
nOE  
PB5  
PB4  
VSS  
PB3  
PB2  
PB1  
PB0  
nCS0  
PC7  
PC6  
VDD  
PC5  
PC4  
PC3  
PC2  
PC1  
PC0  
VSS  
3
Output  
HIGH  
3
nWAIT  
nBLE1  
Bidirectional  
Bidirectional  
Pull-up  
Pull-up  
1, 3  
1, 3  
Ground  
nBLE0  
nCS3  
nCS2  
nCS1  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Output  
Pull-up  
Pull-up  
1, 3  
1, 3  
1, 3  
1, 3  
3
Pull-up  
Pull-up  
Pull-up  
A23  
A22  
Bidirectional  
Bidirectional  
Pull-down  
Pull-down  
1
1
Power  
A21  
A20  
A19  
A18  
A17  
A16  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Pull-down  
Pull-down  
Pull-down  
Pull-down  
Pull-down  
Pull-down  
1
1
1
1
1
1
Ground  
Product data sheet  
Rev. 02 19 March 2009  
15  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
Table 4. LH75411 Numerical Pin List (Cont’d)  
PIN FUNCTION  
NO. AT RESET  
FUNCTION FUNCTION FUNCTION OUTPUT  
BUFFER  
TYPE  
BEHAVIOR DURING  
NOTES  
2
3
TYPE  
DRIVE  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
None  
None  
None  
None  
8 mA  
None  
None  
4 mA  
None  
8 mA  
6 mA  
6 mA  
8 mA  
None  
8 mA  
2 mA  
6 mA  
2 mA  
None  
None  
None  
None  
RESET  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
VDD  
A15  
Power  
Output  
Output  
Output  
Output  
Output  
LOW  
LOW  
LOW  
LOW  
LOW  
A14  
A13  
A12  
A11  
VSS  
A10  
Ground  
Output  
Output  
Output  
Output  
Output  
LOW  
LOW  
LOW  
LOW  
LOW  
A9  
A8  
A7  
A6  
VDD  
A5  
Power  
Output  
Output  
Output  
Output  
LOW  
LOW  
LOW  
LOW  
A4  
A3  
A2  
VSS  
A1  
Ground  
Output  
Output  
Input  
LOW  
LOW  
A0  
nRESETIN  
TEST2  
TEST1  
TMS  
RTCK  
TCK  
TDI  
Pull-up  
Pull-up  
Pull-up  
Pull-up  
2, 3  
2
Input  
Input  
2
Input  
2
Output  
Input  
Input  
Pull-up  
2
TDO  
LINREGEN  
Output  
Input  
5
3
71 nRESETOUT  
Output  
Bidirectional  
Bidirectional  
Bidirectional  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
PD6  
PD5  
INT6  
INT5  
INT4  
DREQ  
DACK  
Pull-down  
Pull-up  
1
1, 2  
1
PD4  
UARTRX1  
VDDC  
PD3  
Power  
INT3  
INT2  
INT1  
INT0  
UARTTX1  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Pull-up  
Pull-up  
1
1
PD2  
PD1  
1, 2  
1
PD0  
VSSC  
nPOR  
XTAL32IN  
Ground  
Input  
Pull-up  
2, 3  
4
Input  
83 XTAL32OUT  
Output  
16  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
Table 4. LH75411 Numerical Pin List (Cont’d)  
PIN FUNCTION  
NO. AT RESET  
FUNCTION FUNCTION FUNCTION OUTPUT  
BUFFER  
TYPE  
BEHAVIOR DURING  
NOTES  
2
3
TYPE  
DRIVE  
RESET  
84  
85  
86  
87  
88  
89  
VSSA_PLL  
VDDA_PLL  
XTALIN  
Ground  
Power  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
None  
4 mA  
4 mA  
4 mA  
4 mA  
8 mA  
2 mA  
4 mA  
None  
4 mA  
4 mA  
4 mA  
4 mA  
4 mA  
None  
4 mA  
4 mA  
4 mA  
4 mA  
4 mA  
4 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
Input  
4
XTALOUT  
VSSA_ADC  
AN3 (LR/Y-)  
Output  
Ground  
PJ7  
PJ6  
PJ5  
PJ4  
PJ3  
PJ2  
PJ1  
PJ0  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
90 AN4 (Wiper)  
91 AN9  
92 AN2 (LL/Y+)  
93 AN8  
94 AN1 (UR/X-)  
95 AN6  
96 AN0 (UL/X+)  
97  
VDDA_ADC  
VDD  
PE7  
PE6  
PE5  
PE4  
PE3  
PE2  
PE1  
VSS  
PE0  
PF6  
Power  
Power  
98  
99  
SSPFRM  
SSPCLK  
SSPRX  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Pull-up  
Pull-down  
Pull-up  
1
1
1
1
1
1
1
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
SSPTX  
Pull-down  
Pull-up  
UARTTX0  
UARTRX0  
UARTTX2  
Pull-up  
Pull-up  
Ground  
UARTRX2  
CTCAP2B  
CTCAP2A  
CTCAP1B  
CTCAP1A  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Pull-up  
1
2
CTCMP2B  
CTCMP2A  
CACMP1B  
CTCMP1A  
PF5  
PF4  
2
PF3  
VDD  
PF2  
Power  
CTCAP0E  
CTCAP0D  
CTCAP0C  
CTCAP0B  
CTCAP0A  
CTCLK  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
2
2
2
PF1  
PF0  
PG7  
PG6  
PG5  
VSS  
PG4  
PG3  
PG2  
PG1  
PG0  
PH7  
CTCMP0B  
CTCMP0A  
Ground  
LCDVEEEN  
LCDVDDEN  
LCDMOD  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
LCDDSPLEN LCDREV  
LCDCLS  
LCDPS  
LCDDCLK  
Product data sheet  
Rev. 02 19 March 2009  
17  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
Table 4. LH75411 Numerical Pin List (Cont’d)  
PIN FUNCTION  
NO. AT RESET  
FUNCTION FUNCTION FUNCTION OUTPUT  
BUFFER  
TYPE  
BEHAVIOR DURING  
RESET  
NOTES  
2
3
TYPE  
DRIVE  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
VDD  
VSS  
PH6  
PH5  
PH4  
PH3  
PH2  
PH1  
VDD  
PH0  
PI7  
Power  
None  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
Ground  
LCDLP  
LCDFP  
LCDHRLP  
LCDSPS  
LCDSPL  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
LCDEN  
LCDVD11  
LCDVD10  
LCDVD9  
Power  
LCDVD8  
LCDVD7  
LCDVD6  
LCDVD5  
LCDVD4  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
PI6  
PI5  
PI4  
VSS  
PI3  
Ground  
LCDVD3  
LCDVD2  
LCDVD1  
LCDVD0  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
PI2  
PI1  
PI0  
NOTES:  
1. Signal is selectable as pull-up, pull-down, or no pull-up/pull-down via the I/O Configuration peripheral.  
2. CMOS Schmitt trigger input.  
3. Signals preceded with ‘n’ are active LOW.  
4. Crystal Oscillator Inputs should be driven to 1.8 V ±10 % (MAX.)  
5. LINREGEN activation requires a 0 pull-up to VDD.  
18  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
LH75411 Signal Descriptions  
Table 5. LH75411 Signal Descriptions  
PIN NO. SIGNAL NAME  
TYPE  
DESCRIPTION  
NOTES  
MEMORY INTERFACE (MI)  
1
2
4
5
6
7
9
10  
12  
D[15:0]  
Input/Output Data Input/Output Signals  
1
13  
15  
16  
18  
19  
20  
21  
22  
23  
24  
25  
27  
28  
29  
30  
31  
nWE  
Output  
Output  
Input  
Static Memory Controller Write Enable  
2
nOE  
Static Memory Controller Output Enable  
Static Memory Controller External Wait Control  
Static Memory Controller Byte Lane Strobe  
Static Memory Controller Byte Lane Strobe  
Static Memory Controller Chip Select  
Static Memory Controller Chip Select  
Static Memory Controller Chip Select  
Static Memory Controller Chip Select  
2
nWAIT  
nBLE1  
nBLE0  
nCS3  
nCS2  
nCS1  
nCS0  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
2
Output  
Output  
Output  
Output  
Output  
Output  
32  
33  
35  
36  
37  
38  
39  
40  
43  
44  
45  
46  
47  
49  
50  
51  
52  
53  
55  
56  
57  
58  
60  
61  
A[23:0]  
Output  
Address Signals  
1
DMA CONTROLLER (DMAC)  
DMA Request  
72  
73  
DREQ  
DACK  
Input  
1
1
Output  
DMA Acknowledge  
Product data sheet  
Rev. 02 19 March 2009  
19  
LH75401/LH75411  
System-on-Chip  
NOTES  
NXP Semiconductors  
Table 5. LH75411 Signal Descriptions (Cont’d)  
PIN NO. SIGNAL NAME  
TYPE  
DESCRIPTION  
COLOR LCD CONTROLLER (CLCDC)  
120  
120  
121  
122  
122  
123  
124  
125  
128  
128  
129  
129  
130  
130  
LCDMOD  
LCDVEEEN  
LCDVDDEN  
LCDDSPLEN  
LCDREV  
LCDCLS  
LCDPS  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Signal Used by the Row Driver (AD-TFT, HR-TFT only)  
Analog Supply Enable (AC Bias SIgnal)  
Digital Supply Enable  
1
1
1
1
1
1
1
1
LCD Panel Power Enable  
Reverse Signal (AD-TFT, HR-TFT only)  
Clock to the Row Drivers (AD-TFT, HR-TFT only)  
Power Save (AD-TFT, HR-TFT only)  
LCD Panel Clock  
LCDDCLK  
LCDLP  
Line Synchronization Pulse (STN), Horizontal Synchronization Pulse (TFT)  
Latch Pulse (AD-TFT, HR-TFT only)  
1
1
1
1
1
1
LCDHRLP  
LCDFP  
Frame Pulse (STN), Vertical Synchronization Pulse (TFT)  
Row Driver Counter Reset Signal (AD-TFT, HR-TFT only)  
LCD Data Enable  
LCDSPS  
LCDEN  
LCDSPL  
Start Pulse Left (AD-TFT, HR-TFT only)  
131  
132  
133  
135  
136  
137  
138  
139  
141  
142  
143  
144  
LCDVD[11:0]  
Output  
LCD Panel Data bus  
1
SYNCHRONOUS SERIAL PORT (SSP)  
SSP Serial Frame  
99  
SSPFRM  
SSPCLK  
SSPRX  
SSPTX  
Output  
Output  
Input  
1
1
1
1
100  
101  
102  
SSP Clock  
SSP RXD  
Output  
SSP TXD  
UART0 (U0)  
104  
103  
UARTRX0  
UARTTX0  
Input  
UART0 Received Serial Data Input  
UART0 Transmitted Serial Data Output  
UART1 (U1)  
1
1
Output  
74  
76  
UARTRX1  
UARTTX1  
Input  
UART1 Received Serial Data Input  
UART1 Transmitted Serial Data Output  
UART2 (U2)  
1
1
Output  
105  
107  
UARTTX2  
UARTRX2  
Output  
Input  
UART2 Transmitted Serial Data Output  
UART2 Received Serial Data Input  
ANALOG-TO-DIGITAL CONVERTER (ADC)  
1
1
89  
90  
91  
92  
93  
94  
95  
96  
AN3 (LR/Y-)  
AN4 (Wiper)  
AN9  
AN2 (LL/Y+)  
AN8  
AN1 (UR/X-)  
AN6  
AN0 (UL/X+)  
Input  
ADC Inputs  
1
20  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
Table 5. LH75411 Signal Descriptions (Cont’d)  
PIN NO. SIGNAL NAME  
TYPE  
DESCRIPTION  
NOTES  
TIMER 0  
117  
116  
115  
114  
113  
CTCAP0[A:E]  
Input  
Timer 0 Capture Inputs  
1
117  
116  
CTCMP0[A:B]  
CTCLK  
Output  
Input  
Timer 0 Compare Outputs  
1
1
118  
Common External Clock  
TIMER 1  
111  
110  
CTCAP1[A:B]  
Input  
Timer 1 Capture Inputs  
1
111  
110  
CTCMP1[A:B]  
CTCLK  
Output  
Input  
Timer 1 Compare Outputs  
1
1
118  
Common External Clock  
TIMER 2  
109  
108  
CTCAP2[A:B]  
Input  
Timer 2 Capture Inputs  
1
109  
108  
CTCMP2[A:B]  
CTCLK  
Input  
Input  
Timer 2 Compare Outputs  
Common External Clock  
1
1
118  
GENERAL PURPOSE INPUT/OUTPUT (GPIO)  
1
2
4
5
6
7
9
10  
PA7  
PA6  
PA5  
PA4  
PA3  
PA2  
PA1  
PA0  
Input/Output General Purpose I/O Signals - Port A  
Input/Output General Purpose I/O Signals - Port B  
Input/Output General Purpose I/O Signals - Port C  
1
1
1
24  
25  
27  
28  
29  
30  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
32  
33  
35  
36  
37  
38  
39  
40  
PC7  
PC6  
PC5  
PC4  
PC3  
PC2  
PC1  
PC0  
72  
73  
74  
76  
77  
78  
79  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
Input/Output General Purpose I/O Signals - Port D  
1
Product data sheet  
Rev. 02 19 March 2009  
21  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
Table 5. LH75411 Signal Descriptions (Cont’d)  
PIN NO. SIGNAL NAME  
TYPE  
DESCRIPTION  
NOTES  
89  
90  
91  
92  
93  
94  
95  
96  
PJ7  
PJ6  
PJ5  
PJ4  
PJ3  
PJ2  
PJ1  
PJ0  
Input  
General Purpose I/O Signals - Port J  
1
99  
PE7  
PE6  
PE5  
PE4  
PE3  
PE2  
PE1  
PE0  
100  
101  
102  
103  
104  
105  
107  
Input/Output General Purpose I/O Signals - Port E  
Input/Output General Purpose I/O Signals - Port F  
Input/Output General Purpose I/O Signals - Port G  
1
1
1
108  
109  
110  
111  
113  
114  
115  
PF6  
PF5  
PF4  
PF3  
PF2  
PF1  
PF0  
116  
117  
118  
120  
121  
122  
123  
124  
PG7  
PG6  
PG5  
PG4  
PG3  
PG2  
PG1  
PG0  
125  
128  
129  
130  
131  
132  
133  
135  
PH7  
PH6  
PH5  
PH4  
PH3  
PH2  
PH1  
PH0  
Input/Output General Purpose I/O Signals - Port H  
1
1
136  
137  
138  
139  
141  
142  
143  
144  
PI7  
PI6  
PI5  
PI4  
PI3  
PI2  
PI1  
PI0  
Input/Output General Purpose I/O Signals - Port I  
RESET, CLOCK, AND POWER CONTROLLER (RCPC)  
62  
71  
72  
73  
74  
76  
77  
78  
79  
nRESETIN  
nRESETOUT  
INT6  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
User Reset Input  
2
2
1
1
1
1
1
1
1
System Reset Output  
External Interrupt Input 6  
External Interrupt Input 5  
External Interrupt Input 4  
External Interrupt Input 3  
External Interrupt Input 2  
External Interrupt Input 1  
External Interrupt Input 0  
INT5  
INT4  
INT3  
INT2  
INT1  
INT0  
22  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
Table 5. LH75411 Signal Descriptions (Cont’d)  
PIN NO. SIGNAL NAME  
TYPE  
DESCRIPTION  
NOTES  
81  
82  
83  
86  
87  
nPOR  
Input  
Input  
Power-on Reset Input  
2
XTAL32IN  
XTAL32OUT  
XTALIN  
32.768 kHz Crystal Clock Input  
32.768 kHz Crystal Clock Output  
Crystal Clock Input  
Output  
Input  
XTALOUT  
Output  
Crystal Clock Output  
TEST INTERFACE  
63  
64  
65  
66  
67  
68  
69  
TEST2  
TEST1  
TMS  
Input  
Input  
Test Mode Pin 2  
Test Mode Pin 1  
Input  
JTAG Test Mode Select Input  
Returned JTAG Test Clock Output  
JTAG Test Clock Input  
RTCK  
TCK  
Output  
Input  
TDI  
Input  
JTAG Test Serial Data Input  
JTAG Test Data Serial Output  
POWER AND GROUND (GND)  
TDO  
Output  
3
17  
34  
42  
54  
VDD  
Power  
I/O Ring VDD  
98  
112  
126  
134  
8
26  
41  
48  
59  
VSS  
Power  
I/O Ring VSS  
106  
119  
127  
140  
11  
75  
VDDC  
VSSC  
Power  
Power  
Core VDD supply (Output if Linear Regulator Enabled, Otherwise Input)  
Core VSS  
14  
80  
70  
84  
85  
88  
97  
LINREGEN  
VSSA_PLL  
VDDA_PLL  
VSSA_ADC  
VDDA_ADC  
Input  
Power  
Power  
Power  
Power  
Linear Regulator Enable  
PLL Analog VSS  
PLL Analog VDD Supply  
A-to-D converter Analog VSS  
A-to-D converter Analog VDD Supply  
NOTES:  
1. These pin numbers have multiplexed functions.  
2. Signals preceded with ‘n’ are active LOW.  
Product data sheet  
Rev. 02 19 March 2009  
23  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
LCD  
TOUCH SCREEN  
CAN  
TRANSCEIVER  
CAN  
NETWORK  
CAN  
2.0B  
STN/TFT,  
AD-TFT/HR-TFT  
A/D  
FLASH  
SRAM  
LH75401  
A/D  
BOOT  
ROM  
UART  
GPIO  
SSP  
SENSOR  
ARRAY  
1
4
7
2
5
8
0
3
6
9
#
SERIAL  
EEPROM  
*
KEY  
MATRIX  
LH754xx-2A  
Figure 4. LH75401 System Application Example  
FUNCTIONAL OVERVIEW  
ARM7TDMI-S Processor  
The LH75401/LH75411 microcontrollers feature the  
ARM7TDMI-S core with an Advanced High-Performance  
Bus (AHB) 2.0 interface. The ARM7TDMI-S is a 16/32-bit  
embedded RISC processor and a member of the ARM7  
Thumb family of processors. For more information, visit  
the ARM Web site at www.arm.com.  
Power Supplies  
Five-Volt-tolerant 3.3 V I/Os are employed. The  
LH75401/LH75411 microcontrollers require a single  
3.3 V supply. The core logic requires 1.8 V, supplied by  
an on-chip linear regulator. Core logic power may also  
be supplied externally to achieve higher system  
speeds. See the Electrical Specifications.  
Clock Sources  
The LH75401/LH75411 microcontrollers may use  
two crystal oscillators, or an externally supplied clock.  
There are two clock trees:  
Bus Architecture  
The LH75401/LH75411 microcontrollers use the  
ARM Advanced Microcontroller Bus Architecture (AMBA)  
2.0 internal bus protocol. Three AHB masters control  
access to external memory and on-chip peripherals:  
• One clock tree drives an internal Phase Lock Loop  
(PLL) and the three UARTs. It supports a crystal  
oscillator frequency range from 14 MHz to 20 MHz.  
• The ARM processor fetches instructions and trans-  
fers data  
• The other is a 32.768 kHz oscillator that generates a  
1 Hz clock for the RTC. (Use of the 32.768 kHz crys-  
tal for the Real Time Clock is optional. If not using the  
crystal, tie XTAL32IN to VSS and allow XTAL32OUT  
to float.)  
• The Direct Memory Access Controller (DMAC) trans-  
fers from memory to memory, from peripheral to  
memory, and from memory to peripheral  
The 14-to-20 MHz crystal oscillator drives the UART  
clocks, so an oscillator frequency of 14.7456 MHz is rec-  
ommended to achieve modem baud rates.  
• The LCDC refreshes an LCD panel with data from  
the external memory or from internal memory if the  
frame buffer is 16 kB or less.  
The PLL may be bypassed and an external clock  
supplied at XTALIN; the SoC will operate to DC with the  
PLL disabled. When doing so, allow XTALOUT to float.  
The input clock with the PLL bypassed will be twice the  
desired system operating frequency, and care must be  
taken not to exceed the maximum input clock voltage.  
Maximum values for system speeds and input voltages  
are given in the Electrical Specifications.  
The ARM7TDMI-S processor is the default bus mas-  
ter. An Advanced Peripheral Bus (APB) bridge is pro-  
vided to access to the various APB peripherals.  
Generally, APB peripherals are serviced by the ARM  
core. However, if they are DMA-enabled, they are also  
serviced by the DMAC to increase system performance  
while the ARM core runs from local internal memory.  
24  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
Reset Generation  
Memory Interface Architecture  
The LH75401/LH75411 microcontrollers provide the  
following data-path management resources on chip:  
EXTERNAL RESETS  
Two external signals generate resets to the  
ARM7TDMI-S core:  
• AHB and APB data buses  
• nPOR sets all internal registers to their default state  
when asserted. It is used as a Power-On Reset.  
• 16 kB of zero-wait-state TCM SRAM accessible via  
processor  
• nRESETIN sets all internal registers, except the  
JTAG circuitry, to their default state when asserted.  
• 16 kB of internal SRAM accessible via processor,  
DMAC, and LCDC  
When nPOR is asserted, nRESETIN defines the  
microcontroller Test Mode. When nPOR is released,  
nRESETIN behaves during Reset as described  
previously.  
• A Static Memory Controller (SMC) that controls  
access to external memory  
• A 4-stream general-purpose DMAC.  
All external and internal system resources are  
memory-mapped. This memory map partition has three  
views, based on the setting of the REMAP bits in the  
Reset, Clock, and Power Controller (RCPC).  
INTERNAL RESETS  
There are two types of Internal Resets generated:  
• System Reset  
The second partitioning of memory space is the  
dividing of the segments into sections. The external  
memory segment is divided into eight 64 MB sections,  
of which the first four are used, each having a chip  
select associated with it. Access to any of the last four  
sections does not result in an external bus access and  
does not cause a memory abort. The peripheral regis-  
ter segment is divided into 4 kB peripheral sections, 21  
of which are assigned to peripherals.  
• RTC Reset.  
System and RTC Resets are asserted by:  
• An External Reset (a logic LOW signal on the exter-  
nal nRESETIN or nPOR input pin)  
• A signal from the internal Watchdog Timer  
• A Soft Reset.  
The reset latency depends on the PLL lock state.  
Table 7. Memory Mapping  
REMAP = 00  
AHB Master Priority and Arbitration  
The LH75401/LH75411 microcontrollers have three  
AHB masters:  
ADDRESS  
REMAP = 01 REMAP = 10  
(DEFAULT)  
• ARM processor  
• DMAC  
External  
Memory  
Internal  
0x00000000  
0x20000000  
0x40000000  
TCM SRAM  
SRAM  
Reserved  
Reserved  
Reserved  
• LCD Controller.  
External  
Memory  
External  
Memory  
External  
Memory  
Each AHB master has a priority level that is perma-  
nent and cannot change.  
Internal  
SRAM  
Internal  
SRAM  
Internal  
SRAM  
0x60000000  
Table 6. Bus Master Priority  
0x80000000 TCM SRAM TCM SRAM TCM SRAM  
0xA0000000  
0xC0000000  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PRIORITY  
BUS MASTER PRIORITY  
1 (Highest) Color LCDC (LH75401 and LH75411)  
0xE0000000 -  
0xFFFBFFFF  
2
DMAC  
Reserved  
Reserved  
Reserved  
3 (Lowest)  
ARM7TDMI-S Core (Default)  
Product data sheet  
Rev. 02 19 March 2009  
25  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
Table 8. APB Peripheral Register Mapping  
ADDRESS RANGE DEVICE  
• Supports memory-mapped devices, including  
Random Access Memory (RAM), Read Only  
Memory (ROM), Flash, and burst ROM  
0xFFFC0000 - 0xFFFC0FFF UART0 (16550)  
0xFFFC1000 - 0xFFFC1FFF UART1 (16550)  
0xFFFC2000 - 0xFFFC2FFF UART2 (82510)  
0xFFFC3000 - 0xFFFC3FFF Analog-to-Digital Converter  
0xFFFC4000 - 0xFFFC4FFF Timer Module  
• Supports external bus and external device widths of  
8 and 16 bits  
• Supports Asynchronous Burst Mode read access for  
Burst Mode ROM devices, with up to 32 independent  
wait states for read and write accesses  
• Supports indefinite extended wait states via an  
external hardware pin (nWAIT)  
CAN (LH75401)  
0xFFFC5000 - 0xFFFC5FFF  
Reserved (LH75411)  
0xFFFC6000 - 0xFFFC6FFF Synchronous Serial Port  
0xFFFC7000 - 0xFFFDAFFF Reserved  
0xFFFDB000 - 0xFFFDBFFF GPIO4  
0xFFFDC000 - 0xFFFDCFFF GPIO3  
0xFFFDD000 - 0xFFFDDFFF GPIO2  
0xFFFDE000 - 0xFFFDEFFF GPIO1  
0xFFFDF000 - 0xFFFDFFFF GPIO0  
0xFFFE0000 - 0xFFFE0FFF Real Time Clock  
0xFFFE1000 - 0xFFFE1FFF DMAC  
• Supports varied bus turnaround cycles (1 to 16)  
between a read and write operation  
Direct Memory Access Controller (DMAC)  
One central DMAC services all peripheral DMA  
requirements for the DMA-capable peripherals listed in  
Table 9.  
The DMA is controlled by the system clock. It has an  
APB slave port for programming of its registers and an  
AHB port for data transfers.  
Reset Clock and Power  
0xFFFE2000 - 0xFFFE2FFF  
Controller  
Table 9. DMAC Stream Assignments  
0xFFFE3000 - 0xFFFE3FFF Watchdog Timer  
0xFFFE4000 - 0xFFFE4FFF Advanced LCD Interface  
0xFFFE5000 - 0xFFFE5FFF I/O Configuration Peripheral  
0xFFFE6000 - 0xFFFEFFFF Reserved  
DMA REQUEST SOURCE  
DMA STREAM  
UART1RX (highest priority)  
UART1TX  
Stream0  
Stream1  
Stream2  
Stream3  
UART0RX/External Request (DREQ)  
UART0TX (lowest priority)  
Static Random Access Memory Controller  
The LH75401/LH75411 microcontrollers have 32 kB  
of Static Random Access Memory (SRAM) organized  
into two 16 kB blocks:  
DMAC FEATURES  
• Four data streams that can be used to service:  
– Four peripheral data streams (peripheral-to-  
memory or memory-to-peripheral)  
• 16 kB of TCM 0 Wait State SRAM is available to the  
processor as an ARM7TDMI-S bus slave.  
– Three peripheral data streams and one memory-  
to-memory data stream.  
• 16 kB of internal SRAM is available as an AHB slave  
and accessible via processor, DMAC, and LCDC.  
• Three transfer modes:  
Each memory segment is 512 MB, though the TCM  
and internal SRAMs are 16 kB each in size. Any  
access beyond the first 16 kB is mapped to the lower  
16 kB, but does not cause a data or prefetch abort.  
– Memory to Memory (selectable on Stream3)  
– Peripheral to Memory (all streams)  
– Memory to Peripheral (all streams).  
• Built-in data stream arbiter  
Static Memory Controller (SMC)  
• Seven programmable registers for each stream  
The Static Memory Controller (SMC) is an AMBA  
AHB slave peripheral that provides the interface  
between the LH75401/LH75411 microcontrollers and  
external memory devices.  
• Ability for each stream to indicate a transfer error via  
an interrupt  
• 16-word First-In, First Out (FIFO) array, with pack  
and unpack logic to handle all input/output combina-  
tions of byte, half-word, and word transfers  
SMC FEATURES  
• Provides four banks of external memory, each with a  
maximum size of 16 MB.  
• APB slave port allows the ARM core to program  
DMAC registers  
• AHB port for data transfers.  
26  
Rev. 02 19 March 2009  
Product data sheet  
 
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
ADVANCED LCD INTERFACE  
Color LCD Controller (CLCDC)  
The Advanced LCD Interface (ALI) allows for direct  
connection to ultra-thin panels that do not include a tim-  
ing ASIC. It converts TFT signals from the Color LCD  
controller to provide the proper signals, timing and levels  
for direct connection to a panel’s Row and Column driv-  
ers for AD-TFT, HR-TFT, or any technology of panel that  
allows for a connection of this type. The ALI also pro-  
vides a bypass mode that allows interfacing to the built-  
in timing ASIC in standard TFT and STN panels.  
The CLCDC is an AMBA master-slave module that  
connects to the AHB. It translates pixel-coded data into  
the required formats and timings to drive single/dual  
monochrome and color LCD panels. Packets of pixel-  
coded data are fed, via the AHB interface, to two inde-  
pendently programmable, 32-bit-wide DMA FIFOs.  
Each FIFO is 16 words deep by 32 bits wide.  
The CLCDC generates a single combined interrupt  
to the Vectored Interrupt Controller (VIC) when an  
interrupt condition becomes true for upper/lower panel  
DMA FIFO underflow, base address update significa-  
tion, vertical compare, or bus error.  
NOTES:  
1. The Advanced LCD Interface pertains to the LH75401 and  
LH75411 microcontrollers.  
2. VGA and XGA modes require 66 MHz core speed.  
NOTE: LH75401 and LH75411 microcontrollers support full-color  
operation.  
Universal Asynchronous  
Receiver Transmitters (UARTs)  
The LH75401/LH75411 microcontrollers incorporate  
three UARTs, designated UART0, UART1, and UART2.  
CLCDC FEATURES  
• STN, Color STN, TFT, HR-TFT, and AD-TFT  
– Fully Programmable Timing Controls  
– Advanced LCD Interface for displays with a low  
level of integration, such as HR-TFT and AD-TFT  
UART 0 AND 1 FEATURES  
• Similar functionality to the industry-standard 16C550  
• Programmable Resolution  
– Up to VGA (640 × 480 DPI), 12-bit Direct Mode  
Color  
• Supported baud rates up to 921,600 baud (given an  
external crystal frequency of 14.756 MHz)  
• Supported character formats:  
– Data bits per character: 5, 6, 7, or 8  
– Parity generation and detection: Even, odd, stick,  
or none  
– Up to SVGA (800 × 600 DPI), 8-bit Direct/Pal-  
ettized Color  
– Up to XGA (1,024 × 768 DPI), 4-bit Direct Color/  
Grayscale  
– Stop bit generation: 1 or 2  
– Direct or Palettized Colors  
• Full-duplex operation  
• Single and Dual Panels  
• Separate transmit and receive FIFOs, with:  
– Programmable depth (1 to 16)  
– Programmable-service ‘trigger levels’ (1/8, 1/4,  
1/2, 3/4, and 7/8)  
• Supports Sharp and non-Sharp Panels  
• CLCDC Outputs Available as General Purpose  
Inputs/Outputs (GPIOs) if LCDC is Not Needed  
• Additional Features  
– Overrun protection.  
– Fully programmable horizontal and vertical timing  
for different display panels  
– 256-entry, 16-bit palette RAM physically arranged  
as a 128 × 32-bit RAM  
– AC bias signal for STN panels and a data-enable  
signal for TFT panels.  
• Programmable baud-rate generator that:  
– Enables the UART input clock to be divided by 16  
to 65,535 × 16  
– Generates an internal clock common to both  
transmit and receive portions of the UART.  
• DMA support  
• Programmable Panel-related Parameters  
– STN mono/color or TFT display  
– Bits-per-pixel  
• Support for generating and detecting breaks during  
UART transactions  
– STN 4- or 8-bit Interface Mode  
– STN Dual or Single Panel Mode  
– AC panel bias  
• Loopback testing.  
– Panel clock frequency  
– Number of panel clocks per line  
– Signal polarity, active HIGH or LOW  
– Little Endian data format  
– Interrupt-generation event.  
Product data sheet  
Rev. 02 19 March 2009  
27  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
UART 2 FEATURES  
The timers support a PWM Mode that uses the two  
Timer Compare Registers associated with a timer to  
create a PWM. Each timer can generate a separate  
interrupt. The interrupt becomes active if any enabled  
compare, capture, or overflow interrupt condition  
occurs. The interrupt remains active until all compare,  
capture, and overflow interrupts are cleared.  
• Similar functionality to the industry-standard 82510  
• Supported baud rates up to 3,225,600 baud (given a  
system clock of 51.6096 MHz)  
• 5, 6, 7, 8, or 9 data bits per character  
• Even, odd, HIGH, LOW, software, or no parity-bit  
generation and detection  
Real Time Clock (RTC)  
• 3/4, 1, 1-1/4, 1-1/2, 1-3/4, or 2 stop-bit generation  
LAN address flag  
The RTC is an AMBA slave module that connects to  
the APB. The RTC provides basic alarm functions or  
acts as a long-time base counter by generating an inter-  
rupt signal after counting for a programmed number of  
cycles of an RTC input. Counting in 1-second intervals  
is achieved using a 1 Hz clock input to the RTC.  
• Full-duplex operation  
• Separate transmit and receive FIFOs, with program-  
mable depth (1 or 4). Each FIFO has overrun protec-  
tion and:  
– Programmable receive trigger levels: 1/4, 1/2,  
3/4, or full  
– Programmable transmit trigger levels: empty, 1/4,  
1/2, 3/4.  
RTC FEATURES  
• 32-bit up-counter with programmable load  
• Programmable 32-bit match Compare Register  
• Two 16-bit baud-rate generators.  
• Software-maskable interrupt that is set when the Coun-  
ter and Compare Registers have identical values.  
• One interrupt that can be triggered by transmit and  
receive FIFO thresholds, receive errors, control  
character or address marker reception, or timer  
timeout  
Controller Area Network (CAN)  
The CAN 2.0B Controller is an AMBA-compliant  
peripheral that connects as a slave to the APB. The  
CAN Controller is located between the processor core  
and a CAN Transceiver, and is accessed through the  
AMBA port.  
• Generation and detection of breaks during UART  
transactions  
• Support for local loopback, remote loopback, and  
auto-echo modes  
CAN communications are performed serially, at a  
maximum frequency of 1 MB/s, using the TX (transmit)  
and RX (receive) lines. The TX and RX signals for data  
transmission and reception provide the communications  
interface between the CAN Controller and the CAN bus.  
All peripherals share the TX and RX lines, and always  
see the common incoming and outgoing data.  
LAN Address Mode.  
Timers  
The LH75401/LH75411 microcontrollers have three  
16-bit timers. The timers are clocked by the system  
clock, but have an internal scaled-down system clock  
that is used for the Pulse Width Modulator (PWM) and  
compare functions.  
Bus arbitration follows the CAN 2.0A and CAN 2.0B  
specifications. The bus is always controlled by the  
node with the highest priority (lowest ID). Only after the  
bus has been released can the next highest priority  
node control it. Transmit and receive errors are han-  
dled according to the CAN protocol.  
All counters are incremented by an internal pre-  
scaled counter clock or external clock and can gener-  
ate an overflow interrupt. All three timers have separate  
internal prescaled counter clocks, with either a com-  
mon external clock or a prescaled version of the sys-  
tem clock.  
Bus timing is critical to the CAN protocol. Therefore,  
the CAN Controller has two programmable Bus Timing  
Registers that define timing parameters.  
• Timer 0 has five Capture Registers and two Com-  
pare Registers.  
NOTE: The CAN Controller pertains to the LH75401 microcon-  
• Timer 1 and Timer 2 have two Capture and two Com-  
pare Registers each.  
trollers.  
The Capture Registers have edge-selectable inputs  
and can generate an interrupt. The Compare Registers  
can force the compare output pin either HIGH or LOW  
upon a match.  
28  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
CAN 2.0B FEATURES  
• Touch-pressure sensing circuits  
• Full compliance with 2.0A and 2.0B Bosch  
specifications  
• Pen-down sensing circuit and interrupt generator  
• Voltage-reference generator that is independently  
controlled  
• Supports 11-bit and 29-bit identifiers  
• Supports bit rates up to 1Mbit/s  
• 64-byte receive FIFO  
• Conversion automation function to minimize control-  
ler interrupt overhead  
• Software-driven bit-rate detection for hot plug-in  
support  
• Brownout Detector.  
• Single-shot transmission option  
• Acceptance filtering  
Synchronous Serial Port (SSP)  
The SSP is a master-only interface for synchronous  
serial communication with slave peripheral devices that  
have a Motorola SPI, National Semiconductor  
Microwire, or Texas Instruments DSP-compatible  
Synchronous Serial Interface (SSI).  
• Listen Only Mode  
• Reception of ‘own’ messages  
• Error interrupt generated for each CAN bus error  
• Arbitration-lost interrupt with record of bit position  
• Read/write error counters  
The SSP performs serial-to-parallel conversion on  
data received from a peripheral device. The transmit and  
receive paths are buffered with internal FIFO memories.  
These memories store eight 16-bit values independently  
in both transmit and receive modes. During transmission:  
• Last error register  
• Programmable error-limit warning.  
• Data writes to the transmit FIFO via the APB  
interface.  
Analog-to-Digital Converter (ADC)/  
Brownout Detector  
The ADC is an AMBA-compliant peripheral that con-  
nects as a slave to the APB. The ADC block consists of  
an 8-channel, 10-bit Analog-to-Digital Converter with  
integrated Touch Screen Controller. The complete  
Touch Screen interface is achieved by combining the  
front-end biasing, control circuitry with analog-to-digital  
conversion, reference generation, and digital control.  
• The transmit data is queued for parallel-to-serial  
conversion onto the transmit interface.  
• The transmit logic formats the data into the appropri-  
ate frame type:  
– Motorola SPI  
– National Semiconductor Microwire  
– Texas Instruments DSP-compatible SSI.  
The ADC also has a programmable measurement  
clock derived from the system clock. The clock drives  
the measurement sequencer and the successive-  
approximation circuitry.  
SSP FEATURES  
• SSI in Master Only Mode. The SSP performs serial  
communications as a master device in one of three  
modes:  
The ADC includes a Brownout Detector. The Brown-  
out Detector is an asynchronous comparator that com-  
pares a divided version of the 3.3 V supply and a  
bandgap-derived reference voltage. If the supply dips  
below a Trip point, the Brownout Detector sets a status  
register bit. The status bit is wired to the VIC and can  
interrupt the processor core. This allows the Host Con-  
troller to warn users of an impending shutdown and may  
provide the ADC with sufficient time to save its state.  
– Motorola SPI  
– Texas Instruments DSP-compatible synchronous  
serial interface  
– National Semiconductor Microwire.  
• Two 16-bit-wide, 8-entry-deep FIFOs, one for data  
transmission and one for data reception.  
• Supports interrupt-driven data transfers that are  
greater than the FIFO watermark.  
ADC/BROWNOUT DETECTOR FEATURES  
• Programmable clock bit rate.  
• 10-bit fully differential Successive Approximation  
Register (SAR) with integrated sample/hold  
• Programmable data frame size, from 4 to 16 bits long,  
depending on the size of data programmed. Each  
frame transmits starting with the most-significant bit.  
• 8-channel multiplexer for routing user-selected inputs  
to the ADC in Single Ended and Differential Modes  
• Four interrupts, each of which can be individually  
enabled or disabled using the SSP Control Register  
bits. A combined interrupt is also generated as an  
OR function of the individual interrupt requests.  
• 16-entry × 16-bit-wide FIFO that holds the 10-bit  
ADC output and a 4-bit tag number  
• Front bias-and-control network for Touch Screen  
interface and support functions compatible with indus-  
try-standard 4- and 5-wire touch-sensitive panels  
• Loopback Test Mode.  
Product data sheet  
Rev. 02 19 March 2009  
29  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
Table 10. SSP Modes  
MODE  
DESCRIPTION  
DATA TRANSFERS  
Full-duplex, 4-wire  
For communications with Motorola SPI-compatible  
devices. Clock polarity and phase are programmable. synchronous  
Motorola SPI  
For communications with Texas Instruments DSP-  
compatible Serial Synchronous Interface devices.  
Full-duplex, 4-wire  
synchronous  
SSI  
NationalSemiconductor For communications with National Semiconductor  
Microwire Microwire-compatible devices.  
Half-duplexsynchronous,using  
8-bit control messages  
WDT FEATURES  
Watchdog Timer (WDT)  
• Counter generates an interrupt at a set interval and  
the count reloads from the pre-set value after reach-  
ing zero.  
The WDT consists of a 32-bit down-counter that  
allows a selectable time-out interval to detect malfunc-  
tions. The timer must be reset by software periodically.  
Otherwise, a time-out occurs, interrupting the system.  
If the interrupt is not serviced within the timeout period,  
the WDT triggers the RCPC to generate a System  
Reset. If the WDT times out, it sets a bit in the RCPC  
Reset Status Register.  
• Default timeout period is set to the minimum timeout  
of 216 system clock cycles.  
• WDT is driven by the APB.  
• Built-in protection mechanism guards against  
interrupt-service failure.  
The WDT supports 16 selectable time intervals, for  
a time-out of 216 through 231 system clock cycles. All  
Control and Status Registers for the Watchdog Timer  
are accessed through the APB.  
• WDT can be programmed to trigger a System Reset  
on a timeout.  
• WDT can be programmed to trigger an interrupt on  
the first timeout; then, if the service routine fails to  
clear the interrupt, the next WDT timeout triggers a  
System Reset.  
30  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
The VIC also accepts software-generated interrupts.  
Software-generated interrupts use the same enabling  
control as hardware-generated interrupts.  
Vectored Interrupt Controller (VIC)  
All internal and external interrupts are routed to the  
VIC, where hardware determines the interrupt priority  
(see Table 11). The VIC is also where the appropriate  
signal to the processor (IRQ or FIQ) is generated. The  
processor services the interrupt as either a vectored  
interrupt or a default-vectored interrupt.  
The VIC provides 32 interrupts:  
• 16 vectored interrupts  
• 16 or more default-vectored interrupts.  
Any of the 32 interrupt source lines can be assigned  
to any of the 16 interrupt vectors. Any line not explicitly  
assigned to an interrupt vector is processed as a  
default-vectored interrupt. At reset, all 32 lines become  
default-vectored interrupts.  
The VIC accepts inputs from 32 interrupt source lines:  
• Seven external  
• Twenty-three internal  
• Two used as software interrupts.  
Each interrupt line can be explicitly identified as an  
IRQ (default) or FIQ interrupt. Vectored-interrupt  
servicing is only available for IRQ interrupts.  
All 32 interrupt source lines can be enabled, disabled,  
and cleared individually, and individual status can be  
determined. On reset, all interrupts are disabled.  
Table 11. Interrupt Channels  
DESCRIPTION SOURCE  
WDT Watchdog Timer  
POSITION  
0
1
Not Used  
Available as a software interrupt  
Sourced by the ARM7TDMI-S Core  
Sourced by the ARM7TDMI-S Core  
Timer0  
2
ARM7 DBGCOMMRX  
ARM7 DBGCOMMTX  
Timer0 Combined  
Timer1 Combined  
Timer2 Combined  
External Interrupt 0  
External Interrupt 1  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
External Interrupt 5  
External Interrupt 6  
Not Used  
3
4
5
Timer1  
6
Timer2  
7
Sourced by the GPIO Block  
Sourced by the GPIO Block  
Sourced by the GPIO Block  
Sourced by the GPIO Block  
Sourced by the GPIO Block  
Sourced by the GPIO Block  
Sourced by the GPIO Block  
Available as a software interrupt  
Real Time Clock  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
RTC_ALARM  
ADC TSCIRQ (combined) Analog-to-Digital Converter  
ADC BrownOutINTR  
ADC PenIRQ  
Brown Out Detector  
Analog-to-Digital Converter  
LCD Controller  
Synchronous Serial Port  
Synchronous Serial Port  
Synchronous Serial Port  
Synchronous Serial Port  
Synchronous Serial Port  
UART1  
LCD  
SSPTXINTR  
SSPRXINTR  
SSPRORINTR  
SSPRXTOINTR  
SSPINTR  
UART1 UARTRXINTR  
UART1 UARTTXINTR  
UART1 UARTINTR  
UART0 UARTINTR  
UART2 Interrupt  
DMA  
UART1  
UART1  
UART0  
UART2  
DMA  
CAN (LH75401)  
Reserved (LH75411)  
31  
CAN  
Product data sheet  
Rev. 02 19 March 2009  
31  
 
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
The state of the TEST1, TEST2, and nRESETIN sig-  
nals determines the operating mode entered at Power-  
on Reset (see Table 12).  
Reset, Clock, and Power Controller (RCPC)  
The RCPC lets users control System Reset, clocks,  
power management, and external interrupt condition-  
ing via the AMBA APB interface. This control includes:  
Table 12. Device Operating Modes  
• Enabling and disabling various clocks  
• Managing power-down sequencing  
• Selecting the sources for various clocks.  
OPERATING MODE  
TEST2 TEST1 nRESETIN  
Reserved  
PLL Bypass  
Reserved  
Reserved  
EmbeddedICE  
Normal  
0
0
0
1
1
1
0
0
1
0
0
1
0
1
x
0
1
x
The RCPC provides for an orderly start-up until the  
crystal oscillator stabilizes and the PLL acquires lock. If  
users want to change the system clock frequency dur-  
ing normal operation, the RCPC ensures a seamless  
transition between the old and new frequencies.  
RCPC FEATURES  
NOTE: TEST1, TEST2, and nRESETIN are latched on the rising  
edge of nPOR. The microcontroller stays in that operating  
mode until power is removed or nPOR transitions from LOW  
to HIGH.  
• Manages five Power Modes for minimizing power  
consumption: Active, Standby, Sleep, Stop1, and  
Stop2  
• Generates the system clock (HCLK) from either the  
PLL clock or the PLL-bypassed (oscillator) clock,  
divided by 2, 4, 6, 8, … 30  
General Purpose Input/Output (GPIO)  
The LH75401/LH75411 microcontrollers have 10  
GPIO ports:  
• Generates three UART clocks from oscillator clock  
• Generates the 1 Hz RTC clock  
• Seven 8-bit ports  
• Two 7-bit ports  
• One 6-bit port.  
• Generates the SSP and LCD clocks from HCLK,  
divided by 1, 2, 4, 8, 16, 32, or 64  
• Provides a selectable external clock output  
The GPIO ports are designated A through J and pro-  
vide 76 bits of programmable input/output (see Table  
13). Pins of all ports, except Port J, can be configured  
as inputs or outputs. Port J is input only. Upon System  
Reset, all ports default to inputs.  
• Generates system and RTC Resets based on an  
external reset, Watchdog Timer reset, or soft reset  
• Configures seven HIGH/LOW-level or rising/falling  
edge-trigger external interrupts and converts them to  
HIGH-level trigger interrupt outputs required by the VIC  
Table 13. GPIO Ports  
• Generates remap outputs used by the memory map  
decoder  
PORT  
PROGRAMMABLE PINS  
8 Input/Output Pins  
6 Input/Output Pins  
8 Input/Output Pins  
7 Input/Output Pins  
8 Input/Output Pins  
7 Input/Output Pins  
8 Input/Output Pins  
8 Input/Output Pins  
8 Input/Output Pins  
8 Input Pins  
• Provides an identification register  
A
B
C
D
E
F
G
H
I
• Supports external or watchdog reset status.  
Operating Modes  
The LH75401/LH75411 microcontrollers support  
three operating modes:  
• Normal Mode  
• PLL Bypass Mode, where the internal PLL is  
bypassed and an external clock source is used; oth-  
erwise the chip operates normally  
J
• EmbeddedICE Mode, where the JTAG port  
accesses the TAP Controller in the core and the core  
is placed in Debug Mode.  
32  
Rev. 02 19 March 2009  
Product data sheet  
 
 
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
Device Pin Multiplexing  
Table 14. LCD Panel Signal Multiplexing  
4-BIT STN (MONOCHROME)  
8-BIT STN SINGLE PANEL  
(MONOCHROME)  
EXTERNAL PIN  
SINGLE PANEL  
DUAL PANEL  
LVCVD11  
LVCVD10  
LVCVD9  
LVCVD8  
LVCVD7  
LVCVD6  
LVCVD5  
LVCVD4  
LVCVD3  
LVCVD2  
LVCVD1  
LVCVD0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
MUSTN3  
MUSTN2  
MUSTN1  
MUSTN0  
MLSTN3  
MLSTN2  
MLSTN1  
MLSTN0  
Reserved  
Reserved  
Reserved  
Reserved  
MUSTN3  
MUSTN2  
MUSTN1  
MUSTN0  
Reserved  
Reserved  
Reserved  
Reserved  
MUSTN7  
MUSTN6  
MUSTN5  
MUSTN4  
MUSTN3  
MUSTN2  
MUSTN1  
MUSTN0  
NOTES:  
1. MUSTN = Mono upper panel STN, dual and/or single panel.  
2. MLSTN = Mono lower panel STN, dual panel only.  
Table 15. LCD External Pin Multiplexing (LH75401 and LH75411)  
DEFAULT  
MODE  
(NO LCD)  
4-BIT MONO STN MODE  
8-BIT  
STN MODE  
TFT  
MODE  
ALI  
MODE  
EXTERNAL PIN  
SINGLE  
DUAL  
PG4/LCDVEEEN/LCDMOD  
PG3/LCDVDDEN  
PG2/LCDDSPLEN/LCDREV  
PG1/LCDCLS  
PG4  
PG3  
PG2  
PG1  
PG0  
PH7  
PH6  
PH5  
PH4  
PH3  
PH2  
PH1  
PH0  
PI7  
LCDVEEEN  
LCDVDDEN  
LCDVEEEN  
LCDVDDEN  
LCDVEEEN  
LCDVDDEN  
LCDVEEEN  
LCDVDDEN  
LCDMOD  
LCDVDDEN  
LCDREV  
LCDCLS  
LCDPS  
LCDDSPLEN LCDDSPLEN LCDDSPLEN LCDDSPLEN  
PG1  
PG0  
PG1  
PG0  
PG1  
PG0  
PG1  
PG0/LCDPS  
PG0  
PH7/LCDDCLK  
PH6/LCDLP/LCDHRLP  
PH5/LCDFP/LCDSPS  
PH4/LCDEN/LCDEN  
PH3/LCDVD11  
PH2/LCDVD10  
PH1/LCDVD9  
LCDDCLK  
LCDLP  
LCDFP  
LCDEN  
PH3  
LCDDCLK  
LCDLP  
LCDFP  
LCDEN  
MLSTN3  
MLSTN2  
MLSTN1  
MLSTN0  
PI7  
LCDDCLK  
LCDLP  
LCDFP  
LCDEN  
PH3  
LCDDCLK  
LCDLP  
LCDDCLK  
LCDLP  
LCDFP  
LCDFP  
LCDEN  
LCDEN  
LCDVD11  
LCDVD10  
LCDVD9  
LCDVD8  
LCDVD7  
LCDVD6  
LCDVD5  
LCDVD4  
LCDVD3  
LCDVD2  
LCDVD1  
LCDVD0  
LCDVD11  
LCDVD10  
LCDVD9  
LCDVD8  
LCDVD7  
LCDVD6  
LCDVD5  
LCDVD4  
LCDVD3  
LCDVD2  
LCDVD1  
LCDVD0  
PH2  
PH2  
PH1  
PH1  
PH0/LCDVD8  
PH0  
PH0  
PI7/LCDVD7  
PI7  
STN7  
STN6  
STN5  
STN4  
STN3  
STN2  
STN1  
STN0  
PI6/LCDVD6  
PI6  
PI6  
PI6  
PI5/LCDVD5  
PI5  
PI5  
PI5  
PI4/LCDVD4  
PI4  
PI4  
PI4  
PI3/LCDVD3  
PI3  
MUSTN3  
MUSTN2  
MUSTN1  
MUSTN0  
MUSTN3  
MUSTN2  
MUSTN1  
MUSTN0  
PI2/LCDVD2  
PI2  
PI1/LCDVD1  
PI1  
PI0/LCDVD0  
PI0  
Product data sheet  
Rev. 02 19 March 2009  
33  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
ELECTRICAL SPECIFICATIONS  
Table 16. Absolute Maximum Ratings  
PARAMETER  
MINIMUM MAXIMUM  
DC Core Supply Voltage (VDDC)  
DC I/O Supply Voltage (VDD)  
-0.3 V  
-0.3 V  
-0.3 V  
-0.3 V  
-55°C  
2.4 V  
4.6 V  
4.6 V  
2.4 V  
125°C  
DC Analog Supply Voltage for ADC (VDDA0)  
DC Analog Supply Voltage for PLL (VDDA1)  
Storage Temperature (TSTG)  
NOTE: These ratings are only for transient conditions. Operation at  
or beyond absolute maximum rating conditions may affect  
reliability and cause permanent damage to the device.  
Table 17. Recommended Operating Conditions  
PARAMETER  
MINIMUM  
TYP.  
MAXIMUM  
NOTES  
DC Core Supply Voltage (VDDC) (Linear Regulator disabled)  
DC Analog Supply Voltage for ADC (VDDA0)  
DC I/O Supply Voltage (VDD)  
1.7 V  
3.0 V  
3.0 V  
1.8 V  
3.3 V  
3.3 V  
1.98 V  
3.6 V  
3.6 V  
1
1
DC Analog Supply Voltage for PLL (VDDA1)  
Clock Frequency (ƒHCLK)  
2
1.7 V  
4.375 MHz  
11.9047 ns  
14 MHz  
1.8 V  
1.98 V  
84 MHz  
228.571 ns  
20 MHz  
85°C  
3, 4, 5  
3, 4, 5  
4, 5  
Clock Period (tHCLK)  
Crystal Frequency  
Industrial Operating Temperature  
40°C  
25°C  
NOTES:  
1. Core Voltage should never exceed I/O Voltage after initial power up. See the section titled ‘Power Supply Sequencing’.  
2. Connect VDDA1 to VDDC when using the on-chip linear regulator.  
3. On-chip Linear regulator enabled. When the on-chip linear regulator is enabled, Core power is drawn from VDD – allow VDDC pins to float.  
4. Will operate to DC with PLL disabled. Core frequencies greater than 84 MHz require external clock and VDDC. Core frequencies faster than  
70 MHz require an externally-supplied clock.  
5. Processor is functional at minimum frequency, but not all peripherals may be enabled.  
6. The maximum operating frequency is the crystal frequency × 3.5.  
Table 18. Clock Frequency vs. Voltages (VDDC) vs. Temperature  
PARAMETER  
1.7 V  
1.8 V  
1.9 V  
Clock Frequency (ƒHCLK)  
Clock Period (tHCLK)  
91.3 MHz  
10.952 ns  
86 MHz  
97 MHz  
10.309 ns  
92 MHz  
103.7 MHz  
9.643 ns  
25°C  
70°C  
Clock Frequency (ƒHCLK)  
Clock Period (tHCLK)  
97.4 MHz  
10.266 ns  
95.2 MHz  
10.504 ns  
11.627 ns  
84 MHz  
10.869 ns  
90 MHz  
Clock Frequency (ƒHCLK)  
Clock Period (tHCLK)  
85°C  
11.9047 ns  
11.111 ns  
NOTES:  
1. On-chip Linear regulator and PLL disabled; VDDC supplied externally.  
2. Core speeds greater than 84 MHz require external VDDC and may not yield proper UART baud rates.  
3. Core speeds greater than 70 MHz require an external clock.  
4. Additional performance may be achieved in accordance with Figure 5.  
34  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
110  
105  
100  
95  
2 V  
1.95 V  
1.9 V  
1.85 V  
1.8 V  
90  
1.75 V  
1.7 V  
85  
1.65 V  
1.6 V  
80  
75  
70  
25  
35  
45  
55  
65  
75  
85  
Temp ( Celsius)  
˚
LH754xx-106  
Figure 5. Maximum Core Frequency versus Voltage and Temperature  
Very Low Operating Temperatures and  
Noise Immunity  
The junction temperature, Tj, is the operating tem-  
perature of the transistors in the integrated circuit. The  
switching speed of the CMOS circuitry within the SoC  
depends partly on Tj, and the lower the operating tem-  
perature, the faster the CMOS circuits will switch.  
Increased switching noise generated by faster switch-  
ing circuits could affect the overall system stability. The  
amount of switching noise is directly affected by the  
application executed on the SoC.  
NXP recommends that users implementing a system  
to meet low industrial temperature standards should use  
an external oscillator rather than a crystal to drive the  
system clock input of the System-on-Chip. This change  
from crystal to oscillator will increase the robustness  
(i.e., noise immunity of the clock input to the SoC.  
Product data sheet  
Rev. 02 19 March 2009  
35  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
DC Characteristics  
All characteristics are specified over an operating  
temperature of 40°C to +85°C, and at minimum and  
maximum supply voltages.  
Table 19. DC Characteristics  
MIN. TYP. MAX. UNIT  
SYMBOL  
PARAMETER  
CONDITIONS  
NOTES  
VIH  
VIL  
CMOS Input HIGH Voltage  
CMOS Input LOW Voltage  
Schmitt Trigger Positive Going Threshold  
Schmitt Trigger Negative Going Threshold  
Schmitt Trigger Hysteresis  
Output Drive 1  
2.0  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
0.8  
0.8  
1
VT+  
VT-  
Vhst  
2.0  
0.35  
2.6  
2.6  
2.6  
2.6  
IOH = -2 mA  
IOH = -4 mA  
IOH = -6 mA  
IOH = -8 mA  
IOL = 2 mA  
Output Drive 2  
VOH  
VOL  
Output Drive 3  
Output Drive 4  
Output Drive 1  
0.4  
0.4  
0.4  
0.4  
Output Drive 2  
IOL = 4 mA  
Output Drive 3  
IOL = 6 mA  
Output Drive 4  
IOL = 8 mA  
XTAL32IN External Clock Input  
1.62 1.8 1.98  
1.62 1.8 1.98  
Externally supplied  
Externally supplied  
XTALIN  
IIN  
External Clock Input  
Input Leakage Current  
Active Current  
-10  
10  
70  
A VIN = VDD or GND  
IACTIVE  
50  
45  
mA  
mA  
mA  
mA  
A  
2
2
ISTANDBY Standby Current  
ISLEEP  
ISTOP1  
Sleep Current  
Stop1 Current  
4.0  
3.0  
35  
3
4
3
4
ISTOP2  
Stop2 Current (RTC ON)  
Stop2 Current (RTC OFF)  
120  
23  
A  
A  
ISTOP2  
100  
A  
NOTES:  
3. Using external 1.8 V supply, internal regulator disabled.  
4. Using Internal linear regulator.  
1. VIL MAX. = 0.5 V for pin TCK with 50 pF load.  
2. Running a Typical Application at 51.6 MHz.  
Table 20. Linear Regulator DC Characteristics  
PARAMETER MIN. TYP. MAX. UNIT  
Quiescent Current  
SYMBOL  
IQUIESCENT  
ISLEEPLR  
IOLR  
75  
8
A  
A  
mA  
V
Current when Regulator is Disabled  
Output Current Range  
Output Voltage  
0.0  
100  
0
VOLR  
1.84  
RPULL  
Pull-up Resistor  
36  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
Analog-To-Digital Converter Electrical  
Characteristics  
Table 21 shows the derated specifications for  
extended temperature operation. See Figure 6 for the  
ADC transfer characteristics.  
Table 21. ADC Electrical Characteristics at Industrial Operating Range  
PARAMETER  
A/D Resolution  
MIN.  
TYP.  
MAX.  
UNITS  
NOTES  
10  
17  
10  
Bits  
Throughput Conversion  
Acquisition Time  
CLK Cycles  
1
3
CLK Cycles  
Clk Period  
500  
5,000  
4.5  
ns  
LSB  
LSB  
mV  
LSB  
V
Differential Non-Linearity  
Integral Non-Linearity  
Offset Error  
-0.99  
-3.5  
+3.5  
-35  
+35  
Gain Error  
-4.0  
4.0  
On-chip Voltage Reference (VREF)  
Negative Reference Input (VREF-)  
Positive Reference Input (VREF+)  
Crosstalk between channels  
Analog Input Voltage Range  
Analog Input Current  
Reference Input Current  
Analog input capacitance  
Operating Supply Voltage  
Operating Current, VDDA  
Standby Current  
1.85  
2.0  
VSSA  
VREF  
-60  
2.15  
VSSA  
(VREF-) +1.0  
(VREF+) -1.0  
VDDA  
V
2
2
V
dB  
V
0
VDDA  
5
3
A  
A  
pF  
V
5
15  
3.0  
3.6  
590  
180  
< 1  
A  
A  
A  
V
4
Stop Current, VDDA  
Brown Out Trip Point  
Brown Out Hysterisis  
Operating Temperature  
2.63  
120  
mV  
°C  
40  
85  
NOTES:  
1. The analog section of the ADC takes 16 × A2DCLK cycles per conversion,  
plus 1 × A2DCLK cycles to be made available in the PCLK domain.  
An additional 3 × PCLK cycles are required before being available on the APB.  
2. The internal voltage reference is driven to nominal value VREF = 2.0 V. Using the Reference Multiplexer,  
alternative low impedance (RS < 500) voltages can be selected as reference voltages. The range of voltages  
allowed are specified above. However, the on-chip reference cannot drive the ADC unless the reference buffer is switched on.  
3. The analog input pins can be driven anywhere between the power supply rails. If the voltage at the input to the  
ADC exceeds VREF+ or is below VREF-, the A/D result will saturate appropriately at positive or negative full scale.  
Trying to pull the analog input pins above or below the power supply rails will cause protection diodes to be  
forward-biased, resulting in large current source/sink and possible damage to the ADC.  
4. Bandgap and other low-bandwidth circuitry operating. All other ADC blocks shut down.  
Product data sheet  
Rev. 02 19 March 2009  
37  
 
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
OFFSET GAIN  
ERROR ERROR  
1024  
1023  
1022  
1021  
1020  
1019  
1018  
IDEAL  
TRANSFER CURVE  
9
8
7
6
5
4
3
2
1
CENTER OF A  
STEP OF THE ACTUAL  
TRANSFER CURVE  
ACTUAL  
TRANSFER CURVE  
INTEGRAL  
NON-LINEARITY  
1
2
3
4
5
6
7
8
9
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024  
LSB  
OFFSET  
ERROR  
DNL  
754xx-54  
Figure 6. ADC Transfer Characteristics  
38  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
POWER SUPPLY SEQUENCING  
PERIPHERAL CURRENT CONSUMPTION  
When using an external 1.8 V supply (instead of the  
internal 1.8 V regulator), the external 1.8 V power sup-  
ply must be energized before the 3.3 V supply. Other-  
wise, the 1.8 V supply may not lag the 3.3 V supply by  
more than 10 µs.  
In addition to the modal current consumption, Table  
23 shows the typical current consumption for each of  
the on-board peripheral blocks. The values were deter-  
mined with the peripheral clock running at maximum  
frequency, typical conditions, and no I/O loads. This  
current is supplied by the 1.8 V power supply.  
If a longer delay time is needed, the voltage differ-  
ence between the two power supplies must be within  
1.5 V during power supply ramp up.  
Table 22. Current Consumption by Mode  
To avoid a potential latchup condition, voltage  
should be applied to input pins only after the device is  
powered-on as described above.  
SYMBOL  
PARAMETER  
TYP. UNITS  
ACTIVE MODE  
ICHIP  
Chip Current with Linear Regulator  
50.2  
mA  
mA  
mA  
mA  
LINEAR REGULATOR  
ICORE Core Current without Linear Regulator 42.1  
Although this device contains an on-board regulator,  
using its output to power external devices is not recom-  
mended. External loads can affect the regulator’s sta-  
bility and introduce noise into the supply. NXP cannot  
guarantee device performance at rated speeds and  
temperatures with external loads connected to this  
supply.  
IIO  
I/O Current without Linear Regulator  
5
IANALOG Analog Current  
1.3  
STANDBY MODE (TYPICAL CONDITIONS ONLY)  
ICHIP Core Current with Linear Regulator 42.7  
ICORE Core Current without Linear Regulator 34.6  
mA  
mA  
mA  
mA  
IIO  
Current drawn by I/O  
0.8  
1.3  
IANALOG Analog Current  
CURRENT CONSUMPTION BY OPERATING MODE  
SLEEP MODE (TYPICAL CONDITIONS ONLY)  
Current consumption can depend on a number of  
parameters. To make this data more usable, the values  
presented in Table 22 were derived under the condi-  
tions presented here.  
ICHIP  
ICORE Core Current without Linear Regulator  
IIO Current drawn by I/O  
IANALOG Analog Current  
STOP1 MODE  
Core Current with Linear Regulator  
3.9  
2.5  
400  
1.2  
mA  
mA  
µA  
mA  
Maximum Specified Value  
The values specified in the MAXIMUM column were  
determined using these operating characteristics:  
Core Current with Linear Regulator, I/O,  
and 14.7456 MHz osc.  
ISTOP  
2.96  
mA  
• All IP blocks either operating or enabled at maximum  
frequency and size configuration  
STOP2 MODE (RTC ON)  
Leakage Current, Core and I/O  
STOP2 MODE (RTC OFF)  
ILEAK  
34  
18  
µA  
µA  
• Core operating at maximum power configuration  
• All I/O loads at maximum (50 pF)  
ILEAK  
Leakage Current, Core and I/O  
• All voltages at maximum specified values  
• Maximum specified ambient temperature.  
NOTES:  
1. ICHIP = Chip Current with Linear Regulator (Core + I/O)  
2. ICORE, IIO, IANALOG are the respective current consumption  
specifications for VDDC, VDD, and VDDA.  
Typical  
The values in the TYPICAL column were determined  
using a ‘typical’ application under ‘typical’ environmental  
conditions and the following operating characteristics:  
Table 23. Peripheral Current Consumption  
PERIPHERAL  
UARTs  
TYPICAL  
200  
5
UNITS  
µA  
• SPI, Timer, and UART peripherals operating; all  
other peripherals disabled  
• LCD enabled with 320 × 240 × 16-bit color, 60 Hz  
refresh rate  
RTC  
µA  
DMA  
4.1  
mA  
µA  
• I/O loads at nominal  
SSP  
500  
200  
2.2  
• FCLK = 51.6 MHz; HCLK = 51.6 MHz  
• All voltages at typical values  
• Nominal case temperature.  
Counter/Timers  
LCD  
µA  
mA  
Product data sheet  
Rev. 02 19 March 2009  
39  
 
 
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
AC Characteristics  
All signal transitions are measured from the 50 %  
point of the signal.  
Table 24. Memory Interface Signals  
SIGNAL  
D[15:0]  
I/O LOAD PARAMETER  
MINIMUM  
MAXIMUM  
COMMENTS  
Out 50 pF  
Out 50 pF  
tOVD  
tOHD  
tHCLK + 8 ns Data output valid following address valid  
Data output invalid following address valid  
D[15:0]  
3 × tHCLK – 6 ns  
2 tHCLK – 18 ns Data input valid following address valid  
2 × tHCLK – 18 ns  
D[15:0]  
In  
tIDD  
Data Input Valid, following  
Address Valid (nWAIT states)  
+ (nWAIT –1)  
× tHCLK  
nCS3 - nCS0  
nCS3 -nCS0  
nOE  
Out 30 pF  
Out 30 pF  
Out 30 pF  
Out 30 pF  
tOVCS  
tOHCS  
tOVOE  
tOHOE  
tOVBE  
tHCLK + 6 ns nCS output valid following address valid  
nCS output invalid following address valid  
3 × tHCLK – 6 ns  
3 × tHCLK – 6 ns  
tHCLK + 10 ns nOE output valid following address valid  
nOE output invalid following address valid  
nOE  
nBLE1 - nBLE0 Out 30 pF  
tHCLK + 10 ns nBLE output valid following address valid  
nBLE output invalid following address  
valid, read cycle  
nBLE1 - nBLE0 Out 30 pF  
tOHBER  
tOHBEW  
3 × tHCLK – 6 ns  
2 × tHCLK – 6 ns  
nBLE output invalid following address  
valid, write cycle  
nBLE1 - nBLE0 Out 30 pF  
nWE  
Out 30 pF  
Out 30 pF  
In  
tOVWE  
tOHWE  
tIVWAIT  
tHCLK + 10 ns nWE output valid following address valid  
nWE  
2 × tHCLK – 6 ns 2 tHCLK – 2.2 ns nWE output invalid following address valid  
2 tHCLK – 18 ns nWAIT input valid following address valid  
nWAIT  
NOTE: The values in Table 24 represent the timing with no internal arbitration  
delay and 1 wait state memory access. This is the worst case (fastest) timing.  
Table 25. Synchronous Serial Port  
SIGNAL  
I/O LOAD PARAMETER MIN. MAX.  
COMMENT  
SSPFRM Out 50 pF  
tOVSSPFRM  
tOVSSPTX  
tISSPRX  
14 ns SSPFRM output valid, referenced to SSPCLK  
12 ns SSPTX output valid, referenced to SSPCLK  
SSPRX input valid, referenced to SSPCLK  
SSPTX  
SSPRX  
Out 50 pF  
In  
22 ns  
Table 26. Power-up Stabilization  
DESCRIPTION  
PARAMETER  
TYP.  
MAX.  
UNIT  
tLREG  
tOSC32  
tOSC14  
tRSTOV  
tPORH  
Linear regulator stabilization time after power-up  
200  
550  
2.5  
s  
ms  
Oscillator stabilization time after Power Up (VDDC = VDDCMIN)  
Oscillator stabilization time after Power Up (VDDC = VDDCMIN)  
nPOR LOW to nPOR valid (once sampled LOW)  
ms  
3.5  
HCLK  
s  
nPOR hold extend to allow PLL to lock once XTAL is stable  
10  
40  
Rev. 02 19 March 2009  
Product data sheet  
 
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
VDDmin  
VDD  
tOSC32  
PLL  
XTAL32  
XTAL14  
tPORH  
tOSC14  
LREG  
nPOR  
VDDCmin  
tLREG  
LH754xx-100  
Figure 7. Power-up Stabilization  
memory. If N wait states are programmed, the SMC  
holds this state for N system clocks or until the SMC  
detects that nWAIT is inactive, whichever occurs last.  
As the number of wait states programmed increases,  
the amount of delay before nWAIT must be asserted  
also increases. If only 2 wait states are programmed,  
nWAIT must be asserted in the clock cycle immediately  
following the clock cycle during which the nCSx signal  
is asserted. Once the SMC detects that the external  
device has deactivated nWAIT, the SMC completes its  
access in 3 system clock cycles.  
MEMORY CONTROLLER WAVEFORMS  
Static Memory Controller Waveforms  
Figure 8 shows the waveform and timing for an  
External Static Memory Write, with one Wait State. Fig-  
ure 9 shows the waveform and timing for an External  
Static Memory Write, with two Wait States. Figure 10  
shows the waveform and timing for an External Static  
Memory Read, with one Wait State.  
The SMC supports an nWAIT input that can be used  
by an external device to extend the wait time during a  
memory access. The SMC samples nWAIT at the  
beginning of at the beginning of each system clock  
cycle. The system clock cycle in which the nCSx signal  
is asserted counts as the first wait state. See Figure 11.  
The SMC recognizes that nWAIT is active within 2  
clock cycles after it has been asserted. To assure that  
the current access (read or write) will be extended by  
nWAIT, program at least two wait states for this bank of  
The formula for the allowable delay between assert-  
ing nCSx and asserting nWAIT is:  
tASSERT = (system clock period) × (Wait States - 1)  
(where Wait States is from 2 to 31.)  
The signal tIDD is shown without a setup time, as  
measurements are made from the Address Valid point  
and HCLK is an internal signal, shown for reference only.  
Product data sheet  
Rev. 02 19 March 2009  
41  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
Figure 8. External Static Memory Write, One Wait State  
42  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
Figure 9. External Static Memory Write, Two Wait States  
Product data sheet  
Rev. 02 19 March 2009  
43  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
Figure 10. External Static Memory Read, One Wait State  
44  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
Figure 11. External Static Memory Read, nWAIT Active  
Product data sheet  
Rev. 02 19 March 2009  
45  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
Synchronous Serial Port Waveform  
Figure 12. Synchronous Serial Port Waveform  
46  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
SoSize = DeSize and SoBurst = 4.  
DMA Controller Timing Diagrams  
Figure 13 and Figure 14 show examples of DMA  
timing diagrams.  
Figure 14 shows the timing for a memory-to-periph-  
eral data transfer, where  
SoSize = DeSize and SoBurst = 4.  
Figure 13 shows the timing for a peripheral-to-mem-  
ory data transfer, where  
Figure 13. Peripheral-to-Memory Data-Transfer Timing  
Product data sheet  
Rev. 02 19 March 2009  
47  
 
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
Figure 14. Memory-to-Peripheral Data-Transfer Timing  
48  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
TFT HORIZONTAL TIMING  
Color LCD Controller Timing Waveforms  
Figure 17 shows typical horizontal timing waveforms  
for TFT panels.  
This section describes typical output waveform dia-  
grams for the CLCDC and the Advanced LCD Interface.  
TFT VERTICAL TIMING  
STN HORIZONTAL TIMING  
Figure 18 shows typical vertical timing waveforms  
for TFT panels.  
Figure 15 shows typical horizontal timing waveforms  
for STN panels. In this figure, the CLCDC Clock (an  
input to the CLCDC) is scaled within the CLCDC and  
used to produce the LCDDCLK output. Programmable  
registers in the CLCDC set the timings (in terms of  
LCDDCLK pulses) to produce the other signals that  
control an STN display.  
AD-TFT/HR-TFT HORIZONTAL TIMING WAVE-  
FORMS  
Figure 19 shows typical horizontal timing waveforms  
for AD-TFT and HR-TFT panels. The ALI adjusts the  
normal TFT timing to accommodate these panels.  
For example, Figure 15 shows that the duration of  
the LCDLP signal is controlled by Timing0:HSW  
(the HSW bit field in the Timing0 Register). Figure  
15 also shows that the polarity of the LCDLP sig-  
nal is set by Timing2:IHS.  
AD-TFT/HR-TFT VERTICAL TIMING WAVEFORMS  
Figure 20 shows typical vertical timing waveforms  
for AD-TFT and HR-TFT panels. The power sequenc-  
ing and register information is the same as for TFT ver-  
tical timing.  
STN VERTICAL TIMING  
Figure 16 shows typical vertical timing waveforms  
for STN panels.  
Product data sheet  
Rev. 02 19 March 2009  
49  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
Figure 15. STN Horizontal Timing Diagram  
50  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
Figure 16. STN Vertical Timing Diagram  
Product data sheet  
Rev. 02 19 March 2009  
51  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
Figure 17. TFT Horizontal Timing Diagram  
52  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
Figure 18. TFT Vertical Timing Diagram  
Product data sheet  
Rev. 02 19 March 2009  
53  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
1 AD-TFT or HR-TFT HORIZONTAL LINE  
*
CLCDCLK  
(INTERNAL)  
AD-TFT and HR-TFT SIGNALS ARE TFT SIGNALS, RE-TIMED  
Timing0:HSW  
APBPeriphClkCtrl1:LCD  
ClkPrescale:LCDPS  
(SHOWN FOR REFERENCE)  
LCDLP  
(HORIZONTAL  
SYNCHRONIZATION  
PULSE)  
LCDDCLK  
(PANEL CLOCK)  
Timing2:PCD  
Timing2:BCD  
Timing2:IPC  
Timing2:CPL  
LCDVD[11:0]  
001 002 003 004 005 006 007 008  
320  
PIXEL DATA  
Timing0:HSW +  
Timing0: HBP  
LCDEN  
(DATA ENABLE)  
LCDDCLK  
(DELAYED FOR  
AD-TFT, HR-TFT)  
LCDVD[11:0]  
(DELAYED FOR  
AD-TFT, HR-TFT)  
001 002 003 004 005 006  
317 318 319 320  
1 LCDDCLK  
LCDSPL  
(AD-TFT, HR-TFT  
START PULSE LEFT)  
1 LCDDCLK  
Timing1:LPDEL  
LCDLP  
(HORIZONTAL  
SYNCHRONIZATION  
PULSE)  
Timing1:CLSDEL  
Timing2:CLSDEL2  
LCDCLS  
LCDPS  
Timing1:REVDEL  
LCDREV  
NOTE:  
*
Source is RCPC.  
LH754xx-80  
Figure 19. AD-TFT, HR-TFT Horizontal Timing Diagram  
Timing1:VSW  
1.5 µs - 4 µs  
LCDSPS  
(VERTICAL  
SYNCHRONIZATION)  
LCDLP  
(HORIZONTAL  
SYNCHRONIZATION  
PULSE)  
LCDVD[11:0]  
(LCD VIDEO DATA)  
NOTE: LCDDCLK can range from 4.5 MHz to 6.8 MHz.  
LH754xx-81  
Figure 20. AD-TFT, HR-TFT Vertical Timing Diagram  
54  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
Figure 22 shows the suggested external compo-  
nents for the 14.7456 MHz crystal circuit to be used  
with the NXP LH75401/LH75411. The NAND gate rep-  
resents the logic inside the SoC. See the chart for crys-  
tal specifics.  
SUGGESTED EXTERNAL COMPONENTS  
Figure 21 shows the suggested external compo-  
nents for the 32.768 kHz crystal circuit to be used with  
the NXP LH75401/LH75411. The NAND gate repre-  
sents the logic inside the SoC. See the chart for crys-  
tal specifics.  
ENABLE  
INTERNAL TO THE  
LH75400, LH75401,  
LH75410, LH75411  
EXTERNAL TO THE  
LH75400, LH75401,  
LH75410, LH75411  
XTAL32IN  
XTAL32OUT  
Y1  
32.768 kHz  
R1  
18 MΩ  
C1  
C2  
15 pF  
18 pF  
GND  
GND  
NOTES:  
RECOMMENDED CRYSTAL SPECIFICATIONS  
1. Y1 is a parallel-resonant type crystal. (See table)  
2. The nominal values for C1 and C2 shown are for  
a crystal specified at 12.5 pF load capacitance (CL).  
3. The values for C1 and C2 are dependent upon  
the cystal's specified load capacitance and PCB  
stray capacitance.  
PARAMETER  
DESCRIPTION  
32.768 kHz Crystal  
Tolerance  
Parallel Mode  
±30 ppm  
Aging  
±3 ppm  
4. R1 must be in the circuit.  
Load Capacitance  
ESR (MAX.)  
12.5 pF  
5. Ground connections should be short and return  
to the ground plane which is connected to the  
processor's core ground pins.  
50 kΩ  
1.0 µW (MAX.)  
Drive Level  
Recommended Part  
MTRON SX1555 or equivalent  
6. Tolerance for R1, C1, C2 is 5%.  
LH754xx-101  
Figure 21. Suggested External Components, 32.768 kHz Oscillator  
Product data sheet  
Rev. 02 19 March 2009  
55  
 
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
ENABLE  
INTERNAL TO THE  
LH75400, LH75401,  
LH75410, LH75411  
EXTERNAL TO THE  
LH75400, LH75401,  
LH75410, LH75411  
XTALIN  
XTALOUT  
Y1  
14.7456 MHz  
R1  
1 MΩ  
C1  
C2  
18 pF  
22 pF  
GND  
GND  
RECOMMENDED CRYSTAL SPECIFICATIONS  
NOTES:  
PARAMETER  
DESCRIPTION  
1. Y1 is a parallel-resonant type crystal. (See table)  
2. The nominal values for C1 and C2 shown are for  
a crystal specified at 18 pF load capacitance (CL).  
3. The values for C1 and C2 are dependent upon  
the cystal's specified load capacitance and PCB  
stray capacitance.  
14.7456 MHz Crystal (AT-Cut) Parallel Mode  
Tolerance  
±50 ppm  
±100 ppm  
±5 ppm  
Stability  
Aging  
4. R1 must be in the circuit.  
Load Capacitance  
ESR (MAX.)  
Drive Level  
Recommended Part  
18 pF  
5. Ground connections should be short and return  
to the ground plane which is connected to the  
processor's core ground pins.  
40 Ω  
100 µW (MAX.)  
MTRON SX2050 or equivalent  
6. Tolerance for R1, C1, C2 is 5%.  
LH754xx-102  
Figure 22. Suggested External Components, 14.7456 MHz Oscillator  
56  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
PACKAGE SPECIFICATIONS  
LQFP144: plastic low profile quad flat package; 144 leads; body 20 x 20 x 1.4 mm  
SOT486-1  
y
X
A
108  
109  
73  
72  
Z
E
e
H
A
E
2
A
E
(A )  
3
A
1
θ
w M  
p
L
p
b
L
pin 1 index  
detail X  
37  
144  
1
36  
v
M
A
Z
w M  
D
b
p
e
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
E
L
L
p
v
w
y
Z
Z
E
θ
1
2
3
p
D
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 20.1 20.1  
0.17 0.09 19.9 19.9  
22.15 22.15  
21.85 21.85  
0.75  
0.45  
1.4  
1.1  
1.4  
1.1  
mm  
1.6  
0.25  
1
0.2 0.08 0.08  
0.5  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-03-14  
03-02-20  
SOT486-1  
136E23  
MS-026  
Figure 23. Package outline SOT486-1 (LQFP144)  
Product data sheet  
Rev. 02 19 March 2009  
57  
LH75401/LH75411  
144LQFP  
System-on-Chip  
NXP Semiconductors  
21.2  
0.5  
1.6  
17.5  
NOTE: Dimensions in mm.  
144LQFP  
Figure 24. Recommended PCB Footprint  
58  
Rev. 02 19 March 2009  
Product data sheet  
System-on-Chip  
LH75401/LH75411  
NXP Semiconductors  
REVISION HISTORY  
Table 27. Revision history  
Document ID  
Release date Data sheet status  
20090319 Product data sheet  
Change notice Supersedes  
LH75401_411_N_2  
Modifications:  
-
LH75401_411_N_1  
• Changed document status to “Product data sheet”.  
LH75401_411_N_1  
20070716  
Preliminary data sheet  
-
LH754xx Data Sheet 5-10-07  
Product data sheet  
Rev. 02 19 March 2009  
59  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
1. Annex A - Legal information  
1.1  
Data sheet status  
[1][2]  
[3]  
Document status  
Product status  
Definition  
Objective [short] data sheet  
Development  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
1.2  
Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
risk.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Short data sheet A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the full  
data sheet shall prevail.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the Product  
data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party customer(s).  
NXP does not accept any liability in this respect.  
1.3  
Disclaimers  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance with  
the Terms and conditions of commercial sale of NXP Semiconductors.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without limitation  
specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the  
publication hereof.  
Export control — This document as well as the item(s) described herein may  
be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
60  
Rev. 02 19 March 2009  
Product data sheet  
LH75401/LH75411  
System-on-Chip  
NXP Semiconductors  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of non-automotive  
qualified products in automotive equipment or applications.  
damages or failed product claims resulting from customer design and use of  
the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond NXP  
Semiconductors’ specifications such use shall be solely at customer’s own  
risk, and (c) customer fully indemnifies NXP Semiconductors for any liability,  
1.4  
Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
2. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
© NXP B.V. 2009. All rights reserved.  

相关型号:

LH75411N0Q100C0;55

LH75411N0Q100C0SOT486-1
NXP

LH76601

RISC Microcontroller, 32-Bit, 25MHz, CMOS, PQFP16, QFP-160
SHARP

LH77710A

32-Bit Microprocessor
ETC

LH77790

32-Bit Microprocessor
ETC

LH77790A

32-Bit Microcontroller
ETC

LH77790B

Embedded Microcontroller Thermal & Electrical Specification
SHARP

LH79402

Microcontroller
ETC

LH79520

System-on-Chip
NXP

LH79520N0M000B1

System-on-Chip
NXP

LH79520N0M000B1,55

LH79520N0M000B1
NXP

LH79520N0Q000B1

System-on-Chip
NXP

LH79524

System-on-Chip
NXP