LH79520N0M000B1,55 [NXP]

LH79520N0M000B1;
LH79520N0M000B1,55
型号: LH79520N0M000B1,55
厂家: NXP    NXP
描述:

LH79520N0M000B1

文件: 总59页 (文件大小:666K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LH79520  
System-on-Chip  
Preliminary data sheet  
• 64 Programmable General Purpose I/O Signals  
– Multiplexed with Peripheral I/O Signals  
FEATURES  
• Highly Integrated System-on-Chip  
• Programmable Color LCD Controller  
– Up to 800 × 600 Resolution  
• High Performance (77.4144 MHz CPU Speed)  
• ARM720T™ RISC Core  
– 32-bit ARM7TDMI™ RISC Core  
– 8 kB Cache  
– Supports STN, Color STN, AD-TFT, TFT  
– Supports 15 Shades of Gray  
– TFT: Supports 64 k Direct Colors or 256 Colors  
selected from a Palette of 64,000 Colors  
– Color STN: Supports 3,375 Direct Colors or 256  
Colors Selected from a Palette of 3,375 Colors  
– MMU (Windows CE™ Enabled)  
– Write Buffer  
• 32 kB On-Chip SRAM  
• Flexible, Programmable Memory Interface  
– SDRAM Interface  
• Synchronous Serial Port  
– Supports Data Rates Up to 1.8452 Mb/s  
– Compatible with Common Interface Schemes  
– Motorola SPI™  
– 15-bit External Address Bus  
– 32-bit External Data Bus  
– National Semiconductor MICROWIRE™  
– Texas Instruments SSI  
– Two Segments (128 MB each)  
– SRAM/Flash/ROM Interface  
– 26-bit External Address Bus  
– 32-bit External Data Bus  
• JTAG Debug Interface and Boundary Scan  
• 5 V Tolerant Digital I/O  
– Seven Segments (64 MB Each)  
– XTALIN and XTAL32IN inputs are 1.8 V 10 %  
• Multi-stream DMA Controller  
– Four 32-bit Burst-based Data Streams  
DESCRIPTION  
• Clock and Power Management  
The LH79520, powered by an ARM720T, is a com-  
plete System-on-Chip with a high level of integration to  
satisfy a wide range of requirements and expectations.  
The LH79520 combines a 32-bit ARM720T RISC,  
Color LCD controller, Cache, Local SRAM, a number of  
essential peripherals such as Direct Memory Access,  
Serial and Parallel Interfaces, Infrared support, Timers,  
Real Time Clock, Watchdog Timer, Pulse Width Modu-  
lators, and an on-chip Phase Lock Loop. Debug is  
made simple by JTAG support.  
– 32.768 kHz Oscillator for Real Time Clock  
– 14.7456 MHz Oscillator and On-chip PLL for  
CPU and Bus Clocks  
– Active, Standby, Sleep and Stop Power Modes  
– Externally-supplied Clock Options  
• Low Power Modes  
– Active Mode: 55 mA (MAX.)  
– Standby Mode: 35 mA (MAX.)  
– Sleep Mode: 5.5 mA (MAX.)  
– Stop Mode 2: 18 µA  
This high level of integration lowers overall system  
costs, reduces development cycle time and acceler-  
ates product introduction. The LH79520’s fully static  
design, power management unit, low voltage operation  
(1.8 V Core, 3.3 V I/O), on-chip PLL, fast interrupt  
response time, on-chip cache and SRAM, powerful  
instruction set, and low power RISC core provide high  
performance.  
• Watchdog Timer  
• Vectored Interrupt Controller  
– 16 Standard and 16 Vectored IRQ Interrupts  
– Hardware Interrupt Priority  
– Software Interrupts  
– FIQ Fast Interrupts  
To build an advanced portable device, advanced pro-  
cessing capability is required. This capability must come  
with increased performance in the display system and  
peripherals, and yet demand less power from batteries.  
The LH79520 is an integrated solution to fit these needs.  
• Three UARTs  
– 16-byte FIFOs for Rx and Tx  
– IrDA SIR Support  
– Supports Data Rates Up to 460.8 kb/s  
• Two 16-bit Pulse Width Modulators  
• Two Dual Channel Timer Modules  
• Real Time Clock  
– 32-bit Up-counter with Programmable Load  
– Programmable 32-bit Match Compare Register  
Preliminary data sheet  
1
LH79520  
NXP Semiconductors  
System-on-Chip  
ORDERING INFORMATION  
Table 1. Ordering information  
Package  
Type number  
Version  
Name  
LQFP176  
Description  
plastic low profile quad flat package; 176 leads;  
body 20 x 20 x 1.4 mm  
LH79520N0Q000B1  
SOT1017-1  
2
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
DEBUG/TEST  
INTERFACE  
EXTERNAL  
INTERRUPTS  
14.7456 MHz 32.768 kHz  
RESET  
OSCILLATOR,  
PLL POWER  
MANAGEMENT, and  
RESET CONTROL  
REAL TIME  
CLOCK  
GENERAL  
PURPOSE I/O  
32KB  
SRAM  
TEST  
LOGIC/PIN  
MUXING  
ARM 720T  
CONDITIONED  
EXTERNAL  
INTERRUPTS  
I/O  
CONFIGURATION  
SYNCHRONOUS  
SERIAL PORT  
VECTORED  
INTERRUPT  
CONTROLLER  
STATIC  
MEMORY  
CONTROLLER  
TIMER (4)  
EXTERNAL  
BUS  
INTERFACE  
INTERNAL  
INTERRUPTS  
WATCHDOG  
TIMER  
SDRAM  
CONTROLLER  
DMA  
CONTROLLER  
DUAL  
CHANNEL PWM  
ADVANCED  
PERIPHERAL  
BUS BRIDGE  
UART (3)  
IrDA  
INTERFACE  
COLOR  
LCD  
CONTROLLER  
ADVANCED HIGH  
ADVANCED  
PERFORMANCE  
BUS (AHB)  
PERIPHERAL  
BUS (APB)  
ADVANCED  
LCD  
INTERFACE  
79520-1B  
Figure 1. LH79520 block diagram  
Preliminary data sheet  
Rev. 01 16 July 2007  
3
LH79520  
NXP Semiconductors  
System-on-Chip  
PIN CONFIGURATION  
1
132  
LH79520  
44  
89  
002aad212  
Figure 2. LH79520 pin configuration  
4
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
NOTES  
SIGNAL DESCRIPTIONS  
Table 2. LH79520 Signal Descriptions  
PIN NO. SIGNAL NAME  
TYPE  
DESCRIPTION  
MEMORY INTERFACE (MI)  
2-7  
9-12  
14-17  
19-22  
24-27  
29-32  
A[25:0]  
D[31:0]  
Output  
Address Signals  
50-54  
56-63  
65-66  
67-69  
71-74  
76-79  
81-84  
86-87  
Input/Output Data Input/Output Signals  
1
101  
109  
110  
111  
112  
102  
104  
105  
107  
108  
106  
41  
SDCLK  
DQM3  
DQM2  
DQM1  
DQM0  
SDCKE  
nDCS1  
nDCS0  
nRAS  
nCAS  
nSDWE  
nCS6  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
SDRAM Clock  
1
1
1
1
1
1
1
1
Data Mask Output to SDRAMs  
Data Mask Output to SDRAMs  
Data Mask Output to SDRAMs  
Data Mask Output to SDRAMs  
SDRAM Clock Enable  
SDRAM Chip Select  
SDRAM Chip Select  
Row Address Strobe  
Column Address Strobe  
SDRAM Write Enable  
1
1
1
1
1
Static Memory Controller Chip Select  
Static Memory Controller Chip Select  
Static Memory Controller Chip Select  
Static Memory Controller Chip Select  
Static Memory Controller Chip Select  
Static Memory Controller Chip Select  
Static Memory Controller Chip Select  
Static Memory Controller Output Enable  
Static Memory Controller Byte Lane Enable / Byte Write Enable  
Static Memory Controller Byte Lane Enable / Byte Write Enable  
Static Memory Controller Byte Lane Enable / Byte Write Enable  
Static Memory Controller Byte Lane Enable / Byte Write Enable  
Static Memory Controller Write Enable  
Static Memory Controller External Wait Control  
DMA CONTROLLER (DMAC)  
DMA 0 End of Transfer  
42  
nCS5  
43  
nCS4  
44  
nCS3  
46  
nCS2  
47  
nCS1  
48  
nCS0  
38  
nOE  
34  
nBLE3  
nBLE2  
nBLE1  
nBLE0  
nWE  
1
1
35  
36  
37  
39  
144  
nWAIT  
1, 3  
148  
147  
146  
157  
145  
144  
DEOT0  
nDACK0  
DREQ0  
DEOT1  
DACK1  
DREQ1  
Output  
Output  
Input  
1
1
DMA 0 Acknowledge  
DMA 0 Request  
1
Output  
Output  
Input  
DMA 1 End of Transfer  
1
DMA 1 Acknowledge  
1
DMA 1 Request  
1, 3  
Preliminary data sheet  
Rev. 01 16 July 2007  
5
LH79520  
NXP Semiconductors  
System-on-Chip  
NOTES  
Table 2. LH79520 Signal Descriptions (Cont’d)  
PIN NO. SIGNAL NAME  
TYPE  
DESCRIPTION  
COLOR LCD CONTROLLER (CLCDC)  
130  
132  
139  
140  
141  
142  
114  
115  
116  
117  
LCDVD[17:0]  
Output  
LCD Panel Data bus  
1
118  
119  
121  
122  
123  
124  
126  
127  
137  
129  
LCDENAB  
LCDFP  
Output  
Output  
LCD Data Enable  
1
1
Frame Pulse (STN), Vertical Synchronization Pulse (TFT)  
Line Synchronization Pulse (STN),  
Horizontal Synchronization Pulse (TFT)  
131  
LCDLP  
Output  
1
133  
134  
135  
135  
129  
142  
137  
119  
LCDDCLK  
LCDDCLKIN  
LCDVDDEN  
LCDCLS  
Output  
Input  
LCD Panel Data Clock  
1
1
1
1
1
1
1
1
LCD External Clock Input  
Output  
Output  
Output  
Output  
Output  
Output  
LCD Digital Supply Enable  
LCD Clock Signal for Gate Driver (AD-TFT, HR-TFT only)  
LCD Reset Signal for Row Display (AD-TFT, HR-TFT only)  
LCD Reverse Signal (AD-TFT, HR-TFT only)  
LCD Line Start Pulse (Left) (AD-TFT, HR-TFT only)  
LCD Power Save (AD-TFT, HR-TFT only)  
SYNCHRONOUS SERIAL PORT (SSP)  
SSP Serial Frame Output  
LCDSPS  
LCDREV  
LCDSPL  
LCDPS  
164  
165  
166  
167  
169  
SSPFRM  
SSPCLK  
SSPEN  
SSPTX  
Output  
Output  
Output  
Output  
Input  
1
1
1
1
1
SSP Clock  
SSP Data Enable  
SSP Data Out  
SSPRX  
SSP Data In  
PULSE WIDTH MODULATOR (PWM)  
PWM0 Output  
150  
151  
157  
PWM0  
Output  
Input  
1
1
1
PWMSYNC0  
PWM1  
PWM0 Synchronizing Input  
PWM1 Output  
Output  
UART0 (U0)  
163  
162  
163  
162  
UARTRX0  
UARTTX0  
Input  
Output  
Input  
UART0 Received Serial Data Input  
UART0 Transmitted Serial Data Output  
UART0 InfraRed Receive  
1
1
1
1
UARTIRRX0  
UARTIRTX0  
Output  
UART0 InfraRed Transmit  
6
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
NOTES  
Table 2. LH79520 Signal Descriptions (Cont’d)  
PIN NO. SIGNAL NAME  
TYPE  
DESCRIPTION  
UART1 (U1)  
160  
159  
UARTRX1  
UARTTX1  
Input  
UART1 Received Serial Data Input  
UART1 Transmitted Serial Data Output  
UART2 (U2)  
1
1
Output  
169  
167  
UARTRX2  
UARTTX2  
Input  
UART2 Received Serial Data Input  
UART2 Transmitted Serial Data Output  
1
1
Output  
GENERAL PURPOSE INPUT/OUTPUT (GPIO)  
153  
155  
156  
159  
160  
164  
165  
166  
PA7  
PA6  
PA5  
PA4  
PA3  
PA2  
PA1  
PA0  
Input/Output General Purpose I/O Signals - Port A  
1
1
1
1
1
1
139  
140  
141  
142  
146  
147  
148  
152  
PB7  
PB6  
PB5  
PB4  
PB3  
PB2  
PB1  
PB0  
Input/Output General Purpose I/O Signals - Port B  
Input/Output General Purpose I/O Signals - Port C  
Input/Output General Purpose I/O Signals - Port D  
Input/Output General Purpose I/O Signals - Port E  
129  
130  
131  
132  
133  
134  
135  
137  
PC7  
PC6  
PC5  
PC4  
PC3  
PC2  
PC1  
PC0  
116  
117  
118  
119  
121  
122  
123  
124  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
102  
104  
105  
106  
109  
110  
111  
112  
PE7  
PE6  
PE5  
PE4  
PE3  
PE2  
PE1  
PE0  
61  
62  
63  
65  
66  
67  
99  
101  
PF7  
PF6  
PF5  
PF4  
PF3  
PF2  
PF1  
PF0  
General Purpose I/O Signals - Port F.  
Input/Output GPIO PF1 is only available when CLKINSEL is ‘0’  
(i.e. the external clock source is not being used).  
Preliminary data sheet  
Rev. 01 16 July 2007  
7
LH79520  
NXP Semiconductors  
System-on-Chip  
Table 2. LH79520 Signal Descriptions (Cont’d)  
PIN NO. SIGNAL NAME  
TYPE  
DESCRIPTION  
NOTES  
52  
53  
54  
56  
57  
58  
59  
60  
PG7  
PG6  
PG5  
PG4  
PG3  
PG2  
PG1  
PG0  
Input/Output General Purpose I/O Signals - Port G  
1
34  
35  
41  
42  
43  
44  
50  
51  
PH7  
PH6  
PH5  
PH4  
PH3  
PH2  
PH1  
PH0  
Input/Output General Purpose I/O Signals - Port H  
1
1
COUNTER/TIMER (C/T)  
145  
CTOUT1B  
Output  
Counter/Timer Output  
RESET, CLOCK, AND POWER CONTROLLER (RCPC)  
96  
97  
nRESETIN  
nRESETOUT  
INT7  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Output  
Input  
Input  
Reset Input  
Reset Output  
114  
115  
144  
150  
151  
152  
153  
155  
93  
External Interrupt Input  
External Interrupt Input  
External Interrupt Input  
External Interrupt Input  
External Interrupt Input  
External Interrupt Input  
External Interrupt Input  
External Interrupt Input  
Crystal Input  
1
1
INT6  
INT5  
1, 3  
1
INT4  
INT3  
1
INT2  
1
INT1  
1
INT0  
1
XTALIN  
XTALOUT  
XTAL32IN  
XTAL32OUT  
CLKINSEL  
CLKIN  
94  
Crystal Output  
89  
32.768 kHz Crystal Oscillator Input  
32.768 kHz Crystal Oscillator Output  
External Clock Select  
90  
88  
98  
External Clock Input (if CLKINSEL = HIGH at reset)  
1
1
External Clock Enable  
(if CLKINSEL = LOW at reset, then this pin functions as PF1)  
99  
CLKEN  
Output  
156  
98  
CLKOUT  
Output  
Input  
Clock Out (selectable from the internal bus clock or 32.768)  
External UART Clock Input (with CLKSEL = LOW)  
TEST INTERFACE  
1
1
UARTCLK  
174  
170  
173  
172  
171  
175  
nTRST  
TMS  
Input  
Input  
Input  
Input  
Output  
Input  
JTAG Test Reset Input  
JTAG Test Mode Select Input  
TCLK  
TDI  
JTAG Test Clock Input  
JTAG Test Serial Data Input  
TDO  
JTAG Test Data Serial Output  
TEST1  
Tie LOW for Normal Operation (has internal pull-down).  
JTAG Debug Enable: Tie LOW for Normal Operation; pull HIGH to  
enable JTAG Debugging (has internal pull-down).  
176  
1
TEST2  
nTSTA  
Input  
Input  
Tie HIGH for Normal Operation (has internal pull-up).  
8
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
NOTES  
Table 2. LH79520 Signal Descriptions (Cont’d)  
PIN NO. SIGNAL NAME  
TYPE  
DESCRIPTION  
POWER AND GROUND (GND)  
40  
75  
95  
113  
136  
154  
VDDC  
Power  
Core Power Supply  
Core GND  
45  
120  
138  
VSSC  
Ground  
158  
8
18  
28  
49  
64  
85  
VDD  
Power  
Input/Output Power Supply  
100  
125  
143  
161  
13  
23  
33  
55  
70  
80  
VSS  
Ground  
Input/Output GND  
103  
128  
149  
168  
91  
92  
VDDA  
VSSA  
Power  
Analog Power Supply for PLLs and XTAL Oscillators  
Analog GND for PLLs and XTAL Oscillators  
Ground  
NOTES:  
1. These pin numbers have multiplexed functions.  
2. Signals preceded by ‘n’ are Active LOW.  
3. Immediately after reset, pin 144 can be programmed to function as INT5, DREQ1 or both.  
Software should avoid enabling both of these functions simultaneously. Pin 144 can also be  
programmed to function as nWAIT, rendering the INT5/DREQ1 choice unavailable.  
Preliminary data sheet  
Rev. 01 16 July 2007  
9
LH79520  
NXP Semiconductors  
System-on-Chip  
NUMERICAL PIN LIST  
Table 3. LH79520 Numerical Pin List  
FUNCTION AT  
RESET  
OUTPUT  
5
PIN NO.  
FUNCTION 2 FUNCTION 3 TYPE  
NOTES  
7
DRIVE  
1
nTSTA  
A25  
A24  
A23  
A22  
A21  
A20  
VDD  
A19  
A18  
A17  
A16  
VSS  
A15  
A14  
A13  
A12  
VDD  
A11  
A10  
A9  
Input  
Output  
Output  
Output  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Ground  
Output  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Ground  
Output  
Output  
Output  
Output  
Power  
Output  
Output  
Output  
Output  
Ground  
I/O  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
A8  
VSS  
A7  
A6  
A5  
A4  
VDD  
A3  
A2  
A1  
A0  
VSS  
PH7  
PH6  
nBLE1  
nBLE0  
nOE  
nBLE3  
nBLE2  
I/O  
Output  
Output  
Output  
10  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
PIN NO.  
NXP Semiconductors  
LH79520  
Table 3. LH79520 Numerical Pin List (Cont’d)  
FUNCTION AT  
OUTPUT  
5
FUNCTION 2 FUNCTION 3 TYPE  
NOTES  
7
RESET  
DRIVE  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
nWE  
VDDC  
PH5  
PH4  
PH3  
PH2  
VSSC  
nCS2  
nCS1  
nCS0  
VDD  
PH1  
PH0  
PG7  
PG6  
PG5  
VSS  
PG4  
PG3  
PG2  
PG1  
PG0  
PF7  
Output  
Power  
I/O  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
nCS6  
nCS5  
nCS4  
nCS3  
I/O  
I/O  
I/O  
Ground  
Output  
Output  
Output  
Power  
I/O  
D31  
D30  
D29  
D28  
D27  
I/O  
I/O  
I/O  
I/O  
Ground  
I/O  
D26  
D25  
D24  
D23  
D22  
D21  
D20  
D19  
I/O  
I/O  
I/O  
I/O  
I/O  
PF6  
I/O  
PF5  
I/O  
VDD  
PF4  
Power  
I/O  
D18  
D17  
D16  
PF3  
I/O  
PF2  
I/O  
D15  
I/O  
D14  
I/O  
VSS  
D13  
Ground  
I/O  
D12  
I/O  
D11  
I/O  
D10  
I/O  
VDDC  
D9  
Power  
I/O  
D8  
I/O  
Preliminary data sheet  
Rev. 01 16 July 2007  
11  
LH79520  
PIN NO.  
NXP Semiconductors  
System-on-Chip  
Table 3. LH79520 Numerical Pin List (Cont’d)  
FUNCTION AT  
OUTPUT  
5
FUNCTION 2 FUNCTION 3 TYPE  
NOTES  
7
RESET  
DRIVE  
78  
79  
D7  
D6  
I/O  
I/O  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
None  
None  
80  
VSS  
Ground  
I/O  
81  
D5  
82  
D4  
I/O  
83  
D3  
I/O  
84  
D2  
I/O  
85  
VDD  
Power  
I/O  
86  
D1  
87  
D0  
I/O  
88  
CLKINSEL  
XTAL32IN  
XTAL32OUT  
VDDA  
VSSA  
XTALIN  
XTALOUT  
VDDC  
nRESETIN  
nRESETOUT  
CLKIN  
PF1  
Input  
Input  
Output  
Power  
Ground  
Input  
Output  
Power  
Input  
Output  
Input  
I/O  
2
8
3
89  
90  
91  
None  
None  
None  
92  
93  
8
3
94  
95  
None  
None  
4 mA  
None  
2 mA  
None  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
96  
1, 4  
97  
98  
UARTCLK  
CLKEN  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
VDD  
Power  
I/O  
PF0  
SDCLK  
SDCKE  
PE7  
I/O  
VSS  
Ground  
I/O  
PE6  
nDCS1  
nDCS0  
nSDWE  
PE5  
I/O  
PE4  
I/O  
nRAS  
nCAS  
PE3  
Output  
Output  
I/O  
DQM3  
DQM2  
DQM1  
DQM0  
PE2  
I/O  
PE1  
I/O  
PE0  
I/O  
VDDC  
INT7  
Power  
I/O  
LCDVD11  
LCDVD10  
LCDVD9  
4
4
INT6  
I/O  
PD7  
I/O  
12  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
PIN NO.  
NXP Semiconductors  
LH79520  
Table 3. LH79520 Numerical Pin List (Cont’d)  
FUNCTION AT  
OUTPUT  
5
FUNCTION 2 FUNCTION 3 TYPE  
NOTES  
7
RESET  
DRIVE  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
PD6  
PD5  
LCDVD8  
LCDVD7  
LCDVD6  
I/O  
I/O  
I/O  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
None  
8 mA  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
8 mA  
2 mA  
8 mA  
None  
8 mA  
None  
8 mA  
8 mA  
8 mA  
8 mA  
None  
None  
4 mA  
2 mA  
4 mA  
4 mA  
None  
4 mA  
None  
2 mA  
2 mA  
None  
2 mA  
PD4  
LCDPS  
VSSC  
PD3  
Ground  
I/O  
LCDVD5  
LCDVD4  
LCDVD3  
LCDVD2  
PD2  
I/O  
PD1  
I/O  
PD0  
I/O  
VDD  
Power  
Output  
Output  
Ground  
I/O  
LCDVD1  
LCDVD0  
VSS  
PC7  
LCDFP  
LCDVD17  
LCDLP  
LCDSPS  
PC6  
I/O  
PC5  
I/O  
PC4  
LCDVD16  
LCDDCLK  
LCDDCLKIN  
LCDVDDEN  
I/O  
PC3  
I/O  
PC2  
I/O  
PC1  
LCDCLS  
LCDSPL  
I/O  
VDDC  
PC0  
Power  
I/O  
LCDENAB  
VSSC  
PB7  
Ground  
I/O  
LCDVD15  
LCDVD14  
LCDVD13  
LCDVD12  
PB6  
I/O  
PB5  
I/O  
PB4  
LCDREV  
I/O  
VDD  
Power  
Input  
Output  
I/O  
INT5/DREQ1  
CTOUT1B  
PB3  
nWAIT  
DACK1  
DREQ0  
nDACK0  
DEOT0  
4, 6  
4
PB2  
I/O  
PB1  
I/O  
VSS  
Ground  
I/O  
INT4  
INT3  
PB0  
PWM0  
PWMSYNC0  
INT2  
4
4
4
4
Input  
I/O  
PA7  
INT1  
I/O  
VDDC  
PA6  
Power  
I/O  
INT0  
4
Preliminary data sheet  
Rev. 01 16 July 2007  
13  
LH79520  
PIN NO.  
NXP Semiconductors  
System-on-Chip  
Table 3. LH79520 Numerical Pin List (Cont’d)  
FUNCTION AT  
OUTPUT  
5
FUNCTION 2 FUNCTION 3 TYPE  
NOTES  
7
RESET  
DRIVE  
8 mA  
4 mA  
None  
4 mA  
2 mA  
None  
4 mA  
None  
4 mA  
4 mA  
4 mA  
4 mA  
None  
None  
None  
4 mA  
None  
None  
None  
None  
None  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
PA5  
PWM1  
VSSC  
PA4  
CLKOUT  
DEOT1  
I/O  
Output  
Ground  
I/O  
UARTTX1  
UARTRX1  
PA3  
I/O  
4
4
VDD  
Power  
Output  
Input  
I/O  
UARTIRTX0  
UARTIRRX0  
PA2  
UARTTX0  
UARTRX0  
SSPFRM  
SSPCLK  
SSPEN  
PA1  
I/O  
PA0  
I/O  
SSPTX  
VSS  
UARTTX2  
Output  
Ground  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
SSPRX  
TMS  
UARTRX2  
4
1, 4  
TDO  
TDI  
1, 4  
TCLK  
nTRST  
TEST1  
TEST2  
1, 4  
2
2
NOTES:  
1. Input with internal pull-up.  
2. Input with internal pull-down.  
3. Output is for crystal oscillator only, no drive capability.  
4. Input with Schmitt Trigger.  
5. I/O = Input/Output.  
6. Software should avoid enabling the INT5 and DREQ1 functions simultaneously.  
7. Output Drive Values shown are MAX. See ‘DC Specifications’.  
8. Crystal Oscillator Inputs should be driven to a maximum of 1.8 V 10 %.  
14  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
PIN LCD DATA  
NXP Semiconductors  
LH79520  
Table 4. LCD Data Multiplexing  
STN  
ALL TFT:  
PALETTE  
DATA OR  
16-BIT  
MONO 4-BIT  
MONO 8-BIT  
COLOR  
ALL TFT: ALL TFT:  
NO.  
SIGNAL  
5:5:5+I  
5:6:5  
SINGLE  
PANEL  
DUAL  
PANEL  
SINGLE  
PANEL  
DUAL  
PANEL  
SINGLE DUAL  
PANEL PANEL  
DIRECT  
BLUE3  
BLUE2  
BLUE1  
BLUE0  
130 LCDVD17  
132 LCDVD16  
139 LCDVD15  
140 LCDVD14  
141 LCDVD13  
142 LCDVD12  
114 LCDVD11  
115 LCDVD10  
BLUE4  
BLUE3  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT 10  
MLSTN7  
MLSTN6  
MLSTN5  
MLSTN4  
MLSTN3  
MLSTN2  
MLSTN1  
MLSTN0  
CLSTN7 BLUE2  
CLSTN6 BLUE1  
CLSTN5 BLUE0 GREEN5  
CLSTN4  
MLSTN3  
MLSTN2  
MLSTN1  
MLSTN0  
CLSTN3 GREEN4 GREEN4  
CLSTN2 GREEN3 GREEN3  
CLSTN1 GREEN2 GREEN2  
CLSTN0 GREEN1 GREEN1  
BIT 9  
BIT 8  
BIT 7  
BIT 6  
BIT 5  
116  
117  
118  
119  
121  
122  
123  
124  
126  
127  
LCDVD9  
LCDVD8  
LCDVD7  
LCDVD6  
LCDVD5  
LCDVD4  
MUSTN7 MUSTN7 CUSTN7 CUSTN7 GREEN0 GREEN0  
MUSTN6 MUSTN6 CUSTN6 CUSTN6  
MUSTN5 MUSTN5 CUSTN5 CUSTN5  
MUSTN4 MUSTN4 CUSTN4 CUSTN4  
RED4  
RED3  
RED2  
RED1  
RED0  
RED4  
RED3  
RED2  
RED1  
RED0  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
BIT 15  
LCDVD3 MUSTN3 MUSTN3 MUSTN3 MUSTN3 CUSTN3 CUSTN3  
LCDVD2 MUSTN2 MUSTN2 MUSTN2 MUSTN2 CUSTN2 CUSTN2  
LCDVD1 MUSTN1 MUSTN1 MUSTN1 MUSTN1 CUSTN1 CUSTN1  
LCDVD0 MUSTN0 MUSTN0 MUSTN0 MUSTN0 CUSTN0 CUSTN0 Intensity6 BLUE4  
NOTES:  
1. The Intensity bit is identically generated for all three colors.  
2. MUSTN = Monochrome Upper data bit for STN panel.  
3. MLSTN = Monochrome Lower data bit for STN panel.  
4. CUSTN = Color Upper data bit for STN panel.  
5. CLSTN = Color Lower data bit for STN panel.  
6. Connect to the LSB of the Red, Green, and Blue inputs of a 6:6:6 panel.  
7. Recommended hookups for TFT 5:5:5 + Intensity and 5:6:5 are shown.  
This wiring requires the BGR bit in the LCD Control Register to be 0.  
Table 5. LCD Control and Timing Signals  
STN AND  
TFT  
AD-TFT,  
PIN  
DESCRIPTION  
Power Save (AD-TFT, HR-TFT only)  
HR-TFT  
LCDPS  
119  
129  
131  
133  
LCDFP  
LCDLP  
LCDSPS  
LCDLP  
Frame Pulse (STN), Vertical Synchronization Pulse (TFT) /Row Display Reset  
Line Synchronization Pulse (STN), Horizontal Synchronization Pulse (TFT)  
Panel Data Clock  
LCDDCLK  
LCDDCLK  
134 LCDDCLKIN  
LCDDCLKIN External Clock Input  
135  
137  
142  
LCDVDDEN  
LCDENAB  
LCDCLS  
LCDSPL  
LCDREV  
Digital Supply Enable/Gate Driver Clock  
Data Enable/ Line Start Pulse (Left)  
Reverse Signal (AD-TFT, HR-TFT only)  
Preliminary data sheet  
Rev. 01 16 July 2007  
15  
LH79520  
NXP Semiconductors  
System-on-Chip  
TOUCH  
SCREEN  
CONTR.  
CODEC  
IMAGER  
STN/  
TFT/AD-TFT  
SSP  
PWM  
UART  
PIO  
DMA  
FLASH/  
SRAM/  
SDRAM  
LH79520  
UART  
IR  
MEMORY  
CARD  
INTERFACE  
FLASH  
CARD  
79520-6A  
Figure 3. LH79520 Application Diagram Example  
strained by hardware to specific addresses, to be reor-  
ganized at addresses identified by the user. These user  
identified locations are called Virtual Addresses (VA).  
When the MMU is enabled, Code and Data must be  
built, loaded, and executed using Virtual Addresses  
which the MMU translates to Physical Addresses. In  
addition, the user may implement a memory protection  
scheme by using the features of the MMU. Address  
translation and memory protection services provided  
by the MMU are controlled by the user. The MMU is  
directly controlled through the System Control Copro-  
cessor, Coprocessor 15 (CP15). The MMU is indirectly  
controlled by a Translation Table (TT) and Page Tables  
(PT) prepared by the user and established using a por-  
tion of physical memory dedicated by the user to stor-  
ing the TT and PT’s.  
SYSTEM DESCRIPTIONS  
ARM720T Processor  
The LH79520 microcontroller features the ARM720T  
cached core with an Advanced High-Performance Bus  
(AHB) interface. The ARM720T features:  
• 32-bit ARM7TDMI™ RISC Core  
• 8 kB Cache  
• MMU (Windows CE enabled)  
The processor is a member of the ARM7T family of  
processors. For more information, see the ARM docu-  
ment, ‘ARM720T (Rev 3) Technical Reference Manual’,  
available on NXP’s’s website at www.nxp.com.  
The LH79520 MMU provides a means to map Phys-  
ical Memory (PA) addresses to virtual memory  
addresses. This allows physical memory, which is con-  
16  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
Memory Architecture  
0xFFFFFFFF  
0xFFFF0000  
0xFFFC0000  
An integrated SDRAM Controller and Static Memory  
Controller provide a glueless interface to external  
SDRAM, Flash, SRAM, ROM, and burst ROM. Three  
remap options for the physical memory are selectable  
by software, as shown in Figures 4, 5, and 6. Memory  
is exclusively Little Endian.  
ADVANCED HIGH-PERFORMANCE BUS  
PERIPHERALS  
ADVANCED PERIPHERAL BUS  
PERIPHERALS  
RESERVED  
SDRAM CONTROLLER  
0x80000000  
0x60000000  
0x40000000  
INTERNAL STATIC MEMORY  
EXTERNAL STATIC MEMORY  
SDRAM  
The SDRAM Controller provides the interface  
between the internal bus and external (off-chip)  
SDRAM memory devices (Figure 2).  
The SDRAM Controller provides the following features:  
• Two independently controlled chip selects.  
0x20000000  
0x00000000  
EXTERNAL STATIC MEMORY  
• Transfers data between the controller and SDRAM  
in quad-word bursts.  
79520-5  
Figure 4. Memory Remap ‘00’ and ‘11’  
• Supports both 32-bit and 16-bit SDRAM.  
• Supports 2K, 4K, and 8K row address memory parts,  
i.e. typical 256M, 128M, 64M, and 16M parts, with 8,  
16, or 32 DQ bits per device.  
0xFFFFFFFF  
ADVANCED HIGH-PERFORMANCE BUS  
PERIPHERALS  
0xFFFF0000  
• Two reset domains allow SDRAM contents to be  
preserved over a soft reset.  
ADVANCED PERIPHERAL BUS  
PERIPHERALS  
0xFFFC0000  
STATIC MEMORY CONTROLLER (SMC)  
RESERVED  
The SMC provides the interface between the internal  
bus and external (off-chip) memory devices.  
0x80000000  
INTERNAL STATIC MEMORY  
0x60000000  
The LH79520 boots from 16-bit memory. The SMC  
address space is divided into eight memory banks of  
64 MB each. The SMC supports:  
EXTERNAL STATIC MEMORY  
0x40000000  
SDRAM  
• Static Memory-mapped Devices including RAM,  
ROM, Flash, and Burst ROM  
0x20000000  
INTERNAL STATIC MEMORY  
0x00000000  
• Asynchronous Operations:  
79520-4  
– Page Mode Reads for non-clocked memory  
– Burst Mode Reads for burst mode ROM  
Figure 5. Memory Remap ‘10’  
• 8-, 16-, and 32-bit wide external memory data paths  
0xFFFFFFFF  
• Independent configuration for up to eight memory  
banks, each up to 64 MB  
ADVANCED HIGH-PERFORMANCE BUS  
PERIPHERALS  
0xFFFF0000  
0xFFFC0000  
ADVANCED PERIPHERAL BUS  
PERIPHERALS  
• Programmable Parameters:  
– WAIT States (up to 32)  
– Bus Turnaround Cycles (1 to 16)  
– Initial and Subsequent Burst Read WAIT State for  
Burst ROM Devices.  
RESERVED  
0x80000000  
0x60000000  
0x40000000  
The Static Memory Controller (SMC) also supports  
an nWAIT input that can be used by an external device  
to vary the wait time.  
INTERNAL STATIC MEMORY  
EXTERNAL STATIC MEMORY  
SDRAM  
DMA Controller  
0x20000000  
0x00000000  
The DMA Controller provides support for DMA-  
capable peripherals. The LCD controller uses its own  
DMA port, connecting directly to memory for retrieving  
display data.  
SDRAM  
79520-3  
Figure 6. Memory Remap ‘01’  
Preliminary data sheet  
Rev. 01 16 July 2007  
17  
LH79520  
NXP Semiconductors  
System-on-Chip  
• Simultaneous servicing of up to 4 data streams  
Advanced LCD Interface peripheral also provides a  
bypass mode that allows the LH79520 to interface to the  
built-in timing ASIC in standard TFT and STN panels.  
• Three transfer modes are supported:  
– Memory to Memory  
– Peripheral to Memory  
– Memory to Peripheral  
Synchronous Serial Port (SSP)  
The SSP is a master-only interface for synchronous  
serial communication with slave peripheral devices that  
support protocols for Motorola SPI, National Semicon-  
ductor MICROWIRE, or Texas Instruments Synchro-  
nous Serial Interface.  
• Identical source and destination capabilities  
• Transfer Size Programmable (Byte, Half-word, Word)  
• Burst Size Programmable  
• Address Increment or Address Freeze  
• Master-only operation  
• Transfer Error indication for each stream via an  
interrupt  
• Programmable clock rate  
• 16-word FIFO array with pack and unpack logic  
• Separate transmit FIFO and receive FIFO buffers,  
16 bits wide, 8 locations deep  
Handles all combinations of byte, half-word or word  
transfers from input to output.  
• DMA for transmit and receive  
• Programmable interface protocols: Motorola SPI,  
National Semiconductor MICROWIRE, or Texas  
Instruments Synchronous Serial Port  
Color LCD Controller (CLCDC)  
The CLCDC provides all the necessary control and  
drive signals to interface directly with a variety of color  
and monochrome LCD panels.  
• Programmable data frame size from 4 to 16 bits  
• Independent masking of transmit FIFO, receive  
FIFO and receive overrun interrupts  
• Supports single and dual scan color and mono-  
chrome Super Twisted Nematic (STN) displays with  
4- or 8-bit interfaces  
• Available internal loopback test mode.  
• Supports Thin Film Transistor (TFT) color displays  
• Programmable resolution up to 800 × 600  
Universal Asynchronous  
Receiver Transmitter (UART)  
– 800 × 600 (16-bit color can only be supported at  
The LH79520 incorporates three UARTs.  
65 Hz refresh rates with 800 × 600 resolution).  
• Programmable use of UART0 or IrDA SIR input/output  
• 15 gray-level mono, 3,375 color STN, and 64 k color  
TFT support  
• Separate 16-byte transmit and receive FIFOs to  
reduce CPU interrupts  
• 1, 2, or 4 bits-per-pixel (BPP) for monochrome STN  
• Programmable FIFO disabling for 1-byte depth  
• Programmable baud rate generator  
• 1-, 2-, 4-, or 8-BPP palettized color displays for color  
STN and TFT  
• Independent masking of transmit FIFO, receive  
FIFO, receive timeout and modem status interrupts  
True-color non-palettized, for color STN and TFT  
• Programmable timing for different display panels  
• 256-entry, 16-bit palette fast-access RAM  
• Frame, line and pixel clock signals  
• False start bit detection  
• Line Break generation and detection  
• Fully-programmable serial interface characteristics:  
– 5-, 6-, 7-, or 8-bit data word length  
• AC bias signal for STN or data enable signal for  
TFT panels  
– Even-, odd- or no-parity bit generation and detection  
– 1 or 2 stop bit generation  
• Patented grayscale algorithm  
• Interrupt Generation Events  
• IrDA SIR Encode/Decode block, providing:  
– Programmable use of IrDA SIR or UART0  
input/output  
• Dual 16-deep programmable 32-bit wide FIFOs for  
buffering incoming data.  
– Supports data rates up to 115.2 Kbps half-duplex  
– Programmable internal clock generator, allowing  
division of the Reference clock in increments of 1  
to 512 for low-power mode bit durations.  
ADVANCED LCD INTERFACE  
The Advanced LCD Interface peripheral allows for  
direct connection to ultra-thin panels that do not include  
a timing ASIC. It converts TFT signals from the Color  
LCD controller to provide the proper signals, timing and  
levels for direct connection to a panel’s Row and Col-  
umn drivers for AD-TFT, HR-TFT, or any technology of  
panel that allows for a connection of this type. The  
18  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
VARIATIONS FROM THE 16C550 UART  
– FIQ interrupt request  
– Non-vectored IRQ interrupt request (software to  
poll IRQ source)  
The UART varies from the industry-standard  
16C550 UART device in six ways:  
– Vectored IRQ interrupt request (up to 16 chan-  
nels total)  
• Receive FIFO trigger levels are fixed at 8 bytes  
• Receive errors are stored in the FIFO, and do not  
generate an interrupt.  
• The Watchdog timer can only generate FIQ interrupt  
requests  
• The internal register map address space and each  
register’s bit function differ.  
• External interrupt inputs programmable  
– Edge triggered or level triggered  
– Rising edge/active HIGH or falling edge/active  
LOW  
The following 16C550 UART features are not sup-  
ported:  
• 1.5 stop bits (1 or 2 stop bits only are supported)  
• The forcing stick parity function  
The 28 interrupt channels are shown in Table 6.  
• Independent receive clock.  
Table 6. Interrupt Channels  
CHANNEL  
INTERRUPT SOURCE  
External Interrupt 0  
Pulse Width Modulator (PWM)  
• Two independent output channels with separate  
input clocks  
0
1
External Interrupt 1  
External Interrupt 2  
External Interrupt 3  
External Interrupt 4  
External Interrupt 5  
External Interrupt 6  
External Interrupt 7  
Spare Internal Interrupt 0  
COMRX (used for debug)  
COMTX (used for debug)  
SSP RX time-out interrupt SSPRXTO  
CLCD Combined Interrupt  
SSP SSPTXINTR  
SSP SSPRXINTR  
SSP SSPRORINTR  
SSP SSPINTR  
2
• Up to 16-bit resolution  
3
• Programmable synchronous mode support  
– Allows external input to start PWM  
4
5
• Programmable pulse width (duty cycle), interval (fre-  
quency), and polarity  
6
7
– Static programming: PWM is stopped  
– Dynamic programming: PWM is running  
– Updates duty cycle, frequency, and polarity at the  
end of a PWM cycle  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27-29  
30  
31  
– Wide programming range.  
Vectored Interrupt Controller  
The Vectored Interrupt Controller combines the  
interrupt request signals from 20 internal and eight  
external interrupt sources and applies them, after  
masking and prioritization, to the IRQ and FIQ interrupt  
inputs of the ARM7TDMI processor core.  
Counter/Timer0  
Counter/Timer1  
The Interrupt Controller incorporates a hardware  
interrupt vector logic with programmable priority for up  
to 16 interrupt sources. This logic reduces the interrupt  
response time for IRQ type interrupts compared to  
solutions using software polling to determine the high-  
est priority interrupt source. This significantly improves  
the real-time capabilities of the LH79520 in embedded  
control applications.  
Counter/Timer2  
Counter/Timer3  
UART ch0 Rx  
UART ch0 Tx  
UART ch0  
UART ch1  
UART ch2  
• 20 internal and eight external interrupt sources  
– Individually maskable  
DMA Combined  
Unused  
– Status accessible for software polling  
RTC_ALARM  
• IRQ interrupt vector logic for up to 16 channels with  
programmable priorities  
WDT  
• All of the interrupt channels, with the exception of the  
Watchdog Timer interrupt, can be programmed to  
generate:  
Preliminary data sheet  
Rev. 01 16 July 2007  
19  
LH79520  
NXP Semiconductors  
System-on-Chip  
• Programmable clock prescalers for UARTs and  
PWMs  
Reset, Clock, and Power  
Controller (RCPC)  
The RCPC generates the various clock signals for the  
operation of the LH79520 and provides for an orderly  
start-up after power-on and during a wake-up from one  
of the power saving operating modes. The RCPC allows  
the software to individually select the frequency of the  
various on-chip clock signals as required to operate the  
chip in the most power-efficient mode. It features:  
• Five global power control modes are available:  
– Active  
– Standby  
– Sleep  
– Stop1  
– Stop2  
• CPU and Bus clock frequency can be changed  
on the fly  
• 14.7456 MHz crystal oscillator and PLL for on-chip  
Clock generation  
• Selectable clock output  
• External Clock input if on-chip oscillator and PLL are  
not used  
• Hardware reset (nRESETIN) and software reset.  
The 32.768 kHz crystal oscillator is not required for  
chip operation, so it may be left out of the design to  
save power. If this crystal is not used, XTALIN should  
be pulled to VDD or VSS so the input does not float.  
• 32.768 kHz crystal oscillator generating 1 Hz clock  
for Real Time Clock  
• Individually controlled clocks for peripherals and CPU  
• Clock source for UARTs is selectable between  
14.7456 MHz crystal oscillator and external clock  
source  
Table 7. Clock and Enable States for Different Power Modes  
(Using On-chip Oscillator and PLL)  
FUNCTION  
ACTIVE STANDBY SLEEP STOP1 STOP2  
14.7456 MHz Oscillator  
PLL  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Peripheral Clock  
CPU Clock  
ON  
OFF  
OFF  
OFF  
20  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
Real Time Clock  
Timer  
The RTC can provide a basic alarm function or long  
time base counter. This is achieved by generating an  
interrupt signal after counting for a programmed num-  
ber of cycles of RTC input. Counting in one-second  
intervals is achieved by the use of a 1 Hz clock input to  
the RTC.  
The LH79520 incorporates two Timer modules,  
each comprising two 16-bit independently programma-  
ble timers. This gives a total of four independent timers.  
• Each timer has two operating modes:  
– Free-running mode: After reaching 0x0000 the  
timer wraps around to 0xFFFF and generates an  
interrupt request. It continues to count down from  
0xFFFF.  
The features of the RTC are:  
• 32-bit up counter with programmable load  
• Programmable 32-bit match compare register  
– Periodic timer mode: After reaching 0x0000 the  
timer is automatically reloaded with its pro-  
grammed value and generates an interrupt re-  
quest. It continues to count down from the  
loaded value.  
• Software maskable interrupt when counter and com-  
pare registers are identical.  
RTC input clock sources:  
• PLL clock  
• Each timer contains a programmable pre-scaler:  
– Bus clock divided by 1, 16, or 256  
• 32.768 kHz clock  
• 1 Hz clock (default).  
• Timers can be cascaded to achieve longer timing  
periods  
• Carry-out of higher-order timer provides clock signal  
for next lower order timer  
Watchdog Timer  
The Watchdog Timer provides hardware protection  
against malfunctions. It is a programmable timer to be  
reset by software at regular intervals. Failure to reset  
the timer will cause a FIQ interrupt. Failure to service  
the FIQ interrupt will then generate a System Reset.  
The features of the Watchdog Timer are:  
• Possible timing ranges:  
15  
– 2 (single timer)  
31  
– 2 (two timers cascaded)  
47  
– 2 (three timers cascaded)  
63  
– 2 (four timers cascaded)  
• Driven by the bus clock  
• Output signal of lowest order timer is externally avail-  
able as CTOUT1B signal.  
16  
31  
• 16 programmable time-out periods: 2 through 2  
clock cycles  
Input/Output Configuration System  
• Generates a system reset (resets LH79520) or a FIQ  
Interrupt whenever a time-out period is reached  
The registers provided by the IOCON System allow  
the user to directly control the pin multiplexing of the  
device; by setting or clearing bits in a set of registers, the  
user can configure the LH79520 for peripheral devices.  
• Software enable, lockout, and counter-reset mecha-  
nisms add security against inadvertent writes  
• Protection mechanism guards against interrupt-ser-  
vice failure:  
General Purpose Input/Output (GPIO)  
The LH79520 provides up to 64 bits of programma-  
ble input/output. These eight 8-bit ports are Ports A  
through H, and are multiplexed with other signals.  
– The first WDT time-out triggers FIQ and asserts  
nWDFIQ status flag  
– If FIQ service routine fails to clear nWDFIQ, then  
the next WDT time-out triggers a soft reset.  
• Individually programmable input/output pins  
• All I/O ports default to Input on power-up.  
Preliminary data sheet  
Rev. 01 16 July 2007  
21  
LH79520  
NXP Semiconductors  
System-on-Chip  
ELECTRICAL SPECIFICATIONS  
Absolute Maximum Ratings  
PARAMETER  
SYMBOL  
RATING  
UNIT  
DC Core Supply Voltage  
DC I/O Supply Voltage  
DC Analog Supply Voltage  
Storage Temperature  
VDDC  
VDD  
-0.3 to 2.4  
-0.3 to 4.6  
-0.3 to 2.4  
-55 to +125  
V
V
V
VDDA  
TSTG  
°C  
NOTE: These stress ratings are only for transient conditions. Oper-  
ation at or beyond absolute maximum rating conditions may  
affect reliability and cause permanent damage to the device.  
Recommended Operating Conditions  
PARAMETER  
MINIMUM TYPICAL  
MAXIMUM  
1
1.62 V  
3.0 V  
1.8 V  
3.3 V  
1.8 V  
1.98 V  
3.6 V  
DC Core Supply Voltage (VDDC)  
1
DC I/O Supply Voltage (VDD)  
DC Analog Supply Voltage (VDDA)  
1.62 V  
10 MHz  
0°C  
1.98 V  
2
Clock Frequency  
77.4144 MHz  
+70°C  
Commercial Operating Temperature  
Industrial Operating Temperature  
25°C  
25°C  
-40°C  
+85°C  
NOTES:  
1. Core Voltage should never exceed I/O Voltage after initial power  
up. See the section titled ‘Power Supply Sequencing’.  
2. Using 14.7456 MHz Input Crystal and On-Chip PLL. Functional to  
DC when using external clock.  
22  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
DC/AC SPECIFICATIONS (COMMERCIAL)  
Unless otherwise noted, all data provided under  
commercial DC specifications are based on 0°C to  
+70°C, VDDC = 1.62 V to 1.98 V, VDD = 3.0 V to 3.6 V,  
VDDA = 1.62 V to 1.98 V.  
DC Specifications (Commercial)  
SYMBOL  
PARAMETER  
CMOS input HIGH voltage  
MIN. TYP. MAX. UNIT  
CONDITIONS  
NOTES  
VIH  
2.0  
5.5  
0.8  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VIL  
CMOS input LOW voltage  
VIT+  
VIT-  
Positive Input threshold voltage (Schmitt trigger pins)  
Negative Input threshold voltage (Schmitt trigger pins)  
Schmitt trigger hysteresis  
1.60  
1.20  
0.40  
1
1
VHYST  
VIT+ – VIT-  
CMOS output HIGH voltage  
Output drive (2 mA type)  
2.6  
2.6  
2.6  
2.6  
IOH = -50 µA  
IOH = -2 mA  
IOH = -4 mA  
IOH = -8 mA  
IOL = 50 µA  
IOL = 2 mA  
IOL = 4 mA  
IOL = 8 mA  
VOH  
VOL  
Output drive (4 mA type)  
Output drive (8 mA type)  
CMOS output LOW voltage  
Output drive (2 mA type)  
0.4  
0.4  
0.4  
0.4  
1
Output drive (4 mA type)  
Output drive (8 mA type)  
XTAL32IN External Clock Input  
1.62 1.8 1.98  
1.62 1.8 1.98  
2
2
XTALIN  
IIN  
External Clock Input  
Input leakage current  
Output tri-state leakage current  
Active current  
-10  
-10  
10  
10  
55  
35  
5.5  
µA VIN = VDD or GND  
IOZ  
µA VOUT = VDD or GND  
IACTIVE  
43.5  
27.5  
3.9  
500  
34  
mA  
mA  
mA  
µA  
3
ISTANDBY Standby current  
3, 4  
ISLEEP  
ISTOP1  
ISTOP2  
ISTOP2  
CIN  
Sleep current  
Stop1 current  
Stop2 current (RTC ON)  
Stop2 current (RTC OFF)  
Input Capacitance  
µA  
18  
µA  
4
4
pF  
COUT  
Output Capacitance  
Pull-up or Pull-down Resistance  
pF  
RPULL  
33  
K Ω  
NOTES:  
1. Table 2 details each pin’s buffer type.  
2. P-P Sinusoidal; 0.0 V DC offset.  
3. Running Typical Application over operating range.  
4. Current measured with CPU stopped and all peripherals enabled.  
AC Test Conditions  
PARAMETER  
Supply Voltage (VDD)  
RATING  
3.0 to 3.6  
1.62 to 1.98  
VSS to VDD  
2
UNIT  
V
Core Voltage (VDDC)  
V
Input Pulse Levels  
V
Input Rise and Fall Times  
Input and Output Timing Ref. Levels  
ns  
V
VDD/2  
Preliminary data sheet  
Rev. 01 16 July 2007  
23  
LH79520  
NXP Semiconductors  
System-on-Chip  
For outputs from the LH79520, tOVXXX (e.g. tOVA)  
represents the amount of time for the output to become  
valid from the rising edge of the reference clock signal.  
Maximum requirements for tOVXXX are shown in  
Table 8.  
AC Specifications  
All signals described in Table 8 relate to transitions  
after a reference clock signal. The illustration in Figure  
7 represents all cases of these sets of measurement  
parameters; except for the Asynchronous Memory  
Interface — which are referenced to Address Valid.  
The signal tOHXXX (e.g. tOHA) represents the  
amount of time the output will be held valid from the ris-  
ing edge of the reference clock signal. Minimum  
requirements for tOHXXX are listed in Table 8.  
The reference clock signals in this design are:  
• HCLK, the System Bus clock  
• PCLK, the Peripheral Bus clock (locked to HCLK in  
the LH79520)  
For Inputs, tISXXX (e.g. tISD) represents the  
amount of time the input signal must be valid before the  
rising edge of the clock signal. Minimum requirements  
for tISXXX are shown in Table 8.  
• SSPCLK, the Synchronous Serial Interface clock  
• UARTCLK, the UART Interface clock  
The signal tIHXXX (e.g. tIHD) represents the  
amount of time the memory output must be held valid  
from the rising edge of the reference clock signal. Min-  
imum requirements are shown in Table 8.  
• LCDDCLK, the LCD Data clock from the  
LCD Controller  
• and SDCLK, the SDRAM clock.  
All signal transitions are measured from the 50 %  
point of the clock to the 50 % point of the signal. See  
Figure 7.  
REFERENCE  
CLOCK  
tOHXXX  
tOVXXX  
OUTPUT  
SIGNAL (O)  
tISXXX tIHXXX  
INPUT  
SIGNAL (I)  
79520-34  
Figure 7. LH79520 Signal Timing  
24  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
Table 8. AC Signal Characteristics (Commercial)  
SIGNAL  
TYPE LOAD DRIVE SYMBOL  
MIN.  
MAX.  
DESCRIPTION  
ASYNCHRONOUS MEMORY INTERFACE SIGNALS  
Data Output Valid, following  
Address Valid  
tOVD  
tOHD  
tHCLK + 6 ns  
Output 50 pF 8 mA  
Data Output Invalid, following  
Address Valid  
3 × tHCLK - 6 ns  
D[31:0]  
Data Input Valid, following  
Address Valid  
2 × tHCLK – 18 ns  
Input  
tIDD  
2 × tHCLK – 18 ns  
+ (nWAIT –1)  
× tHCLK  
Data Input Valid, following  
Address Valid (nWAIT states)  
Chip Select Output Valid,  
following Address Valid  
tOVCS  
tOHCS  
tOVBE  
tHCLK + 6 ns  
nCS6 - nCS0 Output 30 pF 8 mA  
Chip Select Output Invalid,  
following Address Valid  
3 × tHCLK - 6 ns  
Byte Lane Enable Valid,  
following Address Valid  
tHCLK + 10 ns  
Byte Lane Enable Invalid, follow-  
ing Address Valid; Write Cycle  
nBLE[3:0]  
Output 30 pF 8 mA  
Output 30 pF 8 mA  
tOHBEW  
tOHBER  
tOVWE  
tOHWE  
tOVOE  
tOHOE  
tISWAIT  
2 × tHCLK - 6 ns  
3 × tHCLK - 6 ns  
Byte Lane Enable Invalid, follow-  
ing Address Valid; Read Cycle  
Write Enable Valid, following  
Address Valid  
tHCLK + 10 ns  
nWE  
nOE  
Write Enable Invalid, following  
Address Valid  
2 × tHCLK - 6 ns 2 × tHCLK - 6 ns  
tHCLK + 10 ns  
Ouput Enable Valid, following  
Address Valid  
Output 30 pF 8 mA  
Input  
Ouput Enable Invalid, following  
Address Valid  
3 × tHCLK - 6 ns  
WAIT Input Valid, following  
Address Valid  
nWAIT  
A[25:0]  
2 × tHCLK – 18 ns  
SYNCHRONOUS MEMORY INTERFACE SIGNALS  
Ouput 50 pF 8 mA  
tOVA  
tOVD  
10.5 ns  
11 ns  
Address Valid  
Output Data Valid  
Output Data Hold  
Input Data Setup  
Output 50 pF 8 mA  
tOHD  
1.2 ns  
5 ns  
D[31:0]  
tISD  
Input  
tIDD  
1.5 ns  
Input Data Hold  
tOVCA  
tOHCA  
tOVRA  
tOHRA  
tOVSDW  
tOHSDW  
tOVC0  
tOHC0  
tOVDQ  
tOHDQ  
tOVSC  
tOHSC  
tSDCLK  
10.5 ns  
10.5 ns  
10.5 ns  
10.5 ns  
10.5 ns  
10.5 ns  
CAS Valid  
nCAS  
Output 50 pF 8 mA  
Output 50 pF 8 mA  
Output 30 pF 8 mA  
Output 30 pF 8 mA  
Output 30 pF 8 mA  
2 ns  
2 ns  
2 ns  
2 ns  
2 ns  
CAS Hold  
RAS Valid  
nRAS  
RAS Hold  
SDWE Write Enable Valid  
SDWE Write Enable Hold  
SDCKE Clock Enable Valid  
SDCKE Clock Enable Hold  
DQM Data Mask Valid  
DQM Data Mask Hold  
SDCS Data Mask Valid  
SDCS Data Mask Hold  
SDRAM Clock Period  
nSDWE  
SDCKE  
DQM[3:0]  
nSDCS[1:0] Output 30 pF 8 mA  
SDCLK Output 30 pF 8 mA  
2 ns  
19.37 ns  
Preliminary data sheet  
Rev. 01 16 July 2007  
25  
LH79520  
SIGNAL  
NXP Semiconductors  
System-on-Chip  
Table 8. AC Signal Characteristics (Commercial) (Cont’d)  
TYPE LOAD DRIVE SYMBOL  
MIN.  
MAX.  
DESCRIPTION  
SYNCHRONOUS SERIAL PORT (SSP)  
tOVSSPFRM Output Valid,  
Referenced to SSPCLK  
SSPFRM  
SSPEN  
Output 50 pF 2 mA tOVSSPFRM  
14 ns  
tOVSSPEN Output Valid,  
Referenced to SSPCLK  
Output 50 pF 2 mA tOVSSPENB  
Output 50 pF 2 mA tOVSSPOUT  
14ns  
14ns  
SSPTX  
SSPRX  
SSP Transmit Valid  
SSP Receive Setup  
Input  
tISSSPIN  
17 ns  
INTERRUPTS  
INTR[5:0]  
Input  
Note 1  
NOTES:  
1. INTR[5:0] are asynchronous signals. Interrupts must be held Active until serviced in Level Sensitive Mode,  
and held Active for a minimum of 20 ns in Edge Sensitive Mode.  
2. nDACK0, DACK1 and DREQ[1:0] are asynchronous signals. They must be held Active until serviced,  
for a minimum of 20 ns.  
26  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
DC/AC SPECIFICATIONS (INDUSTRIAL)  
Unless otherwise noted, all data provided under  
industrial DC specifications are based on -40°C to  
+85°C, VDDC = 1.62 V to 1.98 V, VDD = 3.0 V to 3.6 V,  
VDDA = 1.62 V to 1.98 V.  
DC Specifications (Industrial)  
SYMBOL  
VIH  
PARAMETER  
CMOS input HIGH voltage  
MIN. TYP. MAX. UNIT  
CONDITIONS  
NOTES  
2.0  
5.5  
0.8  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VIL  
CMOS input LOW voltage  
VIT+  
Positive Input thrueshold voltage (Schmitt trigger pins)  
Negative Input threshold voltage (Schmitt trigger pins)  
Schmitt trigger hysteresis  
1.60  
1.20  
0.40  
VIT-  
1
1
VHST  
VIT+ – VIT-  
CMOS output HIGH voltage  
Output drive (2 mA type)  
2.6  
2.6  
2.6  
2.6  
IOH = -50 µA  
IOH = -2 mA  
IOH = -4 mA  
IOH = -8 mA  
IOL = 50 µA  
IOL = 2 mA  
IOL = 4 mA  
IOL = 8 mA  
VOH  
VOL  
Output drive (4 mA type)  
Output drive (8 mA type)  
CMOS output LOW voltage  
Output drive (2 mA type)  
0.4  
0.4  
0.4  
0.4  
1
Output drive (4 mA type)  
Output drive (8 mA type)  
XTAL32IN External Clock Input  
1.62 1.8 1.98  
1.62 1.8 1.98  
2
2
XTALIN  
IIN  
External Clock Input  
Input leakage current  
Output tri-state leakage current  
Active current  
-10  
-10  
10  
10  
µA VIN = VDD or GND  
IOZ  
µA VOUT = VDD or GND  
IACTIVE  
43.5  
27.5  
3.9  
mA  
mA  
mA  
µA  
3
ISTANDBY Standby current  
3, 4  
ISLEEP  
ISTOP1  
ISTOP2  
ISTOP2  
CIN  
Sleep current  
Stop1 current  
500  
34  
Stop2 current (RTC ON)  
Stop2 current (RTC OFF)  
Input Capacitance  
µA  
18  
µA  
4
4
pF  
COUT  
Output Capacitance  
Pull-up or Pull-down Resistance  
pF  
RPULL  
33  
K Ω  
NOTES:  
1. Table 2 details each pin’s buffer type.  
2. P-P Sinusoidal; 0.0 V DC offset.  
3. Running Typical Application over operating range.  
4. Current measured with CPU stopped and all peripherals enabled.  
AC Test Conditions  
PARAMETER  
Supply Voltage (VDD)  
RATING  
3.0 to 3.6  
1.62 to 1.98  
VSS to VDD  
2
UNIT  
V
Core Voltage (VDDC)  
V
Input Pulse Levels  
V
Input Rise and Fall Times  
Input and Output Timing Ref. Levels  
ns  
V
VDD/2  
Preliminary data sheet  
Rev. 01 16 July 2007  
27  
LH79520  
NXP Semiconductors  
System-on-Chip  
CURRENT CONSUMPTION BY OPERATING MODE  
Table 9. Current Consumption by Mode  
Current consumption can depend on a number of  
parameters. To make this data more usable, the values  
presented in Table 9 were derived under the conditions  
presented here.  
SYMBOL  
PARAMETER  
TYP. UNITS  
ACTIVE MODE*  
ICORE Core Current  
IIO I/O Current  
STANDBY MODE  
ICORE Core Current  
IIO Current drawn by I/O  
SLEEP MODE  
ICORE Core Current  
33.6  
9.6  
mA  
mA  
Maximum Specified Value  
The values specified in the MAXIMUM column were  
determined using these operating characteristics:  
29.6  
0.8  
mA  
mA  
• All IP blocks either operating or enabled at maximum  
frequency and size configuration  
3.8  
2
mA  
µA  
• Core operating at maximum power configuration  
• All I/O loads at maximum (50 pF)  
IIO  
Current drawn by I/O  
STOP1 MODE  
• All voltages at maximum specified values  
• Maximum specified ambient temperature.  
ILEAK  
ILEAK  
ILEAK  
Leakage Current, Core and I/O 2.96  
STOP2 MODE (RTC ON)  
mA  
µA  
µA  
Leakage Current, Core and I/O 35  
STOP2 MODE (RTC OFF)  
Typical  
The values in the TYPICAL column were determined  
using a ‘typical’ application under ‘typical’ environmental  
conditions and the following operating characteristics:  
Leakage Current, Core and I/O 18  
NOTE: *ICORE = 58 mA MAX., IIO = 19 mA MAX., all active  
• SPI, UART, PWMs, and Timer peripherals operat-  
ing; all other peripherals disabled  
Table 10. Peripheral Current Consumption  
• LCD enabled with 320 × 240 × 16-bit color, 60 Hz  
refresh rate  
PERIPHERAL  
TYPICAL  
UNITS  
• I/O loads at nominal  
UARTs  
RTC  
200  
5
µA  
µA  
mA  
µA  
µA  
mA  
• Cache enabled  
• FCLK = 77.4 MHz; HCLK = 51.6 MHz  
• All voltages at typical values  
• Nominal case temperature.  
DMA  
4.1  
500  
207  
2.2  
SSP  
Counter/Timers  
LCD  
PERIPHERAL CURRENT CONSUMPTION  
In addition to the modal current consumption, Table  
10 shows the typical current consumption for each of  
the on-board peripheral blocks. The values were deter-  
mined with the peripheral clock running at maximum  
frequency, typical conditions, and no I/O loads.  
28  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
AC Specifications (Industrial)  
Table 11. AC Signal Characteristics (Industrial)  
TYPE LOAD DRIVE SYMBOL MIN. MAX.  
ASYNCHRONOUS MEMORY INTERFACE SIGNALS  
SIGNAL  
DESCRIPTION  
Data Output Valid, following  
Address Valid  
tOVD  
tOHD  
tHCLK + 6.5 ns  
Output 50 pF 8 mA  
Data Output Invalid, following  
Address Valid  
3 × tHCLK – 6 ns  
D[31:0]  
Data Input Valid, following  
Address Valid (1 WAIT state)  
2 × tHCLK – 18 ns  
Input  
tIDD  
2 × tHCLK – 18 ns  
+ (nWAIT –1)  
× tHCLK  
Data Input Valid, following  
Address Valid (nWAIT states)  
Chip Select Output Valid,  
following Address Valid  
tOVCS  
tOHCS  
tOVBE  
tHCLK + 6 ns  
nCS6 - nCS0 Output 30 pF 8 mA  
Chip Select Output Invalid,  
following Address Valid  
3 × tHCLK – 6 ns  
Byte Lane Enable Valid,  
following Address Valid  
tHCLK + 10 ns  
Byte Lane Enable Invalid, follow-  
ing Address Valid; Write Cycle  
nBLE[3:0]  
Output 30 pF 8 mA  
Output 30 pF 8 mA  
tOHBEW  
tOHBER  
tOVWE  
tOHWE  
tOVOE  
tOHOE  
tISWAIT  
2 × tHCLK – 6 ns  
3 × tHCLK – 6 ns  
Byte Lane Enable Invalid, follow-  
ing Address Valid; Read Cycle  
Write Enable Valid, following  
Address Valid  
tHCLK + 10 ns  
nWE  
nOE  
Write Enable Invalid, following  
Address Valid  
2 × tHCLK – 6 ns 2 × tHCLK - 6 ns  
tHCLK + 10 ns  
Ouput Enable Valid, following  
Address Valid  
Output 30 pF 8 mA  
Input  
Ouput Enable Invalid, following  
Address Valid  
3 × tHCLK – 6 ns  
WAIT Input Valid, following  
Address Valid  
nWAIT  
A[25:0]  
2 × tHCLK – 18 ns  
SYNCHRONOUS MEMORY INTERFACE SIGNALS  
Ouput 50 pF 8 mA  
tOVA  
tOVD  
10.5 ns  
11.5 ns  
Address Valid  
Output Data Valid  
Output Data Hold  
Input Data Setup  
Input Data Hold  
Output 50 pF 8 mA  
tOHD  
1.2 ns  
5 ns  
D[31:0]  
tISD  
Input  
tIDD  
1.5 ns  
tOVCA  
tOHCA  
tOVRA  
tOHRA  
tOVSDW  
tOHSDW  
tOVC0  
tOHC0  
tOVDQ  
tOHDQ  
11 ns  
11 ns  
11 ns  
11 ns  
11 ns  
CAS Valid  
nCAS  
Output 50 pF 8 mA  
Output 50 pF 8 mA  
Output 30 pF 8 mA  
Output 30 pF 8 mA  
Output 30 pF 8 mA  
2 ns  
2 ns  
2 ns  
2 ns  
2 ns  
CAS Hold  
RAS Valid  
nRAS  
RAS Hold  
SDWE Write Enable Valid  
SDWE Write Enable Hold  
SDCKE Clock Enable Valid  
SDCKE Clock Enable Hold  
DQM Data Mask Valid  
DQM Data Mask Hold  
nSDWE  
SDCKE  
DQM[3:0]  
Preliminary data sheet  
Rev. 01 16 July 2007  
29  
LH79520  
SIGNAL  
NXP Semiconductors  
System-on-Chip  
Table 11. AC Signal Characteristics (Cont’d)(Industrial)  
TYPE LOAD DRIVE  
SYMBOL  
tOVSC  
MIN.  
MAX.  
DESCRIPTION  
11 ns  
SDCS Data Mask Valid  
SDCS Data Mask Hold  
SDRAM Clock Period  
nSDCS[1:0] Output 30 pF 8 mA  
tOHSC  
2 ns  
SDCLK  
Output 30 pF 8 mA  
tSDCLK  
19.37 ns  
SYNCHRONOUS SERIAL PORT (SSP)  
SSPFRM Output Valid,  
Referenced to SSPCLK  
SSPFRM  
SSPEN  
Output 50 pF 2 mA tOVSSPFRM  
14 ns  
SSPEN Output Valid,  
Referenced to SSPCLK  
Output 50 pF 2 mA tOVSSPENB  
Output 50 pF 2 mA tOVSSPOUT  
14ns  
14ns  
SSPTX  
SSPRX  
SSP Transmit Valid  
SSP Receive Setup  
Input  
tISSSPIN  
17 ns  
INTERRUPTS  
INTR[5:0]  
Input  
Note 1  
NOTES:  
1. INTR[5:0] are asynchronous signals. Interrupts must be held Active until serviced in Level Sensitive Mode,  
and held Active for a minimum of 20 ns in Edge Sensitive Mode.  
2. nDACK0, DACK1 and DREQ[1:0] are asynchronous signals. They must be held Active until serviced,  
for a minimum of 20 ns.  
EXTERNAL CLOCKS  
Table 12. External Clocks AC Specifications  
SYMBOL  
DESCRIPTION  
CLKIN Period  
MIN.  
UNIT  
tCLKIN  
6.66  
2.8  
2.8  
1
ns  
tSSPCLK  
tCLKINH  
tCLKINL  
tSSPCLK  
CLKIN HIGH Time  
CLKIN LOW TIme  
SSPCLK Period  
ns  
tSSPCLKH  
tSSPCLKL  
ns  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
PCLK  
tSSPCLKH SSPCLK HIGH Time  
tSSPCLKL SSPCLK LOW Time  
0.4  
0.4  
1
tUCLK  
UCLK  
79520-58  
tUCLKH  
tUCLKL  
UCLK HIGH Time  
UCLK LOW Time  
0.4  
0.4  
Figure 9. Synchronous Serial I/F Clocks AC Timing  
NOTES:  
1. PCLK is the period chosen for the internal peripheral  
clock domain.  
2. MAX. period is DC. See ‘Recommended Operating Conditions’.  
tUCLK  
tUCLKH  
tUCLKL  
tCLKIN  
tCLKINL  
tCLKINH  
79520-59  
Figure 10. External UARTs/SIR Clock AC Timing  
79520-57  
Figure 8. External Clock AC Timing  
30  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
then nWAIT must be asserted in the clock cycle imme-  
diately following the clock cycle during which the nCSx  
signal is asserted. Once the SMC detects that the  
external device has deactivated nWAIT, the SMC will  
complete its access in 3 system clock cycles.  
Static Memory Controller Waveforms  
nWAIT INPUT  
The Static Memory Controller (SMC) supports an  
nWAIT input that can be used by an external device to  
extend the wait time during a memory access. The  
SMC samples nWAIT at the beginning of at the begin-  
ning of each system clock cycle. The system clock  
cycle in which the nCSx signal is asserted counts as  
the first wait state. See Figure 11.  
The formula for the allowable delay between assert-  
ing nCSx and asserting nWAIT is:  
tASSERT = (system clock period) × (Wait States - 1)  
(where Wait States is from 2 to 31.)  
The SMC recognizes that nWAIT is active within 2  
clock cycles after it has been asserted. To assure that  
the current access (read or write) will be extended by  
nWAIT, at least two wait states must be programmed  
for this bank of memory. If N wait states are pro-  
grammed, then the Static Memory Controller (SMC)  
holds this state for N system clocks, or until the SMC  
detects that nWAIT is inactive, whichever occurs last.  
As the number of wait states programmed increases,  
the amount of delay before nWAIT must be asserted  
also increases. If only 2 wait states are programmed,  
READ AND WRITE WAVEFORMS  
Figure 12 shows the waveform and timing for an  
External Static Memory Write. Figure 13 shows the  
waveform and timing for an External Static Memory  
Read, with one Wait State. Figure 14 shows the wave-  
form and timing for an External Static Memory Read,  
with two Wait States.  
The signal tIDD is shown without a setup time, as  
measurements are made from the Address Valid point  
and HCLK is an internal signal, shown for reference only.  
Preliminary data sheet  
Rev. 01 16 July 2007  
31  
LH79520  
NXP Semiconductors  
System-on-Chip  
Figure 11. nWait Assertion  
32  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
Figure 12. External Static Memory Write, One Wait State  
Preliminary data sheet  
Rev. 01 16 July 2007  
33  
LH79520  
NXP Semiconductors  
System-on-Chip  
Figure 13. External Static Memory Read, One Wait State  
34  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
Figure 14. External Static Memory Write, Two Wait States  
Preliminary data sheet  
Rev. 01 16 July 2007  
35  
LH79520  
NXP Semiconductors  
System-on-Chip  
Figure 15. Synchronous Serial Port Waveform  
36  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
SDRAM Memory Controller Waveforms  
Figure 16 shows the waveform and timing for an  
SDRAM Burst Read (page already open). Figure 17  
shows the waveform and timing for SDRAM to Activate  
a Bank and Write.  
tSDCLK  
SCLK  
tOHXXX  
READ  
SDRAMcmd  
tOV  
tOVXXX  
A[15:0]  
BANK,  
COLUMN  
tISD tIHD  
DATA n  
tOVA  
D[31:0]  
NOTES:  
DATA n + 2  
DATA n + 1  
1. SDRAMcmd is the combination of nRAS, nCAS, nSDWE, and nSDCS(X).  
2. tOVXXX represents tOVRA, tOVCA, tOVSDW, or tOVSC.  
3. tOHXXX represents tOHRA, tOHCA, tOHSDW, or tOHSC.  
4. nDQM is LOW.  
DATA n + 3  
5. SDCKE is HIGH.  
LH79520-35  
Figure 16. SDRAM Burst Read  
tSDCLK  
SCLK  
tOVC0  
SDCKE  
tOVXXX tOHXXX  
ACTIVE  
tOVA  
WRITE  
SDRAMcmd  
A[15:0]  
BANK,  
ROW  
BANK,  
COLUMN  
tOVA  
DATA  
D[31:0]  
tOVD  
NOTES:  
1. SDRAMcmd is the combination of nRAS, nCAS, nSDWE, and nSDCS(X).  
tOHD  
2. tOVXXX represents tOVRA, tOVCA, tOVSDW, or tOVSC. Refer to the AC timing table.  
3. tOHXXX represents tOHRA, tOHCA, tOHSDW, or tOHSC.  
4. nDQM is LOW.  
79520-36  
Figure 17. SDRAM Bank Activate and Write  
Preliminary data sheet  
Rev. 01 16 July 2007  
37  
LH79520  
NXP Semiconductors  
System-on-Chip  
Figure 19 shows the timing with relation to a single  
read or the last word of a burst read from the requesting  
peripheral. Figure 20 shows the timing with relation to  
a single write or the last word of a burst write to the  
requesting peripheral.  
External DMA Handshake Signal Timing  
DREQ TIMING  
As Figure 18 shows, once asserted, DREQ0 or  
DREQ1 must not transition from LOW to HIGH again  
until after nDACK0 or DACK1 has been asserted.  
The timing of DACK/DEOT may become unpredict-  
able when a Write to SDRAM occurs just prior to a sin-  
gle word Write to the requesting peripheral. If the write  
buffer is enabled for the SDRAM Controller, this can  
cause the DACK/DEOT to occur an indeterminate  
number of cycles prior to the actual Write to the  
requesting peripheral.  
DACK/DEOT TIMING  
These timing diagrams indicate when nDACK0,  
DACK1, DEOT0 and DEOT1 occur in relation to an  
external bus access to/from the external peripheral that  
requested the DMA transfer.  
DREQ MAY  
TRANSITON  
DREQ  
tDREQ0L,  
tDREQ1L  
MUST NOT  
CHANGE STATE  
DREQ0,  
DREQ1  
DACK1  
nDACK0  
NOTE: tDREQ0L = DREQ0 LOW Pulse Width = 2 HCLK MIN.  
tDREQ1L = DREQ1 LOW Pulse Width = 2 HCLK MIN.  
79520-158  
Figure 18. DREQ Timing Restrictions  
38  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
HCLK  
(See Note)  
A[23:0]  
D[31:0]  
ADDRESS  
DATA  
nCSx  
nWEN  
nBLE[1:0]  
nOE  
nDACK0/  
DEOT0/DEOT1  
DACK1  
NOTE: * HCLK is an internal signal provided for reference only.  
79520-156  
Figure 19. Read, from Peripheral to Memory, Burst Size = 1  
HCLK  
(See Note)  
A[23:0]  
D[15:0]  
ADDRESS  
DATA  
nCSx  
nWEN  
nBLE[1:0]  
nOE  
nDACK0/  
DEOT0/DEOT1  
DACK1  
NOTE: * HCLK is an internal signal provided for reference only.  
79520-157  
Figure 20. Write, from Memory to Peripheral, Burst Size = 1  
Preliminary data sheet  
Rev. 01 16 July 2007  
39  
LH79520  
NXP Semiconductors  
System-on-Chip  
HCLK*  
A[23:0]  
ADDRESS  
DATA #1  
DATA #2  
DATA #3  
DATA #4  
D[31:0]  
nCSx  
nWEN  
nBLE[1:0]  
nOE  
nDACK0/DEOT0/DEOT1  
DACK1  
NOTE: * HCLK is an internal signal, provided for reference only.  
79520-169  
Figure 21. Read, Peripheral to Memory: Peripheral Burst Size = 4  
40  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
Figure 22. Write, Memory to Peripheral: Burst Size = 4; Destination Width > External Access Width  
Preliminary data sheet  
Rev. 01 16 July 2007  
41  
LH79520  
NXP Semiconductors  
System-on-Chip  
TFT VERTICAL TIMING  
Figure 26 presents typical vertical timing waveforms  
for TFT panels.  
Color LCD Controller System Timing  
Waveforms  
This section contains typical output waveform dia-  
grams.  
AD-TFT AND HR-TFT HORIZONTAL TIMING  
WAVEFORMS  
STN HORIZONTAL TIMING  
Figure 27 presents typical horizontal timing wave-  
forms for AD-TFT and HR-TFT panels. The ALI adjusts  
and delays the normal TFT timing for the Row and Col-  
umn driver chips integrated into AD-TFT and HR-TFT  
panels. Other panels requiring the use of the ALI will  
have similar timing waveforms.  
Figure 23 presents typical horizontal timing wave-  
forms for STN panels. Figure 23 shows that the CLCDC  
Clock (an input to the CLCDC) is scaled within the  
CLCDC and utilized to produce the LCDDCLK output.  
Figure 24 presents typical vertical timing waveforms  
for STN panels.  
AD-TFT AND HR-TFT VERTICAL TIMING  
Figure 28 presents typical vertical timing wave-  
forms for AD-TFT and HR-TFT panels. The power  
sequencing and register information is the same  
as for TFT vertical timing.  
TFT HORIZONTAL TIMING  
Figure 25 presents typical horizontal timing wave-  
forms for TFT panels.  
42  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
Figure 23. STN Horizontal Timing Diagram  
Preliminary data sheet  
Rev. 01 16 July 2007  
43  
LH79520  
NXP Semiconductors  
System-on-Chip  
Figure 24. STN Vertical Timing Diagram  
44  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
Figure 25. TFT Horizontal Timing Diagram  
Preliminary data sheet  
Rev. 01 16 July 2007  
45  
LH79520  
NXP Semiconductors  
System-on-Chip  
Figure 26. TFT Vertical Timing Diagram  
46  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
1 AD-TFT or HR-TFT HORIZONTAL LINE  
CLCDC CLOCK  
(INTERNAL)  
PERIPHCLKSEL2:LCSRC  
PERIPHCLKCTRL2:LCDCLK  
LCDCLKPRESCALE:LCDPSVAL  
(SHOWN FOR REFERENCE)  
TIMING0:HSW  
LCDLP  
(HORIZONTAL SYNC PULSE)  
LCDDCLK  
(PANEL DATA CLOCK)  
TIMING2:PCD  
TIMING2:BCD  
TIMING2:IPC  
TIMING2:CPL  
LCDMux:PIN133  
LCDVD[17:0]  
16 × (TIMING0:PPL+1)  
001 002 003 004 005 006 007 008  
PIXEL DATA  
320  
TIMING0:HSW +  
TIMING0:HBP  
LCDENAB  
(INTERNAL DATA ENABLE)  
133 LCDDCLK  
(DELAYED FOR HR-TFT)  
LCDVD[17:0]  
(DELAYED FOR HR-TFT)  
001 002 003 004 005 006  
317 318 319 320  
1 LCDDCLK  
ALITIMING2:SPLDEL  
LCDSPL  
(LINE START PULSE LEFT)  
137  
131  
1 LCDDCLK  
ALITIMING1:LPDEL  
LCDLP  
(HORIZONTAL SYNC PULSE)  
ALITIMING1:PSCLS  
ALITIMING2:PS2CLS2  
135 LCDCLS  
LCDPS  
119  
ALITIMING1:REVDEL  
142 LCDREV  
NOTE:  
Circled numbers are LH79520 pin numbers.  
79520-120  
Figure 27. AD-TFT and HR-TFT Horizontal Timing Diagram  
TIMING1:VSW  
LCDSPS  
(Vertical Sync)  
1.5 µs - 4 µs  
LCDCLS  
(Gate Driver Clock)  
LCDVD[17:0]  
(LCD DATA)  
NOTE: LCDDCLK can range from 4.5 MHz to 6.8 MHz.  
79520-20  
Figure 28. AD-TFT and HR-TFT Vertical Timing Diagram  
Preliminary data sheet  
Rev. 01 16 July 2007  
47  
LH79520  
NXP Semiconductors  
System-on-Chip  
Reset, Clock, and Power Controller  
(RCPC) Waveforms  
Figure 29 shows the method the LH79520 uses  
when coming out of Reset or Power On.  
Figure 30 shows external reset timing, and Table 13  
gives the timing parameters.  
Table 13. Reset AC Timing  
DESCRIPTION  
PARAMETER  
MIN. TYP. MAX.  
UNIT  
tOSC32  
tOSC14  
tRSTIW  
Oscillator stabilization time after Power Up (VDDC = VDDCMIN)  
Oscillator stabilization time after Power Up (VDDC = VDDCMIN)  
nRESETIN Pulse Width (once sampled LOW)  
550  
2.5  
ms  
ms  
2
HCLK  
nRESETIN LOW to nRESETOUT valid  
(once nRESETIN sampled LOW)  
tRSTOV  
3.5  
1
HCLK  
tRSTIH  
nRESETIN hold extend to allow PLL to lock once XTAL is stable  
nRESETOUT hold relative to nRESETIN HIGH  
10  
µs  
tRSTOH  
HCLK  
VDDCmin  
VDDC  
tOSC32  
XTAL32  
XTAL14  
tRSTIH  
tOSC14  
nRESETI  
tRSTOH  
nRESETO  
79520-37  
Figure 29. PLL Start-up  
tRSTIW  
nRESETIN  
tRSTOH  
tRSTOV  
nRESETO  
79520-60  
Figure 30. External Reset  
48  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
NXP recommends that users implementing a system  
to meet industrial temperature standards should use an  
external oscillator rather than a crystal to drive the sys-  
tem clock input of the System-on-Chip. This change  
from crystal to oscillator will increase the robustness  
(i.e., noise immunity of the clock input to the SoC).  
Power Supply Sequencing  
The 1.8 V power supply must be energized before  
the 3.3 V supply. Otherwise, the 1.8 V supply may not  
lag the 3.3 V supply by more than 10 µs.  
If a longer delay time is needed, the voltage differ-  
ence between the two power supplies must be within  
1.5 V during power supply ramp up.  
Assuring Proper Reset Behavior  
To prevent a potential latch-up condition, voltage  
should only be applied to input pins after the device is  
powered-up as described above.  
A separate reset for the TAP controller and power-  
on was designed into the LH79520 to give the Designer  
control over how the chip boots up and to be useful for  
bringing up software and hardware using E-ICE.  
Low Operating Temperatures and  
Noise Immunity  
However, for the LH79520 to enter Normal mode, an  
initial reset pulse is required for the TAP controller  
when Power-on Reset is asserted.  
The junction temperature, Tj, is the operating tem-  
perature of the transistors in the integrated circuit. The  
switching speed of the CMOS circuitry within the SoC  
depends partly on Tj, and the lower the operating tem-  
perature, the faster the CMOS circuits will switch.  
Increased switching noise generated by faster switch-  
ing circuits could affect the overall system stability. The  
amount of switching noise is directly affected by the  
application executed on the SoC.  
Figure 31 illustrates one method for assuring proper  
TAP controller reset. This is a recommendation;  
Designers should assess their requirements and imple-  
ment a solution that satisfies them.  
This recommended circuit uses an external AND  
gate to AND the nRESETIN and nTRST signals, insur-  
ing that the TAP Controller gets reset with either signal,  
and the LH79520 always powers up in Normal Mode.  
LH79520  
nTRST  
nTRST  
nRESETIN  
nRESETIN  
79520-174  
Figure 31. TAP Controller Reset Circuit Example  
Preliminary data sheet  
Rev. 01 16 July 2007  
49  
LH79520  
NXP Semiconductors  
System-on-Chip  
Similarly, the VSSA path is from the IC pin to the  
high frequency capacitor, then to the low frequency  
capacitor, keeping the distance from the IC pin to the  
high frequency cap as short as possible.  
Printed Circuit Board Layout Practices  
LH79520 POWER SUPPLY DECOUPLING  
The LH79520 has separate power and ground pins  
for different internal circuitry sections. The VDD and  
VSS pins supply power to I/O buffers, while VDDC and  
VSSC supply power to the core logic.  
CAUTION  
Note that the VSSA pin specifically does not have a connection to the  
circuit board ground. The LH79520 PLL circuit has an internal DC  
ground connection to VSS (GND), so the external VSSA pin must  
NOT be connected to the circuit board ground, but only to the filter  
components.  
Each of the VDD and VDDC pins must be provided  
with a low impedance path to the corresponding board  
power supply. Likewise, the VSS and VSSC pins must be  
provided with a low impedance path to the board ground.  
Each power supply must be decoupled to ground  
using at least one 0.1 µF high frequency capacitor  
located as close as possible to a VDDx, VSSx pin pair  
on each of the four sides of the chip. If room on the cir-  
cuit board allows, add one 0.01 µF high frequency  
capacitor near each VDDx, VSSx pair on the chip.  
UNUSED INPUT SIGNAL CONDITIONING  
Floating input signals can cause excessive power  
consumption. Unused inputs which do not include inter-  
nal pull-up or pull-down resistors should be pulled up or  
down externally, to tie the signal to its inactive state.  
To be effective, the capacitor leads and associated  
circuit board traces connecting to the chip VDDx, VSSx  
pins must be kept to less than half an inch (12.7 mm)  
per capacitor lead. There must be one bulk 10 µF  
capacitor for each power supply placed near one side  
of the chip.  
Some GPIO signals may default to inputs. If the pins  
which carry these signals are unused, software can  
program these signals as outputs, to eliminate the need  
for pull-ups or pull-downs. Power consumption may be  
higher than expected until such software executes.  
Some LH79520 inputs have internal pull-ups or pull-  
downs. If unused, these inputs do not require external  
conditioning.  
REQUIRED LH79520 PLL, VDDA, VSSA FILTER  
The VDDA pin supplies power to the chip PLL cir-  
cuitry. VSSA is the ground return path for the PLL circuit.  
If the internal PLL circuit will be used, these pins must  
have a low-pass filter attached as shown in Figure 32.  
OTHER CIRCUIT BOARD LAYOUT PRACTICES  
All output pins on the LH79520 have fast rise and fall  
times. Printed circuit trace interconnection length must  
therefore be reduced to minimize overshoot, under-  
shoot and reflections caused by transmission line  
effects of these fast output switching times. This rec-  
ommendation particularly applies to the address and  
data buses.  
VDDC  
(SOURCE)  
VDDC  
LH79520  
When considering capacitance, calculations must  
consider all device loads and capacitances due to the  
circuit board traces. Capacitance due to the traces will  
depend upon a number of factors, including the trace  
width, dielectric material the circuit board is made from  
and proximity to ground and power planes.  
100  
PIN 91  
VDDA  
+
22 µF  
0.1 µF  
PIN 92  
VSSA  
Attention to power supply decoupling and printed cir-  
cuit board layout becomes more critical in systems with  
higher capacitive loads. As these capacitive loads  
increase, transient currents in the power supply and  
ground return paths also increase.  
79520-64  
Figure 32. VDDA, VSSA Filter Circuit  
The Schottky diode shown in the schematic must  
have a low forward drop specification, to allow VDDA to  
quickly transition through the entire input voltage range.  
Add pull-up resistors to all unused inputs unless  
an internal pull-down resistor has been specified;  
see Table 3. (All pull-up/pull-down resistors must be  
33 KMAX.) Consider all signals that are Inputs at  
Reset time.  
The power pin VDDA path must be a single wire  
from the IC package pin to the high frequency capaci-  
tor, then to the low frequency capacitor, and finally  
through the series resistor to the board power supply.  
The distance from the IC pin to the high frequency  
capacitor must be kept as short as possible.  
50  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
Figure 34 shows the suggested external components  
for the 14.7456 MHz crystal circuit to be used with the  
NXP LH79520. The NAND gate represents the logic  
inside the SoC. See the chart for crystal specifics.  
SUGGESTED EXTERNAL COMPONENTS  
Figure 33 shows the suggested external compo-  
nents for the 32.768 kHz crystal circuit to be used with  
the NXP LH79520. The NAND gate represents the  
logic inside the SoC. See the chart for crystal specifics.  
ENABLE  
INTERNAL TO  
THE LH79520  
EXTERNAL TO  
THE LH79520  
XTAL32IN  
XTAL32OUT  
Y1  
32.768 kHz  
R1  
10 M  
C1  
15 pF  
C2  
18 pF  
GND  
GND  
RECOMMENDED CRYSTAL SPECIFICATIONS  
NOTES:  
1. Y1 is a parallel-resonant type crystal. (See table)  
2. The nominal values for C1 and C2 shown are for  
a crystal specified at 12.5 pF load capacitance (CL).  
3. The values for C1 and C2 are dependent upon  
the cystal's specified load capacitance and PCB  
stray capacitance.  
PARAMETER  
DESCRIPTION  
32.768 kHz Crystal  
Tolerance  
Aging  
Load Capacitance  
ESR (MAX.)  
Drive Level  
Parallel Mode  
30 ppm  
3 ppm  
12.5 pF  
50 kΩ  
1.0 µW (MAX.)  
MTRON SX1555 or equivalent  
4. R1 must be in the circuit.  
5. Ground connections should be short and return  
to the ground plane which is connected to the  
processor's core ground pins.  
Recommended Part  
6. Tolerance for R1, C1, C2 is 5%.  
79520-172  
Figure 33. Suggested External Components, 32.768 kHz Oscillator (XTAL32IN and XTAL32OUT)  
Preliminary data sheet  
Rev. 01 16 July 2007  
51  
LH79520  
NXP Semiconductors  
System-on-Chip  
ENABLE  
INTERNAL TO  
THE LH79520  
EXTERNAL TO  
THE LH79520  
XTALIN  
XTALOUT  
Y1  
14.7456 MHz  
R1  
1 MΩ  
C1  
18 pF  
C2  
22 pF  
GND  
GND  
RECOMMENDED CRYSTAL SPECIFICATIONS  
PARAMETER DESCRIPTION  
14.7456 MHz Crystal (AT-Cut) Parallel Mode  
NOTES:  
1. Y1 is a parallel-resonant type crystal. (See table)  
2. The nominal values for C1 and C2 shown are for  
a crystal specified at 18 pF load capacitance (CL).  
3. The values for C1 and C2 are dependent upon  
the cystal's specified load capacitance and PCB  
stray capacitance.  
Tolerance  
50 ppm  
100 ppm  
5 ppm  
Stability  
Aging  
4. R1 must be in the circuit.  
Load Capacitance  
ESR (MAX.)  
Drive Level  
Recommended Part  
18 pF  
40 Ω  
5. Ground connections should be short and return  
to the ground plane which is connected to the  
processor's core ground pins.  
100 µW (MAX.)  
MTRON SX2050 or equivalent  
6. Tolerance for R1, C1, C2 is 5%.  
79520-173  
Figure 34. Suggested External Components, 14.7456 MHz Oscillator  
52  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
PACKAGE SPECIFICATIONS  
LQFP176: plastic low profile quad flat package; 176 leads; body 20 x 20 x 1.4 mm  
SOT1017-1  
c
y
X
A
89  
132  
Z
E
133  
88  
e
(A )  
3
A
2
A
1
H
E
A
E
M
w
θ
b
L
p
p
L
pin 1 index  
176  
45  
detail X  
44  
1
M
M
v
A
B
M
w
e
b
Z
D
p
D
B
H
v
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
1
A
2
A
3
b
p
c
D
E
e
H
D
H
E
L
L
p
v
w
y
Z
D
Z
E
θ
max  
°
°
0.15 1.45  
0.05 1.35  
0.23 0.20 20.2 20.2  
0.13 0.09 19.8 19.8  
22.2 22.2  
21.8 21.8  
0.75  
0.45  
1.5  
1.3  
1.5  
1.3  
7
0
mm  
1.6  
0.25  
0.4  
1
0.2  
0.07 0.08  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
07-07-07  
07-07-07  
SOT1017-1  
Figure 35. Package outline SOT1017-1 (LQFP176)  
Preliminary data sheet  
Rev. 01 16 July 2007  
53  
LH79520  
NXP Semiconductors  
System-on-Chip  
21.25  
0.4  
1.70  
17.2  
NOTE: Dimensions in mm.  
79520-155  
Figure 36. Recommended PCB Footprint  
54  
Rev. 01 16 July 2007  
Preliminary data sheet  
System-on-Chip  
NXP Semiconductors  
LH79520  
REVISION HISTORY  
Table 14. Revision history  
Document ID  
Release date Data sheet status  
Change notice Supersedes  
LH79520 Data Sheet v1_3  
LH79520_N_1  
20070716  
Preliminary data  
sheet  
-
Modifications:  
• First NXP version based on the LH79520 data sheet of 20060330  
Preliminary data sheet  
Rev. 01 16 July 2007  
55  
LH79520  
NXP Semiconductors  
System-on-Chip  
1. Legal information  
1.1  
Data sheet status  
[1][2]  
[3]  
Document status  
Product status  
Definition  
Objective [short] data sheet  
Development  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of a NXP Semiconductors product can reasonably be expected to  
result in personal injury, death or severe property or environmental damage.  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
1.2  
Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the full  
data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
1.3  
Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without limitation  
specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the  
publication hereof.  
1.4  
Trademarks  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
2. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
© NXP B.V. 2007. All rights reserved.  
IMPORTANT NOTICE  
Dear customer,  
As from June 1st, 2007 NXP Semiconductors has acquired the LH7xxx ARM Microcontrollers from  
Sharp Microelectronics. The following changes are applicable to the attached data sheet. In data  
sheets where the previous Sharp or Sharp Corporation references remain, please use the new  
links as shown below.  
For www.sharpsma.com use www.nxp.com/microcontrollers  
for indicated sales addresses use salesaddresses@nxp.com (email)  
The copyright notice at the bottom of each page (or elsewhere in the document, depending on the  
version)  
- Copyright © (year) by SHARP Corporation.  
is replaced with:  
- © NXP B.V. (year). All rights reserved.  
If you have any questions related to the data sheet, please contact our nearest sales office via  
e-mail or phone (details via salesaddresses@nxp.com). Thank you for your cooperation and  
understanding, In addition to that the Annex A (attached hereto) is added to the document.  
NXP Semiconductors  
ANNEX A: Disclaimers (11)  
1. t001dis100.fm: General (DS, AN, UM)  
General — Information in this document is believed to be accurate and reliable. However, NXP  
Semiconductors does not give any representations or warranties, expressed or implied, as to the  
accuracy or completeness of such information and shall have no liability for the consequences of  
use of such information.  
2. t001dis101.fm: Right to make changes (DS, AN, UM)  
Right to make changes — NXP Semiconductors reserves the right to make changes to  
information published in this document, including without limitation specifications and product  
descriptions, at any time and without notice. This document supersedes and replaces all  
information supplied prior to the publication hereof.  
3. t001dis102.fm: Suitability for use (DS, AN, UM)  
Suitability for use — NXP Semiconductors products are not designed, authorized or warranted  
to be suitable for use in medical, military, aircraft, space or life support equipment, nor in  
applications where failure or malfunction of a NXP Semiconductors product can reasonably be  
expected to result in personal injury, death or severe property or environmental damage. NXP  
Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in  
such equipment or applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
4. t001dis103.fm: Applications (DS, AN, UM)  
Applications — Applications that are described herein for any of these products are for  
illustrative purposes only. NXP Semiconductors makes no representation or warranty that such  
applications will be suitable for the specified use without further testing or modification.  
5. t001dis104.fm: Limiting values (DS)  
Limiting values — Stress above one or more limiting values (as defined in the Absolute  
Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting  
values are stress ratings only and operation of the device at these or any other conditions above  
those given in the Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
6. t001dis105.fm: Terms and conditions of sale (DS)  
Terms and conditions of sale — NXP Semiconductors products are sold subject to the general  
terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms,  
including those pertaining to warranty, intellectual property rights infringement and limitation of  
liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any  
inconsistency or conflict between information in this document and such terms and conditions, the  
latter will prevail.  
7. t001dis106.fm: No offer to sell or license (DS)  
No offer to sell or license — Nothing in this document may be interpreted or construed as an  
offer to sell products that is open for acceptance or the grant, conveyance or implication of any  
license under any copyrights, patents or other industrial or intellectual property rights.  
8. t001dis107.fm: Hazardous voltage (DS, AN, UM; if applicable)  
Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit  
voltages up to 60 V may appear when operating this product, depending on settings and  
application. Customers incorporating or otherwise using these products in applications where  
such high voltages may appear during operation, assembly, test etc. of such application, do so at  
their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages  
resulting from or in connection with such high voltages. Furthermore, customers are drawn to  
safety standards (IEC 950, EN 60 950, CENELEC, ISO, etc.) and other (legal) requirements  
applying to such high voltages.  
9. t001dis108.2.fm: Bare die (DS; if applicable)  
Bare die (if applicable) — Products indicated as Bare Die are subject to separate specifications  
and are not tested in accordance with standard testing procedures. Product warranties and  
guarantees as stated in this document are not applicable to Bare Die Products unless such  
warranties and guarantees are explicitly stated in a valid separate agreement entered into by  
NXP Semiconductors and customer.  
10. t001dis109.fm: AEC unqualified products (DS, AN, UM; if applicable)  
AEC unqualified products — This product has not been qualified to the appropriate Automotive  
Electronics Council (AEC) standard Q100 or Q101 and should not be used in automotive critical  
applications, including but not limited to applications where failure or malfunction of an NXP  
Semiconductors product can reasonably be expected to result in personal injury, death or severe  
property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or  
use of NXP Semiconductors products in such equipment or applications and therefore such  
inclusion and/or use is for the customer’s own risk.  
11. t001dis110.fm: Suitability for use in automotive applications only (DS, AN, UM; if  
applicable)  
Suitability for use in automotive applications only — This NXP Semiconductors product has  
been developed for use in automotive applications only. The product is not designed, authorized  
or warranted to be suitable for any other use, including medical, military, aircraft, space or life  
support equipment, nor in applications where failure or malfunction of an NXP Semiconductors  
product can reasonably be expected to result in personal injury, death or severe property or  
environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore such inclusion and/or  
use is at the customer’s own risk.  

相关型号:

LH79520N0Q000B1

System-on-Chip
NXP

LH79524

System-on-Chip
NXP

LH79524N0F100A0

System-on-Chip
NXP

LH79524N0F100A0,55

LH79524N0F100A0
NXP

LH79524N0F100A1

System-on-Chip
NXP

LH79525

16/32-bit System-on-Chip with Color LCD Controller
SHARP

LH79525

System-on-Chip
NXP

LH79525N0Q100A0

System-on-Chip
NXP

LH79525N0Q100A1

System-on-Chip
NXP

LH79525N0Q100A1,557

RISC Microcontroller, 32-Bit, FLASH, CMOS, PQFP176
NXP

LH79531

ARM RISC CORE ASSPs ARM7TDMI
ETC

LH79532/Y

ARM RISC CORE ASSPs ARM7TDMI
ETC