LPC12D27FBD100/301,551 [NXP]

RISC Microcontroller, 32-Bit, FLASH, CMOS, PQFP100;
LPC12D27FBD100/301,551
型号: LPC12D27FBD100/301,551
厂家: NXP    NXP
描述:

RISC Microcontroller, 32-Bit, FLASH, CMOS, PQFP100

时钟 微控制器 外围集成电路
文件: 总46页 (文件大小:371K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC12D27  
32-bit ARM Cortex-M0 microcontroller; 128 kB flash and 8 kB  
SRAM; 40 segment x 4 LCD driver  
Rev. 1 — 20 September 2011  
Product data sheet  
1. General description  
The LPC12D27 are ARM Cortex-M0 based microcontrollers for embedded applications  
featuring a high level of integration and low power consumption. The ARM Cortex-M0 is a  
next generation core that offers system enhancements such as enhanced debug features  
and a higher level of support block integration.  
The LPC12D27 is a dual-chip module consisting of a LPC1227 single-chip microcontroller  
combined with a PCF8576D Universal LCD driver in a low-cost 100-pin package. The  
LCD driver provides 40 segments and supports from one to four backplanes. Display  
overhead is minimized by an on-chip display RAM with auto-increment addressing.  
The LPC12D27 operate at CPU frequencies of up to 45 MHz and include 128 kB of flash  
memory and 8 kB of data memory.  
The peripheral complement of the LPC1227 microcontroller includes a micro DMA  
controller, one Fast-mode Plus I2C interface, one SSP interface, two UARTs, four general  
purpose timers, a 10-bit ADC, two comparators, and up to 40 general purpose I/O pins.  
Remark: For a functional description of the LPC1227 microcontroller see the LPC122x  
data sheet. For a detailed description of the LCD driver see the PCF8576D data sheet.  
Both data sheets are available at http://www.nxp.com/microcontrollers  
2. Features and benefits  
LCD driver  
40 segments.  
One to four backplanes.  
On-chip display RAM with auto-increment addressing.  
Processor core  
ARM Cortex-M0 processor, running at frequencies of up to 45 MHz (one wait state  
from flash) or 30 MHz (zero wait states from flash). The LPC12D27 have a high  
score of over 45 in CoreMark CPU performance benchmark testing, equivalent to  
1.51/MHz.  
ARM Cortex-M0 built-in Nested Vectored Interrupt Controller (NVIC).  
Serial Wire Debug (SWD).  
System tick timer.  
Memory  
8 kB SRAM.  
128 kB on-chip flash programming memory.  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
In-System Programming (ISP) and In-Application Programming (IAP) via on-chip  
bootloader software.  
Includes ROM-based 32-bit integer division routines.  
Clock generation unit  
Crystal oscillator with an operating range of 1 MHz to 25 MHz.  
12 MHz Internal RC (IRC) oscillator trimmed to 1 % accuracy that can optionally be  
used as a system clock.  
PLL allows CPU operation up to the maximum CPU rate without the need for a  
high-frequency crystal. May be run from the system oscillator or the internal RC  
oscillator.  
Clock output function with divider that can reflect the system oscillator clock, IRC  
clock, main clock, and Watchdog clock.  
Real-Time Clock (RTC).  
Digital peripherals  
Micro DMA controller with 21 channels.  
CRC engine.  
Two UARTs with fractional baud rate generation and internal FIFO. One UART with  
RS-485 and modem support and one standard UART with IrDA.  
SSP/SPI controller with FIFO and multi-protocol capabilities.  
I2C-bus interface supporting full I2C-bus specification and Fast-mode Plus with a  
data rate of 1 Mbit/s with multiple address recognition and monitor mode. I2C-bus  
pins have programmable glitch filter.  
Up to 40 General Purpose I/O (GPIO) pins with programmable pull-up resistor,  
open-drain mode, programmable digital input glitch filter, and programmable input  
inverter.  
Programmable output drive on all GPIO pins. Four pins support high-current output  
drivers.  
All GPIO pins can be used as edge and level sensitive interrupt sources.  
Four general purpose counter/timers with four capture inputs and four match  
outputs (32-bit timers) or two capture inputs and two match outputs (16-bit timers).  
Windowed WatchDog Timer (WWDT), IEC-60335 Class B certified.  
Analog peripherals  
One 8-channel, 10-bit ADC.  
Two highly flexible analog comparators. Comparator outputs can be programmed  
to trigger a timer match signal or can be used to emulate 555 timer behavior.  
Power  
Three reduced power modes: Sleep, Deep-sleep, and Deep power-down.  
Processor wake-up from Deep-sleep mode via start logic using 12 port pins.  
Processor wake-up from Deep-power down and Deep-sleep modes via the RTC.  
Brownout detect with three separate thresholds each for interrupt and forced reset.  
Power-On Reset (POR).  
Integrated PMU (Power Management Unit).  
Unique device serial number for identification.  
3.3 V power supply.  
Available as 100-pin LQFP package.  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
2 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
3. Applications  
White goods  
Portable medical devices  
Lighting control  
Thermostats  
Alarm systems  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC12D27FBD100/301 LQFP100  
plastic low profile quad flat package; 100 leads; body 14 14 1.4 mm SOT407-1  
4.1 Ordering options  
Table 2.  
Ordering options for LPC12D27  
Type number  
Flash  
Total SRAM  
UART  
I2C/ FM+ SSP  
ADC  
Package  
RS-485  
channels  
LPC12D27FBD100/301  
128 kB  
8 kB  
1
1
1
8
LQFP100  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
3 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
5. Block diagram  
S[39:0]  
BP[3:0]  
PIO0, PIO1, PIO2  
PCF8576D  
LPC1227  
MCU  
LCD  
CONTROLLER  
V
LCD  
002aaf672  
Fig 1. LPC12D27 block diagram  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
4 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
XTALIN  
XTALOUT  
RESET  
SWD  
LPC1227  
CLOCK  
GENERATION,  
clocks and  
controls  
CLKOUT  
POWER CONTROL,  
SYSTEM  
TEST/DEBUG  
INTERFACE  
FUNCTIONS  
ARM  
CORTEX-M0  
128 kB  
FLASH  
8 kB  
SRAM  
MICRO DMA  
CONTROLLER  
ROM  
system  
bus  
master  
slave  
slave  
slave  
AHB-LITE BUS  
slave  
HIGH-SPEED  
GPIO  
GPIO ports  
CRC  
ENGINE  
AHB-ABB  
BRIDGE  
SCK  
SSEL  
MISO  
MOSI  
AD[7:0]  
10-bit ADC  
SSP/SPI  
ACMP0/1_I[3:0]  
ACMP0/1_O  
VREF_CMP  
COMPARATOR0/1  
RXD0  
TXD0  
DTR0, DSR0, CTS0,  
DCD0, RI0, RTS0  
UART0 RS-485  
RXD1  
TXD1  
WINDOWED WDT  
UART1  
SCL  
SDA  
2
IOCONFIG  
I C-bus  
RTCXOUT  
RTCXIN  
4 x MAT  
REAL-TIME CLOCK  
32-bit COUNTER/TIMER 0/1  
16-bit COUNTER/TIMER 0/1  
4 x CAP  
2 x MAT  
SYSTEM CONTROL  
2 x CAP  
MICRO DMA REGISTERS  
002aag501  
Fig 2. LPC12D27 block diagram (microcontroller)  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
5 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
BP0 BP2 BP1 BP3  
S0 to S39  
40  
V
LCD  
BACKPLANE  
OUTPUTS  
DISPLAY SEGMENT  
OUTPUTS  
LCD  
VOLTAGE  
SELECTOR  
DISPLAY  
REGISTER  
DISPLAY  
CONTROLLER  
OUTPUT BANK SELECT  
AND BLINK CONTROL  
LCD BIAS  
GENERATOR  
V
SS(LCD)  
CLK  
DISPLAY RAM  
40 x 4-BIT  
CLOCK SELECT  
AND TIMING  
BLINKER  
TIMEBASE  
PCF8576D  
SYNC  
POWER-ON  
RESET  
COMMAND  
DECODER  
WRITE DATA  
CONTROL  
DATA POINTER AND  
AUTO INCREMENT  
OSC  
OSCILLATOR  
V
DD  
LCD_SCL  
LCD_SDA  
2
INPUT  
FILTERS  
I C-BUS  
SUBADDRESS  
COUNTER  
CONTROLLER  
002aaf673  
Fig 3. LCD display controller block diagram  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
6 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
6. Pinning information  
6.1 Pinning  
1
2
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
SWDIO/PIO0_25  
SWCLK/PIO0_26  
PIO0_27  
PIO0_28  
PIO0_29  
PIO0_0  
S29  
S28  
S27  
S26  
S25  
S24  
S23  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
S15  
S14  
S13  
S12  
S11  
S10  
S9  
3
4
5
6
7
PIO0_1  
8
PIO0_2  
9
PIO0_3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
PIO0_4  
PIO0_5  
PIO0_6  
PIO0_7  
LPC12D27  
PIO0_8  
PIO0_9  
PIO2_0  
PIO0_10  
PIO0_11  
PIO0_12  
RESET/PIO0_13  
PIO0_14  
PIO0_15  
PIO0_16  
PIO0_17  
S8  
S7  
S6  
PIO0_18 25  
51 S5  
002aag502  
Fig 4. Pin configuration LQFP100 package  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
7 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
6.2 Pin description  
All pins except the supply pins and the LCD pins can have more than one function as  
shown in Table 3. The pin function is selected through the pin’s IOCON register in the  
IOCONFIG block. The multiplexed functions include the counter/timer inputs and outputs,  
the UART receive, transmit, and control functions, and the serial wire debug functions.  
For each pin, the default function is listed first together with the pin’s reset state.  
Table 3.  
Symbol  
LPC12D27 LQFP100 pin description  
Pin Start Reset Type Description  
logic state  
[1]  
input  
Microcontroller pins  
PIO0_0 to PIO0_31  
I/O  
I/O  
Port 0 — Port 0 is a 32-bit I/O port with individual direction and  
function controls for each bit. The operation of port 0 pins  
depends on the function selected through the IOCONFIG register  
block.  
PIO0_0/RTS0  
6[2]  
yes  
yes  
I; PU  
I; PU  
PIO0_0 — General purpose digital input/output pin. Also serves  
as wake-up pin from Deep-sleep mode.  
O
RTS0 — Request To Send output for UART0.  
PIO0_1/RXD0/  
CT32B0_CAP0/  
CT32B0_MAT0  
7[2]  
I/O  
PIO0_1 — General purpose digital input/output pin. Also serves  
as wake-up pin from Deep-sleep mode.  
I
RXD0 — Receiver input for UART0.  
I
CT32B0_CAP0 — Capture input, channel 0 for 32-bit timer 0.  
CT32B0_MAT0 — Match output, channel 0 for 32-bit timer 0.  
O
I/O  
PIO0_2/TXD0/  
CT32B0_CAP1/  
CT32B0_MAT1  
8[2]  
yes  
yes  
I; PU  
I; PU  
I; PU  
I; PU  
PIO0_2 — General purpose digital input/output pin. Also serves  
as wake-up pin from Deep-sleep mode.  
O
I
TXD0 — Transmitter output for UART0.  
CT32B0_CAP1 — Capture input, channel 1 for 32-bit timer 0.  
CT32B0_MAT1 — Match output, channel 1 for 32-bit timer 0.  
O
I/O  
PIO0_3/DTR0/  
CT32B0_CAP2/  
CT32B0_MAT2  
9[2]  
PIO0_3 — General purpose digital input/output pin. Also serves  
as wake-up pin from Deep-sleep mode.  
O
I
DTR0 — Data Terminal Ready output for UART0.  
CT32B0_CAP2 — Capture input, channel 2 for 32-bit timer 0.  
CT32B0_MAT2 — Match output, channel 2 for 32-bit timer 0.  
O
I/O  
PIO0_4/  
CT32B0_CAP3/  
CT32B0_MAT3  
10[2] yes  
PIO0_4 — General purpose digital input/output pin. Also serves  
as wake-up pin from Deep-sleep mode.  
I
DSR0 — Data Set Ready input for UART0.  
I
CT32B0_CAP3 — Capture input, channel 3 for 32-bit timer 0.  
CT32B0_MAT3 — Match output, channel 3 for 32-bit timer 0.  
O
I/O  
PIO0_5/DCD0  
11[2] yes  
PIO0_5 — General purpose digital input/output pin. Also serves  
as wake-up pin from Deep-sleep mode.  
I
DCD0 — Data Carrier Detect input for UART0.  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
8 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC12D27 LQFP100 pin description …continued  
Pin Start Reset Type Description  
logic state  
[1]  
input  
PIO0_6/RI0/  
CT32B1_CAP0/  
CT32B1_MAT0  
12[2] yes  
13[2] yes  
14[2] yes  
15[2] yes  
I; PU  
I; PU  
I; PU  
I; PU  
I/O  
PIO0_6 — General purpose digital input/output pin. Also serves  
as wake-up pin from Deep-sleep mode.  
I
RI0 — Ring Indicator input for UART0.  
I
CT32B1_CAP0 — Capture input, channel 0 for 32-bit timer 1.  
CT32B1_MAT0 — Match output, channel 0 for 32-bit timer 1.  
O
I/O  
PIO0_7/CTS0/  
CT32B1_CAP1/  
CT32B1_MAT1  
PIO0_7 — General purpose digital input/output pin. Also serves  
as wake-up pin from Deep-sleep mode.  
I
CTS0 — Clear To Send input for UART0.  
I
CT32B1_CAP1 — Capture input, channel 1 for 32-bit timer 1.  
CT32B1_MAT1 — Match output, channel 1 for 32-bit timer 1.  
O
I/O  
PIO0_8/RXD1  
/CT32B1_CAP2/  
CT32B1_MAT2  
PIO0_8 — General purpose digital input/output pin. Also serves  
as wake-up pin from Deep-sleep mode.  
I
RXD1 — Receiver input for UART1.  
I
CT32B1_CAP2 — Capture input, channel 2 for 32-bit timer 1.  
CT32B1_MAT2 — Match output, channel 2 for 32-bit timer 1.  
O
I/O  
PIO0_9/TXD1/  
CT32B1_CAP3/  
CT32B1_MAT3  
PIO0_9 — General purpose digital input/output pin. Also serves  
as wake-up pin from Deep-sleep mode.  
O
I
TXD1 — Transmitter output for UART1.  
CT32B1_CAP3 — Capture input, channel 3 for 32-bit timer 1.  
CT32B1_MAT3 — Match output, channel 3 for 32-bit timer 1.  
O
I/O  
PIO0_10/SCL  
17[3] yes  
18[3] yes  
I; IA  
I; IA  
PIO0_10 — General purpose digital input/output pin. Also serves  
as wake-up pin from Deep-sleep mode.  
SCL — I2C-bus clock input/output.  
I/O  
I/O  
PIO0_11/SDA/  
CT16B0_CAP0/  
CT16B0_MAT0  
PIO0_11 — General purpose digital input/output pin. Also serves  
as wake-up pin from Deep-sleep mode.  
SDA — I2C-bus data input/output.  
I/O  
I
CT16B0_CAP0 — Capture input, channel 0 for 16-bit timer 0.  
CT16B0_MAT0 — Match output, channel 0 for 16-bit timer 0.  
O
PIO0_12/CLKOUT/  
CT16B0_CAP1/  
CT16B0_MAT1  
19[7] no  
I; PU  
I/O  
PIO0_12 — General purpose digital input/output pin. A LOW  
level on this pin in during reset starts the ISP command handler.  
High-current output driver.  
O
I
CLKOUT — Clock out pin.  
CT16B0_CAP1 — Capture input, channel 0 for 16-bit timer 0.  
CT16B0_MAT1 — Match output, channel 1 for 16-bit timer 0.  
O
I
RESET/PIO0_13  
PIO0_14/SCK  
20[4] no  
I; PU  
I; PU  
RESET — External reset input: A LOW on this pin resets the  
device, causing I/O ports and peripherals to take on their default  
states, and processor execution to begin at address 0.  
I/O  
I/O  
I/O  
PIO0_13 — General purpose digital input/output pin.  
PIO0_14 — General purpose digital input/output pin.  
SCK — Serial clock for SSP.  
21[2] no  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
9 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC12D27 LQFP100 pin description …continued  
Pin Start Reset Type Description  
logic state  
[1]  
input  
PIO0_15/SSEL/  
CT16B1_CAP0/  
CT16B1_MAT0  
22[2] no  
I; PU  
I/O  
I/O  
I
PIO0_15 — General purpose digital input/output pin.  
SSEL — Slave select for SSP.  
CT16B1_CAP0 — Capture input, channel 0 for 16-bit timer 1.  
CT16B1_MAT0 — Match output, channel 0 for 16-bit timer 1.  
PIO0_16 — General purpose digital input/output pin.  
MISO — Master In Slave Out for SSP.  
O
I/O  
I/O  
I
PIO0_16/MISO/  
CT16B1_CAP1/  
CT16B1_MAT1  
23[2] no  
I; PU  
CT16B1_CAP1 — Capture input, channel 1 for 16-bit timer 1.  
CT16B1_MAT1 — Match output, channel 1 for 16-bit timer 1.  
PIO0_17 — General purpose digital input/output pin.  
MOSI — Master Out Slave In for SSP.  
O
I/O  
I/O  
I/O  
I
PIO0_17/MOSI  
24[2] no  
25[2] no  
I; PU  
I; PU  
PIO0_18/SWCLK/  
CT32B0_CAP0/  
CT32B0_MAT0  
PIO0_18 — General purpose digital input/output pin.  
SWCLK — Serial wire clock, alternate location.  
I
CT32B0_CAP0 — Capture input, channel 0 for 32-bit timer 0.  
CT32B0_MAT0 — Match output, channel 0 for 32-bit timer 0.  
PIO0_19 — General purpose digital input/output pin.  
ACMP0_I0 — Input 0 for comparator 0.  
O
I/O  
I
PIO0_19/ACMP0_I0/  
CT32B0_CAP1/  
CT32B0_MAT1  
95[5] no  
96[5] no  
97[5] no  
I; PU  
I; PU  
I; PU  
I
CT32B0_CAP1 — Capture input, channel 1 for 32-bit timer 0.  
CT32B0_MAT1 — Match output, channel 1 for 32-bit timer 0  
PIO0_20 — General purpose digital input/output pin.  
ACMP0_I1 — Input 1 for comparator 0.  
O
I/O  
I
PIO0_20/ACMP0_I1/  
CT32B0_CAP2/  
CT32B0_MAT2  
I
CT32B0_CAP2 — Capture input, channel 2 for 32-bit timer 0.  
CT32B0_MAT2 — Match output, channel 2 for 32-bit timer 0.  
PIO0_21 — General purpose digital input/output pin.  
ACMP0_I2 — Input 2 for comparator 0.  
O
I/O  
I
PIO0_21/ACMP0_I2/  
CT32B0_CAP3/  
CT32B0_MAT3  
I
CT32B0_CAP3 — Capture input, channel 3 for 32-bit timer 0.  
CT32B0_MAT3 — Match output, channel 3 for 32-bit timer 0.  
PIO0_22 — General purpose digital input/output pin.  
ACMP0_I3 — Input 3 for comparator 0.  
O
I/O  
I
PIO0_22/ACMP0_I3  
98[5] no  
99[5] no  
I; PU  
I; PU  
PIO0_23/  
ACMP1_I0/  
CT32B1_CAP0/  
CT32B1_MAT0  
I/O  
I
PIO0_23 — General purpose digital input/output pin.  
ACMP1_I0 — Input 0 for comparator 1.  
I
CT32B1_CAP0 — Capture input, channel 0 for 32-bit timer 1.  
CT32B1_MAT0 — Match output, channel 0 for 32-bit timer 1.  
PIO0_24 — General purpose digital input/output pin.  
ACMP1_I1 — Input 1 for comparator 1.  
O
I/O  
I
PIO0_24/ACMP1_I1/  
CT32B1_CAP1/  
CT32B1_MAT1  
100 no  
[5]  
I; PU  
I
CT32B1_CAP1 — Capture input, channel 1 for 32-bit timer 1.  
CT32B1_MAT1 — Match output, channel 1 for 32-bit timer 1.  
O
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
10 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC12D27 LQFP100 pin description …continued  
Pin Start Reset Type Description  
logic state  
[1]  
input  
SWDIO/ACMP1_I2/  
CT32B1_CAP2/  
CT32B1_MAT2/PIO0_25  
1[5]  
no  
I; PU  
I/O  
I
SWDIO — Serial wire debug input/output, default location.  
ACMP1_I2 — Input 2 for comparator 1.  
I
CT32B1_CAP2 — Capture input, channel 2 for 32-bit timer 1.  
CT32B1_MAT2 — Match output, channel 2 for 32-bit timer 1.  
PIO0_25 — General purpose digital input/output pin.  
SWCLK — Serial wire clock, default location.  
O
I/O  
I
SWCLK/  
2[5]  
no  
I; PU  
ACMP1_I3/  
CT32B1_CAP3/  
CT32B1_MAT3/PIO0_26  
I
ACMP1_I3 — Input 3 for comparator 1.  
I
CT32B1_CAP3 — Capture input, channel 3 or 32-bit timer 1.  
CT32B1_MAT3 — Match output, channel 3 for 32-bit timer 1.  
PIO0_26 — General purpose digital input/output pin.  
O
I/O  
I/O  
PIO0_27/ACMP0_O  
3[7]  
no  
no  
I; PU  
I; PU  
PIO0_27 — General purpose digital input/output pin  
(high-current output driver).  
O
ACMP0_O — Output for comparator 0.  
PIO0_28/ACMP1_O/  
CT16B0_CAP0/  
CT16B0_MAT0  
4[7]  
I/O  
PIO0_28 — General purpose digital input/output pin  
(high-current output driver).  
O
I
ACMPC1_O — Output for comparator 1.  
CT16B0_CAP0 — Capture input, channel 0 for 16-bit timer 0.  
CT16B0_MAT0 — Match output, channel 0 for 16-bit timer 0.  
O
I/O  
PIO0_29/ROSC/  
CT16B0_CAP1/  
CT16B0_MAT1  
5[7]  
no  
I; PU  
PIO0_29 — General purpose digital input/output pin  
(high-current output driver).  
I/O  
ROSC — Relaxation oscillator for 555 timer applications.  
CT16B0_CAP1 — Capture input, channel 1 for 16-bit timer 0.  
CT16B0_MAT1 — Match output, channel 1 for 16-bit timer 0.  
I
O
I
R/PIO0_30/AD0  
R/PIO0_31/AD1  
26[5] no  
I; PU  
I; PU  
R — Reserved. Configure for an alternate function in the  
IOCONFIG block.  
I/O  
PIO0_30 — General purpose digital input/output pin.  
AD0 — A/D converter, input 0.  
I
I
27[5] no  
R — Reserved. Configure for an alternate function in the  
IOCONFIG block.  
I/O  
I
PIO0_31 — General purpose digital input/output pin.  
AD1 — A/D converter, input 1.  
PIO1_0 to PIO1_6  
R/PIO1_0/AD2  
I/O  
Port 1 — Port 1 is a 32-bit I/O port with individual direction and  
function controls for each bit. The operation of port 1 pins  
depends on the function selected through the IOCONFIG register  
block. Pins PIO1_7 through PIO1_31 are not available.  
28[5] no  
I; PU  
O
R — Reserved. Configure for an alternate function in the  
IOCONFIG block.  
I/O  
I
PIO1_0 — General purpose digital input/output pin.  
AD2 — A/D converter, input 2.  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
11 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC12D27 LQFP100 pin description …continued  
Pin Start Reset Type Description  
logic state  
[1]  
input  
R/PIO1_1/AD3  
80[5] no  
I; PU  
I
R — Reserved. Configure for an alternate function in the  
IOCONFIG block.  
I/O  
I
PIO1_1 — General purpose digital input/output pin.  
AD3 — A/D converter, input 3.  
PIO1_2/SWDIO/AD4  
PIO1_3/AD5/WAKEUP  
PIO1_4/AD6  
81[5] no  
I; PU  
I; PU  
I/O  
I/O  
I
PIO1_2 — General purpose digital input/output pin.  
SWDIO — Serial wire debug input/output, alternate location.  
AD4 — A/D converter, input 4.  
82[6] no  
I/O  
I
PIO1_3 — General purpose digital input/output pin.  
AD5 — A/D converter, input 5.  
I
WAKEUP — Deep power-down mode wake-up pin.  
PIO1_4 — General purpose digital input/output pin.  
AD6 — A/D converter, input 6.  
83[5] no  
84[5] no  
I; PU  
I; PU  
I/O  
I
PIO1_5/AD7/  
CT16B1_CAP0/  
CT16B1_MAT0  
I/O  
I
PIO1_5 — General purpose digital input/output pin.  
AD7 — A/D converter, input 7.  
I
CT16B1_CAP0 — Capture input, channel 0 for 16-bit timer 1.  
CT16B1_MAT0 — Match output, channel 0 for 16-bit timer 1.  
PIO1_6 — General purpose digital input/output pin.  
CT16B1_CAP1 — Capture input, channel 1 for 16-bit timer 1.  
CT16B1_MAT1 — Match output, channel 1 for 16-bit timer 1.  
O
I/O  
I
PIO1_6/CT16B1_CAP1/  
CT16B1_MAT1  
85[2] no  
I; PU  
O
I/O  
PIO2_0  
Port 2 — Port 2 is a 32-bit I/O port with individual direction and  
function controls for each bit. The operation of port 2 pins  
depends on the function selected through the IOCONFIG register  
block. Pins PIO2_1 through PIO2_31 are not available.  
PIO2_0/CT16B0_CAP0/  
CT16B0_MAT0  
16[2] no  
I; PU  
I/O  
PIO2_0 — General purpose digital input/output pin.  
CT16B0_CAP0 — Capture input, channel 0 for 16-bit timer 0.  
CT16B0_MAT0 — Match output, channel 0 for 16-bit timer 0.  
Input to the 32 kHz oscillator circuit.  
I
O
-
RTCXIN  
RTCXOUT  
XTALIN  
89  
88  
92  
-
-
-
-
-
-
-
Output from the 32 kHz oscillator amplifier.  
-
Input to the system oscillator circuit and internal clock generator  
circuits.  
XTALOUT  
VREF_CMP  
VDD(IO)  
93  
94  
90  
87  
-
-
-
-
-
-
-
-
-
-
-
-
Output from the system oscillator amplifier.  
Reference voltage for comparator.  
Input/output supply voltage.  
VDD(3V3)  
3.3 V supply voltage to the internal regulator and the ADC. Also  
used as the  
ADC reference voltage.  
Ground.  
VSSIO  
91  
86  
-
-
-
-
-
-
VSS  
Ground.  
LCD display pins  
[8]  
S0  
S1  
46  
47  
-
-
VLCD  
VLCD  
O
O
LCD segment output.  
LCD segment output.  
[8]  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
12 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC12D27 LQFP100 pin description …continued  
Pin Start Reset Type Description  
logic state  
[1]  
input  
[8]  
S2  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
29  
30  
31  
32  
33  
34  
42  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
LCD segment output.  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
[8]  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
BP0  
LCD backplane output.  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
13 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 3.  
Symbol  
LPC12D27 LQFP100 pin description …continued  
Pin Start Reset Type Description  
logic state  
[1]  
input  
[8]  
BP1  
44  
43  
45  
35  
36  
37  
38  
39  
-
-
-
-
-
-
-
-
VLCD  
VLCD  
O
LCD backplane output.  
[8]  
[8]  
BP2  
O
LCD backplane output.  
BP3  
VLCD  
O
LCD backplane output.  
[8]  
LCD_SDA  
LCD_SCL  
SYNC  
CLK  
I/O  
I/O  
I/O  
I/O  
-
I2C-bus serial data input/output.  
I2C-bus serial clock input.  
Cascade synchronization input/output.  
External clock input/output.  
[8]  
[8]  
[8]  
VDD  
-
1.8 V to 5.5 V power supply: Power supply voltage for the  
PCF8576D.  
VSS(LCD)  
VLCD  
40  
41  
-
-
-
-
-
-
LCD ground.  
LCD power supply: LCD voltage.  
[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled; IA = inactive, no pull-up/down enabled.  
[2] Digital I/O pin; default: pull-up enabled, no hysteresis.  
[3] I2C-bus pins; 5 V tolerant; open-drain; default: no pull-up/pull-down, no hysteresis.  
[4] Digital I/O pin with RESET function; default: pull-up enabled, no hysteresis.  
[5] Digital I/O pin with analog function; default: pull-up enabled, no hysteresis.  
[6] Digital I/O pin with analog function and WAKEUP function; default: pull-up enabled, no hysteresis.  
[7] High-drive digital I/O pin; default: pull-up enabled, no hysteresis.  
[8] See Section 7.2.3.  
7. Functional description  
7.1 LPC1227 microcontroller  
See the LPC122x data sheet for a detailed functional description of the LPC1227  
microcontroller.  
7.2 LCD driver  
See the PCF8576 data sheet for a detailed functional description of the PCF8576D LCD  
driver.  
7.2.1 General description  
The PCF8576D is a peripheral device which interfaces to almost any Liquid Crystal  
Display (LCD) with low multiplex rates. It generates the drive signals for any static or  
multiplexed LCD containing up to four backplanes and up to 40 segments. It can be easily  
cascaded for larger LCD applications. The PCF8576D communicates via the two-line  
bidirectional I2C-bus. Communication overheads are minimized by a display RAM with  
auto-incremented addressing, by hardware subaddressing and by display memory  
switching (static and duplex drive modes). Please refer to PCF8576D data sheet for  
electrical data.  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
14 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
7.2.2 Functional description  
The PCF8576D is a versatile peripheral device interfacing the LPC1227 microcontroller  
with a wide variety of LCDs. It can directly drive any static or multiplexed LCD containing  
up to four backplanes and up to 40 segments.  
The possible display configurations of the PCF8576D depend on the number of active  
backplane outputs required. A selection of display configurations is shown in Table 4. The  
integration of the LPC1227 microcontroller with the PCF8576D is shown in Figure 1.  
Table 4.  
Selection of display configurations  
Digits/Characters  
7-segment 14-segment  
Number of  
Backplanes  
Segments  
Dot matrix/Elements  
160 (4 40)  
4
3
2
1
160  
120  
80  
20  
15  
10  
5
10  
7
120 (3 40)  
5
64 (2 40)  
40  
2
40 (1 40)  
7.2.3 Reset state of the LCD controller and pins  
After power-on, the LCD controller resets to the following starting conditions:  
All backplane and segment outputs are set to VLCD  
.
The selected drive mode is 1:4 multiplex with 1/3 bias.  
Blinking is switched off.  
Input and output bank selectors are reset.  
The I2C-bus interface is initialized.  
The data pointer and the subaddress counter are cleared (set to logic 0).  
The display is disabled.  
Remark: Do not transfer data on the I2C-bus for at least 1 ms after a power-on to allow the  
reset action to complete.  
7.2.4 LCD bias generator  
Fractional LCD biasing voltages are obtained from an internal voltage divider consisting of  
three impedances connected in series between VLCD and VSS(LCD). The middle resistor  
can be bypassed to provide a 1/2 bias voltage level for the 1:2 multiplex configuration. The  
LCD voltage can be temperature compensated externally using the supply to pin VLCD  
.
7.2.5 Oscillator  
7.2.5.1 Internal clock  
The internal logic of the PCF8576D and its LCD drive signals are timed either by its  
internal oscillator or by an external clock. The internal oscillator is enabled by connecting  
pin OSC to pin VSS(LCD). If the internal oscillator is used, the output from pin CLK can be  
used as the clock signal for several PCF8576Ds in the system that are connected in  
cascade.  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
15 of 46  
LPC12D27  
NXP Semiconductors  
7.2.6 Timing  
32-bit ARM Cortex-M0 microcontroller  
The PCF8576D timing controls the internal data flow of the device. This includes the  
transfer of display data from the display RAM to the display segment outputs. In cascaded  
applications, the correct timing relationship between each PCF8576D in the system is  
maintained by the synchronization signal at pin SYNC. The timing also generates the LCD  
frame signal whose frequency is derived from the clock frequency. The frame signal  
frequency (ffr) is a fixed division of the clock frequency (fclk) from either the internal or an  
external clock: ffr = fclk/24.  
7.2.7 Display register  
A display latch holds the display data while the corresponding multiplex signals are  
generated. There is a one-to-one relationship between the data in the display latch, the  
LCD segment outputs, and each column of the display RAM.  
7.2.8 Segment outputs  
The LCD drive section includes 40 segment outputs S0 to S39 which should be connected  
directly to the LCD. The segment output signals are generated in accordance with the  
multiplexed backplane signals and with data residing in the display latch. When less than  
40 segment outputs are required, the unused segment outputs should be left open-circuit.  
7.2.9 Backplane outputs  
The LCD drive section includes four backplane outputs BP0 to BP3 which must be  
connected directly to the LCD. The backplane output signals are generated in accordance  
with the selected LCD drive mode. If less than four backplane outputs are required, the  
unused outputs can be left open-circuit.  
In the 1:3 multiplex drive mode, BP3 carries the same signal as BP1, therefore these two  
adjacent outputs can be tied together to give enhanced drive capabilities.  
In the 1:2 multiplex drive mode, BP0 and BP2, BP1 and BP3 all carry the same signals  
and may also be paired to increase the drive capabilities.  
In the static drive mode the same signal is carried by all four backplane outputs and they  
can be connected in parallel for very high drive requirements.  
7.2.10 Display RAM  
The display RAM is a static 40 4-bit RAM which stores LCD data. There is a one-to-one  
correspondence between the RAM addresses and the segment outputs, and between the  
individual bits of a RAM word and the backplane outputs. For details, see PCF8576D data  
sheet.  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
16 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
8. Limiting values  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
VDD(3V3)  
VDD(IO)  
VI  
Parameter  
Conditions  
Min  
3.0  
3.0  
0.5  
0
Max  
3.6  
Unit  
V
supply voltage (3.3 V)  
input/output supply voltage  
input voltage  
3.6  
V
[2]  
on all digital pins  
+3.6  
5.5  
V
on pins PIO0_10  
and PIO0_11  
(I2C-bus pins)  
V
[3]  
[3]  
IDD  
supply current  
per supply pin  
per ground pin  
-
-
-
100  
100  
100  
mA  
mA  
mA  
ISS  
ground current  
I/O latch-up current  
Ilatch  
(0.5VDD) < VI <  
(1.5VDD);  
Tj < 125 C  
[4]  
[5]  
Tstg  
storage temperature  
65  
+150  
1.5  
C  
Ptot(pack)  
total power dissipation (per package)  
based on package  
heat transfer, not  
device power  
-
W
consumption  
VESD  
electrostatic discharge voltage  
human body  
8000  
+8000  
V
model; all pins  
[1] The following applies to the limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Including voltage on outputs in 3-state mode.  
[3] The peak current is limited to 25 times the corresponding maximum current.  
[4] Dependent on package type.  
[5] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
17 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
9. Thermal characteristics  
9.1 Thermal characteristics  
The average chip junction temperature, Tj (C), can be calculated using the following  
equation:  
Tj = Tamb + PD Rthj a  
(1)  
Tamb = ambient temperature (C),  
Rth(j-a) = the package junction-to-ambient thermal resistance (C/W)  
PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation of  
the I/O pins is often small and many times can be negligible. However it can be significant  
in some applications.  
Table 6.  
Thermal characteristics  
VDD = 3.0 V to 3.6 V; Tamb = 40 C to +85 C unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Rth(j-a)  
thermal resistance from  
junction to ambient  
JEDEC test board; no  
air flow  
-
61  
-
C/W  
LQFP64 package  
LQFP48 package  
JEDEC test board  
LQFP64 package  
LQFP48 package  
86  
19  
-
-
C/W  
C/W  
Rth(j-c)  
thermal resistance from  
junction to case  
-
-
36  
-
-
C/W  
C  
Tj(max)  
maximum junction  
temperature  
150  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
18 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10. Static characteristics  
Table 7.  
Static characteristics  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
VDD(IO)  
input/output supply  
voltage  
on pin VDD(IO)  
3.0  
3.3  
3.6  
V
VDD(3V3)  
IDD  
supply voltage (3.3 V)  
supply current  
3.0  
3.3  
3.6  
V
Active mode;  
VDD(3V3) = 3.3 V;  
Tamb = 25 C; code  
while(1){}  
executed from flash  
all peripherals disabled:  
CCLK = 12 MHz  
-
-
-
4.6  
9
-
-
-
mA  
mA  
mA  
CCLK = 24 MHz  
CCLK = 33 MHz  
12.2  
all peripherals enabled:  
CCLK = 12 MHz  
-
-
-
6.6  
-
-
-
mA  
mA  
mA  
CCLK = 24 MHz  
10.9  
14.1  
CCLK = 33 MHz  
Sleep mode;  
VDD(3V3) = 3.3 V;  
Tamb = 25 C;  
all peripherals disabled  
CCLK = 12 MHz  
CCLK = 24 MHz  
CCLK = 33 MHz  
-
-
-
-
1.8  
3.3  
4.4  
30  
-
-
-
-
mA  
mA  
mA  
A  
Deep-sleep mode;  
VDD(3V3) = 3.3 V;  
Tamb = 25 C  
Deep power-down mode;  
-
720  
-
nA  
V
DD(3V3) = 3.3 V;  
Tamb = 25 C  
Normal-drive output pins (Standard port pins, RESET)  
IIL  
LOW-level input  
current  
VI = 0 V;  
-
-
-
-
-
100  
nA  
nA  
nA  
V
IIH  
IOZ  
VI  
HIGH-level input  
current  
VI = VDD(IO)  
;
-
100  
OFF-state output  
current  
VO = 0 V; VO = VDD(IO)  
;
-
100  
[2][3][4]  
input voltage  
pin configured to provide a  
digital function  
0
VDD(IO)  
VO  
output voltage  
output active  
0
-
-
VDD(IO)  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD(IO)  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
19 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 7.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
VIL  
LOW-level input  
voltage  
-
-
0.3VDD(IO)  
V
Vhys  
VOH  
hysteresis voltage  
-
0.4  
-
-
-
V
V
HIGH-level output  
voltage  
low mode; IOH = 2 mA  
high mode; IOH = 4 mA  
VDD(IO)  
0.4  
VDD(IO)  
0.4  
-
-
-
V
V
VOL  
LOW-level output  
voltage  
low mode; IOL = 2 mA  
high mode; IOL = 4 mA  
-
0.4  
0.4  
-
IOH  
HIGH-level output  
current  
low mode; VOH = VDD(IO)  
0.4 V  
2  
4  
-
-
mA  
mA  
high mode; VOH = VDD(IO)  
0.4 V  
-
IOL  
LOW-level output  
current  
low mode; VOL = 0.4 V  
high mode; VOL = 0.4 V  
VOH = 0 V  
2
4
-
-
-
-
-
mA  
mA  
mA  
-
[5]  
[5]  
IOHS  
HIGH-level  
short-circuit output  
current  
45  
IOLS  
LOW-level  
VOL = VDDA  
-
-
50  
mA  
short-circuit output  
current  
Ipu  
pull-up current  
VI = 0 V  
50  
80  
100  
A  
High-drive output pins (PIO0_27, PIO0_28, PIO0_29, PIO0_12)  
IIL  
LOW-level input  
current  
VI = 0 V;  
-
-
-
-
-
100  
nA  
nA  
nA  
V
IIH  
IOZ  
VI  
HIGH-level input  
current  
VI = VDD(IO)  
;
-
100  
OFF-state output  
current  
VO = 0 V; VO = VDD(IO)  
;
-
100  
[2][3]  
[4]  
input voltage  
pin configured to provide a  
digital function  
0
VDD(IO)  
VO  
output voltage  
output active  
0
-
-
VDD(IO)  
-
V
V
VIH  
HIGH-level input  
voltage  
0.7VDD(IO)  
-
VIL  
LOW-level input  
voltage  
-
0.3VDD(IO)  
-
-
Vhys  
VOH  
hysteresis voltage  
-
-
-
-
V
V
HIGH-level output  
voltage  
low mode; IOH = 20 mA  
high mode; IOH = 28 mA  
VDD(IO)  
0.7  
VDD(IO)  
0.7  
-
-
V
VOL  
LOW-level output  
voltage  
low mode; IOL = 12 mA  
high mode; IOL = 18 mA  
-
-
-
-
0.4  
0.4  
V
V
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
20 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Table 7.  
Static characteristics …continued  
Tamb = 40 C to +85 C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
IOH  
HIGH-level output  
current  
low mode; VOH = VDD(IO)  
0.7  
20  
-
-
mA  
high mode; VOH = VDD(IO)  
0.7  
28  
12  
-
-
-
-
mA  
mA  
IOL  
LOW-level output  
current  
VOL = 0.4 V  
low mode  
high mode  
18  
-
-
-
-
mA  
mA  
[5]  
IOLS  
LOW-level  
VOL = VDD  
short-circuit output  
current  
Ipu  
pull-up current  
VI = 0 V  
50  
80  
100  
A  
I2C-bus pins (PIO0_10 and PIO0_11)  
VIH  
HIGH-level input  
voltage  
0.7VDD(IO)  
-
-
-
-
V
V
VIL  
LOW-level input  
voltage  
0.3VDD(IO)  
Vhys  
VOL  
hysteresis voltage  
-
-
0.05VDD(IO)  
-
-
V
V
LOW-level output  
voltage  
IOLS = 20 mA  
0.4  
[6]  
ILI  
Ci  
input leakage current VI = VDD(IO)  
VI = 5 V  
-
-
-
2
4
A  
A  
pF  
10  
-
22  
8
capacitance for each  
I/O pin  
on pins PIO0_10 and  
PIO0_11  
Oscillator pins  
Vi(xtal)  
crystal input voltage  
crystal output voltage  
see Section 12.1  
0
0
1.8  
1.8  
1.95  
1.95  
V
V
Vo(xtal)  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
[2] Including voltage on outputs in 3-state mode.  
[3] VDD(3V3) and VDD(IO) supply voltages must be present.  
[4] 3-state outputs go into 3-state mode when VDD(IO) is grounded.  
[5] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[6] To VSS  
.
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
21 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.1 Peripheral power consumption  
The supply current per peripheral is measured as the difference in supply current between  
the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG  
and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both  
registers and no code is executed. Measured on a typical sample at Tamb = 25 C and  
V
DD(3V3) = 3.3 V.  
Table 8.  
Peripheral power consumption  
Typical current consumption IDD in mA  
Peripheral  
Frequency  
24 MHz  
12 MHz  
independent  
system  
IRC + PLL  
system  
IRC  
oscillator + PLL  
oscillator  
IRC  
0.29  
1.87  
-
-
-
-
-
-
-
-
PLL (PLL output  
frequency = 24 MHz)  
WDosc (WDosc output 0.25  
frequency = 500 kHz)  
-
-
-
-
BOD  
0.06  
-
-
-
-
Analog comparator 0/1  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.05  
1.86  
0.04  
0.09  
0.09  
0.08  
0.08  
0.34  
0.34  
0.36  
0.09  
0.09  
0.10  
0.30  
0.52  
0.52  
0.18  
0.06  
0.05  
1.85  
0.04  
0.09  
0.09  
0.08  
0.08  
0.34  
0.34  
0.37  
0.09  
0.10  
0.10  
0.29  
0.51  
0.51  
0.18  
0.06  
0.03  
1.61  
0.02  
0.04  
0.04  
0.04  
0.04  
0.17  
0.17  
0.18  
0.05  
0.05  
0.05  
0.15  
0.26  
0.26  
0.09  
0.03  
0.02  
1.61  
0.02  
0.04  
0.04  
0.04  
0.04  
0.17  
0.17  
0.18  
0.05  
0.05  
0.05  
0.15  
0.26  
0.26  
0.09  
0.03  
ADC  
CRC engine  
16-bit timer 0 (CT16B0)  
16-bit timer 1 (CT16B1)  
32-bit timer 0 (CT32B0)  
32-bit timer 1 (CT32B1)  
GPIO0  
GPIO1  
GPIO2  
I2C  
IOCON  
RTC  
SSP  
UART0  
UART1  
DMA  
WWDT  
10.2 Power consumption  
Power measurements in Active, Sleep, and Deep-sleep modes were performed under the  
following conditions (see LPC122x user manual):  
Active mode: all GPIO pins set to input with external pull-up resistors.  
Sleep and Deep-sleep modes: all GPIO pins set to output driving LOW.  
Deep power-down mode: all GPIO pins set to input with external pull-up resistors.  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
22 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag186  
16  
I
DD  
(mA)  
(2)  
(2)  
33 MHz  
24 MHz  
12  
8
4
0
(1)  
12 MHz  
(3)  
(3)  
4 MHz  
1 MHz  
3
3.2  
3.4  
3.6  
V
(V)  
DD(3V3)  
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled; internal  
pull-up resistors disabled; BOD disabled.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
(3) System oscillator enabled; IRC and system PLL disabled.  
Fig 5. Active mode: Typical supply current IDD versus supply voltage VDD(3V3) for  
different system clock frequencies (all peripherals disabled)  
002aag023  
16  
I
DD  
(mA)  
(2)  
(2)  
33 MHz  
24 MHz  
12  
8
4
0
(1)  
12 MHz  
(3)  
4 MHz  
1 MHz  
(3)  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD(3V3) = 3.3 V; active mode entered executing code while(1){} from flash; all  
peripherals disabled in the SYSAHBCLKCTRL register; all peripheral clocks disabled; internal  
pull-up resistors disabled; BOD disabled.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
(3) System oscillator enabled; IRC and system PLL disabled.  
Fig 6. Active mode: Typical supply current IDD versus temperature for different system  
clock frequencies (peripherals disabled)  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
23 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag187  
16  
(2)  
(2)  
33 MHz  
24 MHz  
I
DD  
(mA)  
12  
8
4
0
(1)  
12 MHz  
(3)  
(3)  
4 MHz  
1 MHz  
3
3.2  
3.4  
3.6  
V
(V)  
DD(3V3)  
Conditions: Tamb = 25 C; active mode entered executing code while(1){} from flash; all  
peripherals enabled in the SYSAHBCLKCTRL register.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
(3) System oscillator enabled with external clock input; IRC and system PLL disabled.  
Fig 7. Active mode: Typical supply current IDD versus supply voltage VDD(3V3) for  
different system clock frequencies (all peripherals enabled)  
002aag024  
16  
(2)  
33 MHz  
I
DD  
(mA)  
(2)  
24 MHz  
12  
8
4
0
(1)  
12 MHz  
(3)  
4 MHz  
1 MHz  
(3)  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: VDD(3V3) = 3.3 V; active mode entered executing code while(1){} from flash; all  
peripherals enabled in the SYSAHBCLKCTRL register.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
(3) System oscillator enabled with external clock input; IRC and system PLL disabled.  
Fig 8. Active mode: Typical supply current IDD versus temperature for different system  
clock frequencies (peripherals enabled)  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
24 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag188  
5
4
3
2
1
0
(2)  
(2)  
33 MHz  
24 MHz  
I
DD  
(mA)  
(1)  
12 MHz  
(3)  
(3)  
4 MHz  
1 MHz  
3.0  
3.2  
3.4  
3.6  
V
(V)  
DD(3V3)  
Conditions: VDD(3V3) = 3.3 V; sleep mode entered from flash; all peripherals disabled in the  
SYSAHBCLKCTRL register (SYSAHBCLKCTRL = 0x1F); all peripheral clocks disabled; internal  
pull-up resistors disabled; BOD disabled.  
(1) System oscillator and system PLL disabled; IRC enabled.  
(2) System oscillator and system PLL enabled; IRC disabled.  
(3) System oscillator enabled with external clock input; IRC and system PLL disabled.  
Fig 9. Sleep mode: Typical supply current IDD versus supply voltage VDD(3V3) for  
different system clock frequencies  
002aag190  
50  
I
DD  
(μA)  
V
= 3.6 V  
3.3 V  
DD(3V3)  
40  
3.0 V  
30  
20  
10  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Conditions: BOD disabled; all oscillators and analog blocks disabled in the PDSLEEPCFG register  
Fig 10. Deep-sleep mode: Typical supply current IDD versus temperature for different  
supply voltages VDD(3V3)  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
25 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag189  
1.0  
I
DD  
(μA)  
0.9  
0.8  
0.7  
0.6  
V
= 3.6 V  
3.3 V  
3.0 V  
DD(3V3)  
-40  
-15  
10  
35  
60  
85  
temperature (°C)  
Fig 11. Deep power-down mode: Typical supply current IDD versus temperature for  
different supply voltages VDD(3V3)  
10.3 Electrical pin characteristics  
002aag175  
3.6  
V
OH  
(V)  
3.2  
low mode  
-40 °C  
+25 °C  
+70 °C  
+85 °C  
low mode  
-40 °C  
+25 °C  
+70 °C  
+85 °C  
2.8  
2.4  
2
0
16  
32  
48  
I
(mA)  
OH  
Conditions: VDD(IO) = 3.3 V  
Fig 12. High-drive pins: Typical HIGH-level output voltage VOH versus HIGH-level output  
current IOH  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
26 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag310  
1.2  
high mode  
-40 °C  
+25 °C  
+70 °C  
+85 °C  
V
OL  
low mode  
-40 °C  
+25 °C  
+70 °C  
+85 °C  
(V)  
0.8  
0.4  
0
0
16  
32  
48  
I
(mA)  
OL  
Conditions: VDD(IO) = 3.3 V  
Fig 13. High-drive pins: Typical LOW-level output voltage VOL versus LOW-level output  
current IOL  
002aag180  
0.8  
V
OL  
(V)  
-40 °C  
+25 °C  
+70 °C  
+85 °C  
0.6  
0.4  
0.2  
0
0
12  
24  
36  
48  
I
(mA)  
OL  
Conditions: VDD(IO) = 3.3 V.  
Fig 14. I2C-bus pins (high current sink): Typical LOW-level output voltage VOL versus  
LOW-level output current IOL  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
27 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag181  
1.2  
high mode  
-
40 °C  
V
OL  
+25 °C  
+70 °C  
+85 °C  
(V)  
low mode  
-
40 °C  
0.8  
+25 °C  
+70 °C  
+85 °C  
0.4  
0
0
4
8
12  
16  
I
(mA)  
OL  
Conditions: VDD(IO) = 3.3 V.  
Fig 15. Normal-drive pins: Typical LOW-level output voltage VOL versus LOW-level output  
current IOL  
002aag182  
3.4  
high mode  
-40 °C  
+25 °C  
+70 °C  
+85 °C  
V
OH  
(V)  
3.0  
low mode  
-40 °C  
+25 °C  
+70 °C  
+85 °C  
2.6  
2.2  
1.8  
0
4
8
12  
16  
I
(mA)  
OH  
Conditions: VDD(IO) = 3.3 V.  
Fig 16. Normal-drive pins: Typical HIGH-level output voltage VOH versus HIGH-level  
output source current IOH  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
28 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
002aag185  
0
I
pu  
(mA)  
-20  
-40  
+85 °C  
+70 °C  
+25 °C  
-40 °C  
-60  
-80  
-100  
0
1
2
3
V (mA)  
I
Conditions: VDD(IO) = 3.3 V.  
Fig 17. Typical pull-up current Ipu versus input voltage VI  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
29 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.4 ADC characteristics  
Table 9.  
ADC static characteristics  
Tamb = 40 C to +85 C unless otherwise specified; ADC frequency 9 MHz, VDD(3V3) = 3.0 V to  
3.6 V.  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ[1] Max  
Unit  
V
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VDD(3V3)  
Cia  
1
pF  
[2][3][4]  
[2][5]  
[2][6]  
[2][7]  
[2][8]  
ED  
1  
2.5  
1  
3  
3  
257  
3.9  
LSB  
LSB  
LSB  
LSB  
LSB  
kHz  
M  
EL(adj)  
EO  
EG  
gain error  
ET  
absolute error  
fc(ADC)  
Ri  
ADC conversion frequency  
input resistance  
[9][10]  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[2] Conditions: VSS = 0 V, VDD(3V3) = 3.3 V.  
[3] The ADC is monotonic, there are no missing codes.  
[4] The differential linearity error (ED) is the difference between the actual step width and the ideal step width.  
See Figure 18.  
[5] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and  
the ideal transfer curve after appropriate adjustment of gain and offset errors. See Figure 18.  
[6] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the  
straight line which fits the ideal curve. See Figure 18.  
[7] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer  
curve after removing offset error, and the straight line which fits the ideal transfer curve. See Figure 18.  
[8] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer  
curve of the non-calibrated ADC and the ideal transfer curve. See Figure 18.  
[9]  
Tamb = 25 C; maximum sampling frequency fs = 257 kHz and analog input capacitance Cia = 1 pF.  
[10] Input resistance Ri depends on the sampling frequency fs: Ri = 1 / (fs Cia).  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
30 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
offset  
error  
gain  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
(LSB  
)
ideal  
IA  
offset error  
E
O
V
V  
SS  
DD(3V3)  
1 LSB =  
1024  
002aae787  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 18. ADC characteristics  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
31 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
10.5 BOD static characteristics  
Table 10. BOD static characteristics[1]  
Tamb = 25 C.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth  
threshold voltage interrupt level 1  
assertion  
-
-
2.25  
2.39  
-
-
V
V
de-assertion  
interrupt level 2  
assertion  
-
-
2.54  
2.67  
-
-
V
V
de-assertion  
interrupt level 3  
assertion  
-
-
2.83  
2.93  
-
-
V
V
de-assertion  
reset level 1  
assertion  
-
-
2.04  
2.18  
-
-
V
V
de-assertion  
reset level 2  
assertion  
-
-
2.34  
2.47  
-
-
V
V
de-assertion  
reset level 3  
assertion  
-
-
2.62  
2.76  
-
-
V
V
de-assertion  
[1] Interrupt levels are selected by writing the level value to the BOD control register BODCTRL, see LPC122x  
user manual.  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
32 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11. Dynamic characteristics  
11.1 Power-up ramp conditions  
Table 11. Power-up characteristics  
amb = 40 C to +85 C.  
T
Symbol Parameter  
Conditions  
Min  
0
Typ  
Max  
500  
-
Unit  
ms  
s  
[1]  
tr  
rise time  
at t = t1: 0 < VI 400 mV  
-
-
-
[1][2]  
twait  
VI  
wait time  
12  
0
input voltage  
at t = t1 on pin VDD  
400  
mV  
[1] See Figure 19.  
[2] The wait time specifies the time the power supply must be at levels below 400 mV before ramping up.  
t
r
V
DD  
400 mV  
0
t
wait  
t = t  
1
002aag001  
Condition: 0 < VI 400 mV at start of power-up (t = t1)  
Fig 19. Power-up ramp  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
33 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11.2 Flash memory  
Table 12. Dynamic characteristics: flash memory  
Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.  
Symbol  
Parameter  
Conditions  
Min  
Max  
20  
Unit  
ms  
[1]  
[1]  
[1]  
ter  
erase time  
for one page (512 byte)  
for one sector (4 kB)  
-
162  
20  
ms  
for all sectors; mass  
erase  
-
ms  
[1]  
[1]  
[1]  
tprog  
programming  
time  
one word (4 bytes)  
-
-
-
49  
s  
s  
s  
four sequential words  
194  
765  
128 bytes (one row of 32  
words)  
[2]  
Nendu  
tret  
endurance  
20000  
10  
-
-
cycles  
years  
retention time  
[1] Erase and programming times are valid over the lifetime of the device (minimum 20000 cycles).  
[2] Number of program/erase cycles.  
11.3 External clock  
Table 13. Dynamic characteristics: external clock  
Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.[1]  
Symbol  
fosc  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
MHz  
ns  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
1
-
-
-
-
-
-
25  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
40  
1000  
Tcy(clk) 0.4  
-
ns  
Tcy(clk) 0.4  
-
ns  
-
-
5
5
ns  
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 20. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
34 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11.4 Internal oscillators  
Table 14. Dynamic characteristics: internal oscillators  
Tamb = 40 C to +85 C; VDD(3V3) over specified ranges.[1]  
Symbol Parameter  
fosc(RC) internal RC oscillator frequency  
Conditions  
Min  
Typ[2] Max  
12 12.12  
Unit  
-
11.88  
MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at nominal supply voltages.  
002aag020  
12.15  
12 MHz + 1%  
f
osc(RC)  
(MHz)  
VDD = 3.6 V  
3.3 V  
3.0 V  
12.05  
11.95  
11.85  
12 MHz 1%  
40  
15  
10  
35  
60  
85  
temperature (°C)  
Fig 21. Internal RC oscillator frequency versus temperature  
Table 15. Dynamic characteristics: Watchdog oscillator  
Symbol Parameter  
Conditions  
Min Typ[1]  
Max Unit  
[2][3]  
[2][3]  
fosc(int) internal oscillator DIVSEL = 0x1F, FREQSEL = 0x1  
-
7.8  
-
kHz  
frequency  
in the WDTOSCCTRL register;  
DIVSEL = 0x00, FREQSEL = 0xF  
in the WDTOSCCTRL register  
-
1700  
-
kHz  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply  
voltages.  
[2] The typical frequency spread over processing and temperature (Tamb = 40 C to +85 C) is 40 %.  
[3] See the LPC122x user manual.  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
35 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
11.5 I2C-bus  
Table 16. Dynamic characteristics: I2C-bus pins  
Tamb = 40 C to +85 C.[1]  
Symbol  
Parameter  
Conditions  
Standard-mode  
Fast-mode  
Min  
0
Max  
100  
400  
1
Unit  
kHz  
kHz  
MHz  
ns  
fSCL  
SCL clock  
frequency  
0
Fast-mode Plus 0  
[2][3][4][5]  
tf  
fall time  
of both SDA  
and SCL  
signals  
-
300  
Standard-mo  
de  
Fast-mode  
20 + 0.1 Cb  
300  
120  
ns  
ns  
Fast-mode  
Plus  
-
tLOW  
LOW period of  
the SCL clock  
Standard-mode 4.7  
Fast-mode 1.3  
-
-
-
-
-
-
-
-
-
-
-
-
s  
s  
s  
s  
s  
s  
s  
s  
s  
ns  
ns  
ns  
Fast-mode Plus 0.5  
Standard-mode 4.0  
tHIGH  
HIGH period of  
the SCL clock  
Fast-mode  
0.6  
Fast-mode Plus 0.26  
[6][2][7]  
[8][9]  
tHD;DAT  
data hold time  
Standard-mode  
Fast-mode  
0
0
Fast-mode Plus 0  
tSU;DAT  
data set-up time  
Standard-mode 250  
Fast-mode  
100  
Fast-mode Plus 50  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to  
bridge the undefined region of the falling edge of SCL.  
[3] Cb = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed.  
[4] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at  
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines  
without exceeding the maximum specified tf.  
[5] In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should  
allow for this when considering bus timing.  
[6] tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the acknowledge.  
[7] The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the maximum of tVD;DAT or  
t
VD;ACK by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If  
the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.  
[8] tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission and the  
acknowledge.  
[9] A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns must then be met.  
This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the  
LOW period of the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the  
Standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
36 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
t
t
SU;DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
002aaf425  
Fig 22. I2C-bus pins clock timing  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
37 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
12. Application information  
12.1 XTAL input  
The input voltage to the on-chip oscillators is limited to 1.8 V. If the oscillator is driven by a  
clock in slave mode, it is recommended that the input be coupled through a capacitor with  
Ci = 100 pF. To limit the input voltage to the specified range, choose an additional  
capacitor to ground Cg which attenuates the input voltage by a factor Ci/(Ci + Cg). In slave  
mode, a minimum of 200 mV(RMS) is needed.  
LPC1xxx  
XTALIN  
C
i
C
g
100 pF  
002aae788  
Fig 23. Slave mode operation of the on-chip oscillator  
12.2 XTAL Printed Circuit Board (PCB) layout guidelines  
The crystal should be connected on the PCB as close as possible to the oscillator input  
and output pins of the chip. Take care that the load capacitors Cx1,Cx2, and Cx3 in case of  
third overtone crystal usage have a common ground plane. The external components  
must also be connected to the ground plain. Loops must be made as small as possible in  
order to keep the noise coupled in via the PCB as small as possible. Also parasitics  
should stay as small as possible. Values of Cx1 and Cx2 should be chosen smaller  
accordingly to the increase in parasitics of the PCB layout.  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
38 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
12.3 ElectroMagnetic Compatibility (EMC)  
Radiated emission measurements according to the IEC61967-2 standard using the  
TEM-cell method are shown for the LPC1227FBD64/301 in Table 17.  
Table 17. ElectroMagnetic Compatibility (EMC) for part LPC1227FBD64/301 (TEM-cell  
method)  
VDD = 3.3 V; Tamb = 25 C.  
Parameter Frequency band  
System clock =  
12 MHz  
Unit  
24 MHz  
33 MHz  
Input clock: IRC (12 MHz)  
maximum  
peak level  
150 kHz - 30 MHz  
4.2  
3.8  
6.4  
dBV  
30 MHz - 150 MHz  
7.3  
16.4  
M
5.4  
20.1  
L
9
dBV  
dBV  
-
150 MHz - 1 GHz  
-
23.4  
L
IEC level[1]  
Input clock: crystal oscillator (12 MHz)  
maximum  
peak level  
150 kHz - 30 MHz  
4.8  
4  
6.6  
dBV  
30 MHz - 150 MHz  
6.9  
16.3  
M
5.6  
20.3  
L
10  
22.3  
L
dBV  
dBV  
-
150 MHz - 1 GHz  
-
IEC level[1]  
[1] IEC levels refer to Appendix D in the IEC61967-2 Specification.  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
39 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
13. Package outline  
LQFP100: plastic low profile quad flat package; 100 leads; body 14 x 14 x 1.4 mm  
SOT407-1  
y
X
A
51  
75  
50  
26  
(1)  
76  
Z
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
detail X  
100  
1
25  
Z
D
v
M
A
B
e
w M  
b
p
D
B
H
v
M
5
D
0
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
p
v
w
y
Z
Z
θ
1
2
3
p
E
D
E
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 14.1 14.1  
0.17 0.09 13.9 13.9  
16.25 16.25  
15.75 15.75  
0.75  
0.45  
1.15 1.15  
0.85 0.85  
mm  
1.6  
0.25  
0.5  
1
0.2 0.08 0.08  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-02-01  
03-02-20  
SOT407-1  
136E20  
MS-026  
Fig 24. Package outline LQFP100  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
40 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
14. Soldering  
Footprint information for reflow soldering of LQFP100 package  
SOT407-1  
Hx  
Gx  
(0.125)  
P2  
P1  
Hy Gy  
By  
Ay  
C
D2 (8×)  
D1  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ax  
Ay  
Bx  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 17.300 17.300 14.300 14.300 1.500 0.280 0.400 14.500 14.500 17.550 17.550  
sot407-1  
Fig 25. Reflow soldering of the LQFP100 package  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
41 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
15. References  
[1] LPC122x data sheet, http://www.nxp.com/microcontrollers  
[2] PCF8576D data sheet, http://www.nxp.com/microcontrollers  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
42 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
16. Revision history  
Table 18. Revision history  
Document ID  
Release date  
Data sheet status  
Change notice  
Supersedes  
LPC12D27 v.1  
20110920  
Product data sheet  
-
-
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
43 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
17.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
17.3 Disclaimers  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
44 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
non-automotive qualified products in automotive equipment or applications.  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
I2C-bus — logo is a trademark of NXP B.V.  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC12D27  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 1 — 20 September 2011  
45 of 46  
LPC12D27  
NXP Semiconductors  
32-bit ARM Cortex-M0 microcontroller  
19. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
15  
16  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 43  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
17  
Legal information . . . . . . . . . . . . . . . . . . . . . . 44  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 44  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
17.1  
17.2  
17.3  
17.4  
4
4.1  
5
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 7  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 8  
18  
19  
Contact information . . . . . . . . . . . . . . . . . . . . 45  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
7
7.1  
7.2  
Functional description . . . . . . . . . . . . . . . . . . 14  
LPC1227 microcontroller . . . . . . . . . . . . . . . . 14  
LCD driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
General description . . . . . . . . . . . . . . . . . . . . 14  
Functional description. . . . . . . . . . . . . . . . . . . 15  
Reset state of the LCD controller and pins. . . 15  
LCD bias generator . . . . . . . . . . . . . . . . . . . . 15  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Internal clock . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Display register. . . . . . . . . . . . . . . . . . . . . . . . 16  
Segment outputs. . . . . . . . . . . . . . . . . . . . . . . 16  
Backplane outputs . . . . . . . . . . . . . . . . . . . . . 16  
Display RAM. . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.2.5.1  
7.2.6  
7.2.7  
7.2.8  
7.2.9  
7.2.10  
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 17  
Thermal characteristics . . . . . . . . . . . . . . . . . 18  
Thermal characteristics. . . . . . . . . . . . . . . . . . 18  
9
9.1  
10  
Static characteristics. . . . . . . . . . . . . . . . . . . . 19  
Peripheral power consumption. . . . . . . . . . . . 22  
Power consumption . . . . . . . . . . . . . . . . . . . . 22  
Electrical pin characteristics . . . . . . . . . . . . . . 26  
ADC characteristics . . . . . . . . . . . . . . . . . . . . 30  
BOD static characteristics. . . . . . . . . . . . . . . . 32  
10.1  
10.2  
10.3  
10.4  
10.5  
11  
Dynamic characteristics . . . . . . . . . . . . . . . . . 33  
Power-up ramp conditions . . . . . . . . . . . . . . . 33  
Flash memory. . . . . . . . . . . . . . . . . . . . . . . . . 34  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Internal oscillators. . . . . . . . . . . . . . . . . . . . . . 35  
I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
11.1  
11.2  
11.3  
11.4  
11.5  
12  
12.1  
12.2  
Application information. . . . . . . . . . . . . . . . . . 38  
XTAL input . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
XTAL Printed Circuit Board (PCB) layout  
guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
ElectroMagnetic Compatibility (EMC). . . . . . . 39  
12.3  
13  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 40  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
14  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2011.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 20 September 2011  
Document identifier: LPC12D27  

相关型号:

LPC1300

NXP Microcontrollers Selection Guide
NXP

LPC130CTP

VERTICAL CLIPLITE 4MM LITEPIPE
VCC

LPC1311

32-bit ARM Cortex-M3 microcontroller; up to 32 kB flash and 8 kB SRAM; USB device
NXP

LPC1311FHN33

32-bit ARM Cortex-M3 microcontroller; up to 32 kB flash and 8 kB SRAM; USB device
NXP

LPC1311FHN33,551

LPC1311FHN33 - 8kB Flash, 4kB SRAM QFN 32-Pin
NXP

LPC1311FHN33-01

32-bit ARM Cortex-M3 microcontroller; up to 32 kB flash and 8 kB SRAM; USB device
NXP

LPC1311FHN33/01,55

LPC1311FHN33 - 8kB Flash, 4kB SRAM QFN 32-Pin
NXP

LPC1311_10

32-bit ARM Cortex-M3 microcontroller; up to 32 kB flash and 8 kB SRAM; USB device
NXP

LPC1311_1008

32-bit ARM Cortex-M3 microcontroller up to 32 kB flash and 8 kB SRAM USB device
NXP

LPC1311_11

32-bit ARM Cortex-M3 microcontroller; up to 32 kB flash and 8 kB SRAM; USB device
NXP

LPC1311_12

32-bit ARM Cortex-M3 microcontroller; up to 32 kB flash and 8 kB SRAM; USB device
NXP

LPC1313

32-bit ARM Cortex-M3 microcontroller; up to 32 kB flash and 8 kB SRAM; USB device
NXP