LPC2158FBD100 [NXP]

Single-chip 16-bit/32-bit microcontrollers; 512 kB flash, with 32 segment x 4 LCD driver; 单芯片16位/ 32位微控制器; 512 kB的闪存,带有32段×4的LCD驱动器
LPC2158FBD100
型号: LPC2158FBD100
厂家: NXP    NXP
描述:

Single-chip 16-bit/32-bit microcontrollers; 512 kB flash, with 32 segment x 4 LCD driver
单芯片16位/ 32位微控制器; 512 kB的闪存,带有32段×4的LCD驱动器

驱动器 闪存 微控制器 CD
文件: 总45页 (文件大小:218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LPC2157/2158  
Single-chip 16-bit/32-bit microcontrollers; 512 kB flash, with  
32 segment x 4 LCD driver  
Rev. 01 — 15 October 2008  
Product data sheet  
1. General description  
The LPC2157/2158 is a multi-chip module consisting of a LPC2138/2148 single-chip  
microcontroller combined with a PCF8576D Universal LCD driver in a low-cost 100-pin  
package. The LCD driver provides 32 segments and supports from 1 to 4 backplanes.  
Display overhead is minimized by an on-chip display RAM with auto-increment  
addressing. Refer to the respective LPC2148 and LPC2138 user manual for details.  
2. Features  
I 128-bit wide interface/accelerator enables high-speed 60 MHz operation.  
N 32 kB to 40 kB of on-chip static RAM and 512 kB of on-chip flash memory.  
I USB 2.0 Full-speed compliant device controller with 2 kB of endpoint RAM.  
N An additional 8 kB of on-chip RAM accessible to USB by DMA (LPC2158 only).  
I 32 segment × 4 backplane LCD controller supports from 1 to 4 backplanes.  
I Single 10-bit DAC provides variable analog output.  
I Low power Real-Time Clock (RTC) with independent power and 32 kHz clock input.  
I Multiple serial interfaces including two UARTs (16C550), two Fast I2C-bus (400 kbit/s),  
SPI and SSP with buffering and variable data length capabilities.  
I High-accuracy internal RC oscillator option allows operation without external oscillator  
components. The RC oscillator option is selectable and fine tunable.  
I 2.4 V to 3.6 V VDD operating range. I/O pins are 5 V tolerant (may be pulled up or  
driven to 5.5 V).  
I 100-pin LQFP package with 38 microcontroller I/O pins minimum.  
I Individual enable/disable of peripheral functions as well as peripheral clock scaling for  
additional power optimization.  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
LPC2157FBD100  
LPC2158FBD100  
LQFP100  
LQFP100  
plastic low profile quad flat package; 100 leads; body 14 × 14 × 1.4 mm  
plastic low profile quad flat package; 100 leads; body 14 × 14 × 1.4 mm  
SOT407-1  
SOT407-1  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
4. Block diagram  
S[31:0]  
P1[31:25],  
P1[17:16]  
BP[3:0]  
PCF8576D  
LPC2157/  
LPC2158  
MCU  
LCD  
(1)  
CONTROLLER  
P0[31:28], P0[27:26]  
,
P0[25], P0[23:0]  
V
LCD  
002aad382  
(1) LPC2157 only.  
Fig 1. Block diagram of LPC2157/2158  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
2 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
(1)  
(1)  
TMS  
(1)  
TDI  
(1)  
XTAL2  
(1)  
TRST  
TCK  
TDO  
XTAL1 RESET  
LPC2157/2158  
PLL0  
TEST/DEBUG  
INTERFACE  
P1[31:25],  
P1[17:16]  
SYSTEM  
FUNCTIONS  
system  
clock  
FAST GENERAL  
PURPOSE I/O  
ARM7TDMI-S  
P0[31:28],  
PLL1  
(3)  
P0[27:26]  
P0[25],  
P0[23:0]  
AHB BRIDGE  
VECTORED  
INTERRUPT  
CONTROLLER  
USB  
clock  
ARM7 local bus  
AMBA AHB  
(Advanced High-performance Bus)  
INTERNAL  
SRAM  
INTERNAL  
FLASH  
CONTROLLER  
CONTROLLER  
AHB  
DECODER  
8 kB RAM  
AHB TO APB  
BRIDGE  
APB  
DIVIDER  
SHARED WITH  
32 kB  
SRAM  
512 kB  
FLASH  
(2)  
USB DMA  
APB (advanced  
peripheral bus)  
D+  
D  
UP_LED  
CONNECT  
VBUS  
USB 2.0 FULL-SPEED  
DEVICE CONTROLLER  
EXTERNAL  
INTERRUPTS  
EINT3 to  
EINT0  
(2)  
WITH DMA  
4 × CAP0  
4 × CAP1  
8 × MAT0  
SCL0, SCL1  
SDA0, SDA1  
CAPTURE/COMPARE  
(W/EXTERNAL CLOCK)  
TIMER 0/TIMER 1  
2
I C-BUS SERIAL  
INTERFACES 0 AND 1  
8 × MAT1  
AD0[7:6],  
(3)  
SCK0, SCK1  
AD0[5]  
AD0[0]  
(3)  
A/D CONVERTERS  
0 AND 1  
SPI AND SSP  
SERIAL INTERFACES  
MOSI0, MOSI1  
MISO0, MISO1  
SSEL0, SSEL1  
AD0[4:1]  
AD1[7:0]  
TXD0, TXD1  
RXD0, RXD1  
D/A CONVERTER  
UART0/UART1  
AOUT  
DSR1,CTS1,  
RTS1, DTR1,  
DCD1,RI1  
P0[31:28] and  
P0[25:0]  
RTCX1  
RTCX2  
VBAT  
GENERAL  
PURPOSE I/O  
REAL-TIME CLOCK  
P1[31:16]  
WATCHDOG  
TIMER  
PWM[6:1]  
PWM0  
SYSTEM  
CONTROL  
002aad384  
(1) Pins shared with GPIO.  
(2) USB DMA controller with 8 kB of RAM accessible as general purpose RAM and/or DMA is available in LPC2158 only.  
(3) LPC2157 only.  
Fig 2. Microcontroller section block diagram  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
3 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
BP0 BP1 BP2 BP3  
S[31:0]  
V
DD(LCD)  
BACKPLANE  
OUTPUTS  
DISPLAY SEGMENT OUTPUTS  
LCD  
VOLTAGE  
SELECTOR  
DISPLAY LATCH  
SHIFT REGISTER  
LCD BIAS  
GENERATOR  
V
LCD  
CLK  
TIMING  
BLINKER  
INPUT  
BANK  
SELECTOR  
DISPLAY  
RAM  
40 × 4 BITS  
OUTPUT  
BANK  
SELECTOR  
SYNC  
DISPLAY  
CONTROLLER  
POWER-  
ON  
RESET  
OSCILLATOR  
OSC  
DATA  
POINTER  
COMMAND  
DECODER  
V
SS  
SCL_LCD  
SDA_LCD  
SUB-  
ADDRESS  
COUNTER  
2
INPUT  
FILTERS  
I C-BUS  
CONTROLLER  
SA0  
A0 A1 A2  
002aad449  
Fig 3. LCD display controller block diagram  
5. Pinning information  
5.1 Pinning  
1
75  
LPC2157FBD  
25  
51  
002aad385  
Fig 4. Pin configuration for LPC2157  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
4 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
1
75  
LPC2158FBD  
25  
51  
002aad444  
Fig 5. Pin configuration for LPC2158  
5.2 Pin description  
Table 2.  
Pin description LPC2157  
Symbol  
Pin  
Type  
Description  
P0[0] to P0[31]  
I/O  
Port 0: Port 0 is a 32-bit I/O port with individual direction controls for each bit.  
Total of 31 pins of the Port 0 can be used as a general purpose bidirectional  
digital I/Os while P0[31] is output only pin. The operation of port 0 pins  
depends upon the pin function selected via the pin connect block.  
Pin P0[24] is not available.  
P0[0]/TXD0/  
PWM1  
7[1]  
I/O  
O
P0[0] — General purpose input/output digital pin (GPIO).  
TXD0 — Transmitter output for UART0.  
O
PWM1 — Pulse Width Modulator output 1.  
P0[1]/RXD0/  
PWM3/EINT0  
9[2]  
I/O  
I
P0[1] — General purpose input/output digital pin (GPIO).  
RXD0 — Receiver input for UART0.  
O
PWM3 — Pulse Width Modulator output 3.  
I
EINT0 — External interrupt 0 input.  
P0[2]/SCL0/  
CAP0[0]  
10[3]  
I/O  
I/O  
I
P0[2] — General purpose input/output digital pin (GPIO).  
SCL0 — I2C0 clock input/output. Open-drain output (for I2C-bus compliance).  
CAP0[0] — Capture input for Timer 0, channel 0.  
P0[3] — General purpose input/output digital pin (GPIO).  
SDA0 — I2C0 data input/output. Open-drain output (for I2C-bus compliance).  
MAT0[0] — Match output for Timer 0, channel 0.  
EINT1 — External interrupt 1 input.  
P0[3]/SDA0/  
MAT0[0]/EINT1  
14[3]  
I/O  
I/O  
O
I
P0[4]/SCK0/  
CAP0[1]/AD0[6]  
15[4]  
I/O  
I/O  
I
P0[4] — General purpose input/output digital pin (GPIO).  
SCK0 — Serial clock for SPI0. SPI clock output from master or input to slave.  
CAP0[1] — Capture input for Timer 0, channel 1.  
AD0[6] — ADC 0, input 6.  
I
P0[5]/MISO0/  
MAT0[1]/AD0[7]  
17[4]  
I/O  
I/O  
P0[5] — General purpose input/output digital pin (GPIO).  
MISO0 — Master In Slave Out for SPI0. Data input to SPI master or data  
output from SPI slave.  
O
I
MAT0[1] — Match output for Timer 0, channel 1.  
AD0[7] — ADC 0, input 7.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
5 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 2.  
Symbol  
Pin description LPC2157 …continued  
Pin  
Type  
I/O  
Description  
P0[6]/MOSI0/  
18[4]  
P0[6] — General purpose input/output digital pin (GPIO).  
CAP0[2]/AD1[0]  
I/O  
MOSI0 — Master Out Slave In for SPI0. Data output from SPI master or data  
input to SPI slave.  
I
CAP0[2] — Capture input for Timer 0, channel 2.  
AD1[0] — ADC 1, input 0.  
I
P0[7]/SSEL0/  
PWM2/EINT2  
19[2]  
20[4]  
21[2]  
22[4]  
23[3]  
24[4]  
25[4]  
26[3]  
I/O  
I
P0[7] — General purpose input/output digital pin (GPIO).  
SSEL0 — Slave Select for SPI0. Selects the SPI interface as a slave.  
PWM2 — Pulse Width Modulator output 2.  
O
I
EINT2 — External interrupt 2 input.  
P0[8]/TXD1/  
PWM4/AD1[1]  
I/O  
O
O
I
P0[8] — General purpose input/output digital pin (GPIO).  
TXD1 — Transmitter output for UART1.  
PWM4 — Pulse Width Modulator output 4.  
AD1[1] — ADC 1, input 1.  
P0[9]/RXD1/  
PWM6/EINT3  
I/O  
I
P0[9] — General purpose input/output digital pin (GPIO).  
RXD1 — Receiver input for UART1.  
O
I
PWM6 — Pulse Width Modulator output 6.  
EINT3 — External interrupt 3 input.  
P0[10]/RTS1/  
CAP1[0]/AD1[2]  
I/O  
O
I
P0[10] — General purpose input/output digital pin (GPIO).  
RTS1 — Request to Send output for UART1.  
CAP1[0] — Capture input for Timer 1, channel 0.  
AD1[2] — ADC 1, input 2.  
I
P0[11]/CTS1/  
CAP1[1]/SCL1  
I/O  
I
P0[11] — General purpose input/output digital pin (GPIO).  
CTS1 — Clear to Send input for UART1.  
I
CAP1[1] — Capture input for Timer 1, channel 1.  
SCL1 — I2C1 clock input/output. Open-drain output (for I2C-bus compliance)  
P0[12] — General purpose input/output digital pin (GPIO).  
DSR1 — Data Set Ready input for UART1.  
MAT1[0] — Match output for Timer 1, channel 0.  
AD1[3] — ADC 1 input 3.  
I/O  
I/O  
I
P0[12]/DSR1/  
MAT1[0]/AD1[3]  
O
I
P0[13]/DTR1/  
MAT1[1]/AD1[4]  
I/O  
O
O
I
P0[13] — General purpose input/output digital pin (GPIO).  
DTR1 — Data Terminal Ready output for UART1.  
MAT1[1] — Match output for Timer 1, channel 1.  
AD1[4] — ADC 1 input 4.  
P0[14]/DCD1/  
EINT1/SDA1  
I/O  
I
P0[14] — General purpose input/output digital pin (GPIO).  
DCD1 — Data Carrier Detect input for UART1.  
EINT1 — External interrupt 1 input.  
I
I/O  
SDA1 — I2C1 data input/output. Open-drain output (for I2C-bus compliance).  
Note: LOW on this pin while RESET is LOW forces on-chip bootloader to take  
over control of the part after reset.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
6 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 2.  
Symbol  
Pin description LPC2157 …continued  
Pin  
Type  
Description  
P0[15]/RI1/  
EINT2/AD1[5]  
28[4]  
I/O  
I
P0[15] — General purpose input/output digital pin (GPIO).  
RI1 — Ring Indicator input for UART1.  
I
EINT2 — External interrupt 2 input.  
I
AD1[5] — ADC 1, input 5.  
P0[16]/EINT0/  
MAT0[2]/CAP0[2]  
29[2]  
30[1]  
79[1]  
I/O  
I
P0[16] — General purpose input/output digital pin (GPIO).  
EINT0 — External interrupt 0 input.  
O
I
MAT0[2] — Match output for Timer 0, channel 2.  
CAP0[2] — Capture input for Timer 0, channel 2.  
P0[17] — General purpose input/output digital pin (GPIO).  
CAP1[2] — Capture input for Timer 1, channel 2.  
SCK1 — Serial Clock for SSP. Clock output from master or input to slave.  
MAT1[2] — Match output for Timer 1, channel 2.  
P0[18] — General purpose input/output digital pin (GPIO).  
CAP1[3] — Capture input for Timer 1, channel 3.  
P0[17]/CAP1[2]/  
SCK1/MAT1[2]  
I/O  
I
I/O  
O
I/O  
I
P0[18]/CAP1[3]/  
MISO1/MAT1[3]  
I/O  
MISO1 — Master In Slave Out for SSP. Data input to SPI master or data output  
from SSP slave.  
O
MAT1[3] — Match output for Timer 1, channel 3.  
P0[19] — General purpose input/output digital pin (GPIO).  
MAT1[2] — Match output for Timer 1, channel 2.  
P0[19]/MAT1[2]/  
MOSI1/CAP1[2]  
80[1]  
I/O  
O
I/O  
MOSI1 — Master Out Slave In for SSP. Data output from SSP master or data  
input to SSP slave.  
I
CAP1[2] — Capture input for Timer 1, channel 2.  
P0[20] — General purpose input/output digital pin (GPIO).  
MAT1[3] — Match output for Timer 1, channel 3.  
SSEL1 — Slave Select for SSP. Selects the SSP interface as a slave.  
EINT3 — External interrupt 3 input.  
P0[20]/MAT1[3]/  
SSEL1/EINT3  
81[2]  
91[4]  
92[4]  
I/O  
O
I
I
P0[21]/PWM5/  
AD1[6]/CAP1[3]  
I/O  
O
I
P0[21] — General purpose input/output digital pin (GPIO).  
PWM5 — Pulse Width Modulator output 5.  
AD1[6] — ADC 1, input 6.  
I
CAP1[3] — Capture input for Timer 1, channel 3.  
P0[22] — General purpose input/output digital pin (GPIO).  
AD1[7] — ADC 1, input 7.  
P0[22]/AD1[7]/  
CAP0[0]/  
I/O  
I
MAT0[0]  
I
CAP0[0] — Capture input for Timer 0, channel 0.  
MAT0[0] — Match output for Timer 0, channel 0.  
P0[23] — General purpose input/output digital pin (GPIO).  
P0[25] — General purpose input/output digital pin (GPIO).  
AD0[4] — ADC 0, input 4.  
O
I/O  
I/O  
I
P0[23]  
84[1]  
97[5]  
P0[25]/AD0[4]/  
AOUT  
O
I/O  
I
AOUT — DAC output.  
P0[26]/AD0[5]  
98[7]  
P0[26] — General purpose input/output digital pin (GPIO).  
AD0[5] — ADC 0, input 5. This analog input is always connected to its pin.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
7 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 2.  
Symbol  
Pin description LPC2157 …continued  
Pin  
Type  
Description  
P0[27]/AD0[0]/  
CAP0[1]/MAT0[1]  
99[7]  
I/O  
P0[27] — General purpose input/output digital pin (GPIO).  
AD0[0] — ADC 0, input 0. This analog input is always connected to its pin.  
CAP0[1] — Capture input for Timer 0, channel 1.  
MAT0[1] — Match output for Timer 0, channel 1.  
P0[28] — General purpose input/output digital pin (GPIO).  
AD0[1] — ADC 0, input 1.  
I
I
O
I/O  
I
P0[28]/AD0[1]/  
CAP0[2]/MAT0[2]  
1[4]  
2[4]  
3[4]  
5[6]  
I
CAP0[2] — Capture input for Timer 0, channel 2.  
MAT0[2] — Match output for Timer 0, channel 2.  
P0[29] — General purpose input/output digital pin (GPIO).  
AD0[2] — ADC 0, input 2.  
O
I/O  
I
P0[29]/AD0[2]/  
CAP0[3]/MAT0[3]  
I
CAP0[3] — Capture input for Timer 0, channel 3.  
MAT0[3] — Match output for Timer 0, channel 3.  
P0[30] — General purpose input/output digital pin (GPIO).  
AD0[3] — ADC 0, input 3.  
O
I/O  
I
P0[30]/AD0[3]/  
EINT3/CAP0[0]  
I
EINT3 — External interrupt 3 input.  
I
CAP0[0] — Capture input for Timer 0, channel 0.  
P0[31] — General purpose output only digital pin.  
P0[31]  
O
I/O  
P1[0] to P1[31]  
Port 1: Port 1 is a 32-bit bidirectional I/O port with individual direction controls  
for each bit. The operation of port 1 pins depends upon the pin function  
selected via the pin connect block. Pins 0 through 15 and 18 through 24 of  
port 1 are not available.  
P1[16]  
4[6]  
100[6]  
16[6]  
I/O  
I/O  
I/O  
I
P1[16] — General purpose input/output digital pin (GPIO).  
P1[17] — General purpose input/output digital pin (GPIO).  
P1[25] — General purpose input/output digital pin (GPIO).  
EXTIN0 — External Trigger Input. Standard I/O with internal pull-up.  
P1[26] — General purpose input/output digital pin (GPIO).  
P1[17]  
P1[25]/EXTIN0  
P1[26]/RTCK  
12[6]  
I/O  
I/O  
RTCK — Returned Test Clock output. Extra signal added to the JTAG port.  
Assists debugger synchronization when processor frequency varies.  
Bidirectional pin with internal pull-up.  
Note: LOW on RTCK while RESET is LOW enables pins P1[31:26] to operate  
as Debug port after reset.  
P1[27]/TDO  
P1[28]/TDI  
P1[29]/TCK  
P1[30]/TMS  
P1[31]/TRST  
90[6]  
86[6]  
82[6]  
78[6]  
8[6]  
I/O  
O
P1[27] — General purpose input/output digital pin (GPIO).  
TDO — Test Data out for JTAG interface.  
I/O  
I
P1[28] — General purpose input/output digital pin (GPIO).  
TDI — Test Data in for JTAG interface.  
I/O  
I
P1[29] — General purpose input/output digital pin (GPIO).  
TCK — Test Clock for JTAG interface.  
I/O  
I
P1[30] — General purpose input/output digital pin (GPIO).  
TMS — Test Mode Select for JTAG interface.  
P1[31] — General purpose input/output digital pin (GPIO).  
TRST — Test Reset for JTAG interface.  
I/O  
I
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
8 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 2.  
Symbol  
RESET  
Pin description LPC2157 …continued  
Pin  
Type  
Description  
83[8]  
I
External reset input: A LOW on this pin resets the device, causing I/O ports  
and peripherals to take on their default states, and processor execution to  
begin at address 0. TTL with hysteresis, 5 V tolerant.  
XTAL1  
XTAL2  
RTCX1  
RTCX2  
VSS  
88[9]  
87[9]  
93[9]  
94[9]  
O
I
Input from the oscillator amplifier.  
Output to the oscillator circuit and internal clock generator circuits.  
Input to the RTC oscillator circuit.  
I
O
I
Output from the RTC oscillator circuit.  
Ground: 0 V reference.  
6, 13, 32,  
39, 40,  
85, 95  
VDD  
11, 27, 33 I  
3.3 V power supply: This is the power supply voltage for the core and I/O  
ports.  
VDDA  
96  
I
Analog 3.3 V power supply: This should be nominally the same voltage as  
VDD but should be isolated to minimize noise and error. This voltage is only  
used to power the on-chip ADC(s) and DAC.  
VDD(LCD)  
VLCD  
38  
41  
89  
I
I
I
1.8 V to 5.5 V power supply: Power supply voltage for the PCF8576D.  
LCD power supply: LCD voltage.  
VREF  
ADC reference voltage: This should be nominally less than or equal to the  
VDD voltage but should be isolated to minimize noise and error. Level on this  
pin is used as a reference for ADC(s) and DAC.  
VBAT  
31  
I
RTC power supply voltage: 3.3 V on this pin supplies the power to the RTC.  
SDA LCD — I2C-bus data signal for the LCD controller.  
SCL LCD — I2C-bus clock signal for the LCD controller.  
SYNC — cascade synchronization input/output  
CLK — external clock input/output  
SDA_LCD  
SCL_LCD  
SYNC  
34  
I/O  
I
35  
36  
I/O  
I/O  
O
CLK  
37  
BP0 to BP3  
S0 to S31  
42 to 45  
46 to 77  
BP0 to BP3: LCD backplane outputs.  
O
S0 to S31: LCD segment outputs.  
[1] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control.  
[2] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control. If configured for an input  
function, this pad utilizes built-in glitch filter that blocks pulses shorter than 3 ns.  
[3] Open-drain 5 V tolerant digital I/O I2C-bus 400 kHz specification compatible pad. It requires external pull-up to provide an output  
functionality.  
[4] 5 V tolerant pad providing digital I/O (with TTL levels and hysteresis and 10 ns slew rate control) and analog input function. If configured  
for an input function, this pad utilizes built-in glitch filter that blocks pulses shorter than 3 ns. When configured as an ADC input, digital  
section of the pad is disabled.  
[5] 5 V tolerant pad providing digital I/O (with TTL levels and hysteresis and 10 ns slew rate control) and analog output function. When  
configured as the DAC output, digital section of the pad is disabled.  
[6] 5 V tolerant pad with built-in pull-up resistor providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control.  
The pull-up resistor’s value typically ranges from 60 kto 300 k.  
[7] Pad is designed in accordance with the Universal Serial Bus (USB) specification, revision 2.0 (Full-speed and Low-speed mode only).  
[8] 5 V tolerant pad providing digital input (with TTL levels and hysteresis) function only.  
[9] Pad provides special analog functionality.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
9 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 3.  
Pin description LPC2158  
Symbol  
Pin  
Type  
Description  
P0[0] to P0[31]  
I/O  
Port 0: Port 0 is a 32-bit I/O port with individual direction controls for each bit.  
Total of 29 pins of the Port 0 can be used as a general purpose bidirectional  
digital I/Os while P0[31] is output only pin. The operation of port 0 pins  
depends upon the pin function selected via the pin connect block.  
Pins P0[24], P0[26] and P0[27] are not available.  
P0[0] — General purpose input/output digital pin (GPIO).  
TXD0 — Transmitter output for UART0.  
P0[0]/TXD0/  
PWM1  
7[1]  
I/O  
O
O
PWM1 — Pulse Width Modulator output 1.  
P0[1]/RXD0/  
PWM3/EINT0  
9[2]  
I/O  
I
P0[1] — General purpose input/output digital pin (GPIO).  
RXD0 — Receiver input for UART0.  
O
PWM3 — Pulse Width Modulator output 3.  
I
EINT0 — External interrupt 0 input.  
P0[2]/SCL0/  
CAP0[0]  
10[3]  
I/O  
I/O  
I
P0[2] — General purpose input/output digital pin (GPIO).  
SCL0 — I2C0 clock input/output. Open-drain output (for I2C-bus compliance).  
CAP0[0] — Capture input for Timer 0, channel 0.  
P0[3] — General purpose input/output digital pin (GPIO).  
SDA0 — I2C0 data input/output. Open-drain output (for I2C-bus compliance).  
MAT0[0] — Match output for Timer 0, channel 0.  
EINT1 — External interrupt 1 input.  
P0[3]/SDA0/  
MAT0[0]/EINT1  
14[3]  
I/O  
I/O  
O
I
P0[4]/SCK0/  
CAP0[1]/AD0[6]  
15[4]  
I/O  
I/O  
I
P0[4] — General purpose input/output digital pin (GPIO).  
SCK0 — Serial clock for SPI0. SPI clock output from master or input to slave.  
CAP0[1] — Capture input for Timer 0, channel 1.  
AD0[6] — ADC 0, input 6.  
I
P0[5]/MISO0/  
MAT0[1]/AD0[7]  
17[4]  
I/O  
I/O  
P0[5] — General purpose input/output digital pin (GPIO).  
MISO0 — Master In Slave Out for SPI0. Data input to SPI master or data  
output from SPI slave.  
O
MAT0[1] — Match output for Timer 0, channel 1.  
AD0[7] — ADC 0, input 7.  
I
P0[6]/MOSI0/  
CAP0[2]/AD1[0]  
18[4]  
I/O  
I/O  
P0[6] — General purpose input/output digital pin (GPIO).  
MOSI0 — Master Out Slave In for SPI0. Data output from SPI master or data  
input to SPI slave.  
I
CAP0[2] — Capture input for Timer 0, channel 2.  
AD1[0] — ADC 1, input 0.  
I
P0[7]/SSEL0/  
PWM2/EINT2  
19[2]  
I/O  
I
P0[7] — General purpose input/output digital pin (GPIO).  
SSEL0 — Slave Select for SPI0. Selects the SPI interface as a slave.  
PWM2 — Pulse Width Modulator output 2.  
EINT2 — External interrupt 2 input.  
O
I
P0[8]/TXD1/  
PWM4/AD1[1]  
20[4]  
I/O  
O
O
I
P0[8] — General purpose input/output digital pin (GPIO).  
TXD1 — Transmitter output for UART1.  
PWM4 — Pulse Width Modulator output 4.  
AD1[1] — ADC 1, input 1.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
10 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 3.  
Symbol  
Pin description LPC2158 …continued  
Pin  
Type  
Description  
P0[9]/RXD1/  
PWM6/EINT3  
21[2]  
I/O  
I
P0[9] — General purpose input/output digital pin (GPIO).  
RXD1 — Receiver input for UART1.  
O
I
PWM6 — Pulse Width Modulator output 6.  
EINT3 — External interrupt 3 input.  
P0[10]/RTS1/  
CAP1[0]/AD1[2]  
22[4]  
23[3]  
24[4]  
25[4]  
26[3]  
I/O  
O
I
P0[10] — General purpose input/output digital pin (GPIO).  
RTS1 — Request to Send output for UART1.  
CAP1[0] — Capture input for Timer 1, channel 0.  
AD1[2] — ADC 1, input 2.  
I
P0[11]/CTS1/  
CAP1[1]/SCL1  
I/O  
I
P0[11] — General purpose input/output digital pin (GPIO).  
CTS1 — Clear to Send input for UART1.  
I
CAP1[1] — Capture input for Timer 1, channel 1.  
SCL1 — I2C1 clock input/output. Open-drain output (for I2C-bus compliance)  
P0[12] — General purpose input/output digital pin (GPIO).  
DSR1 — Data Set Ready input for UART1.  
I/O  
I/O  
I
P0[12]/DSR1/  
MAT1[0]/AD1[3]  
O
I
MAT1[0] — Match output for Timer 1, channel 0.  
AD1[3] — ADC 1 input 3.  
P0[13]/DTR1/  
MAT1[1]/AD1[4]  
I/O  
O
O
I
P0[13] — General purpose input/output digital pin (GPIO).  
DTR1 — Data Terminal Ready output for UART1.  
MAT1[1] — Match output for Timer 1, channel 1.  
AD1[4] — ADC 1 input 4.  
P0[14]/DCD1/  
EINT1/SDA1  
I/O  
I
P0[14] — General purpose input/output digital pin (GPIO).  
DCD1 — Data Carrier Detect input for UART1.  
EINT1 — External interrupt 1 input.  
I
I/O  
SDA1 — I2C1 data input/output. Open-drain output (for I2C-bus compliance).  
Note: LOW on this pin while RESET is LOW forces on-chip bootloader to take  
over control of the part after reset.  
P0[15]/RI1/  
EINT2/AD1[5]  
28[4]  
29[2]  
30[1]  
I/O  
P0[15] — General purpose input/output digital pin (GPIO).  
RI1 — Ring Indicator input for UART1.  
I
I
EINT2 — External interrupt 2 input.  
I
AD1[5] — ADC 1, input 5.  
P0[16]/EINT0/  
MAT0[2]/CAP0[2]  
I/O  
I
P0[16] — General purpose input/output digital pin (GPIO).  
EINT0 — External interrupt 0 input.  
O
I
MAT0[2] — Match output for Timer 0, channel 2.  
CAP0[2] — Capture input for Timer 0, channel 2.  
P0[17] — General purpose input/output digital pin (GPIO).  
CAP1[2] — Capture input for Timer 1, channel 2.  
SCK1 — Serial Clock for SSP. Clock output from master or input to slave.  
MAT1[2] — Match output for Timer 1, channel 2.  
P0[17]/CAP1[2]/  
SCK1/MAT1[2]  
I/O  
I
I/O  
O
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
11 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 3.  
Symbol  
Pin description LPC2158 …continued  
Pin  
Type  
I/O  
I
Description  
P0[18]/CAP1[3]/  
MISO1/MAT1[3]  
79[1]  
P0[18] — General purpose input/output digital pin (GPIO).  
CAP1[3] — Capture input for Timer 1, channel 3.  
I/O  
MISO1 — Master In Slave Out for SSP. Data input to SPI master or data output  
from SSP slave.  
O
MAT1[3] — Match output for Timer 1, channel 3.  
P0[19] — General purpose input/output digital pin (GPIO).  
MAT1[2] — Match output for Timer 1, channel 2.  
P0[19]/MAT1[2]/  
MOSI1/CAP1[2]  
80[1]  
I/O  
O
I/O  
MOSI1 — Master Out Slave In for SSP. Data output from SSP master or data  
input to SSP slave.  
I
CAP1[2] — Capture input for Timer 1, channel 2.  
P0[20] — General purpose input/output digital pin (GPIO).  
MAT1[3] — Match output for Timer 1, channel 3.  
SSEL1 — Slave Select for SSP. Selects the SSP interface as a slave.  
EINT3 — External interrupt 3 input.  
P0[20]/MAT1[3]/  
SSEL1/EINT3  
81[2]  
91[4]  
92[4]  
I/O  
O
I
I
P0[21]/PWM5/  
AD1[6]/CAP1[3]  
I/O  
P0[21] — General purpose input/output digital pin (GPIO).  
PWM5 — Pulse Width Modulator output 5.  
AD1[6] — ADC 1, input 6.  
O
I
I
CAP1[3] — Capture input for Timer 1, channel 3.  
P0[22] — General purpose input/output digital pin (GPIO).  
AD1[7] — ADC 1, input 7.  
P0[22]/AD1[7]/  
CAP0[0]/  
I/O  
I
MAT0[0]  
I
CAP0[0] — Capture input for Timer 0, channel 0.  
MAT0[0] — Match output for Timer 0, channel 0.  
P0[23] — General purpose input/output digital pin (GPIO).  
VBUS Indicates the presence of USB bus power.  
Note: This signal must be HIGH for USB reset to occur.  
P0[25] — General purpose input/output digital pin (GPIO).  
AD0[4] — ADC 0, input 4.  
O
I/O  
I
P0[23]/VBUS  
84[1]  
97[5]  
1[4]  
P0[25]/AD0[4]/  
AOUT  
I/O  
I
O
AOUT — DAC output.  
P0[28]/AD0[1]/  
CAP0[2]/MAT0[2]  
I/O  
P0[28] — General purpose input/output digital pin (GPIO).  
AD0[1] — ADC 0, input 1.  
I
I
CAP0[2] — Capture input for Timer 0, channel 2.  
MAT0[2] — Match output for Timer 0, channel 2.  
P0[29] — General purpose input/output digital pin (GPIO).  
AD0[2] — ADC 0, input 2.  
O
P0[29]/AD0[2]/  
2[4]  
I/O  
CAP0[3]/MAT0[3]  
I
I
CAP0[3] — Capture input for Timer 0, channel 3.  
MAT0[3] — Match output for Timer 0, channel 3.  
P0[30] — General purpose input/output digital pin (GPIO).  
AD0[3] — ADC 0, input 3.  
O
P0[30]/AD0[3]/  
EINT3/CAP0[0]  
3[4]  
I/O  
I
I
I
EINT3 — External interrupt 3 input.  
CAP0[0] — Capture input for Timer 0, channel 0.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
12 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 3.  
Symbol  
Pin description LPC2158 …continued  
Pin  
5[6]  
Type  
O
Description  
P0[31]/UP_LED/  
CONNECT  
P0[31] — General purpose output only digital pin.  
O
UP_LED — USB GoodLink LED indicator. It is LOW when device is configured  
(non-control endpoints enabled). It is HIGH when the device is not configured  
or during global suspend.  
O
CONNECT — Signal used to switch an external 1.5 kresistor under the  
software control. Used with the SoftConnect USB feature.  
Important: This is an digital output only pin. This pin MUST NOT be externally  
pulled LOW when RESET pin is LOW or the JTAG port will be disabled.  
P1[0] to P1[31]  
I/O  
Port 1: Port 1 is a 32-bit bidirectional I/O port with individual direction controls  
for each bit. The operation of port 1 pins depends upon the pin function  
selected via the pin connect block. Pins 0 through 15 and 18 through 24 of  
port 1 are not available.  
P1[16]  
4[6]  
100[6]  
16[6]  
I/O  
I/O  
I/O  
I
P1[16] — General purpose input/output digital pin (GPIO).  
P1[17] — General purpose input/output digital pin (GPIO).  
P1[25] — General purpose input/output digital pin (GPIO).  
EXTIN0 — External Trigger Input. Standard I/O with internal pull-up.  
P1[26] — General purpose input/output digital pin (GPIO).  
P1[17]  
P1[25]/EXTIN0  
P1[26]/RTCK  
12[6]  
I/O  
I/O  
RTCK — Returned Test Clock output. Extra signal added to the JTAG port.  
Assists debugger synchronization when processor frequency varies.  
Bidirectional pin with internal pull-up.  
Note: LOW on RTCK while RESET is LOW enables pins P1[31:26] to operate  
as Debug port after reset.  
P1[27]/TDO  
P1[28]/TDI  
P1[29]/TCK  
P1[30]/TMS  
P1[31]/TRST  
90[6]  
86[6]  
82[6]  
78[6]  
8[6]  
I/O  
O
P1[27] — General purpose input/output digital pin (GPIO).  
TDO — Test Data out for JTAG interface.  
I/O  
I
P1[28] — General purpose input/output digital pin (GPIO).  
TDI — Test Data in for JTAG interface.  
I/O  
I
P1[29] — General purpose input/output digital pin (GPIO).  
TCK — Test Clock for JTAG interface.  
I/O  
I
P1[30] — General purpose input/output digital pin (GPIO).  
TMS — Test Mode Select for JTAG interface.  
P1[31] — General purpose input/output digital pin (GPIO).  
TRST — Test Reset for JTAG interface.  
I/O  
I
D+  
98[7]  
99[7]  
83[8]  
I/O  
I/O  
I
USB bidirectional D+ line.  
D−  
USB bidirectional Dline.  
RESET  
External reset input: A LOW on this pin resets the device, causing I/O ports  
and peripherals to take on their default states, and processor execution to  
begin at address 0. TTL with hysteresis, 5 V tolerant.  
XTAL1  
XTAL2  
RTCX1  
RTCX2  
VSS  
88[9]  
87[9]  
93[9]  
94[9]  
O
I
Input from the oscillator amplifier.  
Output to the oscillator circuit and internal clock generator circuits.  
Input to the RTC oscillator circuit.  
I
O
I
Output from the RTC oscillator circuit.  
Ground: 0 V reference.  
6, 13, 32,  
39, 40,  
85, 95  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
13 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 3.  
Symbol  
VDD  
Pin description LPC2158 …continued  
Pin Type Description  
11, 27, 33 I  
3.3 V power supply: This is the power supply voltage for the core and I/O  
ports.  
VDDA  
96  
I
Analog 3.3 V power supply: This should be nominally the same voltage as  
VDD but should be isolated to minimize noise and error. This voltage is only  
used to power the on-chip ADC(s) and DAC.  
VDD(LCD)  
VLCD  
38  
41  
89  
I
I
I
1.8 V to 5.5 V power supply: Power supply voltage for the PCF8576D.  
LCD power supply: LCD voltage.  
VREF  
ADC reference voltage: This should be nominally less than or equal to the  
VDD voltage but should be isolated to minimize noise and error. Level on this  
pin is used as a reference for ADC(s) and DAC.  
VBAT  
31  
I
RTC power supply voltage: 3.3 V on this pin supplies the power to the RTC.  
SDA LCD — I2C-bus data signal for the LCD controller.  
SCL LCD — I2C-bus clock signal for the LCD controller.  
SYNC — cascade synchronization input/output  
CLK — external clock input/output  
SDA_LCD  
SCL_LCD  
SYNC  
34  
I/O  
I
35  
36  
I/O  
I/O  
O
CLK  
37  
BP0 to BP3  
S0 to S31  
42 to 45  
46 to 77  
BP0 to BP3: LCD backplane outputs.  
O
S0 to S31: LCD segment outputs.  
[1] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control.  
[2] 5 V tolerant pad providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control. If configured for an input  
function, this pad utilizes built-in glitch filter that blocks pulses shorter than 3 ns.  
[3] Open-drain 5 V tolerant digital I/O I2C-bus 400 kHz specification compatible pad. It requires external pull-up to provide an output  
functionality.  
[4] 5 V tolerant pad providing digital I/O (with TTL levels and hysteresis and 10 ns slew rate control) and analog input function. If configured  
for an input function, this pad utilizes built-in glitch filter that blocks pulses shorter than 3 ns. When configured as an ADC input, digital  
section of the pad is disabled.  
[5] 5 V tolerant pad providing digital I/O (with TTL levels and hysteresis and 10 ns slew rate control) and analog output function. When  
configured as the DAC output, digital section of the pad is disabled.  
[6] 5 V tolerant pad with built-in pull-up resistor providing digital I/O functions with TTL levels and hysteresis and 10 ns slew rate control.  
The pull-up resistor’s value typically ranges from 60 kto 300 k.  
[7] Pad is designed in accordance with the Universal Serial Bus (USB) specification, revision 2.0 (Full-speed and Low-speed mode only).  
[8] 5 V tolerant pad providing digital input (with TTL levels and hysteresis) function only.  
[9] Pad provides special analog functionality.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
14 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
6. Functional description  
6.1 Architectural overview  
The ARM7TDMI-S is a general purpose 32-bit microprocessor, which offers high  
performance and very low power consumption. The ARM architecture is based on  
Reduced Instruction Set Computer (RISC) principles, and the instruction set and related  
decode mechanism are much simpler than those of microprogrammed Complex  
Instruction Set Computers (CISC). This simplicity results in a high instruction throughput  
and impressive real-time interrupt response from a small and cost-effective processor  
core.  
Pipeline techniques are employed so that all parts of the processing and memory systems  
can operate continuously. Typically, while one instruction is being executed, its successor  
is being decoded, and a third instruction is being fetched from memory.  
The ARM7TDMI-S processor also employs a unique architectural strategy known as  
Thumb, which makes it ideally suited to high-volume applications with memory  
restrictions, or applications where code density is an issue.  
The key idea behind Thumb is that of a super-reduced instruction set. Essentially, the  
ARM7TDMI-S processor has two instruction sets:  
The standard 32-bit ARM set.  
A 16-bit Thumb set.  
The Thumb set’s 16-bit instruction length allows it to approach twice the density of  
standard ARM code while retaining most of the ARM’s performance advantage over a  
traditional 16-bit processor using 16-bit registers. This is possible because Thumb code  
operates on the same 32-bit register set as ARM code.  
Thumb code is able to provide up to 65 % of the code size of ARM, and 160 % of the  
performance of an equivalent ARM processor connected to a 16-bit memory system.  
6.2 On-chip flash program memory  
The LPC2157/2158 incorporate a 512 kB flash memory system. This memory may be  
used for both code and data storage. Programming of the flash memory may be  
accomplished in several ways. It may be programmed In System via the serial port. The  
application program may also erase and/or program the flash while the application is  
running, allowing a great degree of flexibility for data storage field firmware upgrades, etc.  
Due to the architectural solution chosen for an on-chip bootloader, flash memory available  
for user’s code on LPC2157/2158 is 500 kB respectively.  
The LPC2157/2158 flash memory provides a minimum of 400000 erase/write cycles and  
20 years of data-retention.  
6.3 On-chip static RAM  
On-chip static RAM may be used for code and/or data storage. The SRAM may be  
accessed as 8-bit, 16-bit, and 32-bit. The LPC2157/2158 provide 32 kB and 40 kB of  
static RAM.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
15 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
In case of LPC2158 only, an 8 kB SRAM block intended to be utilized mainly by the USB  
can also be used as a general purpose RAM for data storage and code storage and  
execution.  
6.4 Memory map  
The LPC2157/2158 memory map incorporates several distinct regions, as shown in  
Figure 6.  
In addition, the CPU interrupt vectors may be remapped to allow them to reside in either  
flash memory (the default) or on-chip static RAM. This is described in Section 6.19  
“System control”.  
4.0 GB  
0xFFFF FFFF  
AHB PERIPHERALS  
0xF000 0000  
0xE000 0000  
3.75 GB  
3.5 GB  
APB PERIPHERALS  
0xC000 0000  
3.0 GB  
RESERVED ADDRESS SPACE  
0x8000 0000  
0x7FFF FFFF  
2.0 GB  
BOOT BLOCK (RE-MAPPED FROM  
ON-CHIP FLASH MEMORY  
0x7FFF D000  
0x7FFF CFFF  
RESERVED ADDRESS SPACE  
0x4001 8000  
0x4000 7FFF  
32 kB ON-CHIP STATIC RAM (LPC2157/2158)  
RESERVED ADDRESS SPACE  
0x4000 4000  
1.0 GB  
0.0 GB  
0x0008 0000  
0x0007 FFFF  
512 kB ON-CHIP NON-VOLATILE MEMORY  
(LPC2157/2158)  
0x0001 0000  
002aad402  
Fig 6. LPC2157/2158 memory map  
6.5 Interrupt controller  
The Vectored Interrupt Controller (VIC) accepts all of the interrupt request inputs and  
categorizes them as Fast Interrupt Request (FIQ), vectored Interrupt Request (IRQ), and  
non-vectored IRQ as defined by programmable settings. The programmable assignment  
scheme means that priorities of interrupts from the various peripherals can be dynamically  
assigned and adjusted.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
16 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
FIQ has the highest priority. If more than one request is assigned to FIQ, the VIC  
combines the requests to produce the FIQ signal to the ARM processor. The fastest  
possible FIQ latency is achieved when only one request is classified as FIQ, because then  
the FIQ service routine does not need to branch into the interrupt service routine but can  
run from the interrupt vector location. If more than one request is assigned to the FIQ  
class, the FIQ service routine will read a word from the VIC that identifies which FIQ  
source(s) is (are) requesting an interrupt.  
Vectored IRQs have the middle priority. Sixteen of the interrupt requests can be assigned  
to this category. Any of the interrupt requests can be assigned to any of the 16 vectored  
IRQ slots, among which slot 0 has the highest priority and slot 15 has the lowest.  
Non-vectored IRQs have the lowest priority.  
The VIC combines the requests from all the vectored and non-vectored IRQs to produce  
the IRQ signal to the ARM processor. The IRQ service routine can start by reading a  
register from the VIC and jumping there. If any of the vectored IRQs are pending, the VIC  
provides the address of the highest-priority requesting IRQs service routine, otherwise it  
provides the address of a default routine that is shared by all the non-vectored IRQs. The  
default routine can read another VIC register to see what IRQs are active.  
6.5.1 Interrupt sources  
Each peripheral device has one interrupt line connected to the Vectored Interrupt  
Controller, but may have several internal interrupt flags. Individual interrupt flags may also  
represent more than one interrupt source.  
6.6 Pin connect block  
The pin connect block allows selected pins of the microcontroller to have more than one  
function. Configuration registers control the multiplexers to allow connection between the  
pin and the on chip peripherals. Peripherals should be connected to the appropriate pins  
prior to being activated, and prior to any related interrupt(s) being enabled. Activity of any  
enabled peripheral function that is not mapped to a related pin should be considered  
undefined.  
The Pin Control Module with its pin select registers defines the functionality of the  
microcontroller in a given hardware environment.  
After reset all pins of Port 0 and Port 1 are configured as input with the following  
exceptions: If debug is enabled, the JTAG pins will assume their JTAG functionality. The  
pins associated with the I2C0 and I2C1 interface are open drain.  
6.7 Fast general purpose parallel I/O  
Device pins that are not connected to a specific peripheral function are controlled by the  
GPIO registers. Pins may be dynamically configured as inputs or outputs. Separate  
registers allow setting or clearing any number of outputs simultaneously. The value of the  
output register may be read back, as well as the current state of the port pins.  
LPC2157/2158 introduce accelerated GPIO functions over prior LPC2000 devices:  
GPIO registers are relocated to the ARM local bus for the fastest possible I/O timing.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
17 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Mask registers allow treating sets of port bits as a group, leaving other bits  
unchanged.  
All GPIO registers are byte addressable.  
Entire port value can be written in one instruction.  
6.7.1 Features  
Bit-level set and clear registers allow a single instruction set or clear of any number of  
bits in one port.  
Direction control of individual bits.  
Separate control of output set and clear.  
All I/O default to inputs after reset.  
6.8 10-bit ADC  
The LPC2157/2158 contain two single 10-bit successive approximation ADCs. While  
ADC0 has eight channels (six channels for LPC2158), ADC1 has eight channels.  
Therefore, the total number of available ADC inputs for LPC2157 is 16 and for LPC2158 is  
14.  
6.8.1 Features  
10-bit successive approximation ADC.  
Measurement range of 0 V to VREF (2.0 V VREF VDDA).  
Each converter capable of performing more than 400000 10-bit samples per second.  
Every analog input has a dedicated result register to reduce interrupt overhead.  
Burst conversion mode for single or multiple inputs.  
Optional conversion on transition on input pin or timer match signal.  
Global Start command for both converters.  
6.9 10-bit DAC  
The DAC enables the LPC2157/2158 to generate a variable analog output. The maximum  
DAC output voltage is the VREF voltage.  
6.9.1 Features  
10-bit DAC.  
Buffered output.  
Power-down mode available.  
Selectable speed versus power.  
6.10 USB 2.0 device controller (LPC2158 only)  
The USB is a 4-wire serial bus that supports communication between a host and a  
number (127 max) of peripherals. The host controller allocates the USB bandwidth to  
attached devices through a token based protocol. The bus supports hot plugging,  
unplugging, and dynamic configuration of the devices. All transactions are initiated by the  
host controller.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
18 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
The LPC2158 is equipped with a USB device controller that enables 12 Mbit/s data  
exchange with a USB host controller. It consists of a register interface, serial interface  
engine, endpoint buffer memory and DMA controller. The serial interface engine decodes  
the USB data stream and writes data to the appropriate end point buffer memory. The  
status of a completed USB transfer or error condition is indicated via status registers. An  
interrupt is also generated if enabled.  
A DMA controller can transfer data between an endpoint buffer and the USB RAM.  
6.10.1 Features  
Fully compliant with USB 2.0 Full-speed specification.  
Supports 32 physical (16 logical) endpoints.  
Supports control, bulk, interrupt and isochronous endpoints.  
Scalable realization of endpoints at run time.  
Endpoint maximum packet size selection (up to USB maximum specification) by  
software at run time.  
RAM message buffer size based on endpoint realization and maximum packet size.  
Supports SoftConnect and GoodLink LED indicator. These two functions are sharing  
one pin.  
Supports bus-powered capability with low suspend current.  
Supports DMA transfer on all non-control endpoints.  
One duplex DMA channel serves all endpoints.  
Allows dynamic switching between CPU controlled and DMA modes.  
Double buffer implementation for bulk and isochronous endpoints.  
6.11 UARTs  
The LPC2157/2158 each contain two UARTs. In addition to standard transmit and receive  
data lines, the UART1 also provides a full modem control handshake interface.  
Compared to previous LPC2000 microcontrollers, UARTs in LPC2157/2158 introduce a  
fractional baud rate generator for both UARTs, enabling these microcontrollers to achieve  
standard baud rates such as 115200 Bd with any crystal frequency above 2 MHz. In  
addition, auto-CTS/RTS flow-control functions are fully implemented in hardware.  
6.11.1 Features  
16 B Receive and Transmit FIFOs.  
Register locations conform to 16C550 industry standard.  
Receiver FIFO trigger points at 1 B, 4 B, 8 B and 14 B  
Built-in fractional baud rate generator covering wide range of baud rates without a  
need for external crystals of particular values.  
Transmission FIFO control enables implementation of software (XON/XOFF) flow  
control on both UARTs.  
LPC2158 UART1 equipped with standard modem interface signals. This module also  
provides full support for hardware flow control (auto-CTS/RTS).  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
19 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
6.12 I2C-bus serial I/O controller  
The LPC2157/2158 each contain two I2C-bus controllers.  
The I2C-bus is bidirectional, for inter-IC control using only two wires: a serial clock line  
(SCL), and a serial data line (SDA). Each device is recognized by a unique address and  
can operate as either a receiver-only device (e.g., an LCD driver or a transmitter with the  
capability to both receive and send information (such as memory)). Transmitters and/or  
receivers can operate in either master or slave mode, depending on whether the chip has  
to initiate a data transfer or is only addressed. The I2C-bus is a multi-master bus, it can be  
controlled by more than one bus master connected to it.  
The I2C-bus implemented in LPC2157/2158 supports bit rates up to 400 kbit/s (Fast  
I2C-bus).  
6.12.1 Features  
Compliant with standard I2C-bus interface.  
Easy to configure as master, slave, or master/slave.  
Programmable clocks allow versatile rate control.  
Bidirectional data transfer between masters and slaves.  
Multi-master bus (no central master).  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus.  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus.  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer.  
The I2C-bus can be used for test and diagnostic purposes.  
6.13 SPI serial I/O controller  
The LPC2157/2158 each contain one SPI controller. The SPI is a full duplex serial  
interface, designed to handle multiple masters and slaves connected to a given bus. Only  
a single master and a single slave can communicate on the interface during a given data  
transfer. During a data transfer the master always sends a byte of data to the slave, and  
the slave always sends a byte of data to the master.  
6.13.1 Features  
Compliant with SPI specification.  
Synchronous, Serial, Full Duplex, Communication.  
Combined SPI master and slave.  
Maximum data bit rate of one eighth of the input clock rate.  
6.14 SSP serial I/O controller  
The LPC2157/2158 each contain one Serial Synchronous Port controller (SSP). The SSP  
controller is capable of operation on a SPI, 4-wire SSI, or Microwire bus. It can interact  
with multiple masters and slaves on the bus. However, only a single master and a single  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
20 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
slave can communicate on the bus during a given data transfer. The SSP supports full  
duplex transfers, with data frames of 4 bits to 16 bits of data flowing from the master to the  
slave and from the slave to the master. Often only one of these data flows carries  
meaningful data.  
6.14.1 Features  
Compatible with Motorola’s SPI, TI’s 4-wire SSI and National Semiconductor’s  
Microwire buses.  
Synchronous serial communication.  
Master or slave operation.  
8-frame FIFOs for both transmit and receive.  
Four bits to 16 bits per frame.  
6.15 General purpose timers/external event counters  
The Timer/Counter is designed to count cycles of the peripheral clock (PCLK) or an  
externally supplied clock and optionally generate interrupts or perform other actions at  
specified timer values, based on four match registers. It also includes four capture inputs  
to trap the timer value when an input signal transitions, optionally generating an interrupt.  
Multiple pins can be selected to perform a single capture or match function, providing an  
application with ‘or’ and ‘and’, as well as ‘broadcast’ functions among them.  
The LPC2157/2158 can count external events on one of the capture inputs if the minimum  
external pulse is equal or longer than a period of the PCLK. In this configuration, unused  
capture lines can be selected as regular timer capture inputs, or used as external  
interrupts.  
6.15.1 Features  
A 32-bit timer/counter with a programmable 32-bit prescaler.  
External event counter or timer operation.  
Four 32-bit capture channels per timer/counter that can take a snapshot of the timer  
value when an input signal transitions. A capture event may also optionally generate  
an interrupt.  
Four 32-bit match registers that allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Four external outputs per timer/counter corresponding to match registers, with the  
following capabilities:  
Set LOW on match.  
Set HIGH on match.  
Toggle on match.  
Do nothing on match.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
21 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
6.16 Watchdog timer  
The purpose of the watchdog is to reset the microcontroller within a reasonable amount of  
time if it enters an erroneous state. When enabled, the watchdog will generate a system  
reset if the user program fails to ‘feed’ (or reload) the watchdog within a predetermined  
amount of time.  
6.16.1 Features  
Internally resets chip if not periodically reloaded.  
Debug mode.  
Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be  
disabled.  
Incorrect/Incomplete feed sequence causes reset/interrupt if enabled.  
Flag to indicate watchdog reset.  
Programmable 32-bit timer with internal prescaler.  
Selectable time period from (Tcy(PCLK) × 256 × 4) to (Tcy(PCLK) × 232 × 4) in multiples of  
T
cy(PCLK) × 4.  
6.17 Real-time clock  
The RTC is designed to provide a set of counters to measure time when normal or idle  
operating mode is selected. The RTC has been designed to use little power, making it  
suitable for battery powered systems where the CPU is not running continuously (Idle  
mode).  
6.17.1 Features  
Measures the passage of time to maintain a calendar and clock.  
Ultra-low power design to support battery powered systems.  
Provides Seconds, Minutes, Hours, Day of Month, Month, Year, Day of Week, and Day  
of Year.  
Can use either the RTC dedicated 32 kHz oscillator input or clock derived from the  
external crystal/oscillator input at XTAL1. Programmable reference clock divider  
allows fine adjustment of the RTC.  
Dedicated power supply pin can be connected to a battery or the main 3.3 V.  
6.18 Pulse width modulator  
The PWM is based on the standard timer block and inherits all of its features, although  
only the PWM function is pinned out on the LPC2157/2158. The timer is designed to count  
cycles of the peripheral clock (PCLK) and optionally generate interrupts or perform other  
actions when specified timer values occur, based on seven match registers. The PWM  
function is also based on match register events.  
The ability to separately control rising and falling edge locations allows the PWM to be  
used for more applications. For instance, multi-phase motor control typically requires three  
non-overlapping PWM outputs with individual control of all three pulse widths and  
positions.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
22 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Two match registers can be used to provide a single edge controlled PWM output. One  
match register (MR0) controls the PWM cycle rate, by resetting the count upon match.  
The other match register controls the PWM edge position. Additional single edge  
controlled PWM outputs require only one match register each, since the repetition rate is  
the same for all PWM outputs. Multiple single edge controlled PWM outputs will all have a  
rising edge at the beginning of each PWM cycle, when an MR0 match occurs.  
Three match registers can be used to provide a PWM output with both edges controlled.  
Again, the MR0 match register controls the PWM cycle rate. The other match registers  
control the two PWM edge positions. Additional double edge controlled PWM outputs  
require only two match registers each, since the repetition rate is the same for all PWM  
outputs.  
With double edge controlled PWM outputs, specific match registers control the rising and  
falling edge of the output. This allows both positive going PWM pulses (when the rising  
edge occurs prior to the falling edge), and negative going PWM pulses (when the falling  
edge occurs prior to the rising edge).  
6.18.1 Features  
Seven match registers allow up to six single edge controlled or three double edge  
controlled PWM outputs, or a mix of both types.  
The match registers also allow:  
Continuous operation with optional interrupt generation on match.  
Stop timer on match with optional interrupt generation.  
Reset timer on match with optional interrupt generation.  
Supports single edge controlled and/or double edge controlled PWM outputs. Single  
edge controlled PWM outputs all go HIGH at the beginning of each cycle unless the  
output is a constant LOW. Double edge controlled PWM outputs can have either edge  
occur at any position within a cycle. This allows for both positive going and negative  
going pulses.  
Pulse period and width can be any number of timer counts. This allows complete  
flexibility in the trade-off between resolution and repetition rate. All PWM outputs will  
occur at the same repetition rate.  
Double edge controlled PWM outputs can be programmed to be either positive going  
or negative going pulses.  
Match register updates are synchronized with pulse outputs to prevent generation of  
erroneous pulses. Software must ‘release’ new match values before they can become  
effective.  
May be used as a standard timer if the PWM mode is not enabled.  
A 32-bit Timer/Counter with a programmable 32-bit prescaler.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
23 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
6.19 System control  
6.19.1 Crystal oscillator  
On-chip integrated oscillator operates with external crystal in range of 1 MHz to 25 MHz.  
The oscillator output frequency is called fosc and the ARM processor clock frequency is  
referred to as CCLK for purposes of rate equations, etc. fosc and CCLK are the same value  
unless the PLL is running and connected. Refer to Section 6.19.2 “PLLfor additional  
information.  
6.19.2 PLL  
The PLL accepts an input clock frequency in the range of 10 MHz to 25 MHz. The input  
frequency is multiplied up into the range of 10 MHz to 60 MHz with a Current Controlled  
Oscillator (CCO). The multiplier can be an integer value from 1 to 32 (in practice, the  
multiplier value cannot be higher than 6 on this family of microcontrollers due to the upper  
frequency limit of the CPU). The CCO operates in the range of 156 MHz to 320 MHz, so  
there is an additional divider in the loop to keep the CCO within its frequency range while  
the PLL is providing the desired output frequency. The output divider may be set to divide  
by 2, 4, 8 or 16 to produce the output clock. Since the minimum output divider value is 2, it  
is insured that the PLL output has a 50 % duty cycle. The PLL is turned off and bypassed  
following a chip reset and may be enabled by software. The program must configure and  
activate the PLL, wait for the PLL to Lock, then connect to the PLL as a clock source. The  
PLL settling time is 100 µs.  
6.19.3 Reset and wake-up timer  
Reset has two sources on the LPC2157/2158: the RESET pin and watchdog reset. The  
RESET pin is a Schmitt trigger input pin with an additional glitch filter. Assertion of chip  
reset by any source starts the Wake-up Timer (see Wake-up Timer description below),  
causing the internal chip reset to remain asserted until the external reset is de-asserted,  
the oscillator is running, a fixed number of clocks have passed, and the on-chip flash  
controller has completed its initialization.  
When the internal reset is removed, the processor begins executing at address 0, which is  
the reset vector. At that point, all of the processor and peripheral registers have been  
initialized to predetermined values.  
The Wake-up Timer ensures that the oscillator and other analog functions required for  
chip operation are fully functional before the processor is allowed to execute instructions.  
This is important at power on, all types of reset, and whenever any of the aforementioned  
functions are turned off for any reason. Since the oscillator and other functions are turned  
off during Power-down mode, any wake-up of the processor from Power-down mode  
makes use of the Wake-up Timer.  
The Wake-up Timer monitors the crystal oscillator as the means of checking whether it is  
safe to begin code execution. When power is applied to the chip, or some event caused  
the chip to exit Power-down mode, some time is required for the oscillator to produce a  
signal of sufficient amplitude to drive the clock logic. The amount of time depends on  
many factors, including the rate of VDD ramp (in the case of power on), the type of crystal  
and its electrical characteristics (if a quartz crystal is used), as well as any other external  
circuitry (e.g. capacitors), and the characteristics of the oscillator itself under the existing  
ambient conditions.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
24 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
6.19.4 Brownout detector  
The LPC2157/2158 include 2-stage monitoring of the voltage on the VDD pins. If this  
voltage falls below 2.9 V, the BOD asserts an interrupt signal to the VIC. This signal can  
be enabled for interrupt; if not, software can monitor the signal by reading dedicated  
register.  
The second stage of low voltage detection asserts reset to inactivate the LPC2157/2158  
when the voltage on the VDD pins falls below 2.6 V. This reset prevents alteration of the  
flash as operation of the various elements of the chip would otherwise become unreliable  
due to low voltage. The BOD circuit maintains this reset down below 1 V, at which point  
the POR circuitry maintains the overall reset.  
Both the 2.9 V and 2.6 V thresholds include some hysteresis. In normal operation, this  
hysteresis allows the 2.9 V detection to reliably interrupt, or a regularly-executed event  
loop to sense the condition.  
6.19.5 Code security  
This feature of the LPC2157/2158 allow an application to control whether it can be  
debugged or protected from observation.  
If after reset on-chip bootloader detects a valid checksum in flash and reads 0x8765 4321  
from address 0x1FC in flash, debugging will be disabled and thus the code in flash will be  
protected from observation. Once debugging is disabled, it can be enabled only by  
performing a full chip erase using the ISP.  
6.19.6 External interrupt inputs  
The LPC2157/2158 include up to nine edge or level sensitive external interrupt inputs as  
selectable pin functions. When the pins are combined, external events can be processed  
as four independent interrupt signals. The external interrupt inputs can optionally be used  
to wake-up the processor from Power-down mode.  
Additionally capture input pins can also be used as external interrupts without the option  
to wake the device up from Power-down mode.  
6.19.7 Memory mapping control  
The Memory Mapping Control alters the mapping of the interrupt vectors that appear  
beginning at address 0x0000 0000. Vectors may be mapped to the bottom of the on-chip  
flash memory, or to the on-chip static RAM. This allows code running in different memory  
spaces to have control of the interrupts.  
6.19.8 Power control  
The LPC2157/2158 supports two reduced power modes: Idle mode and Power-down  
mode.  
In Idle mode, execution of instructions is suspended until either a reset or interrupt occurs.  
Peripheral functions continue operation during Idle mode and may generate interrupts to  
cause the processor to resume execution. Idle mode eliminates power used by the  
processor itself, memory systems and related controllers, and internal buses.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
25 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
In Power-down mode, the oscillator is shut down and the chip receives no internal clocks.  
The processor state and registers, peripheral registers, and internal SRAM values are  
preserved throughout Power-down mode and the logic levels of chip output pins remain  
static. The Power-down mode can be terminated and normal operation resumed by either  
a reset or certain specific interrupts that are able to function without clocks. Since all  
dynamic operation of the chip is suspended, Power-down mode reduces chip power  
consumption to nearly zero.  
Selecting an external 32 kHz clock instead of the PCLK as a clock-source for the on-chip  
RTC will enable the microcontroller to have the RTC active during Power-down mode.  
Power-down current is increased with RTC active. However, it is significantly lower than in  
Idle mode.  
A Power Control for Peripherals feature allows individual peripherals to be turned off if  
they are not needed in the application, resulting in additional power savings during active  
and Idle mode.  
6.19.9 APB bus  
The APB divider determines the relationship between the processor clock (CCLK) and the  
clock used by peripheral devices (PCLK). The APB divider serves two purposes. The first  
is to provide peripherals with the desired PCLK via APB bus so that they can operate at  
the speed chosen for the ARM processor. In order to achieve this, the APB bus may be  
slowed down to 12 to 14 of the processor clock rate. Because the APB bus must work  
properly at power-up (and its timing cannot be altered if it does not work since the APB  
divider control registers reside on the APB bus), the default condition at reset is for the  
APB bus to run at 14 of the processor clock rate. The second purpose of the APB divider  
is to allow power savings when an application does not require any peripherals to run at  
the full processor rate. Because the APB divider is connected to the PLL output, the PLL  
remains active (if it was running) during Idle mode.  
6.20 Emulation and debugging  
The LPC2157/2158 supports emulation and debugging via a JTAG serial port. Debugging  
functions are multiplexed with GPIOs on Port 1. This means that all communication, timer  
and interface peripherals residing on Port 0 are available during the development and  
debugging phase as they are when the application is run in the embedded system itself.  
6.20.1 EmbeddedICE  
Standard ARM EmbeddedICE logic provides on-chip debug support. The debugging of  
the target system requires a host computer running the debugger software and an  
EmbeddedICE protocol convertor. EmbeddedICE protocol convertor converts the remote  
debug protocol commands to the JTAG data needed to access the ARM core.  
The ARM core has a Debug Communications Channel (DCC) function built-in. The DCC  
allows a program running on the target to communicate with the host debugger or another  
separate host without stopping the program flow or even entering the debug state. The  
DCC is accessed as a co-processor 14 by the program running on the ARM7TDMI-S  
core. The DCC allows the JTAG port to be used for sending and receiving data without  
affecting the normal program flow. The DCC data and control registers are mapped in to  
addresses in the EmbeddedICE logic.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
26 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
6.20.2 RealMonitor  
RealMonitor is a configurable software module, developed by ARM Inc., which enables  
real-time debug. It is a lightweight debug monitor that runs in the background while users  
debug their foreground application. It communicates with the host using the DCC, which is  
present in the EmbeddedICE logic. The LPC2157/2158 contain a specific configuration of  
RealMonitor software programmed into the on-chip flash memory.  
6.21 LCD driver  
6.21.1 General description  
The LCD segment driver in the LPC2157/2158 can interface to most LCDs using low  
multiplex rates. It generates the drive signals for static or multiplexed LCDs containing up  
to four backplanes and up to 32 segments. The LCD controller communicates to a host  
using the I2C-bus. The I2C-bus clock and data signals for both the microcontroller and the  
LCD driver are available on the LPC2157/2158 providing system flexibility.  
Communication overhead to manage the display is minimized by an on-chip display RAM  
with auto-increment addressing, hardware subaddressing, and display memory switching  
(static and duplex drive modes). Please refer to PCF8576D data sheet for electrical data.  
6.21.2 Functional description  
The LCD controller is a versatile peripheral device designed to interface microcontrollers  
to a wide variety of LCDs. It can directly drive any static or multiplexed LCD containing up  
to four backplanes and up to 32 segments. The display configurations possible with the  
LCD controller depend on the number of active backplane outputs required. A selection of  
display configurations is shown in Table 4. All of these configurations can be implemented  
in a typical system.  
The microcontroller communicates to the LCD controller using the I2C-bus.The  
appropriate biasing voltages for the multiplexed LCD waveforms are generated internally.  
The only other connections required to complete the system are to the power supplies  
(VDD(LCD), VSS and VLCD) and the LCD panel chosen for the application.  
Table 4.  
Selection of display configurations  
7-segments numeric  
Number of  
14-segments alphanumeric  
Dot matrix  
Backplanes  
Segments  
Digits  
Indicator  
symbols  
Characters  
Indicator  
symbols  
4
3
2
1
128  
96  
16  
12  
8
16  
12  
8
8
6
4
2
16  
12  
8
128  
96  
64  
64  
32  
4
4
4
32  
6.21.3 LCD bias voltages  
LCD biasing voltages are obtained from an internal voltage divider consisting of three  
series resistors connected between VLCD and VSS. The LCD voltage can be temperature  
compensated externally via the supply to pin VLCD. A voltage selector drives the  
multiplexing of the LCD based on programmable configurations.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
27 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
6.21.4 Oscillator  
6.21.4.1 Internal clock  
An internal oscillator provides the clock signals for the internal logic of the LCD controller  
and its LCD drive signals. After power-up, pin SDA must be HIGH to guarantee that the  
clock starts.  
6.21.5 Timing  
The LCD controller timing controls the internal data flow of the device. This includes the  
transfer of display data from the display RAM to the display segment outputs. The timing  
also generates the LCD frame signal whose frequency is derived from the clock  
frequency. The frame signal frequency is a fixed division of the clock frequency from either  
the internal or an external clock.  
Frame frequency = fosc(ctrl)LCD/24.  
6.21.6 Display register  
A display latch holds the display data while the corresponding multiplex signals are  
generated. There is a one-to-one relationship between the data in the display latch, the  
LCD segment outputs, and each column of the display RAM.  
6.21.7 Segment outputs  
The LCD drive section includes 32 segment outputs S0 to S31. The segment output  
signals are generated according to the multiplexed backplane signals and the display  
latch data. When less than 32 segment outputs are required, the unused segment outputs  
should be left open-circuit.  
6.21.8 Backplane outputs  
The LCD drive section has four backplane outputs BP0 to BP3. The backplane output  
signals are generated in accordance with the selected LCD drive mode. If less than four  
backplane outputs are required, the unused outputs can be left open-circuit. In the 1:3  
multiplex drive mode, BP3 carries the same signal as BP1, therefore these two adjacent  
outputs can be tied together to give enhanced drive capabilities. In the 1:2 multiplex drive  
mode, BP0 and BP2, BP1 and BP3 respectively carry the same signals and may also be  
paired to increase the drive capabilities. In the static drive mode the same signal is carried  
by all four backplane outputs and they can be connected in parallel for very high drive  
requirements.  
6.21.9 Display RAM  
The display RAM is a static 32 × 4-bit RAM which stores LCD data. There is a one-to-one  
correspondence between the RAM addresses and the segment outputs, and between the  
individual bits of a RAM word and the backplane outputs. The first RAM column  
corresponds to the 32 segments for backplane 0 (BP0). In multiplexed LCD applications  
the segment data of the second, third and fourth column of the display RAM are  
time-multiplexed with BP1, BP2 and BP3 respectively.  
6.21.10 Data pointer  
The Display RAM is addressed using the data pointer. Either a single byte or a series of  
display bytes may be loaded into any location of the display RAM.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
28 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
6.21.11 Output bank selector  
The LCD controller includes a RAM bank switching feature in the static and 1:2 drive  
modes. In the static drive mode, the BANK SELECT command may request the contents  
of bit 2 to be selected for display instead of the contents of bit 0. In 1:2 mode, the contents  
of bits 2 and 3 may be selected instead of bits 0 and 1. This allows display information to  
be prepared in an alternative bank and then selected for display when it is assembled.  
6.21.12 Input bank selector  
The input bank selector loads display data into the display RAM based on the selected  
LCD drive configuration. The BANK SELECT command can be used to load display data  
in bit 2 in static drive mode or in bits 2 and 3 in 1:2 mode. The input bank selector  
functions are independent of the output bank selector.  
6.21.13 Blinker  
The LCD controller has a very versatile display blinking capability. The whole display can  
blink at a frequency selected by the BLINK command. Each blink frequency is a multiple  
integer value of the clock frequency; the ratio between the clock frequency and blink  
frequency depends on the blink mode selected, as shown in Table 5.  
An additional feature allows an arbitrary selection of LCD segments to be blinked in the  
static and 1:2 drive modes. This is implemented without any communication overheads by  
the output bank selector which alternates the displayed data between the data in the  
display RAM bank and the data in an alternative RAM bank at the blink frequency. This  
mode can also be implemented by the BLINK command.  
The entire display can be blinked at a frequency other than the nominal blink frequency by  
sequentially resetting and setting the display enable bit E at the required rate using the  
MODE SET command.  
Table 5.  
Blink mode  
Off  
Blinking frequencies  
Normal operating mode ratio Normal blink frequency  
-
blinking off  
2 Hz  
fosc(ctrl)LCD/768  
fosc(ctrl)LCD/1536  
fosc(ctrl)LCD/3072  
2 Hz  
1 Hz  
1 Hz  
0.5 Hz  
0.5 Hz  
Blink modes 0.5 Hz, 1 Hz and 2 Hz, and nominal blink frequencies 0.5 Hz, 1 Hz and 2 Hz  
correspond to an oscillator frequency (fosc(ctrl)LCD) of 1536 Hz at pin CLK. The oscillator  
frequency range is 397 Hz to 3046 Hz.  
6.21.13.1 I2C-bus controller  
The LCD controller acts as an I2C-bus slave receiver. In the LPC2157/2158 the hardware  
subaddress inputs A0, A1 and A2 are tied to VSS setting the hardware subaddress = 0.  
6.21.14 Input filters  
To enhance noise immunity in electrically adverse environments, RC low-pass filters are  
provided on the SDA and SCL lines.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
29 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
6.21.15 I2C-bus slave addresses  
The I2C-bus slave address is 0111 0000. The LCD controller is a write-only device and will  
not respond to a read access.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
30 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
7. Limiting values  
Table 6.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
VDD  
Parameter  
Conditions  
Min  
Max  
+3.6  
+4.6  
+4.6  
+4.6  
+5.1  
Unit  
V
supply voltage (core and external rail)  
analog 3.3 V pad supply voltage  
input voltage on pin VBAT  
input voltage on pin VREF  
analog input voltage  
0.5  
0.5  
0.5  
0.5  
0.5  
VDDA  
V
Vi(VBAT)  
Vi(VREF)  
VIA  
for the RTC  
V
V
on ADC related  
pins  
V
[2]  
VI  
input voltage  
5 V tolerant I/O  
pins; only valid  
when the VDD  
supply voltage is  
present  
0.5  
+6.0  
V
[2][3]  
[4]  
other I/O pins  
per supply pin  
per ground pin  
0.5  
VDD + 0.5  
100  
V
IDD  
supply current  
-
mA  
mA  
°C  
W
[4]  
ISS  
ground current  
-
100  
[5]  
Tstg  
storage temperature  
total power dissipation (per package)  
65  
+150  
1.5  
Ptot(pack)  
based on package  
heat transfer, not  
device power  
-
consumption  
[1] The following applies to the Limiting values:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.  
b) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Including voltage on outputs in 3-state mode.  
[3] Not to exceed 4.6 V.  
[4] The peak current is limited to 25 times the corresponding maximum current.  
[5] Dependent on package type.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
31 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
8. Static characteristics  
Table 7.  
Static characteristics  
Tamb = 40 °C to +85 °C for commercial applications, unless otherwise specified.  
Symbol  
VDD  
Parameter  
Conditions  
Min  
3.0  
3.0  
Typ[1]  
3.3  
Max  
3.6  
Unit  
V
[2]  
[3]  
supply voltage  
VDDA  
analog 3.3 V pad supply  
voltage  
3.3  
3.6  
V
Vi(VBAT)  
Vi(VREF)  
input voltage on pin  
VBAT  
2.0  
2.5  
3.3  
3.3  
3.6  
V
V
input voltage on pin  
VREF  
VDDA  
Standard port pins, RESET, RTCK  
IIL  
LOW-level input current VI = 0 V; no pull-up  
HIGH-level input current VI = VDD; no pull-down  
-
-
-
-
-
-
3
3
3
µA  
µA  
µA  
IIH  
IOZ  
OFF-state output  
current  
VO = 0 V; VO = VDD; no  
pull-up/down  
Ilatch  
I/O latch-up current  
(0.5VDD) < VI < (1.5VDD);  
Tj < 125 °C  
-
-
-
100  
5.5  
mA  
V
[4][5][6]  
VI  
input voltage  
pin configured to provide a  
digital function  
0
VO  
output voltage  
output active  
0
-
VDD  
V
V
V
V
V
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
hysteresis voltage  
2.0  
-
-
-
-
-
0.8  
Vhys  
VOH  
0.4  
-
-
-
[7]  
[7]  
[7]  
[7]  
[8]  
[8]  
HIGH-level output  
voltage  
IOH = 4 mA  
V
DD 0.4  
VOL  
IOH  
LOW-level output  
voltage  
IOL = 4 mA  
-
-
-
-
-
-
0.4  
-
V
HIGH-level output  
current  
VOH = VDD 0.4 V  
VOL = 0.4 V  
4  
4
-
mA  
mA  
mA  
mA  
IOL  
LOW-level output  
current  
-
IOHS  
IOLS  
HIGH-level short-circuit VOH = 0 V  
output current  
45  
50  
LOW-level short-circuit VOL = VDDA  
output current  
-
[9]  
[10]  
[9]  
Ipd  
Ipu  
pull-down current  
pull-up current  
VI = 5 V  
10  
15  
0
50  
50  
0
150  
85  
0
µA  
µA  
µA  
VI = 0 V  
VDD < VI < 5 V  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
32 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 7.  
Static characteristics …continued  
Tamb = 40 °C to +85 °C for commercial applications, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
IDD(act)  
active mode supply  
current  
VDD = 3.3 V; Tamb = 25 °C;  
code  
-
15  
50  
mA  
while(1){}  
executed from flash, no active  
peripherals  
CCLK = 10 MHz  
CCLK = 60 MHz  
-
-
40  
27  
70  
70  
mA  
mA  
VDD = 3.3 V; Tamb = 25 °C;  
code executed from flash; USB  
enabled and active; all other  
peripherals disabled  
CCLK = 12 MHz  
CCLK = 60 MHz  
-
-
-
-
57  
90  
mA  
µA  
µA  
µA  
IDD(pd)  
Power-down mode  
supply current  
VDD = 3.3 V; Tamb = 25 °C  
VDD = 3.3 V; Tamb = 85 °C  
40  
100  
500  
30  
250  
15  
[11]  
[11]  
IBATpd  
Power-down mode  
RTC clock = 32 kHz  
(from RTCX pins);  
amb = 25 °C  
battery supply current  
T
VDD = 3.0 V; Vi(VBAT) = 2.5 V  
VDD = 3.0 V; Vi(VBAT) = 3.0 V  
-
-
20  
78  
40  
-
µA  
µA  
IBATact  
active mode battery  
supply current  
CCLK = 60 MHz;  
PCLK = 15 MHz;  
PCLK enabled to RTCK;  
RTC clock = 32 kHz  
(from RTCX pins);  
T
amb = 25 °C  
VDD = 3.0 V; Vi(VBAT) = 3.0 V  
[11][12]  
IBATact(opt) optimized active mode  
battery supply current  
PCLK disabled to RTCK in the  
PCONP register;  
RTC clock = 32 kHz  
(from RTCX pins);  
-
-
23  
30  
-
-
µA  
µA  
T
amb = 25 °C; Vi(VBAT) = 3.3 V  
CCLK = 25 MHz  
CCLK = 60 MHz  
I2C-bus pins  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
hysteresis voltage  
0.7VDD  
-
-
V
V
V
V
-
-
-
-
0.3VDD  
Vhys  
VOL  
0.5VDD  
-
-
[7]  
LOW-level output  
voltage  
IOLS = 3 mA  
0.4  
[13]  
ILI  
input leakage current  
VI = VDD  
VI = 5 V  
-
-
2
4
µA  
µA  
10  
22  
Oscillator pins  
Vi(XTAL1)  
input voltage on pin  
XTAL1  
0
-
1.8  
V
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
33 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 7.  
Static characteristics …continued  
Tamb = 40 °C to +85 °C for commercial applications, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
Vo(XTAL2)  
output voltage on pin  
XTAL2  
0
-
1.8  
V
Vi(RTCX1)  
input voltage on pin  
RTCX1  
0
0
-
-
1.8  
1.8  
V
V
Vo(RTCX2) output voltage on pin  
RTCX2  
USB pins  
IOZ  
OFF-state output  
current  
0 V < VI < 3.3 V  
-
-
±10  
µA  
VBUS  
VDI  
bus supply voltage  
-
-
-
5.25  
-
V
V
differential input  
|(D+) (D)|  
0.2  
sensitivity voltage  
VCM  
differential common  
mode voltage range  
includes VDI range  
0.8  
0.8  
-
-
2.5  
2.0  
V
V
Vth(rs)se  
single-ended receiver  
switching threshold  
voltage  
VOL  
VOH  
LOW-level output  
voltage  
RL of 1.5 kto 3.6 V  
RL of 15 kto GND  
-
-
-
0.3  
3.6  
V
V
HIGH-level output  
voltage  
2.8  
Ctrans  
ZDRV  
transceiver capacitance pin to GND  
-
-
-
20  
44  
pF  
[14]  
driver output impedance steady state drive  
for driver which is not  
29  
high-speed capable  
Rpu  
pull-up resistance  
SoftConnect = ON  
1.1  
-
1.9  
kΩ  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
[2] Core and external rail.  
[3] The RTC typically fails when Vi(VBAT) drops below 1.6 V.  
[4] Including voltage on outputs in 3-state mode.  
[5] VDD supply voltages must be present.  
[6] 3-state outputs go into 3-state mode when VDD is grounded.  
[7] Accounts for 100 mV voltage drop in all supply lines.  
[8] Allowed as long as the current limit does not exceed the maximum current allowed by the device.  
[9] Minimum condition for VI = 4.5 V, maximum condition for VI = 5.5 V.  
[10] Applies to P1[16] to P1[31].  
[11] On pin VBAT.  
[12] Optimized for low battery consumption.  
[13] To VSS  
.
[14] Includes external resistors of 18 Ω ±1 % on D+ and D.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
34 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
Table 8.  
ADC static characteristics  
VDDA = 2.5 V to 3.6 V; Tamb = 40 °C to +85 °C unless otherwise specified; ADC frequency 4.5 MHz.  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ  
Max  
VDDA  
1
Unit  
V
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
0
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Cia  
pF  
[1][2]  
[3]  
ED  
VSSA = 0 V, VDDA = 3.3 V  
VSSA = 0 V, VDDA = 3.3 V  
VSSA = 0 V, VDDA = 3.3 V  
VSSA = 0 V, VDDA = 3.3 V  
VSSA = 0 V, VDDA = 3.3 V  
±1  
LSB  
LSB  
LSB  
%
EL(adj)  
EO  
±2  
[4]  
±3  
[5]  
EG  
gain error  
±0.5  
±4  
[6]  
ET  
absolute error  
LSB  
kΩ  
[7]  
Rvsi  
voltage source interface  
resistance  
40  
[1] The ADC is monotonic, there are no missing codes.  
[2] The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 7.  
[3] The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
appropriate adjustment of gain and offset errors. See Figure 7.  
[4] The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line which fits the  
ideal curve. See Figure 7.  
[5] The gain error (EG) is the relative difference in percent between the straight line fitting the actual transfer curve after removing offset  
error, and the straight line which fits the ideal transfer curve. See Figure 7.  
[6] The absolute error (ET) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated ADC  
and the ideal transfer curve. See Figure 7.  
[7] See Figure 8.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
35 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
offset  
error  
gain  
error  
E
E
O
G
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
1018 1019 1020 1021 1022 1023 1024  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
V
V  
DDA SSA  
1 LSB =  
1024  
002aac046  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Fig 7. ADC characteristics  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
36 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
LPC2XXX  
R
vsi  
20 k  
ADx[y]  
ADx[y]  
SAMPLE  
3 pF  
5 pF  
V
EXT  
V
SS  
002aad458  
Fig 8. Suggested ADC interface - LPC2157/2158 ADx[y] pin  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
37 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
9. Dynamic characteristics  
Table 9.  
Dynamic characteristics of USB pins (full-speed)  
CL = 50 pF; Rpu = 1.5 kon D+ to VDD, unless otherwise specified.  
Symbol  
Parameter  
rise time  
fall time  
Conditions  
10 % to 90 %  
10 % to 90 %  
(tr/tf)  
Min  
4
Typ  
Max  
20  
Unit  
ns  
tr  
-
-
-
tf  
4
20  
ns  
tFRFM  
differential rise and fall time  
matching  
90  
110  
%
VCRS  
output signal crossover voltage  
source SE0 interval of EOP  
1.3  
160  
2  
-
-
-
2.0  
175  
+5  
V
tFEOPT  
tFDEOP  
see Figure 10  
ns  
ns  
source jitter for differential transition see Figure 10  
to SE0 transition  
tJR1  
receiver jitter to next transition  
18.5  
9  
-
-
-
+18.5  
ns  
ns  
ns  
tJR2  
receiver jitter for paired transitions  
EOP width at receiver  
10 % to 90 %  
+9  
-
[1]  
[1]  
tEOPR1  
must reject as  
EOP; see  
Figure 10  
40  
tEOPR2  
EOP width at receiver  
must accept as  
EOP; see  
82  
-
-
ns  
Figure 10  
[1] Characterized but not implemented as production test. Guaranteed by design.  
Table 10. Dynamic characteristics  
Tamb = 40 °C to +85 °C for commercial applications, VDD over specified ranges[1]  
Symbol  
External clock  
fosc  
Parameter  
Conditions  
Min  
Typ[2]  
Max  
Unit  
oscillator frequency  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
10  
40  
-
-
-
-
-
-
25  
100  
-
MHz  
ns  
Tcy(clk)  
tCHCX  
T
T
-
cy(clk) × 0.4  
ns  
tCLCX  
cy(clk) × 0.4  
-
ns  
tCLCH  
5
ns  
tCHCL  
clock fall time  
-
5
ns  
Port pins (P0[2], P0[3], P0[11], and P0[14])  
tr(o)  
tf(o)  
output rise time  
-
-
10  
10  
-
-
ns  
ns  
output fall time  
I2C-bus pins (P0[2], P0[3], P0[11], and P0[14])  
[3]  
tf(o) output fall time  
VIH to VIL  
20 + 0.1 × Cb  
-
-
ns  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
[3] Bus capacitance Cb in pF, from 10 pF to 400 pF.  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
38 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
9.1 Timing  
t
CHCX  
t
CLCH  
t
t
CHCL  
CLCX  
T
cy(clk)  
002aaa907  
Fig 9. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
t
PERIOD  
crossover point  
extended  
crossover point  
differential  
data lines  
source EOP width: t  
FEOPT  
differential data to  
SE0/EOP skew  
n × t  
+ t  
PERIOD  
FDEOP  
receiver EOP width: t  
, t  
EOPR1 EOPR2  
002aab561  
Fig 10. Differential data-to-EOP transition skew and EOP width  
10. Application information  
10.1 Suggested USB interface solutions  
V
DD  
CONNECT  
soft-connect switch  
LPC2158  
R1  
1.5 kΩ  
VBUS  
R
= 33 Ω  
= 33 Ω  
USB-B  
connector  
S
D+  
R
S
D−  
V
SS  
002aad410  
Fig 11. LPC2158 USB interface using the CONNECT function on pin 17  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
39 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
V
DD  
R2  
LPC2158  
R1  
1.5 kΩ  
UP_LED  
VBUS  
USB-B  
connector  
R
= 33 Ω  
= 33 Ω  
S
D+  
R
S
D−  
V
SS  
002aad411  
Fig 12. LPC2158 USB interface using the UP_LED function on pin 17  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
40 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
11. Package outline  
LQFP100: plastic low profile quad flat package; 100 leads; body 14 x 14 x 1.4 mm  
SOT407-1  
y
X
A
51  
75  
50  
26  
(1)  
76  
Z
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
detail X  
100  
1
25  
Z
D
v
M
A
B
e
w M  
b
p
D
B
H
v
M
5
D
0
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
θ
1
2
3
p
E
p
D
E
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 14.1 14.1  
0.17 0.09 13.9 13.9  
16.25 16.25  
15.75 15.75  
0.75  
0.45  
1.15 1.15  
0.85 0.85  
mm  
1.6  
0.25  
0.5  
1
0.2 0.08 0.08  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-02-01  
03-02-20  
SOT407-1  
136E20  
MS-026  
Fig 13. Package outline SOT407-1 (LQFP100)  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
41 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
12. Abbreviations  
Table 11. Abbreviations  
Acronym  
ADC  
AHB  
AMBA  
APB  
BOD  
DAC  
DCC  
DMA  
FIFO  
GPIO  
I/O  
Description  
Analog-to-Digital Converter  
Advanced High-performance Bus  
Advanced Microcontroller Bus Architecture  
Advanced Peripheral Bus  
Brown-Out Detection  
Digital-to-Analog Converter  
Debug Communications Channel  
Direct Memory Access  
First In, First Out  
General Purpose Input/Output  
Input/Output  
ISP  
In-System Programming  
Joint Test Action Group  
JTAG  
MCU  
PLL  
Microcontroller Unit  
Phase-Locked Loop  
POR  
PWM  
RC  
Power-On Reset  
Pulse Width Modulator  
Resistance-Capacitance  
Serial Peripheral Interface  
Synchronous Serial Interface  
Synchronous Serial Port  
Transistor-Transistor Logic  
Universal Asynchronous Receiver/Transmitter  
SPI  
SSI  
SSP  
TTL  
UART  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
42 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
13. Revision history  
Table 12. Revision history  
Document ID  
Release date  
20081015  
Data sheet status  
Change notice  
Supersedes  
LPC2157_2158_1  
Product data sheet  
-
-
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
43 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
14. Legal information  
14.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
14.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
14.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
14.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
I2C-bus — logo is a trademark of NXP B.V.  
GoodLink — is a trademark of NXP B.V.  
SoftConnect — is a trademark of NXP B.V.  
15. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
LPC2157_2158_1  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 01 — 15 October 2008  
44 of 45  
LPC2157/2158  
NXP Semiconductors  
Single-chip 16-bit/32-bit microcontrollers  
16. Contents  
1
2
3
4
General description . . . . . . . . . . . . . . . . . . . . . . 1  
6.19.7  
6.19.8  
6.19.9  
6.20  
6.20.1  
6.20.2  
6.21  
6.21.1  
6.21.2  
6.21.3  
6.21.4  
Memory mapping control . . . . . . . . . . . . . . . . 25  
Power control . . . . . . . . . . . . . . . . . . . . . . . . . 25  
APB bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Emulation and debugging. . . . . . . . . . . . . . . . 26  
EmbeddedICE . . . . . . . . . . . . . . . . . . . . . . . . 26  
RealMonitor . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
LCD driver . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
General description . . . . . . . . . . . . . . . . . . . . 27  
Functional description . . . . . . . . . . . . . . . . . . 27  
LCD bias voltages . . . . . . . . . . . . . . . . . . . . . 27  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 1  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
6
6.1  
6.2  
6.3  
6.4  
6.5  
6.5.1  
6.6  
6.7  
6.7.1  
6.8  
6.8.1  
6.9  
6.9.1  
6.10  
6.10.1  
6.11  
6.11.1  
6.12  
6.12.1  
6.13  
6.13.1  
6.14  
6.14.1  
6.15  
Functional description . . . . . . . . . . . . . . . . . . 15  
Architectural overview. . . . . . . . . . . . . . . . . . . 15  
On-chip flash program memory . . . . . . . . . . . 15  
On-chip static RAM. . . . . . . . . . . . . . . . . . . . . 15  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Interrupt controller . . . . . . . . . . . . . . . . . . . . . 16  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 17  
Pin connect block . . . . . . . . . . . . . . . . . . . . . . 17  
Fast general purpose parallel I/O . . . . . . . . . . 17  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
10-bit ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
10-bit DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
USB 2.0 device controller (LPC2158 only) . . . 18  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
UARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
I2C-bus serial I/O controller . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
SPI serial I/O controller. . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
SSP serial I/O controller . . . . . . . . . . . . . . . . . 20  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
General purpose timers/external event  
counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Real-time clock . . . . . . . . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Pulse width modulator . . . . . . . . . . . . . . . . . . 22  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
System control . . . . . . . . . . . . . . . . . . . . . . . . 24  
Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . 24  
PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Reset and wake-up timer . . . . . . . . . . . . . . . . 24  
Brownout detector. . . . . . . . . . . . . . . . . . . . . . 25  
Code security . . . . . . . . . . . . . . . . . . . . . . . . . 25  
External interrupt inputs . . . . . . . . . . . . . . . . . 25  
6.21.4.1 Internal clock . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.21.5  
6.21.6  
6.21.7  
6.21.8  
6.21.9  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Display register. . . . . . . . . . . . . . . . . . . . . . . . 28  
Segment outputs . . . . . . . . . . . . . . . . . . . . . . 28  
Backplane outputs . . . . . . . . . . . . . . . . . . . . . 28  
Display RAM. . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.21.10 Data pointer . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.21.11 Output bank selector . . . . . . . . . . . . . . . . . . . 29  
6.21.12 Input bank selector. . . . . . . . . . . . . . . . . . . . . 29  
6.21.13 Blinker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.21.13.1 I2C-bus controller . . . . . . . . . . . . . . . . . . . . . . 29  
6.21.14 Input filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.21.15 I2C-bus slave addresses . . . . . . . . . . . . . . . . 30  
7
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 31  
Static characteristics . . . . . . . . . . . . . . . . . . . 32  
Dynamic characteristics. . . . . . . . . . . . . . . . . 38  
Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Application information . . . . . . . . . . . . . . . . . 39  
Suggested USB interface solutions . . . . . . . . 39  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 41  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 43  
8
9
9.1  
10  
10.1  
11  
12  
13  
6.15.1  
6.16  
6.16.1  
6.17  
6.17.1  
6.18  
6.18.1  
6.19  
6.19.1  
6.19.2  
6.19.3  
6.19.4  
6.19.5  
6.19.6  
14  
Legal information . . . . . . . . . . . . . . . . . . . . . . 44  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 44  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
14.1  
14.2  
14.3  
14.4  
15  
16  
Contact information . . . . . . . . . . . . . . . . . . . . 44  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2008.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 15 October 2008  
Document identifier: LPC2157_2158_1  

相关型号:

LPC2158FBD100,551

LPC2157/2158 - Single-chip 16-bit/32-bit microcontrollers; 512 kB flash, with 32 segment x 4 LCD driver QFP 100-Pin
NXP

LPC2194

Single-chip 16/32-bit microcontrollers 256 kB ISP/IAP Flash with 10-bit ADC and CAN
NXP

LPC2194HBD64

Single-chip 16/32-bit microcontroller; 256 kB ISP/IAP flash with 10-bit ADC and CAN
NXP

LPC2194HBD64,151

LPC2194 - Single-chip 16/32-bit microcontroller; 256 kB ISP/IAP flash with 10-bit ADC and CAN QFP 64-Pin
NXP

LPC2194HBD64/00

Single-chip 16/32-bit microcontroller; 256 kB ISP/IAP flash with 10-bit ADC and CAN
NXP
NXP

LPC2194HBD64/01

Single-chip 16/32-bit microcontroller; 256 kB ISP/IAP flash with 10-bit ADC and CAN
NXP

LPC2194JBD64

Single-chip 16/32-bit microcontrollers 256 kB ISP/IAP Flash with 10-bit ADC and CAN
NXP

LPC2210

16/32-bit ARM microcontroller with 10-bit ADC and external memory interface
NXP

LPC2210FBD144

16/32-bit ARM microcontroller with 10-bit ADC and external memory interface
NXP

LPC2210FBD144,551

LPC2210FBD144
NXP

LPC2210FBD144/01

16/32-bit ARM microcontrollers; flashless, with 10-bit ADC and external memory interface
NXP