MC9328MXLVH20R2 [NXP]

IC,MICROPROCESSOR,32-BIT,CMOS,BGA,256PIN,PLASTIC;
MC9328MXLVH20R2
型号: MC9328MXLVH20R2
厂家: NXP    NXP
描述:

IC,MICROPROCESSOR,32-BIT,CMOS,BGA,256PIN,PLASTIC

时钟 外围集成电路
文件: 总84页 (文件大小:1453K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC9328MXL/D  
Rev. 5.1, 11/2004  
Freescale Semiconductor  
Advance Information  
MC9328MXL  
Package Information  
Plastic Package  
(MAPBGA–225 or 256)  
MC9328MXL  
Ordering Information  
See Table 2 on page 5  
Contents  
1 Introduction  
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
2 Signals and Connections . . . . . . . . . . . . . . . . . . . .6  
3 Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4 Pin-Out and Package Information. . . . . . . . . . . . .79  
Contact Information . . . . . . . . . . . . . . . . . Last Page  
The Freescale Semiconductor i.MX family builds on the  
DragonBall family of application processors which have  
demonstrated leadership in the portable handheld market.  
Continuing this legacy, the i.MX (Media Extensions) series  
provides a leap in performance with an ARM9™  
microprocessor core and highly integrated system functions.  
The i.MX products specifically address the requirements of  
the personal, portable product market by providing intelligent  
integrated peripherals, an advanced processor core, and  
power management capabilities.  
The new MC9328MXL features the advanced and power-  
efficient ARM920T™ core that operates at speeds up to  
200 MHz. Integrated modules, which include an LCD  
controller, USB support, and an MMC/SD host controller,  
support a suite of peripherals to enhance any product seeking  
to provide a rich multimedia experience. It is packaged in  
either a 256-pin Mold Array Process-Ball Grid Array  
(MAPBGA) or 225-pin PBGA package. Figure 1 shows the  
functional block diagram of the MC9328MXL.  
© Freescale Semiconductor, Inc., 2004. All rights reserved.  
This document contains information on a new product. Specifications and information herein are  
subject to change without notice.  
Introduction  
Standard  
System I/O  
System Control  
Power  
Control  
CGM  
(PLLx2)  
JTAG/ICE  
Bootstrap  
GPIO  
PWM  
Connectivity  
MC9328MXL  
CPU Complex  
ARM9TDMI™  
MMC/SD  
Timer 1 & 2  
RTC  
Memory Stick®  
Host Controller  
Watchdog  
SPI 1 and  
SPI 2  
I Cache  
D Cache  
Multimedia  
UART 1  
UART 2  
Multimedia  
Accelerator  
Interrupt  
Controller  
AIPI 1  
AIPI 2  
VMMU  
Video Port  
2
SSI/I S  
DMAC  
Bus  
Human Interface  
2
I C  
(11 Chnl)  
Control  
LCD Controller  
EIM &  
SDRAMC  
USB Device  
Figure 1. MC9328MXL Functional Block Diagram  
1.1 Conventions  
This document uses the following conventions:  
OVERBAR is used to indicate a signal that is active when pulled low: for example, RESET.  
Logic level one is a voltage that corresponds to Boolean true (1) state.  
Logic level zero is a voltage that corresponds to Boolean false (0) state.  
To set a bit or bits means to establish logic level one.  
To clear a bit or bits means to establish logic level zero.  
A signal is an electronic construct whose state conveys or changes in state convey information.  
A pin is an external physical connection. The same pin can be used to connect a number of signals.  
Asserted means that a discrete signal is in active logic state.  
Active low signals change from logic level one to logic level zero.  
Active high signals change from logic level zero to logic level one.  
Negated means that an asserted discrete signal changes logic state.  
Active low signals change from logic level zero to logic level one.  
Active high signals change from logic level one to logic level zero.  
LSB means least significant bit or bits, and MSB means most significant bit or bits. References to low and  
high bytes or words are spelled out.  
Numbers preceded by a percent sign (%) are binary. Numbers preceded by a dollar sign ($) or 0x are  
hexadecimal.  
MC9328MXL Advance Information, Rev. 5.1  
2
Freescale Semiconductor  
Introduction  
1.2 Features  
To support a wide variety of applications, the MC9328MXL offers a robust array of features, including the  
following:  
ARM920T™ Microprocessor Core  
AHB to IP Bus Interfaces (AIPIs)  
External Interface Module (EIM)  
SDRAM Controller (SDRAMC)  
DPLL Clock and Power Control Module  
Two Universal Asynchronous Receiver/Transmitters (UART 1 and UART 2)  
Two Serial Peripheral Interfaces (SPI1 and SPI2)  
Two General-Purpose 32-bit Counters/Timers  
Watchdog Timer  
Real-Time Clock/Sampling Timer (RTC)  
LCD Controller (LCDC)  
Pulse-Width Modulation (PWM) Module  
Universal Serial Bus (USB) Device  
Multimedia Card and Secure Digital (MMC/SD) Host Controller Module  
Memory Stick® Host Controller (MSHC)  
Direct Memory Access Controller (DMAC)  
Synchronous Serial Interface and Inter-IC Sound (SSI/I2S) Module  
Inter-IC (I2C) Bus Module  
Video Port  
General-Purpose I/O (GPIO) Ports  
Bootstrap Mode  
Multimedia Accelerator (MMA)  
Power Management Features  
Operating Voltage Range: 1.7 V to 1.98 V core, 1.7 V to 3.3V I/O  
256-pin MAPBGA Package  
225-pin MAPBGA Package  
1.3 Target Applications  
The MC9328MXL is targeted for advanced information appliances, smart phones, Web browsers, digital MP3  
audio players, handheld computers, and messaging applications.  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
3
Introduction  
1.4 Revision History  
Table 1 provides revision history for this release. This history includes technical content revisions only and not  
stylistic or grammatical changes.  
Product Documentation  
Table 1. MC9328MXL Data Sheet Revision History  
Revision  
Changes references from Motorola to Freescale Semiconductor as applicable, throughout document.  
The following documents are required for a complete description of the MC9328MXL and are necessary to design  
properly with the device. Especially for those not familiar with the ARM920T processor or previous DragonBall  
products, the following documents are helpful when used in conjunction with this document.  
ARM Architecture Reference Manual (ARM Ltd., order number ARM DDI 0100)  
ARM9DT1 Data Sheet Manual (ARM Ltd., order number ARM DDI 0029)  
ARM Technical Reference Manual (ARM Ltd., order number ARM DDI 0151C)  
EMT9 Technical Reference Manual (ARM Ltd., order number DDI O157E)  
MC9328MXL Product Brief (order number MC9328MXLP/D)  
MC9328MXL Reference Manual (order number MC9328MXLRM/D)  
The Freescale manuals are available on the Freescale Semiconductors Web site at  
http://www.freescale.com/semiconductors. These documents may be downloaded directly from the Freescale Web  
site, or printed versions may be ordered. The ARM Ltd. documentation is available from http://www.arm.com.  
MC9328MXL Advance Information, Rev. 5.1  
4
Freescale Semiconductor  
Introduction  
1.5 Ordering Information  
Table 2 provides ordering information for both the 256-lead mold array process ball grid array (MAPBGA)  
package and the 225-lead BGA package.  
Table 2. MC9328MXL Ordering Information  
Package Type  
Frequency  
Temperature  
Solderball Type  
Order Number  
-40OC to 85OC  
256-lead MAPBGA  
150 MHz  
Standard  
Pb-free  
MC9328MXLCVH15(R2)  
MC9328MXLCVM15(R2)  
MC9328MXLVH20(R2)  
MC9328MXLVM20(R2)  
MC9328MXLDVH20(R2)  
MC9328MXLDVM20(R2)  
MC9328MXLCVF15(R2)  
MC9328MXLCVP15(R2)  
MC9328MXLVF20(R2)  
MC9328MXLVP20(R2)  
MC9328MXLDVF20(R2)  
MC9328MXLDVP20(R2)  
0OC to 70OC  
-30OC to 70OC  
-40OC to 85OC  
0OC to 70OC  
200 MHz  
Standard  
Pb-free  
Standard  
Pb-free  
225-lead MAPBGA  
150 MHz  
200 MHz  
Standard  
Pb-free  
Standard  
Pb-free  
-30OC to 70OC  
Standard  
Pb-free  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
5
Signals and Connections  
2 Signals and Connections  
Table 3 identifies and describes the MC9328MXL signals that are assigned to package pins. The signals are  
grouped by the internal module that they are connected to.  
Table 3. MC9328MXL Signal Descriptions  
Signal Name  
Function/Notes  
External Bus/Chip-Select (EIM)  
A[24:0]  
Address bus signals  
Data bus signals  
D[31:0]  
EB0  
MSB Byte Strobe—Active low external enable byte signal that controls D [31:24].  
Byte Strobe—Active low external enable byte signal that controls D [23:16].  
Byte Strobe—Active low external enable byte signal that controls D [15:8].  
LSB Byte Strobe—Active low external enable byte signal that controls D [7:0].  
Memory Output Enable—Active low output enables external data bus.  
EB1  
EB2  
EB3  
OE  
CS [5:0]  
Chip-Select—The chip-select signals CS [3:2] are multiplexed with CSD [1:0] and are selected by the  
Function Multiplexing Control Register (FMCR). By default CSD [1:0] is selected.  
ECB  
LBA  
Active low input signal sent by a flash device to the EIM whenever the flash device must terminate an  
on-going burst sequence and initiate a new (long first access) burst sequence.  
Active low signal sent by a flash device causing the external burst device to latch the starting burst  
address.  
BCLK (burst clock)  
RW  
Clock signal sent to external synchronous memories (such as burst flash) during burst mode.  
RW signal—Indicates whether external access is a read (high) or write (low) cycle. Used as a WE  
input signal by external DRAM.  
DTACK  
DTACK signal—The external input data acknowledge signal. When using the external DTACK signal  
as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is  
not terminated by the external DTACK signal after 1022 clock counts have elapsed.  
Bootstrap  
BOOT [3:0]  
System Boot Mode Select—The operational system boot mode of the MC9328MXL upon system  
reset is determined by the settings of these pins.  
SDRAM Controller  
SDBA [4:0]  
SDIBA [3:0]  
SDRAM/SyncFlash non-interleave mode bank address multiplexed with address signals A [15:11].  
These signals are logically equivalent to core address p_addr [25:21] in SDRAM/SyncFlash cycles.  
SDRAM/SyncFlash interleave addressing mode bank address multiplexed with address signals A  
[19:16]. These signals are logically equivalent to core address p_addr [12:9] in SDRAM/SyncFlash  
cycles.  
MA [11:10]  
MA [9:0]  
SDRAM address signals  
SDRAM address signals which are multiplexed with address signals A [10:1]. MA [9:0] are selected  
on SDRAM/SyncFlash cycles.  
DQM [3:0]  
CSD0  
SDRAM data enable  
SDRAM/SyncFlash Chip-select signal which is multiplexed with the CS2 signal. These two signals  
are selectable by programming the system control register.  
MC9328MXL Advance Information, Rev. 5.1  
6
Freescale Semiconductor  
Signals and Connections  
Table 3. MC9328MXL Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
CSD1  
SDRAM/SyncFlash Chip-select signal which is multiplexed with CS3 signal. These two signals are  
selectable by programming the system control register. By default, CSD1 is selected, so it can be  
used as SyncFlash boot chip-select by properly configuring BOOT [3:0] input pins.  
RAS  
SDRAM/SyncFlash Row Address Select signal  
SDRAM/SyncFlash Column Address Select signal  
SDRAM/SyncFlash Write Enable signal  
SDRAM/SyncFlash Clock Enable 0  
SDRAM/SyncFlash Clock Enable 1  
SDRAM/SyncFlash Clock  
CAS  
SDWE  
SDCKE0  
SDCKE1  
SDCLK  
RESET_SF  
SyncFlash Reset  
Clocks and Resets  
EXTAL16M  
Crystal input (4 MHz to 16 MHz), or a 16 MHz oscillator input when the internal oscillator circuit is  
shut down.  
XTAL16M  
EXTAL32K  
XTAL32K  
CLKO  
Crystal output  
32 kHz crystal input  
32 kHz crystal output  
Clock Out signal selected from internal clock signals.  
RESET_IN  
Master Reset—External active low Schmitt trigger input signal. When this signal goes active, all  
modules (except the reset module and the clock control module) are reset.  
RESET_OUT  
POR  
Reset Out—Internal active low output signal from the Watchdog Timer module and is asserted from  
the following sources: Power-on reset, External reset (RESET_IN), and Watchdog time-out.  
Power On Reset—Internal active high Schmitt trigger input signal. The POR signal is normally  
generated by an external RC circuit designed to detect a power-up event.  
JTAG  
TRST  
TDO  
TDI  
Test Reset Pin—External active low signal used to asynchronously initialize the JTAG controller.  
Serial Output for test instructions and data. Changes on the falling edge of TCK.  
Serial Input for test instructions and data. Sampled on the rising edge of TCK.  
Test Clock to synchronize test logic and control register access through the JTAG port.  
TCK  
TMS  
Test Mode Select to sequence the JTAG test controller’s state machine. Sampled on the rising edge  
of TCK.  
DMA  
BIG_ENDIAN  
DMA_REQ  
Big Endian—Input signal that determines the configuration of the external chip-select space. If it is  
driven logic-high at reset, the external chip-select space will be configured to little endian. If it is  
driven logic-low at reset, the external chip-select space will be configured to big endian.  
External DMA request pin.  
ETM  
ETMTRACESYNC  
ETM sync signal which is multiplexed with A24. ETMTRACESYNC is selected in ETM mode.  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
7
Signals and Connections  
Signal Name  
Table 3. MC9328MXL Signal Descriptions (Continued)  
Function/Notes  
ETMTRACECLK  
ETM clock signal which is multiplexed with A23. ETMTRACECLK is selected in ETM mode.  
ETMPIPESTAT [2:0]  
ETM status signals which are multiplexed with A [22:20]. ETMPIPESTAT [2:0] are selected in ETM  
mode.  
ETMTRACEPKT [7:0] ETM packet signals which are multiplexed with ECB, LBA, BCLK(burst clock), PA17, A [19:16].  
ETMTRACEPKT [7:0] are selected in ETM mode.  
CMOS Sensor Interface  
CSI_D [7:0]  
CSI_MCLK  
CSI_VSYNC  
CSI_HSYNC  
CSI_PIXCLK  
Sensor port data  
Sensor port master clock  
Sensor port vertical sync  
Sensor port horizontal sync  
Sensor port data latch clock  
LCD Controller  
LD [15:0]  
LCD Data Bus—All LCD signals are driven low after reset and when LCD is off.  
FLM/VSYNC  
Frame Sync or Vsync—This signal also serves as the clock signal output for the gate  
driver (dedicated signal SPS for Sharp panel HR-TFT).  
LP/HSYNC  
LSCLK  
Line pulse or H sync  
Shift clock  
ACD/OE  
CONTRAST  
SPL_SPR  
PS  
Alternate crystal direction/output enable.  
This signal is used to control the LCD bias voltage as contrast control.  
Program horizontal scan direction (Sharp panel dedicated signal).  
Control signal output for source driver (Sharp panel dedicated signal).  
CLS  
Start signal output for gate driver. This signal is an inverted version of PS (Sharp panel dedicated  
signal).  
REV  
Signal for common electrode driving signal preparation (Sharp panel dedicated signal).  
SPI 1 and 2  
Master Out/Slave In  
SPI1_MOSI  
SPI1_MISO  
SPI1_SS  
Slave In/Master Out  
Slave Select (Selectable polarity)  
Serial Clock  
SPI1_SCLK  
SPI1_SPI_RDY  
SPI2_TXD  
Serial Data Ready  
SPI2 Master TxData Output—This signal is multiplexed with a GPI/O pin yet shows up as a primary  
or alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters  
in the MC9328MXL Reference Manual for information about how to bring this signal to the assigned  
pin.  
SPI2_RXD  
SPI2 Master RxData Input—This signal is multiplexed with a GPI/O pin yet shows up as a primary or  
alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in  
the MC9328MXL Reference Manual for information about how to bring this signal to the assigned  
pin.  
MC9328MXL Advance Information, Rev. 5.1  
8
Freescale Semiconductor  
Signals and Connections  
Table 3. MC9328MXL Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
SPI2_SS  
SPI2 Slave Select—This signal is multiplexed with a GPI/O pin yet shows up as a primary or  
alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in  
the MC9328MXL Reference Manual for information about how to bring this signal to the assigned  
pin.  
SPI2_SCLK  
SPI2 Serial Clock—This signal is multiplexed with a GPI/O pin yet shows up as a primary or  
alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in  
the MC9328MXL Reference Manual for information about how to bring this signal to the assigned  
pin.  
General Purpose Timers  
TIN  
Timer Input Capture or Timer Input Clock—The signal on this input is applied to both timers  
simultaneously.  
TMR2OUT  
Timer 2 Output  
USB Device  
USBD_VMO  
USBD_VPO  
USBD_VM  
USB Minus Output  
USB Plus Output  
USB Minus Input  
USB Plus Input  
USBD_VP  
USBD_SUSPND  
USBD_RCV  
USBD_OE  
USB Suspend Output  
USB Receive Data  
USB OE  
USBD_AFE  
USB Analog Front End Enable  
Secure Digital Interface  
SD_CMD  
SD Command—If the system designer does not wish to make use of the internal pull-up, via the Pull-  
up enable register, a 4.7K–69K external pull up resistor must be added.  
SD_CLK  
MMC Output Clock  
SD_DAT [3:0]  
Data—If the system designer does not wish to make use of the internal pull-up, via the Pull-up enable  
register, a 50K–69K external pull up resistor must be added.  
Memory Stick Interface  
MS_BS  
Memory Stick Bus State (Output)—Serial bus control signal  
Memory Stick Serial Data (Input/Output)  
MS_SDIO  
MS_SCLKO  
MS_SCLKI  
Memory Stick Serial Clock (Input)—Serial protocol clock source for SCLK Divider  
Memory Stick External Clock (Output)—Test clock input pin for SCLK divider. This pin is only for test  
purposes, not for use in application mode.  
MS_PI0  
MS_PI1  
General purpose Input0—Can be used for Memory Stick Insertion/Extraction detect  
General purpose Input1—Can be used for Memory Stick Insertion/Extraction detect  
UARTs – IrDA/Auto-Bauding  
UART1_RXD  
UART1_TXD  
Receive Data  
Transmit Data  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
9
Signals and Connections  
Signal Name  
Table 3. MC9328MXL Signal Descriptions (Continued)  
Function/Notes  
UART1_RTS  
UART1_CTS  
UART2_RXD  
UART2_TXD  
UART2_RTS  
UART2_CTS  
UART2_DSR  
UART2_RI  
Request to Send  
Clear to Send  
Receive Data  
Transmit Data  
Request to Send  
Clear to Send  
Data Set Ready  
Ring Indicator  
UART2_DCD  
UART2_DTR  
Data Carrier Detect  
Data Terminal Ready  
Serial Audio Port – SSI (configurable to I2S protocol)  
SSI_TXDAT  
SSI_RXDAT  
SSI_TXCLK  
SSI_RXCLK  
SSI_TXFS  
Transmit Data  
Receive Data  
Transmit Serial Clock  
Receive Serial Clock  
Transmit Frame Sync  
Receive Frame Sync  
SSI_RXFS  
I2C  
I2C_SCL  
I2C_SDA  
I2C Clock  
I2C Data  
PWM  
PWMO  
PWM Output  
Digital Supply Pins  
NVDD  
NVSS  
Digital Supply for the I/O pins  
Digital Ground for the I/O pins  
Supply Pins – Analog Modules  
AVDD  
AVSS  
Supply for analog blocks  
Quiet ground for analog blocks  
Internal Power Supply  
QVDD  
QVSS  
Power supply pins for silicon internal circuitry  
Ground pins for silicon internal circuitry  
MC9328MXL Advance Information, Rev. 5.1  
10  
Freescale Semiconductor  
Specifications  
Table 3. MC9328MXL Signal Descriptions (Continued)  
Function/Notes  
Signal Name  
Substrate Supply Pins  
SVDD  
SGND  
Supply routed through substrate of package; not to be bonded  
Ground routed through substrate of package; not to be bonded  
3 Specifications  
This section contains the electrical specifications and timing diagrams for the MC9328MXL processor.  
3.1 Maximum Ratings  
Table 4 provides information on maximum ratings.  
Table 4. Maximum Ratings  
Rating  
Symbol  
Vdd  
Minimum  
Maximum  
Unit  
V
Supply voltage  
-0.3  
0
3.3  
70  
Maximum operating temperature range  
MC9328MXLVH20/MC9328MXLVM20/  
MC9328MXLVF20/MC9328MXLVP20  
TA  
°C  
Maximum operating temperature range  
MC9328MXLDVH20/MC9328MXLDVM20/  
MC9328MXLDVF20/MC9328MXLDVP20  
TA  
TA  
-30  
-40  
70  
85  
°C  
°C  
Maximum operating temperature range  
MC9328MXLCVH15/MC9328MXLCVM15/  
MC9328MXLCVF15/MC9328MXLCVP15  
ESD at human body model (HBM)  
ESD at machine model (MM)  
Latch-up current  
VESD_HBM  
VESD_MM  
ILatchup  
Test  
2000  
100  
200  
150  
V
V
mA  
°C  
Storage temperature  
-55  
8001  
13002  
Power Consumption  
Pmax  
mW  
1. A typical application with 30 pads simultaneously switching assumes the GPIO toggling and instruction fetches from  
the ARM® core-that is, 7x GPIO, 15x Data bus, and 8x Address bus.  
2. A worst-case application with 70 pads simultaneously switching assumes the GPIO toggling and instruction fetches  
from the ARM core-that is, 32x GPIO, 30x Data bus, 8x Address bus. These calculations are based on the core  
running its heaviest OS application at 200MHz, and where the whole image is running out of SDRAM. QVDD at  
2.0V, NVDD and AVDD at 3.3V, therefore, 180mA is the worst measurement recorded in the factory environment,  
max 5mA is consumed for OSC pads, with each toggle GPIO consuming 4mA.  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
11  
Specifications  
3.2 Recommended Operating Range  
Table 5 provides the recommended operating ranges for the supply voltages. The MC9328MXL has multiple pairs  
of VDD and VSS power supply and return pins. QVDD and QVSS pins are used for internal logic. All other VDD  
and VSS pins are for the I/O pads voltage supply, and each pair of VDD and VSS provides power to the enclosed I/  
O pads. This design allows different peripheral supply voltage levels in a system.  
Because AVDD pins are supply voltages to the analog pads, it is recommended to isolate and noise-filter the  
AVDD pins from other VDD pins.  
For more information about I/O pads grouping per VDD, please refer to Table 3 on page 6.  
Table 5. Recommended Operating Range  
Rating  
Symbol  
Minimum Maximum Unit  
I/O supply voltage (if using MSHC, SPI, BTA, USBd, LCD and CSI  
which are only 3 V interfaces)  
NVDD  
2.70  
3.30  
V
I/O supply voltage (if not using the peripherals listed above)  
Internal supply voltage (Core = 150 MHz)  
Internal supply voltage (Core = 200 MHz)  
Analog supply voltage  
NVDD  
QVDD  
QVDD  
AVDD  
1.70  
1.70  
1.80  
1.70  
3.30  
1.90  
2.00  
3.30  
V
V
V
V
3.3 Power Sequence Requirements  
For required power-up and power-down sequencing, please refer to the "Power-Up Sequence" section of  
application note AN2537 on the i.MX website page.  
3.4 DC Electrical Characteristics  
Table 6 contains both maximum and minimum DC characteristics of the MC9328MXL.  
Table 6. Maximum and Minimum DC Characteristics  
Number or  
Symbol  
Parameter  
Min  
Typical  
Max  
Unit  
Iop  
Full running operating current at 1.8V for QVDD, 3.3V for  
NVDD/AVDD (Core = 96 MHz, System = 96 MHz, MPEG4  
decoding playback from external memory card to both  
external SSI audio decoder and TFT display panel, and OS  
with MMU enabled memory system is running on external  
SDRAM).  
QVDD at  
mA  
1.8v = 120mA;  
NVDD+AVDD at  
3.0v = 30mA  
Sidd1  
Sidd2  
Sidd3  
Standby current  
(Core = 150 MHz, QVDD = 1.8V, temp = 25°C)  
25  
45  
35  
µA  
µA  
µA  
Standby current  
(Core = 150 MHz, QVDD = 1.8V, temp = 55°C)  
Standby current  
(Core = 150 MHz, QVDD = 2.0V, temp = 25°C)  
MC9328MXL Advance Information, Rev. 5.1  
12  
Freescale Semiconductor  
Specifications  
Table 6. Maximum and Minimum DC Characteristics (Continued)  
Number or  
Symbol  
Parameter  
Min  
Typical  
Max  
Unit  
Sidd4  
Standby current  
60  
µA  
(Core = 150 MHz, QVDD = 2.0V, temp = 55°C)  
V
Input high voltage  
0.7V  
Vdd+0.2  
0.4  
V
V
IH  
DD  
V
Input low voltage  
0.7V  
IL  
V
Output high voltage (I  
= 2.0 mA)  
Vdd  
0.4  
V
OH  
OH  
DD  
V
Output low voltage (I = -2.5 mA)  
OL  
V
OL  
IL  
I
Input low leakage current  
1
µA  
(V = GND, no pull-up or pull-down)  
IN  
I
Input high leakage current  
1
4.0  
µA  
mA  
mA  
µA  
IH  
(V = V , no pull-up or pull-down)  
IN  
DD  
I
Output high current  
(V = 0.8VDD, VDD = 1.8V)  
OH  
OH  
I
Output low current  
-4.0  
OL  
(V = 0.4V, VDD = 1.8V)  
OL  
I
Output leakage current  
5
OZ  
(V = V , output is tri-stated)  
out  
DD  
C
Input capacitance  
5
5
pF  
pF  
i
C
Output capacitance‘  
o
3.5 AC Electrical Characteristics  
The AC characteristics consist of output delays, input setup and hold times, and signal skew times. All signals are  
specified relative to an appropriate edge of other signals. All timing specifications are specified at a system  
operating frequency from 0 MHz to 96 MHz (core operating frequency 150 MHz) with an operating supply voltage  
from VDD min to VDD max under an operating temperature from TL to TH. All timing is measured at 30 pF loading.  
Table 7. Tristate Signal Timing  
Pin  
Parameter  
Minimum  
Maximum  
Unit  
TRISTATE Time from TRISTATE activate until I/O becomes Hi-Z  
20.8  
ns  
Table 8. 32k/16M Oscillator Signal Timing  
Parameter  
Minimum  
RMS  
Maximum  
Unit  
EXTAL32k input jitter (peak to peak)  
5
20  
ns  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
13  
Specifications  
Table 8. 32k/16M Oscillator Signal Timing (Continued)  
Parameter  
EXTAL32k startup time  
Minimum  
RMS  
Maximum  
Unit  
800  
TBD  
TBD  
ms  
EXTAL16M input jitter (peak to peak)  
EXTAL16M startup time  
TBD  
3.6 Embedded Trace Macrocell  
All registers in the ETM9 are programmed through a JTAG interface. The interface is an extension of the  
ARM920T processor’s TAP controller, and is assigned scan chain 6. The scan chain consists of a 40-bit  
shift register comprised of the following:  
32-bit data field  
7-bit address field  
A read/write bit  
The data to be written is scanned into the 32-bit data field, the address of the register into the 7-bit address  
field, and a 1 into the read/write bit.  
A register is read by scanning its address into the address field and a 0 into the read/write bit. The 32-bit  
data field is ignored. A read or a write takes place when the TAP controller enters the UPDATE-DR state.  
The timing diagram for the ETM9 is shown in Figure 2. See Table 9 for the ETM9 timing parameters used  
in Figure 2.  
2a  
1
2b  
3a  
TRACECLK  
3b  
TRACECLK  
(Half-Rate Clocking Mode)  
Output Trace Port  
Valid Data  
Valid Data  
4a  
Figure 2. Trace Port Timing Diagram  
Table 9. Trace Port Timing Diagram Parameter Table  
1.8V ꢀ.1ꢀV 3.ꢀV ꢀ.3ꢀV  
4b  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
CLK frequency  
Clock high time  
Clock low time  
0
1.3  
3
85  
0
2
2
100  
MHz  
ns  
2a  
2b  
ns  
MC9328MXL Advance Information, Rev. 5.1  
14  
Freescale Semiconductor  
Specifications  
Unit  
Table 9. Trace Port Timing Diagram Parameter Table (Continued)  
1.8V ꢀ.1ꢀV 3.ꢀV ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Minimum  
Maximum  
Minimum  
Maximum  
3a  
3b  
4a  
4b  
Clock rise time  
4
3
2
3
3
3
ns  
ns  
ns  
ns  
Clock fall time  
Output hold time  
Output setup time  
2.28  
3.42  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
15  
Specifications  
3.7 DPLL Timing Specifications  
Parameters of the DPLL are given in Table 10. In this table, Tref is a reference clock period after the  
pre-divider and Tdck is the output double clock period.  
Table 1ꢀ. DPLL Specifications  
Parameter  
Test Conditions  
Vcc = 1.8V  
Minimum Typical Maximum  
Unit  
Reference clock freq range  
5
5
100  
30  
MHz  
MHz  
Pre-divider output clock  
freq range  
Vcc = 1.8V  
Double clock freq range  
Pre-divider factor (PD)  
Vcc = 1.8V  
80  
1
220  
16  
MHz  
Total multiplication factor (MF) Includes both integer  
and fractional parts  
5
15  
MF integer part  
MF numerator  
5
0
15  
Should be less than the  
denominator  
1022  
MF denominator  
1
1023  
312.5  
300  
Pre-multiplier lock-in time  
µsec  
Tref  
Freq lock-in time after  
full reset  
FOL mode for non-integer MF  
(does not include pre-multi lock-in  
time)  
250  
280  
(56 µs)  
Freq lock-in time after  
partial reset  
FOL mode for non-integer MF  
(does not include pre-multi lock-in  
time)  
220  
250  
(50 µs)  
270  
Tref  
Phase lock-in time after  
full reset  
FPL mode and integer MF (does  
not include pre-multi lock-in time)  
300  
270  
350  
(70 µs)  
400  
370  
0.01  
1.5  
Tref  
Phase lock-in time after  
partial reset  
FPL mode and integer MF (does  
not include pre-multi lock-in time)  
320  
(64 µs)  
Tref  
Freq jitter (p-p)  
0.005  
(0.01%)  
2•Tdck  
ns  
Phase jitter (p-p)  
Integer MF, FPL mode, Vcc=1.8V  
1.0  
(10%)  
Power supply voltage  
Power dissipation  
1.7  
2.5  
4
V
FOL mode, integer MF,  
mW  
f
dck = 200 MHz, Vcc = 1.8V  
MC9328MXL Advance Information, Rev. 5.1  
16  
Freescale Semiconductor  
Specifications  
3.8 Reset Module  
The timing relationships of the Reset module with the POR and RESET_IN are shown in Figure 3 and  
Figure 4.  
NOTE:  
Be aware that NVDD must ramp up to at least 1.8V before QVDD is  
powered up to prevent forward biasing.  
90% AVDD  
1
10% AVDD  
POR  
2
RESET_POR  
Exact 300ms  
3
7 cycles @ CLK32  
RESET_DRAM  
4
14 cycles @ CLK32  
HRESET  
RESET_OUT  
CLK32  
HCLK  
Figure 3. Timing Relationship with POR  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
17  
Specifications  
5
RESET_IN  
14 cycles @ CLK32  
HRESET  
4
RESET_OUT  
6
CLK32  
HCLK  
Figure 4. Timing Relationship with RESET_IN  
Table 11. Reset Module Timing Parameter Table  
1.8V ꢀ.1ꢀV  
3.ꢀV ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Unit  
Min  
Max  
Min  
Max  
note1  
300  
note1  
300  
1
2
Width of input POWER_ON_RESET  
Width of internal POWER_ON_RESET  
(CLK32 at 32 kHz)  
300  
300  
ms  
3
4
5
6
7K to 32K-cycle stretcher for SDRAM reset  
7
14  
4
7
14  
7
14  
4
7
14  
Cycles of  
CLK32  
14K to 32K-cycle stretcher for internal system reset  
HRESERT and output reset at pin RESET_OUT  
Cycles of  
CLK32  
Width of external hard-reset RESET_IN  
Cycles of  
CLK32  
4K to 32K-cycle qualifier  
4
4
4
4
Cycles of  
CLK32  
1. POR width is dependent on the 32 or 32.768 kHz crystal oscillator start-up time. Design margin should  
allow for crystal tolerance, i.MX chip variations, temperature impact, and supply voltage influence.  
Through the process of supplying crystals for use with CMOS oscillators, crystal manufacturers have  
developed a working knowledge of start-up time of their crystals. Typically, start-up times range from  
400 ms to 1.2 seconds for this type of crystal.  
If an external stable clock source (already running) is used instead of a crystal, the width of POR should  
be ignored in calculating timing for the start-up process.  
MC9328MXL Advance Information, Rev. 5.1  
18  
Freescale Semiconductor  
Specifications  
3.9 External Interface Module  
The External Interface Module (EIM) handles the interface to devices external to the MC9328MXL,  
including the generation of chip-selects for external peripherals and memory. The timing diagram for the  
EIM is shown in Figure 5, and Table 12 on page 20 defines the parameters of signals.  
(HCLK) Bus Clock  
1a  
2a  
3a  
1b  
2b  
3b  
Address  
Chip-select  
Read (Write)  
4a  
5a  
4b  
5b  
OE (rising edge)  
4c  
5c  
4d  
OE (falling edge)  
EB (rising edge)  
EB (falling edge)  
5d  
6b  
6a  
6a  
LBA (negated falling edge)  
LBA (negated rising edge)  
6c  
7a  
7b  
Burst Clock (rising edge)  
7c  
7d  
Burst Clock (falling edge)  
Read Data  
8b  
9a  
9a  
8a  
9b  
Write Data (negated falling)  
9c  
Write Data (negated rising)  
10a  
10a  
DTACK  
Figure 5. EIM Bus Timing Diagram  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
19  
Specifications  
Table 12. EIM Bus Timing Parameter Table  
1.8V 0.10V  
3.ꢀV ꢀ.3ꢀV  
Ref No.  
Parameter  
Unit  
Min  
Typical Max  
Min  
Typical Max  
1a  
1b  
2a  
2b  
3a  
3b  
4a  
4b  
4c  
4d  
5a  
5b  
5c  
5d  
6a  
6b  
6c  
7a  
7b  
7c  
7d  
8a  
8b  
9a  
9b  
9c  
10a  
Clock fall to address valid  
2.48  
1.55  
2.69  
1.55  
1.35  
1.86  
2.32  
2.11  
2.38  
2.17  
1.91  
1.81  
1.97  
1.76  
2.07  
1.97  
1.91  
1.61  
1.61  
1.55  
1.55  
5.54  
0
3.31  
2.48  
3.31  
2.48  
2.79  
2.59  
2.62  
2.52  
2.69  
2.59  
2.52  
2.42  
2.59  
2.48  
2.79  
2.79  
2.62  
2.62  
2.62  
2.48  
2.59  
9.11  
5.69  
7.87  
6.31  
6.52  
6.11  
6.85  
6.55  
7.04  
6.73  
5.54  
5.24  
5.69  
5.38  
6.73  
6.83  
6.45  
5.64  
5.84  
5.59  
5.80  
2.4  
1.5  
2.6  
1.5  
1.3  
1.8  
2.3  
2.1  
2.3  
2.1  
1.9  
1.8  
1.9  
1.7  
2.0  
1.9  
1.9  
1.6  
1.6  
1.5  
1.5  
5.5  
0
3.2  
2.4  
3.2  
2.4  
2.7  
2.5  
2.6  
2.5  
2.6  
2.5  
2.5  
2.4  
2.5  
2.4  
2.7  
2.7  
2.6  
2.6  
2.6  
2.4  
2.5  
8.8  
5.5  
7.6  
6.1  
6.3  
5.9  
6.8  
6.5  
6.8  
6.5  
5.5  
5.2  
5.5  
5.2  
6.5  
6.6  
6.4  
5.6  
5.8  
5.4  
5.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock fall to address invalid  
Clock fall to chip-select valid  
Clock fall to chip-select invalid  
Clock fall to Read (Write) Valid  
Clock fall to Read (Write) Invalid  
Clock1 rise to Output Enable Valid  
Clock1 rise to Output Enable Invalid  
Clock1 fall to Output Enable Valid  
Clock1 fall to Output Enable Invalid  
Clock1 rise to Enable Bytes Valid  
Clock1 rise to Enable Bytes Invalid  
Clock1 fall to Enable Bytes Valid  
Clock1 fall to Enable Bytes Invalid  
Clock1 fall to Load Burst Address Valid  
Clock1 fall to Load Burst Address Invalid  
Clock1 rise to Load Burst Address Invalid  
Clock1 rise to Burst Clock rise  
Clock1rise to Burst Clock fall  
Clock1 fall to Burst Clock rise  
Clock1 fall to Burst Clock fall  
Read Data setup time  
Read Data hold time  
Clock1 rise to Write Data Valid  
Clock1 fall to Write Data Invalid  
Clock1 rise to Write Data Invalid  
DTACK setup time  
1.81  
1.45  
1.63  
2.52  
2.72  
2.48  
6.85  
5.69  
1.8  
1.4  
1.62  
2.5  
2.7  
2.4  
6.8  
5.5  
1. Clock refers to the system clock signal, HCLK, generated from the System PLL  
MC9328MXL Advance Information, Rev. 5.1  
20  
Freescale Semiconductor  
Specifications  
3.9.1 DTACK Signal Description  
The DTACK signal is the external input data acknowledge signal. When using the external DTACK signal  
as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not  
terminated by the external DTACK signal after 1022 HCLK counts have elapsed. Only CS5 group is  
designed to support DTACK signal function when using the external DTACK signal for data  
acknowledgement.  
3.9.2 DTACK Signal Timing  
Figure 6 shows the access cycle timing used by chip-select 5. The signal values and units of measure for  
this figure are found in Table 13.  
HCLK  
CS5  
3
RW  
1
5
OE  
4
EXT_DTACK  
2
INT_DTACK  
Figure 6. DTACK Timing, WSC=111111, DTACK_sel=ꢀ  
Table 13. Access Cycle Timing Parameters  
1.8V ꢀ.1ꢀV  
3.ꢀV ꢀ.3ꢀV  
Ref  
No.  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
1
2
CS5 asserted to OE asserted  
0
T
0
T
ns  
ns  
External DTACK input setup from CS5  
asserted  
3
4
CS5 pulse width  
3T  
0
3T  
0
ns  
ns  
External DTACK input hold after CS5 is  
negated  
1.5T  
1.5T  
5
OE negated after CS5 is negated  
0
4.5  
0
4
ns  
Note:  
1. n is the number of wait states in the current memory access cycle. The max n is 1022.  
2. T is the system clock period (system clock is 96 MHz).  
3. The external DTACK input requirement is eliminated when CS5 is programmed to use internal wait state.  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
21  
Specifications  
HCLK  
CS5  
RW  
OE  
1
EXT_DTACK (WAIT)  
INT_DTACK  
Figure 7. DTACK Timing, WSC=111111, DTACK_sel=1  
Table 14. Access Cycle Timing Parameters  
1.8V ꢀ.1ꢀV  
Min Max  
3.ꢀV ꢀ.3ꢀV  
Ref  
No.  
Characteristic  
Unit  
Min  
Max  
1
External DTACK input setup from CS5  
asserted  
0
0
ns  
Note:  
1. n is the number of wait states in the current memory access cycle. The max n is 1022.  
2. T is the system clock period (system clock is 96 MHz).  
3. The external DTACK input requirement is eliminated when CS5 is programmed to use internal wait state.  
MC9328MXL Advance Information, Rev. 5.1  
22  
Freescale Semiconductor  
Specifications  
3.9.3 EIM External Bus Timing  
The timing diagrams in this section show the timing of accesses to memory or a peripheral.  
hclk  
hsel_weim_cs[0]  
htrans  
hwrite  
Seq/Nonseq  
Read  
haddr  
hready  
V1  
weim_hrdata  
weim_hready  
Last Valid Data  
V1  
weim_bclk  
weim_addr  
Last Valid Address  
V1  
weim_cs  
weim_r/w  
Read  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
V1  
Figure 8. WSC = 1, A.HALF/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
23  
Specifications  
hclk  
hsel_weim_cs[0]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data (V1)  
Unknown  
weim_hrdata  
Last Valid Data  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Address  
V1  
weim_cs[0]  
weim_r/w  
weim_lba  
weim_oe  
weim_eb  
Write  
weim_data_out  
Last Valid Data  
Write Data (V1)  
Figure 9. WSC = 1, WEA = 1, WEN = 1, A.HALF/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
24  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[0]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V1 + 2  
weim_cs[0]  
weim_r/w  
weim_lba  
weim_oe  
Read  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
1/2 Half Word  
2/2 Half Word  
Figure 1ꢀ. WSC = 1, OEA = 1, A.WORD/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
25  
Specifications  
hclk  
hsel_weim_cs[0]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V1 + 2  
weim_cs[0]  
weim_r/w  
weim_lba  
weim_oe  
weim_eb  
Write  
weim_data_out  
1/2 Half Word  
2/2 Half Word  
Figure 11. WSC = 1, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
26  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[3]  
htrans  
Nonseq  
hwrite  
Read  
V1  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V1 + 2  
weim_cs[3]  
weim_r/w  
weim_lba  
weim_oe  
Read  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
1/2 Half Word  
2/2 Half Word  
Figure 12. WSC = 3, OEA = 2, A.WORD/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
27  
Specifications  
hclk  
hsel_weim_cs[3]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata Last Valid  
Write Data (V1 Word)  
Last Valid Data  
Data  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V1 + 2  
weim_cs[3]  
weim_r/w  
weim_lba  
weim_oe  
Write  
weim_eb  
weim_data_out]  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 13. WSC = 3, WEA = 1, WEN = 3, A.WORD/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
28  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V1 + 2  
weim_cs[2]  
weim_r/w  
Read  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
1/2 Half Word  
2/2 Half Word  
Figure 14. WSC = 3, OEA = 4, A.WORD/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
29  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr Last Valid Addr  
weim_cs[2]  
Address V1  
Address V1 + 2  
weim_r/w  
Write  
weim_lba  
weim_oe  
weim_eb  
weim_data_out  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 15. WSC = 3, WEA = 2, WEN = 3, A.WORD/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
30  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V1 + 2  
weim_cs[2]  
weim_r/w  
Read  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
1/2 Half Word  
2/2 Half Word  
Figure 16. WSC = 3, OEN = 2, A.WORD/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
31  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
hwrite  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V1 + 2  
weim_cs[2]  
weim_r/w  
weim_lba  
Read  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
1/2 Half Word  
2/2 Half Word  
Figure 17. WSC = 3, OEA = 2, OEN = 2, A.WORD/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
32  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
Unknown  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr Last Valid Addr  
weim_cs[2]  
Address V1  
Address V1 + 2  
weim_r/w  
Write  
weim_lba  
weim_oe  
weim_eb  
weim_data_out  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 18. WSC = 2, WWS = 1, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
33  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (V1 Word)  
Last Valid Data  
Unknown  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V1 + 2  
weim_cs[2]  
weim_r/w  
weim_lba  
weim_oe  
weim_eb  
Write  
weim_data_out  
Last Valid Data  
1/2 Half Word  
2/2 Half Word  
Figure 19. WSC = 1, WWS = 2, WEA = 1, WEN = 2, A.WORD/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
34  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data  
Read Data  
weim_hrdata  
weim_hready  
Last Valid Data  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V8  
weim_cs[2]  
weim_r/w  
weim_lba  
Read  
Write  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
weim_data_out  
Read Data  
Last Valid Data  
Write Data  
Figure 2ꢀ. WSC = 2, WWS = 2, WEA = 1, WEN = 2, A.HALF/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
35  
Specifications  
Read  
Idle  
Write  
hclk  
hsel_weim_cs[2]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
Last Valid Data  
Write Data  
weim_hrdata  
weim_hready  
Last Valid Data  
Read Data  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V8  
Write  
weim_cs[2]  
weim_r/w  
Read  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
weim_data_out  
Read Data  
Last Valid Data  
Write Data  
Figure 21. WSC = 2, WWS = 1, WEA = 1, WEN = 2, EDC = 1, A.HALF/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
36  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Write  
V1  
hwrite  
haddr  
hready  
hwdata  
Last Valid  
Data  
Write Data (Word)  
Last Valid Data  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V1 + 2  
weim_cs  
weim_r/w  
Write  
weim_lba  
weim_oe  
weim_eb  
weim_data_out  
Last Valid Data  
Write Data (1/2 Half Word)  
Write Data (2/2 Half Word)  
Figure 22. WSC = 2, CSA = 1, WWS = 1, A.WORD/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
37  
Specifications  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Nonseq  
Write  
V8  
hwrite  
haddr  
hready  
hwdata  
weim_hrdata  
weim_hready  
Last Valid Data  
Write Data  
Read Data  
Last Valid Data  
weim_bclk  
weim_addr Last Valid Addr  
weim_cs[4]  
Address V1  
Address V8  
weim_r/w  
Read  
Write  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
Read Data  
weim_data_in  
weim_data_out  
Last Valid Data  
Write Data  
Figure 23. WSC = 3, CSA = 1, A.HALF/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
38  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Idle  
Seq  
Read  
V2  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
Last Valid Data  
Read Data (V1)  
Read Data (V2)  
weim_bclk  
weim_addr  
Last Valid  
Address V1  
Address V2  
CNC  
weim_cs[4]  
weim_r/w  
weim_lba  
Read  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
Read Data  
(V1)  
Read Data  
(V2)  
weim_data_in  
Figure 24. WSC = 2, OEA = 2, CNC = 3, BCM = ꢀ, A.HALF/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
39  
Specifications  
hclk  
hsel_weim_cs[4]  
htrans  
Nonseq  
Read  
V1  
Idle Nonseq  
hwrite  
haddr  
Write  
V8  
hready  
hwdata  
Last Valid Data  
Write Data  
weim_hrdata  
Last Valid Data  
Read Data  
weim_hready  
weim_bclk  
weim_addr  
Last Valid Addr  
Address V1  
Address V8  
CNC  
weim_cs[4]  
weim_r/w  
Read  
Write  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_data_in  
weim_data_out  
Read Data  
Last Valid Data  
Write Data  
Figure 25. WSC = 2, OEA = 2, WEA = 1, WEN = 2, CNC = 3, A.HALF/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
40  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Idle  
Nonseq  
Read  
V1  
Nonse  
Read  
V5  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
weim_bclk  
weim_addr]  
Last Valid Addr  
Address V1  
Address V5  
weim_cs[2]  
Read  
weim_r/w  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_ecb  
weim_data_in  
V1 Word V2 Word  
V5 Word V6 Word  
Figure 26. WSC = 3, SYNC = 1, A.HALF/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
41  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Idle  
Nonseq  
Read  
V1  
Seq  
Read  
V2  
Seq  
Read  
V3  
Seq  
Read  
V4  
hwrite  
haddr  
hready  
weim_hrdata  
weim_hready  
weim_bclk  
Last Valid Data  
V1 Word  
V2 Word  
V3 Word  
V4 Word  
weim_addr  
Last Valid Addr  
Address V1  
weim_cs[2]  
weim_r/w  
Read  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_ecb  
weim_data_in  
V1 Word  
V2 Word  
V3 Word  
V4 Word  
Figure 27. WSC = 2, SYNC = 1, DOL = [1/ꢀ], A.WORD/E.WORD  
MC9328MXL Advance Information, Rev. 5.1  
42  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Idle  
Seq  
Nonseq  
hwrite  
Read  
V1  
Read  
V2  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
weim_bclk  
weim_addr  
weim_cs[2]  
weim_r/w  
Last Valid  
Address V1  
Address V2  
Read  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_ecb  
weim_data_in  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Figure 28. WSC = 2, SYNC = 1, DOL = [1/ꢀ], A.WORD/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
43  
Specifications  
hclk  
hsel_weim_cs[2]  
Non  
seq  
Idle  
htrans  
hwrite  
Seq  
Read  
V2  
Read  
V1  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
weim_bclk  
Last  
weim_addr  
weim_cs[2]  
Address V1  
Read  
weim_r/w  
weim_lba  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_ecb  
weim_data_in  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Figure 29. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 2, A.WORD/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
44  
Freescale Semiconductor  
Specifications  
hclk  
hsel_weim_cs[2]  
htrans  
Non  
seq  
Idle  
Seq  
Read  
V2  
hwrite  
Read  
V1  
haddr  
hready  
weim_hrdata  
Last Valid Data  
V1 Word  
V2 Word  
weim_hready  
weim_bclk  
weim_addr  
weim_cs[2]  
Last  
Address V1  
weim_r/w  
weim_lba  
Read  
weim_oe  
weim_eb (EBC=0)  
weim_eb (EBC=1)  
weim_ecb  
weim_data_in  
V1 1/2  
V1 2/2  
V2 1/2  
V2 2/2  
Figure 3ꢀ. WSC = 7, OEA = 8, SYNC = 1, DOL = 1, BCD = 1, BCS = 1, A.WORD/E.HALF  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
45  
Specifications  
3.1ꢀ SPI Timing Diagrams  
To utilize the internal transmit (TX) and receive (RX) data FIFOs when the SPI 1 module is configured as  
a master, two control signals are used for data transfer rate control: the SS signal (output) and the  
SPI_RDY signal (input). The SPI 1 Sample Period Control Register (PERIODREG1) and the SPI 2  
Sample Period Control Register (PERIODREG2) can also be programmed to a fixed data transfer rate for  
either SPI 1 or SPI 2. When the SPI 1 module is configured as a slave, the user can configure the SPI 1  
Control Register (CONTROLREG1) to match the external SPI master’s timing. In this configuration, SS  
becomes an input signal, and is used to latch data into or load data out to the internal data shift registers, as  
well as to increment the data FIFO. Figure 31 through Figure 35 show the timing relationship of the master  
SPI using different triggering mechanisms.  
2
5
3
SS  
1
4
SPIRDY  
SCLK, MOSI, MISO  
Figure 31. Master SPI Timing Diagram Using SPI_RDY Edge Trigger  
SS  
SPIRDY  
SCLK, MOSI, MISO  
Figure 32. Master SPI Timing Diagram Using SPI_RDY Level Trigger  
SS (output)  
SCLK, MOSI, MISO  
Figure 33. Master SPI Timing Diagram Ignore SPI_RDY Level Trigger  
SS (input)  
SCLK, MOSI, MISO  
Figure 34. Slave SPI Timing Diagram FIFO Advanced by BIT COUNT  
MC9328MXL Advance Information, Rev. 5.1  
46  
Freescale Semiconductor  
Specifications  
SS (input)  
6
7
SCLK, MOSI, MISO  
Figure 35. Slave SPI Timing Diagram FIFO Advanced by SS Rising Edge  
Table 15. Timing Parameter Table for Figure 31 through Figure 35  
1.8V ꢀ.1ꢀV  
3.ꢀV ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
2T 1  
2T1  
1
2
SPI_RDY to SS output low  
ns  
ns  
3 • Tsclk 2  
3 • Tsclk2  
SS output low to first SCLK  
edge  
3
4
5
Last SCLK edge to SS output  
high  
2 • Tsclk  
0
2 • Tsclk  
0
ns  
ns  
ns  
SS output high to SPI_RDY  
low  
SS output pulse width  
Tsclk +  
WAIT 3  
Tsclk +  
WAIT3  
6
7
SS input low to first SCLK  
edge  
T
T
ns  
ns  
SS input pulse width  
T
T
1. T = CSPI system clock period (PERCLK2).  
2. Tsclk = Period of SCLK.  
3. WAIT = Number of bit clocks (SCLK) or 32.768 kHz clocks per Sample Period Control Register.  
3.11 LCD Controller  
This section includes timing diagrams for the LCD controller. For detailed timing diagrams of the LCD  
controller with various display configurations, refer to the LCD controller chapter of the MC9328MXL  
Reference Manual.  
LSCLK  
LD[15:0]  
1
Figure 36. SCLK to LD Timing Diagram  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
47  
Specifications  
Table 16. LCDC SCLK Timing Parameter Table  
1.8V ꢀ.1ꢀV 3.ꢀV ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
SCLK to LD valid  
2
2
ns  
Non-display region  
T3  
Display region  
T1  
T4  
VSYN  
T2  
HSYN  
OE  
Line Y  
Line 1  
Line Y  
LD[15:0]  
T6  
T7  
T5  
XMAX  
HSYN  
SCLK  
OE  
T8  
(1,1)  
(1,2)  
LD[15:0]  
VSYN  
(1,X)  
T9  
T10  
Figure 37. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing  
Table 17. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing  
Symbol  
Description  
Minimum  
Corresponding Register Value  
Unit  
T1  
End of OE to beginning of VSYN  
T5+T6  
(VWAIT1·T2)+T5+T6+T7+T9  
Ts  
+T7+T9  
T2  
T3  
T4  
T5  
T6  
HSYN period  
XMAX+5  
XMAX+T5+T6+T7+T9+T10  
VWIDTH·(T2)  
Ts  
Ts  
Ts  
Ts  
Ts  
VSYN pulse width  
T2  
2
End of VSYN to beginning of OE  
HSYN pulse width  
VWAIT2·(T2)  
1
HWIDTH+1  
End of HSYN to beginning to T9  
1
HWAIT2+1  
MC9328MXL Advance Information, Rev. 5.1  
48  
Freescale Semiconductor  
Specifications  
Unit  
Table 17. 4/8/16 Bit/Pixel TFT Color Mode Panel Timing (Continued)  
Symbol  
Description  
Minimum  
Corresponding Register Value  
T7  
T8  
T9  
End of OE to beginning of HSYN  
SCLK to valid LD data  
1
-3  
2
HWAIT1+1  
Ts  
ns  
Ts  
3
2
End of HSYN idle2 to VSYN edge  
(for non-display region)  
T9  
T10  
End of HSYN idle2 to VSYN edge  
(for Display region)  
1
1
2
1
1
2
Ts  
Ts  
Ts  
VSYN to OE active (Sharp = 0)  
when VWAIT2 = 0  
T10  
VSYN to OE active (Sharp = 1)  
when VWAIT2 = 0  
Note:  
Ts is the SCLK period which equals LCDC_CLK / (PCD + 1). Normally LCDC_CLK = 15ns.  
VSYN, HSYN and OE can be programmed as active high or active low. In Figure 37, all 3 signals are active low.  
The polarity of SCLK and LD[15:0] can also be programmed.  
SCLK can be programmed to be deactivated during the VSYN pulse or the OE deasserted period. In Figure 37, SCLK  
is always active.  
For T9 non-display region, VSYN is non-active. It is used as an reference.  
XMAX is defined in pixels.  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
49  
Specifications  
3.12 Multimedia Card/Secure Digital Host Controller  
The DMA interface block controls all data routing between the external data bus (DMA access), internal  
MMC/SD module data bus, and internal system FIFO access through a dedicated state machine that  
monitors the status of FIFO content (empty or full), FIFO address, and byte/block counters for the  
MMC/SD module (inner system) and the application (user programming).  
3a  
1
2
4b  
3b  
Bus Clock  
4a  
5b  
5a  
Valid Data  
CMD_DAT Input  
Valid Data  
7
CMD_DAT Output  
Valid Data  
Valid Data  
6a  
6b  
Figure 38. Chip-Select Read Cycle Timing Diagram  
Table 18. SDHC Bus Timing Parameter Table  
1.8V ꢀ.1ꢀV  
3.ꢀ ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
CLK frequency at Data transfer Mode  
(PP)1—10/30 cards  
0
25/5  
0
25/5  
MHz  
2
CLK frequency at Identification Mode2  
Clock high time1—10/30 cards  
Clock low time1—10/30 cards  
Clock fall time1—10/30 cards  
0
6/33  
15/75  
400  
0
400  
kHz  
ns  
3a  
3b  
4a  
10/50  
10/50  
ns  
10/50  
10/50  
ns  
(5.00)3  
4b  
Clock rise time1—10/30 cards  
14/67  
(6.67)3  
10/50  
ns  
5a  
5b  
6a  
6b  
7
Input hold time3—10/30 cards  
Input setup time3—10/30 cards  
Output hold time3—10/30 cards  
Output setup time3—10/30 cards  
Output delay time3  
5.7/5.7  
5.7/5.7  
5.7/5.7  
5.7/5.7  
0
5/5  
5/5  
5/5  
5/5  
0
ns  
ns  
ns  
ns  
ns  
16  
14  
1. CL 100 pF / 250 pF (10/30 cards)  
2. CL 250 pF (21 cards)  
3. CL 25 pF (1 card)  
MC9328MXL Advance Information, Rev. 5.1  
50  
Freescale Semiconductor  
Specifications  
3.12.1 Command Response Timing on MMC/SD Bus  
The card identification and card operation conditions timing are processed in open-drain mode. The card  
response to the host command starts after exactly NID clock cycles. For the card address assignment,  
SET_RCA is also processed in the open-drain mode. The minimum delay between the host command and  
card response is NCR clock cycles as illustrated in Figure 39. The symbols for Figure 39 through Figure 43  
are defined in Table 19.  
Table 19. State Signal Parameters for Figure 39 through Figure 43  
Card Active  
Definition  
Host Active  
Definition  
Symbol  
Symbol  
Z
High impedance state  
Data bits  
S
T
Start bit (0)  
D
Transmitter bit  
(Host = 1, Card = 0)  
*
Repetition  
P
E
One-cycle pull-up (1)  
End bit (1)  
CRC  
Cyclic redundancy check bits (7 bits)  
N
ID cycles  
Host Command  
CID/OCR  
Content  
CMD  
CMD  
Content  
CRC  
******  
ST  
E Z  
Z S T  
Z Z Z  
Identification Timing  
N
CR cycles  
Host Command  
CID/OCR  
Content  
******  
Content  
Z Z Z  
CRC  
ST  
E Z  
Z S T  
SET_RCA Timing  
Figure 39. Timing Diagrams at Identification Mode  
After a card receives its RCA, it switches to data transfer mode. As shown on the first diagram in  
Figure 40, SD_CMD lines in this mode are driven with push-pull drivers. The command is followed by a  
period of two Z bits (allowing time for direction switching on the bus) and then by P bits pushed up by the  
responding card. The other two diagrams show the separating periods NRC and NCC  
.
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
51  
Specifications  
NCR cycles  
Host Command  
Response  
Content  
CRC  
E Z Z Z  
CMD  
Content  
CRC  
******  
ST  
E Z Z P  
P S T  
Command response timing (data transfer mode)  
NRC cycles  
Response  
Content  
Host Command  
Content  
CMD  
******  
CRC  
CRC  
E Z Z Z  
ST  
E Z  
Z S T  
Timing response end to next CMD start (data transfer mode)  
NCC cycles  
Host Command  
Host Command  
Content  
CRC  
E Z Z Z  
CMD  
Content  
CRC  
E Z  
******  
ST  
Z S T  
Timing of command sequences (all modes)  
Figure 4ꢀ. Timing Diagrams at Data Transfer Mode  
Figure 41 on page 53 shows basic read operation timing. In a read operation, the sequence starts with a  
single block read command (which specifies the start address in the argument field). The response is sent  
on the SD_CMD lines as usual. Data transmission from the card starts after the access time delay NAC  
,
beginning from the last bit of the read command. If the system is in multiple block read mode, the card  
sends a continuous flow of data blocks with distance NAC until the card sees a stop transmission command.  
The data stops two clock cycles after the end bit of the stop command.  
MC9328MXL Advance Information, Rev. 5.1  
52  
Freescale Semiconductor  
Specifications  
NCR cycles  
Host Command  
Response  
Content  
CRC  
E Z  
CMD  
DAT  
Content  
CRC  
******  
******  
ST  
E Z Z P  
P S T  
Z****Z  
*****  
Z Z P  
P S DDDD  
Read Data  
Timing of single block read  
NAC cycles  
NCR cycles  
Host Command  
Response  
Content  
CRC  
E Z  
CMD  
DAT  
Content  
CRC  
******  
ST  
E Z Z P  
Z Z P  
P S T  
Z****Z  
******  
*****  
Read Data  
*****  
*****  
Read Data  
P S DDDD  
P
P S DDDD  
NAC cycles  
NAC cycles  
Timing of multiple block read  
NCR cycles  
Host Command  
Response  
CMD  
Content  
CRC  
******  
Content  
CRC  
E Z  
ST  
E Z Z P  
P S T  
NST  
DAT  
*****  
*****  
DDDD  
DDDD E Z Z Z  
Timing of stop command  
(CMD12, data transfer mode)  
Valid Read Data  
Figure 41. Timing Diagrams at Data Read  
Figure 42 shows the basic write operation timing. As with the read operation, after the card response, the  
data transfer starts after NWR cycles. The data is suffixed with CRC check bits to allow the card to check  
for transmission errors. The card sends back the CRC check result as a CC status token on the data line. If  
there was a transmission error, the card sends a negative CRC status (101); otherwise, a positive CRC  
status (010) is returned. The card expects a continuous flow of data blocks if it is configured to multiple  
block mode, with the flow terminated by a stop transmission command.  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
53  
Specifications  
Figure 42. Timing Diagrams at Data Write  
MC9328MXL Advance Information, Rev. 5.1  
54  
Freescale Semiconductor  
Specifications  
The stop transmission command may occur when the card is in different states. Figure 43 shows the  
different scenarios on the bus.  
Figure 43. Stop Transmission During Different Scenarios  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
55  
Specifications  
Table 2ꢀ. Timing Values for Figure 39 through Figure 43  
Symbol Minimum Maximum Unit  
Parameter  
Parameter  
MMC/SD bus clock, CLK (All values are referred to minimum (VIH) and maximum  
(VIL)  
MMC/SD bus clock, CLK  
(All values are referred to  
minimum (VIH) and  
maximum (VIL)  
Command response cycle  
Identification response cycle  
Access time delay cycle  
Command read cycle  
NCR  
NID  
2
5
2
8
8
2
2
64  
Clock  
cycles  
Command response cycle  
5
Clock  
cycles  
Identification response  
cycle  
NAC  
NRC  
NCC  
NWR  
NST  
TAAC + NSAC  
Clock  
cycles  
Access time delay cycle  
2
Clock  
cycles  
Command read cycle  
Command-command cycle  
Command write cycle  
Clock  
cycles  
Command-command cycle  
Command write cycle  
Stop transmission cycle  
Clock  
cycles  
Stop transmission cycle  
Clock  
cycles  
TAAC: Data read access time -1 defined in CSD register bit[119:112]  
NSAC: Data read access time -2 in CLK cycles (NSAC·100) defined in CSD register  
bit[111:104]  
TAAC: Data read access  
time -1 defined in CSD  
register bit[119:112]  
NSAC: Data read access  
time -2 in CLK cycles  
(NSAC·100) defined in  
CSD register bit[111:104]  
3.12.2 SDIO-IRQ and ReadWait Service Handling  
In SDIO, there is a 1-bit or 4-bit interrupt response from the SDIO peripheral card. In 1-bit mode, the  
interrupt response is simply that the SD_DAT[1] line is held low. The SD_DAT[1] line is not used as data  
in this mode. The memory controller generates an interrupt according to this low and the system interrupt  
continues until the source is removed (SD_DAT[1] returns to its high level).  
In 4-bit mode, the interrupt is less simple. The interrupt triggers at a particular period called the "Interrupt  
Period" during the data access, and the controller must sample SD_DAT[1] during this short period to  
determine the IRQ status of the attached card. The interrupt period only happens at the boundary of each  
block (512 bytes).  
MC9328MXL Advance Information, Rev. 5.1  
56  
Freescale Semiconductor  
Specifications  
CMD  
Content  
CRC  
Response  
******  
S
ST  
E Z Z P S  
E Z Z Z  
Z Z Z  
DAT[1]  
Interrupt Period  
IRQ  
IRQ  
Block Data  
Block Data  
S
E
E
For 4-bit  
L H  
DAT[1]  
Interrupt Period  
For 1-bit  
Figure 44. SDIO IRQ Timing Diagram  
ReadWait is another feature in SDIO that allows the user to submit commands during the data transfer. In  
this mode, the block temporarily pauses the data transfer operation counter and related status, yet keeps the  
clock running, and allows the user to submit commands as normal. After all commands are submitted, the  
user can switch back to the data transfer operation and all counter and status values are resumed as access  
continues.  
CMD  
******  
CMD52 CRC  
******  
P S T  
E Z Z Z  
DAT[1]  
Block Data  
Block Data  
S
S
E Z Z L H  
S
E
E
For 4-bit  
DAT[2]  
Block Data  
Block Data  
E Z Z L L L L L L L L L L L L L L L L L L L L L H Z S  
For 4-bit  
Figure 45. SDIO ReadWait Timing Diagram  
3.13 Memory Stick Host Controller  
The Memory Stick protocol requires three interface signal line connections for data transfers: MS_BS,  
MS_SDIO, and MS_SCLKO. Communication is always initiated by the MSHC and operates the bus in  
either four-state or two-state access mode.  
The MS_BS signal classifies data on the SDIO into one of four states (BS0, BS1, BS2, or BS3) according  
to its attribute and transfer direction. BS0 is the INT transfer state, and during this state no packet  
transmissions occur. During the BS1, BS2, and BS3 states, packet communications are executed. The BS1,  
BS2, and BS3 states are regarded as one packet length and one communication transfer is always  
completed within one packet length (in four-state access mode).  
The Memory Stick usually operates in four state access mode and in BS1, BS2, and BS3 bus states. When  
an error occurs during packet communication, the mode is shifted to two-state access mode, and the BS0  
and BS1 bus states are automatically repeated to avoid a bus collision on the SDIO.  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
57  
Specifications  
2
3
5
1
4
MS_SCLKI  
6
8
7
MS_SCLKO  
MS_BS  
9
10  
11  
12  
11  
12  
MS_SDIO(output)  
14  
13  
MS_SDIO (input)  
(RED bit = 0)  
15  
16  
MS_SDIO (input)  
(RED bit = 1)  
Figure 46. MSHC Signal Timing Diagram  
Table 21. MSHC Signal Timing Parameter Table  
3.ꢀ ꢀ.3V  
Ref  
No.  
Parameter  
Unit  
Minimum Maximum  
1
2
MS_SCLKI frequency  
20  
20  
25  
MHz  
ns  
MS_SCLKI high pulse width  
MS_SCLKI low pulse width  
MS_SCLKI rise time  
3
ns  
4
3
ns  
5
MS_SCLKI fall time  
3
ns  
6
MS_SCLKO frequency1  
MS_SCLKO high pulse width1  
MS_SCLKO low pulse width1  
MS_SCLKO rise time1  
MS_SCLKO fall time1  
25  
MHz  
ns  
7
20  
15  
8
ns  
9
5
ns  
10  
5
ns  
MC9328MXL Advance Information, Rev. 5.1  
58  
Freescale Semiconductor  
Specifications  
Unit  
Table 21. MSHC Signal Timing Parameter Table (Continued)  
3.ꢀ ꢀ.3V  
Minimum Maximum  
Ref  
No.  
Parameter  
11  
12  
13  
14  
15  
16  
MS_BS delay time1  
3
3
ns  
ns  
ns  
ns  
ns  
ns  
MS_SDIO output delay time1,2  
MS_SDIO input setup time for MS_SCLKO rising edge (RED bit = 0)3  
MS_SDIO input hold time for MS_SCLKO rising edge (RED bit = 0)3  
MS_SDIO input setup time for MS_SCLKO falling edge (RED bit = 1)4  
MS_SDIO input hold time for MS_SCLKO falling edge (RED bit = 1)4  
18  
0
23  
0
1. Loading capacitor condition is less than or equal to 30pF.  
2. An external resistor (100 ~ 200 ohm) should be inserted in series to provide current control on the  
MS_SDIO pin, because of a possibility of signal conflict between the MS_SDIO pin and Memory Stick  
SDIO pin when the pin direction changes.  
3. If the MSC2[RED] bit = 0, MSHC samples MS_SDIO input data at MS_SCLKO rising edge.  
4. If the MSC2[RED] bit = 1, MSHC samples MS_SDIO input data at MS_SCLKO falling edge.  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
59  
Specifications  
3.14 Pulse-Width Modulator  
The PWM can be programmed to select one of two clock signals as its source frequency. The selected  
clock signal is passed through a divider and a prescaler before being input to the counter. The output is  
available at the pulse-width modulator output (PWMO) external pin. Its timing diagram is shown in  
Figure 47 and the parameters are listed in Table 22.  
1
2a  
3b  
System Clock  
2b  
4b  
3a  
4a  
PWM Output  
Figure 47. PWM Output Timing Diagram  
Table 22. PWM Output Timing Parameter Table  
1.8V 0.10V  
3.ꢀV ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
System CLK frequency1  
Clock high time1  
Clock low time1  
0
87  
0
5/10  
5/10  
100  
MHz  
ns  
2a  
2b  
3a  
3b  
4a  
4b  
3.3  
7.5  
ns  
Clock fall time1  
5
5/10  
5/10  
ns  
Clock rise time1  
6.67  
ns  
Output delay time1  
Output setup time1  
5.7  
5.7  
5
ns  
5
ns  
1. CL of PWMO = 30 pF  
3.15 SDRAM Controller  
A write to an address within the memory region initiates the program sequence. The first command issued  
to the SyncFlash is Load Command Register. The value in A [7:0] determines which operation the  
command performs. For this write setup operation, an address of 0x40 is hardware generated. The bank  
and other address lines are driven with the address to be programmed. The next command is Active which  
registers the row address and confirms the bank address. The third command supplies the column address,  
re-confirms the bank address, and supplies the data to be written. SyncFlash does not support burst writes,  
therefore a Burst Terminate command is not required.  
A read to the memory region initiates the status read sequence. The first command issued to the SyncFlash  
is the Load Command Register with A [7:0] set to 0x70 which corresponds to the Read Status Register  
operation. The bank and other address lines are driven to the selected address. The second command is  
MC9328MXL Advance Information, Rev. 5.1  
60  
Freescale Semiconductor  
Specifications  
Active which sets up the status register read. The bank and row addresses are driven during this command.  
The third command of the triplet is Read. Bank and column addresses are driven on the address bus during  
this command. Data is returned from memory on the low order 8 data bits following the CAS latency.  
1
SDCLK  
2
3S  
3
CS  
RAS  
CAS  
3H  
3S  
3S  
3H  
3S  
3H  
3H  
4H  
WE  
ADDR  
DQ  
4S  
ROW/BA  
COL/BA  
8
5
6
Data  
7
3S  
DQM  
3H  
Note: CKE is high during the read/write cycle.  
Figure 48. SDRAM/SyncFlash Read Cycle Timing Diagram  
Table 23. SDRAM Timing Parameter Table  
1.8V ꢀ.1ꢀV  
3.ꢀV ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Unit  
Minimum Maximum Minimum Maximum  
1
2
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
2.67  
6
4
4
ns  
ns  
ns  
ns  
3
11.4  
3.42  
10  
3
3S  
CS, RAS, CAS, WE, DQM setup time  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
61  
Specifications  
Table 23. SDRAM Timing Parameter Table (Continued)  
1.8V ꢀ.1ꢀV  
3.ꢀV ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Unit  
Minimum Maximum Minimum Maximum  
3H  
4S  
4H  
5
CS, RAS, CAS, WE, DQM hold time  
Address setup time  
2.28  
3.42  
2.28  
2
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address hold time  
2
SDRAM access time (CL = 3)  
SDRAM access time (CL = 2)  
SDRAM access time (CL = 1)  
Data out hold time  
6.84  
6.84  
22  
6
5
6
5
22  
6
2.85  
2.5  
7
Data out high-impedance time (CL = 3)  
Data out high-impedance time (CL = 2)  
Data out high-impedance time (CL = 1)  
Active to read/write command period (RC = 1)  
6.84  
6.84  
22  
6
7
6
7
22  
1
1
8
tRCD  
tRCD  
1. tRCD = SDRAM clock cycle time. This settings can be found in the MC9328MXL reference manual.  
MC9328MXL Advance Information, Rev. 5.1  
62  
Freescale Semiconductor  
Specifications  
SDCLK  
CS  
1
3
2
RAS  
CAS  
6
WE  
ADDR  
DQ  
4
5
7
/ BA  
ROW/BA  
COL/BA  
DATA  
8
9
DQM  
Figure 49. SDRAM/SyncFlash Write Cycle Timing Diagram  
Table 24. SDRAM Write Timing Parameter Table  
1.8V ꢀ.1ꢀV  
3.ꢀV ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
4
5
6
SDRAM clock high-level width  
SDRAM clock low-level width  
SDRAM clock cycle time  
Address setup time  
2.67  
6
4
4
ns  
ns  
ns  
ns  
ns  
ns  
11.4  
3.42  
2.28  
10  
3
Address hold time  
2
Precharge cycle period1  
2
2
tRP  
tRP  
2
2
7
Active to read/write command delay  
ns  
tRCD  
tRCD  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
63  
Specifications  
Table 24. SDRAM Write Timing Parameter Table (Continued)  
1.8V ꢀ.1ꢀV 3.ꢀV ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
8
9
Data setup time  
Data hold time  
4.0  
2
2
ns  
ns  
2.28  
1. Precharge cycle timing is included in the write timing diagram.  
2. tRP and tRCD = SDRAM clock cycle time. These settings can be found in the MC9328MXL reference  
manual.  
SDCLK  
1
3
2
CS  
RAS  
CAS  
6
7
7
WE  
ADDR  
DQ  
4
5
BA  
ROW/BA  
DQM  
Figure 5ꢀ. SDRAM Refresh Timing Diagram  
Table 25. SDRAM Refresh Timing Parameter Table  
1.8V ꢀ.1ꢀV 3.ꢀV ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
SDRAM clock high-level width  
SDRAM clock low-level width  
2.67  
6
4
4
ns  
ns  
2
MC9328MXL Advance Information, Rev. 5.1  
64  
Freescale Semiconductor  
Specifications  
Table 25. SDRAM Refresh Timing Parameter Table (Continued)  
1.8V ꢀ.1ꢀV 3.ꢀV ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
3
4
5
6
SDRAM clock cycle time  
Address setup time  
11.4  
3.42  
2.28  
10  
3
ns  
ns  
ns  
ns  
Address hold time  
2
1
1
Precharge cycle period  
tRP  
tRP  
1
1
7
Auto precharge command period  
ns  
tRC  
tRC  
1. tRP and tRC = SDRAM clock cycle time. These settings can be found in the MC9328MXL reference  
manual.  
SDCLK  
CS  
RAS  
CAS  
WE  
ADDR  
DQ  
BA  
DQM  
CKE  
Figure 51. SDRAM Self-Refresh Cycle Timing Diagram  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
65  
Specifications  
3.16 USB Device Port  
Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous  
transfers, and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is  
identical to the bulk data transfer mode, and no additional hardware is supplied to support it. This section  
covers the transfer modes and how they work from the ground up.  
Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same  
packet transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved  
in the form of packets, however, because isochronous pipes are given a fixed portion of the USB  
bandwidth at all times, there is no end-of-transfer.  
USBD_AFE  
(Output)  
t VMO_ROE  
4
t ROE_VPO  
1
USBD_ROE  
(Output)  
6
3
tPERIOD  
tVPO_ROE  
USBD_VPO  
(Output)  
USBD_VMO  
(Output)  
tROE_VMO  
tFEOPT  
USBD_SUSPND  
(Output)  
2
5
USBD_RCV  
(Input)  
USBD_VP  
(Input)  
USBD_VM  
(Input)  
Figure 52. USB Device Timing Diagram for Data Transfer to USB Transceiver (TX)  
Table 26. USB Device Timing Parameter Table for Data Transfer to USB Transceiver (TX)  
1.8V ꢀ.1ꢀV  
3.ꢀV ꢀ.3ꢀV  
Ref No.  
Parameter  
Unit  
Minimum Maximum Minimum Maximum  
1
2
3
tROE_VPO; USBD_ROE active to  
USBD_VPO low  
83.14  
81.55  
83.54  
83.47  
81.98  
83.80  
83.14  
81.55  
83.54  
83.47  
81.98  
83.80  
ns  
ns  
ns  
t
ROE_VMO; USBD_ROE active to  
USBD_VMO high  
tVPO_ROE; USBD_VPO high to  
USBD_ROE deactivated  
MC9328MXL Advance Information, Rev. 5.1  
66  
Freescale Semiconductor  
Specifications  
Table 26. USB Device Timing Parameter Table for Data Transfer to USB Transceiver (TX)  
1.8V ꢀ.1ꢀV 3.ꢀV ꢀ.3ꢀV  
Minimum Maximum Minimum Maximum  
Ref No.  
Parameter  
Unit  
4
tVMO_ROE; USBD_VMO low to  
248.90  
249.13  
248.90  
249.13  
ns  
USBD_ROE deactivated (includes SE0)  
5
6
t
t
FEOPT; SE0 interval of EOP  
PERIOD; Data transfer rate  
160.00  
11.97  
175.00  
12.03  
160.00  
11.97  
175.00  
12.03  
ns  
Mb/s  
USBD_AFE  
(Output)  
USBD_ROE  
(Output)  
USBD_VPO  
(Output)  
USBD_VMO  
(Output)  
USBD_SUSPND  
(Output)  
USBD_RCV  
(Input)  
1
tFEOPR  
USBD_VP  
(Input)  
USBD_VM  
(Input)  
Figure 53. USB Device Timing Diagram for Data Transfer from USB Transceiver (RX)  
Table 27. USB Device Timing Parameter Table for Data Transfer from USB Transceiver (RX)  
1.8V ꢀ.1ꢀV 3.ꢀV ꢀ.3ꢀV  
Ref No.  
Parameter  
Unit  
Minimum  
82  
Maximum  
Minimum  
82  
Maximum  
1
tFEOPR; Receiver SE0 interval of EOP  
ns  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
67  
Specifications  
3.17 I2C Module  
The I2C communication protocol consists of seven elements: START, Data Source/Recipient, Data  
Direction, Slave Acknowledge, Data, Data Acknowledge, and STOP.  
SDA  
5
3
4
SCL  
2
6
1
2
Figure 54. Definition of Bus Timing for I C  
2
Table 28. I C Bus Timing Parameter Table  
1.8V 0.10V  
3.ꢀV ꢀ.3ꢀV  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
1
2
3
4
5
6
Hold time (repeated) START condition  
Data hold time  
182  
0
171  
160  
0
150  
ns  
ns  
ns  
ns  
ns  
ns  
Data setup time  
11.4  
80  
10  
HIGH period of the SCL clock  
LOW period of the SCL clock  
Setup time for STOP condition  
120  
320  
160  
480  
182.4  
3.18 Synchronous Serial Interface  
The transmit and receive sections of the SSI can be synchronous or asynchronous. In synchronous mode,  
the transmitter and the receiver use a common clock and frame synchronization signal. In asynchronous  
mode, the transmitter and receiver each have their own clock and frame synchronization signals.  
Continuous or gated clock mode can be selected. In continuous mode, the clock runs continuously. In  
gated clock mode, the clock functions only during transmission. The internal and external clock timing  
diagrams are shown in Figure 56 through Figure 58 on page 70.  
Normal or network mode can also be selected. In normal mode, the SSI functions with one data word of  
I/O per frame. In network mode, a frame can contain between 2 and 32 data words. Network mode is  
typically used in star or ring-time division multiplex networks with other processors or codecs, allowing  
interface to time division multiplexed networks without additional logic. Use of the gated clock is not  
allowed in network mode. These distinctions result in the basic operating modes that allow the SSI to  
communicate with a wide variety of devices.  
MC9328MXL Advance Information, Rev. 5.1  
68  
Freescale Semiconductor  
Specifications  
1
STCK Output  
4
2
STFS (bl) Output  
STFS (wl) Output  
6
8
12  
10  
11  
32  
STXD Output  
SRXD Input  
31  
Note: SRXD input in synchronous mode only.  
Figure 55. SSI Transmitter Internal Clock Timing Diagram  
1
SRCK Output  
3
5
SRFS (bl) Output  
SRFS (wl) Output  
7
9
13  
14  
SRXD Input  
Figure 56. SSI Receiver Internal Clock Timing Diagram  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
69  
Specifications  
15  
16  
17  
STCK Input  
18  
20  
STFS (bl) Input  
STFS (wl) Input  
24  
22  
28  
27  
34  
26  
STXD Output  
SRXD Input  
33  
Note: SRXD Input in Synchronous mode only  
Figure 57. SSI Transmitter External Clock Timing Diagram  
15  
16  
17  
SRCK Input  
19  
21  
SRFS (bl) Input  
SRFS (wl) Input  
25  
23  
30  
29  
SRXD Input  
Figure 58. SSI Receiver External Clock Timing Diagram  
Table 29. SSI (Port C Primary Function) Timing Parameter Table  
1.8V 0.10V  
Minimum Maximum  
Internal Clock Operation1 (Port C Primary Function2)  
3.ꢀV ꢀ.3ꢀV  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
1
2
3
STCK/SRCK clock period1  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
95  
1.5  
-1.2  
83.3  
1.3  
ns  
ns  
ns  
4.5  
-1.7  
3.9  
-1.5  
-1.1  
MC9328MXL Advance Information, Rev. 5.1  
70  
Freescale Semiconductor  
Specifications  
Table 29. SSI (Port C Primary Function) Timing Parameter Table (Continued)  
1.8V 0.10V 3.ꢀV ꢀ.3ꢀV  
Minimum Maximum  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
4
5
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
2.5  
0.1  
4.3  
-0.8  
2.2  
0.1  
3.8  
-0.8  
3.9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6
1.48  
-1.1  
2.51  
0.1  
4.45  
-1.5  
1.3  
7
-1.1  
2.2  
-1.5  
3.8  
8
4.33  
-0.8  
9
0.1  
-0.8  
13.8  
10  
STCK high to STXD valid from high  
impedance  
14.25  
15.73  
12.5  
11a  
11b  
12  
STCK high to STXD high  
0.91  
0.57  
12.88  
21.1  
0
3.08  
3.19  
13.57  
0.8  
0.5  
11.3  
18.5  
0
2.7  
2.8  
11.9  
ns  
ns  
ns  
ns  
ns  
STCK high to STXD low  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hold time after SRCK low  
13  
14  
External Clock Operation (Port C Primary Function2)  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
STCK/SRCK clock period1  
92.8  
81.4  
40.7  
40.7  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STCK/SRCK clock high period  
STCK/SRCK clock low period  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
27.1  
61.1  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
28.16  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
24.7  
0
0
0
0
0
0
0
STCK high to STXD valid from high  
impedance  
18.01  
15.8  
27a  
27b  
STCK high to STXD high  
STCK high to STXD low  
8.98  
9.12  
18.13  
18.24  
7.0  
8.0  
15.9  
16.0  
ns  
ns  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
71  
Specifications  
Table 29. SSI (Port C Primary Function) Timing Parameter Table (Continued)  
1.8V 0.10V 3.ꢀV ꢀ.3ꢀV  
Ref No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
28  
29  
30  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hole time after SRCK low  
18.47  
1.14  
0
28.5  
16.2  
1.0  
0
25.0  
ns  
ns  
ns  
Synchronous Internal Clock Operation (Port C Primary Function2)  
31  
32  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
15.4  
0
13.5  
0
ns  
ns  
Synchronous External Clock Operation (Port C Primary Function2)  
33  
34  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
1.14  
0
1.0  
0
ns  
ns  
1. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a  
non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been  
inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync  
STFS/SRFS shown in the tables and in the figures.  
2. There are 2 sets of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad  
261) and Port B alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they  
can be viewed both at Port C primary function and Port B alternate function. When SSI signals are  
configured as input, the SSI module selects the input based on status of the FMCR register bits in the  
Clock controller module (CRM). By default, the input are selected from Port C primary function.  
3. bl = bit length; wl = word length.  
Table 3ꢀ. SSI (Port B Alternate Function) Timing Parameter Table  
1.8V 0.10V  
Minimum Maximum  
Internal Clock Operation1 (Port B Alternate Function2)  
3.ꢀV ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Unit  
Minimum Maximum  
1
2
3
4
5
6
7
8
STCK/SRCK clock period1  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
95  
83.3  
1.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1.7  
4.8  
4.2  
1.0  
4.6  
2.0  
4.2  
1.0  
4.6  
-0.1  
3.08  
1.25  
1.71  
-0.1  
3.08  
1.0  
-0.1  
2.7  
5.24  
2.28  
4.79  
1.0  
1.1  
1.5  
-0.1  
2.7  
5.24  
MC9328MXL Advance Information, Rev. 5.1  
72  
Freescale Semiconductor  
Specifications  
Table 3ꢀ. SSI (Port B Alternate Function) Timing Parameter Table (Continued)  
1.8V 0.10V 3.ꢀV ꢀ.3ꢀV  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
Minimum  
Maximum  
9
SRCK high to SRFS (wl) low3  
1.25  
2.28  
1.1  
2.0  
ns  
ns  
10  
STCK high to STXD valid from high  
impedance  
14.93  
16.19  
13.1  
14.2  
11a STCK high to STXD high  
11b STCK high to STXD low  
1.25  
2.51  
12.43  
20  
3.42  
3.99  
14.59  
1.1  
2.2  
10.9  
17.5  
0
3.0  
3.5  
12.8  
ns  
ns  
ns  
ns  
ns  
12  
13  
14  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hold time after SRCK low  
0
External Clock Operation (Port B Alternate Function2)  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
STCK/SRCK clock period1  
92.8  
27.1  
61.1  
81.4  
40.7  
40.7  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
STCK/SRCK clock high period  
STCK/SRCK clock low period  
STCK high to STFS (bl) high3  
SRCK high to SRFS (bl) high3  
STCK high to STFS (bl) low3  
SRCK high to SRFS (bl) low3  
STCK high to STFS (wl) high3  
SRCK high to SRFS (wl) high3  
STCK high to STFS (wl) low3  
SRCK high to SRFS (wl) low3  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
92.8  
29.07  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
81.4  
25.5  
0
0
0
0
0
0
0
STCK high to STXD valid from high  
impedance  
18.9  
16.6  
27a STCK high to STXD high  
27b STCK high to STXD low  
9.23  
10.60  
17.90  
1.14  
0
20.75  
21.32  
29.75  
8.1  
9.3  
15.7  
1.0  
0
18.2  
18.7  
26.1  
ns  
ns  
ns  
ns  
ns  
28  
29  
30  
STCK high to STXD high impedance  
SRXD setup time before SRCK low  
SRXD hold time after SRCK low  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
73  
Specifications  
Table 3ꢀ. SSI (Port B Alternate Function) Timing Parameter Table (Continued)  
1.8V 0.10V 3.ꢀV ꢀ.3ꢀV  
Minimum Maximum  
Synchronous Internal Clock Operation (Port B Alternate Function2)  
Ref  
No.  
Parameter  
Unit  
Minimum  
Maximum  
31  
32  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
18.81  
0
16.5  
0
ns  
ns  
Synchronous External Clock Operation (Port B Alternate Function2)  
33  
34  
SRXD setup before STCK falling  
SRXD hold after STCK falling  
1.14  
0
1.0  
0
ns  
ns  
1. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP/RSCKP = 0) and a  
non-inverted frame sync (TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have been  
inverted, all the timing remains valid by inverting the clock signal STCK/SRCK and/or the frame sync  
STFS/SRFS shown in the tables and in the figures.  
2. There are 2 set of I/O signals for the SSI module. They are from Port C primary function (pad 257 to pad  
261) and Port B alternate function (pad 283 to pad 288). When SSI signals are configured as outputs, they  
can be viewed both at Port C primary function and Port B alternate function. When SSI signals are  
configured as inputs, the SSI module selects the input based on FMCR register bits in the Clock controller  
module (CRM). By default, the input are selected from Port C primary function.  
3. bl = bit length; wl = word length.  
MC9328MXL Advance Information, Rev. 5.1  
74  
Freescale Semiconductor  
Specifications  
3.19 CMOS Sensor Interface  
The CMOS Sensor Interface (CSI) module consists of a control register to configure the interface timing, a control  
register for statistic data generation, a status register, interface logic, a 32 × 32 image data receive FIFO, and a  
16 × 32 statistic data FIFO.  
3.19.1 Gated Clock Mode  
Figure 59 shows the timing diagram when the CMOS sensor output data is configured for negative edge and the  
CSI is programmed to received data on the positive edge. Figure 60 on page 76 shows the timing diagram when the  
CMOS sensor output data is configured for positive edge and the CSI is programmed to received data in negative  
edge. The parameters for the timing diagrams are listed in Table 31 on page 76.  
1
VSYNC  
7
HSYNC  
5
6
2
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
3
4
Figure 59. Sensor Output Data on Pixel Clock Falling Edge  
CSI Latches Data on Pixel Clock Rising Edge  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
75  
Specifications  
1
VSYNC  
7
HSYNC  
PIXCLK  
6
5
2
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
3
4
Figure 6ꢀ. Sensor Output Data on Pixel Clock Rising Edge  
CSI Latches Data on Pixel Clock Falling Edge  
Table 31. Gated Clock Mode Timing Parameters  
Ref No.  
Parameter  
Min  
Max  
Unit  
1
2
3
4
5
6
7
csi_vsync to csi_hsync  
csi_hsync to csi_pixclk  
csi_d setup time  
180  
ns  
ns  
1
1
ns  
csi_d hold time  
1
ns  
csi_pixclk high time  
csi_pixclk low time  
csi_pixclk frequency  
10.42  
10.42  
0
ns  
ns  
48  
MHz  
The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold time and  
setup time, according to:  
Rising-edge latch data  
max rise time allowed = (positive duty cycle - hold time)  
max fall time allowed = (negative duty cycle - setup time)  
In most of case, duty cycle is 50 / 50, therefore  
max rise time = (period / 2 - hold time)  
max fall time = (period / 2 - setup time)  
For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.  
positive duty cycle = 10 / 2 = 5ns  
=> max rise time allowed = 5 - 1 = 4ns  
MC9328MXL Advance Information, Rev. 5.1  
76  
Freescale Semiconductor  
Specifications  
negative duty cycle = 10 / 2 = 5ns  
=> max fall time allowed = 5 - 1 = 4ns  
Falling-edge latch data  
max fall time allowed = (negative duty cycle - hold time)  
max rise time allowed = (positive duty cycle - setup time)  
3.19.2 Non-Gated Clock Mode  
Figure 61 shows the timing diagram when the CMOS sensor output data is configured for negative edge and the  
CSI is programmed to received data on the positive edge. Figure 62 on page 78 shows the timing diagram when the  
CMOS sensor output data is configured for positive edge and the CSI is programmed to received data in negative  
edge. The parameters for the timing diagrams are listed in Table 32 on page 78.  
1
VSYNC  
6
4
5
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
2
3
Figure 61. Sensor Output Data on Pixel Clock Falling Edge  
CSI Latches Data on Pixel Clock Rising Edge  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
77  
Specifications  
1
VSYNC  
6
4
5
PIXCLK  
Valid Data  
Valid Data  
Valid Data  
DATA[7:0]  
2
3
Figure 62. Sensor Output Data on Pixel Clock Rising Edge  
CSI Latches Data on Pixel Clock Falling Edge  
Table 32. Non-Gated Clock Mode Parameters  
Ref No.  
Parameter  
Min  
Max  
Unit  
1
2
3
4
5
6
csi_vsync to csi_pixclk  
csi_d setup time  
180  
1
ns  
ns  
csi_d hold time  
1
ns  
csi_pixclk high time  
csi_pixclk low time  
csi_pixclk frequency  
10.42  
10.42  
0
ns  
ns  
48  
MHz  
The limitation on pixel clock rise time / fall time are not specified. It should be calculated from the hold time and  
setup time, according to:  
max rise time allowed = (positive duty cycle - hold time)  
max fall time allowed = (negative duty cycle - setup time)  
In most of case, duty cycle is 50 / 50, therefore:  
max rise time = (period / 2 - hold time)  
max fall time = (period / 2 - setup time)  
For example: Given pixel clock period = 10ns, duty cycle = 50 / 50, hold time = 1ns, setup time = 1ns.  
positive duty cycle = 10 / 2 = 5ns  
=> max rise time allowed = 5 - 1 = 4ns  
negative duty cycle = 10 / 2 = 5ns  
=> max fall time allowed = 5 - 1 = 4ns  
Falling-edge latch data  
max fall time allowed = (negative duty cycle - hold time)  
max rise time allowed = (positive duty cycle - setup time)  
MC9328MXL Advance Information, Rev. 5.1  
78  
Freescale Semiconductor  
4 Pin-Out and Package Information  
Table 33 illustrates the package pin assignments for the 256-pin MAPBGA package.  
Table 33. MC9328MXL 256 MAPBGA Pin Assignments  
1
2
3
4
5
6
7
8
9
1ꢀ  
11  
12  
13  
14  
15  
16  
A
B
C
NVSS1  
DAT3  
CLK  
NVSS4  
USBD_  
AFE  
NVDD4  
NVSS3  
UART1_  
RTS  
UART1_  
RXD  
NVDD3  
N.C.  
N.C.  
QVDD4  
N.C.  
N.C.  
N.C.  
A24  
A23  
DAT1  
D31  
CMD  
SSI1_RXDAT  
SSI1_RXCLK  
USBD_  
ROE  
USBD_VP  
SSI0_  
RXCLK  
SSI0_  
TXCLK  
SPI1_  
SCLK  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
QVSS4  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
DAT0  
USBD_  
RCV  
UART2_  
CTS  
UART2_  
RXD  
SSI0_  
RXFS  
UART1_  
TXD  
D
E
F
A22  
A20  
A18  
A15  
D30  
A21  
D27  
A17  
D29  
D28  
D25  
D24  
SSI1_RXFS  
D26  
USBD_  
SUSPND  
USBD_  
VPO  
USBD_  
VMO  
SSI0_  
RXDAT  
SPI1_  
SPI_RDY  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
CLS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
DAT2  
A16  
USBD_VM  
UART2_  
RTS  
SSI0_  
TXDAT  
SPI1_SS  
A19  
SSI1_  
TXFS  
UART2_  
TXD  
SSI0_  
TXFS  
SPI1_  
MISO  
REV  
N.C.  
N.C.  
LSCLK  
VSYNC  
SPL_SPR  
LD1  
G
D23  
D21  
SSI1_  
TXDAT  
SSI1_  
TXCLK  
UART1_  
CTS  
SPI1_  
MOSI  
CONTRAST  
OE_ACD  
HSYNC  
H
J
A13  
A12  
A10  
A8  
D22  
A11  
D16  
A7  
A14  
D18  
A9  
D20  
D19  
D17  
D15  
A6  
NVDD1  
NVDD1  
NVDD1  
D14  
NVDD1  
NVDD1  
NVSS1  
NVDD1  
NVSS1  
NVSS1  
NVSS1  
NVSS1  
NVSS1  
RW  
QVSS1  
NVDD1  
NVDD1  
CAS  
QVDD1  
NVSS2  
NVDD2  
TCK  
PS  
NVSS2  
NVDD2  
TIN  
LD0  
LD6  
LD2  
LD7  
LD4  
LD8  
LD5  
LD11  
LD9  
LD3  
QVDD3  
TOUT2  
CSI_D2  
CSI_D6  
QVSS3  
LD15  
K
L
LD10  
PWMO  
LD12  
LD13  
CSI_D0  
LD14  
D13  
D11  
CSI_MCLK  
CSI_D4  
CSI_D1  
CSI_VSYNC  
CSI_D3  
CSI_D5  
M
A5  
D12  
SDCLK  
MA10  
RAS  
RESET_IN  
BIG_ENDI  
AN  
CSI_  
HSYNC  
N
A4  
EB1  
D10  
D7  
A0  
D4  
PA17  
D1  
D3  
DQM1  
RESET_SF  
RESET_  
OUT  
BOOT2  
CSI_  
PIXCLK  
CSI_D7  
TMS  
TDI  
P
R
A3  
D9  
EB0  
A1  
CS3  
CS4  
D6  
D8  
ECB  
D5  
D2  
DQM3  
D0  
SDCKE1  
DQM0  
BOOT3  
BOOT0  
POR  
TRST  
I2C_CLK  
TDO  
I2C_DATA  
QVDD2  
XTAL32K  
1
EB2  
EB3  
LBA  
SDCKE0  
BOOT1  
EXTAL32K  
BCLK  
T
NVSS1  
A2  
OE  
CS5  
CS2  
CS1  
CS0  
MA11  
DQM2  
SDWE  
CLKO  
AVDD1  
TRISTATE  
EXTAL16M  
XTAL16M  
QVSS2  
1.  
burst clock  
Table 34 illustrates the package pin assignments for the 225-pin PBGA package.  
Table 34. MC9328MXL 225 PBGA Pin Assignments  
1
2
3
4
5
6
7
8
9
1ꢀ  
11  
12  
13  
14  
15  
A
B
C
D
E
F
CMD  
SSI1_  
RXCLK  
SSI1_  
TXCLK  
USBD_  
ROE  
USBD_  
SUSPND  
USBD_VM  
SSI0_  
RXFS  
SSI0_  
TXCLK  
SPI1_RDY  
SPI1_  
SCLK  
REV  
PS  
LD2  
LD4  
LD5  
DAT3  
D31  
A23  
A21  
A20  
CLK  
DAT0  
A24  
SSI1_  
RXDAT  
USBD_  
AFE  
USBD_RCV  
DAT2  
USBD_  
VMO  
SSI0_  
RXDAT  
UART1_  
TXD  
SPI1_SS  
LSCLK  
SPL_  
SPR  
LD0  
LD8  
LD3  
LD9  
LD6  
LD7  
NVDD2  
LD13  
SSI1_  
RXFS  
SSI1_  
TXFS  
USBD_  
VPO  
UART2_  
RXD  
SSI0_  
TXFS  
UART1_  
RTS  
CONTRAST VSYNC  
LD12  
DAT1  
D30  
SSI1_  
TXDAT  
NVDD1  
NVDD1  
NVDD1  
USBD_VP  
QVSS  
QVDD4  
UART2_  
TXD  
NVDD3  
SPI1_  
MOSI  
HSYNC  
LD1  
LD11  
TIN  
TOUT2  
CSI_D0  
CSI_D2  
A22  
D29  
D27  
UART2_  
RTS  
UART1_  
RXD  
UART1_  
CTS  
SPI1_  
MISO  
OE_  
ACD  
LD10  
LD14  
CSI_  
MCLK  
A19  
D28  
NVDD1  
UART2_  
CTS  
SSI0_  
RXCLK  
SSI0_  
TXDAT  
CLS  
QVDD3  
LD15  
CSI_D7  
CSI_D4  
G
H
A17  
A15  
A18  
A16  
D26  
D23  
D25  
D24  
NVDD1  
D22  
NVSS  
NVSS  
NVDD4  
NVSS  
NVSS  
NVSS  
NVSS  
NVSS  
QVSS  
PWMO CSI_D3  
CSI_HSYNC  
I2C_DATA  
CSI_D5  
TMS  
NVDD2  
CSI_D1  
CSI_  
CSI_  
VSYNC  
PIXCLK  
J
A14  
A13  
A12  
A11  
D21  
CS2  
D20  
D19  
NVDD1  
NVDD1  
NVSS  
NVSS  
NVSS  
QVSS  
QVDD1  
NVDD1  
NVSS  
NVSS  
ECB  
CSI_D6  
D1  
I2C_  
CLK  
TCK  
TDI  
TDO  
BOOT1  
BOOT0  
K
BOOT2  
BIG_  
ENDIAN  
RESET_  
OUT  
XTAL32K  
L
A10  
D16  
A9  
D17  
D13  
D18  
D10  
NVDD1  
EB3  
NVDD1  
NVDD1  
CS5  
CS4  
D2  
NVSS  
RW  
NVSS  
NVSS  
POR  
QVSS  
XTAL16M  
RESET_IN  
EXTAL32K  
EXTAL16M  
1
M
D15  
CS1  
BOOT3  
QVDD2  
BCLK  
N
P
R
A8  
D14  
A6  
A7  
A5  
D12  
A4  
EB0  
A3  
D9  
A2  
D8  
A1  
D7  
CS3  
D6  
CS0  
D5  
PA17  
MA10  
D4  
D0  
MA11  
LBA  
DQM2  
DQM1  
D3  
DQM0  
RAS  
SDCKE0  
SDCKE1  
CAS  
TRISTATE  
CLKO  
TRST  
RESETSF  
AVDD1  
D11  
EB1  
EB2  
OE  
A0  
SDCLK  
DQM3  
SDWE  
1.  
burst clock  
Pin-Out and Package Information  
4.1 MAPBGA 256 Package Dimensions  
Figure 63 illustrates the 256 MAPBGA 14 mm × 14 mm × 1.30 mm package, which has 0.8 mm spacing between  
the pads. The device designator for the MAPBGA package is VH.  
Case Outline 1367  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14 5M-1994.  
3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.  
4. DATUM A, THE SEATING PLANE IS DEFINED BY SPHERICAL CROWNS OF THE SOLDER BALLS.  
Figure 63. MC9328MXL 256 MAPBGA Mechanical Drawing  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
81  
Pin-Out and Package Information  
4.2 PBGA 225 Package Dimensions  
Figure 64 illustrates the 225 PBGA 13 mm × 13 mm × 0.8 mm package.  
Case Outline 13ꢀ4B  
TOP VIEW  
BOTTOM VIEW  
SIDE VIEW  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. DIMENSIONS AND TOLERANCES PER ASME Y14 5M-1994.  
3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.  
4. DATUM A, THE SEATING PLANE IS DEFINED BY SPHERICAL CROWNS OF THE SOLDER BALLS.  
5. PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF  
PACKAGE.  
Figure 64. MC9328MXL 225 PBGA Mechanical Drawing  
MC9328MXL Advance Information, Rev. 5.1  
82  
Freescale Semiconductor  
NOTES  
MC9328MXL Advance Information, Rev. 5.1  
Freescale Semiconductor  
83  
Information in this document is provided solely to enable system and software implementers to use  
Freescale Semiconductor products. There are no express or implied copyright licenses granted  
hereunder to design or fabricate any integrated circuits or integrated circuits based on the information  
in this document.  
How to Reach Us:  
USA/Europe/Locations Not Listed:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-521-6274 or 480-768-2130  
Freescale Semiconductor reserves the right to make changes without further notice to any products  
herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any  
and all liability, including without limitation consequential or incidental damages. “Typical” parameters  
that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating parameters,  
including “Typicals”, must be validated for each customer application by customer’s technical experts.  
Freescale Semiconductor does not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized for use as components  
in systems intended for surgical implant into the body, or other applications intended to support or  
sustain life, or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was  
negligent regarding the design or manufacture of the part.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Technical Information Center  
3-20-1, Minami-Azabu, Minato-ku  
Tokyo 106-8573, Japan  
81-3-3440-3569  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
852-26668334  
Home Page:  
www.freescale.com  
Learn More: For more information about Freescale products, please visit www.freescale.com.  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other  
product or service names are the property of their respective owners. ARM and the ARM POWERED  
logo are the registered trademarks of ARM Limited. ARM9, ARM920T, and ARM9TDMI are the  
trademarks of ARM Limited.  
© Freescale Semiconductor, Inc. 2004. All rights reserved.  
MC9328MXL/D  
Rev. 5.1  
11/2004  

相关型号:

MC9328MXLVM15

MX Family of applications processors
FREESCALE

MC9328MXLVM15

DRAGONBALL CORSICA PB-FR
NXP

MC9328MXLVM15R2

32-BIT, 150MHz, RISC PROCESSOR, PBGA256, 14 X 14 MM, 1.30 MM HEIGHT, 0.80 MM PITCH, ROHS COMPLIANT, MAPBGA-256
NXP

MC9328MXLVM20

i.MX Integrated Portable System Processor
FREESCALE

MC9328MXLVM20

DRAGONBALL CORSICA PB-FR
NXP

MC9328MXLVM20R2

RISC Microprocessor, 32-Bit, 200MHz, CMOS, PBGA256, 14 X 14 MM, 1.30 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, MAPBGA-256
MOTOROLA

MC9328MXLVM20R2

IC,MICROPROCESSOR,32-BIT,CMOS,BGA,256PIN,PLASTIC
NXP

MC9328MXLVP15

MX Family of applications processors
FREESCALE

MC9328MXLVP15

DRAGONBALL MXL 225 PB-FR
NXP

MC9328MXLVP20

i.MX Integrated Portable System Processor
FREESCALE

MC9328MXLVP20

200MHz, RISC PROCESSOR, PBGA225, 13 X 13 MM, 0.80 MM PITCH, LEAD FREE, PLASTIC, BGA-225
MOTOROLA

MC9328MXLVP20

32-BIT, 200MHz, RISC PROCESSOR, PBGA225, 13 X 13 MM, 0.80 MM PITCH, ROHS COMPLIANT, PLASTIC, MAPBGA-225
NXP