MCF53281CVM240J [NXP]

IC,MICROPROCESSOR,32-BIT,BGA,256PIN,PLASTIC;
MCF53281CVM240J
型号: MCF53281CVM240J
厂家: NXP    NXP
描述:

IC,MICROPROCESSOR,32-BIT,BGA,256PIN,PLASTIC

文件: 总50页 (文件大小:600K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MCF5329DS  
Rev. 5, 11/2008  
MCF5329  
MAPBGA–256  
17mm x 17mm  
MAPBGA–196  
15mm x 15mm  
MCF532x ColdFire®  
Microprocessor Data Sheet  
Features  
Version 3 ColdFire variable-length RISC processor core  
• System debug support  
• JTAG support for system level board testing  
• On-chip memories  
– 16-Kbyte unified write-back cache  
– 32-Kbyte dual-ported SRAM on CPU internal bus,  
accessible by core and non-core bus masters (e.g., DMA,  
FEC, LCD controller, and USB host and OTG)  
• Power management  
• Liquid Crystal Display Controller (LCDC)  
• Embedded Voice-over-IP (VoIP) system solution  
• SDR/DDR SDRAM Controller  
• Universal Serial Bus (USB) Host Controller  
• Universal Serial Bus (USB) On-the-Go (OTG) controller  
• Synchronous Serial Interface (SSI)  
• Fast Ethernet Controller (FEC)  
• Cryptography Hardware Accelerators  
• FlexCAN Module  
• Three Universal Asynchronous Receiver Transmitters  
(UARTs)  
• I2C Module  
• Queued Serial Peripheral Interface (QSPI)  
• Pulse Width Modulation (PWM) module  
• Real Time Clock  
• Four 32-bit DMA Timers  
• Software Watchdog Timer  
• Four Periodic Interrupt Timers (PITs)  
• Phase Locked Loop (PLL)  
• Interrupt Controllers (x2)  
• DMA Controller  
• FlexBus (External Interface)  
• Chip Configuration Module (CCM)  
• Reset Controller  
• General Purpose I/O interface  
© Freescale Semiconductor, Inc., 2008. All rights reserved.  
Table of Contents  
1
2
3
MCF532x Family Comparison . . . . . . . . . . . . . . . . . . . . . . . . .3  
5.7.2 DDR SDRAM AC Timing Characteristics. . . . . 25  
5.8 General Purpose I/O Timing . . . . . . . . . . . . . . . . . . . . 28  
5.9 Reset and Configuration Override Timing . . . . . . . . . . 29  
5.10 LCD Controller Timing Specifications . . . . . . . . . . . . . 30  
5.11 USB On-The-Go . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
5.12 ULPI Timing Specification . . . . . . . . . . . . . . . . . . . . . . 33  
5.13 SSI Timing Specifications . . . . . . . . . . . . . . . . . . . . . . 33  
5.14 I2C Input/Output Timing Specifications . . . . . . . . . . . . 35  
5.15 Fast Ethernet AC Timing Specifications . . . . . . . . . . . 37  
5.15.1 MII Receive Signal Timing . . . . . . . . . . . . . . . . 37  
5.15.2 MII Transmit Signal Timing. . . . . . . . . . . . . . . . 37  
5.15.3 MII Async Inputs Signal Timing . . . . . . . . . . . . 38  
5.15.4 MII Serial Management Channel Timing . . . . . 38  
5.16 32-Bit Timer Module Timing Specifications . . . . . . . . . 39  
5.17 QSPI Electrical Specifications . . . . . . . . . . . . . . . . . . . 39  
5.18 JTAG and Boundary Scan Timing . . . . . . . . . . . . . . . . 40  
5.19 Debug AC Timing Specifications . . . . . . . . . . . . . . . . . 42  
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
7.1 Package Dimensions—256 MAPBGA. . . . . . . . . . . . . 45  
7.2 Package Dimensions—196 MAPBGA. . . . . . . . . . . . . 46  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Hardware Design Considerations. . . . . . . . . . . . . . . . . . . . . . .5  
3.1 PLL Power Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3.2 USB Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3.3 Supply Voltage Sequencing and Separation Cautions . .5  
3.3.1 Power Up Sequence . . . . . . . . . . . . . . . . . . . . . .5  
3.3.2 Power Down Sequence . . . . . . . . . . . . . . . . . . . .6  
Pin Assignments and Reset States . . . . . . . . . . . . . . . . . . . . .6  
4.1 Signal Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
4.2 Pinout—256 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.3 Pinout—196 MAPBGA . . . . . . . . . . . . . . . . . . . . . . . . .15  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
5.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .17  
5.3 ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5.4 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .18  
5.5 Oscillator and PLL Electrical Characteristics . . . . . . . .19  
5.6 External Interface Timing Characteristics . . . . . . . . . . .20  
5.6.1 FlexBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5.7 SDRAM Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5.7.1 SDR SDRAM AC Timing Characteristics. . . . . .23  
4
5
6
7
8
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
2
Freescale Semiconductor  
MCF532x Family Comparison  
USB OTG  
(To/From SRAM backdoor)  
FlexBus  
Chip  
Selects  
SDRAMC  
S4  
S1  
USB Host  
LCDC  
M6  
M5  
USB OTG  
USB Host  
LCDC  
External  
Interface  
XBS  
M4  
M2  
(To/From PADI)  
SDRAMC  
M1 S7 M0  
S6  
QSPI  
Cryptography  
Modules  
2
I C  
INTC0  
INTC1  
UART  
RNGA  
SDRAMC  
SKHA  
MDHA  
(To/From PADI)  
PWM  
DMA Timer  
FEC  
FEC  
CANRX  
CANTX  
SSI  
2
FlexCAN  
DMA Timers  
QSPI  
I C  
UARTs  
(To/From PADI)  
DREQn  
DMA  
DACKn  
D[31:0]  
A[23:0]  
DIV  
EMAC  
R/W  
ULPI Interface  
V3 ColdFire CPU  
CS[5:0]  
TA  
TS  
USB OTG  
USB Host  
(To/From PADI)  
PORTS  
SDRAMC  
SSI  
BE/BWE[3:0]  
TRST  
16 KByte  
Cache  
TCLK  
TMS  
TDI  
JTAG  
TAP  
PWMs, EPORT,  
Watchdog, PITs  
TDO  
(1024x32)x4  
RESET  
Reset  
PLL  
32 KByte  
SRAM  
LCDC  
RTC  
RCON  
JTAG_EN  
RSTOUT  
(4096x32)x2  
(To/From XBS backdoor)  
Figure 1. MCF5329 Block Diagram  
1
MCF532x Family Comparison  
The following table compares the various device derivatives available within the MCF532x family.  
Table 1. MCF532x Family Configurations  
Module  
MCF5327  
MCF5328 MCF53281 MCF5329  
ColdFire Version 3 Core with EMAC  
(Enhanced Multiply-Accumulate Unit)  
Core (System) Clock  
up to 240 MHz  
up to 80 MHz  
Peripheral and External Bus Clock  
(Core clock ÷ 3)  
Performance (Dhrystone/2.1 MIPS)  
Unified Cache  
up to 211  
16 Kbytes  
32 Kbytes  
Static RAM (SRAM)  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
3
 
Ordering Information  
Table 1. MCF532x Family Configurations (continued)  
Module  
MCF5327  
MCF5328 MCF53281 MCF5329  
LCD Controller  
SDR/DDR SDRAM Controller  
USB 2.0 Host  
USB 2.0 On-the-Go  
UTMI+ Low Pin Interface (ULPI)  
Synchronous Serial Interface (SSI)  
Fast Ethernet Controller (FEC)  
Cryptography Hardware Accelerators  
Embedded Voice-over-IP System Solution  
FlexCAN 2.0B communication module  
UARTs  
3
3
3
3
I2C  
QSPI  
PWM Module  
Real Time Clock  
32-bit DMA Timers  
4
4
4
4
Watchdog Timer (WDT)  
Periodic Interrupt Timers (PIT)  
Edge Port Module (EPORT)  
Interrupt Controllers (INTC)  
16-channel Direct Memory Access (DMA)  
FlexBus External Interface  
General Purpose I/O Module (GPIO)  
JTAG - IEEE® 1149.1 Test Access Port  
Package  
4
4
4
4
2
2
2
2
196  
256  
256  
256  
MAPBGA  
MAPBGA  
MAPBGA  
MAPBGA  
2
Ordering Information  
Table 2. Orderable Part Numbers  
Freescale Part  
Number  
Description  
Package  
Speed  
Temperature  
MCF5327CVM240  
MCF5328CVM240  
MCF53281CVM240  
MCF5329CVM240  
MCF5327 RISC Microprocessor  
MCF5328 RISC Microprocessor  
MCF53281 RISC Microprocessor  
MCF5329 RISC Microprocessor  
196 MAPBGA  
256 MAPBGA  
256 MAPBGA  
256 MAPBGA  
240 MHz  
240 MHz  
240 MHz  
240 MHz  
–40° to +85° C  
–40° to +85° C  
–40° to +85° C  
–40° to +85° C  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
4
Freescale Semiconductor  
 
 
Hardware Design Considerations  
3
Hardware Design Considerations  
3.1  
PLL Power Filtering  
To further enhance noise isolation, an external filter is strongly recommended for PLL analog V pins. The filter shown in  
DD  
Figure 2 should be connected between the board V and the PLLV pins. The resistor and capacitors should be placed as  
DD  
DD  
close to the dedicated PLLV pin as possible.  
DD  
10 Ω  
Board IVDD  
PLL VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 2. System PLL V Power Filter  
DD  
3.2  
USB Power Filtering  
To minimize noise, external filters are required for each of the USB power pins. The filter shown in Figure 3 should be  
connected between the board EV or IV and each of the USBV pins. The resistor and capacitors should be placed as  
DD  
DD  
DD  
close to the dedicated USBV pin as possible.  
DD  
0 Ω  
Board EVDD  
USB VDD Pin  
10 µF  
0.1 µF  
GND  
Figure 3. USB V Power Filter  
DD  
NOTE  
In addition to the above filter circuitry, a 0.01 F capacitor is also recommended in parallel  
with those shown.  
3.3  
Supply Voltage Sequencing and Separation Cautions  
The relationship between SDV and EV is non-critical during power-up and power-down sequences. SDV (2.5V or  
DD  
DD  
DD  
3.3V) and EV are specified relative to IV  
.
DD  
DD  
3.3.1  
Power Up Sequence  
If EV /SDV are powered up with IV at 0 V, the sense circuits in the I/O pads cause all pad output drivers connected to  
DD  
DD  
DD  
the EV /SDV to be in a high impedance state. There is no limit on how long after EV /SDV powers up before IV  
DD  
DD  
DD  
DD  
DD  
must powered up. IV should not lead the EV , SDV , or PLLV by more than 0.4 V during power ramp-up or there is  
DD  
DD  
DD  
DD  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
5
 
 
 
 
Pin Assignments and Reset States  
high current in the internal ESD protection diodes. The rise times on the power supplies should be slower than 500 us to avoid  
turning on the internal ESD protection clamp diodes.  
3.3.2  
Power Down Sequence  
If IV /PLLV are powered down first, sense circuits in the I/O pads cause all output drivers to be in a high impedance state.  
DD  
DD  
There is no limit on how long after IV and PLLV power down before EV or SDV must power down. IV should  
DD  
DD  
DD  
DD  
DD  
not lag EV , SDV , or PLLV going low by more than 0.4 V during power down or there is undesired high current in the  
DD  
DD  
DD  
ESD protection diodes. There are no requirements for the fall times of the power supplies.  
The recommended power down sequence is as follows:  
1. Drop IV /PLLV to 0 V.  
DD  
DD  
2. Drop EV /SDV supplies.  
DD  
DD  
4
Pin Assignments and Reset States  
4.1  
Signal Multiplexing  
The following table lists all the MCF532x pins grouped by function. The Dir column is the direction for the primary function  
of the pin only. Refer to Section 7, “Package Information,” for package diagrams. For a more detailed discussion of the  
MCF532x signals, consult the MCF5329 Reference Manual (MCF5329RM).  
NOTE  
In this table and throughout this document, a single signal within a group is designated  
without square brackets (i.e., A23), while designations for multiple signals within a group  
use brackets (i.e., A[23:21]) and is meant to include all signals within the two bracketed  
numbers when these numbers are separated by a colon.  
NOTE  
The primary functionality of a pin is not necessarily its default functionality. Pins that are  
muxed with GPIO default to their GPIO functionality.  
Table 3. MCF5327/8/9 Signal Information and Muxing  
MCF53281  
MCF5329  
256  
MCF5327  
196  
MAPBGA  
MCF5328  
256  
MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
Reset  
MAPBGA  
RESET2  
RSTOUT  
I
J11  
N15  
P14  
N15  
P14  
EVDD  
EVDD  
O
P14  
Clock  
EVDD  
EVDD  
EVDD  
EVDD  
SDVDD  
EXTAL  
XTAL2  
I
L14  
K14  
M11  
N11  
L1  
P16  
N16  
P13  
R13  
T2  
P16  
N16  
P13  
R13  
T2  
O
I
EXTAL32K  
XTAL32K  
FB_CLK  
O
O
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
6
Freescale Semiconductor  
 
Pin Assignments and Reset States  
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)  
MCF53281  
MCF5329  
256  
MCF5327  
196  
MAPBGA  
MCF5328  
256  
MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
MAPBGA  
Mode Selection  
RCON2  
I
I
M7  
M8  
M8  
EVDD  
EVDD  
DRAMSEL  
G11  
H12  
H12  
FlexBus  
SDVDD  
SDVDD  
A[23:22]  
A[21:16]  
FB_CS[5:4]  
O
O
B11,C11  
C13, D13  
C13, D13  
B12, A12,  
D11, C12,  
B13, A13  
E13, A14,  
B14, C14,  
A15, B15  
E13, A14,  
B14, C14,  
A15, B15  
SD_BA[1:0]3  
SD_A[13:11]3  
O
O
A14, B14  
D14, B16  
D14, B16  
SDVDD  
SDVDD  
A[15:14]  
A[13:11]  
C13, C14,  
D12  
C15, C16,  
D15  
C15, C16,  
D15  
SDVDD  
SDVDD  
A10  
O
O
D13  
D16  
D16  
A[9:0]  
SD_A[9:0]3  
D14,  
E11–14,  
F11–F14,  
G14  
E14–E16,  
F13–F16,  
G16– G14  
E14–E16,  
F13–F16,  
G16– G14  
SD_D[31:16]4  
FB_D[31:17]4  
I/O  
I/O  
H3–H1,  
M1–M4,  
M1–M4,  
SDVDD  
SDVDD  
D[31:16]  
D[15:1]  
J4–J1, K1, N1–N4, T3, N1–N4, T3,  
L4, M2, M3, P4, R4, T4, P4, R4, T4,  
N1, N2, P1, N5, P5, R5, N5, P5, R5,  
P2, N3  
T5  
T5  
F4–F1,  
J3–J1,  
J3–J1,  
G5–G2, L5, K4–K1, L2, K4–K1, L2,  
N4, P4, M5, R6, N7, P7, R6, N7, P7,  
N5, P5, L6 R7, T7, P8, R7, T7, P8,  
R8  
R8  
D02  
FB_D[16]4  
I/O  
O
M6  
T8  
T8  
SDVDD  
SDVDD  
BE/BWE[3:0]  
PBE[3:0]  
SD_DQM[3:0]3  
H4, P3, G1, L4, P6, L3, L4, P6, L3,  
M4  
N6  
N6  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
OE  
TA2  
R/W  
TS  
PBUSCTL3  
PBUSCTL2  
PBUSCTL1  
PBUSCTL0  
O
I
P6  
R9  
R9  
G13  
N6  
G13  
N8  
G13  
N8  
O
O
DACK0  
D2  
H4  
H4  
Chip Selects  
SDVDD  
SDVDD  
FB_CS[5:4]  
FB_CS[3:1]  
PCS[5:4]  
PCS[3:1]  
O
O
B13, A13  
B13, A13  
A11, D10,  
C10  
A12, B12,  
C12  
A12, B12,  
C12  
SDVDD  
FB_CS0  
O
B10  
D12  
D12  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
7
Pin Assignments and Reset States  
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)  
MCF53281  
MCF5329  
256  
MCF5327  
196  
MAPBGA  
MCF5328  
256  
MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
MAPBGA  
SDRAM Controller  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SDVDD  
SD_A10  
SD_CKE  
O
O
O
O
O
O
O
O
O
O
O
O
L2  
E1  
K3  
K2  
P2  
H2  
R1  
R2  
J4  
P2  
H2  
R1  
R2  
J4  
SD_CLK  
SD_CLK  
SD_CS1  
SD_CS0  
E2  
H5  
K6  
L3  
M1  
K4  
D1  
H1  
L1  
T6  
P3  
R3  
P1  
H3  
H1  
L1  
SD_DQS3  
SD_DQS2  
SD_SCAS  
SD_SRAS  
SD_SDR_DQS  
SD_WE  
T6  
P3  
R3  
P1  
H3  
External Interrupts Port5  
IRQ72  
IRQ62  
PIRQ72  
PIRQ62  
I
I
J13  
J13  
J14  
J13  
J14  
EVDD  
EVDD  
USBHOST_  
VBUS_EN  
IRQ52  
PIRQ52  
USBHOST_  
VBUS_OC  
I
J15  
J15  
EVDD  
IRQ42  
IRQ32  
IRQ22  
IRQ12  
PIRQ42  
PIRQ32  
PIRQ22  
PIRQ12  
SSI_MCLK  
I
I
I
I
L13  
M14  
M13  
N13  
J16  
K14  
K15  
K16  
J16  
K14  
K15  
K16  
EVDD  
EVDD  
EVDD  
EVDD  
USB_CLKIN  
DREQ12  
SSI_CLKIN  
FEC  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
FEC_MDC  
FEC_MDIO  
FEC_TXCLK  
FEC_TXEN  
FEC_TXD0  
FEC_COL  
PFECI2C3  
PFECI2C2  
PFECH7  
PFECH6  
PFECH5  
PFECH4  
PFECH3  
PFECH2  
PFECH1  
I2C_SCL2  
I2C_SDA2  
O
I/O  
I
C1  
C2  
A2  
B2  
E4  
A8  
C8  
D8  
C6  
C1  
C2  
A2  
B2  
E4  
A8  
C8  
D8  
C6  
O
O
I
ULPI_DATA0  
ULPI_CLK  
ULPI_NXT  
ULPI_STP  
ULPI_DATA4  
FEC_RXCLK  
FEC_RXDV  
FEC_RXD0  
I
I
I
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
8
Freescale Semiconductor  
Pin Assignments and Reset States  
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)  
MCF53281  
MCF5329  
256  
MCF5327  
196  
MAPBGA  
MCF5328  
256  
MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
MAPBGA  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
FEC_CRS  
FEC_TXD[3:1]  
FEC_TXER  
PFECH0  
ULPI_DIR  
I
O
O
I
B8  
D3–D1  
B1  
B8  
D3–D1  
B1  
PFECL[7:5] ULPI_DATA[3:1]  
PFECL4  
PFECL[3:1] ULPI_DATA[7:5]  
FEC_RXD[3:1]  
FEC_RXER  
E7, A6, B6 E7, A6, B6  
PFECL0  
I
D4  
D4  
LCD Controller  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
LCD_D17  
LCD_D16  
LCD_D17  
LCD_D16  
LCD_D15  
LCD_D14  
LCD_D13  
LCD_D12  
LCD_D[11:8]  
PLCDDH1  
PLCDDH0  
PLCDDH1  
PLCDDH0  
PLCDDM7  
PLCDDM6  
PLCDDM5  
PLCDDM4  
PLCDDM[3:0]  
CANTX  
O
C9  
D9  
CANRX  
O
O
O
O
O
O
O
O
A6  
B6  
C6  
D6  
A5  
B5  
C9  
D9  
A7  
B7  
C7  
D7  
A7  
B7  
C7  
D7  
C5, D5, A4, D6, E6, A5, D6, E6, A5,  
B4  
C4  
B3  
A3  
A2  
B5  
C5  
D5  
A4  
A3  
B5  
C5  
D5  
A4  
A3  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
LCD_D7  
LCD_D6  
PLCDDL7  
PLCDDL6  
PLCDDL5  
PLCDDL4  
PLCDDL[3:0]  
O
O
O
O
O
LCD_D5  
LCD_D4  
LCD_D[3:0]  
D4, C3, D3, B4, C4, B3, B4, C4, B3,  
B2  
C3  
C3  
EVDD  
LCD_ACD/  
LCD_OE  
PLCDCTLH0  
O
D7  
B9  
B9  
EVDD  
EVDD  
EVDD  
LCD_CLS  
PLCDCTLL7  
O
O
O
C7  
B7  
A7  
A9  
A9  
LCD_CONTRAST PLCDCTLL6  
D10  
C10  
D10  
C10  
LCD_FLM/  
PLCDCTLL5  
LCD_VSYNC  
EVDD  
LCD_LP/  
PLCDCTLL4  
O
A8  
B10  
B10  
LCD_HSYNC  
EVDD  
EVDD  
EVDD  
EVDD  
LCD_LSCLK  
LCD_PS  
PLCDCTLL3  
PLCDCTLL2  
PLCDCTLL1  
O
O
O
O
B8  
C8  
D8  
B9  
A10  
A11  
B11  
C11  
A10  
A11  
B11  
C11  
LCD_REV  
LCD_SPL_SPR PLCDCTLL0  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
9
Pin Assignments and Reset States  
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)  
MCF53281  
MCF5329  
256  
MCF5327  
196  
MAPBGA  
MCF5328  
256  
MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
MAPBGA  
USB Host & USB On-the-Go  
USB  
VDD  
USBOTG_M  
USBOTG_P  
USBHOST_M  
USBHOST_P  
I/O  
I/O  
I/O  
I/O  
G12  
H13  
K13  
J12  
L15  
L16  
L15  
L16  
USB  
VDD  
USB  
VDD  
M15  
M16  
M15  
M16  
USB  
VDD  
FlexCAN (MCF53281 & MCF5329 only)  
CANRX and CANTX do not have dedicated bond pads. Please refer to the following pins for muxing:  
I2C_SDA, SSI_RXD, or LCD_D16 for CANRX and I2C_SCL, SSI_TXD, or LCD_D17 for CANTX.  
PWM  
EVDD  
EVDD  
EVDD  
EVDD  
PWM7  
PWM5  
PWM3  
PWM1  
PPWM7  
PPWM5  
PPWM3  
PPWM1  
I/O  
I/O  
I/O  
I/O  
H13  
H14  
H15  
H16  
H13  
H14  
H15  
H16  
DT3OUT  
DT2OUT  
DT3IN  
DT2IN  
H14  
J14  
SSI  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
SSI_MCLK  
SSI_BCLK  
SSI_FS  
PSSI4  
PSSI3  
PSSI2  
PSSI1  
PSSI0  
PSSI1  
PSSI0  
PWM7  
PWM5  
CANRX  
CANTX  
I/O  
I/O  
I/O  
I
G4  
F4  
G3  
G4  
F4  
G3  
G2  
G1  
U2CTS  
U2RTS  
U2RXD  
U2TXD  
U2RXD  
U2TXD  
SSI_RXD2  
SSI_TXD2  
SSI_RXD2  
SSI_TXD2  
O
I
G2  
G1  
O
I2C  
I2C_SCL2  
I2C_SDA2  
I2C_SCL2  
I2C_SDA2  
PFECI2C1  
PFECI2C0  
PFECI2C1  
PFECI2C0  
CANTX  
CANRX  
U2TXD  
U2RXD  
U2TXD  
U2RXD  
I/O  
I/O  
I/O  
I/O  
F3  
F2  
EVDD  
EVDD  
EVDD  
EVDD  
E3  
E4  
F3  
F2  
DMA  
DACK[1:0] and DREQ[1:0] do not have dedicated bond pads. Please refer to the following pins for muxing:  
TS for DACK0, DT0IN for DREQ0, DT1IN for DACK1, and IRQ1 for DREQ1.  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
10  
Freescale Semiconductor  
Pin Assignments and Reset States  
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)  
MCF53281  
MCF5329  
256  
MCF5327  
196  
MAPBGA  
MCF5328  
256  
MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
MAPBGA  
QSPI  
EVDD  
EVDD  
QSPI_CS2  
QSPI_CS1  
PQSPI5  
PQSPI4  
U2RTS  
PWM7  
O
O
P10  
L11  
T12  
T13  
T12  
T13  
USBOTG_  
PU_EN  
EVDD  
EVDD  
EVDD  
EVDD  
QSPI_CS0  
QSPI_CLK  
QSPI_DIN  
PQSPI3  
PQSPI2  
PQSPI1  
PQSPI0  
PWM5  
I2C_SCL2  
U2CTS  
O
O
I
P11  
R12  
N12  
P12  
P11  
R12  
N12  
P12  
N10  
L10  
M10  
QSPI_DOUT  
I2C_SDA  
O
UARTs  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
U1CTS  
U1RTS  
U1TXD  
U1RXD  
U0CTS  
U0RTS  
U0TXD  
U0RXD  
PUARTL7  
PUARTL6  
PUARTL5  
PUARTL4  
PUARTL3  
PUARTL2  
PUARTL1  
PUARTL0  
SSI_BCLK  
SSI_FS  
SSI_TXD2  
SSI_RXD2  
I
O
O
I
C9  
D9  
D11  
E10  
E11  
E12  
R15  
T15  
T14  
R14  
D11  
E10  
E11  
E12  
R15  
T15  
T14  
R14  
A9  
A10  
P13  
N12  
P12  
P11  
I
O
O
I
Note: The UART2 signals are multiplexed on the QSPI, SSI, DMA Timers, and I2C pins.  
DMA Timers  
EVDD  
EVDD  
EVDD  
EVDD  
DT3IN  
DT2IN  
DT1IN  
DT0IN  
PTIMER3  
PTIMER2  
PTIMER1  
PTIMER0  
DT3OUT  
DT2OUT  
DT1OUT  
DT0OUT  
U2RXD  
U2TXD  
DACK1  
DREQ02  
I
I
I
I
C1  
B1  
A1  
C2  
F1  
E1  
E2  
E3  
F1  
E1  
E2  
E3  
BDM/JTAG6  
JTAG_EN7  
DSCLK  
PSTCLK  
BKPT  
I
I
L12  
N14  
L7  
M13  
P15  
T9  
M13  
P15  
T9  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
EVDD  
TRST2  
TCLK2  
TMS2  
TDI2  
TDO  
O
I
M12  
K12  
N9  
R16  
N14  
N11  
R16  
N14  
N11  
DSI  
I
DSO  
O
O
DDATA[3:0]  
N7, P7, L8, N9, P9, N10, N9, P9, N10,  
M8 P10 P10  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
11  
Pin Assignments and Reset States  
Table 3. MCF5327/8/9 Signal Information and Muxing (continued)  
MCF53281  
MCF5329  
256  
MCF5327  
196  
MAPBGA  
MCF5328  
256  
MAPBGA  
Signal Name  
GPIO  
Alternate 1  
Alternate 2  
MAPBGA  
EVDD  
PST[3:0]  
O
N8, P8, L9,  
M9  
R10, T10,  
R11, T11  
R10, T10,  
R11, T11  
Test  
TEST7  
I
I
E10  
A16  
N13  
A16  
N13  
EVDD  
EVDD  
PLL_TEST8  
Power Supplies  
EVDD  
E6, E7,  
E8, F5–F8, E8, F5–F8,  
F5–F7, H9, G5, G6, H5, G5, G6, H5,  
J8, J9, K8,  
K9, K11  
H6, J11,  
K11, K12,  
H6, J11,  
K11, K12,  
L9–L11, M9, L9–L11, M9,  
M10 M10  
IVDD  
E5, K5, K10, E5, G12,M5, E5,G12, M5,  
J10  
M11, M12  
M11, M12  
PLL_VDD  
SD_VDD  
H10  
J12  
J12  
E8, E9,  
F8–F10,  
J5–J7, K7  
E9, F9–F11, E9, F9–F11,  
G11, H11,  
J5, J6, K5,  
G11, H11,  
J5, J6, K5,  
K6, L5–L8, K6, L5–L8,  
M6, M7  
M6, M7  
USB_VDD  
VSS  
G10  
L14  
L14  
G6–G9,  
H6–H8, P9  
G7–G10,  
H7–H10,  
J7–10,  
G7–G10,  
H7–H10,  
J7–10,  
K7–K10,  
L12, L13  
K7–K10,  
L12, L13  
PLL_VSS  
USB_VSS  
H11  
H12  
K13  
M14  
K13  
M14  
1
2
3
Refers to pin’s primary function.  
Pull-up enabled internally on this signal for this mode.  
The SDRAM functions of these signals are not programmable by the user. They are dynamically switched by the processor  
when accessing SDRAM memory space and are included here for completeness.  
4
5
6
Primary functionality selected by asserting the DRAMSEL signal (SDR mode). Alternate functionality selected by negating  
the DRAMSEL signal (DDR mode). The GPIO module is not responsible for assigning these pins.  
GPIO functionality is determined by the edge port module. The GPIO module is only responsible for assigning the alternate  
functions.  
If JTAG_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for  
assigning these pins.  
7
8
Pull-down enabled internally on this signal for this mode.  
Must be left floating for proper operation of the PLL.  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
12  
Freescale Semiconductor  
Pin Assignments and Reset States  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
13  
Pin Assignments and Reset States  
NOTE  
4.2  
Pinout—256 MAPBGA  
Figure 4 shows a pinout of the MCF5328CVM240, MCF53281CVM240, and MCF5329CVM240 devices.  
NOTE  
The pin at location N13 (PLL_TEST) must be left floating or improper operation of the  
PLL module occurs.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
FEC_  
LCD_  
D4  
LCD_  
D5  
LCD_  
D9  
FEC_  
RXD2  
LCD_  
D15  
FEC_  
COL  
LCD_  
CLS  
LCD_  
LCD_  
PS  
FB_CS3 FB_CS4  
FB_CS2 FB_CS5  
A
B
C
D
E
F
NC  
A20  
A17  
TEST  
A
B
C
D
E
F
TXCLK  
LSCLK  
FEC_  
TXER  
FEC_  
TXEN  
LCD_  
D1  
LCD_  
D3  
LCD_  
D8  
FEC_  
RXD1  
LCD_  
D14  
FEC_  
CRS  
LCD_  
LCD_LP/  
LCD_  
REV  
A19  
A18  
A15  
A9  
A16  
A13  
A11  
A8  
A14  
A12  
A10  
A7  
ACD/OE HSYNC  
FEC_  
MDC  
FEC_  
MDIO  
LCD_  
D0  
LCD_  
D2  
LCD_  
D7  
FEC_  
RXD0  
LCD_  
D13  
FEC_  
LCD_ LCD_FLM/  
LCD_  
FB_CS1  
FB_CS0  
U1RXD  
NC  
A23  
A22  
A21  
A6  
RXCLK  
D17  
VSYNC  
SPL_SPR  
FEC_  
TXD1  
FEC_  
TXD2  
FEC_  
TXD3  
FEC_  
RXER  
LCD_  
D6  
LCD_  
D11  
LCD_  
D12  
FEC_  
RXDV  
LCD_ LCD_CON  
U1CTS  
U1TXD  
D16  
TRAST  
U1RTS  
FEC_  
TXD0  
LCD_  
D10  
FEC_  
RXD3  
DT2IN  
DT3IN  
DT1IN  
DT0IN  
IVDD  
EVDD  
EVDD  
EVDD  
EVDD SD_VDD  
I2C_  
SDA  
I2C_  
SCL  
SSI_  
EVDD  
EVDD  
EVDD  
EVDD  
VSS  
EVDD SD_VDD SD_VDD SD_VDD  
A5  
A4  
A3  
BCLK  
SSI_  
RXD  
SSI_  
SSI_  
TXD  
TA  
G
H
SSI_FS  
SD_WE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SD_VDD  
SD_VDD  
IVDD  
A0  
A1  
A2  
G
H
MCLK  
DRAM  
SEL  
SD_  
CS0  
TS  
SD_CKE  
VSS  
PWM7  
IRQ7  
PWM5  
PWM3  
IRQ5  
PWM1  
IRQ4  
PLL_  
VDD  
D15  
D11  
SD_CS1  
D12  
IRQ6  
IRQ3  
J
K
L
D13  
D9  
D14  
D10  
D8  
SD_VDD SD_VDD  
SD_VDD SD_VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
EVDD  
EVDD  
EVDD  
J
K
L
PLL_  
VSS  
IRQ2  
USB  
IRQ1  
USB  
EVDD  
VSS  
SD_  
USB_  
VSS  
USBOTG  
_VDD  
BE/  
BWE1  
BE/  
BWE3  
SD_VDD SD_VDD SD_VDD SD_VDD EVDD  
EVDD  
DQS3  
OTG_M OTG_P  
JTAG_ USBHOST  
USB  
USB  
RCON  
R/W  
D2  
M
N
P
R
T
D31  
D27  
D30  
D26  
D29  
D25  
D28  
D24  
D22  
D21  
IVDD SD_VDD SD_VDD  
BE/  
EVDD  
EVDD  
IVDD  
IVDD  
M
N
P
R
T
EN  
_VSS  
HOST_M HOST_P  
TDO/  
DSO  
QSPI_  
DIN  
PLL_  
TEST  
TDI/DSI  
RESET  
D19  
D18  
D17  
D6  
D5  
D4  
DDATA3 DDATA1  
DDATA2 DDATA0  
XTAL  
BWE0  
SD_DR  
_DQS  
QSPI_  
CS0  
QSPI_  
DOUT  
EXTAL  
32K  
BE/  
BWE2  
TRST/  
DSCLK  
SD_A10 SD_CAS  
SD_CLK SD_RAS  
RSTOUT  
U0RXD  
EXTAL  
QSPI_  
CLK  
XTAL  
32K  
TMS/  
BKPT  
OE  
PST3  
U0CTS  
SD_CLK  
D7  
D1  
PST1  
SD_  
TCLK/  
QSPI_  
CS2  
QSPI_  
CS1  
U0RTS  
15  
NC  
1
FB_CLK  
2
D23  
3
D20  
4
D16  
5
D3  
7
D0  
8
PST2  
10  
PST0  
11  
U0TXD  
14  
NC  
16  
DQS2  
PSTCLK  
6
9
12  
13  
Figure 4. MCF5328CVM240, MCF53281CVM240, and MCF5329CVM240 Pinout Top View (256 MAPBGA)  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
14  
Freescale Semiconductor  
 
 
Electrical Characteristics  
4.3  
Pinout—196 MAPBGA  
The pinout for the MCF5327CVM240 package is shown below.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
C
D
E
F
A
B
C
D
E
F
LCD_  
D4  
LCD_  
D5  
LCD_  
D9  
LCD_  
D13  
LCD_ LCD_FLM/ LCD_LP/  
D17 VSYNC HSYNC  
DT1IN  
U1TXD  
U1RXD FB_CS3  
A20  
A16  
A15  
LCD_  
D0  
LCD_  
D6  
LCD_  
D8  
LCD_  
D12  
LCD_ LCD_CON LCD_  
LCD_  
D2TIN  
DT3IN  
FB_CS0  
FB_CS1  
FB_CS2  
TEST  
A23  
A22  
A19  
A8  
A21  
A18  
A11  
A7  
A17  
A13  
A10  
A6  
A14  
A12  
D16  
TRAST  
LSCLK SPL_SPR  
LCD_  
D2  
LCD_  
D7  
LCD_  
D11  
LCD_  
D15  
LCD_  
CLS  
LCD_  
U1CTS  
PS  
DT0IN  
TS  
LCD_  
D1  
LCD_  
D3  
LCD_  
D10  
LCD_  
D14  
LCD_  
ACD/OE  
LCD_  
U1RTS  
REV  
SD_WE  
A9  
SD_CKE SD_CS0 I2C_SCL I2C_SDA  
IVDD  
EVDD  
D11  
EVDD  
EVDD  
VSS  
EVDD  
EVDD  
VSS  
SD_VDD SD_VDD  
A5  
D12  
D13  
D8  
D14  
D9  
D15  
D10  
SD_VDD SD_VDD SD_VDD  
USB  
A4  
A3  
A2  
A1  
G
H
J
G
H
J
BE/  
BWE1  
DRAM  
SEL  
USB  
OTG_M  
VSS  
VSS  
EVDD  
EVDD  
EVDD  
PST1  
PST0  
TA  
A0  
OTG_VDD  
BE/  
BWE3  
SD_  
DQS3  
PLL_  
VDD  
PLL_ USBHOST  
VSS  
USB  
OTG_P  
D29  
D25  
D24  
D30  
D26  
D31  
D27  
VSS  
VSS  
VSS  
PWM3  
PWM1  
XTAL  
EXTAL  
IRQ3  
_VSS  
USB  
HOST_P  
D28  
SD_VDD SD_VDD SD_VDD  
EVDD  
EVDD  
DDATA1  
DDATA0  
PST3  
IVDD  
IVDD  
RESET  
IRQ7  
K
L
K
L
SD_DR_  
DQS  
SD_  
USB  
HOST_M  
SD_CLK SD_CLK  
IVDD  
D7  
SD_VDD  
EVDD  
TDI/DSI  
DQS2  
D1  
TCLK/  
PSTCLK  
QSPI_  
DIN  
QSPI_  
CS1  
JTAG_  
EN  
FB_CLK SD_A10 SD_CAS  
D23  
IRQ4  
IRQ2  
IRQ1  
M
N
P
M
N
P
BE/  
BWE0  
QSPI_  
DOUT  
EXTAL  
32K  
TMS/  
BKPT  
SD_RAS  
D20  
D22  
D19  
D21  
D16  
D4  
D0  
RCON  
TDO/  
DSO  
QSPI_  
CLK  
XTAL  
32K  
TRST/  
DSCLK  
D6  
D3  
R/W  
DDATA3  
U0RTS  
BE/  
BWE2  
QSPI_  
CS2  
D18  
1
D17  
2
D5  
4
D2  
5
OE  
6
DDATA2  
7
PST2  
8
VSS  
9
U0RXD  
11  
U0TXD  
12  
U0CTS RSTOUT  
3
10  
13  
14  
Figure 5. MCF5327CVM240 Pinout Top View (196 MAPBGA)  
5
Electrical Characteristics  
This document contains electrical specification tables and reference timing diagrams for the MCF5329 microcontroller unit.  
This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing  
specifications of MCF5329.  
The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not  
be fully tested or guaranteed at this early stage of the product life cycle. However, for production silicon, these specifications  
will be met. Finalized specifications will be published after complete characterization and device qualifications have been  
completed.  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
15  
 
Electrical Characteristics  
NOTE  
The parameters specified in this MCU document supersede any values found in the module  
specifications.  
5.1  
Maximum Ratings  
1, 2  
Table 4. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Core Supply Voltage  
IVDD  
EVDD  
SDVDD  
PLLVDD  
VIN  
– 0.5 to +2.0  
– 0.3 to +4.0  
– 0.3 to +4.0  
– 0.3 to +2.0  
– 0.3 to +3.6  
V
V
V
V
V
CMOS Pad Supply Voltage  
DDR/Memory Pad Supply Voltage  
PLL Supply Voltage  
Digital Input Voltage 3  
Instantaneous Maximum Current  
ID  
25  
mA  
Single pin limit (applies to all pins) 3, 4, 5  
Operating Temperature Range (Packaged)  
TA  
(TL - TH)  
– 40 to +85  
°C  
°C  
Storage Temperature Range  
Tstg  
– 55 to +150  
1
2
Functional operating conditions are given in Section 5.4, “DC Electrical Specifications.”  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is  
not guaranteed. Continued operation at these levels may affect device reliability or cause  
permanent damage to the device.  
This device contains circuitry protecting against damage due to high static voltage or electrical  
fields; however, it is advised that normal precautions be taken to avoid application of any  
voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of  
operation is enhanced if unused inputs are tied to an appropriate logic voltage level (VSS or  
EVDD).  
3
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive and negative clamp voltages,  
and then use the larger of the two values.  
4
5
All functional non-supply pins are internally clamped to VSS and EVDD  
.
Power supply must maintain regulation within operating EVDD range during instantaneous and  
operating maximum current conditions. If positive injection current (Vin > EVDD) is greater than  
IDD, the injection current may flow out of EVDD and could result in external power supply going  
out of regulation. Ensure external EVDD load shunts current greater than maximum injection  
current. This is the greatest risk when the MCU is not consuming power (ex; no clock). Power  
supply must maintain regulation within operating EVDD range during instantaneous and  
operating maximum current conditions.  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
16  
Freescale Semiconductor  
 
 
Electrical Characteristics  
5.2  
Thermal Characteristics  
Table 5. Thermal Characteristics  
Characteristic  
Symbol  
256MBGA 196MBGA Unit  
Junction to ambient, natural convection  
Four layer board  
(2s2p)  
θJMA  
371,2  
421,2  
°C/W  
°C/W  
Junction to ambient (@200 ft/min)  
Four layer board  
(2s2p)  
θJMA  
341,2  
381,2  
Junction to board  
θJB  
θJC  
Ψjt  
Tj  
273  
164  
41,5  
105  
323  
194  
51,5  
105  
°C/W  
°C/W  
°C/W  
oC  
Junction to case  
Junction to top of package  
Maximum operating junction temperature  
1
θ
JMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection.  
Freescale recommends the use of θJmA and power dissipation specifications in the system design to prevent  
device junction temperatures from exceeding the rated specification. System designers should be aware that  
device junction temperatures can be significantly influenced by board layout and surrounding devices.  
Conformance to the device junction temperature specification can be verified by physical measurement in the  
customer’s system using the Ψjt parameter, the device power dissipation, and the method described in  
EIA/JESD Standard 51-2.  
2
3
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8.  
Board temperature is measured on the top surface of the board near the package.  
4
5
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal  
characterization parameter is written in conformance with Psi-JT.  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
TJ = TA + (PD × ΘJMA  
)
Eqn. 1  
Where:  
TA  
= Ambient Temperature, °C  
QJMA  
PD  
= Package Thermal Resistance, Junction-to-Ambient, °C/W  
= PINT + PI/O  
PINT  
PI/O  
= IDD × IVDD, Watts - Chip Internal Power  
= Power Dissipation on Input and Output Pins — User Determined  
For most applications P < P  
and can be ignored. An approximate relationship between P and T (if P is neglected) is:  
D J I/O  
I/O  
INT  
K
--------------------------------  
PD  
=
Eqn. 2  
(TJ + 273°C)  
Solving equations 1 and 2 for K gives:  
K = PD × (TA × 273°C) + QJMA × P2D  
Eqn. 3  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
17  
 
 
 
 
 
 
 
 
 
Electrical Characteristics  
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
5.3  
ESD Protection  
1, 2  
Table 6. ESD Protection Characteristics  
Characteristics  
Symbol  
Value  
Units  
ESD Target for Human Body Model  
HBM  
2000  
V
1
2
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive  
Grade Integrated Circuits.  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets  
the device specification requirements. Complete DC parametric and functional testing is  
performed per applicable device specification at room temperature followed by hot  
temperature, unless specified otherwise in the device specification.  
5.4  
DC Electrical Specifications  
Table 7. DC Electrical Specifications  
Characteristic  
Symbol  
Min  
Max  
Unit  
Core Supply Voltage  
IVDD  
PLLVDD  
EVDD  
1.4  
1.4  
3.0  
1.6  
1.6  
3.6  
V
V
V
V
PLL Supply Voltage  
CMOS Pad Supply Voltage  
SDRAM and FlexBus Supply Voltage  
SDVDD  
Mobile DDR/Bus Pad Supply Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
1.70  
2.25  
3.0  
1.95  
2.75  
3.6  
USB Supply Voltage  
USBVDD  
EVIH  
3.0  
2
3.6  
EVDD + 0.3  
0.8  
V
V
V
V
CMOS Input High Voltage  
CMOS Input Low Voltage  
EVIL  
VSS – 0.3  
EVDD – 0.4  
CMOS Output High Voltage  
IOH = –5.0 mA  
EVOH  
CMOS Output Low Voltage  
EVOL  
0.4  
V
V
IOL = 5.0 mA  
SDRAM and FlexBus Input High Voltage  
SDVIH  
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
1.35  
1.7  
2
SDVDD + 0.3  
SDVDD + 0.3  
SDVDD + 0.3  
SDRAM and FlexBus Input Low Voltage  
SDVIL  
V
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
VSS – 0.3  
VSS – 0.3  
VSS – 0.3  
0.45  
0.8  
0.8  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
18  
Freescale Semiconductor  
 
Electrical Characteristics  
Table 7. DC Electrical Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
SDRAM and FlexBus Output High Voltage  
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
IOH = –5.0 mA for all modes  
SDVOH  
V
SDVDD – 0.35  
2.1  
2.4  
SDRAM and FlexBus Output Low Voltage  
Mobile DDR/Bus Input High Voltage (nominal 1.8V)  
DDR/Bus Pad Supply Voltage (nominal 2.5V)  
SDR/Bus Pad Supply Voltage (nominal 3.3V)  
IOL = 5.0 mA for all modes  
SDVOL  
V
0.3  
0.3  
0.5  
Input Leakage Current  
Iin  
1.0  
10  
1.0  
μA  
Vin = VDD or VSS, Input-only pins  
Weak Internal Pull-Up Device Current, tested at VIL Max.1  
IAPU  
Cin  
130  
μA  
Input Capacitance 2  
pF  
All input-only pins  
All input/output (three-state) pins  
7
7
1
Refer to the signals section for pins having weak internal pull-up devices.  
This parameter is characterized before qualification rather than 100% tested.  
2
5.5  
Oscillator and PLL Electrical Characteristics  
Table 8. PLL Electrical Characteristics  
Min.  
Value  
Max.  
Value  
Num  
Characteristic  
Symbol  
Unit  
PLL Reference Frequency Range  
Crystal reference  
1
fref_crystal  
fref_ext  
12  
12  
251  
401  
MHz  
MHz  
External reference  
Core frequency  
fsys  
fsys/3  
488 x 106  
163 x 106  
240  
80  
MHz  
MHz  
2
3
CLKOUT Frequency2  
Crystal Start-up Time3, 4  
tcst  
10  
ms  
EXTAL Input High Voltage  
Crystal Mode5  
4
5
VIHEXT  
VIHEXT  
VXTAL + 0.4  
EVDD/2 + 0.4  
V
V
All other modes (External, Limp)  
EXTAL Input Low Voltage  
Crystal Mode5  
VILEXT  
VILEXT  
VXTAL – 0.4  
EVDD/2 – 0.4  
V
V
All other modes (External, Limp)  
7
8
PLL Lock Time 3, 6  
tlpll  
tdc  
40  
1
50000  
60  
CLKIN  
%
Duty Cycle of reference 3  
9
XTAL Current  
IXTAL  
3
mA  
pF  
10  
11  
Total on-chip stray capacitance on XTAL  
Total on-chip stray capacitance on EXTAL  
CS_XTAL  
CS_EXTAL  
1.5  
1.5  
pF  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
19  
 
 
Electrical Characteristics  
Table 8. PLL Electrical Characteristics (continued)  
Min.  
Max.  
Value  
Num  
Characteristic  
Symbol  
Unit  
Value  
Crystal capacitive load  
CL  
See crystal  
spec  
12  
13  
Discrete load capacitance for XTAL  
Discrete load capacitance for EXTAL  
CL_XTAL  
CL_EXTAL  
Cjitter  
2*CL –  
pF  
pF  
CS_XTAL  
CPCB_XTAL  
7
2*CL–-  
14  
17  
CS_EXTAL –  
7
CPCB_EXTAL  
CLKOUT Period Jitter, 3, 4, 7, 8, 9 Measured at fSYS Max  
Peak-to-peak Jitter (Clock edge to clock edge)  
Long Term Jitter  
10  
TBD  
% fsys/3  
% fsys/3  
Frequency Modulation Range Limit 3, 10, 11  
(fsysMax must not be exceeded)  
Cmod  
fvco  
0.8  
2.2  
%fsys/3  
18  
19  
VCO Frequency. fvco = (fref * PFD)/4  
350  
540  
MHz  
1
The maximum allowable input clock frequency when booting with the PLL enabled is 24MHz. For higher input clock  
frequencies the processor must boot in LIMP mode to avoid violating the maximum allowable CPU frequency.  
2
3
4
5
6
7
8
All internal registers retain data at 0 Hz.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
Proper PC board layout procedures must be followed to achieve specifications.  
This parameter is guaranteed by design rather than 100% tested.  
This specification is the PLL lock time only and does not include oscillator start-up time.  
CPCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys  
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal.  
.
Noise injected into the PLL circuitry via PLL VDD, EVDD, and VSS and variation in crystal oscillator frequency increase  
the Cjitter percentage for a given interval.  
9
Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod.  
10 Modulation percentage applies over an interval of 10 μs, or equivalently the modulation rate is 100 KHz.  
11  
Modulation range determined by hardware design.  
5.6  
External Interface Timing Characteristics  
Table 9 lists processor bus input timings.  
NOTE  
All processor bus timings are synchronous; that is, input setup/hold and output delay with  
respect to the rising edge of a reference clock. The reference clock is the FB_CLK output.  
All other timing relationships can be derived from these values. Timings listed in Table 9  
are shown in Figure 7 and Figure 8.  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
20  
Freescale Semiconductor  
 
 
 
Electrical Characteristics  
* The timings are also valid for inputs sampled on the negative clock edge.  
1.5V  
FB_CLK (80MHz)  
TSETUP  
THOLD  
Invalid  
1.5V Valid 1.5V  
Invalid  
Input Setup And Hold  
Input Rise Time  
trise  
Vh = VIH  
Vl = VIL  
tfall  
Vh = VIH  
Vl = VIL  
Input Fall Time  
FB_CLK  
Inputs  
B4  
B5  
Figure 6. General Input Timing Requirements  
5.6.1  
FlexBus  
A multi-function external bus interface called FlexBus is provided with basic functionality to interface to slave-only devices up  
to a maximum bus frequency of 80MHz. It can be directly connected to asynchronous or synchronous devices such as external  
boot ROMs, flash memories, gate-array logic, or other simple target (slave) devices with little or no additional circuitry. For  
asynchronous devices a simple chip-select based interface can be used. The FlexBus interface has six general purpose  
chip-selects (FB_CS[5:0]) which can be configured to be distributed between the FlexBus or SDRAM memory interfaces.  
Chip-select, FB_CS0 can be dedicated to boot ROM access and can be programmed to be byte (8 bits), word (16 bits), or  
longword (32 bits) wide. Control signal timing is compatible with common ROM/flash memories.  
5.6.1.1  
FlexBus AC Timing Characteristics  
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the system clock.  
Table 9. FlexBus AC Timing Specifications  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
Frequency of Operation  
fsys/3  
80  
Mhz  
ns  
FB1 Clock Period (FB_CLK)  
tFBCK ( cyc)  
tFBCHDCV  
tFBCHDCI  
t
12.5  
Address, Data, and Control Output Valid (A[23:0], D[31:0],  
FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE)1  
FB2  
FB3  
1
7.0  
ns  
ns  
Address, Data, and Control Output Hold (A[23:0], D[31:0],  
FB_CS[5:0], R/W, TS, BE/BWE[3:0], and OE)1, 2  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
21  
 
 
Electrical Characteristics  
Num  
Table 9. FlexBus AC Timing Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
FB4 Data Input Setup  
FB5 Data Input Hold  
tDVFBCH  
tDIFBCH  
tCVFBCH  
tCIFBCH  
3.5  
0
ns  
ns  
ns  
ns  
FB6 Transfer Acknowledge (TA) Input Setup  
FB7 Transfer Acknowledge (TA) Input Hold  
4
0
1
2
Timing for chip selects only applies to the FB_CS[5:0] signals. Please see Section 5.7.2, “DDR SDRAM AC  
Timing Characteristics” for SD_CS[3:0] timing.  
The FlexBus supports programming an extension of the address hold. Please consult the Reference Manual  
for more information.  
NOTE  
The processor drives the data lines during the first clock cycle of the transfer  
with the full 32-bit address. This may be ignored by standard connected  
devices using non-multiplexed address and data buses. However, some  
applications may find this feature beneficial.  
The address and data busses are muxed between the FlexBus and SDRAM  
controller. At the end of the read and write bus cycles the address signals are  
indeterminate.  
S0  
S1  
S2  
S3  
FB_CLK  
FB1  
FB3  
ADDR[23:0]  
FB_A[23:0]  
FB2  
FB5  
FB_D[31:X]  
ADDR[31:X]  
DATA  
FB4  
FB_R/W  
FB_TS  
FB_CSn, FB_OE,  
FB_BE/BWEn  
FB6  
FB7  
FB_TA  
Figure 7. FlexBus Read Timing  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
22  
Freescale Semiconductor  
 
Electrical Characteristics  
S0  
S1  
S2  
S3  
FB_CLK  
FB1  
FB3  
ADDR[23:0]  
FB_A[23:0]  
FB2  
ADDR[31:X]  
FB_D[31:X]  
DATA  
FB_R/W  
FB_TS  
FB_CSn, FB_BE/BWEn  
FB_OE  
FB6  
FB7  
FB_TA  
Figure 8. FlexBus Write Timing  
5.7  
SDRAM Bus  
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports standard SDRAM or  
double data rate (DDR) SDRAM, but it does not support both at the same time.  
5.7.1  
SDR SDRAM AC Timing Characteristics  
The following timing numbers indicate when data is latched or driven onto the external bus, relative to the memory bus clock,  
when operating in SDR mode on write cycles and relative to SD_DQS on read cycles. The device’s SDRAM controller is a  
DDR controller that has an SDR mode. Because it is designed to support DDR, a DQS pulse must remain supplied to the device  
for each data beat of an SDR read. The processor accomplishes this by asserting a signal named SD_SDR_DQS during read  
cycles. Care must be taken during board design to adhere to the following guidelines and specs with regard to the  
SD_SDR_DQS signal and its usage.  
Table 10. SDR Timing Specifications  
Symbol  
Characteristic  
Frequency of Operation1  
Symbol  
Min  
Max  
Unit  
60  
80  
MHz  
ns  
SD1 Clock Period2  
tSDCK  
tSDCKH  
tSDCKH  
12.5  
0.45  
0.45  
16.67  
0.55  
0.55  
SD3 Pulse Width High3  
SD4 Pulse Width Low4  
SD_CLK  
SD_CLK  
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,  
SD_CS[1:0] - Output Valid  
0.5 × SD_CLK  
SD5  
tSDCHACV  
ns  
+ 1.0  
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE, SD_BA,  
SD_CS[1:0] - Output Hold  
SD6  
tSDCHACI  
tDQSOV  
2.0  
ns  
ns  
ns  
SD7 SD_SDR_DQS Output Valid5  
Self timed  
SD_DQS[3:0] input setup relative to SD_CLK6  
SD8  
0.25 ×  
SD_CLK  
tDQVSDCH  
0.40 × SD_CLK  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
23  
 
 
Electrical Characteristics  
Symbol  
Table 10. SDR Timing Specifications (continued)  
Characteristic Symbol Min  
Max  
Unit  
SD9 SD_DQS[3:2] input hold relative to SD_CLK7  
tDQISDCH Does not apply. 0.5×SD_CLK fixed width.  
0.25 ×  
Data (D[31:0]) Input Setup relative to SD_CLK (reference  
SD10  
only)8  
tDVSDCH  
tDISDCH  
tSDCHDMV  
tSDCHDMI  
ns  
ns  
ns  
ns  
SD_CLK  
SD11 Data Input Hold relative to SD_CLK (reference only)  
1.0  
Data (D[31:0]) and Data Mask(SD_DQM[3:0]) Output Valid  
SD12  
0.75 × SD_CLK  
+ 0.5  
SD13 Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output Hold  
1.5  
1
The FlexBus and SDRAM clock operates at the same frequency of the internal bus clock. See the PLL chapter of the MCF5329  
Reference Manual for more information on setting the SDRAM clock rate.  
2
3
4
5
SD_CLK is one SDRAM clock in (ns).  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
Pulse width high plus pulse width low cannot exceed min and max clock period.  
SD_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This is a guideline only. Subtle variation  
from this guideline is expected. SD_DQS only pulses during a read cycle and one pulse occurs for each data beat.  
6
7
8
SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle  
variation from this guideline is expected. SDR_DQS only pulses during a read cycle and one pulse occurs for each data beat.  
The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge  
does not affect the memory controller.  
Because a read cycle in SDR mode uses the DQS circuit within the device, it is most critical that the data valid window be  
centered 1/4 clk after the rising edge of DQS. Ensuring that this happens results in successful SDR reads. The input setup  
spec is provided as guidance.  
SD2  
SD1  
SD_CLK  
SD3  
SD5  
SD_CSn  
SD_RAS  
SD_CAS  
SD_WE  
CMD  
ROW  
SD4  
A[23:0]  
SD_BA[1:0]  
COL  
SD11  
SDDM  
D[31:0]  
SD12  
WD1  
WD2  
WD3  
WD4  
Figure 9. SDR Write Timing  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
24  
Freescale Semiconductor  
 
Electrical Characteristics  
SD2  
SD1  
SD_CLK  
SD5  
SD_CSn,  
SD_RAS,  
SD_CAS,  
SD_WE  
SD3  
CMD  
ROW  
3/4 MCLK  
Reference  
SD4  
A[23:0],  
SD_BA[1:0]  
COL  
tDQS  
SDDM  
SD6  
SD_SDR_DQS (Measured at Output Pin)  
SD_DQS[3:2] (Measured at Input Pin)  
Board Delay  
SD8  
Board Delay  
SD7  
Delayed  
SD_CLK  
SD9  
D[31:0]  
from  
WD1  
WD2  
WD3  
WD4  
Memories  
NOTE: Data driven from memories relative  
to delayed memory clock.  
SD10  
Figure 10. SDR Read Timing  
5.7.2  
DDR SDRAM AC Timing Characteristics  
When using the SDRAM controller in DDR mode, the following timing numbers must be followed to properly latch or drive  
data onto the memory bus. All timing numbers are relative to the four DQS byte lanes.  
Table 11. DDR Timing Specifications  
Num  
Characteristic  
Frequency of Operation  
Symbol  
Min  
Max  
Unit  
tDDCK  
tDDSK  
tDDCKH  
tDDCKL  
60  
80  
Mhz  
ns  
DD1 Clock Period1  
12.5  
0.45  
0.45  
16.67  
0.55  
0.55  
DD2 Pulse Width High2  
DD3 Pulse Width Low3  
SD_CLK  
SD_CLK  
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] - Output Valid3  
0.5 × SD_CLK  
DD4  
DD5  
tSDCHACV  
ns  
+ 1.0  
Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,  
SD_CS[1:0] - Output Hold  
tSDCHACI  
tCMDVDQ  
tDQDMV  
2.0  
1.25  
ns  
SD_CLK  
ns  
DD6 Write Command to first DQS Latching Transition  
Data and Data Mask Output Setup (DQ-->DQS) Relative  
DD7  
1.5  
to DQS (DDR Write Mode)4, 5  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
25  
 
Electrical Characteristics  
Num  
Table 11. DDR Timing Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
Data and Data Mask Output Hold (DQS-->DQ) Relative to  
DQS (DDR Write Mode)6  
tDQDMI  
1.0  
ns  
DD8  
DD9 Input Data Skew Relative to DQS (Input Setup)7  
tDVDQ  
tDIDQ  
1
ns  
ns  
Input Data Hold Relative to DQS8  
DD10  
0.25 × SD_CLK  
+ 0.5ns  
DD11 DQS falling edge from SDCLK rising (output hold time)  
DD12 DQS input read preamble width  
tDQLSDCH  
tDQRPRE  
tDQRPST  
tDQWPRE  
tDQWPST  
0.5  
0.9  
ns  
1.1  
0.6  
SD_CLK  
SD_CLK  
SD_CLK  
SD_CLK  
DD13 DQS input read postamble width  
DD14 DQS output write preamble width  
DD15 DQS output write postamble width  
SD_CLK is one SDRAM clock in (ns).  
0.4  
0.25  
0.4  
0.6  
1
2
3
Pulse width high plus pulse width low cannot exceed min and max clock period.  
Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process, temperature,  
and voltage variations.  
4
This specification relates to the required input setup time of today’s DDR memories. The processor’s output setup should be  
larger than the input setup of the DDR memories. If it is not larger, the input setup on the memory is in violation.  
MEM_DATA[31:24] is relative to MEM_DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to  
MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].  
5
6
The first data beat is valid before the first rising edge of DQS and after the DQS write preamble. The remaining data beats are  
valid for each subsequent DQS edge.  
This specification relates to the required hold time of today’s DDR memories. MEM_DATA[31:24] is relative to MEM_DQS[3],  
MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative  
MEM_DQS[0].  
7
8
Data input skew is derived from each DQS clock edge. It begins with a DQS transition and ends when the last data line  
becomes valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other  
factors).  
Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line  
becomes invalid.  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
26  
Freescale Semiconductor  
Electrical Characteristics  
DD1  
DD2  
SD_CLK  
DD3  
SD_CLK  
DD5  
SD_CSn,SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
DD6  
A[13:0]  
COL  
DD7  
DM3/DM2  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
DD8  
DD7  
WD1 WD2 WD3 WD4  
DD8  
Figure 11. DDR Write Timing  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
27  
Electrical Characteristics  
DD1  
DD2  
SD_CLK  
DD3  
SD_CLK  
DD5  
CL=2  
SD_CSn,SD_WE,  
SD_RAS, SD_CAS  
CMD  
ROW  
DD4  
CL=2.5  
A[13:0]  
COL  
DD9  
DQS Read  
Postamble  
DQS Read  
Preamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
DD10  
WD1 WD2 WD3 WD4  
DQS Read  
Preamble  
DQS Read  
Postamble  
SD_DQS3/SD_DQS2  
D[31:24]/D[23:16]  
WD1 WD2 WD3 WD4  
Figure 12. DDR Read Timing  
5.8  
General Purpose I/O Timing  
1
Table 12. GPIO Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
G1  
G2  
G3  
G4  
FB_CLK High to GPIO Output Valid  
FB_CLK High to GPIO Output Invalid  
GPIO Input Valid to FB_CLK High  
FB_CLK High to GPIO Input Invalid  
tCHPOV  
tCHPOI  
tPVCH  
tCHPI  
1.5  
9
10  
ns  
ns  
ns  
ns  
1.5  
1
GPIO pins include: IRQn, PWM, UART, FlexCAN, and Timer pins.  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
28  
Freescale Semiconductor  
Electrical Characteristics  
FB_CLK  
G2  
G1  
GPIO Outputs  
G3  
G4  
GPIO Inputs  
Figure 13. GPIO Timing  
5.9  
Reset and Configuration Override Timing  
Table 13. Reset and Configuration Override Timing  
Num  
Characteristic  
Symbol  
Min  
Max  
Unit  
R1 RESET Input valid to FB_CLK High  
tRVCH  
tCHRI  
9
1.5  
5
10  
1
ns  
ns  
R2 FB_CLK High to RESET Input invalid  
R3 RESET Input valid Time 1  
tRIVT  
tCYC  
ns  
R4 FB_CLK High to RSTOUT Valid  
tCHROV  
tROVCV  
tCOS  
0
R5 RSTOUT valid to Config. Overrides valid  
R6 Configuration Override Setup Time to RSTOUT invalid  
R7 Configuration Override Hold Time after RSTOUT invalid  
R8 RSTOUT invalid to Configuration Override High Impedance  
ns  
20  
0
tCYC  
ns  
tCOH  
tROICZ  
tCYC  
1
During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to  
the system. Thus, RESET must be held a minimum of 100 ns.  
FB_CLK  
R1  
R2  
R3  
RESET  
R4  
R4  
RSTOUT  
R8  
R5  
R6  
R7  
Configuration Overrides*:  
(RCON, Override pins])  
Figure 14. RESET and Configuration Override Timing  
NOTE  
Refer to the CCM chapter of the MCF5329 Reference Manual for more information.  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
29  
Electrical Characteristics  
5.10 LCD Controller Timing Specifications  
This sections lists the timing specifications for the LCD Controller.  
Table 14. LCD_LSCLK Timing  
Num  
Parameter  
Minimum Maximum  
Unit  
T1  
T2  
T3  
LCD_LSCLK Period  
Pixel data setup time  
Pixel data up time  
25  
11  
11  
2000  
ns  
ns  
ns  
Note: The pixel clock is equal to LCD_LSCLK / (PCD + 1). When it is in CSTN, TFT or monochrome mode with  
bus width is set and LCD_LSCLK is equal to the pixel clock. When it is in monochrome with other bus  
width settings, LCD_LSCLK is equal to the pixel clock divided by bus width. The polarity of LCD_LSCLK  
and LCD_LD signals can also be programmed.  
T1  
LCD_LSCLK  
LCD_LD[17:0]  
T2  
T3  
Figure 15. LCD_LSCLK to LCD_LD[17:0] timing diagram  
Non-display region  
Display region  
T3  
T1  
T4  
LCD_VSYNC  
LCD_HSYNC  
LCD_OE  
T2  
Line Y  
Line 1  
Line Y  
LCD_LD[17:0]  
T5  
T6  
XMAX  
T7  
LCD_HSYNC  
LCD_LSCLK  
LCD_OE  
(1,1)  
(1,2)  
LCD_LD[15:0]  
(1,X)  
Figure 16. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
30  
Freescale Semiconductor  
 
Electrical Characteristics  
Table 15. 4/8/12/16/18 Bit/Pixel TFT Color Mode Panel Timing  
Number  
Description  
Minimum  
Value  
Unit  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
End of LCD_OE to beginning of LCD_VSYNC  
LCD_HSYNC period  
T5+T6+T7-1  
(VWAIT1·T2)+T5+T6+T7-1  
XMAX+T5+T6+T7  
VWIDTH·T2  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
T2  
1
LCD_VSYNC pulse width  
End of LCD_VSYNC to beginning of LCD_OE  
LCD_HSYNC pulse width  
(VWAIT2·T2)+1  
HWIDTH+1  
1
End of LCD_HSYNC to beginning to LCD_OE  
End of LCD_OE to beginning of LCD_HSYNC  
3
HWAIT2+3  
1
HWAIT1+1  
Note: Ts is the LCD_LSCLK period. LCD_VSYNC, LCD_HSYNC and LCD_OE can be programmed as active high or active  
low. In Figure 16, all 3 signals are active low. LCD_LSCLK can be programmed to be deactivated during the  
LCD_VSYNC pulse or the LCD_OE deasserted period. In Figure 16, LCD_LSCLK is always active.  
Note: XMAX is defined in number of pixels in one line.  
XMAX  
LCD_LSCLK  
LCD_LD  
LCD_SPL_SPR  
LCD_HSYNC  
D1  
D2  
D320  
D320  
T1  
T3  
T2  
T2  
T4  
T4  
LCD_CLS  
LCD_PS  
T5  
T6  
T7  
T7  
LCD_REV  
Figure 17. Sharp TFT Panel Timing  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
31  
Electrical Characteristics  
Num  
Table 16. Sharp TFT Panel Timing  
Description  
Minimum  
Value  
Unit  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
LCD_SPL/LCD_SPR pulse width  
1
1
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
End of LCD_LD of line to beginning of LCD_HSYNC  
End of LCD_HSYNC to beginning of LCD_LD of line  
LCD_CLS rise delay from end of LCD_LD of line  
LCD_CLS pulse width  
HWAIT1+1  
4
HWAIT2 + 4  
3
CLS_RISE_DELAY+1  
CLS_HI_WIDTH+1  
PS_RISE_DELAY  
REV_TOGGLE_DELAY+1  
1
LCD_PS rise delay from LCD_CLS negation  
LCD_REV toggle delay from last LCD_LD of line  
0
1
Note: Falling of LCD_SPL/LCD_SPR aligns with first LCD_LD of line.  
Note: Falling of LCD_PS aligns with rising edge of LCD_CLS.  
Note: LCD_REV toggles in every LCD_HSYN period.  
T1  
T1  
LCD_VSYNC  
T3  
T4  
T2  
T2  
XMAX  
LCD_HSYNC  
LCD_LSCLK  
Ts  
LCD_LD[15:0]  
Figure 18. Non-TFT Mode Panel Timing  
Table 17. Non-TFT Mode Panel Timing  
Num  
Description  
Minimum  
Value  
Unit  
T1  
T2  
T3  
T4  
LCD_HSYNC to LCD_VSYNC delay  
LCD_HSYNC pulse width  
2
1
HWAIT2 + 2  
HWIDTH + 1  
0 T3 Ts  
HWAIT1 + 1  
Tpix  
Tpix  
LCD_VSYNC to LCD_LSCLK  
LCD_LSCLK to LCD_HSYNC  
1
Tpix  
Note: Ts is the LCD_LSCLK period while Tpix is the pixel clock period. LCD_VSYNC, LCD_HSYNC and LCD_LSCLK  
can be programmed as active high or active low. In Figure 18, all three signals are active high. When it is in CSTN  
mode or monochrome mode with bus width = 1, T3 = Tpix = Ts. When it is in monochrome mode with bus width  
= 2, 4 and 8, T3 = 1, 2 and 4 Tpix respectively.  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
32  
Freescale Semiconductor  
 
Electrical Characteristics  
5.11 USB On-The-Go  
The MCF5329 device is compliant with industry standard USB 2.0 specification.  
5.12 ULPI Timing Specification  
Control and data timing requirements for the ULPI pins are given in Table 18. These timings apply in synchronous mode only.  
All timings are measured with either a 60 MHz input clock from the USB_CLKIN pin. The USB_CLKIN needs to maintain a  
50% duty cycle. Control signals and 8-bit data are always clocked on the rising edge.  
The ULPI interface on the MCF5329 processor is compliant with the industry standard definition.  
THD  
TSD  
THC  
TDD  
TSC  
TDC  
ULPI_CLK  
ULPI_STP  
(Input)  
ULPI_DATA  
(Input-8bit)  
ULPI_DIR/ULPI_NXT  
(Output)  
ULPI_DATA  
(Output-8bit)  
Figure 19. ULPI Timing Diagram  
Table 18. ULPI Interface Timing  
Parameter  
Symbol  
Min  
Max  
Units  
Setup time (control in, 8-bit data in)  
Hold time (control in, 8-bit data in)  
Output delay (control out, 8-bit data out)  
TSC, TSD  
THC, THD  
TDC, TDD  
1.5  
3.0  
ns  
ns  
ns  
6.0  
5.13 SSI Timing Specifications  
This section provides the AC timings for the SSI in master (clocks driven) and slave modes (clocks input). All timings are given  
for non-inverted serial clock polarity (SSI_TCR[TSCKP] = 0, SSI_RCR[RSCKP] = 0) and a non-inverted frame sync  
(SSI_TCR[TFSI] = 0, SSI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings  
remain valid by inverting the clock signal (SSI_BCLK) and/or the frame sync (SSI_FS) shown in the figures below.  
1
Table 19. SSI Timing – Master Modes  
Num  
Description  
SSI_MCLK cycle time2  
Symbol  
Min  
Max  
Units  
S1  
S2  
S3  
S4  
S5  
tMCLK 8 × tSYS  
55%  
ns  
tMCLK  
ns  
SSI_MCLK pulse width high / low  
SSI_BCLK cycle time3  
45%  
tBCLK 8 × tSYS  
45%  
SSI_BCLK pulse width  
55%  
15  
tBCLK  
ns  
SSI_BCLK to SSI_FS output valid  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
33  
 
Electrical Characteristics  
Num  
1
Table 19. SSI Timing – Master Modes (continued)  
Description  
Symbol  
Min  
Max  
Units  
S6  
S7  
S8  
S9  
SSI_BCLK to SSI_FS output invalid  
-2  
-4  
15  
0
15  
ns  
ns  
ns  
ns  
ns  
SSI_BCLK to SSI_TXD valid  
SSI_BCLK to SSI_TXD invalid / high impedence  
SSI_RXD / SSI_FS input setup before SSI_BCLK  
S10 SSI_RXD / SSI_FS input hold after SSI_BCLK  
1
2
All timings specified with a capactive load of 25pF.  
SSI_MCLK can be generated from SSI_CLKIN or a divided version of the internal system clock  
(SYSCLK).  
3
SSI_BCLK can be derived from SSI_CLKIN or a divided version of SYSCLK. If the SYSCLK is used, the  
minimum divider is 6. If the SSI_CLKIN input is used, the programmable dividers must be set to ensure  
that SSI_BCLK does not exceed 4 x fSYS  
Table 20. SSI Timing – Slave Modes  
Description Symbol  
.
1
Num  
S11 SSI_BCLK cycle time  
Min  
Max  
Units  
tBCLK 8 × tSYS  
55%  
ns  
tBCLK  
ns  
S12 SSI_BCLK pulse width high/low  
45%  
10  
3
S13 SSI_FS input setup before SSI_BCLK  
S14 SSI_FS input hold after SSI_BCLK  
S15 SSI_BCLK to SSI_TXD/SSI_FS output valid  
ns  
15  
ns  
S16 SSI_BCLK to SSI_TXD/SSI_FS output invalid/high  
impedence  
-2  
ns  
S17 SSI_RXD setup before SSI_BCLK  
S18 SSI_RXD hold after SSI_BCLK  
10  
3
ns  
ns  
1
All timings specified with a capactive load of 25pF.  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
34  
Freescale Semiconductor  
Electrical Characteristics  
S1  
S2  
S2  
SSI_MCLK  
(Output)  
S3  
SSI_BCLK  
(Output)  
S4  
S4  
S5  
S6  
SSI_FS  
(Output)  
S9  
S10  
SSI_FS  
(Input)  
S7  
S8  
S7  
S8  
SSI_TXD  
SSI_RXD  
S9  
S10  
Figure 20. SSI Timing – Master Modes  
S11  
SSI_BCLK  
(Input)  
S12  
S12  
S15  
S16  
SSI_FS  
(Output)  
S13  
S14  
SSI_FS  
(Input)  
S15  
S16  
S16  
S15  
SSI_TXD  
SSI_RXD  
S17  
S18  
Figure 21. SSI Timing – Slave Modes  
2
5.14 I C Input/Output Timing Specifications  
2
Table 21 lists specifications for the I C input timing parameters shown in Figure 22.  
2
Table 21. I C Input Timing Specifications between SCL and SDA  
Num  
Characteristic  
Start condition hold time  
Min  
Max  
Units  
I1  
I2  
I3  
I4  
2
8
1
tcyc  
tcyc  
ms  
ns  
Clock low period  
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
Data hold time  
0
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
35  
 
Electrical Characteristics  
Table 21. I C Input Timing Specifications between SCL and SDA (continued)  
2
Num  
Characteristic  
Min  
Max  
Units  
I5  
I6  
I7  
I8  
I9  
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
Clock high time  
4
1
ms  
tcyc  
ns  
Data setup time  
0
Start condition setup time (for repeated start condition only)  
Stop condition setup time  
2
tcyc  
tcyc  
2
2
Table 22 lists specifications for the I C output timing parameters shown in Figure 22.  
2
Table 22. I C Output Timing Specifications between SCL and SDA  
Num  
I11 Start condition hold time  
I2 1 Clock low period  
Characteristic  
Min  
Max  
Units  
6
10  
7
3
tcyc  
tcyc  
µs  
I3 2 I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V)  
I4 1 Data hold time  
tcyc  
ns  
I5 3 I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V)  
I6 1 Clock high time  
10  
2
tcyc  
tcyc  
tcyc  
tcyc  
I7 1 Data setup time  
I8 1 Start condition setup time (for repeated start condition only)  
I9 1 Stop condition setup time  
20  
10  
1
Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum  
frequency (IFDR = 0x20) results in minimum output timings as shown in Table 22. The I2C interface is  
designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual  
position is affected by the prescale and division values programmed into the IFDR; however, the numbers  
given in Table 22 are minimum values.  
2
3
Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only actively drive  
low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal capacitance and  
pull-up resistor values.  
Specified at a nominal 50-pF load.  
Figure 22 shows timing for the values in Table 22 and Table 21.  
I5  
I6  
I2  
I2C_SCL  
I2C_SDA  
I7  
I8  
I1  
I9  
I4  
I3  
2
Figure 22. I C Input/Output Timings  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
36  
Freescale Semiconductor  
 
 
 
Electrical Characteristics  
5.15 Fast Ethernet AC Timing Specifications  
MII signals use TTL signal levels compatible with devices operating at 5.0 V or 3.3 V.  
5.15.1 MII Receive Signal Timing  
The receiver functions correctly up to a FEC_RXCLK maximum frequency of 25 MHz +1%. The processor clock frequency  
must exceed twice the FEC_RXCLK frequency.  
Table 23 lists MII receive channel timings.  
Table 23. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
M2  
M3  
M4  
FEC_RXD[3:0], FEC_RXDV, FEC_RXER to FEC_RXCLK setup  
FEC_RXCLK to FEC_RXD[3:0], FEC_RXDV, FEC_RXER hold  
FEC_RXCLK pulse width high  
5
ns  
5
ns  
35%  
35%  
65%  
65%  
FEC_RXCLK period  
FEC_RXCLK period  
FEC_RXCLK pulse width low  
Figure 23 shows MII receive signal timings listed in Table 23.  
M3  
FEC_RXCLK (input)  
M4  
FEC_RXD[3:0] (inputs)  
FEC_RXDV  
FEC_RXER  
M1  
M2  
Figure 23. MII Receive Signal Timing Diagram  
5.15.2 MII Transmit Signal Timing  
Table 24 lists MII transmit channel timings.  
The transmitter functions correctly up to a FEC_TXCLK maximum frequency of 25 MHz +1%. The processor clock frequency  
must exceed twice the FEC_TXCLK frequency.  
Table 24. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
M6  
M7  
M8  
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER invalid  
FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER valid  
FEC_TXCLK pulse width high  
5
ns  
25  
ns  
35%  
35%  
65%  
65%  
FEC_TXCLK period  
FEC_TXCLK period  
FEC_TXCLK pulse width low  
Figure 24 shows MII transmit signal timings listed in Table 24.  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
37  
 
 
 
 
Electrical Characteristics  
M7  
FEC_TXCLK (input)  
M5  
M8  
FEC_TXD[3:0] (outputs)  
FEC_TXEN  
FEC_TXER  
M6  
Figure 24. MII Transmit Signal Timing Diagram  
5.15.3 MII Async Inputs Signal Timing  
Table 25 lists MII asynchronous inputs signal timing.  
Table 25. MII Async Inputs Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
FEC_CRS, FEC_COL minimum pulse width  
1.5  
FEC_TXCLK period  
FEC_CRS  
FEC_COL  
M9  
Figure 25. MII Async Inputs Timing Diagram  
5.15.4 MII Serial Management Channel Timing  
Table 26 lists MII serial management channel timings. The FEC functions correctly with a maximum MDC frequency of 2.5  
MHz.  
Table 26. MII Serial Management Channel Timing  
Num  
Characteristic  
Min Max  
Unit  
M10 FEC_MDC falling edge to FEC_MDIO output invalid (minimum  
propagation delay)  
0
ns  
M11 FEC_MDC falling edge to FEC_MDIO output valid (max prop delay)  
M12 FEC_MDIO (input) to FEC_MDC rising edge setup  
M13 FEC_MDIO (input) to FEC_MDC rising edge hold  
M14 FEC_MDC pulse width high  
10  
0
25  
ns  
ns  
ns  
40% 60% FEC_MDC period  
40% 60% FEC_MDC period  
M15 FEC_MDC pulse width low  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
38  
Freescale Semiconductor  
 
 
Electrical Characteristics  
M14  
M15  
FEC_MDC (output)  
FEC_MDIO (output)  
M10  
M11  
FEC_MDIO (input)  
M12  
M13  
Figure 26. MII Serial Management Channel Timing Diagram  
5.16 32-Bit Timer Module Timing Specifications  
Table 27 lists timer module AC timings.  
Table 27. Timer Module AC Timing Specifications  
Name  
Characteristic  
Min  
Max  
Unit  
T1  
T2  
DT0IN / DT1IN / DT2IN / DT3IN cycle time  
DT0IN / DT1IN / DT2IN / DT3IN pulse width  
3
1
tCYC  
tCYC  
5.17 QSPI Electrical Specifications  
Table 28 lists QSPI timings.  
Table 28. QSPI Modules AC Timing Specifications  
Characteristic  
Name  
Min  
Max  
Unit  
QS1  
QS2  
QS3  
QS4  
QS5  
QSPI_CS[3:0] to QSPI_CLK  
1
2
510  
10  
tCYC  
ns  
QSPI_CLK high to QSPI_DOUT valid.  
QSPI_CLK high to QSPI_DOUT invalid. (Output hold)  
QSPI_DIN to QSPI_CLK (Input setup)  
QSPI_DIN to QSPI_CLK (Input hold)  
ns  
9
ns  
9
ns  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
39  
 
 
Electrical Characteristics  
QS1  
QSPI_CS[3:0]  
QSPI_CLK  
QS2  
QSPI_DOUT  
QSPI_DIN  
QS3  
QS4  
QS5  
Figure 27. QSPI Timing  
5.18 JTAG and Boundary Scan Timing  
Table 29. JTAG and Boundary Scan Timing  
Num  
Characteristics1  
TCLK Frequency of Operation  
Symbol  
Min  
Max  
Unit  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
fJCYC  
tJCYC  
DC  
4
1/4  
3
fsys/3  
tCYC  
ns  
TCLK Cycle Period  
TCLK Clock Pulse Width  
tJCW  
26  
0
TCLK Rise and Fall Times  
tJCRF  
ns  
Boundary Scan Input Data Setup Time to TCLK Rise  
Boundary Scan Input Data Hold Time after TCLK Rise  
TCLK Low to Boundary Scan Output Data Valid  
TCLK Low to Boundary Scan Output High Z  
TMS, TDI Input Data Setup Time to TCLK Rise  
tBSDST  
tBSDHT  
tBSDV  
4
33  
33  
26  
8
ns  
26  
0
ns  
ns  
tBSDZ  
0
ns  
tTAPBST  
tTAPBHT  
tTDODV  
tTDODZ  
tTRSTAT  
tTRSTST  
4
ns  
J10 TMS, TDI Input Data Hold Time after TCLK Rise  
J11 TCLK Low to TDO Data Valid  
10  
0
ns  
ns  
J12 TCLK Low to TDO High Z  
0
ns  
J13 TRST Assert Time  
100  
10  
ns  
J14 TRST Setup Time (Negation) to TCLK High  
ns  
1
JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
40  
Freescale Semiconductor  
Electrical Characteristics  
J2  
J3  
J3  
VIH  
TCLK  
(input)  
VIL  
J4  
J4  
Figure 28. Test Clock Input Timing  
TCLK  
VIL  
VIH  
J5  
J6  
Data Inputs  
Input Data Valid  
J7  
J8  
Data Outputs  
Output Data Valid  
Data Outputs  
Data Outputs  
J7  
Output Data Valid  
Figure 29. Boundary Scan (JTAG) Timing  
TCLK  
VIL  
VIH  
J9  
Input Data Valid  
J10  
TDI  
TMS  
J11  
TDO  
Output Data Valid  
J12  
J11  
TDO  
TDO  
Output Data Valid  
Figure 30. Test Access Port Timing  
TCLK  
TRST  
J14  
J13  
Figure 31. TRST Timing  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
41  
Current Consumption  
5.19 Debug AC Timing Specifications  
Table 30 lists specifications for the debug AC timing parameters shown in Figure 32.  
Table 30. Debug AC Timing Specification  
Num  
Characteristic  
PSTCLK cycle time  
Min  
Max  
Units  
D0  
D1  
D2  
D3  
D41  
D5  
D6  
2
1.5  
1
2
3.0  
t
SYS = 1/fSYS  
ns  
PSTCLK rising to PSTDDATA valid  
PSTCLK rising to PSTDDATA invalid  
DSI-to-DSCLK setup  
ns  
PSTCLK  
PSTCLK  
PSTCLK  
PSTCLK  
DSCLK-to-DSO hold  
4
DSCLK cycle time  
5
BKPT assertion time  
1
1
DSCLK and DSI are synchronized internally. D4 is measured from the synchronized  
DSCLK input relative to the rising edge of PSTCLK.  
D0  
PSTCLK  
D2  
D1  
PSTDDATA[7:0]  
Figure 32. Real-Time Trace AC Timing  
D5  
DSCLK  
DSI  
D3  
Current  
D4  
Next  
DSO  
Past  
Current  
Figure 33. BDM Serial Port AC Timing  
6
Current Consumption  
All current consumption data is lab data measured on a single device using an evaluation board. Table 31 shows the typical  
power consumption in low-power modes. These current measurements are taken after executing a STOP instruction.  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
42  
Freescale Semiconductor  
 
 
 
 
Current Consumption  
1,2  
Table 31. Current Consumption in Low-Power Modes  
58 MHz  
(Typ)3  
64 MHz  
(Typ)3  
72 MHz  
(Typ)3  
80 MHz  
(Typ)3  
80 MHz  
Units  
Mode  
Voltage  
(Peak)4  
3.3 V  
1.5 V  
3.3 V  
1.5 V  
3.3 V  
1.5 V  
3.3 V  
1.5 V  
3.3 V  
1.5 V  
3.3 V  
1.5 V  
3.9  
3.92  
1.04  
4.0  
1.04  
4.8  
4.0  
1.04  
4.8  
4.0  
1.08  
4.8  
Stop Mode 3 (Stop 11)5  
Stop Mode 2 (Stop 10)4  
Stop Mode 1(Stop 01)4  
Stop Mode 0 (Stop 00)4  
Wait/Doze  
1.04  
4.69  
4.72  
2.69  
2.69  
2.70  
4.81  
17.85  
24.33  
18.06  
25.21  
30.81  
42.3  
65.4  
2.70  
4.81  
19.91  
26.13  
20.12  
27.03  
34.47  
50.5  
73.4  
2.75  
4.81  
4.72  
4.73  
15.28  
21.65  
15.47  
22.49  
26.79  
33.61  
56.3  
16.44  
21.68  
16.63  
22.52  
28.85  
33.61  
60.7  
20.42  
mA  
26.16  
20.67  
39.8  
97.4  
62.6  
Run  
132.3  
1
2
3
All values are measured with a 3.30V EVDD, 3.30V SDVDD and 1.5V IVDD power supplies. Tests performed at room  
temperature with pins configured for high drive strength.  
Refer to the Power Management chapter in the MCF532x Reference Manual for more information on low-power  
modes.  
All peripheral clocks except UART0, FlexBus, INTC0, reset controller, PLL, and edge port off before entering low  
power mode. All code executed from flash.  
4
5
All peripheral clocks on before entering low power mode. All code is executed from flash.  
See the description of the low-power control register (LCPR) in the MCF532x Reference Manual for more  
information on stop modes 0–3.  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Stop 0 - Flash  
Stop 1 - Flash  
Stop 2 - Flash  
Stop 3 - Flash  
Wait/Doze - Flash  
Run - Flash  
0
58  
64  
72  
80  
80(peak)  
fsys/3 (MHz)  
Figure 34. Current Consumption in Low-Power Modes  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
43  
 
 
Current Consumption  
1
Table 32. Typical Active Current Consumption Specifications  
Typical2 Active  
fsys/3 Frequency  
1.333 MHz  
2.666 MHz  
58 MHz  
Voltage  
Peak3  
Unit  
(Flash)  
3.3V  
1.5V  
3.3V  
1.5V  
3.3V  
1.5V  
3.3V  
1.5V  
3.3V  
1.5V  
3.3V  
1.5V  
7.73  
2.87  
7.74  
3.56  
8.60  
5.52  
49.3  
91.70  
54.0  
97.0  
63.7  
104.7  
73.7  
112.9  
8.57  
4.37  
40.10  
65.90  
44.40  
69.50  
53.6  
mA  
64 MHz  
72 MHz  
74.6  
63.0  
80 MHz  
79.6  
1
All values are measured with a 3.30 V EVDD, 3.30 V SDVDD and 1.5 V IVDD power  
supplies. Tests performed at room temperature with pins configured for high drive  
strength.  
2
3
CPU polling a status register. All peripheral clocks except UART0, FlexBus,  
INTC0, reset controller, PLL, and edge port disabled.  
Peak current measured while running a while(1) loop with all modules active.  
Figure 35 shows the estimated maximum power consumption.  
Estimated Power Consumption vs. Core Frequency  
300  
250  
200  
150  
100  
50  
0
0
40  
80  
120  
160  
200  
240  
Core Frequency (MHz)  
Figure 35. Estimated Maximum Power Consumption  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
44  
Freescale Semiconductor  
 
Package Information  
7
Package Information  
This section contains drawings showing the pinout and the packaging and mechanical characteristics of the MCF532x devices.  
NOTE  
The mechanical drawings are the latest revisions at the time of publication of this  
document. The most up-to-date mechanical drawings can be found at the product summary  
page located at http://www.freescale.com/coldfire.  
7.1  
Package Dimensions—256 MAPBGA  
Figure 36 shows MCF5328CVM240, MCF53281CVM240, and MCF5329CVM240 package dimensions.  
X
D
M
Laser mark for pin A1  
identification in  
this area  
5
Y
0.30 Z  
A2  
K
A
A1  
256X  
4
0.15 Z  
Z
E
Detail K  
Rotated 90° Clockwise  
Notes:  
1.  
2.  
Dimensions are in millimeters.  
Interpret dimensions and tolerances  
per ASME Y14.5M, 1994.  
Top View  
M
0.20  
15X e  
3.  
4.  
5.  
Dimension b is measured at the  
maximum solder ball diameter, parallel  
to datum plane Z.  
Datum Z (seating plane) is defined by  
the spherical crowns of the solder  
balls.  
Parallelism measurement shall exclude  
any effect of mark on top surface of  
package.  
Metalized mark for  
pin A1 identification  
in this area  
S
15 13 11  
16 14 12 10  
7 6 5 4 3 2 1  
A
B
C
D
E
F
S
15X e  
3
G
H
J
256X  
b
M
M
0.25  
0.10  
Z X Y  
Millimeters  
K
L
M
N
P
R
T
Dim Min  
1.25  
A1 0.27  
Max  
1.60  
0.47  
Z
A
1.16 REF  
A2  
b
D
E
e
0.40  
17.00 BSC  
17.00 BSC  
0.60  
Bottom View  
1.00 BSC  
0.50 BSC  
View M-M  
S
Figure 36. 256 MAPBGA Package Outline  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
45  
 
 
Package Information  
7.2  
Package Dimensions—196 MAPBGA  
Figure 37 shows the MCF5327CVM240 package dimensions.  
NOTES:  
D
X
Y
1. Dimensions are in millimeters.  
2. Interpretdimensionsandtolerances  
per ASME Y14.5M, 1994.  
3. Dimension B is measured at the  
maximum solder ball diameter,  
parallel to datum plane Z.  
4. Datum Z (seating plane) is defined  
bythesphericalcrownsofthesolder  
balls.  
Laser mark for pin 1  
identification in  
this area  
M
K
5. Parallelism measurement shall  
exclude any effect of mark on top  
surface of package.  
Millimeters  
DIM Min Max  
A 1.32 1.75  
A1 0.27 0.47  
A2 1.18 REF  
E
b
D
E
e
0.35 0.65  
15.00 BSC  
15.00 BSC  
1.00 BSC  
0.50 BSC  
S
M
Top View  
0.20  
13X e  
S
Metalized mark for  
pin 1 identification  
in this area  
14 13 12 11 10  
9
6
5
4
3
2
1
A
B
C
D
E
F
5
S
0.30 Z  
13X e  
A2  
A
G
H
J
A1  
0.15 Z  
4
Z
K
L
Detail K  
Rotated 90 Clockwise  
°
M
N
P
3
196X  
b
Bottom View  
0.30 Z X Y  
0.10 Z  
View M-M  
Figure 37. 196 MAPBGA Package Dimensions (Case No. 1128A-01)  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
46  
Freescale Semiconductor  
 
Revision History  
8
Revision History  
Table 33. MCF5329DS Document Revision History  
Rev. No.  
Substantive Changes  
Date of Release  
0
• Initial release.  
11/2005  
3/2006  
0.1  
• Added not to Section 7, “Package Information.”  
• Added top view and bottom view where appropriate in mechanical  
drawings and pinout figures.  
Figure 6: Corrected “FB_CLK (75MHz)” label to “FB_CLK (80MHz)”  
1
• Corrected MCF5327 196MAPBGA ball map locations in Table 5 for  
the following signals: RCON, D1, D0, OE, R/W, SD_DQS2, PSTCLK,  
DDATA[3:0], PST[3:0], EVDD, IVDD, and SD_VDD. Figure 5 was  
correct.  
7/2007  
• Updated thermal characteristic values in Table 5.  
• Updated DC electricals values in Table 7.  
• Updated Section 3.3, “Supply Voltage Sequencing and Separation  
Cautions” and subsections.  
• Updated and added Oscillator/PLL characteristics in Table 8.  
Table 9: Swapped min/max for FB1; Removed FB8 & FB9.  
• Updated SDRAM write timing diagram, Figure 9.  
Table 11: Added values for frequency of operation and DD1.  
• Reworded first paragraph in Section 5.12, “ULPI Timing  
Specification.”  
• Updated Figure 19.  
• Replaced figure & table Section 5.13, “SSI Timing Specifications,”  
with slave & master mode versions.  
• Removed second sentence from Section 5.15.2, “MII Transmit Signal  
Timing,regarding no minimum frequency requirement for TXCLK.  
• Removed third and fourth paragraphs from Section 5.15.2, “MII  
Transmit Signal Timing,as this feature is not supported on this  
device.  
• Updated figure & table Section 5.19, “Debug AC Timing  
Specifications.”  
• Renamed & moved previous version’s Section 5.5 “Power  
Consumption” to Section 6, “Current Consumption.Added additional  
real-world data to this section as well.  
2
3
• Added MCF53281 device information throughout: features list, family  
configuration table, ordering information table, signals description  
table, and relevant package diagram titles  
• Remove Footnote 1 from Table 11.  
• Changed document type from Advance Information to Technical Data.  
8/2007  
• Corrected MCF53281 in features list table. This device contains CAN,  
but does not feature the cryptography accelerators.  
• In pin-multiplexing table, moved MCF53281 label from the MCF5328  
column to the MCF5329 column, because this device contains CAN  
output signals.  
10/2007  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
47  
Revision History  
Table 33. MCF5329DS Document Revision History (continued)  
Substantive Changes  
Rev. No.  
4
Date of Release  
• Corrected pinouts in Signal Information and Pin-Muxing table for  
196 MAPBGA device:  
4/2008  
Changed D[15:1] entry from “F4–F1, G4–G2...to “F4–F1, G5–G2...”  
Changed DSO/TDO entry from “P9” to “N9”  
• Corrected D0 spec in Table 30 from 1.5 x tsys to 2 x tsys for min and  
max balues.  
• Updated FlexBus read and write timing diagrams in Figure 7 and  
Figure 8.  
• Removed footnote 2 from the IRQ[7:1] alternate functions USBHOST  
VBUS_EN, USBHOST VBUS_OC, SSI_MCLK, USB_CLKIN, and  
SSI_CLKIN signals in Signal Information and Pin-Muxing table.  
• Updated pinouts for 196 MAPBGA device, MCF5327CVM240 in both  
Figure 5 and Table 2.  
The following locations are affected: G10–12, H12–14, J11–14,  
K12–13, L12–13, M12–14, N13.  
The following signals are affected: USBOTG_VDD, USBHOST_VSS,  
USBOTG_M, USBOTG_P, USBHOST_M, USBHOST_P, DRAMSEL,  
PWM3, PWM1, IRQ[7,4,3,2,1], RESET, TDI/DSI, JTAG_EN,  
TMS/BKPT.  
5
Changed the following specs in Table 10 and Table 11:  
• Minimum frequency of operation from TBD to 60MHz  
• Maximum clock period from TBD to 16.67 ns  
11/2008  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
48  
Freescale Semiconductor  
Revision History  
MCF532x ColdFire® Microprocessor Data Sheet, Rev. 5  
Freescale Semiconductor  
49  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2008. All rights reserved.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MCF5329DS  
Rev. 5  
11/2008  

相关型号:

MCF5328CVM240

Microprocessor Data Sheet
FREESCALE

MCF5328CVM240

MCF5329 ColdFire Microprocessor Data Sheet
ANALOGICTECH

MCF5328CVM240J

32-BIT, 240MHz, RISC PROCESSOR, PBGA256, 17 X 17 MM, ROHS COMPLIANT, MAPBGA-256
NXP

MCF5329

CodeWarrior Development Studio for ColdFire㈢ Architectures
FREESCALE

MCF5329CVM240

Microprocessor Data Sheet
FREESCALE

MCF5329CVM240

MCF5329 ColdFire Microprocessor Data Sheet
ANALOGICTECH

MCF5329CVM240J

暂无描述
NXP

MCF5329DS

MCF5329 ColdFire Microprocessor Data Sheet
ANALOGICTECH

MCF5329_08

ColdFire㈢ Microprocessor
FREESCALE

MCF5372

Microprocessor Data Sheet
FREESCALE

MCF5372

MCF537x ColdFire® Microprocessor Data Sheet
NXP

MCF53721

ColdFire㈢ Microprocessor
FREESCALE