MMA17XXW [NXP]

Xtrinsic MMA27XXW/17XXW DSI3 Inertial Sensor;
MMA17XXW
型号: MMA17XXW
厂家: NXP    NXP
描述:

Xtrinsic MMA27XXW/17XXW DSI3 Inertial Sensor

文件: 总84页 (文件大小:2609K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
escale Semiconductor  
Data Sheet: Advance Information  
An Energy-Efficient Solution by Freescale  
Document Number: MMA27XXW  
Rev. 0.5, 4/2013  
Xtrinsic MMA27XXW/17XXW DSI3  
Inertial Sensor  
MMA27XXW/17XXW family, a SafeAssure solution, includes the DSI3 compatible  
overdamped X-axis or Z-axis satellite accelerometers.  
MMA27XXW  
MMA17XXW  
Bottom View  
Features  
±25 g, ±125 g, ±187 g, ±250 g, ±375 g, X-axis nominal full-scale range  
±250 g, Z-axis nominal full-scale range  
DSI3 compatible  
Discovery Mode for physical location identification  
High-side bus switch output driver  
Command and Response Mode support for device configuration  
Periodic Data Collection Mode support for acceleration data transfers  
16-PIN QFN  
6 MM X 6 MM X 2 MM  
CASE 2086-01  
Background Diagnostic Mode support during Periodic Data Collection  
Mode  
-40°C to 125°C operating temperature range  
16 μs internal sample rate, with interpolation to 1 μs  
Six selectable low-pass filter options from 180 Hz to 1200 Hz  
Single-pole, IIR high-pass filter with fast startup and optional output rate limiting  
Pb-Free, 16-pin QFN, 6 x 6 package  
Top View  
16 15 14 13  
Referenced Documents  
1
2
3
4
12  
11  
10  
9
BUS_O  
NC  
V
V
SS  
17  
DSI3 Standard Revision 1.0, Dated February 16, 2011  
REGA  
AEC-Q100, Revision G, dated May 14, 2007  
BUS_I  
BUSRTN  
TEST_CS  
V
REG  
5
6
7
8
ORDERING INFORMATION  
Part Number  
Axis  
Range  
Package  
Shipping  
MMA2702W  
X
±25 g  
2086-01  
Rail  
MMA2712W  
MMA2718W  
X
X
X
X
Z
X
X
X
X
X
Z
±125 g  
±187 g  
±250 g  
±375 g  
±250 g  
±25 g  
2086-01  
2086-01  
2086-01  
2086-01  
2086-01  
2086-01  
2086-01  
2086-01  
2086-01  
2086-01  
2086-01  
Rail  
Rail  
Pin Connections  
MMA2725W  
Rail  
MMA2737W  
Rail  
MMA1725W  
Rail  
MMA2702WR2  
MMA2712WR2  
MMA2718WR2  
MMA2725WR2  
MMA2737WR2  
MMA1725WR2  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
±125 g  
±187 g  
±250 g  
±375 g  
±250 g  
This document contains information on a new product. Specifications and information herein  
are subject to change without notice. Freescale reserves the right to change the detail  
© 2013 Freescale Semiconductor, Inc. All rights reserved.  
Contents  
1
Block Diagram, Pin Descriptions, Application Diagram, and Device Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.2 Pin descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
1.3 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.4 Device orientation and device marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.1 Maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.2 Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.3 Electrical characteristics - supply and I/O. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.4 Electrical Characteristics - sensor and signal chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.5 Electrical characteristics - self-test and overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.6 Dynamic electrical characteristics - DSI3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.7 Dynamic electrical characteristics - signal chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2.8 Dynamic electrical characteristics - supply and support circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1 User-accessible data array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.2 OTP and Read/Write register array CRC verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
3.3 Voltage regulators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
3.4 Internal oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
3.5 Acceleration signal path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
3.6 DSI3 physical layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
3.7 Data transmission modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
3.8 Initialization timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
3.9 Overload response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
DSI3 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
4.1 Address assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
4.2 DSI3 Command and Response Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
4.3 DSI3 Periodic Data Collection Mode and Background Diagnostic Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
4.4 Maximum number of devices on a network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Exception Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
Recommended Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
2
3
4
5
6
7
8
Related Documentation  
The MMA27XXW and MMA17XXW devices features and operations are described in a variety of reference manuals, user guides,  
and application notes. To find the most-current versions of these documents:  
1. Go to the Freescale homepage at:  
http://www.freescale.com/  
2. In the Keyword search box at the top of the page, enter the device number MMA27XXW or MMA17XXW.  
3. In the Refine Your Result pane on the left, click on the Documentation link.  
MMA27XXW  
Sensors  
2
Freescale Semiconductor, Inc.  
1
Block Diagram, Pin Descriptions, Application Diagram, and Device  
Orientation  
1.1  
Block diagram  
VBUF  
Buffer  
Voltage  
Regulator  
BUS_I  
VBUF  
VREG  
Internal  
Voltage  
Regulator  
VREG  
VREF  
VREGA  
Reference  
Voltage  
VREGA  
VBUF  
DSI3 Command  
Decoder  
Low Voltage  
Detection  
VSS  
NVM Programming  
Interface  
Oscillator  
OTP  
Serial  
Encoder  
Array  
BUSRTN  
TEST_CS  
Control  
Logic  
BUS_I  
TEST_SCLK  
TEST_MOSI  
SPI  
RSENSE  
BUS_O  
BUSSW  
TEST_MISO  
Daisy-Chain  
Switch Driver  
PCM  
Encoder  
PCM  
VREG  
Self-test  
Interface  
CONTROL SIGNAL  
IN OUT  
VREGA  
VREG  
Offset  
Monitor  
DSP  
g-cell  
IIR  
LPF  
HPF  
Interpolation  
Sinc filter  
ΣΔ  
Converter  
Digital  
Gain  
Compensation  
Figure 1. Internal block diagram  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
3
1.2  
Pin descriptions  
16 15 14 13  
17  
1
2
3
4
12  
11  
10  
9
BUS_O  
NC  
V
V
SS  
REGA  
BUS_I  
BUSRTN  
TEST_CS  
V
REG  
5
6
7
8
Figure 2. Pin connections  
Table 1. Pin descriptions  
Pin Pin name  
Formal name  
Supply out  
Definition  
This pin is connected to the BUS_I pin through an internal sense resistor and provides the supply  
connection to the next slave in a daisy-chain configuration. An external capacitor must be connected  
between this pin and VSS. Reference Figure 3.  
1
BUS_O  
2
3
4
5
NC  
BUS_I  
BUSRTN  
PCM  
Not connected This pin is not internally connected and must be left unconnected or tied to VSS in the application.  
Supply and This pin is connected to the DSI supply line and supplies power to the device. An external capacitor must  
communication be connected between this pin and BUSRTN. Reference Figure 3.  
Supply return  
Pulse code  
This pin is the DSI supply return node.  
If the PCM output is enabled, this pin provides a 4 MHz PCM signal proportional to the acceleration data  
modulated output for test purposes. If PCM is unused, this pin must be left unconnected.  
This input pin provides the serial clock to the SPI port for test purposes. An internal pull-down device is  
SPI clock  
6
7
TEST_SCLK  
TEST_MISO  
TEST_MOSI  
VREG  
connected to this pin. This pin must be grounded or left unconnected in the application.  
This pin functions as the serial data output from the SPI port for test purposes. This pin must be left  
unconnected in the application.  
SPI data out  
This pin functions as the serial data input to the SPI port for test purposes. An internal pull-down device  
SPI data in  
8
is connected to this pin. This pin must be grounded or left unconnected in the application.  
Internal  
supply  
This pin is connected to the power supply for the internal circuitry. An external capacitor must be  
connected between this pin and VSS. Reference Figure 3.  
9
This input pin provides the chip select to the SPI port for test purposes. An internal pullup device is  
connected to this pin. This pin must be left unconnected in the application.  
10  
11  
12  
TEST_CS  
VREGA  
Chip select  
Internal  
supply  
This pin is connected to the power supply for the internal circuitry. An external capacitor must be  
connected between this pin and VSSA. Reference Figure 3.  
Internal supply This pin is the power supply return node for the internal power supplies and must be connected to  
VSS  
return  
BUSRTN in this application.  
This pin is connected to a buffer regulator for the internal circuitry. The buffer regulator supplies the  
internal regulators to provide immunity from EMC and supply dropouts. An external capacitor must be  
connected between this pin and VSS. Reference Figure 3.  
13  
VBUF  
Power supply  
14  
15  
TEST2  
TEST  
Test pin  
Test pin  
This pin is must be connected to VSS in the application.  
This pin is must be connected to VSS in the application.  
This pin is the drive for a high-side, daisy-chain switch. When switch is connected, daisy-chain mode is  
Bus switch gate used, this pin is connected to the gate of a p-channel FET which connects BUS_I to the next slave in the  
16  
17  
BUSSW  
drive  
daisy chain. An external pullup resistor is required on the gate of the p-channel FET. Reference  
Section 3.6.4. If unused, this pin must be left unconnected.  
This pin is the die attach flag, and is internally connected to VSS. Reference Section 6 for die attach pad  
connection details.  
PAD  
Die attach pad  
Corner pads  
Corner pads  
The corner pads are internally connected to VSS.  
MMA27XXW  
Sensors  
4
Freescale Semiconductor, Inc.  
1.3  
Application diagram  
Optional for ESD  
D1  
BUS_I  
BUSIN  
VBUF  
VREG  
BUS_I  
VREGA  
C1  
C2  
C3  
C4  
BUSRTN  
BUSOUT  
BUSRTN  
BUS_O  
VSS  
C5  
BUS_I  
C6  
M1  
R1  
BUSSW  
BUSOUTDC  
Optional for  
Daisy Chain  
Figure 3. MMA27XXW/17XXW application diagram  
Table 2. External component recommendations  
Ref Des  
Type  
Description  
Purpose  
BUSIN EMC and ESD protection. Capacitor value is dependent  
on the DSI3 master device and must be chosen by the system  
implementer.  
C1  
Ceramic  
220 pF, 10%, 50 V minimum, X7R  
C2  
C3  
C4  
C5  
C6  
R1  
M1  
D1  
Ceramic  
Ceramic  
1 μF, 10%, 10 V minimum, X7R  
1 μF, 10%, 10 V minimum, X7R  
1 μF, 10%, 10 V minimum, X7R  
100 pF, 10%, 50 V minimum, X7R  
100 pF, 10%, 50 V minimum, X7R  
100 kΩ, 5%, 200 PPM  
Voltage regulator output capacitor  
Voltage regulator output capacitor  
Voltage regulator output capacitor  
BUSOUT EMC and ESD protection  
BUSOUT EMC and ESD protection  
Pullup resistor for external high-side, daisy-chain FET  
High-side, daisy-chain transistor  
ESD protection diode  
Ceramic  
Ceramic  
Ceramic  
General purpose  
P-channel MOSFET  
Zener diode  
MMBZ27Vxxxx or equivalent  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
5
1.4  
Device orientation and device marking  
x x x x x x x  
x x x x x x x  
xxxxxxx  
xxxxxxx  
X: 0 g  
Z: 0 g  
X: -1 g  
Z: 0 g  
X: 0 g  
Z: +1 g  
X: 0 g  
Z: -1 g  
X: 0 g  
Z: 0 g  
X: +1 g  
Z: 0 g  
EARTH GROUND  
Figure 4. Device orientation diagram  
Data Code Legend:  
A: Assembly Location  
WL: Wafer Lot Number (g-cell Lot Number)  
Y: Year  
MMAx7xxW  
AWLYWWZ  
WW: Work Week  
Z: Assembly Lot Number  
Figure 5. Device marking  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
6
2
Electrical Characteristics  
2.1  
Maximum ratings  
Maximum ratings are the extreme limits to which the device can be exposed without permanently damaging it.  
#
Rating  
Supply voltage (BUS_I, BUS_O, BUSSW)  
Symbol  
Value  
Unit  
1
2
3
4
Reverse current 160 mA, t 80 ms  
Continuous  
BUS_I_REV  
BUS_I_MAX  
BUS_I_TRANS  
-0.7  
V
V
V
(6)  
(6)  
(9)  
+20.0  
+25.0  
Transient (< 10 us)  
5
6
VBUF  
-0.3 to +4.0  
-0.3 to +3.0  
V
V
(6)  
(6)  
VREG, VREGA, TEST_SCLK, TEST_CS, TEST_MOSI, TEST_MISO, PCM  
7
8
9
BUS_I, BUS_O and BUSRTN current  
Maximum duration 560 μs, with 10 ms repetition rate  
Continuous  
IIN  
IIN  
200  
150  
mA  
mA  
(6)  
(6)  
Powered shock (six sides, 0.5 ms duration)  
gpms  
gshock  
hDROP  
2000  
2000  
1.2  
g
g
(5)  
(5)  
(5)  
10  
11  
12  
Unpowered shock (six sides, 0.5 ms duration)  
Drop shock (to concrete, tile or steel surface, 10 drops, any orientation)  
m
Electrostatic discharge (per AEC-Q100), external pins  
13  
14  
BUS_I, BUS_O, BUSRTN, HBM (100 pF, 1.5 kΩ)  
VESD  
4000  
V
(5)  
15 Electrostatic discharge (per AEC-Q100)  
HBM (100 pF, 1.5 kΩ)  
CDM (R = 0 Ω)  
MM (200 pF, 0 Ω)  
VESD  
VESD  
VESD  
2000  
500  
V
V
V
(5)  
(5)  
(5)  
16  
17  
18  
200  
19 Temperature range  
Storage  
Tstg  
TJ  
-40 to +125  
-40 to +150  
°C  
°C  
(5)  
(9)  
20  
21  
Junction  
Thermal resistance  
θJC  
2.5  
°C/W  
(9,11)  
22  
2.2  
Operating range  
VBUS_I_L (VBUS_I - VSS) VBUS_I_H, TL TA TH, ΔT 12°C/min, unless otherwise specified.  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Supply voltage (measured at BUS_I pin)  
23  
24  
25  
26  
27  
VHIGH  
VLOW rising  
*
*
VBUS_I_HIGH_max  
VBUS_I_LOW_Rise  
VBUS_I_LOW_Fall  
VBUS_I_UV  
4.5  
20.0  
V
V
V
V
(1,6)  
(9)  
V
LOW falling  
4.0  
(1)  
Supply voltage (undervoltage)  
VBUS_I_UV_F  
VBUS_I_LOW_Fall  
(3,6)  
Programming voltage (IRD 85 mA)  
Applied to BUS_I  
28  
VPP  
14.0  
VBUS_I_HIGH_max  
V
V
(6)  
(9)  
ESD operating voltage  
29  
30  
31  
(No device reset, CBUS_IN = 220 pF, D1 = MMBZ27Vxxxx)  
Maximum 15 kV air discharge, 330 pF, 2.0 kΩ  
VBUS_I_ESD  
12.0  
Operating temperature range  
TL  
-40  
-40  
TH  
+105  
+125  
32  
33  
34  
TA  
TA  
°C  
°C  
(1)  
(5,6)  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
7
2.3  
Electrical characteristics - supply and I/O  
VBUS_I_L (VBUS_I - VSS) VBUS_I_H, TL TA TH, ΔT 12 °C/min, unless otherwise specified.  
#
Characteristic  
Quiescent supply current  
BUS_I = 4 V, VBUS_I = 20 V  
Symbol  
Min  
Typ  
Max  
Units  
V
*
Iq  
4.0  
8.0  
mA  
(1)  
35  
Response current  
36  
37  
Low  
*
*
IRESP  
2*IRESP  
Iq+ 10.50  
Iq+ 21.0  
Iq+ 12.0  
Iq+ 24.0  
Iq+ 13.5  
Iq+ 27.0  
mA  
mA  
(1)  
(1)  
High  
VBUF current limit  
IINRUSH_MAX  
30  
mA  
(6)  
38  
Internally regulated voltages  
VBUF, VBUS_I = 4 V, VBUS_I = 20 V  
VREG, VBUS_I = 4 V  
VBUF  
VREG  
VREGA  
3.250  
2.400  
2.425  
3.400  
2.500  
2.500  
3.550  
2.600  
2.575  
V
V
V
(1)  
(1)  
(1)  
39  
40  
41  
VREGA, VBUS_I = 4 V, VBUS_I = 20 V  
*
Low-voltage detection threshold  
BUS_I falling  
VBUS_I_UV_F  
VBUF_UV_F  
VREG_UV_F  
VREGA_UV_F  
VHYST  
3.60  
2.80  
2.15  
2.15  
0.04  
3.75  
3.05  
2.25  
2.25  
3.90  
3.20  
2.35  
2.35  
V
V
V
V
V
(3,6)  
(3,6)  
(3,6)  
(3,6)  
(6)  
42  
43  
44  
45  
46  
VBUF falling  
VREG falling  
VREGA falling  
Low-voltage detection hysteresis  
External capacitor (VBUF, VREG, VREGA  
Capacitance  
)
CVBUF, CVREG, CVREGA  
ESR  
500  
0
1000  
1500  
200  
nF  
(9)  
(9)  
47  
48  
ESR (including interconnect resistance)  
mΩ  
VLOW detection threshold (Section 3.6.1)  
VLOW detection threshold  
*
*
VDELTA_THRESH  
VDELTA_THRESH_Hyst  
VHIGH-1.25 VHIGH-1.0 VHIGH-0.75  
V
(3,6)  
(6)  
49  
50  
VLOW detection hysteresis  
40  
60  
80  
mV  
Discovery Mode current sense (Section 3.6.3)  
Sense resistor  
RSENSE  
IRESP_Det, VIRESP_Offset  
1.3  
6
2.15  
12  
3
Ω
(6)  
51  
52  
IRESP detection threshold (IBUS_O_q 24 mA)  
18  
mA (3,6)  
Bus switch output low voltage (Section 3.6.4)  
ILoad = 100 μA  
VBUS_SW_OL  
IBUS_SW_ODL  
VOH  
0.0  
0.45  
10  
V
μA  
V
(3,6)  
(3,6)  
(3)  
53  
54  
55  
56  
Bus switch open drain output leakage current (BUSSW)  
VBUSSW = 20 V  
Output high voltage (PCM)  
I
Load = -100 μA  
VREG - 0.1  
Output low voltage (PCM)  
ILoad = 100 μA  
VOL  
0.1  
V
(3)  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
8
2.4  
Electrical Characteristics - sensor and signal chain  
VBUS_I_L (VBUS_I - VSS) VBUS_I_H, TL TA TH, ΔT 12 °C/min, unless otherwise specified.  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Sensitivity (TA = 25°C, 10-bit output @ 100 Hz, referenced to 0Hz: ±5%)  
±25 g range  
±125 g range  
±187 g range  
±250 g range  
±375 g range  
*
*
*
*
*
SENS025  
SENS125  
SENS187  
SENS250  
SENS375  
19.456 20.480 21.504 LSB/g  
3.8912 4.0960 4.3008 LSB/g  
2.5944 2.7310 2.8676 LSB/g  
(1)  
(1)  
(1)  
(1)  
(1)  
57  
58  
59  
60  
61  
1.9456 2.0480 2.1504  
LSB/g  
1.2967 1.3650 1.4333 LSB/g  
Sensitivity (TL TA TH, VBUS_I_UV_F VBUS_I VLOW  
10-bit output @ 100 Hz, referenced to 0 Hz: ±7%)  
62  
63  
64  
65  
66  
±25 g range  
±125 g range  
±187 g range  
±250 g range  
±375 g range  
*
*
*
*
*
SENS025  
SENS125  
SENS187  
SENS250  
SENS375  
19.046 20.480 21.914 LSB/g  
3.8092 4.0960 4.3828 LSB/g  
2.5398 2.7310 2.9222 LSB/g  
1.9046 2.0480 2.1914 LSB/g  
1.2694 1.3650 1.4606 LSB/g  
(1)  
(1)  
(1)  
(1)  
(1)  
Digital offset before offset cancellation (10-bit)  
±25 g, ±125 g, ±250 g Z-axis  
*
*
OFF10Bit  
OFF10Bit  
OFF10Bit  
OFF10Bit  
-100  
-100  
-52  
0
0
0
0
+100  
+100  
+52  
LSB  
LSB  
LSB  
LSB  
(1)  
(6)  
(1)  
(6)  
67  
68  
69  
70  
VBUS_I_UV_F VBUS_I VLOW, ±25 g, ±125 g, ±250 g Z-axis  
±187 g, ±250 g X-axis, ±375 g  
VBUS_I_UV_F VBUS_I VLOW, ±187 g, ±250 g X-axis, ±375 g  
-52  
+52  
Digital offset after offset cancellation (10-bit, all filter options)  
OFF10Bit  
-1  
0
+1  
LSB (6,8,9)  
71  
Continuous offset monitor limit  
72  
73  
74  
10-bit output, before compensation, ±25 g  
OFFMON  
OFFMON  
OFFMON  
-150  
-120  
-70  
+150  
+120  
+70  
LSB  
LSB  
LSB  
(7,8)  
(7,8)  
(7,8)  
10-bit output, before compensation, ±125 g, ±250 g Z-axis  
10-bit output, before compensation, ±187 g, ±250 g X-axis, ±375 g  
Range of output (10-bit mode)  
Acceleration (signed)  
Acceleration (unsigned)  
Error code (signed)  
75  
76  
77  
78  
RANGESigned  
RANGEUnsigned  
ERRSigned  
-511  
1
+511  
1023  
LSB  
LSB  
LSB  
LSB  
(7,8)  
(7,9)  
(7,8)  
(7,9)  
-512  
0
Error code (unsigned)  
ERRUnsigned  
Cross-axis sensitivity  
Z-axis to X-axis  
Y-axis to X-axis  
X-axis to Z-axis  
Y-axis to Z-axis  
VZX  
VYX  
VXZ  
VYZ  
-5  
-5  
-5  
-5  
+5  
+5  
+5  
+5  
%
%
%
%
(6)  
(6)  
(6)  
(6)  
79  
80  
81  
82  
System output noise peak (peak value of 100 samples @ 2 kHz)  
10-bit mode, LPF = 180 Hz, 2-Pole, All Ranges  
nPeak_180  
nPeak_400  
-3  
-4  
+3  
+4  
LSB  
LSB  
(1)  
(6)  
83  
84  
10-bit mode, LPF = 400 Hz, 4-Pole, All Ranges  
System output noise average (average value of 100 samples @ 2 kHz)  
10-bit mode, LPF = 180 Hz, 2-pole, all ranges  
nRMS_180  
nRMS_400  
*
*
+1.0  
+1.0  
LSB  
LSB  
(1)  
(6)  
85  
86  
10-bit mode, LPF = 400 Hz, 4-pole, all ranges  
Nonlinearity (10-bit output, all ranges)  
NLOUT  
-2  
+2  
%
(6)  
87  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
9
2.5  
Electrical characteristics - self-test and overload  
VBUS_I_L (VBUS_I - VSS) VBUS_I_H, TL TA TH, ΔT 12°C/min, unless otherwise specified.  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
10-bit output during active self-test  
ΔSTMIN  
124  
236  
156  
117  
77  
ΔSTNOM ΔSTMAX  
±25 g range, X-axis  
±125 g range, X-axis  
±187 g range, X-axis  
±250 g range, X-axis  
±375 g range, X-axis  
±250 g range, Z-axis  
*
*
*
*
*
*
gST10_25X  
gST10_125X  
gST10_187X  
gST10_250X  
gST10_375X  
gST10_250Z  
208  
395  
263  
198  
131  
160  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
88  
89  
90  
91  
92  
93  
80  
Self-test accuracy: Δ from stored value, including sensitivity error  
-40°C TA 125°C (Section 3.5.2)  
94  
*
ΔSTACC  
-10  
+10  
%
(1,5)  
Transducer clipping limit  
±25 g, X-axis, positive/negative  
±125 g, ±187 g, ±250 g, ±375 g, X-axis, positive/negative  
±250 g, Z-axis positive  
gg-cell_ClipLowX  
gg-cell_ClipHiX  
gg-cell_ClipHiZP  
gg-cell_ClipHiZN  
400  
1700  
2200  
-3700  
470  
2100  
2700  
-3200  
500  
2300  
3300  
-2700  
g
g
g
g
(9)  
(9)  
(9)  
(9)  
95  
96  
97  
98  
±250 g, Z-axis negative  
Sinc filter clipping limit  
±25 g, X-axis, positive/negative (MMA2702WR2)  
±125 g, X-axis, positive/negative (MMA2712WR2)  
±187 g, X-axis positive/negative (MMA2718WR2)  
±250 g, X-axis positive/negative (MMA2725WR2)  
±375 g, X-axis positive/negative (MMA2737WR2)  
gADC_Clip_25X_H  
gADC_Clip_125X_H  
gADC_Clip_187X_H  
gADC_Clip_250X_H  
gADC_Clip_375X_H  
190  
920  
210  
240  
g
g
g
g
g
(9)  
(9)  
(9)  
(9)  
(9)  
99  
100  
101  
102  
103  
1100  
1900  
1900  
1900  
1300  
2200  
2200  
2200  
1600  
1600  
1600  
±250 g, Z-axis, positive (MMA1725WR2)  
±250 g, Z-axis, negative (MMA1725WR2)  
gADC_Clip_250ZPH  
gADC_Clip_250ZNH  
1500  
2000  
2500  
g
g
(9)  
(9)  
104  
105  
-3200  
-2900  
-2500  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
10  
2.6  
Dynamic electrical characteristics - DSI3  
VBUS_I_L (VBUS_I - VSS) VBUS_I_H, TL TA TH, ΔT 12°C/min, unless otherwise specified.  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Reset recovery (all modes, excluding VBUS_I voltage ramp time)  
POR to 1st command (Section 3.6)  
POR to acceleration data ready (Section 3.6)  
tDSI_POR  
tDSP_POR  
5
ms  
s
(7,8)  
(7,8)  
106  
107  
tDSI_POR  
Command reception (general)  
VHIGH low-pass filter time constant (Section 3.6.1)  
VHIGH detection analog delay (Section 3.6.1)  
iq low-pass filter time constant (Section 3.6.3)  
Command valid time (Section 3.6.1)  
tVHIGH_RC  
tVHIGH_Delay  
tIQ_RC  
60  
200  
120  
400  
2
180  
600  
600  
μs  
ns  
μs  
μs  
(8,9)  
(8,9)  
(8,9)  
(7,9)  
108  
109  
110  
111  
tCmd_Valid  
Response transmission (general, Section 4.2.3)  
Response slew time: 2.0 mA to 10.0 mA, 10.0 mA to 2.0 mA  
Response slew time: 4.0 mA to 20.0 mA, 20.0 mA to 4.0 mA  
tSLEW1_RESP- tSLEW2_RESP  
tSLEW1_RESP_Rise- tSLEW2_RESP_Fall  
Response current activation time: current activated to 50%  
tSLEW1_RESP  
tSLEW2_RESP  
ΔtSLEW  
ΔtSLEW_rf  
tACT_RESP  
200  
200  
-100  
-250  
200  
400  
400  
600  
600  
100  
250  
400  
ns  
ns  
ns  
ns  
ns  
(6,8)  
(6,8)  
(8,9)  
(8,9)  
(8,9)  
112  
113  
114  
115  
116  
Command reception (Discovery Mode)  
Command start time (Section 4.1)  
Command bit time (Section 4.1)  
Command transmission period (Section 4.1)  
Command blocking time, Discovery Mode (Section 3.6.1)  
ICCQ sample delay time (Section 3.6.3)  
ICCQ sample time (Section 3.6.3)  
IDISC sample delay time (Section 3.6.3)  
IDISC sample time (Section 3.6.3)  
ms  
μs  
s
tSTART_DISC  
tDISC_BitTime  
tPER_DISC  
tCmdBlock_DISC  
tDisc_Dly  
tDisc_Iccqsamp  
tIDiscsamp_Dly  
tIDiscsamp  
tDSI_POR  
16  
96  
48  
15  
65  
31  
12  
(7,8)  
(7,8)  
(7,8)  
(7,8)  
(7,9)  
(7,9)  
(7,9)  
(7,9)  
117  
118  
119  
120  
121  
122  
123  
124  
1000/fOSC  
μs  
μs  
μs  
μs  
μs  
Response transmission (Discovery Mode)  
Response start delay (Section 4.1)  
Response ramp time (Section 4.1)  
Response ramp rate (Section 4.1)  
Response idle time (Section 4.1)  
Response peak current (Section 4.1)  
tSTART_DISC_RSP  
tDISC_Ramp_RSP  
IDISC_Ramp  
tDISC_Idle_RSP  
IDISC_Peak  
64  
16  
1.5  
16  
2*IRESP  
μs  
μs  
(7,8)  
(7,8)  
125  
126  
127  
128  
129  
mA/μs (6,8)  
μs  
mA  
(7,8)  
(6,8)  
Command reception (Command and Response Mode)  
Command bit time (Section 4.2)  
Command transmission period (Section 4.2)  
Command blocking time, CRM (Section 3.6.1)  
Command blocking start time, CRM (Section 3.6.1)  
tCmd_BitTime  
tPER_CRM  
tCmdBlock_CRM  
tCmdBlock_ST_CRM  
tPER_PDCM  
8
456  
268  
μs  
s
μs  
μs  
(7,8)  
(7,8)  
(7,8)  
(7,8)  
130  
131  
132  
133  
8 x tPER_PDCM  
Response transmission (Command and Response Mode)  
Response chip time  
Response start time (Section 4.2)  
tCHIP_CRM  
tSTART_CRM  
5
295  
μs  
μs  
(7,8)  
(7,8)  
134  
135  
Command reception (Periodic Data Collection Mode)  
Command bit time (Section 4.3)  
Command transmission period (Section 4.3)  
Command transmission period resolution  
Command blocking time, PDCM (Section 4.3.2)  
Command blocking time resolution, PDCM (Section 4.3.2)  
Command blocking start time, PDCM (Section 4.3.2)  
Command blocking start time, BDM command  
tCmd_BitTime  
tPER_PDCM  
100  
1
8
5
1
5000  
4095  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
(7,8)  
(7,8)  
(7,8)  
(7,8)  
(7,8)  
(7,8)  
(7,8)  
136  
137  
138  
139  
140  
141  
142  
tPER_PDCM_Res  
tCmdBlock_PDCM  
tCmdBlockRes_PDCM  
tCmdBlock_ST_PDCM  
tCmdBlock_ST_BDM  
20  
44  
Response transmission (Periodic Data Collection Mode)  
Response chip time typical (Section 3.1.15.3)  
Response chip resolution (Section 3.1.15.3)  
Response start time typical (Section 4.3)  
Response start time typical, BDM enabled (Section 4.3)  
Response start time resolution  
tCHIP_PDCM  
tCHIPRes_PDCM  
tSTART_PDCM  
tSTART_PDCM_BDM  
tST_RES_PDCM  
3
0.5  
1
6.5  
4095  
4095  
μs  
μs  
μs  
μs  
μs  
(7,8)  
(7,8)  
(7,8)  
(7,8)  
(7,8)  
143  
144  
145  
146  
147  
20  
44  
Response transmission (Background Diagnostic Mode)  
Response start time (Section 4.3)  
tSTART_BDM  
tBS  
20  
456  
0.5  
μs  
μs  
μs  
(7,8)  
(7,8)  
(7,9)  
148  
149  
Register write to BUSSW active  
150 DSI data latency  
OTP program timing  
tLAT_DSI  
6.25  
Time to program the user OTP array  
tNVM_WRITE_MAX  
60  
ms  
(7,8)  
151  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
11  
2.7  
Dynamic electrical characteristics - signal chain  
VBUS_I_L (VBUS_I - VSS) VBUS_I_H, TL TA TH, ΔT 12 °C/min, unless otherwise specified.  
Table 3.  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
DSP low-pass filter  
152  
153  
154  
155  
156  
157  
158  
Cutoff frequency LPF0, 2-pole (referenced to 0 Hz)  
Cutoff frequency LPF6, 3-pole (referenced to 0 Hz)  
Cutoff frequency LPF8, 3-pole (referenced to 0 Hz)  
Cutoff frequency LPF9, 4-pole (referenced to 0 Hz)  
Cutoff frequency LPF11, 4-pole (referenced to 0 Hz)  
Cutoff frequency LPF14, 4-pole (referenced to 0 Hz)  
*
*
*
*
*
*
fC_LPF0  
fC_LPF6  
fC_LPF8  
fC_LPF9  
fC_LPF11  
fC_LPF14  
180  
325  
400  
400  
800  
1200  
Hz  
Hz  
Hz  
Hz  
Hz  
Hz  
(6,7)  
(6,7)  
(7,8)  
(7,8)  
(7,8)  
(7,8)  
DSP offset cancellation low-pass filter  
Offset Cancellation low-pass filter Input sample Rate  
Cutoff frequency, startup Phase 1, 1-pole  
Startup Phase 1 time  
Cutoff frequency, startup Phase 2, 1-pole  
Startup Phase 2 time  
Offset cancellation output update rate (10-bit)  
Offset cancellation output step size (10-bit)  
Offset monitor update rate  
tOC_SampleRate  
fC_OCPH1  
tOCPH1  
fC_OCPH2  
256  
10.0  
80  
1.0  
70  
2
0.5  
500  
4096  
8192  
μs  
Hz  
ms  
Hz  
ms  
s
LSB  
μs  
1
(7,9)  
(7,9)  
(7,9)  
(7,9)  
(7,9)  
(7,9)  
(7,9)  
(7,8)  
(7,8)  
(7,8)  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
tOCPH2  
tOffRate  
OFFStep  
OFFMONOSC  
OFFMONCNTLIMIT  
OFFMONCNTSIZE  
Offset monitor count limit  
Offset monitor counter size  
1
169 Signal delay excluding LPF group delay and interpolation  
170 Interpolation latency  
tSIG_DELAY  
tLAT_INTERP  
100  
μs  
μs  
(7,9)  
(7,9)  
16  
Self-test response time (CS Rising to 90% gST10_xxx  
Self-test activation time (180 Hz LPF)  
)
tST_ACT_180  
tST_DEACT_180  
tST_ACT_325  
tST_DEACT_325  
tST_ACT_400  
tST_DEACT_400  
tST_ACT_800  
tST_DEACT_800  
tST_ACT_800  
2.00  
2.00  
1.30  
1.30  
1.00  
1.00  
0.50  
0.50  
0.40  
0.40  
4.00  
4.00  
2.70  
2.70  
2.50  
2.50  
1.75  
1.75  
1.50  
1.50  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
(3,6)  
(3,6)  
(6)  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
Self-test deactivation time (180 Hz LPF)  
Self-test activation time (325 Hz LPF, 3 Pole)  
Self-test deactivation time (325 Hz LPF, 3 Pole)  
Self-test activation time (400 Hz LPF, 3 or 4 Pole)  
(6)  
(6)  
Self-test deactivation time (400 Hz LPF, 3 or 4 Pole)  
Self-test activation time (800 Hz LPF)  
(6)  
(6)  
Self-test deactivation time (800 Hz LPF)  
Self-test activation time (1200 Hz LPF)  
Self-test deactivation time (1200 Hz LPF)  
(6)  
(6)  
tST_DEACT_800  
(6)  
Sensing element rolloff frequency (-3 db)  
±25 g, X-axis  
fgcell_3dB_xlo  
fgcell_3dB_xhi  
fgcell_3dB_zhi  
938  
3952  
3100  
1600  
7200  
4500  
2592  
14370  
6500  
Hz  
Hz  
Hz  
(6)  
(6)  
(6)  
181  
182  
183  
±125 g, ±187 g, ±250 g, ±375 g, X-axis  
±250 g, Z-axis  
Sensing element natural frequency  
±25 g, X-axis  
fgcell_xlo  
fgcell_xhi  
fgcell_zhi  
12651  
26000  
15000  
13200  
27500  
17000  
13871  
28700  
17500  
Hz  
Hz  
Hz  
(9)  
(9)  
(9)  
184  
185  
186  
±125 g, ±187 g, ±250 g, ±375 g, X-axis  
±250 g, Z-axis  
Sensing element damping ratio  
±25 g, X-axis  
ζgcell_xlo  
ζgcell_xhi  
ζgcell_zhi  
2.76  
1.26  
1.40  
4.20  
2.00  
2.00  
6.77  
3.60  
2.90  
(9)  
(9)  
(9)  
187  
188  
189  
±125 g, ±187 g, ±250 g, ±375 g, X-axis  
±250 g, Z-axis  
Sensing element delay (@100 Hz)  
±25 g, X-axis  
fgcell_delay100_xlo  
fgcell_delay100_xhi  
fgcell_delay100_zhi  
63  
13  
35  
100  
24  
170  
40  
μs  
ms  
μs  
(9)  
(9)  
(9)  
190  
191  
192  
±125 g, ±187 g, ±250 g, ±375 g, X-axis  
±250 g, Z-axis  
40  
55  
Package resonance frequency  
fPackage  
100  
kHz  
(9)  
193  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
12  
2.8  
Dynamic electrical characteristics - supply and support circuitry  
VBUS_I_L (VBUS_I - VSS) VBUS_I_H, TL TA TH, ΔT 12 °C/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max Units  
Internal oscillator period  
Untrained  
*
fOSC  
fOSC  
7.600 8.000 8.400 MHz  
(1)  
194  
195  
With oscillator training  
7.879 8.000 8.121 MHz (7,8,9)  
Oscillator training (Section 3.4.1)  
Oscillator training time (CRM and PDCM)  
Oscillator training window (CRM and PDCM)  
Oscillator training adjustment threshold (CRM and PDCM)  
Oscillator training step size (CRM and PDCM)  
tOscTrain  
3.4  
-60  
4
4.6  
60  
ms  
ms  
μs  
(7)  
(7)  
(7)  
(7)  
196  
197  
198  
199  
OscTrainWIN  
OscTrainADJ  
OscTrainRES  
28  
μs  
Quiescent current settling time (power applied to Iq = IIDLE 2 mA)  
BUS_I microcut  
tSET  
4
ms  
(6)  
200  
Survival time (BUS_I disconnect without reset, CBUF=CREG=CREGA=700nF) tBUS_I_MICROCUT  
30  
μs  
μs  
(8)  
(8)  
201  
202  
Reset time (BUS_I disconnect time to reset, CBUF=CREG=CREGA=1μF)  
tBUS_I_RESET  
tBUS_I_POR  
tVBUF_POR  
tVREG_POR  
1000  
BUS_I undervoltage detection delay  
BUS_I < VBUS_I_UV_F to IRESP deactivation  
5
5
μs  
μs  
μs  
(6)  
(6)  
(6)  
203  
204  
205  
VBUF undervoltage detection delay  
V
BUF < VBUF_UV_F to IRESP deactivation  
VREG, VREGA undervoltage reset delay  
VREG < VREG_UV_F to POR assertion, VREGA < VREGA_UV_F to POR assertion  
50  
VBUF, VREG, VREGA capacitor monitor  
POR to capacitor disconnect  
Disconnect time  
tPOR_CAPTEST  
tCAPTST_TIME  
950  
1.5  
μs  
μs  
(7,8)  
(7,8)  
206  
207  
NOTES  
1. Parameter tested 100% at final test. Temperature = -40°C, 25°C and 105°C, VBUS_I = 8 V, Unless otherwise stated.  
2. Not Applicable.  
3. Parameter verified by pass/fail testing at final test  
4. Parameter verified by pass/fail testing at final test during safe launch.  
5. Parameter verified by qualification testing.  
6. Parameter verified by characterization.  
7. Functionality guaranteed by modeling, simulation and/or design verification. Circuit integrity assured through IDDQ and  
scan testing. Timing is determined by internal system clock frequency.  
8. Parameter verified by functional evaluation.  
9. Parameter verified by simulation.  
10. Not Applicable.  
11. Thermal resistance between the die junction and the exposed pad; cold plate is attached to the exposed pad.  
*
Indicates critical characteristic.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
13  
3
Functional Description  
3.1  
User-accessible data array  
A user-accessible data array allows for each device to be customized. The array consists of an OTP factory-programmable block,  
an OTP user-programmable block, and read-only registers for data and device status. The OTP blocks incorporate independent  
data verification (reference Section 3.2). Portions of the factory-programmable array are reserved for factory-programmed trim  
values.  
Table 4. User-accessible data  
Bit Function  
Bit Function  
Byte  
Addr  
Register  
Type  
7
6
0
0
0
0
0
0
5
4
3
2
0
0
0
1
0
$00  
$01  
$02  
$03  
$04  
$05  
$06  
ICTYPEID  
ICMFGID  
0
0
0
0
0
1
R
0
0
0
0
1
0
R
ICREVID  
0
1
ICREVID[4]  
0
0
0
R
MODTYPE  
MODMFGID  
MODREV  
USERID1  
0
0
0
0
MODTYPE[2]  
MODMFGID[2]  
MODREV[2]  
USERID1[2]  
MODTYPE[1]  
MODMFGID[1]  
MODREV[1]  
USERID1[1]  
MODTYPE[0]  
MODMFGID[0]  
MODREV[0]  
USERID1[0]  
U,R  
U,R  
U,R  
U,R  
0
0
0
0
0
0
0
0
USERID1[7]  
USERID1[6]  
USERID1[5]  
USERID1[4]  
USERID1[3]  
$07 -  
$08  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
$09  
$0A  
$0B  
$0C  
$0D  
PN  
PN[7]  
SN[7]  
PN[6]  
SN[6]  
PN[5]  
SN[5]  
PN[4]  
SN[4]  
PN[3]  
SN[3]  
PN[2]  
SN[2]  
PN[1]  
SN[1]  
PN[0]  
SN[0]  
F,R  
F,R  
F,R  
F,R  
F,R  
SN0  
SN1  
SN2  
SN3  
SN[15]  
SN[23]  
SN[31]  
SN[14]  
SN[22]  
SN[30]  
SN[13]  
SN[21]  
SN[29]  
SN[12]  
SN[20]  
SN[28]  
SN[11]  
SN[19]  
SN[27]  
SN[10]  
SN[18]  
SN[26]  
SN[9]  
SN[8]  
SN[17]  
SN[25]  
SN[16]  
SN[24]  
$0E -  
$0F  
RESERVED  
DSIREV  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
1
R
$10  
0
0
0
0
0
0
0
0
R
U,R/  
W
$11  
PHYSADDR  
PADDR[3]  
PADDR[2]  
PADDR[1]  
PADDR[0]  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
$1C  
$1D  
$1E  
$1F  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
BDM_CFG  
CRM_CFG  
0
0
0
0
0
0
0
BDM_EN  
SS_EN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0
0
0
CK_CAL_RST  
CRM_PER[1]  
CRM_PER[0]  
0
CK_CAL_EN  
DATALENGTH  
0
PDCM_CFG  
0
0
0
0
0
0
STATLENGTH  
0
PDCM_EN  
PDCM_EN  
0
0
0
0
CHIPTIME  
0
0
0
0
0
CHIPTIME[2]  
PDCM_PER[2]  
RESERVED  
PDCM_RSPST[2]  
PDCM_RSPST[10]  
PDCM_CMD_B[2]  
PDCM_CMD_B[10]  
SOURCEID[2]  
0
CHIPTIME[1]  
PDCM_PER[1]  
RESERVED  
CHIPTIME[0]  
PDCM_PER[0]  
RESERVED  
PDCM_RSPST[0]  
PDCM_RSPST[8]  
PDCM_CMD_B[0]  
PDCM_CMD_B[8]  
SOURCEID[0]  
BUSSW_CTRL  
RESERVED  
0
PDCM_PER  
0
RESERVED  
PDCM_RSPST[7]  
0
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PDCM_RSPST[3]  
PDCM_RSPST[11]  
PDCM_CMD_B[3]  
PDCM_CMD_B[11]  
SOURCEID[3]  
0
PDCM_RSPST_L  
PDCM_RSPST_H  
PDCM_CMD_B_L  
PDCM_CMD_B_H  
SOURCEID  
PDCM_RSPST[6]  
PDCM_RSPST[5]  
PDCM_RSPST[4]  
PDCM_RSPST[1]  
PDCM_RSPST[9]  
PDCM_CMD_B[1]  
PDCM_CMD_B[9]  
SOURCEID[1]  
0
0
0
0
PDCM_CMD_B[7]  
0
PDCM_CMD_B[6]  
PDCM_CMD_B[5]  
PDCM_CMD_B[4]  
0
0
0
0
0
0
0
0
0
BUSSW_CTRL  
RESERVED  
0
0
RESERVED  
LOCK_U  
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
0
RESERVED  
DEVLOCK  
0
U,R  
R
DEVSTAT  
RESERVED  
F_OTP_ERR  
RESERVED  
0
DEVRES  
OSCTRAIN_ERR  
U_RW_ERR  
RESERVED  
0
BUSSW  
TESTMODE  
RESERVED  
RESERVED  
0
ST_ACTIVE  
ST_INCMPLT  
ST_5_PTRN  
0
OFFSET_ERR  
VBUF_UV_ERR  
ST_A_PTRN  
WR_NVM_EN[1]  
C_CRMCRCPLY[1]  
R_CRMCRCPLY[1]  
PDCMCRCPLY[1]  
OC_INIT  
DEVSTAT2  
U_OTP_ERR  
RESERVED  
0
U_UNLOCKED  
RESERVED  
0
BUSI_UV_ERR  
SELFTEST  
R
ST_CONTROL  
WRITE_NVM_EN  
C_CRMCRCPLY  
R_CRMCRCPLY  
PDCMCRCPLY  
R/W  
R/W  
WR_NVM_EN[0]  
C_CRMCRCPLY[7]  
R_CRMCRCPLY[7]  
PDCMCRCPLY[7]  
C_CRMCRCPLY[6]  
R_CRMCRCPLY[6]  
PDCMCRCPLY[6]  
C_CRMCRCPLY[5]  
R_CRMCRCPLY[5]  
PDCMCRCPLY[5]  
C_CRMCRCPLY[4]  
R_CRMCRCPLY[4]  
PDCMCRCPLY[4]  
C_CRMCRCPLY[3]  
R_CRMCRCPLY[3]  
PDCMCRCPLY[3]  
C_CRMCRCPLY[2]  
R_CRMCRCPLY[2]  
PDCMCRCPLY[2]  
C_CRMCRCPLY[0] R/W  
R_CRMCRCPLY[0] R/W  
PDCMCRCPLY[0]  
R/W  
$28 -  
$2F  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
$30  
$31  
$32  
$33  
$34  
$35  
ACC_FCTCFG  
ACC_STDATA  
ACC_CFG  
0
PCM  
ACC_ST[6]  
LPF[2]  
AXIS  
ACC_ST[5]  
LPF[1]  
RNG[4]  
ACC_ST[4]  
LPF[0]  
RNG[3]  
ACC_ST[3]  
SD  
RNG[2]  
RNG[1]  
ACC_ST[1]  
OC_FILT[1]  
ACC_D[1]  
RNG[0]  
ACC_ST[0]  
OC_FILT[0]  
ACC_D[0]  
ACC_D[8]  
OC_INIT  
F,R  
F,R  
R/W  
R
ACC_ST[7]  
LPF[3]  
ACC_ST[2]  
OC_FILT[2]  
ACC_D[2]  
ACC_D[10]  
ST_ACTIVE  
ACC_DATAL  
ACC_DATAH  
ACC_STAT  
ACC_D[7]  
ACC_D[15]  
0
ACC_D[6]  
ACC_D[14]  
0
ACC_D[5]  
ACC_D[13]  
0
ACC_D[4]  
ACC_D[12]  
0
ACC_D[3]  
ACC_D[11]  
0
ACC_D[9]  
R
OFFSET_ERR  
R
Type codes:  
F: Freescale programmed OTP location.  
U: User programmable OTP location.  
R: Readable register.  
R/W: User writable register.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
14  
3.1.1  
IC Type register  
The IC Type register is a read-only register which contains the IC type as defined in the DSI3 standard.  
Table 5. IC Type register  
Location  
Bit  
Address  
$00  
Register  
7
6
5
4
3
2
1
0
ICTYPEID  
0
0
0
0
0
0
0
1
3.1.2  
IC Manufacturer Identification register  
The IC Manufacturer Identification register is a read-only register which contains the IC manufacturer ID as defined in the DSI3  
standard.  
Table 6. IC Manufacturer Identification register  
Location  
Bit  
Address  
$01  
Register  
7
6
5
4
3
2
1
0
ICMFGID  
0
0
0
0
0
0
1
0
3.1.3  
IC Manufacturer Revision register  
The IC revision register is a read-only register which contains the IC revision as defined in the DSI3 standard. ICREVID[4] is set  
to ‘0’ for the MMAx7xxJWR2 part numbers and set to ‘1’ for the MMAx7xxWR2 part numbers.  
Table 7. IC Manufacturer Revision register  
Location  
Bit  
Address  
$02  
Register  
7
6
5
4
3
2
1
0
ICREVID  
0
0
1
ICREVID[4]  
0
0
0
0
3.1.4  
Module Type register (MODTYPE)  
The module type register is a user programmed OTP register which contains user specific module identification information as  
defined in the DSI3 Standard. The register is included in the user programmed OTP verification described in Section 3.2.  
Table 8. Module Type register  
Location  
Bit  
Address  
$03  
Register  
7
0
0
6
0
0
5
0
0
4
0
0
3
0
0
2
1
0
MODTYPE  
MODTYPE[2] MODTYPE[1] MODTYPE[0]  
Factory Default  
0
0
0
3.1.5  
Module Manufacturer ID register (MODMFGID)  
The module manufacturer identification register is a user-programmed OTP register which contains user specific module  
identification information as defined in the DSI3 Standard. The register is included in the user programmed OTP verification  
described in Section 3.2.  
Table 9. Module Manufacturer ID register  
Location  
Bit  
Address  
$04  
Register  
7
0
0
6
0
0
5
0
0
4
0
0
3
0
0
2
1
0
MODMFGID  
MODMFGID[2] MODMFGID[1] MODMFGID[0]  
Factory Default  
0
0
0
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
15  
3.1.6  
Module Revision register (MODREV)  
The Module Revision register is a user programmed OTP register which contains user specific module identification information  
as defined in the DSI3 Standard. The register is included in the user programmed OTP verification described in Section 3.2.  
Table 10. Module Revision register (MODREV)  
Location  
Bit  
Address  
$05  
Register  
7
0
0
6
0
0
5
0
0
4
0
0
3
0
0
2
1
0
MODREV  
MODREV[2] MODREV[1] MODREV[0]  
Factory Default  
0
0
0
3.1.7  
User ID 1 registers (USERID1)  
User ID registers 1 is a user programmable OTP register which contains user specific information. The bits have no impact on  
the device performance. The register is included in the user programmed OTP verification described in Section 3.2.  
Table 11. User ID 1 registers  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$06  
USERID1 USERID1[7] USERID1[6] USERID1[5] USERID1[4] USERID1[3] USERID1[2] USERID1[1] USERID1[0]  
Factory Default  
0
0
0
0
0
0
0
0
3.1.8  
Part Number register  
The Part Number register is a factory-programmed OTP register which includes the numeric portion of the device part number.  
The register is included in the factory-programmed OTP verification described in Section 3.2. Beyond this, the contents of the  
part number register have no impact on device operation or performance.  
Table 12. Part Number register  
Location  
Bit  
Address  
$09  
Register  
7
6
5
4
3
2
1
0
PN  
PN[7]  
N/A  
PN[6]  
N/A  
PN[5]  
N/A  
PN[4]  
N/A  
PN[3]  
N/A  
PN[2]  
N/A  
PN[1]  
N/A  
PN[0]  
N/A  
Factory Default  
PN Register Value  
Range  
(g)  
Transducer  
Decimal  
HEX  
2
0x02  
0x0C  
0x12  
0x19  
0x25  
25  
Medium-g Lateral  
High-g Lateral  
High g Lateral  
12  
18  
25  
37  
125  
187  
250  
375  
High-g Lateral / High-g Vertical  
High-g Lateral  
MMA27XXW  
Sensors  
16  
Freescale Semiconductor, Inc.  
3.1.9  
Device Serial Number registers  
The serial number registers are factory-programmed OTP registers which include a unique serial number and lot number  
combination for each device, regardless of range or axis of sensitivity. Serial numbers begin at 1 for all produced devices in each  
lot and are sequentially assigned. Lot numbers begin at 1 and are sequentially assigned. No lot will contain more devices than  
can be uniquely identified by the 13-bit serial number. Depending on lot size and quantities, all possible lot numbers and serial  
numbers may not be assigned. The serial number registers are included in the factory-programmed OTP verification described  
in Section 3.2. Beyond this, the contents of the serial number registers have no impact on device operation or performance.  
Table 13. Device Serial Number registers  
Location  
Bit  
Address  
Register  
SN0  
7
6
5
4
3
2
1
0
$0A  
$0B  
$0C  
$0D  
SN[7]  
SN[15]  
SN[23]  
SN[31]  
N/A  
SN[6]  
SN[14]  
SN[22]  
SN[30]  
N/A  
SN[5]  
SN[13]  
SN[21]  
SN[29]  
N/A  
SN[4]  
SN[12]  
SN[20]  
SN[28]  
N/A  
SN[3]  
SN[11]  
SN[19]  
SN[27]  
N/A  
SN[2]  
SN[10]  
SN[18]  
SN[26]  
N/A  
SN[1]  
SN[9]  
SN[17]  
SN[25]  
N/A  
SN[0]  
SN[8]  
SN[16]  
SN[24]  
N/A  
SN1  
SN2  
SN3  
Factory Default  
The serial number is composed of the following information:  
Bit range  
SN[12:0]  
SN[31:13]  
Content  
Serial Number  
Lot Number  
3.1.10 DSI Protocol Revision register (DSI_REV)  
The factory-configuration register is a read-only register which contains the DSI revision supported, as specified in the DSI3  
standard. The protocol revision value for DSI3 is $01.  
Table 14. DSI Protocol Revision register  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$10  
DSIREV  
0
0
0
0
0
0
0
1
3.1.11  
Physical Address register (PHYSADDR)  
The physical address register is a user programmed OTP register which contains the physical address of the slave.  
If the physical address is zero, the address is assigned either during Discovery Mode as described in Section 4.1.3 or during  
Command and Response Mode as described in Section 4.1.2.  
If the physical address is non-zero, the device ignores Discovery Mode and uses the programmed physical address for Command  
and Response Mode, as described in Section 4.2. The physical address register value can be changed by a Command and  
Response Mode register write command. However, if the LOCK_U bit is set, the value will always be reset to the OTP array value  
after a reset.  
The OTP register value is included in the user programmed OTP verification described in Section 3.2. The value is also stored  
in a secondary register that can be written as described above. This secondary register is included in the read/write array  
verification described in Section 3.2.  
Table 15. Physical Address register  
Location  
Bit  
Address  
$11  
Register  
7
0
0
6
0
0
5
0
0
4
0
0
3
PADDR[3]  
0
2
PADDR[2]  
0
1
PADDR[1]  
0
0
PADDR[0]  
0
PHYSADDR  
Factory Default  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
17  
3.1.12 DSI3 Background Diagnostic Mode Configuration register (BDM_CFG)  
The DSI3 Background Diagnostic Mode configuration register is a user programmed read/write register which contains user  
specific configuration information for DSI3 Background Diagnostic Mode. The register is included in the read/write array  
verification described in Section 3.2. Reference Section 4.3 for details regarding Background Diagnostic Mode.  
Table 16. DSI3 Background Diagnostic Mode Configuration register  
Location  
Bit  
Address  
Register  
7
0
0
6
0
0
5
0
0
4
0
0
3
0
0
2
0
0
1
0
0
0
BDM_EN  
0
$12  
BDM_CFG  
Factory Default  
3.1.12.1  
Background Diagnostic Mode Enable (BDM_EN)  
The Background Diagnostic Mode enable bit enables Background Diagnostic Mode as described below and in Section 3.1.14.  
Reference Section 4.3 for details regarding Background Diagnostic Mode.  
BDM_EN  
BDM command fragment length  
0
1
Disabled  
4
3.1.13 DSI3 Command and Response Mode Configuration register (CRM_CFG)  
The DSI3 Command and Response Mode configuration register is a user programmed read/write register which contains user  
specific configuration information for DSI3 Command and Response Mode. The register is included in the read/write array  
verification described in Section 3.2.  
Table 17. DSI3 Command and Response Mode Configuration register  
Location  
Bit  
Address  
$13  
Register  
7
0
0
6
0
0
5
0
0
4
3
2
1
0
SS_EN  
0
CRM_CFG  
CK_CAL_RST CRM_PER[1] CRM_PER[0] CK_CAL_EN  
Factory Default  
0
0
0
0
3.1.13.1  
Clock Calibration Value Reset (CK_CAL_RST)  
The clock calibration reset bit controls the state of the oscillator training when the CK_CAL_EN bit is cleared as described in the  
table in Section 3.1.13.3. Reference Section 3.4.1 for details regarding oscillator training.  
3.1.13.2  
Command and Response Mode Period (CRM_PER[1:0])  
The Command and Response Mode Period bits set the period for Command and Response Mode commands in increments of  
the Periodic Data Collection Mode Period (PDCM_PER). This value is only necessary for oscillator training and is only used if  
the CK_CAL_EN bit is set in the CRM_CFG register. Command and Response Mode commands will be decoded and responded  
to regardless of the value of this register as long as the general Command and Response Mode timing parameters specified in  
Section 2.6 are met. Reference Section 3.4.1 for details regarding oscillator training.  
Command and Response Mode period  
(Multiples of the Periodic Data Collection Mode period)  
CRM_PER[1]  
CRM_PER[0]  
0
0
1
1
0
1
0
1
1
2
4
8
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
18  
3.1.13.3  
Clock Calibration Enable (CK_CAL_EN)  
The clock calibration enable bit enables oscillator training over the DSI communication interface. Reference Section 3.4.1 for  
details regarding oscillator training.  
CK_CAL_EN  
CK_CAL_RST  
Oscillator training  
0
0
1
0
1
x
The oscillator value is maintained at the last trained value prior to clearing the CK_CAL_RST bit.  
The oscillator value is reset to the untrained value with a tolerance specified in Section 2.8.  
Oscillator is trained as specified in Section 3.4.1  
3.1.13.4  
Simultaneous Sampling Enable (SS_EN)  
The simultaneous sampling enable bit selects between one of two data latency methods. Reference Section 3.7 for details  
regarding sample timing.  
SS_EN  
Data latency  
0
1
Synchronous Sampling Mode: Latency relative to transmission start time (PDCM_RSPST)  
Simultaneous Sampling Mode: Latency relative to the start of the Periodic Data Collection Mode command (falling edge)  
3.1.14 Periodic Data Collection Mode Enable register (PDCM_EN)  
The Periodic Data Collection Mode register is a read/write register which contains the Periodic Data Collection Mode Enable bit.  
The register is included in the read/write array verification described in Section 3.2.  
Table 18. Periodic Data Collection Mode Enable register  
Location  
Address Register  
$15 PDCM_EN PDCM_EN  
Factory Default  
Bit  
7
6
0
0
5
0
0
4
0
0
3
0
0
2
0
0
1
0
0
0
0
0
0
The Periodic Data Collection Mode Enable bit enables Periodic Data Collection Mode as described in Section 4.3. The  
PDCM_EN bit can be set by receiving the Enter PDCM command in Command and Response Mode, or by a Command and  
Response Mode register write command. Once Periodic Data Collection Mode is enabled, the registers listed in Section 3.2.3  
are locked and the user array read/write register array verification is enabled.  
Once set, the PDCM_EN bit can only be cleared by a device reset.  
PDCM_EN  
BDM_EN  
Command and Response Mode Periodic Data Collection Mode  
Background Diagnostic Mode  
0
0
1
1
0
1
0
1
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Enabled  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
19  
3.1.15 DSI3 Periodic Data Collection Mode Configuration registers (PDCM_CFG1, PDCM_CFG2)  
The DSI3 Periodic Data Collection Mode configuration registers are user programmed read/write registers which contain user  
specific configuration information for DSI3 Periodic Data Collection Mode. The registers are included in the read/write array  
verification described in Section 3.2.  
Location  
Bit  
Addres  
s
Register  
7
6
5
4
3
2
1
0
$14  
$16  
$17  
$18  
$19  
$1A  
$1B  
$1C  
PDCM_CFG  
CHIPTIME  
0
0
0
0
0
0
DATALENGTH  
CHIPTIME[1]  
PDCM_PER[1]  
RESERVED  
STATLENGTH  
CHIPTIME[0]  
PDCM_PER[0]  
RESERVED  
0
0
0
0
0
0
CHIPTIME[2]  
PDCM_PER[2]  
RESERVED  
PDCM_PER  
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PDCM_RSPST[3]  
PDCM_RSPST_L  
PDCM_RSPST_H  
PDCM_CMD_B_L  
PDCM_CMD_B_H  
PDCM_RSPST[7]  
PDCM_RSPST[6]  
PDCM_RSPST[5]  
PDCM_RSPST[4]  
PDCM_RSPST[2]  
PDCM_RSPST[10]  
PDCM_CMD_B[2]  
PDCM_CMD_B[10]  
0
PDCM_RSPST[1]  
PDCM_RSPST[9]  
PDCM_CMD_B[1]  
PDCM_CMD_B[9]  
0
PDCM_RSPST[0]  
PDCM_RSPST[8]  
PDCM_CMD_B[0]  
PDCM_CMD_B[8]  
0
0
0
0
0
PDCM_RSPST[11]  
PDCM_CMD_B[3]  
PDCM_CMD_B[11]  
0
PDCM_CMD_B[7]  
PDCM_CMD_B[6]  
PDCM_CMD_B[5]  
PDCM_CMD_B[4]  
0
0
0
0
0
0
0
0
Factory Default  
3.1.15.1  
Data Field Length (DATALENGTH)  
The data field length bits set the data field length in the Periodic Data Collection Mode response as described below. The  
sensitivity of the data is the same for both the 10-bit and 14-bit data lengths. If the 14-bit data length is selected, four additional  
bits of range are transmitted. These additional four bits of range are intended for test use only and are not covered by the  
specifications listed in Section 2.  
DATALENGTH  
Data Length  
10 Bits  
0
1
14 Bits  
3.1.15.2  
Status Field Length (STATLENGTH)  
The status field length bits set the status field length in the Periodic Data Collection Mode response as described below.  
Reference Section 4.3.2.2 for details regarding the Periodic Data Collection Mode status field.  
Status Field Length  
STATLEN  
Data Transmitted  
(Bits)  
0
1
4
0
Reference Section 4.3.2.2  
N/A  
3.1.15.3  
Chip time (CHIPTIME)  
The DSI3 Periodic Data Collection Mode configuration chip time bits set the chip time for Periodic Data Collection Mode as  
described below.  
CHIPTIME[2]  
CHIPTIME[1]  
CHIPTIME[0]  
Chip time  
3.0 μs  
3.5 μs  
4.0 μs  
4.5 μs  
5.0 μs  
5.5 μs  
6.0 μs  
6.5 μs  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
MMA27XXW  
Sensors  
20  
Freescale Semiconductor, Inc.  
3.1.15.4  
Periodic Data Collection Mode Period (PDCM_PER[3:0])  
The Periodic Data Collection Mode period selection bits set the period data collection mode period to be used by the DSI master  
as shown in the table below. This value is only necessary for oscillator training and is only used if the CK_CAL_EN bit is set in  
the CRM_CFG register. Periodic Data Collection Mode and Background Diagnostic Mode commands will be decoded and  
responded to regardless of the value of this register as long as the general Periodic Data Collection Mode timing parameters  
specified in Section 2.6 are met. Reference Section 3.4.1 for details regarding oscillator training.  
PDCM_PER[2] PDCM_PER[1] PDCM_PER[0]  
Periodic Data Collection Mode Period  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
500 μs  
125 μs  
250 μs  
333 μs  
500 μs  
1000 μs  
2000 μs  
4000 μs  
3.1.15.5  
Periodic Data Collection Mode Response Start Time (PDCM_RSPST[11:0])  
The DSI3 Periodic Data Collection Mode Response Start Time bits set the Periodic Data Collection Mode response start time.  
The value is stored in 1 μs increments, with zero as the default value of 20 μs.  
Care must be taken to prevent from programming response start times which cause data contention in the system.  
PDCM_RSPST[11:0]  
0 - 20  
Periodic Data Collection Mode Response Start Time  
20 μs  
21 - 4095  
PDCM response start = PDCM_RSPST x 1μs  
3.1.15.6  
Periodic Data Collection Mode Command Blocking time (PDCM_CMD_B[11:0])  
The DSI3 Periodic Data Collection Mode command blocking time bits set the Periodic Data Collection Mode command blocking  
time. in 1μs increments, with zero as the default value of 450 μs. Reference Section 3.6.1 for details regarding the command  
receiver and command blocking.  
Care must be taken to prevent from programming command blocking times which prevent proper command decoding in the  
system and to ensure proper sampling of the VHIGH voltage. As shown in Section 3.6.1, Figure 29, The VHIGH voltage is initially  
captured at the end of the command blocking time and then filtered. The user must ensure that the command blocking end time  
is set for a time when no command or response transmissions are occurring to provide the most stable BUS_I voltage.  
PDCM_CMD_B[11:0]  
Periodic Data Collection Mode Command blocking time  
450 μs  
0
Non-Zero  
PDCM Command blocking time = PDCM_CMD_B x 1 μs  
3.1.16 Source Identification register (SOURCEID)  
The source identification register is a user programmed read/write register which contains the source identification which will be  
used for Periodic Data Collection Mode as described in Section 4.3.2.2. The register is included in the read/write array verification  
described in Section 3.2. SOURCEID[3:0] is initialized to the values stored in PADDR[3:0] after reset.  
Table 19. Source Identification register  
Location  
Bit  
Address  
$1D  
Register  
7
0
0
6
0
0
5
0
0
4
0
0
3
2
1
0
SOURCEID  
SOURCEID[3] SOURCEID[2] SOURCEID[1] SOURCEID[0]  
Factory Default  
PADDR[3]  
PADDR[2]  
PADDR[1]  
PADDR[0]  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
21  
3.1.17 Bus Switch Control register (BUSSW_CTRL)  
The bus switch control register is a user programmed read/write register which controls the state of the bus switch output driver.  
The register is included in the read/write array verification describe in Section 3.2.  
Table 20. Bus Switch Control register  
Location  
Bit  
Address  
$1E  
Register  
7
0
0
6
0
0
5
0
0
4
0
0
3
0
0
2
0
0
1
0
0
0
BUSSW_CTRL  
BUSSW_CTRL  
0
Factory Default  
The BUSSW_CTRL bit controls the state of the BUSSW pin.  
BUSSW_CTRL  
BUSSW Pin Sate  
High impedance  
0
An External Pullup is required if an external switch is connected  
Output Actively Driven Low  
1
3.1.18 Device Lock register (DEVLOCK)  
The device lock register is a user programmed OTP register which contains the LOCK_U bit. The register is included in the user  
programmed OTP verification describe in Section 3.2. The LOCK_U bit allows the user to prevent writes to the user configuration  
array once OTP programming is complete. If the LOCK_U bit is written to ‘1’ when an “Execute Programming of NVM” command  
is executed, the LOCK_U OTP bit will be programmed. Upon completion of the OTP programming, future OTP writes to both the  
OTP array and the mirror registers for the array are prevented and the User Programmable OTP Array Verification is activated.  
The exception to this is the PADDR[3:0] bits. Once the LOCK_U bit is set, the PADDR[3:0] OTP bits cannot be written. However,  
the mirror register bits for PADDR[3:0] can be written to allow changes to the physical address through Command and Response  
Mode.  
Table 21. Device Lock register  
Location  
Bit  
Address  
$20  
Register  
7
LOCK_U  
0
6
0
0
5
0
0
4
0
0
3
0
0
2
0
0
1
0
0
0
0
0
DEVLOCK  
Factory Default  
3.1.19 Device Status registers (DEVSTAT, DEVSTAT2)  
The device status registers are read-only registers which contain device status information.  
Table 22. Device Status registers  
Location  
Bit  
Address Register  
7
6
5
4
3
2
1
0
$21  
$22  
DEVSTAT  
RESERVED  
DEVRES  
OSCTRAIN_ERR  
U_RW_ERR  
BUSSW  
TESTMODE ST_ACTIVE OFFSET_ERR  
OC_INIT  
DEVSTAT2 F_OTP_ERR U_OTP_ERR  
U_UNLOCKED RESERVED ST_INCMPLT VBUF_UV_ERR BUSIN_UV_ERR  
3.1.19.1  
Device Reset (DEVRES)  
The device reset bit is set following a device reset. The device reset bit is cleared only by a read of the DEVSTAT register.  
DEVRES  
Error Condition  
0
1
Normal operation  
Device reset occurred  
MMA27XXW  
Sensors  
22  
Freescale Semiconductor, Inc.  
3.1.19.2  
Oscillator Training Error (OSCTRAIN_ERR)  
The oscillator training error bit is set if an error detected in either the oscillator training settings, or the master communication  
timing. Reference Section 3.4.2.  
OSCTRAIN_ERR  
Error Condition  
0
1
No error detected  
Oscillator Training Error. Reference Section 3.4.2  
3.1.19.3  
Bus Switch Status (BUSSW)  
The Bus Switch status bit is set if the bus switch output pin is activated.  
BUSSW  
BUSSW Pin State  
0
1
BUSSW pin is inactive  
BUSSW pin is active  
3.1.19.4  
Test Mode (TESTMODE)  
The test mode bit is set if the device is in test mode.  
TESTMODE  
Operating Mode  
Test Mode is not active  
Test Mode is active  
0
1
3.1.19.5  
Self-Test Active (ST_ACTIVE)  
The self-test active bit is set if any of the self-test bits in the ST_CONTROL register are set.  
ST_ACTIVE  
Condition  
0
1
ST_5_PTRN & ST_A_PTRN & SELFTEST = 0  
ST_5_PTRN | ST_A_PTRN |SELFTEST = 1  
3.1.19.6  
Offset Error Flag (OFFSET_ERR)  
The offset error flag is set if the acceleration signal reaches the offset limit.  
OFFSET_ERR  
Error Condition  
0
1
No error detected  
Offset error detected  
3.1.19.7  
Offset Cancellation Init Status Flag (OC_INIT)  
The offset cancellation initialization status bit is set once the offset cancellation initialization process is complete, and the filter  
has switched to normal mode.  
OC_INIT  
Error Condition  
Offset Cancellation in initialization  
Offset Cancellation initialization complete  
0
1
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
23  
3.1.19.8  
Freescale OTP Array Error (F_OTP_ERR)  
The factory OTP array error bit is set if a register data fault is detected in the factory OTP array. A device reset is required to clear  
the error.  
F_OTP_ERR  
Error Condition  
0
1
No error detected  
Error Detected in the Factory OTP Array  
3.1.19.9  
User OTP Array Error (U_OTP_ERR)  
The user OTP array error bit is set if a register data fault is detected in the user OTP array. A device reset is required to clear the  
error.  
U_OTP_ERR  
Error Condition  
0
1
No error detected  
Error Detected in the User OTP Array  
3.1.19.10  
User Read/Write Array Error (U_RW_ERR)  
The user read/write array error bit is set if a register data fault is detected in the user read/write array. A device reset is required  
to clear the error.  
U_RW_ERR  
Error Condition  
0
1
No error detected  
Error Detected in the User Read/Write Array  
3.1.19.11  
User OTP Array Unlocked (U_UNLOCKED)  
The user OTP array unlocked bit is set if LOCK_U bit in the DEVLOCK register is not set, indicating that the user array is not  
locked.  
U_UNLOCKED  
Condition  
0
1
User Array is Locked  
User Array is not Locked  
3.1.19.12  
Self-Test Incomplete (ST_INCMPLT)  
The self-test incomplete bit is set after a device reset and is only cleared when the SELFTEST bit is written to a ‘1’ through  
Command and Response Mode.  
ST_INCMPLT  
Condition  
0
1
Self-test has been activated since the last Reset  
Self-test has not been activated since the last Reset  
3.1.19.13  
VBUF Undervoltage Error (VBUF_UV_ERR)  
The VBUF undervoltage error bit is set if the VBUF voltage falls below the voltage specified in Section 2.3. Reference Section 3.3  
for details on the VBUF undervoltage monitor. The VBUF_UV_ERR bit is cleared on a read of the DEVSTAT2 register.  
VBUF_UV_ERR  
Error Condition  
0
1
No error detected  
VBUF Voltage Low  
MMA27XXW  
Sensors  
24  
Freescale Semiconductor, Inc.  
3.1.19.14  
BUS IN Undervoltage Error (BUSI_UV_ERR)  
The BUS IN undervoltage error bit is set if the BUS_I voltage falls below the voltage specified in Section 2.3. Reference  
Section 3.3 for details on the BUS IN undervoltage monitor. The BUSI_UV_ERR bit is cleared on a read of the DEVSTAT2  
register.  
BUSI_UV_ERR  
Error Condition  
0
1
No error detected  
BUS_I Voltage Low  
3.1.20 Self-Test Control register (ST)  
The self-test control register is a user programmed read/write register which contains user specific device configuration  
information. The register is included in the read/write array verification described in Section 3.2.  
Table 23. Self-Test Control register  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$23  
ST_CONTROL RESERVED RESERVED RESERVED RESERVED RESERVED ST_PTRN_5 ST_PTRN_A SELFTEST  
Factory Default  
0
0
0
0
0
0
0
0
3.1.20.1  
Self-Test Pattern Write Bits (ST_PTRN_5, ST_PTRN_A)  
The self-test pattern write bits inhibit DSP writes to the ACC_DATAH and ACC_DATAL registers and forces a write of specific  
values to the registers when set. When cleared, DSP writes to the ACC_DATAH and ACC_DATAL registers resume as specified.  
These bits are automatically cleared when the PDCM bit is set.  
ST_PTRN_A  
ST_PTRN_5  
Function  
0
0
1
1
0
1
0
1
DSP writes to the ACC_DATAH and ACC_DATAL registers as specified  
0x5555 written to ACC_DATAH and ACC_DATAL. DSP write to registers inhibited.  
0xAAAA written to ACC_DATAH and ACC_DATAL. DSP write to registers inhibited.  
0xFFFF written to ACC_DATAH and ACC_DATAL. DSP write to registers inhibited.  
3.1.20.2  
Self-Test Control (SELFTEST)  
The self-test control bit activates and deactivates self-test as described below. Reference Section 3.5.2 for details regarding self-  
test. This bit is automatically cleared when the PDCM bit is set.  
Self-test  
Function  
0
1
Self-test deactivated  
Self-test activated  
After a device reset, the ST_INCMPLT bit is set in the DEVSTAT2 register and the device status defaults to Self-test Activation  
Incomplete as defined in Section 4.3.2.2. The ST_INCMPLT bit will only be cleared by writing the SELFTEST bits to ‘1’ through  
Command and Response Mode. If PDCM is entered without activating self-test, the status bits will include the Self-test Activation  
Incomplete” status until a device reset.  
If both the SELFTEST bit and one of the Self-test Pattern Write bits are set, the self-test pattern data will be written to the  
ACC_DATAH and ACC_DATAL registers. However, the transducer self-test will still be activated as described in Section 3.5.2.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
25  
3.1.21 Write NVM Enable register  
The write NVM enable register is a user programmed read/write register that allows the user to write the contents of the user  
programmed OTP array mirror registers to the OTP registers. The register is included in the read/write array verification described  
in Section 3.2.  
Table 24. Write NVM Enable register  
Location  
Register  
WRITE_NVM_EN  
Factory Default  
Bit  
3
Address  
7
0
6
0
5
0
4
0
2
0
1
0
$24  
0
WR_NVM_EN[1] WR_NVM_EN[0]  
N/A N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
DSI3 Register Writes executed by the user to the user programmed OTP array only update the mirror register contents for the  
OTP array, not the actual OTP registers. To copy the values to the actual OTP registers, a series of three consecutive DSI3  
Register Write operations to the Write NVM Enable register must be completed. The register write operations must be  
consecutive and in the order shown below to enable the write to NVM. If any commands are transmitted in between the listed  
commands, or if the data does not match as shown, the sequence will be reset and no OTP write will be initiated.  
Depending upon the operating mode used, the user will need to write the NVM values to OTP either with or without the  
PHYSADDR register being written to OTP. If Discovery Mode or switch connected daisy-chain mode will be used, the  
PHYSADDR register must remain unprogrammed (0x0000). If a preprogrammed bus mode will be used, the PHYSADDR register  
must be programmed to a non-zero value. To support these two user modes, two NVM Write sequences are necessary: one that  
allocates the PHYSADDR register to OTP and one that does not.  
All user array programming, including locking the user array by setting the LOCK_U bit, must be completed with one NVM Write  
command sequence in order to prevent inadvertent user array ECC errors. The procedure for writing to the user OTP array is  
listed below:  
1. Write the desired values to the user array registers using Command and Response Mode.  
2. Set the LOCK_U bit in the DEVLOCK registers using Command and Response Mode.  
NOTE  
This procedure must only be executed once and the LOCK_U bit must be set to prevent  
inadvertent ECC errors.  
3. Execute the appropriate NVM Write Sequence using Command and Response Mode to copy the register data to the  
OTP array with our without the PHYSADDR register.  
Table 25. NVM Write Sequence: PHYSADDR register conditionally included  
Register Write to  
WRITE_NVM_EN[7:2]  
WRITE_NVM_EN[1]  
WRITE_NVM_EN[0]  
Effect  
WRITE_NVM_EN  
DSI3 Register Write 1  
DSI3 Register Write 2  
0 0 0 0 0 0  
0 0 0 0 0 0  
1
1
0
1
No Effect  
No Effect  
Write to OTP initiated  
DSI3 Register Write 3  
0 0 0 0 0 0  
0
1
PHYSADDR Register included if and  
only if assigned by CRM  
Table 26. NVM Write Sequence: PHYSADDR register excluded  
Register Write to  
WRITE_NVM_EN[7:2]  
WRITE_NVM_EN[1]  
WRITE_NVM_EN[0]  
Effect  
WRITE_NVM_EN  
DSI3 Register Write 1  
DSI3 Register Write 2  
0 0 0 0 0 0  
0 0 0 0 0 0  
0
1
1
1
No Effect  
No Effect  
Write to OTP initiated  
DSI3 Register Write 3  
0 0 0 0 0 0  
1
0
PHYSADDR Register is excluded  
4. Delay tNVM_WRITE_MAX to allow the device to complete the writes to OTP.  
5. Verify that the OTP write has successfully completed by completing a read back of all of the OTP registers using  
Command and Response Mode Register Read commands.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
26  
3.1.22 DSI3 Communication CRC Polynomial registers  
The DSI3 communication CRC polynomial registers are user programmed read/write registers which contain the CRC  
polynomials used for communication. The register is included in the read/write array verification described in Section 3.2.  
Table 27. DSI3 Communication CRC Polynomial registers  
Location  
Bit  
Address  
$25  
Register  
7
6
5
4
3
2
1
0
C_CRMCRCPLY C_CRMCRCPLY[7] C_CRMCRCPLY[6] C_CRMCRCPLY[5] C_CRMCRCPLY[4] C_CRMCRCPLY[3] C_CRMCRCPLY[2] C_CRMCRCPLY[1] C_CRMCRCPLY[0]  
R_CRMCRCPLY R_CRMCRCPLY[7] R_CRMCRCPLY[6] R_CRMCRCPLY[5] R_CRMCRCPLY[4] R_CRMCRCPLY[3] R_CRMCRCPLY[2] R_CRMCRCPLY[1] R_CRMCRCPLY[0]  
PDCMCRCPLY PDCMCRCPLY[7] PDCMCRCPLY[6] PDCMCRCPLY[5] PDCMCRCPLY[4] PDCMCRCPLY[3] PDCMCRCPLY[2] PDCMCRCPLY[1] PDCMCRCPLY[0]  
$26  
$27  
Factory Default  
0
0
1
0
1
1
1
1
The C_CRMCRCPLY register contains the 8-bit CRC polynomial used for the Command and Response Mode command as well  
as the Background Diagnostic Mode command. The default polynomial is x8 + x5 + x3 + x2 + x + 1. When this register value is  
changed using a Command and Response Mode Register Write command, the new polynomial value is enabled for the next  
Command and Response Mode command received.  
The R_CRMCRCPLY register contains the 8-bit CRC polynomial used for the Command and Response Mode response as well  
as the Background Diagnostic Mode response. The default polynomial is x8 + x5 + x3 + x2 + x + 1. When this register value is  
changed using a Command and Response Mode Register Write command, the new polynomial value is enabled for the response  
to the next Command and Response Mode command received. The response to the Register Write command uses the original  
polynomial value.  
The PDCMCRCPLY register contains the 8-bit CRC polynomial used for the Periodic Data Collection Mode response. The default  
polynomial is x8 + x5 + x3 + x2 + x + 1. This polynomial is enabled once the device enters Periodic Data Collection Mode as  
described in Section 4.3.  
3.1.23 Acceleration Factory Configuration register (ACC_FCTCFG)  
The Acceleration Factory Configuration register is a factory-programmable OTP register which contains acceleration data  
specific configuration information. The register is included in the factory-programmed OTP verification. Reference Section 3.2 for  
details regarding the OTP verification.  
Table 28. Acceleration Factory Configuration register (ACC_FCTCFG)  
Location  
Register  
ACC_FCTCFG  
Bit  
Address  
7
0
0
6
PCM  
0
5
AXIS  
0
4
RNG[4]  
0
3
RNG[3]  
0
2
RNG[2]  
0
1
RNG[1]  
0
0
RNG[0]  
0
$30  
Factory Default  
3.1.23.1  
PCM Enable Bit (PCM)  
The PCM bit enables the PCM output pin. When the PCM bit is set, the PCM output pin is active and outputs a pulse code  
modulated signal proportional to the acceleration response. Reference Section 3.5.4.10 for more information regarding the PCM  
output. When the PCM bit is cleared, the PCM output pin is actively pulled low.  
PCM  
PCM Output  
0
1
Actively pulled low  
PCM signal enabled  
3.1.23.2  
Axis Indication Bit (AXIS)  
The axis indication bit indicates the axes of sensitivity as shown below.  
AXIS  
Axis  
0
1
X
Z
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
27  
3.1.23.3  
Range Indication Bits (RNG[4:0])  
The range indication bits indicate the full-scale range of the device as shown below.  
Full-Scale  
Acceleration Range  
RNG[4]  
RNG[3]  
RNG[2]  
RNG[1]  
RNG[0]  
0
1
1
1
1
0
0
0
1
1
1
1
1
0
1
1
0
1
0
0
0
0
0
1
0
±25 g  
±125 g  
±187 g  
±250 g  
±375 g  
3.1.24 Self-Test Deflection register (ACC_STDATA)  
The self-test deflection register is a factory-programmable OTP register which contains the nominal self-test deflection value at  
25°C. The register is included in the factory-programmed OTP verification described in Section 3.2.  
Table 29. Self-Test Deflection register  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$31  
ACC_STDATA ACC_ST[7] ACC_ST[6] ACC_ST[5] ACC_ST[4] ACC_ST[3] ACC_ST[2] ACC_ST[1] ACC_ST[0]  
The self-test value is a positive deflection value, measured at the factory, and factory-programmed for each device. the stored  
value is equal to the difference between the factory measured value at nominal temperature and the minimum self-test limit at  
25°C (ACC_STDATA = STMEASURED - ΔSTMIN). When self-test is activated, the acceleration reading is compared to the value in  
this register. The difference from the measured deflection value, and the nominal deflection value stored in the register shall not  
fall outside the self-test accuracy limits specified in Section 2.5 (ΔSTACC). Reference Section 3.5.2 for more details on calculating  
the self-test limits.  
3.1.25 Acceleration Configuration register (ACC_CFG)  
The acceleration configuration register is a user programmable read/write register which contains acceleration data specific  
configuration information. The register is included in the read/write array verification described in Section 3.2.  
Table 30. Acceleration Configuration register (ACC_CFG)  
Location  
Bit  
Address  
$32  
Register  
7
LPF[3]  
0
6
LPF[2]  
0
5
LPF[1]  
0
4
LPF[0]  
0
3
SD  
0
2
1
0
ACC_CFG  
OC_FILT[2] OC_FILT[1] OC_FILT[0]  
Factory Default  
0
0
0
MMA27XXW  
Sensors  
28  
Freescale Semiconductor, Inc.  
3.1.25.1  
Low-pass filter selection bits (LPF[3:0])  
The low-pass filter selection bits select the low-pass filter for the acceleration signal. Reference Section 3.5.4.3 for details  
regarding the low-pass filter.  
LPF[3]  
LPF[2]  
LPF[1]  
LPF[0]  
Low-pass filter selected  
180 Hz, 2 Pole  
Reserved  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
Reserved  
Reserved  
325 Hz, 3 Pole  
Reserved  
400 Hz, 3 Pole  
400 Hz, 4 Pole  
Reserved  
800 Hz, 4 Pole  
Reserved  
Reserved  
1200 Hz, 4 Pole  
Reserved  
3.1.25.2  
SD Bit  
The SD bit determines the format of acceleration data. If the SD bit is set to a logic ‘1’, unsigned results are transmitted. If the SD  
bit is cleared, signed results are transmitted. Reference Section 3.5.4.9 for details on signed and unsigned data.  
SD  
1
Operating mode  
Unsigned Data Output  
Signed Data Output  
0
3.1.25.3  
Offset cancellation filter selection bits (OC_FILT[2:0])  
The offset cancellation filter selection bits select the high-pass filter and rate limiting used for normal operation. Reference  
Section 3.5.4.5 for details regarding offset cancellation.  
OC_FILT[2]  
OC_FILT[1]  
OC_FILT[0]  
High-pass filter  
0.10 Hz, Single Pole  
0.10 Hz, Single Pole  
Reserved  
Rate limiting  
Enabled  
Bypassed  
Reserved  
Reserved  
Reserved  
Reserved  
NA  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
Reserved  
None  
None  
NA  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
29  
3.1.26 Acceleration Data registers (ACC_DATAL, ACC_DATAH)  
The Acceleration Data registers are read-only registers which contain the 16-bit output acceleration data. A read of the  
ACC_DATAL register responds with the data from both the ACC_DATAH and ACC_DATAL registers. If all 16-bits of data are  
desired, it is recommended to read the ACC_DATAL register and to use all 16-bits of the response data.  
A read of the either register does not freeze the value of the other register. Thus, subsequent register reads will result in invalid  
data when re-assembled into a 16-bit value.  
Reference Section 3.5.4.8 for details regarding the 16-bit acceleration data.  
Table 31. Acceleration Data registers (ACC_DATAL, ACC_DATAH)  
Location  
Bit  
Address  
Register  
7
6
5
4
3
2
1
0
$33  
$34  
ACC_DATAL  
ACC_D[7]  
ACC_D[6]  
ACC_D[5]  
ACC_D[4]  
ACC_D[3]  
ACC_D[2]  
ACC_D[1]  
ACC_D[9]  
0
ACC_D[0]  
ACC_D[8]  
0
ACC_DATAH ACC_D[15] ACC_D[14] ACC_D[13] ACC_D[12] ACC_D[11] ACC_D[10]  
Factory Default  
0
0
0
0
0
0
3.1.27 Acceleration Status register (ACC_STAT)  
The acceleration status register is a read-only register which contains acceleration data specific status information.  
Table 32. Acceleration Status register (ACC_STAT)  
Location  
Bit  
Address  
Register  
7
0
0
6
0
0
5
0
0
4
0
0
3
0
0
2
1
0
OC_INIT  
0
$35  
ACC_STAT  
ST_ACTIVE OFFSET_ERR  
Factory Default  
0
0
3.1.27.1  
Self-Test Active Flag (ST_ACTIVE)  
The self-test active bit is set if any of the self-test bits in the ST_CONTROL register are set.  
ST_ACTIVE  
Condition  
0
1
ST_5_PTRN & ST_A_PTRN & SELFTEST = 0  
ST_5_PTRN | ST_A_PTRN | SELFTEST = 1  
3.1.27.2  
Offset Error Flag (OFFSET_ERR)  
The offset error flag is set if the acceleration signal reaches the offset limit.  
OFFSET_ERR  
Error Condition  
0
1
No error detected  
Offset error detected  
3.1.27.3  
Offset Cancellation Init Status Flag (OC_INIT)  
The offset cancellation initialization status bit is set once the offset cancellation initialization process is complete, and the filter  
has switched to normal mode.  
OC_INIT  
Error Condition  
0
1
Offset Cancellation in initialization  
Offset Cancellation initialization complete  
MMA27XXW  
Sensors  
30  
Freescale Semiconductor, Inc.  
3.1.28 Reserved Registers  
A register read command to a reserved register or a register with reserved bits will result in a valid response. The data for  
reserved bits may be ‘0’ or ‘1’.  
A register write command to a reserved register or a register with reserved bits will execute and result in a valid response. The  
data for the reserved bits may be ‘0’ or ‘1’. A write to the reserved bits must always be ‘0’ for normal device operation and  
performance.  
3.1.29 Invalid Register Addresses  
A register read command to a register address outside of the addresses listed in Table 4 will result in a valid response. The data  
for the registers will be ‘0x00’.  
A register write command to a register address outside of the addresses listed in Table 4 will not execute, but will result in a valid  
response. The data for the registers will be ‘0x00’.  
A register write command to a read-only register will not execute, but will result in a valid response. The data for the registers will  
be the current contents of the register.  
3.2  
OTP and Read/Write register array CRC verification  
Factory-programmed OTP array lock and verification  
3.2.1  
The factory-programmed OTP array is verified for errors with an error detection algorithm. The error verification is enabled only  
when the factory-programmed array is locked.  
Once enabled, the verification is continuously calculated on all bits in the registers listed below as well as on the factory-  
programmable device configuration bits with the exception of the factory lock bit. If an error is detected in the OTP array, the  
F_OTP_ERR is set in the DEVSTAT2 register.  
Register Address  
Register Name  
PN  
$09  
$0A - $0D  
$30  
SN0, SN1, SN2, SN3  
ACC_FCTCFG  
ACC_STDATA  
$31  
The verification is completed on the memory registers which hold a copy of the fuse array values, not the fuse array values.  
3.2.2  
User Programmable OTP Array Lock and Error Verification  
The User Programmable OTP array is independently verified for errors with an error detection algorithm. The verification is  
enabled only when the User Programmable OTP array is locked.  
Once the LOCK_U bit is active, the verification is continuously calculated on the user programmable OTP Array, which includes  
the registers listed below. If an error is detected in the OTP array, the U_OTP_ERR is set in the DEVSTAT2 register.  
Register Address  
Register Name  
MODTYPE[2:0], MODMFGID[2:0], MODREV[2:0]  
USERID[7:0]  
Number of Bits  
$03 - $05  
$06  
9
8
4
1
$11  
PHYSADDR[3:0]  
$20  
DEVLOCK[7]  
The verification is completed on the memory registers which hold a copy of the fuse array values, not the fuse array values.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
31  
3.2.3  
User Programmable Read/Write Array Lock and CRC Verification  
The User Programmable read/write array is independently verified for errors with an error detection algorithm. The verification is  
enabled only when the PDCM_EN bit is set in the PDCM_EN register.  
Once the PDCM_EN bit is set, register writes are ignored and the verification is continuously calculated on the user  
programmable read/write array, which includes the registers listed below. If an error is detected in the array, the U_RW_ERR is  
set in the DEVSTAT2 register.  
Register Address  
Register Name  
$11  
PHYSADDR[3:0] - Secondary Register written during Discovery Mode and/or CRM  
BDM_CFG, CRM_CFG, PDCM_CFG, PDCM_EN, CHIPTIME, PDCM_PER_L, PDCM_PER_H, PDCM_RSPST_L,  
PDCM_RSPST_H, PDCM_CMD_B_L, PDCM_CMD_B_H, SOURCEID, BUSSW_CTRL  
$12 - $1E  
$23  
$24  
ST_CONTROL  
WRITE_NVM_EN  
$25 - $27  
$32  
C_CRMCRCPLY, R_CRMCRCPLY, PDCMCRCPLY  
ACC_CFG  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
32  
3.3  
Voltage regulators  
The device derives its internal supply voltage from the BUS_I and VSS pins. The internal regulators are supplied by a buffer  
regulator (VBUF) to provide immunity from EMC and supply dropouts on BUS_I. External filter capacitors are required, as shown  
in Figure 3 on page 5.  
The voltage regulator module includes voltage monitoring circuitry which holds the device in reset following power-on until the  
internal voltages have increased above the undervoltage detection thresholds. The voltage monitor asserts internal reset when  
the external supply or internally regulated voltages fall below the undervoltage detection thresholds. A reference generator  
provides a reference voltage for the ΣΔ converter.  
BUS_I  
VREF  
VBUF  
Voltage  
Regulator  
VBUF  
VREGA  
Oscillator  
Trim  
Voltage  
VREGA  
Regulator  
Bias  
VREGA  
Generator  
Trim  
VREF  
Bandgap  
Reference  
Trim  
ΣΔ  
Trim  
Converter  
VREF_MOD  
Reference  
Generator  
VBUF  
OTP  
Array  
VREG  
VREF  
Voltage  
Regulator  
VREG  
Digital  
Logic  
DSP  
BUS_I  
VBUF  
BUSI_UV_ERR  
Comparator  
Comparator  
VBUF_UV_ERR  
POR  
VREG  
Comparator  
Comparator  
VREGA  
VREF  
Figure 6. Voltage regulation and monitoring  
3.3.1  
VBUF, VREG and VREGA regulator capacitor  
The internal regulators require an external capacitor between the VBUF pin and the VSS pin, the VREG pin and the VSS pin and  
the VREGA pin and the VSSA pin for stability. Figure 3 on page 5 shows the recommended types and values for each of these  
capacitors.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
33  
3.3.2  
BUS_I, VBUF, VREG, VREGA, undervoltage monitor  
A circuit is incorporated to monitor the BUS_I supply voltage and the internally regulated voltages, VBUF, VREG and VREGA. If any  
of the voltages fall below the specified undervoltage thresholds in Section 2.3, the device will be react as listed below.  
BUS_I  
If BUS_I falls below the specified threshold at any time, the BUSI_UV_ERR bit is set in the DEVSTAT2 register.  
The BUS_I_UV_ERR bit will be cleared once the supply returns above the threshold and either one Periodic Data  
Collection Mode status is transmitted with the VBUF_ERR bit set, or a response to a Command and Response  
Mode Register Read of the DEVSTAT2 register is transmitted.  
If BUS_I falls below the specified threshold during a command transmission in Command and Response Mode, the  
command is ignored, and no DSI3 response transmission occurs. Once the supply returns above the threshold, the  
device will resume decoding commands.  
If BUS_I falls below the specified threshold during a response transmission in Command and Response Mode, the  
response is terminated. No attempt is made to resend the response. Once the supply returns above the threshold,  
the device will resume decoding commands.  
If BUS_I falls below the specified threshold during a command transmission in Periodic Data Collection Mode, the  
command is ignored and no periodic response occurs during that period. Once the supply returns above the  
threshold, the device will resume periodic transmissions in response to commands. The device will resume  
decoding Background Diagnostic Mode commands after the Start Condition is met.  
If BUS_I falls below the specified threshold during a periodic response transmission in Periodic Data Collection  
Mode, the response is terminated. No attempt is made to resend the response. Once the supply returns above the  
threshold, the device will resume periodic transmissions in response to commands. The device will resume  
decoding Background Diagnostic Mode commands after the Start Condition is met.  
If BUS_I falls below the specified threshold during a Background Diagnostic Mode response transmission in  
Periodic Data Collection Mode, the response is terminated. No attempt is made to resend the response. Once the  
supply returns above the threshold, the device will resume periodic transmissions in response to commands. The  
device will resume decoding Background Diagnostic Mode commands after the Start Condition is met.  
VBUF  
If VBUF falls below the specified threshold at any time, the VBUF_UV_ERR bit is set in the DEVSTAT2 register. If a  
response transmission is in process, the response is terminated. No attempt is made to resend the response. Once  
the supply returns above the threshold, the device will resume decoding commands and transmission of responses.  
The VBUF_UV_ERR bit will be cleared once the supply returns above the threshold and one Periodic Data  
Collection Mode status is transmitted with the VBUF_UV_ERR bit set.  
VREG or VREGA  
If VREG or VREGA falls below the specified threshold at any time, the device is reset.  
Reference Figure 7 for an example of a supply line interruption during a response in Periodic Data Collection Mode.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
34  
BUS_I microcut occurs  
BUS_I  
VBUF  
BUS_I undervoltage detected  
VREG  
VREGA  
Response Terminated  
IDATA  
POR  
Time  
Figure 7. BUS_I Microcut response  
3.3.3  
VBUF Capacitance monitor  
A monitor circuit is incorporated to ensure predictable operation if the connection to the external VBUF capacitor becomes open.  
The VBUF regulator is disabled tPOR_CAPTEST seconds after POR for a duration of tVBUFCAPTST_TIME seconds. If the external  
capacitor is not present, the regulator voltage will fall below the threshold specified in Section 2.3 causing the VBUF_ERR bit to  
be set in the DEVSTAT2 register.  
Next Power on Cycle  
tPOR_CAPTEST  
tPOR_CAPTEST  
tCAPTST_TIME  
tCAPTST_TIME  
Cap_Test  
VBUF  
Capacitor Present  
Capacitor Open  
VPORVBUF_f  
POR  
Time  
Figure 8. VBUF Capacitor monitor  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
35  
3.3.4  
VREG capacitance monitor  
A monitor circuit is incorporated to ensure predictable operation if the connection to the external VREG capacitor becomes open.  
The VREG regulator is disabled tPOR_CAPTEST seconds after POR for a duration of tVREGCAPTST_TIME seconds. If the external  
capacitor is not present, the regulator voltage will fall below the internal reset threshold, forcing a device reset.  
Next Power on Cycle  
tPOR_CAPTEST  
tPOR_CAPTEST  
tCAPTST_TIME  
tCAPTST_TIME  
Cap_Test  
VREG  
Capacitor Present  
Capacitor Open  
VPORVREG_f  
POR  
Time  
Figure 9. VREG Capacitor Monitor  
3.3.5  
VREGA Capacitance Monitor  
A monitor circuit is incorporated to ensure predictable operation if the connection to the external VREGA capacitor becomes open.  
The VREGA regulator is disabled tPOR_CAPTEST seconds after POR for a duration of tVREGCAPTST_TIME seconds. If the external  
capacitor is not present, the regulator voltage will fall below the internal reset threshold, forcing a device reset.  
Next Power on Cycle  
tPOR_CAPTEST  
tPOR_CAPTEST  
tCAPTST_TIME  
tCAPTST_TIME  
Cap_Test  
VREGA  
Capacitor Present  
Capacitor Open  
VPORVREGA_f  
POR  
Time  
Figure 10. VREGA capacitor monitor  
MMA27XXW  
Sensors  
36  
Freescale Semiconductor, Inc.  
3.4  
Internal oscillator  
The device includes a factory-trimmed oscillator as specified in Section 2.8.  
3.4.1  
Oscillator training  
The device includes a feature to train the oscillator to a tighter accuracy than the factory-trimmed capability assuming the system  
master has a tighter oscillator accuracy than the slave factory trimmed capability. Oscillator training is enabled if the CK_CAL_EN  
bit is set in the CRM_CFG register and is accomplished by verifying the timing of periodic transmissions from the master against  
the values stored in the CRM_PER[1:0] and PDCM_PER[2:0] bits of the user read/write register array. The master programs the  
intended Periodic Data Collection Mode command period into the PDCM_PER[2:0] bits and the intended Command and  
Response Mode command period into the CRM_PER[1:0] bits. The device then calculates the number of transmission periods  
for every 4 ms (nCRM_PER_4ms_TYP and nPDCM_PER_4ms_TYP).  
In Command and Response Mode, oscillator training is completed over 4 ms periods if and only if the CK_CAL_EN bit is set and  
the Command and Response Mode period is between 500 μs and 4 ms, inclusive. The following procedure is used to train the  
oscillator (Figure 11):  
1. The device counts the number of oscillator cycles in nCRM_PER_4ms_TYP periods (nOSC_4ms).  
2. nOSC_4ms is compared to nOSC_4ms_TYP. If the value is within the acceptable training window (OscTrainWIN) specified in  
Section 2.8, an oscillator adjustment is made. Otherwise, no adjustment is made.  
a) If nOSC_4ms is greater than nOSC_4ms_TYP + OscTrainADJ, the oscillator frequency target is decreased by  
OscTrainRES  
.
b) If nOSC_4ms is less than nOSC_4ms_TYP - OscTrainADJ, the oscillator frequency target is increased by OscTrainRES  
.
c) The oscillator frequency target value is changed at the end of the command blocking time for the command ending  
the nCRM_PER_OSC calculation.  
If the CK_CAL_EN bit is cleared after oscillator training has already been initiated, the state of the oscillator is determined by the  
state of the CK_CAL_RST bit in the CRM_CFG register. If the CK_CAL_RST bit is cleared, the last adjustment value for the  
oscillator is maintained. If the CK_CAL_RST bit is set, the oscillator is reset to its untrained value with the untrained tolerance  
specified in Section 2.8.  
Command  
tCmdBlock_CRM  
Response  
One CRM Period  
4ms = nCRM_PER_4ms_TYP  
New Oscillator  
Count Starts  
Oscillator  
Adjustment  
nOSC_4ms  
t
Figure 11. Command and Response Mode oscillator training timing diagram  
In Periodic Data Collection Mode, oscillator training is completed over 4 ms periods if the CK_CAL_EN bit is set. The following  
procedure is used to train the oscillator (reference Figure 12):  
1. The device counts the number of oscillator cycles in nPDCM_PER_4ms_TYP periods (nOSC_4ms).  
2. nOSC_4ms is compared to nOSC_4ms_TYP. If the value is within the acceptable training window (OscTrainWIN) specified in  
Section 2.8, an oscillator adjustment is made. Otherwise, no adjustment is made.  
a) If nOSC_4ms is greater than nOSC_4ms_TYP + OscTrainADJ, the oscillator frequency target is decreased by  
OscTrainRES  
.
b) If nOSC_4ms is less than nOSC_4ms_TYP - OscTrainADJ, the oscillator frequency target is increased by OscTrainRES  
.
c) The oscillator frequency target value is changed at the end of the command blocking time for the command ending  
the nPDCM_PER_OSC calculation.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
37  
Command  
Response  
tCmdBlock_PDCM  
One PDCM Period  
4ms = nPDCM_PER_4ms_TYP  
nOSC_4ms  
New Oscillator  
Count Starts  
Oscillator  
Adjustment  
t
Figure 12. Periodic Data Collection Mode oscillator training timing diagram  
3.4.2  
Oscillator training error handling  
If oscillator training is enabled by the user, but the conditions are not correct to complete oscillator training, the OSC_TRAIN bit  
is set in the DEVSTAT register. The following conditions will result in the OSCTRAIN_ERR bit being set.  
The CLK_CAL_EN bit in the CRM_CFG register is set, the device is in Command and Response Mode and Command and  
Response Mode period is not set to 500 μs, 666 μs, 1000 μs, 1333 μs, 2000 μs or 4000 μs.  
The CLK_CAL_EN bit in the CRM_CFG register is set and the measured period (nOSC_4ms) for either Command and  
Response Mode or Periodic Data Collection Mode is outside of the Oscillator Training Window (OscTrainWIN).  
The result of the comparison is filtered with an up and down counter.  
If nOSC_4ms is outside the oscillator training window, the counter is incremented.  
If nOSC_4ms is inside the oscillator training window, the counter is decremented.  
If the counter reaches 64 counts, the OSCTRAIN_ERR bit is set.  
The up and down counter has a maximum value of 127 and a minimum value of 0.  
3.5  
Acceleration signal path  
Transducer  
3.5.1  
The device transducer is an overdamped mass-spring-damper system defined by the following transfer function:  
2
n
ω
H(s) = ------------------------------------------------------  
Eqn. 1  
2
2
n
s + 2 ⋅ ξ ⋅ ω s + ω  
n
where:  
ζ = Damping Ratio  
ωn = Natural Frequency = 2∗Π∗fn  
Reference Section 2.7 for transducer parameters.  
MMA27XXW  
Sensors  
38  
Freescale Semiconductor, Inc.  
3.5.2  
Self-test interface  
The self-test interface applies a voltage to the g-cell, causing deflection of the proof mass. The resulting acceleration readings  
can be compared against the values stored in the Self-Test Deflection registers (Reference Section 3.1.24). The self-test  
interface is controlled through SPI write operations to the ST_CONTROL register described in Section 3.1.20. The PDCM_EN  
bit in the PDCM_EN register must also be low to enable self-test (Periodic Data Collection Mode not enabled). A diagram of the  
self-test interface is shown in Figure 13.  
SELF-TEST  
VOLTAGE  
GENERATOR  
Transducer  
PDCM_EN  
PDCM_EN  
ST  
Figure 13. Self-test interface  
Self-test can be verified via two methods:  
3.5.2.1  
The raw self-test deflection can be verified against raw self-test limits in Section 2.5.  
3.5.2.2 Delta self-test deflection verification  
Raw self-test deflection verification  
The raw self-test deflection can be verified against the nominal temperature self-test deflection value recorded at the time the  
device was produced. The production self-test deflection is stored in the ACC_STDATA register such that the minimum stored  
value (0x00) is equivalent to ΔSTMIN, and the maximum stored value (0xFF) is equivalent to ΔSTMAX. The Delta Self-test  
Deflection limits can then be determined by the following equations:  
ΔSTACCMINLIMIT = FLOOR ⋅ [(ΔSTMIN + ACCSTDATA) × (1 – ΔSTACC)]  
ΔSTACCMAXLIMIT = CEIL ⋅ [(ΔSTMIN + ACCSTDATA) × (1 + ΔSTACC)]  
Eqn. 2  
Eqn. 3  
where:  
ΔSTACC = The accuracy of the self-test deflection relative to the stored deflection as specified in Section 2.5.  
ACCSTDATA = The value stored in the ACC_STDATA register.  
ΔSTMIN = The minimum self-test deflection at 25°C as specified in Section 2.5.  
ΔSTMAX = The maximum self-test deflection at 25°C as specified in Section 2.5.  
3.5.3  
Analog front-end and ΣΔ converter  
A sigma delta modulator converts the differential capacitance of the transducer to a data stream that is input to the DSP.  
Transducer  
First  
Second  
1-bit  
Quantizer  
VX  
Integrator  
Integrator  
α
=
1
α2  
CINT1  
z-1  
z-1  
CTOP  
CBOT  
ΣΔ_OUT  
1 - z-1  
1 - z-1  
ADC  
DAC  
ΔC = CTOP - CBOT  
β1  
β2  
V = 2 × VREF  
V = ΔC x VX / CINT1  
Figure 14. ΣΔ Converter block diagram  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
39  
3.5.4  
Digital-signal processor  
A digital-signal processor (DSP) is used to perform signal filtering and compensation. A diagram illustrating the signal processing  
flow within the DSP is shown in Figure 15.  
Sinc  
filter  
C
D
E
A
B
Low-pass  
filter  
Digital  
Gain  
ΣΔ_OUT  
Compensation  
Offset  
Cancellation  
Output  
F
J
H
Offset Cancellation  
Low-pass filter  
Output  
G
Downsampling  
Output  
Scaling  
Interpolation  
Rate Limiting  
Figure 15. Signal-chain diagram  
Table 33. Signal-chain characteristics  
Sample  
time  
(μs)  
Data  
Width  
(Bits)  
Signal  
Width  
(Bits)  
Signal  
Noise  
(Bits)  
Signal  
Margin  
(Bits)  
Typical  
Block  
Latency  
Overrange  
(Bits  
Description  
Reference  
A SD  
1
16  
16  
16  
16  
256  
256  
8
1
1
Section 3.5.3  
Section 3.5.4.1  
Section 3.5.4.2  
Section 3.5.4.3  
B SINC filter  
C Digital gain  
20  
20  
26  
26  
26  
26  
14  
14  
10  
10  
10  
10  
10  
10  
51 μs  
D Low-pass filter  
4
4
4
4
3
3
3
3
9
9
9
9
Section 3.5.4.3  
E Compensation  
17 μs  
Section 3.5.4.4  
F Down sampling  
G Offset cancellation  
H DSP sampling and interpolation  
J 10-bit output scaling  
Section 3.5.4.5  
8 μs  
Section 3.5.4.5  
Section 3.5.4.7  
Section 3.5.4.8  
1
1 μs  
MMA27XXW  
Sensors  
40  
Freescale Semiconductor, Inc.  
3.5.4.1  
Decimation Sinc filter  
The serial data stream produced by the ΣΔ converter is decimated and converted to parallel values by a 3rd order sinc filter with  
a decimation factor of 16.  
16  
3
1 – z  
----------------------------------  
H(z) =  
Eqn. 4  
–1  
16 × (1 – z  
)
Figure 16. Sinc-filter response  
3.5.4.2  
Digital gain  
The DSP applies a selectable one or two times digital gain to the output of the sinc filter. The gain applied is dependent on the  
output range of the device.  
3.5.4.3  
Data from the Sinc filter is processed by an infinite impulse response (IIR) low-pass filter.  
–1 –2  
Low-pass filter  
0
0
–1  
–2  
(n z ) + (n z ) + (n z ) (n z ) + (n z ) + (n z  
11 12 13  
21 22 23  
-------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------  
)
Eqn. 5  
H(z) = a ⋅  
0
0
–1  
–2  
0
–1  
–2  
(d z ) + (d z ) + (d z ) (d z ) + (d z ) + (d z  
11 12 13  
21 22 23  
)
The device provides the option for one of six low-pass filters. The filter is selected with the LPF[3:0] bits in the ACC_CFG register.  
The filter selection options are listed in Section 3.1.25.1. Response parameters for the low-pass filter are specified in Section 2.7.  
Filter characteristics are illustrated in the following figures.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
41  
Table 34. Low-pass filter coefficients  
Description  
Attenuation @ 1000  
Hz  
(dB)  
Filter  
-3dB  
Frequency  
(±5%)  
Filter  
order  
Group  
Delay  
Filter Coefficients  
Number  
Min  
Typ  
Max  
a0  
0.000534069200512  
n11  
n12  
n13  
n21  
n22  
n23  
a0  
0.25  
d11  
d12  
d13  
d21  
d22  
d23  
1
0.499999985098839  
-1.959839582443237  
180 Hz  
2
3
3
4
4
4
0.25  
0.960373640060425  
1190 μs  
856 μs  
697 μs  
841 μs  
420 μs  
280 μs  
24.8  
25.6  
26.5  
1
1
0
0
0
0
0.04247547499835491180  
n11 0.00109037756919860840 d11  
1
n12 0.00108939409255981445 d12 -0.95752453804016113281  
325Hz  
n13  
0
d13  
0
1
20.2  
15.5  
18.1  
4.42  
1.83  
21.4  
16.7  
19.5  
4.94  
2.03  
22.6  
17.8  
21.0  
5.54  
2.27  
n21 0.24988752603530883789 d21  
n22 0.49999989569187164307 d22 -1.93140876293182373047  
n23 0.25011256337165832520 d23 0.93358850479125976562  
a0  
0.05189235225042199  
0.001629077582099646  
0.001630351547919014  
0
n11  
n12  
n13  
n21  
n22  
n23  
a0  
d11  
d12  
d13  
d21  
d22  
d23  
1
-0.9481076477495780  
400 Hz  
0
0.2500977520825902  
0.4999999235890745  
0.2499023243303036  
0.003135988372378  
0.000999420881271  
0.001998946070671  
0.000999405980110  
0.250004753470421  
0.499986037611961  
0.250009194016457  
0.011904109735042  
0.003841564059258  
0.007683292031288  
0.003841534256935  
0.250001862645149  
0.499994158744812  
0.250003993511200  
0.025461918674409  
0.008307680487633  
0.016615495085716  
0.008307650685310  
0.250000774860382  
0.499997481703758  
0.250001743435860  
1
-1.915847097557409  
0.9191065266874253  
n11  
n12  
n13  
n21  
n22  
n23  
a0  
d11  
d12  
d13  
d21  
d22  
d23  
1.0  
-1.892452478408814  
0.89558845758438  
1.0  
400 Hz  
-1.919075012207031  
0.923072755336761  
n11  
n12  
n13  
n21  
n22  
n23  
a0  
d11  
d12  
d13  
d21  
d22  
d23  
1.0  
-1.790004611015320  
0.801908731460571  
1.0  
800 Hz  
-1.836849451065064  
0.852215826511383  
n11  
n12  
n13  
n21  
n22  
n23  
d11  
d12  
d13  
d21  
d22  
d23  
1.0  
-1.692260980606079  
0.717722892761230  
1.0  
1200 Hz  
-1.753850817680359  
0.787081658840179  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
42  
Figure 17. Low-pass filter characteristics: fC = 180 Hz, 2-Pole, tS = 16 μs  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
43  
Figure 18. Low-pass filter characteristics: fC = 325 Hz, 3-Pole, tS = 16 μs  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
44  
Figure 19. Low-pass filter characteristics: fC = 400 Hz, 3-Pole, tS = 16 μs  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
45  
Figure 20. Low-pass filter characteristics: fC = 400 Hz, 4-Pole, tS = 16 μs  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
46  
Figure 21. Low-pass filter characteristics: fC = 800 Hz, 4-Pole, tS = 16 μs  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
47  
Figure 22. Low-pass filter characteristics: fC = 1200 Hz, 4-Pole, tS = 16 μs  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
48  
3.5.4.4  
The device includes internal gain and compensation circuitry to compensate for sensor offset, sensitivity and non-linearity.  
3.5.4.5 Offset cancellation  
Signal compensation  
The device provides an optional offset cancellation circuit to remove internal offset error. A block diagram of the offset cancellation  
is shown in Figure 23.  
OC_FILT[0]  
HIGH-PASS FILTER DATAPATH  
OFFSET RATE LIMITED DATAPATH  
OFFSET RATE LIMITING  
To Interpolation  
INC/DEC OUT  
OFFSET CANCELLATION  
LOW-PASS FILTER  
INPUT DATA  
–1  
UP/DOWN  
COUNTER  
n
+ (n z  
)
1
2
------------------------------------  
a
0
–1  
d
+ (d z  
)
1
2
0.5 Hz (Derived from fOSC)  
CLK  
Input Data downsampled to 256  
μs  
OFFSET MONITOR  
INC/DEC OUT  
OFFMON  
NEG  
OFF_ERR  
UP/DOWN  
COUNTER  
OFFMON  
CNTLIMIT  
OFFMON  
POS  
CLK  
2 kHz (Derived from fOSC)  
Figure 23. Offset cancellation block diagram  
The transfer function for the offset LPF is:  
–1  
no + (no z  
)
1
2
-------------------------------------------  
H(z) = ao ⋅  
Eqn. 6  
0
–1  
do + (do z  
)
1
2
Response parameters are specified in Section 2 and the offset LPF coefficients are specified in Table 36.  
During start up, two phases of the offset LPF are used to allow for fast convergence of the internal offset error during initialization.  
The timing for the startup phases is shown in Table 35.  
The offset low-pass filter used in normal operation is selected by the OC_FILT[2:0] bits in the ACC_CFG register. Output rate  
limiting can be applied to the output of the offset low-pass filter. Rate limiting is also enabled by the OC_FILT[2:0] bits. If rate  
limiting is enabled, the offset cancellation output is updated by OFFStep LSB every tOffRate seconds.  
The offset cancellation circuit output value is frozen when self-test is active, even if the offset cancellation circuit is in a startup  
phase. The timers controlling the startup phase times listed in Table 35 are not frozen. To ensure proper offset cancellation  
startup, prior to activating self-test, the user should verify that the offset cancellation initialization is complete by monitoring the  
OC_INIT bit in the DEVSTAT register.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
49  
Table 35. Offset cancellation startup characteristics and timing  
Offset cancellation  
Offset LPF  
Output rate limiting  
Total time for phase  
startup phase  
1
2
10 Hz  
Bypassed  
Bypassed  
80 ms  
70 ms  
1.0 Hz  
Self-test  
Offset Cancellation Updates are Suspended  
User Enabled  
Selected by  
OC_FILT[2:0]  
Selected by  
OC_FILT[2:0]  
Complete  
N/A  
Table 36. Offset low-pass filter coefficients  
Description  
-3 dB frequency  
(±5%)  
Coefficients  
Latency/Group delay  
ao0  
no1  
no2  
ao0  
no1  
no2  
ao0  
no1  
no2  
0.015956938266754  
10 Hz  
1.0 Hz  
0.1 Hz  
0.499998132328277  
0.499998132328277  
0.00160720286658033729  
0.5  
do1  
do2  
1.0  
15.91 ms  
159.1ms  
1591 ms  
-0.984043061733246  
do1  
do2  
1.0  
0.5  
-0.99839282035827636719  
0.0001608133316040  
0.4999999403953552  
0.4999999403953552  
do1  
do2  
1.0  
-0.9998391270637512  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
50  
Figure 24. 10 Hz offset cancellation low-pass filter characteristics  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
51  
Figure 25. 1.0 Hz offset cancellation low-pass filter characteristics  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
52  
Figure 26. 0.1 Hz offset cancellation low-pass filter characteristics  
Offset monitor  
3.5.4.6  
The device includes an offset monitor circuit. The offset monitor is enabled 2.1 seconds following reset regardless of the state of  
the OC_FILT bits in the ACC_CFG register. The output of the single pole, low-pass filter in the offset cancellation block is  
continuously monitored against the offset limits specified in Section 2.4. An up/down counter is employed to count up If the output  
exceeds the limits, and to count down if the output is within the limits. The output of the counter is compared against the count  
limit OFFMONCNTLIMIT. If the counter exceeds the limit, the OFFSET_ERR bit in the ACC_STAT register and in the DEVSTAT  
register is set. The counter rails once the max counter value is reached (OFFMONCNTSIZE).  
3.5.4.7  
Data interpolation  
The device includes 16 to 1 linear data interpolation to minimize the system sample jitter. Each result produced by the digital  
signal processing chain is delayed one sample time. On detection of a Periodic Data Collection Mode command, the transmitted  
data is interpolated from the one previous samples, resulting in a latency of one sample time, and a maximum signal jitter of 1 μs.  
3.5.4.8  
Output scaling  
The 26-bit digital output from the DSP is clipped and scaled to a 10-bit, 14-bit, or 16-bit data word. The 10-bit and 14-bit data  
words are used for Periodic Data Collection Mode and the 16-bit range is stored in the ACC_DATAH and ACC_DATAL registers  
for access during Command and Response Mode.  
The sensitivity of the data is the same for all ranges. If the 14-bit data length is selected, four additional bits of range are  
transmitted. If the ACC_DATAH and ACC_DATAL registers are accessed, six additional bits of range are available. These  
additional bits of range are intended for test use only and are not covered by the specifications listed in Section 2.4. Reference  
Table 37 for the acceleration data values for all ranges.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
53  
3.5.4.9  
Output data values  
Table 37. Nominal acceleration data values  
16-bit data  
10-bit data  
Unsigned digital Signed digital  
value  
Decimal  
Nominal acceleration (g)  
Unsigned digital  
value  
25 g  
range  
125 g  
range  
187 g  
range  
250 g  
range  
375 g  
range  
Signed digital value  
value  
Decimal  
Decimal  
Hex  
Decimal  
Hex  
Hex  
Hex  
33280 to 0x8200 to  
512 to  
32767  
0x200 to  
0x7FFF  
NA  
NA  
NA  
NA  
Overrange data  
65535  
33279  
33278  
0xFFFF  
0x81FF  
0x81FE  
511  
510  
0x1FF  
0x1FE  
1023  
1022  
0x3FF  
0x3FE  
511  
510  
0x1FF  
0x1FE  
24.9512 124.756 186.633 249.512 374.277  
24.9023 124.512 186.267 249.023 373.544  
32770  
32769  
32768  
32767  
32766  
0x8002  
0x8001  
0x8000  
0x7FFF  
0x7FFE  
2
1
0x0002  
0x0001  
0x0000  
0xFFFF  
0xFFFE  
514  
513  
512  
511  
510  
0x202  
0x201  
0x200  
0x1FF  
0x1FE  
2
1
0x002 0.976563 0.488281 0.730460 0.976563 1.46488  
0x001 0.048828 0.244141 0.365230 0.488281 0.732440  
0
0
0x000  
0
0
0
0
0
-1  
-2  
-1  
-2  
0x3FF -0.048828 -0.24414 -0.365230 -0.488281 -0.732440  
0x3FE -0.976563 -0.488281 -0.730460 -0.976563 -1.46488  
32258  
32257  
0x7E02  
0x7E01  
-510  
-511  
0xFE02  
0xFE01  
2
1
0x002  
0x001  
-510  
-511  
0x202  
0x201  
-24.9023 -124.512 -186.267 -249.023 -373.544  
-24.9512 -124.756 -186.633 -249.512 -374.277  
-32767 to  
-512  
1 to  
32256  
0x0001 to  
0x7E00  
0x8001 to  
0xFE00  
NA  
0
NA  
NA  
NA  
Overrange Data  
Fault  
0
0x0000  
-32768  
0x8000  
0x000  
-512  
0x200  
3.5.4.10  
PCM output function  
The device provides the option for a PCM output function. The PCM output is enabled if the PCM bit is set in the ACC_FCTCFG  
register. Selecting the PCM output enables the following functions:  
The acceleration value output from the offset cancellation block is saturated to 9-bits and converted to an unsigned value.  
The 9-bit acceleration value is input into a summer clocked at 8MHz.  
The carry from the summer circuit is output to the PCM pin.  
A block diagram of the PCM output is shown in Figure 27.  
DSP Output  
A
B
CARRY  
PCM  
9
9 Bit ADDER  
9
SUM  
fCLK  
D
FF  
Q
CLK  
Q
9
Figure 27. PCM output function block diagram  
MMA27XXW  
Sensors  
54  
Freescale Semiconductor, Inc.  
3.6  
DSI3 physical layer  
Command receiver  
3.6.1  
The command receive block converts voltage transitions on the BUS_I pin to a digital pulse train for decoding by the DSI data  
link layer.  
The supply voltage can vary throughout the specified range, so the communication high voltage (VHIGH) must be sampled and  
averaged with a low-pass filter. The communication low voltage is then determined by comparing the supply voltage to the  
sampled and averaged VHIGH voltage. Figure 28 shows a block diagram of the command receiver physical layer.  
Cmd_Block  
V
DELTA_THRESH  
R
BUS_I  
-
+
Command_Detect  
D
VHIGH  
Command  
Cmd_Start  
Count  
Counter  
Control  
Logic  
VHigh_Sample  
Cmd_Block  
f
OSC  
Cmd_Valid  
VHigh_Sample  
Command_Detect  
V
SS  
Figure 28. Command receiver physical layer  
The start of a command is detected when the comparator output (Command_Detect) is low. The comparator output is input to a  
counter that is updated at the internal oscillator frequency. Control logic monitors the counter output and generates the following  
signals:  
1. Cmd_Start  
a) Asserted when the counter reaches a value of one.  
b) Deasserted at POR, if the counter does not reach Cmd_Valid_Count (tCmd_Valid) within tCmd_BitTime of Cmd_Start  
assertion, or at the end of the command blocking time for the operating mode (tCmdBlock_DISC, CmdBlock_CRM  
tCmdBlock_PDCM, tCmdBlock_BDM).  
2. Cmd_Valid  
t
,
a) Asserted if the counter reaches Cmd_Valid_Count within tCMD_BitTime of Cmd_Start assertion (tCmd_Valid).  
b) Deasserted at POR and when Cmd_Start is deasserted.  
3. VHigh_Sample  
a) Asserted tDSI_DISC_POR after POR and when Cmd_Start is deasserted.  
b) Deasserted when Cmd_Start is asserted.  
4. Cmd_Block:  
a) Asserted based on the operating mode:  
Discovery Mode: A complete command is received as defined in Section 4.1.3 and Section 2.6.  
Command and Response Mode: A complete command is received as defined in Section 4.2 and Section 2.6.  
Periodic Data Collection Mode: A complete command is received as defined in Section 4.3 and Section 2.6.  
b) Deasserted at POR and when Cmd_Start is deasserted.  
Once a full command is received, based on the operating mode, the command is transferred to the DSI data link layer for  
decoding.  
Figure 29 shows a timing diagram of the command receiver when a valid command is received, and Figure 30 shows a timing  
diagram of the command receiver when a microcut is received during the command window. Voltage values and timing  
parameters are specified in Section 2.3 and Section 2.7.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
55  
BUS_I  
Cmd_Start  
Cmd_Valid  
tCmd_Valid  
t
CmdBlock_CRM  
t
CmdBlock_ST_CRM  
Cmd_Block  
VHigh_Samp  
t
Figure 29. DSI3 Command receiver timing diagram: Valid command  
BUS_I  
Cmd_Start  
Cmd_Valid  
tCmd_Valid  
Cmd_Block  
VHigh_Samp  
t
Figure 30. DSI3 Command receiver timing diagram: Microcut  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
56  
3.6.2  
Response transmitter  
The response transmitter block converts two digital signals into two supply modulation currents. The response currents are  
generated such that the rise and fall times are the same whether the IRESP current is being transmitted or the 2 x IRESP current  
is being transmitted. A diagram of the response transmitter is shown in Figure 29. Current values and timing parameters are  
specified in Section 2.3 and Section 2.7.  
IDATA  
Transmit Level ‘0’  
Transmit Level ‘1’  
Magnitude  
Control  
Slew Control  
Transmit Level ‘2’  
VSS  
Figure 31. DSI3 transmitter block diagram  
3.6.3  
Discovery Mode current sense  
The current sense circuit is used during Discovery Mode to determine if any additional slaves are connected to the BUS_O pin  
of the device. A diagram of the current sense circuit is shown in Figure 32. Current values and timing parameters are specified  
in Section 2.3 and Section 2.7. Details regarding Discovery Mode are included in Section 4.1.3.  
IREF  
AddrCount  
BUS_I  
BUS_O  
IDISC >0?  
IOUT  
-
-
R
+
Amp  
SENSE  
Disc_Compare  
ICCQ Sample  
ICCQ  
Control  
Logic  
LastDevice  
ICCQ  
Sample & Hold  
Disc_Command_Rcvd  
Figure 32. Discovery Mode current sense circuit block diagram  
VHIGH  
VLOW  
tDisc_Dly  
tDisc_Iccqsamp  
ICCQ_SAMPLE  
IRESP Activation  
Disc_Compare  
t
t
_Dly  
IDiscsamp  
IDiscsamp  
t
Figure 33. DSI3 Discovery Mode sensing timing diagram  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
57  
3.6.4  
Bus-switch control  
The bus-switch output pin is the driver for a high-side, daisy-chain switch. When switch connected daisy-chain mode is used, as  
described in Section 4.1.2, the BUSSW pin is connected to the gate of an external p-channel FET which connects BUS_I to the  
next slave in the daisy chain. If used, an external pullup resistor is required on the gate of the p-channel FET. Reference Figure 3  
on page 5 for details on the recommended external circuitry.  
BUSIN  
R1  
M1  
To Next Device on the Chain  
Bus Switch Enable  
Figure 34. Daisy-chain bus switch driver block diagram  
3.7  
Data transmission modes  
Simultaneous Sampling mode  
3.7.1  
Figure 35. Simultaneous Sampling mode  
MMA27XXW  
Sensors  
58  
Freescale Semiconductor, Inc.  
3.7.2  
Synchronous Sampling mode with minimum latency  
Figure 36. Synchronous sampling mode with minimum latency  
3.8  
Initialization timing  
Offset  
Cancellation  
Normal  
Offset  
Offset  
Enabled/Disabled  
By OCFILT[2:0]  
Cancellation  
Cancellation  
Phase 1  
Phase 2  
t
t
DSP_POR  
t
OCPH2  
OCPH1  
Periodic  
Data  
Collection  
Mode  
POR  
Internal  
Delay  
User set up and self-test control through CRM  
Read Status Registers (DEVSTAT, DEVSTAT2)  
Initialize Signal Chain  
Enter  
PDCM  
Command  
Offset  
Verification  
Self-test  
Verification  
Offset  
Verification  
Initialize Communication  
Discovery  
t
DSI_POR  
t
START_DISC  
Mode  
POR  
Figure 37. Initialization timing  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
59  
3.9  
Overload response  
Overload performance  
3.9.1  
The device is designed to operate within a specified range. Acceleration beyond that range (overload) impacts the output of the  
sensor. Acceleration beyond the range of the device can generate a DC shift at the output of the device that is dependent upon  
the overload frequency and amplitude. The g-cell is overdamped, providing the optimal design for overload performance.  
However, the performance of the device during an overload condition is affected by many other parameters, including:  
g-cell damping  
Non-linearity  
Clipping limits  
Symmetry  
Figure 38 shows the g-cell, ADC and output clipping of the device over frequency. The relevant parameters are specified in  
Section 2.  
g-cellRolloff  
Acceleration (g)  
Region Clipped  
LPFRolloff  
by Output  
Determined by g-cell  
roll-off and ADC clippi  
gg-cell_Clip  
Determined by g-cell  
roll-off and full scale ra  
gADC_Clip  
gRange_Norm  
Region of Interest  
fLPF  
Region of No Signal Distortion Beyond  
Specification  
fg-Cell  
5kHz  
10kHz  
Frequency (kHz)  
Figure 38. Output clipping vs. frequency  
3.9.2  
Sigma Delta modulator overrange response  
Overrange conditions exist when the signal level is beyond the full-scale range of the device but within the computational limits  
of the DSP. The ΣΔ converter can saturate at levels above those specified in Section 2 (GADC_CLIP). The DSP operates  
predictably under all cases of overrange, although the signal may include residual high-frequency components for some time  
after returning to the normal range of operation due to non-linear effects of the sensor.  
MMA27XXW  
Sensors  
60  
Freescale Semiconductor, Inc.  
4
DSI3 Protocol  
The DSI3 standard describes two function classes: Signal Function Class and Power Function Class. This device is a slave  
conforming to the Signal Function Class requirements. The device does not support Power Function Class. The following  
sections describe the DSI3 Signal Function Class features supported by the device.  
4.1  
Address assignment  
The device supports all three address assignment methods described in the DSI3 standard as described below.  
4.1.1  
Address assignment method for parallel connected slaves  
Devices connected in parallel must have preprogrammed addresses by storing a non-zero value into the PADDR[3:0] bits of the  
PHYSADDR NVM register. If a non-zero value is stored in this NVM register, The device does not participate in any other address  
assignment method and waits for Command and Response Mode for further configuration. Reference Section 4.2 for details  
regarding Command and Response Mode.  
4.1.2  
Address assignment method for bus switch connected daisy-chain devices  
A device connected in daisy chain by a bus switch may have either a preprogrammed address as described in Section 4.1.1, or  
an un-programmed address.  
If the address is preprogrammed, the device does not participate in any other address assignment method and waits for  
Command and Response Mode for further configuration information, including activating the bus switch to connect the next  
device on the bus. Reference Section 4.2 for details regarding Command and Response Mode.  
If the address is un-programmed, once power is applied, the device is the only device on the segment which requires an address  
assignment. The device will accept a Command and Response Mode register write command addressed to Address $0 (global  
command), which writes the PADDR[3:0] bits to a non-zero value. Once a physical address is assigned to the device, Command  
and Response Mode is used with the assigned physical address for further configuration. This includes closing the bus switch to  
connect the next device and/or bus segment to the master.  
On power up, the device bus switch output defaults to de-activated.  
4.1.3  
DSI3 Discovery Mode: Address assignment method for resistor connected daisy-chain  
devices  
A device connected via in daisy chain via a resistor has an un-programmed address and uses Discovery Mode to obtain it’s  
physical address (PADDR[3:0]).  
The Master device must initiate Discovery Mode automatically after power is applied to the bus segment by sending a sequence  
of Discovery commands. The Discovery Command is shown in Figure 39 and the timing is defined in Section 2.6. The device will  
detect a Discovery Command tSTART_DISC after a power on reset and for intervals of tPER_Disc until Discovery Mode has ended  
(the maximum value of tSTART_DISC).  
The Discovery Mode follows the sequence listed below. Figure 39 shows a timing diagram of the Discover Protocol for a four  
device segment.  
1. The master powers up the bus segment to a known state.  
2. The master transmits the Discovery Command.  
3. After a predetermined delay (tSTART_DISC_RSP), all devices without a physical address activate a current ramp to the 2x  
response current at a ramp rate of iDISC_RAMP  
.
4. Each device monitors the current through its sense resistor (ΔiSENSE).  
a) If the current is above iRESP, the device disables its response current, increments its physical address counter and  
waits for the next Discovery Command.  
b) If the current is low (ΔiSENSE less than iRESP), the device continues to ramp its response current to 2* iRESP in time  
tDISC_RAMP_RSP and maintains the current at 2* iRESP for time tDISC_IDLE_RSP  
.
c) After time tDISC_IDLE_RSP, if a device has not detected a current through its current sense resistor of iRESP, the  
device accepts physical address '1' and disables its response current.  
5. After a predefined period (tPER_DISC), the master transmits another Discovery Command.  
6. Steps 3 and 4 are repeated, with the device accepting the address in its address assignment counter if the sense current  
is low.  
7. The master repeats step 5 until it has transmitted Discovery Commands for all the devices it expects on the bus.  
8. Device initialization can now begin using Command and Response Mode.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
61  
Once the Discovery Mode is complete, a physical address is assigned to the device, and Command and Response Mode is used  
with the assigned physical address for further configuration.  
t
DISC_Bittime  
t
PER_DISC  
= i  
DISC_Peak  
t
START_DISC_RSP  
t
t
DISC_Ramp_RSP + DISC_Idle_RSP  
t
_DISC_Ramp_RSP  
Figure 39. DSI3 Discovery Mode timing diagram  
4.2  
DSI3 Command and Response Mode  
DSI3 Command and Response Mode is the main communication method used for initialization of the device.  
4.2.1  
DSI3 Command and Response Mode Command reception  
Command and Response Mode data packets are exchanged between a single master and a single slave. The primary purpose  
of command and response transactions are to read from and write to registers within the device memory.  
An example Command and Response Mode Command is shown in Figure 40. The command consists of 32 bits of data broken  
up into multiple fields as described in Section 4.2.1.2.  
BUS_I  
PA  
[0]  
ED  
[7]  
ED RD  
[0] [7]  
PA  
[3]  
CMD  
[3]  
CMD  
[0]  
RD CRC  
[0] [7]  
CRC  
[0]  
PA[3:0]  
CMD[3:0]  
ED[7:0]  
RD[7:0]  
CRC[7:0]  
Physical Address  
Command  
Extended Data  
Register Data  
Error Checking  
PA3 PA2 PA1 PA0 C3 C2 C1 C0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 E7 E6 E5 E4 E3 E2 E1 E0  
0
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
0
0
0
1
1
0
1
1
0
Figure 40. Command and Response Mode example command  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
62  
4.2.1.1  
Bit encoding  
Figure 41 shows the bit encoding used for Command and Response Mode commands from the master device.  
0
0
0 1  
1
0
1
1
VHIGH  
VLOW  
Figure 41. Command and Response Mode Command bit encoding  
Command message format  
4.2.1.2  
The Command and Response Mode Command format is shown in Table 38.  
Table 38. Command and Response Mode - Command Format  
Physical address  
Command  
Extended Data  
Register Data  
RD[7:0]  
CRC  
PA[3:0]  
CMD[3:0]  
ED[7:0]  
CRC[7:0]  
Table 39. Command and Response Mode - Field Definitions  
Field  
Length (bits)  
Definition  
Physical Address  
PA[3:0]  
4
Must match the value in the PADDR[3:0] of the PHYSADDR register  
CMD[3:0]  
ED[7:0]  
4
8
8
8
Command (reference Section 4.2.4)  
Extended Data (reference Section 4.2.4)  
RD[7:0]  
Register Data (reference Section 4.2.4)  
CRC[7:0]  
Error Checking (reference Section 4.2.1.3)  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
63  
4.2.1.3  
Error checking  
The device calculates a 8-bit CRC on the entire 32-bits of each command. Data is entered into the CRC calculator MSB first,  
consistent with the transmission order of the message.  
The CRC decoding procedure is:  
1. A seed value is preset into the least significant bits of the shift register.  
2. Using a serial CRC calculation method, the receiver rotates the received message and CRC into the least significant  
bits of the shift register in the order received (MSB first).  
3. When the calculation on the last bit of the CRC is rotated into the shift register, the shift register contains the CRC check  
result.  
4. If the shift register contains all zeros, the CRC is correct.  
5. If the shift register contains a value other than zero, the CRC is incorrect.  
The CRC polynomial is specified in the C_CRMCRCPLY register. The CRC default polynomial and Seed for Command and  
Response Mode are shown in Table 40.  
Table 40. Command and Response Mode Command CRC  
Mode  
Default Polynomial  
Seed  
Command and Response Mode  
x8 + x5 + x3 + x2 + x + 1  
1111 1111  
Some example CRC calculations are shown in Table 41.  
Table 41. Command and Response Mode - CRC Calculation Examples  
Physical Address  
Command  
0x08  
Extended Data  
0x11  
Register Data  
0x86  
8 Bit CRC  
0x01  
0x02  
0x03  
0x04  
0xB0  
0x38  
0x2C  
0xD4  
0x01  
0x25  
0xFF  
0x0F  
0x1A  
0x41  
0x01  
0x01  
0x01  
4.2.2  
DSI3 Command and Response Mode Response Transmission  
An example Command and Response Mode Response is shown in Figure 42. The response consists of 32 bits of data broken  
up into multiple fields as described in Section 4.2.2.2.  
1st Symbol  
Response  
Current  
Physical  
Address  
Command  
Extended Data  
Register Data  
Error Checking  
PA3 PA2 PA1 PA0 C3 C2 C1 C0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 E7 E6 E5 E4 E3 E2 E1 E0  
0
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
0
0
1
0
1
1
0
0
0
0
1
1
0
1
1
0
Figure 42. Command and Response Mode Response example  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
64  
4.2.2.1  
Symbol Encoding  
The device response to a Command and Response Mode Command uses multi-level source coding where data nibbles are first  
encoded into symbols and then the symbols are encoded into current levels. The symbols are assembled from three consecutive  
three-level current pulses called chips. Within a symbol there are three consecutive chips that can assume one of three discrete  
current levels: iq, iq + iRESP, and iq + 2 x iRESP. Figure 43 shows the chip transmissions and an example of a three symbol (nine  
chip), 12-bit data packet.  
Response data bit encoding  
Symbol  
1
0
2
0
2
2
1
2
1
+2*I  
+I  
RESP  
RESP  
I
q_all  
1
2
3
nd rd  
st  
0mA  
Chips  
Each symbol encodes four data bits  
Figure 43. Response symbol encoding  
Of the 27 possible combinations for three consecutive tri-level chips, the combinations that begin with the null current level (iq)  
are discarded. Of the remaining 18 symbols, the two symbols that contain the same value for all three chips are also discarded.  
The remaining 16 symbols all begin with a non-null current level and have at least one transition. These characteristics guarantee  
that any response packet has a transition at the beginning of a packet and at least one transition in every symbol. Each 3-chip  
symbol encodes the information of 4-bits. Table 42 shows the symbol encoding used by the device.  
Table 42. Symbol mapping  
Encoded Data (4 Bits)  
Symbol Transmitted  
Binary  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
HEX  
0
1st Chip  
2nd Chip  
3rd Chip  
1
2
1
2
1
2
1
2
2
2
1
2
1
2
1
1
1
1
0
0
0
1
1
0
2
1
2
2
2
0
0
2
0
1
2
2
0
2
2
1
0
0
2
1
0
0
1
1
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
where:  
0 = iq  
1 = iRESP  
2 = 2 x iRESP  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
65  
4.2.2.2  
Response Message Format  
The Command and Response Mode response format is shown in Table 43.  
Table 43. Command and Response Mode response format  
Physical Address  
PA[3:0]  
Command  
CMD[3:0]  
Register + 1 Data  
RD1[7:0]  
Register Data  
RD[7:0]  
CRC  
CRC[7:0]  
Table 44. Command and Response Mode field definitions  
Field  
Length (Bits)  
Definition  
Physical Address  
PA[3:0]  
4
Matches the value in the PADDR[3:0] of the PHYSADDR register  
CMD[3:0]  
ED[7:0]  
4
8
8
8
An echo of the received command  
The data contained in the register addressed by RA[7:0] +1 (reference Section 4.2.4)  
The data contained in the register addressed by RA[7:0] (reference Section 4.2.4)  
Error Checking (reference Section 4.2.2.3)  
RD[7:0]  
CRC[7:0]  
4.2.2.3  
Error Checking  
The device calculates a CRC on the entire 32-bits of each response. Data is entered into the CRC calculator MSB first, consistent  
with the transmission order of the message.  
The CRC Encoding procedure is:  
1. A seed value is preset into the least significant bits of the shift register.  
2. Using a serial CRC calculation method, the transmitter rotates the transmitted message into the least significant bits of  
the shift register, MSB first.  
3. Following the transmitted message, the transmitter feeds eight zeros into the shift register, to match the length of the  
CRC.  
4. When the last zero is fed into the input adder, the shift register contains the CRC.  
5. The CRC is transmitted.  
The CRC polynomial is specified in the R_CRMCRCPLY register. The CRC default polynomial and Seed for Command and  
Response Mode are shown in Table 45.  
Table 45. Command and Response Mode Response CRC  
Mode  
Default Polynomial  
Seed  
Command and Response Mode  
x8 + x5 + x3 + x2 + x + 1  
1111 1111  
Some example CRC calculations are shown in Table 41.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
66  
4.2.3  
DSI3 Command and Response Mode timing  
A timing diagram for Command and Response Mode is shown in Figure 44. Timing parameters are specified in Section 2.7.  
CMD_Start  
32nd bit  
1st bit  
BUS_I  
t
ACT_RESP  
t
CMD_BitTime  
t
DSI_POR  
t
START_CRM  
t
PER_CRM  
V
V
BUS_I_UV_F + HYST  
1st Symbol  
24th symbol  
t
CHIP_CRM  
I + 2 x I  
q
RESP  
Response  
Current  
I + I  
q
RESP  
I
q
t
SLEW1_RESP  
t
SLEW2_RESP  
Figure 44. Command and Response Mode timing diagram  
4.2.4  
DSI3 Command and Response Mode command summary  
Table 46. DSI bus command summary  
Command  
Data  
C3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
C2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
C1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
C0 Hex  
$0  
Description  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Register Read  
RA[7] RA[6] RA[5] RA[4] RA[3] RA[2] RA[1] RA[0]  
0
0
0
0
0
0
0
0
$1 Not Implemented  
$2 Not Implemented  
$3 Not Implemented  
$4 Not Implemented  
$5 Not Implemented  
$6 Not Implemented  
$7 Not Implemented  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
$8  
Register Write  
RA[7] RA[6] RA[5] RA[4] RA[3] RA[2] RA[1] RA[0] RD[7] RD[6] RD[5] RD[4] RD[3] RD[2] RD[1] RD[0]  
$9 Not Implemented  
$A Not Implemented  
N/A  
N/A  
$B  
Enter PDCM  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
$C Not Implemented  
$D Not Implemented  
$E Not Implemented  
$F Not Implemented  
N/A  
N/A  
N/A  
N/A  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
67  
4.2.4.1  
Register Read Command  
The device supports the Register Read Command as a device address specific command only. If the PA[3:0] field in the  
command matches the value in the PADDR[3:0] bits of the PHYSADDR register, the device responds to the command.  
The device ignores the Register Read Command if the command is sent to any other physical address, including the DSI Global  
Device Address of ‘0000’.  
The Register Read Command uses the byte address definitions shown in Table 4. Readable registers along with their Byte  
addresses are shown in Table 4. If an attempt is made to read a register that is not readable, the device will respond with all zero  
data.  
Table 47. Register Read Command  
Address  
Command  
Data  
CRC  
PA3 PA2 PA1 PA0  
C3  
C2  
C1  
C0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PA[3] PA[2] PA[1] PA[0]  
0
0
0
0
RA[7] RA[6] RA[5] RA[4] RA[3] RA[2] RA[1] RA[0]  
0
0
0
0
0
0
0
0
8 bits  
Table 48. Register Read Command bit definitions  
Bit Field  
Definition  
DSI physical address. This field contains the physical address. This field must match the PADDR[3:0] bits in the  
PHYSADDR register. Otherwise, the command is ignored.  
PA[3:0]  
C[3:0]  
Register Read Command = ‘0000’  
RA[7:0]  
RA[7:0] contains the byte address of the register to be read.  
Table 49. Response - Register Read Command  
Address  
Command  
Data  
CRC  
PA3 PA2 PA1 PA0 C3  
C2  
C1  
C0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PA[3] PA[2] PA[1] PA[0]  
0
0
0
0
RD[15] RD[14] RD[13] RD[12] RD[11] RD[10] RD[9] RD[8] RD[7] RD[6] RD[5] RD[4] RD[3] RD[2] RD[1] RD[0] 8 bits  
Table 50. Register Read Response Bit Definitions  
Bit Field  
Definition  
PA[3:0]  
C[3:0]  
DSI physical address. This field contains the PADDR[3:0] bits in the PHYSADDR register.  
Register Read Command = ‘0000’  
RD[15:8]  
RD[7:0]  
The data contained in the register addressed by RA[7:0] +1  
The data contained in the register addressed by RA[7:0]  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
68  
4.2.4.2  
Register Write Command  
The device supports the Register Write Command as a device address specific command. If the PA[3:0] field in the command  
matches the value in the PADDR[3:0] bits of the PHYSADDR register, the device will execute the register write and respond to  
the command.  
The device ignores the Register Write Command if the command is sent to any other physical address, including the DSI Global  
Device Address of ‘0000’, with one exception as explained in Section 4.2.4.3.  
The Register Write Command uses the byte address definitions shown in Table 4. Writable registers along with their Byte  
addresses are shown in Table 4. If an attempt is made to write to a register that is not writable, the device will respond with all  
zero data.  
Table 51. Register Write Command  
Address  
Command  
Data  
CRC  
PA3 PA2 PA1 PA0  
C3  
C2  
C1  
C0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PA[3] PA[2] PA[1] PA[0]  
1
0
0
0
RA[7] RA[6] RA[5] RA[4] RA[3] RA[2] RA[1] RA[0] RD[7] RD[6] RD[5] RD[4] RD[3] RD[2] RD[1] RD[0]  
8 bits  
Table 52. Register Write Command bit definitions  
Bit Field  
Definition  
DSI physical address. This field contains the physical address. This field must match the PADDR[3:0] bits in the  
PHYSADDR register. Otherwise, the command is ignored.  
PA[3:0]  
C[3:0]  
RA[7:0]  
RD[7:0]  
Register Write Command = 1000’  
RA[7:0] contains the byte address of the register to be read.  
RD[7:0] contains the data to be written to the register addressed by RA[7:0].  
Table 53. Response - Register Write Command  
Address  
Command  
Data  
CRC  
PA3 PA2 PA1 PA0 C3  
C2  
C1  
C0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PA[3] PA[2] PA[1] PA[0]  
1
0
0
0
RD[15] RD[14] RD[13] RD[12] RD[11] RD[10] RD[9] RD[8] RD[7] RD[6] RD[5] RD[4] RD[3] RD[2] RD[1] RD[0] 8 bits  
Table 54. Register Write Response bit definitions  
Bit Field  
Definition  
PA[3:0]  
C[3:0]  
DSI physical address. This field contains the PADDR[3:0] bits in the PHYSADDR register.  
Register Write Command = ‘1000’  
RD[15:8]  
RD[7:0]  
The data contained in the register addressed by RA[7:0] +1  
The data contained in the register addressed by RA[7:0] (after the register write is executed)  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
69  
4.2.4.3  
Global Register Write Command to the PHYSADDR register  
The device supports the Register Write Command as a global address under the following conditions:  
1. The Register Write Command is written to the PHYSADDR register ($11).  
2. The PADDR[3:0] bits of the PHYSADDR register are equal to ‘0000’ prior to the register write being executed.  
If these conditions are met, the device will execute the register write and respond to the command.  
Table 55. Global Register Write Command to the PHYSADDR register  
Address  
Command  
Data  
CRC  
PA3 PA2 PA1 PA0  
C3  
C2  
C1  
C0  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
RD[3] RD[2] RD[1] RD[0]  
8 bits  
Table 56. Register Write Command bit definitions  
Bit Field  
Definition  
PA[3:0]  
C[3:0]  
The DSI Global address of ‘0000’.  
Register Write Command = 1000’  
RA[7:0]  
RD[3:0]  
RA[7:0] must be set to the PHYSADDR register address ($11)  
RD[3:0] contains the new physical address for the device.  
Table 57. Response - Global Register Write Command to the PHYSADDR register  
Address  
Command  
Data  
CRC  
PA3 PA2 PA1 PA0 C3 C2 C1 C0 D15  
PA[3] PA[2] PA[1] PA[0]  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
0
0
RD[15] RD[14] RD[13] RD[12] RD[11] RD[10] RD[9] RD[8] RD[7] RD[6] RD[5] RD[4] RD[3] RD[2] RD[1] RD[0] 8 bits  
Table 58. Register Write Response bit definitions  
Bit Field  
Definition  
PA[3:0]  
C[3:0]  
The new DSI physical address programmed to the PADDR[3:0] bits in the PHYSADDR register.  
Register Write Command = 1000’  
RD[15:8]  
RD[7:0]  
The data contained in register by $12  
The data contained in the PHYSADDR register after the register write is executed.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
70  
4.2.4.4  
Enter Periodic Data Collection Mode Command  
The device supports an Enter PDCM Command as a device address specific command and as a Global Command.  
If the PA[3:0] field in the command matches the value in the PADDR[3:0] bits of the PHYSADDR register, the device will set the  
PDCM_EN bit in the PDCM_EN register, enter Periodic Data Collection Mode and respond to the command as shown below. If  
the PA[3:0] field in the command matches the Global address of ‘0000’, the device will set the PDCM_EN bit in the PDCM_EN  
register and enter Periodic Data Collection Mode. No response is transmitted for a global command. The device ignores the Enter  
PDCM command if the command is sent to any other physical address.  
Table 59. Enter Periodic Data Collection Mode Command  
Address  
PA3 PA2 PA1 PA0 C3 C2 C1 C0 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
PA[3] PA[2] PA[1] PA[0]  
Command  
Data  
CRC  
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
8 bits  
Table 60. Enter Periodic Data Collection Mode Command bit definitions  
Bit Field  
PA[3:0]  
C[3:0]  
Definition  
DSI physical address. This field contains the physical address. This field must match the PADDR[3:0] bits in the  
PHYSADDR register or the Global Address of ‘0000’. Otherwise, the command is ignored.  
Enter PDCM Command = 1011’  
Table 61. Response - Enter Periodic Data Collection Mode Command  
Address  
PA3 PA2 PA1 PA0 C3 C2 C1 C0 D15 D14 D13 D12 D11 D10 D9  
PA[3] PA[2] PA[1] PA[0]  
Command  
Data  
CRC  
D8 D7 D6 D5 D4 D3 D2 D1 D0  
1
0
1
1
0
0
0
0
0
Ch[2] Ch[1] Ch[0]  
1
0
0
0
0
0
0
0
8 bits  
Table 62. Enter Periodic Data Collection Mode Response bit definitions  
Bit Field  
PA[3:0]  
Ch[2:0]  
C[3:0]  
Definition  
DSI physical address. This field contains the PADDR[3:0] bits in the PHYSADDR register.  
CHIPTIME[2:0] in the CHIPTIME register  
Register Write Command = ‘1000’  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
71  
4.3  
DSI3 Periodic Data Collection Mode and Background Diagnostic Mode  
When the PDCM_EN bit in the PDCM_EN register is set, Periodic Data Collection Mode is enabled. If the BDM_EN bit in the  
BDM_CFG register is also set, the optional Background Diagnostic Mode is also enabled.  
4.3.1  
DSI3 Periodic Data Collection Mode and Background Diagnostic Mode Command  
Reception  
When Periodic Data Collection Mode is enabled, the device will decode the DSI3 Broadcast Read command as well as  
Background Diagnostic Mode command fragments as described below.  
4.3.1.1  
Bit Encoding  
The Command Bit encoding for Periodic Data Collection Mode and Background Diagnostic Mode is the same as the bit encoding  
for Command and Response Mode, as described in Section 4.2.1.1.  
4.3.1.2  
Command Message Format  
The command message format for Periodic Data Collection Mode and Background Diagnostic Mode is the same as the  
command message format for Command and Response Mode, as described in Section 4.2.1.2.  
If Background Diagnostic Mode is disabled, then the device responds with the Periodic Data Collection Mode response only if  
the command is the single bit Broadcast Read Command. A Broadcast Read Command may be either a ‘1’ or a ‘0’.  
If Background Diagnostic Mode is enabled:  
Background Diagnostic Mode commands are transmitted and decoded in 4-bit fragments.  
The device responds with the Periodic Data Collection Mode response if and only if the command is a Broadcast Read  
Command or a 4-bit command fragment.  
A Broadcast Read Command or any command length other than four bits resets the Background Diagnostic Mode command  
decode.  
The device responds with a Background Diagnostic Mode response only when eight consecutive 4-bit command fragments  
are received and the decoded command is a valid Command and Response Mode command.  
Refer to Section 4.3.4 for additional details on Background Diagnostic Mode timing.  
4.3.1.3 Error checking  
The error checking for Background Diagnostic Mode commands is the same as the error checking for Command and Response  
Mode, and described in Section 4.2.1.3.  
No error checking is employed for the Broadcast Read commands.  
MMA27XXW  
Sensors  
72  
Freescale Semiconductor, Inc.  
4.3.2  
DSI3 Periodic Data Collection Mode response transmission  
When Periodic Data Collection Mode is enabled and the device receives either a Broadcast Read or Background Diagnostic  
Mode command, the device will respond with periodic data as shown in Figure 45 and described in the following sections.  
BUS_I  
Slave C  
Slave A  
Slave B  
Response  
Current  
PDCM_RSPST[11:0] on Slave A device  
PDCM_RSPST[11:0] on Slave B device  
PDCM_RSPST[11:0] on Slave C device  
t
PER_PDCM  
t
CmdBlock_PDCM  
Command blocking time is independently  
programmed in each slave.  
t
CmdBlock_ST_PDCM  
Command  
Block  
Figure 45. Periodic Data Collection Mode response transmission  
Symbol encoding  
4.3.2.1  
The symbol encoding used for Periodic Data Collection Mode responses is the same as for Command and Response Mode  
responses, and described in Section 4.2.2.1.  
4.3.2.2  
Response message format  
The Periodic Data Collection Mode response format is shown in Table 63.  
Table 63. Periodic Data Collection Mode - response format  
Source ID  
Keep Alive Counter  
Status  
Acceleration Data  
CRC  
SOURCID[3:0]  
KAC[1:0]  
S[x:0]  
D[x:0]  
CRC[7:0]  
Table 64. Periodic Data Collection Mode Response field definitions  
Field  
Length (Bits)  
Definition  
SOURCID[3:0]  
4
Transmits the least significant 4 bits of the SOURCEID register  
Transmits the value of a 2-bit rolling counter. The counter is incremented each time a valid Broadcast Read  
Command is received or a valid Background Diagnostic Mode command is received. The counter does  
not increment for Command and Response Mode commands or for invalid commands.  
KAC[1:0]  
S[3:0]  
2
STATLEN = 0: 4  
STATLEN = 1: 0  
Reference Table 65.  
DATALEN = 0: 10  
DATALEN = 1, 14  
D[x:0]  
Transmits the value in the ACC1_D[15:0] registers as defined in Section 3.1.15.1.  
Transmits an 8-bit CRC as defined in Section 4.3.2.3  
CRC[7:0]  
8
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
73  
The status bit messages and message priority are listed in Table 65. Reference Section 5 for details on exception handling.  
Table 65. Periodic Data Collection Mode Status field definitions  
Error  
s[3:0]  
Description  
DEVSTAT State  
Acceleration Data Field Value  
Priority  
0
0
0
0
0
0
0
1
1
0
1
0
1
Normal mode  
Offset Error  
N/A  
NA  
4
Acceleration Data  
Acceleration Data  
Error Code  
0
0
0
OFFSET_ERR set  
F_OTP_ERR set  
U_OTP_ERR set  
Freescale OTP Array Error  
User OTP Array Error  
1
2
Error Code  
User Read/Write Array  
Error  
0
1
0
0
U_RW_ERR set  
3
Error Code  
0
0
0
1
1
1
0
1
1
1
0
1
Reserved  
Reserved  
N/A  
N/A  
8
9
6
Acceleration Data  
Acceleration Data  
Acceleration Data  
Oscillator Training Error OSCTRAIN_ERR set  
Self-test Activation  
ST_INCMPLT set  
Incomplete  
1
0
0
0
5
Acceleration Data  
1
1
1
1
1
1
1
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
Reserved  
Reserved  
N/A  
7
Acceleration Data  
Acceleration Data  
Acceleration Data  
Acceleration Data  
Acceleration Data  
Acceleration Data  
Error Code  
N/A  
10  
11  
12  
13  
14  
15  
Reserved  
N/A  
Reserved  
N/A  
N/A  
Reserved  
Reserved  
N/A  
Test mode active  
TESTMODE set  
4.3.2.3  
Error checking  
The device calculates a CRC on the entire response. Data is entered into the CRC calculator MSB first, consistent with the  
transmission order of the message.  
The CRC Encoding procedure is:  
1. A seed value is preset into the least significant bits of the shift register.  
2. Using a serial CRC calculation method, the transmitter rotates the transmitted message into the least significant bits of  
the shift register, MSB first.  
3. Following the transmitted message, the transmitter feeds eight zeros into the shift register, to match the length of the  
CRC.  
4. When the last zero is fed into the input adder, the shift register contains the CRC.  
5. The CRC is transmitted.  
The CRC polynomial is specified in the PDCMCRCPLY register. The CRC default polynomial and Seed for Command and  
Response Mode are shown in Table 66.  
Table 66. Periodic Data Collection Mode Response CRC  
Mode  
Default Polynomial  
Seed  
Periodic Data Collection Mode  
x8 + x5 + x3 + x2 + x + 1  
SOURCEID[7:0]  
Some example CRC calculations are shown in Table 67.  
Table 67. Periodic Data Collection Mode - CRC Calculation Examples  
Source Identification  
(4 Bits)  
Keep Alive Counter  
(2 Bits)  
Acceleration Data  
(10 Bits)  
Status (4 Bits)  
8-bit CRC  
0x1  
0x2  
0x3  
0x4  
0x3  
0x2  
0x1  
0x0  
0x0  
0x0  
0x0  
0x0  
0x1FF  
0x1FE  
0x20D  
0x1EA  
0xD6  
0x70  
0xB0  
0x5F  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
74  
4.3.3  
DSI3 Periodic Data Collection Mode timing  
A timing diagram for Periodic Data Collection Mode is shown in Figure 46. Timing parameters are specified in Section 2.7.  
CMD_Start  
BUS_I  
t
CMD_BitTime  
t
START_PDCM  
t
PER_PDCM  
1st Symbol  
24th symbol  
t
CHIP_PDCM  
I + 2 x I  
q
RESP  
RESP  
Response  
Current  
I + I  
q
I
q
t
SLEW1_RESP  
t
SLEW2_RESP  
Figure 46. Periodic Data Collection Mode Timing Diagram  
4.3.4  
Background Diagnostic Mode Response Transmission  
4.3.4.1  
Symbol Encoding  
The Background Diagnostic Mode response symbol encoding is the same as the symbol encoding used for Command and  
Response Mode responses and is described in Section 4.2.2.1.  
4.3.4.2  
Response Message Format  
The Background Diagnostic Mode response message format is the same as the format used for Command and Response Mode  
responses and is described in Section 4.2.2.1.  
If a complete 32-bit command is received and decoded to a valid Command and Response Mode command the device  
provides a Background Diagnostic Mode response.  
Responses are initiated by the master transmitting 1 bit Broadcast Read Commands following a completed Background  
Diagnostic Mode command transmission.  
Responses are transmitted in one symbol fragments following the 1-bit Broadcast Read Command, using the same timing  
window within the frame that the Background Diagnostic Mode Command used.  
Responses are transmitted if and only if Broadcast Read Commands are received.  
Eight consecutive Broadcast Read Commands are required following a valid Background Diagnostic Mode command to  
complete a response transmission.  
If any command other than the Broadcast Read Command is received, no response is transmitted and the remainder of the  
Broadcast Read Command response is terminated.  
The data to be transmitted in the response is latched just before the first symbol of the Background Diagnostic Mode  
response.  
Reference Figure 47 for Background Diagnostic Mode timing.  
4.3.4.3 Error Checking  
The error checking for Background Diagnostic Mode responses is the same as used for Command and Response Mode, and  
described in Section 4.2.1.3.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
75  
4.3.5  
DSI3 Background Diagnostic Mode Timing  
A timing diagram for Background Diagnostic Mode is shown in Figure 47. Timing parameters are specified in Section 2.7.  
CMD_Start  
PA[3:0]  
CMD[3:0]  
t
START_PDCM  
ED[7:3]  
CRC[3:0]  
Broadcast Read  
0
Broadcast Read  
1
BDM Response Data Latched  
t
START_BDM  
1-2-0  
1-2-1  
Figure 47. Background Diagnostic Mode Timing Diagram  
4.3.6  
DSI3 Periodic Data Collection Mode and Background Diagnostic Mode Command  
Summary  
When Periodic Data Collection Mode is enabled, the Background Diagnostic Mode supports the Register Read command as  
described in the Command and Response Mode command summary, Section 4.2.4.1. The Register Write command is not  
supported in Background Diagnostic Mode.  
MMA27XXW  
Sensors  
76  
Freescale Semiconductor, Inc.  
4.4  
Maximum number of devices on a network  
The theoretical maximum number of devices on a DSI3 network is 16: 1 master and 15 slaves. The practical limit for the number  
of devices on a bus is dependent on the minimum common capability of the devices on the bus. The capability of the device is  
different depending on the bus configuration and operating mode. The impact of the device capability on the practical limit for the  
number of devices on the network is described in this section.  
4.4.1  
Preconfigured, Parallel Connected Network  
The number of devices in a preconfigured, parallel connected network is not directly limited by the capability of the device. The  
practical limit is determined by a combination of the following:  
The capability of the master device, including, but not limited to:  
The bus operating voltage  
The bus supply current  
The bus current limit  
The bit rate  
The response current detection capability (distinguishing response current from quiescent current)  
The total quiescent current of all slaves on the network.  
4.4.2  
Bus switch connected daisy-chain network  
The number of devices in a bus switch connected daisy-chain network is not directly limited by the capability of the device. The  
practical limit is determined by a combination of the following:  
The capability of the master device, including, but not limited to:  
The bus operating voltage  
The bus supply current  
The bus current limit  
The bit rate  
The response current detection capability (distinguishing response current from quiescent current)  
The total quiescent current of all slaves on the network.  
The current handling capability and resulting voltage drop of the external bus switches in the network.  
4.4.3  
Resistor connected daisy-chain network using Discovery Mode  
The number of devices in a resistor connected daisy-chain network is limited by the capability of the device. The maximum  
number of equivalent devices connected to the BUS_O pin of the device is three. This is limited by the total quiescent current  
drawn from the BUS_O pin during Discovery Mode (IBUS_O_q).  
The practical limit is determined by a combination of the above restriction and the following:  
The capability of the master device, including, but not limited to:  
The bus operating voltage  
The bus supply current  
The bus current limit  
The bit rate  
The response current detection capability (distinguishing response current from quiescent current)  
The total quiescent current of all slaves on the network.  
The maximum allowed quiescent current drawn from the BUS_O pin of other slaves in the system.  
The resulting voltage drop of the Discovery Mode resistors in all slaves in the network.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
77  
5
Exception Handling  
Table 68 summarizes the exception conditions detected by the device and the response for each exception.  
Table 68. Exception handling  
Condition  
Description  
Device Response  
Exception  
PDCM_EN  
Power On  
Reset  
• Reference Section 3.8.  
N/A  
Power Applied  
• ST_INCMPLT Bit Set, PDCM S[3:0] = ‘1000’.  
• Response Current Deactivated.  
VBUS_I  
Undervoltage  
N/A  
N/A  
V
BUS_I < VBUS_I_UV_F  
• BUSI_UV_ERR set.  
• The device reacts to all DSI commands but no response current is activated.  
• Response Current Deactivated.  
VBUF  
Undervoltage  
V
BUF < VBUF_UV_F  
• VBUF_UV_ERR set.  
• The device reacts to all DSI commands but no response current is activated.  
• The device is held in Reset.  
VREG  
Undervoltage  
• No response to DSI commands.  
N/A  
N/A  
VREG < VREG_UV_F  
• If activated, BUSSW is deactivated within tBS_OFF  
• The device must be re-initialized when VREG returns above VPORCREG_r .  
.
• The device is held in Reset.  
VREGA  
Undervoltage  
• No response to DSI commands.  
V
REGA < VREGA_UV_F  
• If activated, BUSSW is deactivated within tBS_OFF  
.
• The device must be re-initialized when VREGA returns above VPORCREGA_r .  
• The device is reset and will continue to be reset every tPOR_CAPTEST until the  
capacitor failure is removed.  
VBUF Capacitor  
Test Failure  
N/A  
N/A  
• No response to DSI commands.  
• If activated, BUSSW is deactivated within tBS_OFF  
.
• The device must be re-initialized when the capacitor failure is removed.  
• The device is reset and will continue to be reset every tPOR_CAPTEST until the  
capacitor failure is removed.  
V
REGCapacitor  
Test Failure  
• No response to DSI commands.  
• If activated, BUSSW is deactivated within tBS_OFF  
.
• The device must be re-initialized when the capacitor failure is removed.  
• The device is reset and will continue to be reset every tPOR_CAPTEST until the  
capacitor failure is removed.  
VREGA  
N/A  
N/A  
• No response to DSI commands.  
Capacitor Test  
Failure  
• If activated, BUSSW is deactivated within tBS_OFF  
• The device must be re-initialized when the capacitor failure is removed.  
.
OTP CRC Fault  
(Factory Array)  
Error detected in factory- • Periodic Data Collection Mode response data set to error response.  
programmed OTP array.  
• PDCM S[3:0] = ‘0010’).  
Error detected in User  
programmed OTP array and  
the LOCK_U bit is set.  
• Periodic Data Collection Mode response data set to error response.  
• PDCM S[3:0] = ‘0011’).  
OTP CRC Fault  
(User Array)  
N/A  
0
N/A  
N/A  
User R/W Array  
CRC Fault  
Error detected in user read  
write registers and the  
PDCM_EN bit is set.  
• Periodic Data Collection Mode response data set to error response.  
• PDCM S[3:0] = ‘0100’).  
1
• Internal self-test circuitry enabled.  
ST activated during  
initialization  
• Self-test Activation Incomplete status cleared.  
• Acceleration Data Registers (ACC_DATAL, ACC_DATAH) contain self-test active  
data.  
0
Self-test  
Activated  
ST activated in Periodic  
Data Collection Mode  
• Periodic Data Collection Mode acceleration response data normal.  
• Self-test Activation ignored.  
1
0
1
In initialization, before  
Self-test  
• Normal Responses to Command and Response Mode.  
Self-test Never  
Activated after  
POR  
In PDCM, Self-test  
incomplete  
• Periodic Data Collection Mode acceleration response data normal.  
• ST_INCMPLT bit set, PDCM S[3:0] = ‘1000’.  
MMA27XXW  
Sensors  
78  
Freescale Semiconductor, Inc.  
6
Recommended Footprint  
Reference Freescale Application Note AN3111, latest revision:  
http://www.freescale.com/files/sensors/doc/app_note/AN3111.pdf  
Reference Freescale Application Note AN4530, latest revision:  
http://www.freescale.com/files/sensors/doc/app_note/AN4530.pdf  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
79  
7
Package Dimensions  
CASE 2086-01  
ISSUE C  
16 LEAD QFN  
MMA27XXW  
Sensors  
80  
Freescale Semiconductor, Inc.  
CASE 2086-01  
ISSUE C  
16 LEAD QFN  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
81  
CASE 2086-01  
ISSUE C  
16 LEAD QFN  
MMA27XXW  
Sensors  
82  
Freescale Semiconductor, Inc.  
8
Revision History  
Table 69. Revision history  
Revision  
number  
Revision  
date  
Description of changes  
0
10/2012  
• Initial release.  
• Deleted “J” versions of devices and Silicon rev. column on ordering information table. Added Rail options to table.  
• Figure 3: Added C6 capacitor between BUSRTN and BUSOUTDC  
.
• Table 2: Added additional information for description of C1. Added C6 capacitor description. Added additional  
information for description of C1.  
• Figure 5: Deleted (J) from the marking diagram.  
• Section 2.4: Electrical characteristics - Sensor and Signal Chain table: Deleted “trimmed with a...” sentence from  
lines 57-66.  
• Section 2.5: Electrical characteristics - Self-test and Overload table: Deleted lines 99 and 100 characteristics for  
“J” versions of device.  
• Section 2.6: Dynamic electrical characteristics - DSI3: Updated Typ values for lines 106, 111, 118, 120-126, 128,  
130, 132-136, 140-142, 144, and 147-150. Updated Min and Max values for lines 139, 143, 145, 146, and 150.  
• Section 2.7: Dynamic electrical characteristics - signal chain: Added x-pole description to Cutoff frequency lines.  
Deleted lines for “Filter order LPFx” and “Filter order, startup Phase x”. Updated Typ values for lines 161, 163,  
166, 168, and 178.  
0.5  
04/2013  
• Section 2.7: Dynamic electrical characteristics - supply and support circuitry: Deleted line Oscillator cycles in  
training time row, Updated Min, Typ and Max values for lines 199-201 and Min values for lines 208 and 209.  
• Deleted Section 2.9.  
• Table 33: Updated Typical Block Latency column values.  
• Table 34: Updated Group Delay column values.  
• Replaced paragraph for Section 4.3.  
MMA27XXW  
Sensors  
Freescale Semiconductor, Inc.  
83  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,must be validated for each  
customer application by customer’s technical experts. Freescale does not convey any  
license under its patent rights nor the rights of others. Freescale sells products pursuant  
to standard terms and conditions of sale, which can be found at the following address:  
freescale.com/salestermsandconditions.  
Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, CWare,  
Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,  
QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale  
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,  
CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC  
Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are  
trademarks of Freescale Semiconductor, Inc. All other product or service names are  
the property of their respective owners.  
© 2013 Freescale Semiconductor, Inc.  
Document Number: MMA27XXW  
Rev. 0.5  
4/2013  

相关型号:

MMA2000W

Analog Circuit, 1 Func, PSSS6, PLASTIC, WINGBACK PACKAGE-6
MOTOROLA

MMA20312B

Heterojunction Bipolar Transistor Technology (InGaP HBT)
FREESCALE

MMA20312BT1

Heterojunction Bipolar Transistor Technology (InGaP HBT)
FREESCALE

MMA20312BV

Heterojunction Bipolar Transistor Technology
FREESCALE

MMA20312B_12

Heterojunction Bipolar Transistor Technology
FREESCALE

MMA21-005

CONN RACK/PANEL 5POS 5A
VISHAY

MMA21-0051C1

CONN RACK/PANEL 5POS 5A
VISHAY

MMA21-0051D1

CONN RACK/PANEL 5POS 5A
VISHAY

MMA21-0051H1

CONN RACK/PANEL 5POS 5A
VISHAY

MMA21-0051K1

CONN RACK/PANEL 5POS 5A
VISHAY

MMA21-0051N1

CONN RACK/PANEL 5POS 5A
VISHAY

MMA21-0051R1

CONN RACK/PANEL 5POS 5A
VISHAY