MPC9456FA [NXP]

IC,1:10 OUTPUT,LV-CMOS,QFP,32PIN,PLASTIC;
MPC9456FA
型号: MPC9456FA
厂家: NXP    NXP
描述:

IC,1:10 OUTPUT,LV-CMOS,QFP,32PIN,PLASTIC

驱动 输出元件 逻辑集成电路
文件: 总12页 (文件大小:284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
SEMICONDUCTOR TECHNICAL DATA  
Order Number: MPC9456/D  
Rev 1, 03/2002  
The MPC9456 is a 2.5V and 3.3V compatible 1:10 clock distribution  
buffer designed for low-voltage mid-range to high-performance telecom,  
networking and computing applications. Both 3.3V, 2.5V and dual supply  
voltages are supported for mixed-voltage applications. The MPC9456  
offers 10 low-skew outputs and a differential LVPECL clock input. The  
outputs are configurable and support 1:1 and 1:2 output to input  
frequency ratios. The MPC9456 is specified for the extended temperature  
range of –40 to 85°C.  
LOW VOLTAGE SINGLE OR  
DUAL SUPPLY 2.5V AND 3.3V  
LVCMOS CLOCK  
DISTRIBUTION BUFFER  
Features  
Configurable 10 outputs LVCMOS clock distribution buffer  
Compatible to single, dual and mixed 3.3V/2.5V voltage supply  
Wide range output clock frequency up to 250 MHz  
Designed for mid-range to high-performance telecom, networking and  
computer applications  
Supports high-performance differential clocking applications  
Max. output skew of 200 ps (150 ps within one bank)  
Selectable output configurations per output bank  
Tristable outputs  
FA SUFFIX  
LQFP PACKAGE  
CASE 873A–02  
32 ld LQFP package  
Ambient operating temperature range of –40 to 85°C  
Functional Description  
The MPC9456 is a full static design supporting clock frequencies up to  
250 MHz. The signals are generated and retimed on-chip to ensure  
minimal skew between the three output banks.  
Each of the three output banks can be individually supplied by 2.5V or 3.3V supporting mixed voltage applications. The FSELx  
pins choose between division of the input reference frequency by one or two. The frequency divider can be set individually for  
each of the three output banks. The MPC9456 can be reset and the outputs are disabled by deasserting the MR/OE pin (logic  
high state). Asserting MR/OE will enable the outputs.  
All control inputs accept LVCMOS signals while the outputs provide LVCMOS compatible levels with the capability to drive  
terminated 50 transmission lines. The clock input is low voltage PECL compatible for differential clock distribution support.  
Please consult the MPC9446 specification for a full CMOS compatible device. For series terminated transmission lines, each of  
the MPC9456 outputs can drive one or two traces giving the devices an effective fanout of 1:20. The device is packaged in a 7x7  
2
mm 32-lead LQFP package.  
For More Information On This Product,  
Motorola, Inc. 2002  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9456  
Bank A  
QA0  
QA1  
QA2  
0
PCLK  
PCLK  
CLK  
25k  
1
CLK ÷ 2  
V
/2  
CC  
25k  
Bank B  
Bank C  
QB0  
QB1  
QB2  
0
1
QC0  
FSELA  
0
1
QC1  
QC2  
25k  
FSELB  
FSELC  
MR/OE  
25k  
25k  
25k  
QC3  
Figure 1. MPC9456 Logic Diagram  
V
CCB  
is internally connected to V  
CC  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
QC3  
VCCA  
QA2  
GND  
QC2  
GND  
QA1  
VCCC  
QC1  
MPC9456  
VCCA  
QA0  
GND  
QC0  
GND  
MR/OE  
VCCC  
1
2
3
4
5
6
7
8
Figure 2. Pinout: 32–Lead Package Pinout (Top View)  
For More Information On This Product,  
MOTOROLA  
2
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9456  
Table 1: Pin Configuration  
Pin  
I/O  
Type  
Function  
PECL_CLK,  
PECL_CLK  
Input  
LVPECL  
Differential clock reference  
Low voltage positive ECL input  
FSEL , FSEL , FSEL  
Input  
Input  
LVCMOS  
LVCMOS  
Supply  
Output bank divide select input  
A
B
C
MR/OE  
Internal reset and output tristate control  
Negative voltage supply output bank (GND)  
Positive voltage supply for output banks  
Positive voltage supply core (VCC)  
Bank A outputs  
GND  
V
V
, V  
*, V  
Supply  
CCA CCB  
CCC  
Supply  
CC  
QA0 - QA2  
QB0 - QB2  
QC0 - QC3  
Output  
Output  
Output  
LVCMOS  
LVCMOS  
LVCMOS  
Bank B outputs  
Bank C outputs  
* V  
CCB  
is internally connected to V .  
CC  
Table 2: Supported Single and Dual Supply Configurations  
a
b
c
d
Supply voltage configuration  
3.3V  
V
V
V
V
GND  
0V  
CC  
CCA  
CCB  
CCC  
3.3V  
3.3V  
2.5V  
3.3V  
3.3V  
3.3V  
Mixed voltage supply  
2.5V  
3.3V or 2.5V  
2.5V  
3.3V  
2.5V  
3.3V or 2.5V  
2.5V  
0 V  
0 V  
a.  
b.  
c.  
d.  
V
V
V
V
is the positive power supply of the device core and input circuitry. V  
voltage defines the input threshold and levels  
voltage defines bank A output levels  
CC  
CC  
is the positive power supply of the bank A outputs. V  
CCA  
CCB  
CCC  
CCA  
voltage defines bank B output levels. V  
is the positive power supply of the bank B outputs. V  
CCB  
is internally connected to V  
.
CCB  
CC  
is the positive power supply of the bank C outputs. V  
voltage defines bank C output levels  
CCC  
Table 3: Function Table (Controls)  
Control  
FSELA  
Default  
0
1
0
0
0
0
f
f
f
= f  
f
f
f
= f  
÷ 2  
÷ 2  
÷ 2  
QA0:2 REF  
QA0:2 REF  
FSELB  
FSELC  
MR/OE  
= f  
QB0:2 REF  
= f  
QB0:2 REF  
= f  
QC0:3 REF  
= f  
QC0:3 REF  
Outputs enabled  
Internal reset  
Outputs disabled (tristate)  
a
Table 4: Absolute Maximum Ratings  
Symbol  
Characteristics  
Min  
-0.3  
-0.3  
-0.3  
Max  
Unit  
V
Condition  
V
CC  
Supply Voltage  
4.6  
V
IN  
DC Input Voltage  
DC Output Voltage  
DC Input Current  
DC Output Current  
V
V
+0.3  
V
CC  
V
OUT  
+0.3  
V
CC  
I
IN  
±20  
mA  
mA  
°C  
I
±50  
OUT  
T
S
Storage temperature  
-40  
125  
a. Absolute maximum continuos ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions  
orconditionsbeyondthoseindicatedmayadverselyaffectdevicereliability.Functionaloperationunderabsolute-maximum-ratedconditionsisnot  
implied.  
Table 5: General Specifications  
Symbol  
Characteristics  
Output Termination Voltage  
Min  
Typ  
÷ 2  
Max  
Unit  
V
Condition  
V
TT  
V
CC  
MM  
HBM  
LU  
ESD Protection (Machine Model)  
ESD Protection (Human Body Model)  
Latch–Up Immunity  
200  
2000  
200  
V
V
mA  
pF  
pF  
C
Power Dissipation Capacitance  
Input Capacitance  
10  
Per output  
PD  
C
4.0  
IN  
For More Information On This Product,  
TIMING SOLUTIONS  
3
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9456  
Table 6: DC Characteristics (V  
= V  
= V  
= V  
= 3.3V ± 5%, T = –40 to +85°C)  
A
CC  
CCA  
CCB  
CCC  
Min  
2.0  
Symbol  
Characteristics  
Input high voltage  
Typ  
Max  
Unit  
Condition  
LVCMOS  
V
IH  
V + 0.3  
CC  
0.8  
V
V
IL  
Input low voltage  
-0.3  
250  
1.1  
V
LVCMOS  
LVPECL  
LVPECL  
V
Peak-to-peak input voltage  
Common Mode Range  
PCLK  
PCLK  
mV  
V
PP  
V
a
V
CC  
-0.6  
CMR  
b
I
Input current  
200  
µA  
V
V
=GND or V =V  
IN CC  
IN  
IN  
c
I =-24 mA  
OH  
V
OH  
Output High Voltage  
Output Low Voltage  
2.4  
b
V
0.55  
0.30  
V
V
I
I
= 24mA  
OL  
OL  
OL  
= 12mA  
Z
OUT  
Output impedance  
14 - 17  
I
d
Maximum Quiescent Supply Current  
2.0  
mA  
All V  
Pins  
CC  
CCQ  
a.  
V
(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V range  
CMR  
CMR  
and the input swing lies within the V  
(DC) specification.  
PP  
b. Input pull-up / pull-down resistors influence input current.  
c. The MPC9456 is capable of driving 50transmission lines on the incident edge. Each output drives one 50parallel terminated  
transmission line to a termination voltage of V . Alternatively, the device drives up to two 50series terminated transmission lines.  
TT  
d.  
I
is the DC current consumption of the device with all outputs open and the input in its default state or open.  
CCQ  
a
Table 7: AC Characteristics (V  
CC  
= V  
= V  
= V  
= 3.3V ± 5%, T = –40 to +85°C)  
A
CCA  
CCB  
CCC  
Min  
0
Symbol  
Characteristics  
Input Frequency  
Typ  
Max  
Unit  
Condition  
b
b
f
250  
MHz  
ref  
f
Maximum Output Frequency  
÷1 output  
÷2 output  
0
0
250  
MHz  
MHz  
FSELx=0  
MAX  
125  
FSELx=1  
LVPECL  
LVPECL  
V
Peak-to-peak input voltage  
Common Mode Range  
Reference Input Pulse Width  
PCLK Input Rise/Fall Time  
Propagation delay  
PCLK  
PCLK  
500  
1.3  
1.4  
1000  
mV  
V
PP  
V
c
V
-0.8  
CMR  
CC  
t
ns  
ns  
P, REF  
d
1.0  
t , t  
r f  
0.8 to 2.0V  
t
t
CCLK to any Q  
CCLK to any Q  
2.2  
2.2  
2.8  
2.8  
4.45  
4.2  
ns  
ns  
PLH  
PHL  
t
Output Disable Time  
Output Enable Time  
Output-to-output Skew  
10  
10  
ns  
ns  
PLZ, HZ  
t
PZL, LZ  
t
Within one bank  
150  
200  
ps  
ps  
ps  
sk(O)  
Any output bank, same output divider  
Any output, Any output divider  
350  
2.25  
t
Device-to-device Skew  
ns  
ps  
sk(PP)  
e
t
Output pulse skew  
200  
SK(P)  
DC  
Output Duty Cycle  
÷1 output  
÷2 output  
47  
45  
50  
50  
53  
55  
%
%
DC  
DC  
= 50%  
= 25%-75%  
Q
REF  
REF  
t , t  
r f  
Output Rise/Fall Time  
0.1  
1.0  
ns  
0.55 to 2.4V  
a. AC characteristics apply for parallel output termination of 50to V  
.
TT  
b. The MPC9456 is functional up to an input and output clock frequency of 350 MHz and is characterized up to 250 MHz.  
c. (AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V  
V
range  
CMR  
CMR  
and the input swing lies within the V  
(AC) specification.  
PP  
d. Violation of the 1.0 ns maximum input rise and fall time limit will affect the device propagation delay, device-to-device skew, reference input  
pulse width, output duty cycle and maximum frequency specifications.  
e. Output pulse skew is the absolute difference of the propagation delay times: | t  
- t |.  
pLH pHL  
For More Information On This Product,  
MOTOROLA  
4
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9456  
Table 8: DC Characteristics (V  
CC  
= V  
= V  
= V  
= 2.5V ± 5%, T = –40 to +85°C)  
A
CCA  
CCB  
CCC  
Min  
1.7  
Symbol  
Characteristics  
Input high voltage  
Typ  
Max  
Unit  
Condition  
LVCMOS  
V
IH  
V + 0.3  
CC  
0.7  
V
V
IL  
Input low voltage  
-0.3  
250  
1.1  
V
LVCMOS  
LVPECL  
LVPECL  
V
Peak-to-peak input voltage  
Common Mode Range  
Output High Voltage  
Output Low Voltage  
Output impedance  
PCLK  
PCLK  
mV  
V
PP  
V
a
V
CC  
-0.7  
CMR  
b
=-15 mA  
V
OH  
1.8  
V
I
OH  
= 15 mA  
OL  
V
OL  
0.6  
V
I
b
Z
OUT  
17 - 20  
c
I
Input current  
±200  
µA  
V
IN  
All V  
=GND or V =V  
IN CC  
IN  
I
d
Maximum Quiescent Supply Current  
2.0  
mA  
Pins  
CC  
CCQ  
a.  
V
(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V range  
CMR  
CMR  
and the input swing lies within the V  
(DC) specification.  
PP  
b. The MPC9456 is capable of driving 50transmission lines on the incident edge. Each output drives one 50parallel terminated  
transmission line to a termination voltage of V . Alternatively, the device drives up to two 50series terminated transmission lines per  
TT  
output.  
c. Input pull-up / pull-down resistors influence input current.  
d. ICCQ is the DC current consumption of the device with all outputs open and the input in its default state or open.  
a
Table 9: AC Characteristics (V  
CC  
= V  
= V  
= V  
= 2.5V ± 5%, T = –40 to +85°C)  
CCC A  
CCA  
CCB  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
b
b
f
Input Frequency  
0
250  
MHz  
ref  
f
Maximum Output Frequency  
÷1 output  
÷2 output  
0
0
250  
MHz  
MHz  
FSELx=0  
FSELx=1  
MAX  
125  
V
Peak-to-peak input voltage  
Common Mode Range  
Reference Input Pulse Width  
PCLK Input Rise/Fall Time  
Propagation delay  
PCLK  
PCLK  
500  
1.1  
1.4  
1000  
mV  
V
LVPECL  
LVPECL  
PP  
V
c
V
-0.7  
CMR  
CC  
t
ns  
ns  
P, REF  
d
1.0  
t , t  
r f  
0.7 to 1.7V  
t
t
PCLK to any Q  
PCLK to any Q  
2.6  
2.6  
5.6  
5.5  
ns  
ns  
PLH  
PHL  
t
Output Disable Time  
Output Enable Time  
Output-to-output Skew  
10  
10  
ns  
ns  
PLZ, HZ  
t
PZL, LZ  
t
Within one bank  
150  
200  
ps  
ps  
ps  
sk(O)  
Any output bank, same output divider  
Any output, Any output divider  
350  
3.0  
t
Device-to-device Skew  
ns  
ps  
sk(PP)  
e
t
Output pulse skew  
200  
SK(P)  
DC  
Output Duty Cycle  
÷1 or ÷2 output  
45  
50  
55  
%
DC  
= 50%  
Q
REF  
0.6 to 1.8V  
t , t  
Output Rise/Fall Time  
a. AC characteristics apply for parallel output termination of 50to V  
0.1  
1.0  
ns  
r f  
.
TT  
b. The MPC9456 is functional up to an input and output clock frequency of 350 MHz and is characterized up to 250 MHz.  
c. (AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V  
V
range  
CMR  
CMR  
and the input swing lies within the V  
(AC) specification.  
PP  
d. Violation of the 1.0 ns maximum input rise and fall time limit will affect the device propagation delay, device-to-device skew, reference input  
pulse width, output duty cycle and maximum frequency specifications.  
e. Output pulse skew is the absolute difference of the propagation delay times: | t  
- t |.  
pLH pHL  
For More Information On This Product,  
TIMING SOLUTIONS  
5
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9456  
Table 10: AC Characteristics (V  
= 3.3V ± 5%, V  
= V  
= V  
= 2.5V ± 5% or 3.3V ± 5%,  
CCC  
CC  
CCA  
CCB  
Min  
a b  
T
A
= –40 to +85°C)  
Symbol  
Characteristics  
Output-to-output Skew  
Typ  
Max  
Unit  
Condition  
t
Within one bank  
150  
250  
ps  
ps  
ps  
sk(O)  
Any output bank, same output divider  
Any output, Any output divider  
350  
2.5  
t
Device-to-device Skew  
ns  
sk(PP)  
t
Propagation delay  
Output pulse skew  
PCLK to any Q  
See 3.3V table  
50  
PLH,HL  
c
t
250  
55  
ps  
%
SK(P)  
DC  
Output Duty Cycle  
÷1 or ÷2 output  
45  
DC  
= 50%  
REF  
Q
a. AC characteristics apply for parallel output termination of 50to V  
.
TT  
b. For all other AC specifications, refer to 2.5V or 3.3V tables according to the supply voltage of the output bank.  
c. Output pulse skew is the absolute difference of the propagation delay times: | t - t |.  
pLH pHL  
For More Information On This Product,  
MOTOROLA  
6
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9456  
APPLICATIONS INFORMATION  
Driving Transmission Lines  
impedance does not match the parallel combination of the  
line impedances. The voltage wave launched down the two  
lines will equal:  
The MPC9456 clock driver was designed to drive high  
speed signals in a terminated transmission line environment.  
To provide the optimum flexibility to the user the output  
drivers were designed to exhibit the lowest impedance  
possible. With an output impedance of less than 20the  
drivers can drive either parallel or series terminated  
transmission lines. For more information on transmission  
lines the reader is referred to application note AN1091. In  
most high performance clock networks point-to-point  
distribution of signals is the method of choice. In a  
point-to-point scheme either series terminated or parallel  
terminated transmission lines can be used. The parallel  
technique terminates the signal at the end of the line with a  
V
Z
R
R
V
= V ( Z ÷ (R +R +Z ))  
S 0 S 0 0  
L
0
S
0
= 50|| 50Ω  
= 36|| 36Ω  
= 14Ω  
= 3.0 ( 25 ÷ (18+14+25)  
= 1.31V  
L
At the load end the voltage will double, due to the near  
unity reflection coefficient, to 2.5V. It will then increment  
towards the quiescent 3.0V in steps separated by one round  
trip delay (in this case 4.0ns).  
50resistance to V ÷2.  
3.0  
CC  
This technique draws a fairly high level of DC current and  
thus only a single terminated line can be driven by each  
output of the MPC9456 clock driver. For the series terminated  
case however there is no DC current draw, thus the outputs  
can drive multiple series terminated lines. Figure 3. “Single  
versus Dual Transmission Lines” illustrates an output driving  
a single series terminated line versus two series terminated  
lines in parallel. When taken to its extreme the fanout of the  
MPC9456 clock driver is effectively doubled due to its  
capability to drive multiple lines.  
OutA  
= 3.8956  
OutB  
= 3.9386  
t
D
2.5  
2.0  
1.5  
1.0  
0.5  
0
t
D
In  
MPC9456  
OUTPUT  
BUFFER  
Z
O
= 50Ω  
R = 36Ω  
S
14Ω  
IN  
IN  
OutA  
2
4
6
8
10  
12  
14  
TIME (nS)  
Figure 4. Single versus Dual Waveforms  
MPC9456  
OUTPUT  
BUFFER  
Z
= 50Ω  
= 50Ω  
O
R = 36Ω  
S
Since this step is well above the threshold region it will not  
cause any false clock triggering, however designers may be  
uncomfortable with unwanted reflections on the line. To better  
match the impedances when driving multiple lines the  
situation in Figure 5. “Optimized Dual Line Termination”  
should be used. In this case the series terminating resistors  
are reduced such that when the parallel combination is added  
to the output buffer impedance the line impedance is perfectly  
matched.  
OutB0  
OutB1  
14Ω  
Z
O
R = 36Ω  
S
Figure 3. Single versus Dual Transmission Lines  
The waveform plots in Figure 4. “Single versus Dual Line  
Termination Waveforms” show the simulation results of an  
output driving a single line versus two lines. In both cases the  
drive capability of the MPC9456 output buffer is more than  
sufficient to drive 50transmission lines on the incident  
edge. Note from the delay measurements in the simulations a  
delta of only 43ps exists between the two differently loaded  
outputs. This suggests that the dual line driving need not be  
used exclusively to maintain the tight output-to-output skew  
of the MPC9456. The output waveform in Figure 4. “Single  
versus Dual Line Termination Waveforms” shows a step in  
the waveform, this step is caused by the impedance  
mismatch seen looking into the driver. The parallel  
combination of the 36series resistor plus the output  
MPC9456  
OUTPUT  
BUFFER  
Z
= 50Ω  
= 50Ω  
O
R = 22Ω  
S
14Ω  
Z
O
R = 22Ω  
S
14+ 2222= 5050Ω  
25= 25Ω  
Figure 5. Optimized Dual Line Termination  
For More Information On This Product,  
TIMING SOLUTIONS  
7
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9456  
MPC9456 DUT  
Z
O
= 50Ω  
Differential  
Pulse Generator  
Z = 50  
Z
O
= 50Ω  
R = 50Ω  
T
R = 50Ω  
T
V
CC  
– 2V  
V
TT  
Figure 6. PCLK MPC9456 AC test reference for V = 3.3V and V = 2.5V  
cc cc  
PCLK  
PCLK  
V
CMR  
V
PP  
V =3.3V  
CC  
V =2.5V  
CC  
2.4  
0.55  
1.8V  
0.6V  
V
CC  
V
2
CC  
GND  
Q
X
t
F
t
R
t
t
(HL)  
(LH)  
Figure 7. Output Transition Time Test Reference  
Figure 8. Propagation delay (t ) test reference  
PD  
V
CC  
V
CC  
V
CC  
GND  
2
2
V
CC  
GND  
2
V
OH  
t
P
V
CC  
GND  
T
0
DC = t /T x 100%  
P 0  
t
t
SK(HL)  
SK(LH)  
The time from the PLL controlled edge to the non controlled  
edge, divided by the time between PLL controlled edges,  
expressed as a percentage  
The pin–to–pin skew is defined as the worst case difference  
in propagation delay between any similar delay path within a  
single device  
Figure 9. Output Duty Cycle (DC)  
Figure 10. Output–to–output Skew t  
SK(O)  
V =3.3V  
CC  
V =2.5V  
CC  
2.4  
0.55  
1.8V  
0.6V  
t
F
t
R
Figure 11. Output Transition Time test reference  
For More Information On This Product,  
MOTOROLA  
8
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9456  
OUTLINE DIMENSIONS  
FA SUFFIX  
LQFP PACKAGE  
CASE 873A-02  
ISSUE A  
4X  
A
A1  
0.20 (0.008) AB TU  
Z
32  
25  
1
–U–  
V
–T–  
B
AE  
AE  
P
B1  
DETAIL Y  
–Z–  
V1  
17  
8
DETAIL Y  
9
4X  
0.20 (0.008) AC TU  
Z
9
NOTES:  
S1  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
S
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE AB– IS LOCATED AT BOTTOM  
OF LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS T–, –U–, AND Z– TO BE DETERMINED  
AT DATUM PLANE AB.  
DETAIL AD  
G
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE AC–.  
–AB–  
–AC–  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 (0.010) PER SIDE. DIMENSIONS A AND B  
DO INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE AB.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.520 (0.020).  
SEATING  
PLANE  
0.10 (0.004) AC  
BASE  
METAL  
N
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076 (0.0003).  
9. EXACT SHAPE OF EACH CORNER MAY VARY  
FROM DEPICTION.  
F
D
8X M  
MILLIMETERS  
DIM MIN MAX  
7.000 BSC  
INCHES  
MIN MAX  
0.276 BSC  
0.138 BSC  
0.276 BSC  
0.138 BSC  
R
J
A
A1  
B
3.500 BSC  
7.000 BSC  
3.500 BSC  
1.400 1.600 0.055 0.063  
0.300 0.450 0.012 0.018  
1.350 1.450 0.053 0.057  
0.300 0.400 0.012 0.016  
SECTION AE–AE  
E
C
B1  
C
D
E
F
W
G
H
J
K
M
N
P
0.800 BSC  
0.031 BSC  
Q
H
K
X
0.050 0.150 0.002 0.006  
0.090 0.200 0.004 0.008  
0.500 0.700 0.020 0.028  
12 REF  
0.090 0.160 0.004 0.006  
0.400 BSC 0.016 BSC  
12 REF  
DETAIL AD  
Q
R
1
5
1
5
0.150 0.250 0.006 0.010  
S
9.000 BSC  
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
0.354 BSC  
0.177 BSC  
0.354 BSC  
0.177 BSC  
0.008 REF  
0.039 REF  
S1  
V
V1  
W
X
For More Information On This Product,  
TIMING SOLUTIONS  
9
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9456  
NOTES  
For More Information On This Product,  
MOTOROLA  
10  
TIMING SOLUTIONS  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9456  
NOTES  
For More Information On This Product,  
TIMING SOLUTIONS  
11  
MOTOROLA  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9456  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
MOTOROLA and the  
logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners.  
Motorola, Inc. 2002.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852–26668334  
Technical Information Center: 1–800–521–6274  
HOME PAGE: http://www.motorola.com/semiconductors/  
MPC9456/D  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

MPC9456FAR2

9456 SERIES, LOW SKEW CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, 7 X 7 MM, PLASTIC, LQFP-32
NXP

MPC9456FAR2

Low Skew Clock Driver, 10 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, PLASTIC, LQFP-32
MOTOROLA

MPC9456FAR2

Low Skew Clock Driver, 9456 Series, 10 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, PLASTIC, LQFP-32
IDT

MPC946

LOW VOLTAGE 1:10 CMOS CLOCK DRIVER
MOTOROLA

MPC946FA

Low Skew Clock Driver, 946 Series, 10 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, 0.80 MM PITCH, LQFP-32
IDT

MPC946FA

Low Skew Clock Driver, MPC900 Series, 10 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, LQFP-32
MOTOROLA

MPC946FA

IC,1:10 OUTPUT,CMOS,QFP,32PIN,PLASTIC
NXP

MPC946FAR2

MPC900 SERIES, LOW SKEW CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, 7 X 7 MM, LQFP-32
MOTOROLA

MPC946FAR2

946 SERIES, LOW SKEW CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, 7 X 7 MM, 0.80 MM PITCH, PLASTIC, LQFP-32
NXP

MPC947

LOW VOLTAGE 1:9 CLOCK DISTRIBUTION CHIP
MOTOROLA

MPC947FA

Low Skew Clock Driver, LVCMOS/LVTTL Series, 9 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, 0.80 MM PITCH, LQFP-32
MOTOROLA

MPC947FAR2

947 SERIES, LOW SKEW CLOCK DRIVER, 9 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, 7 X 7 MM, 0.80 MM PITCH, PLASTIC, LQFP-32
NXP