MPC9855VF [NXP]

200MHz, PROC SPECIFIC CLOCK GENERATOR, PBGA100, 11 X 11 MM, 1 MM PITCH, MAPBGA-100;
MPC9855VF
型号: MPC9855VF
厂家: NXP    NXP
描述:

200MHz, PROC SPECIFIC CLOCK GENERATOR, PBGA100, 11 X 11 MM, 1 MM PITCH, MAPBGA-100

时钟 外围集成电路 晶体
文件: 总12页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MPC9855  
Rev 4, 09/2005  
Freescale Semiconductor  
Technical Data  
Clock Generator for PowerQUICC III  
MPC9855  
The MPC9855 is a PLL based clock generator specifically designed for  
Freescale Microprocessor and Microcontroller applications including the  
PowerPC and PowerQUICC. This device generates a microprocessor input  
clock. The microprocessor clock is selectable in output frequency to any of the  
commonly used microprocessor input and bus frequencies. The device offers  
eight low skew clock outputs in two banks, each configurable to support different  
clock frequencies. The extended temperature range of the MPC9855 supports  
telecommunication and networking requirements.  
MICROPROCESSOR  
CLOCK GENERATOR  
Features  
8 LVCMOS outputs for processor and other circuitry  
Crystal oscillator or external reference input  
25 or 33 MHz Input reference frequency  
Selectable output frequencies include = 200, 166, 133,125, 111, 100, 83, 66,  
50, 33, or 16 MHz  
Buffered reference clock output (2 copies)  
Low cycle-to-cycle and period jitter  
VF SUFFIX  
VM SUFFIX (PB-FREE)  
100 MAPBGA PACKAGE  
CASE 1462-01  
100-lead PBGA package  
100-lead Pb-free Package Available  
3.3 V supply with 3.3 V or 2.5 V LVCMOS output supplies  
Supports computing, networking, telecommunications applications  
Ambient temperature range –40°C to +85°C  
Functional Description  
The MPC9855 uses either a 25 or 33 MHz reference frequency to generate 8 LVCMOS output clocks, of which, the frequency  
is selectable from 16 MHz to 200 MHz. The reference is applied to the input of a PLL and multiplied to 2 GHz. Output dividers,  
divide this frequency by 10, 12, 15, 16, 18, 20, 24, 30, 40, 60, or 120 to produce output frequencies of 200, 166, 133, 125, 111,  
100, 83, 66, 50, 33, or 16 MHz. The single-ended LVCMOS outputs provide 8 low skew outputs for use in driving a microprocessor  
or microcontroller clock input as well as other system components. The input reference, either crystal or external input is also  
buffered to a separate dual outputs that my be used as the clock source for a Ethernet PHY if desired.  
The reference clock may be provided by either an external clock input of 25 or 33 MHz. An internal oscillator requiring a  
25 MHz crystal for frequency control may also be used. The external clock source my be applied to either of two clock inputs and  
selected via the CLK_SEL control input. Both single ended LVCMOS and differential LVPECL inputs are available. The crystal  
oscillator or external clock input is selected via the input pin of XTAL_SEL. Other than the crystal, no external components are  
required for crystal oscillator operation. The REF_33 MHz configuration pin is used to select between a 33 and 25 MHz input  
frequency.  
The MPC9855 is packaged in a 100 lead MAPBGA package to optimize both performance and board density.  
© Freescale Semiconductor, Inc., 2005. All rights reserved.  
CLK  
0
1
1
0
0
1
PCLK  
PCLK  
÷N  
QA0  
QA1  
Ref  
CLK_SEL  
PLL  
XTAL_IN  
XTAL_OUT  
XTAL_SEL  
2000 MHz  
QA2  
QA3  
OSC  
÷N  
QB0  
QB1  
PLL_BYPASS  
REF_33 MHz  
QB2  
QB3  
CLK_A[0:5]  
CLK_B[0:5]  
REF_OUT0  
REF_OUT1  
MR  
REF_OUT1_E  
Figure 1. MPC9855 Logic Diagram  
MPC9855  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
2
Table 1. Pin Configurations  
Pin  
I/O  
Type  
Function  
Supply  
Active/State  
CLK  
Input  
LVCMOS PLL Reference Clock Input (pull-down)  
VDD  
PCLK, PCLK  
Input  
LVPECL PLL reference clock input  
V
DD  
(PCLK — pull-down, PCLK — pull-up and pull-down)  
QA0, QA1,  
QA2, QA3  
Output LVCMOS Clock Outputs  
V
V
DDOA  
DDOB  
QB0, QB1,  
QB2, QB3  
Output LVCMOS Clock Outputs  
REF_OUT0  
REF_OUT1  
Output LVCMOS Reference Output (25 MHz or 33 MHz)  
V
DD  
XTAL_IN  
Input  
LVCMOS Crystal Oscillator Input Pin  
V
V
V
V
DD  
DD  
DD  
DD  
XTAL_OUT  
CLK_SEL  
XTAL_SEL  
Output LVCMOS Crystal Oscillator Output Pin  
Input  
Input  
LVCMOS Select between CLK and PCLK input (pull-down)  
High  
High  
LVCMOS Select between External Input and Crystal Oscillator Input  
(pull-down)  
REF_33 MHz  
REF_OUT1_E  
MR  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS Selects 33MHz input (pull-down)  
V
V
V
V
V
V
High  
High  
Low  
High  
DD  
DD  
DD  
DD  
DD  
DD  
LVCMOS Enables REF_OUT1 output (pull-down)  
LVCMOS Master Reset (pull-up)  
PLL_BYPASS  
LVCMOS Select PLL or static test mode (pull-down)  
LVCMOS Configures Bank A clock output frequency (pull-up)  
LVCMOS Configures Bank B clock output frequency (pull-up)  
CLK_A[0:5](1)  
CLK_B[0:5](2)  
V
3.3 V Supply  
DD  
V
V
V
Analog Supply  
DDA  
Output Supply — Bank A  
Output Supply — Bank B  
Ground  
DDOA  
DDOB  
GND  
1. PowerPC bit ordering (bit 0 = msb, bit 5 = lsb)  
2. PowerPC bit ordering (bit 0 = msb, bit 5 = lsb)  
Table 2. Function Table  
Control  
CLK_SEL  
Default  
0
1
0
0
0
0
0
1
CLK  
CLKx  
PCLK  
XTAL  
XTAL_SEL  
PLL_BYPASS  
REF_OUT1_E  
REF_33 MHz  
MR  
Normal  
Bypass  
Disables REF_OUT1  
Selects 25 MHz Reference  
Reset  
Enables REF_OUT1  
Selects 33 MHz Reference  
Normal  
CLK_A and CLK_B control output frequencies. See Table 3 for specific device configuration  
MPC9855  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
3
Table 3. Output Configurations (Banks A & B)  
CLK_x[0]  
CLK_x[5]  
(lsb)  
Frequency  
(MHz)  
CLK_x[0:5](1)  
CLK_x[1]  
CLK_x[2]  
CLK_x[3]  
CLK_x[4]  
N
(msb)  
111111  
111100  
101000  
011110  
010100  
001111  
001100  
001010  
001001  
001000  
000111  
000110  
000101  
000100  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
0
1
1
1
1
1
0
0
0
0
1
1
0
1
1
1
1
0
0
0
1
1
1
1
1
0
0
1
0
1
0
1
0
0
1
1
0
0
1
0
0
0
0
1
0
0
1
0
1
0
1
0
126  
120  
80  
60  
40  
30  
24  
20  
18  
16  
15  
12  
10  
15.87  
16.67  
25.00  
33.33  
50.00  
66.67  
83.33  
100.00  
111.11  
125.00  
133.33  
166.67  
200.00  
250  
8(2)  
1. PowerPC bit ordering (bit 0 = msb, bit 5 = lsb)  
2. Minimum value for N  
MPC9855  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
4
OPERATION INFORMATION  
CLK_x[0:5]. To achieve N = 15 CLK_x[0:5] is configured to  
Output Frequency Configuration  
00111 or 7.  
The MPC9855 was designed to provide the commonly  
used frequencies in PowerQUICC, PowerPC and other  
microprocessor systems. Table 3 lists the configuration  
values that will generate those common frequencies. The  
MPC9855 can generate numerous other frequencies that  
may be useful in specific applications. The output frequency  
(fout) of either Bank A or Bank B may be calculated by the  
following equation.  
Crystal Input Operation  
TBD  
Power-Up and MR Operation  
Figure 2 defines the release time and the minimum pulse  
length for MR pin. The MR release time is based upon the  
power supply being stable and within VDD specifications. See  
Table 9 for actual parameter values. The MPC9855 may be  
configured after release of reset and the outputs will be stable  
for use after lock is obtained.  
fout = 2000 / N  
where fout is in MHz and N = 2 * CLK_x[0:5]  
This calculation is valid for all values of N from 8 to 126.  
Note that N = 15 is a modified case of the configuration inputs  
VDD  
MR  
treset_rel  
treset_pulse  
Figure 2. MR Operation  
Power Supply Bypassing  
Power Consumption Calculation  
The MPC9855 is a mixed analog/digital product. The  
architecture of the MPC9855 supports low noise signal  
operation at high frequencies. In order to maintain its superior  
signal quality, all VDD pins should be bypassed by  
high-frequency ceramic capacitors connected to GND. If the  
spectral frequencies of the internally generated switching  
noise on the supply pins cross the series resonant point of an  
individual bypass capacitor, its overall impedance begins to  
look inductive and thus increases with increasing frequency.  
The parallel capacitor combination shown ensures that a low  
impedance path to ground exists for frequencies well above  
the noise bandwidth.  
For unloaded outputs the power consumption of the  
MPC9855 can be calculated as follows.  
P = VDD * IDDBASE + nA * (VDDOA ** 2 * CPD * fA)  
+ nB * (VDDOB ** 2 * CPD * fB)  
where  
VDD = core supply voltage  
IDDBASE = base supply current  
nA = number of A bank outputs (= 4)  
nB = number of B bank outputs (= 4)  
VDDOA = voltage supply on bank A outputs  
VDDOB = voltage supply on bank B outputs  
CPD = power dissipation capacitance  
fA = frequency of bank A outputs  
fB = frequency of bank B outputs  
VDD  
VDD  
22 µF  
15 Ω  
0.1 µF  
0.1 µF  
MPC9855  
VDDA  
Figure 3. VCC Power Supply Bypass  
MPC9855  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
5
Table 4. Absolute Maximum Ratings(1)  
Symbol  
Characteristics  
Supply Voltage (core)  
Min  
Max  
Unit  
Condition  
VDD  
–0.3  
3.8  
V
VDDA  
VDDOx  
VIN  
Supply Voltage (Analog Supply Voltage)  
Supply Voltage (LVCMOS output for Bank A and B)  
DC Input Voltage  
–0.3  
–0.3  
–0.3  
–0.3  
VDD  
VDD  
V
V
VDD+0.3  
VDDx+0.3  
±20  
V
DC Output Voltage(2)  
DC Input Current  
VOUT  
IIN  
IOUT  
TS  
V
mA  
mA  
°C  
DC Output Current  
±50  
Storage Temperature  
–65  
125  
1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these  
conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated  
conditions is not implied.  
2. VDDx references power supply pin associated with specific output pin.  
Table 5. General Specifications  
Symbol  
VTT  
Characteristics  
Output Termination Voltage  
Min  
Typ  
Max  
Unit  
V
Condition  
VDD ÷ 2  
HBM  
CDM  
LU  
ESD Protection (Human Body Model)  
ESD Protection (Charged Device Model)  
Latch-Up Immunity  
2000  
500  
V
V
100  
mA  
pF  
pF  
CIN  
Input Capacitance  
4
8
Inputs  
Per Output  
CPD  
θJA  
Power Dissipation Capacitance  
Thermal Resistance (junction-to-ambient)  
Ambient Temperature  
54.5  
°C/W Air flow = 0  
°C  
TA  
–40  
85  
Table 6. DC Characteristics (TA = –40°C to 85°C)  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
Supply Current for VDD = 3.3 V ± 5%  
IDDBASE Base Supply Current (Core)  
135  
170  
15  
mA  
VDD + VDDA  
pins, outputs  
unloaded  
IDDA  
Maximum Supply Current (Analog Supply)  
mA  
VDDIN pins  
MPC9855  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
6
Table 7. LVPECL DC Characteristics (TA = –40°C to 85°C)(1)  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
Differential LVPECL Clock Inputs (CLK1, CLK1) for VDD = 3.3 V ± 0.5%  
Differential Voltage(2) (peak-to-peak)  
Differential Input Crosspoint Voltage(3)  
(LVPECL)  
(LVPECL)  
VPP  
250  
1.0  
mV  
V
VCMR  
V
DD – 0.6  
1. AC characteristics are design targets and pending characterization.  
2. VPP is the minimum differential input voltage swing required to maintain AC characteristics including tPD and device-to-device skew.  
3. VCMR (AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the VCMR (AC)  
range and the input swing lies within the VPP (AC) specification. Violation of VCMR (AC) or VPP (AC) impacts the device propagation delay,  
device and part-to-part skew.  
Table 8. LVCMOS I/O DC Characteristics (TA = –40°C to 85°C)  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
LVCMOS for VDD = 3.3 V ± 5%  
VIH  
VIL  
IIN  
Input High Voltage  
Input Low Voltage  
2.0  
VDD + 0.3  
0.8  
V
V
LVCMOS  
LVCMOS  
IN = VDDL or GND  
Input Current(1)  
± 200  
µA  
V
LVCMOS for VDD = 3.3 V ± 5%, VDDOA = 3.3 V ± 5 and VDDOB = 3.3 V ± 5%  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
Output Impedance  
2.4  
V
V
IOH = –24 mA  
IOL = 24 mA  
0.5  
0.4  
ZOUT  
14 – 17  
18 – 22  
LVCMOS for VDD= 3.3 V ± 5%, VDDOA = 2.5 V ± 5% and VDDOB= 2.5 V ± 5%  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
Output Impedance  
1.9  
V
V
IOH = –15 mA  
IOL = 15 mA  
ZOUT  
1. Inputs have pull-down resistors affecting the input current.  
MPC9855  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
7
Table 9. AC Characteristics (VDD = 3.3 V ± 5%, VDDOAB = 3.3 V ± 5%, TA= –40°C to +85°C)(1) (2)  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
Input and Output Timing Specification  
fref  
Input Reference Frequency (25 MHz input)  
Input Reference Frequency (33 MHz input)  
XTAL Input  
Input Reference Frequency in PLL Bypass Mode(3)  
VCO Frequency Range(4)  
25  
33  
25  
MHz  
MHz  
MHz  
MHz  
250  
PLL bypass  
PLL locked  
fVCO  
fMCX  
2000  
MHz  
Output Frequency  
Bank A output  
Bank B output  
15.87  
15.87  
200  
200  
MHz  
MHz  
frefPW  
frefCcc  
tr, tf  
Reference Input Pulse Width  
Input Frequency Accuracy  
Output Rise/Fall Time  
Output Duty Cycle  
2
ns  
ppm  
ps  
100  
500  
57  
150  
43  
20% to 80%  
DC  
50  
%
Bank A and B  
PLL Specifications  
tLOCK  
treset_ref  
treset_pulse  
Maximum PLL Lock Time  
10  
ms  
ns  
ns  
MR Hold Time on Power Up  
MR Hold Time  
10  
10  
Skew and Jitter Specifications  
tsk(O) Output-to-Output Skew (within a bank)  
tsk(O) Output-to-Output Skew (across banks A and B)  
50  
ps  
ps  
400  
VDDOA = 3.3 V  
VDDOB = 3.3 V  
tJIT(CC)  
tJIT(PER)  
tJIT()  
tr, tf  
Cycle-to-Cycle Jitter  
Period Jitter  
200  
200  
50  
ps  
ps  
ps  
ns  
Bank A and B  
Bank A and B  
Bank A and B  
20% to 80%  
I/O Phase Jitter  
RMS (1 σ)  
Output Rise/Fall Time  
TBD  
1. AC characteristics are design targets and pending characterization.  
2. AC characteristics apply for parallel output termination of 50to VTT  
3. In bypass mode, the MPC9855 divides the input reference clock.  
.
4. The input reference frequency must match the VCO lock range divided by the total feedback divider ratio: fref = (fVCO ÷ M) N.  
ZO = 50Ω  
ZO = 50Ω  
Pulse  
Generator  
Z = 50Ω  
DUT MPC9855  
RT = 50Ω  
VTT  
RT = 50Ω  
VTT  
Figure 4. MPC9855 AC Test Reference (LVCMOS Outputs)  
MPC9855  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
8
Table 10. MPC9855 Pin Diagram (Top View)  
1
2
3
4
5
6
7
8
9
10  
VDDOA  
VDDOA  
CLKA[1]  
CLKA[3]  
CLKA[5]  
VDD  
QA1  
QA2  
VDDOA  
VDDOA  
A
B
C
D
E
F
VDDOA  
RSVD  
VDDOA  
RSVD  
CLKA[0]  
VDD  
CLKA[2]  
VDD  
CLKA[4]  
VDD  
QA0  
VDD  
VDDOA  
VDD  
QA3  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
QB3  
QB2  
VDDOA  
VDD  
VDDOA  
REF_OUT[0]  
REF_OUT[1]  
GND  
VDDA  
VDDA  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
VDD  
GND  
GND  
GND  
GND  
VDD  
RSVD  
XTAL_SEL  
PCLK  
CLK  
VDD  
GND  
GND  
VDD  
PCLK  
VDD  
GND  
GND  
RSVD  
RSVD  
CLK_SEL  
XTAL_IN  
VDDOB  
REF_33MHz  
XTAL_OUT  
VDDOB  
VDD  
GND  
GND  
PLL_BYPASS  
RSVD  
MR  
G
H
J
VDD  
VDD  
VDD  
REF_OUT1E  
VDDOB  
CLKB[0]  
CLKB[1]  
CLKB[2]  
CLKB[3]  
CLKB[4]  
CLKB[5]  
QB0  
VDD  
VDDOB  
QB1  
VDDOB  
VDDOB  
VDDOB  
VDDOB  
VDDOB  
K
Table 11. MPC9855 Pin List  
100 Pin  
100 Pin  
MAPBGA  
100 Pin  
MAPBGA  
100 Pin  
MAPBGA  
100 Pin  
MAPBGA  
Signal  
Signal  
Signal  
Signal  
Signal  
MAPBGA  
VDDOA  
VDDOA  
CLKA[1]  
CLKA[3]  
CLKA[5]  
VDD  
A1  
RSVD  
RSVD  
VDD  
C1  
XTAL_SEL  
CLK  
E1  
CLK_SEL  
REF_33MHz  
VDD  
G1  
VDDOB  
VDDOB  
J1  
J2  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
E10  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
F10  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
VDD  
CLKB[0]  
CLKB[2]  
CLKB[4]  
QB0  
J3  
J4  
VDD  
GND  
GND  
GND  
GND  
VDD  
GND  
VDD  
GND  
J5  
VDD  
GND  
J6  
QA1  
VDD  
GND  
VDDOB  
QB3  
J7  
QA2  
VDD  
VDD  
J8  
VDDOA  
VDDOA  
VDDOA  
VDDOA  
CLKA[0]  
CLKA[2]  
CLKA[4]  
QA0  
VDD  
VDD  
PLL_BYPASS  
MR  
VDDOB  
VDDOB  
VDDOB  
VDDOB  
CLKB[1]  
CLKB[3]  
CLKB[5]  
VDD  
J9  
REF_OUT[0]  
VDDA  
VDDA  
VDD  
GND  
PCLK  
PCLK  
VDD  
J10  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
XTAL_IN  
XTAL_OUT  
VDD  
GND  
GND  
GND  
GND  
GND  
VDD  
VDD  
GND  
VDD  
GND  
VDD  
VDDOA  
QA3  
GND  
VDD  
QB1  
VDD  
VDD  
QB2  
VDDOA  
VDDOA  
RSVD  
REF_OUT[1]  
RSVD  
RSVD  
RSVD  
REF_OUT1E  
VDDOB  
VDDOB  
MPC9855  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
9
PACKAGE DIMENSIONS  
PAGE 1 OF 2  
VA SUFFIX  
VM SUFFIX (PB-FREE)  
100 MAPBGA PACKAGE  
CASE 1462-01  
ISSUE A  
MPC9855  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
10  
PACKAGE DIMENSIONS  
PAGE 2 OF 2  
VA SUFFIX  
VM SUFFIX (PB-FREE)  
100 MAPBGA PACKAGE  
CASE 1462-01  
ISSUE A  
MPC9855  
11  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MPC9855  
Rev. 4  
09/2005  

相关型号:

MPC9855VFR2

200MHz, PROC SPECIFIC CLOCK GENERATOR, PBGA100, 11 X 11 MM, 1 MM PITCH, MAPBGA-100
NXP

MPC9855VM

200MHz, PROC SPECIFIC CLOCK GENERATOR, PBGA100, 11 X 11 MM, 1 MM PITCH, LEAD FREE, MAPBGA-100
NXP

MPC9855VMR2

Processor Specific Clock Generator, 200MHz, PBGA100, 11 X 11 MM, 1 MM PITCH, LEAD FREE, MAPBGA-100
IDT

MPC9855VMR2

200MHz, PROC SPECIFIC CLOCK GENERATOR, PBGA100, 11 X 11 MM, 1 MM PITCH, LEAD FREE, MAPBGA-100
NXP

MPC9857DW

IC,1:10 OUTPUT, DIFFERENTIAL,CMOS,TSSOP,48PIN,PLASTIC
NXP

MPC9857DW

PLL Based Clock Driver, 9857 Series, 10 True Output(s), 0 Inverted Output(s), PDSO48, TSSOP-48
IDT

MPC9865VFR2

Clock Generator, PBGA100
IDT

MPC9865VM

Clock Generator, 200MHz, PBGA100, 11 X 11 MM, 1 MM PITCH, LEAD FREE, MO-192DAC-1, MAPBGA-100
IDT

MPC9865VMR2

Clock Generator, PBGA100
IDT

MPC9893

Low Voltage PLL Intelligent Dynamic Clock (IDCS) Switch
MOTOROLA

MPC9893AE

9893 SERIES, PLL BASED CLOCK DRIVER, 12 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP48, 7 X 7 MM, LEAD FREE, LQFP-48
NXP

MPC9893FA

PLL BASED CLOCK DRIVER, 12 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP48, 7 X 7 MM, LQFP-48
MOTOROLA